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Abstract

5th generation (5G) and 6th generation (6G) are significant wireless technology advance-
ments that are expected to operate on millimeter wave (mmWave) and sub-Terahertz (THz)
spectrum, respectively. While 5G significantly improved data speeds and connectivity, 6G is
anticipated to go even further by enabling evenhigher frequencies and superior performance,
making it a key enabler formeeting the requirements of future digital applications for higher
data rates and bandwidth. In the context of 5G and future generations like 6G, resiliency be-
comes even more critical as these networks support a wide range of applications, including
mission-critical services, IoT, and autonomous systems, where uninterrupted communica-
tion is essential.
In the first phase of the thesis, first we summarize State Of Art (SOA) channel modeling

approaches in sub-THz. Then we introduce two novel channel modeling approaches -THz-
GANchannel and Simplified Stochastic ChannelModel in THz (SSCH-THz)- at 140GHz,
based on statistical andMachine learning based to cope with the usefulness of conventional
channelmodeling approaches in theTHz spectrum and the absence of general channelmod-
eling at this spectrum. We implement proposed channel models and benchmarks in ns-3 in
order to validate channels and enable full-stack performance of applications like UDP and
TCP based on KPI performance metrics. The results indicate that with 1000 fewer training
steps and a smaller required dataset size, theTHz-GANchannel and the benchmark channel
models KPI are extremely similar, with amaximumCIRdifference of 10 dBm. On the other
hand, Integrated Access and Backhaul (IAB) and RIS are flexible and low-cost solutions to
deploy ultra-dense fifth and sixth-generation (5G and 6G) systems, as they enable wireless
backhaul links based on the same technology and specifications as for the access link. In the
second phase, we introduce a new system-level simulator on top of sionna to support the
IAB network and self-backhauling and SAFEHAUL: novel RL-based backhaul schedular.
In addition, we proposed ns-3 implementation of RIS, then, we profile RIS performance by
implementing the RIS signal model in ns-3 mmwave. Then, we consider the deployment
of mixed mmWave and sub-terahertz links to increase the capacity of the backhaul network,
and provide the first performance evaluation of the potential of sub-terahertz frequencies
for 5G and 6G Integrated Access and Backhaul (IAB). Our results show that IAB with sub-
terahertz links can outperform a mmWave-only deployment with improvements of 4× for
average user throughput and a reduction of up to 50% for median latency.
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1
Introduction

Increasing demand for higher data rates, lower latency, and more connected devices is driv-
ing the evolution of wireless communication technologies from 4G to 5G and beyond. 5G
and 6G, alongwithmmWave and sub-terahertz communication, play an essential part in ful-
filling these requirements. 5G and 6G promise much higher data transfer rates than their
predecessors. They enable 4K video transmission in real time, augmented and virtual real-
ity, and IoT device support [3]. 5G reduces latency to milliseconds, making mission-critical
applications such as autonomous vehicles and remote surgery possible. 6G seeks to reduce
latency even further, opening the door to new applications. Both 5G and 6G are designed
to connect a large number of devices concurrently, enabling smart cities, industrial automa-
tion, and the Internet of Things (IoT). 5G and 6G employ mmWave and sub-terahertz fre-
quencies to attain these high data rates [4]. However, these frequencies have a limited range
and are susceptible to interference from structures. Signals at mmWave and sub-terahertz
frequencies are susceptible to higher path loss, necessitating the use of sophisticated beam-
forming and antenna technologies tomaintain signal strength. Spectrumallocation for these
technologies presents a significant challenge, particularly in congested frequency bands [5].

1.1 Motivation and Contribution

During my doctoral studies, we focused on both mmwave and sub-THz frequency chal-
lenges and attempted to solve the problem. Themain contributions ofmy research are listed
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as follows:

• First, we reviewchannelmodeling approaches for the spectrumabove100GHz (Sec. 3).
Moreover, it is a challenge to collect datasets with the scarce THz channel measure-
ments. So, we generate a dataset based on two channel models (HB channel and FS)
for indoor meeting room scenarios, which we used in developing channel models.

• we introduce Simplified Stochastic Channel Model in THz (SSCH-THz) , using sim-
plifiedmathematic formulas to model the channel in the indoor scenario at 140 Giga-
hertz (GHz) (Sec. 4). By using this approach we reach highly accurate channel mod-
eling with much lower complexity. However the issue with this is not a generality, so
we introduce an alternative channel model to cope with this.

• For sub-THzcommunication,we introduceTHz-GANchannel, a cGAN-based chan-
nel modeling approach to cope with not generality channel modeling issue (Sec. 4).
The THz-GAN channel core is cGAN, which uses transfer learning to adapt to new
scenarios. For the first time at this spectrum, thanks to generality and ease of use this
channel model can be used as generalized channel modeling in all deployment scenar-
ios.

• In addition, we proposed ns-3 Implementation of THz-GAN channel and SSCH-
THz . Then profile the full stack systemperformance based onKey Performance Indi-
cator (KPI) such as throughput, and latency usingTCP, andUserDatagramProtocol
(UDP) applications in ns-3 simulator. we use proposed and benchmark channelmod-
eling to investigate the effect of channel modeling in full-stack analysis. End-to-end
performancemeasurement of the system ismade possible by full stack analysis, which
is essential for validating the performance of algorithms implemented at each layer of
the system.

• We model the scheduling and path selection problem in IAB mmWave networks as a
multi-agent multi-armed bandit problem (Sec. 6.3). We consider multiple fiber base
stations, simultaneously supporting many self-backhauled mmWave base stations. In
ourmodel, the self-backhauledbase stations independently decide the links to activate.
The consensus among the base stations is reached via standard-defined procedures
(Section 6.4.3).
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• Wepresent the first solution to provide reliable performance in IAB-enabled networks
(Sec. 6.4). Specifically, we investigate the jointminimization of the average end-to-end
latency and its expected tail loss. To this aim,wepropose Safehaul, a learning approach
that leverages the coherent risk measure CVaR[6]. CVaRmeasures the tail average of
the end-to-end latency distribution that exceeds themaximumpermitted latency, thus
ensuring the network’s reliability.

• We analytically bound the regret of Safehaul, i.e., we bound the loss of Safehaul com-
pared to the casewhen thedelays associated to all end-to-endpathsbetween self-backhauled
base stations and fiber base stations are known a priori. We show that, for the case
when there are no conflicts between the decision of the self-backhauled base stations,
the average regret of Safehaul tends to zero as the time increases. This regret bound
characterizes the learning speed and proves that Safehaul converges to the optimal
scheduling and path selection solution that jointly minimizes the average end-to-end
latency and its expected tail loss.

• Weprovide anewmeansof simulatingmulti-hop IABnetworksby extendingNVIDA’s
GPU-accelerated simulator Sionna [1] (Sec. 6.5). Specifically, we add codebook-based
analog beamforming capabilities for both uplink and downlink communications. In
addition, we add internal Ray Tracer (RT) of Sionna in order to generate Channel
Impulse Response (CIR). Further, we extend Sionna by implementing system-level
components such as layer-2 schedulers and buffers and Backhaul Adaptation Proto-
col (BAP)-like routing across the IAB network. We believe our IAB extensions will
be instrumental for the open-source evaluation of future research on self-backhauled
mmWave networks.

• Exploiting the above simulator, we evaluate andbenchmark Safehaul against two state-
of-the-art algorithms [7, 8] based on deployment in two different locations (Manhat-
tan and Padova). The results confirm that Safehaul is significantly more reliable than
the considered benchmarks, as it exhibits much tighter variance in terms of both la-
tency (up to 71.4%) and packet drop rate (at least 39.1%). Further, Safehaul achieves
up to 43.2% lower average latency and 11.7% higher average throughput than the ref-
erence schemes.

• Wedevelop a greedypathgeneration algorithmthat automatically selects the frequency
band of an IAB link (between 28 GHz and 140 GHz) and assigns routes so that each
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IABnode can reach the IABdonor (Sec. ??Chapter:I . The frequency selection aims
at avoiding bottlenecks, i.e., the algorithm selects the band that provides the
highest capacity when accounting for the congestion that may arise in the prox-
imity of the IAB donor. In addition, we consider and compare different ratios of
sub-terahertz and mmWave links, which can be mapped to licensing constraints
for out-of-band backhaul, and two different bandwidths for the sub-terahertz
links (10 GHz and 32 GHz), which consider exclusive licensing or sharing with
other services, respectively [9].

• We model the IAB network in a custom-developed 3rd Generation Partnership
Project (3GPP) Release 17 simulator based on the open-source tool Sionna [1],
with 3GPP and state-of-the-art mmWave and sub-terahertz channel models, and
realistic and detailed 3GPP-based physical and Medium Access Control (MAC)
layers. Our results quantify for the first time the performance improvement that
sub-terahertz links can introduce in IAB networks, which can push beyond the
limits of the in-band mmWave backhaul and support more than 50 users with
120 Mbps streams and a single donor without congestion (compared to about
33 Mbps for in-band mmWaves).

1.2 Thesis Structure

The remainder of this thesis is split into five major sections. The first described in Chap-
ter 2, provides basic material and tools for the research. The second, comprising Chapter 3
and Chapter 4, describes the SOA and proposed sub-thz channel models. The third section
starts with a short introduction of 5G networks (Chapter 5 and follows with a description
of the research on mmWave frequency reliability using IAB (Chapter 6) and RIS (Chap-
ter 7) to improve communication range and dependability. The fourth section (Chapter 8)
illustrates the possibility of combining sub-THz and mmWave in self-bakhclung, bringing
together two previous sections. The fifth section describes the Statistical Analysis and End-
to-End Performance Evaluation of Traffic Models for Automotive Data within Chapter 9.
Chapter 10 concludes the thesis and suggests directions for future research.
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2
Background

In this chapter, we will provide a concise description of the materials utilized in our analysis
of the subject matter. You can skip this chapter and refer back to it while studying the thesis.

2.1 Deep Neural Networks (DNN)

Deep learning is a subfield of artificial intelligence (AI) and machine learning that focuses
on training artificial neural networks to execute tasks that ordinarily require human intel-
ligence. These neural networks are composed of multiple layers that are interconnected, al-
lowing them to learn and represent complex data patterns. ADeepNeuralNetwork (DNN)
is comprised of different layers; these layers, known as hidden layers, enable DNNs tomodel
complex relationshipswithin data. The input layer receives unprocessed data, such as images,
text, or numeric values. The hidden layers transform input data utilizing weighted connec-
tions and nonlinear activation functions. With their many hidden layers, deep networks are
able to detect intricate patterns. The output Layer is the last layer of a neural network that
provides predictions or classifications [10]. Forward propagation is utilized by DNNs to
make predictions. The data flows from the input layer to the hidden layers to the output
layer.
During training, they use backpropagation tominimize prediction errors by adjusting the

network’s weights and biases. Training deep neural networks can be difficult due to vanish-
ing and exploding gradient issues. DNNs have enabled advancements in numerous fields,
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Figure 2.1: Architecture of DNNs including input layer (yellow circles), hidden layer(s) (blue circles), output layer (orange
circles)

from healthcare to autonomous vehicles, by enabling computers to comprehend and pro-
cess complexdata,making thema cornerstoneof contemporary artificial intelligence. Recent
DNNapplications in communication conducted by a couple of researchers will be discussed
in the thesis. Inmy research, I focus on theGANandRLmodels ofDNNs, so I will provide
a brief introduction to them in the following sections.

2.2 Generative Adversarial Network (GAN)

In machine learning, a GAN is a type of artificial neural network used to generate new data
samples that resemble a given dataset. GANs have twomajor components: a generator and a
discriminator. The generator attempts to generate data samples, such as images or text, that
are similar to the real data it was trained on by using random noise as input. Over time, it
learns to generate increasingly realistic data. On the other side, the discriminator’s function
is to differentiate between real data and data generated by the generator. It is trained to be-
come more adept at distinguishing genuine from fake data. A GAN is trained through a
competition between the generator and the discriminator. Here is how it operates:
Starting with random noise, the generator generates fictitious data. The discriminator

assesses both real and fake examples. In an effort to fool the discriminator, the generator
improves its ability to generate more convincing fake data over time. Simultaneously, the
discriminator improves its ability to differentiate between real and fake data. This cycle is
repeated until the generator produces data that is nearly indistinguishable from actual data.
GANs have a variety of applications, including image generation, data augmentation, and
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style transfer. They have played a significant role in advancing the field of deep learning and
have yielded impressive results in a variety of domains.

2.2.1 Conditional Generative Adversarial Network (GAN)

Inmachine learning, a cGAN is a type of generativemodel. It is an extension of the standard
framework for GAN. cGANs augment the GAN architecture with conditions, such as class
labels or other auxiliary information. This conditioning enables the generation of data sam-
ples that not only resemble the underlying distribution of the training data but also satisfy a
set of conditions.
Same as GAN’s, there are two neural networks within a cGAN: a generator and a discrim-

inator. As inputs, the generator receives both random noise and conditioning information
and produces samples designed tomatch the desired conditions. Under consideration of the
conditions, the discriminator attempts to distinguish between real data and generated data.
There are numerous applications for cGANs, including image-to-image translation, text-

to-image synthesis, and style transfer, where conditional information guides the generation
process. In computer vision and natural language processing tasks, they have been utilized
extensively to generate data that satisfies specific constraints or criteria. In wireless commu-
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Figure 2.3: fundamental process of RL

nication, GANs have a variety of applications that enhance and improve various aspects of
the field. Here are several prominent applications and trends: GANs can be used to generate
fakewireless signals for security testing and trainingwireless communication systems to iden-
tify and defend against spoofed signals [11]. GANs are utilized to improve wireless channel
recognition in aerospace communication scenarios. Neural networks, including GANs, can
improve the precision of wireless communication channel recognition and adaptation [12].
In addition, GANs have the ability to learn high-dimensional and complex wireless envi-
ronments, thereby assisting in the design and optimization of wireless communication sys-
tems [13].

2.3 Reinforcement learning (RL)

Reinforcement learning (RL) is a subset of machine learning that focuses on maximizing
cumulative rewards through environment-based decision-making. Due to its capacity to op-
timize network performance, it has gained prominence in wireless communication. In this
section, the main features of RL are described.
The fundamental Principles of Reinforcement Learning are as follows:
Agent: The decision-maker who interacts with the surroundings. The environment en-

tails the external system with which an agent interacts. State (S): A snapshot of the environ-
ment at a specific time. Action (A): The options available to the agent. Policy: A strategy
that determines the agent’s action choice. Reward (R): A numeric value that represents an
action’s immediate benefit.
To optimize various aspects of network management and performance, RL has been in-

creasingly utilized in the field of wireless communication. An actor-critic spectrum alloca-
tion scheme and a DNN were integrated in a study to achieve real-time spectrum alloca-
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tion with DRL methods. This method utilized RL to dynamically allocate spectrum re-
sources inwireless communication, thereby enhancing efficiency andflexibility [14]. This re-
search [15] aims to increase network intelligence, optimize resource allocation, and enhance
communication quality in wireless networks of the next generation. The use of RL in wire-
less communication is not limited to academia. Successful industry applications are emerg-
ing in which RL is utilized to optimize network management, improve quality of service,
and boost the overall performance of wireless networks [16]. RL is viewed as an effective
method for resolving complex decision-making issues within the context of 6G networks.
It can address the enormous and intricate state and action spaces of these advanced wire-
less systems [17]. RL is beneficial for wireless communication because it enables systems to
learn and build knowledge about radio channels without prior knowledge of channel condi-
tions [18]. Extensive applications of RL to optimize the physical layer of wireless communi-
cations are available. This requires the definition of RL strategies to improve the fundamen-
tal aspects of wireless signal transmission [19].

2.4 Sionna: Empowering Link-Level Simulations in Wireless Communica-
tion

Sionna [1] is an open-source GPU-accelerated library for link-level simulations intended pri-
marily for wireless communication systems. It provides researchers and engineers working
on the physical layer of wireless networks with a valuable resource. In this section, I will
explore the most important aspects of Sionna, its characteristics, and its role in link-level
simulations:
Sionna is primarily designed for conducting simulations at the link level, which involve

modeling and analyzing the physical layer of communication systems. Sionna’s technologi-
cal foundation is comprised of popular open-source software libraries, such as TensorFlow
and Keras, and fully written in python. It uses these libraries to implement various com-
ponents as Keras layers, thereby simplifying the process of constructing and customizing
communication system models. Sionna is extremely versatile and can be used to simulate a
variety of communication scenarios. It supports the implementation of point-to-point links
and is compliant with 5GNR (NewRadio) and 3GPP (3rdGeneration Partnership Project)
standards, making it suitable for both current and future wireless technologies [2]. Sionna is
an open-source project, meaning that anyone is free to use, modify, and contribute to it. Its
open nature encourages research community collaboration and innovation. Sionna incorpo-
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rates deep learning techniques, specifically neural networks, into link-level simulations. In
addition, Sionna provides tutorials and documentation to assist users in getting started with
link-level simulations. Recent studies on Sionna include, among others, the following: The
authors in [20] propose deep-unfolded interleaved detection and decoding (DUIDD), a new
paradigm that reduces the complexity of IDD while achieving even lower error rates. Using
NVIDIA’s Sionna link-level simulator, they demonstrate the effectiveness of DUIDD in a
5G-near multi-user MIMO-OFDMwireless system with a novel low-complexity soft-input
soft-output data detector, an optimized low-density parity-check decoder, and channel vec-
tors fromacommercial ray-tracer. In this paper [21], the authors demonstrate that thebinary
cross-entropy (BCE) loss is a sensible choice inuncoded systems, such as for trainingmachine
learning (ML)-assisted data detectors, but may not be optimal in coded systems. They pro-
pose a new loss functions aimed at minimizing the block error rate and SNR deweighting,
a novel method for optimizing the performance of communication systems across a spec-
trum of signal-to-noise ratios. Through simulations in NVIDIA Sionna, the usefulness of
the proposed loss functions and SNR deweighting are demonstrated.
In conclusion, Sionna is a powerful tool for wireless communication researchers and en-

gineers. It combines the capabilities of deep learning with the adaptability of open-source
software, making it a valuable asset for conducting advanced link-level simulations and driv-
ing communication technology innovations.

2.5 QD-Relization Ray Tracing Tool

The NIST Q-D Channel Realization Software* is a Matlab-based Three-Dimensional (3D)
ray tracing tool. It offers a flexible, scalable, and realistic channel model based on measure-
ment campaigns [22] to facilitate the design of next-generationwireless communication and
sensing systems for mm-wave frequencies. The primary characteristics of the NIST Q-D
Channel Realization Software are as follows:

• Support for a configurable scenario with multiple nodes.

• Accurate channel description thanks to geometrical ray tracing dependent on the in-
put Computer-Aided Design (CAD)model of the environment and thanks to exten-
sive measurement-based diffuse dispersion models.

• Facilitate node mobility.

*https://github.com/signetlabdei/qd-realization
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• Description of propagation in indoor and outdoor environments utilizing National
Institute of Standards and Technology (NIST), 802.11ay TaskGroup (TGay), or cus-
tom material libraries Support for Multiple-Input Multiple-Output (MIMO) tech-
nologies: scaling the propagation description to nodes with multiple antenna arrays
in order to circumvent the increased computational complexity.

• Configurable orientation of antennas.

• Configurable orientation at discrete points in time for each device.

• Support for dynamic targets that can be configured for sensing applications. Using ge-
ometrical ray tracing, ensure the spatial and temporal consistency of the target-related
channel.

This tool’s official version is designed to support only mmWave band frequency. There-
fore, I incorporate the following steps to adopt the tool that supports 140 GHz for my re-
search: Initially, I define new scenarios that are described in detail in Section 4.2. Then I
define new material library files containing the 140 GHz coefficient of various materials †

such as limestone, glass, and wood. In addition, the tool only supports reflection up to the
second order, so I modified the equations to support reflection up to the third order. The
updated version of the tool can be found at this link‡.

†https://github.com/AmirAshtariG/qd-realization/tree/TeraSupport/src/material_
libraries

‡https://github.com/AmirAshtariG/qd-realization/tree/TeraSupport
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(a) (b)

(c)

Figure 2.4: Example of graphical output of QD‐Realization tool in the THz scenario for a) one order of reflection, a) up to
second orders of reflection c) up to third order of reflection
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3
Sub-THz Communication

This chapter begins with a brief overview of the sub-THz band communication possibility
and available tools. The IEEE 802.15.3d standard will then be described to illustrate the
potential of this band for 6G communication. The necessity of system-level simulators for
sub-THz 6G networks will then be discussed. By analyzing the ns-3 module of Terasim, I
demonstrate how end-to-end performance analysis will be possible. This section will con-
clude by introducing SOA channel modeling in this spectrum as a benchmark for my work,
which will be explained in the following chapter.

3.1 Introduction on sub-THz communication: potential and challenges

Globally connecting people, devices, and systems, wireless communication has become an
essential component of contemporary life. Researchers and engineers are focusing on the
Sub-THz frequency range as the demand for higher data rates, lower latency, and more effi-
cient spectrum utilization increases. This relatively unexplored spectrum, ranging from ap-
proximately 100GHz to 1 THz, offers the potential for revolutionary wireless network com-
munication advancements. However, this spectrum’s complexity necessitates an in-depth
understanding of its characteristics and the development of innovative technologies. The
available bandwidth at Sub-THz frequencies is significantly greater than at conventional
microwave frequencies. This spectrum abundance enables the transmission of significantly
larger data volumes, which could revolutionize applications like ultra-HD video streaming,
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Figure 3.1: THz band versus mmWave and Sub‐6G

augmented reality, and remotemedical diagnostics. Due to its greater bandwidth and shorter
wavelengths, the Sub-THz spectrum has the potential to support an enormous number of
devices simultaneously. This enables 6G to reach new heights, with smart cities, industrial
automation, and sensor networks benefiting from seamless connectivity and minimal inter-
ference. Sub-THz wavelengths enable the creation of highly focused beams, which in turn
reduces propagation delays. This feature is essential for applications that require ultra-low la-
tency, such as remote surgery, autonomous vehicles, and virtual reality environments. Simu-
lations at the system level help optimize beamforming techniques and network architectures
to achieve the desired latency levels. While the Sub-THz spectrum presents exciting oppor-
tunities, it also presents inherent propagation difficulties. These signals are extremely sensi-
tive to atmospheric absorption, scattering, and diffraction at these frequencies. Simulations
at the system level must accurately model these effects in order to predict signal coverage,
link quality, and network performance as a whole. The proliferation of Sub-THz spectrum-
operating wireless devices raises interference concerns. It is necessary to develop effective in-
terferencemitigation techniques, such as dynamic spectrum sharing and intelligent resource
allocation. Simulations at the system level provide a controlled environment for testing these
strategies prior to their deployment in the real world. Sub-THz communication-capable
devices require specialized components and manufacturing processes. The initial cost of
these devices may be prohibitive, and their integration with existing network infrastructures
presents engineering challenges. Simulations aid in the evaluation of device complexity, per-
formance, and cost-effectiveness.
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3.1.1 IEEE 802.15.3d Standard

In this subsection, we describe IEEE 802.15.3d as an example of an IEEE standard for sub-
THz communication in order to highlight the practical effectiveness and potential of this
band. The IEEE 802.15.3d standard is part of the IEEE 802.15 family of wireless personal
area networks (WPAN)-focused standards [23]. IEEE 802.15.3d focuses specifically onwire-
less communication in the sub-THz frequency band. Important aspects of IEEE 802.15.3d
are as follows. This standard addresses wireless communication in the sub-THz frequency
range, which has the potential for high data rates and is an emerging area forwireless commu-
nication. The IEEE 802.15.3d standard defines the physical layer (PHY) andmedium access
control (MAC) sublayer specifications. These specifications are essential for enabling sub-
THzwireless connectivity with low data rates. IEEE 802.15.3d is an important step towards
standardizing consumer wireless communications in the sub-THz frequency band, which
has the potential to support a variety of applications, including high-speed data transmission.
Researchers and engineers have been diligently developing IEEE 802.15.3d-compliant wave-
forms and technologies to exploit the benefits of the sub-THz band for wireless data trans-
mission. IEEE 802.15.3d is an IEEE standard that defines PHY andMAC specifications for
wireless communication in the sub-THz frequency band. As part of ongoing efforts to ex-
plore and standardize the use of this frequency band for high-speedwireless communication,
which holds promise for a variety of applications, this frequency band is being investigated
and standardized.

3.2 System-level simulations of sub-THz network

6G networks are still largely theoretical and are expected to be developed in the coming
decades. Practical tools for this network are limited and particularly focused on physical layer
deployments, so the development and testing of technologies for these advanced generations
of wireless communication networks require simulators. System-level simulation in wireless
communication engineering refers to the simulation and comprehensive evaluation of the
performance of an entire wireless communication system, including all its components and
interactions. Simulations are essential for designing, analyzing, and optimizing wireless net-
works and systems. Here are some important aspects of simulation at the system level in
wireless communication engineering:

• Comprehensive NetworkModeling: The simulation at the system level models the
entire wireless communication network, including base stations, mobile devices, user
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terminals, and network infrastructure. It takes into account the spatial distribution,
characteristics, and interactions of these elements.

• propagation model: Realistic radio propagation models are used to simulate the
propagation of electromagnetic signals through the environment, taking into account
factors such as path loss, shadowing, fading, and interference. Thesemodels aid in the
evaluation of signal quality and coverage.

• Network Protocol: The simulation incorporates the behavior of various network
protocols, such as MAC (Medium Access Control) protocols, routing algorithms,
and higher-layer communication protocols such asTCP/IP. It evaluates the effect that
these protocols have on network performance.

• Traffic Modeling: The simulation includes models for simulating and creating dif-
ferent types of traffic. This helps evaluate how the network handles diverse data and
application types.

• ResourceAllocation: Simulations at the system level analyze strategies for resource al-
location, such as frequency and time slot allocation, power control, and beamforming
techniques. These strategies are crucial for optimizing the capacity and effectiveness
of a network.

• Interference Analysis: In wireless communication, interference from neighboring
cells or devices is a significant factor. Simulations at the system level assess interference
effects and evaluate interference mitigation techniques.

• Mobility and Handover: Simulations of mobile wireless systems take user mobility
patterns and handover mechanisms between base stations or cells into account. This
is essential for evaluating the service quality during handovers.

• Quality of Service (QoS) Evaluation: Simulations at the system level evaluate net-
work performance metrics such as throughput, latency, packet loss, and QoS metrics
for various services and applications.

• Optimization: By running simulations with various parameters and configurations,
engineers can optimize the network design, antenna placement, and resource alloca-
tion to achieve specific performance objectives.
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• SpectrumManagement: As the demand for wireless communication increases, spec-
trum management becomes increasingly important. Simulations at the system level
can aid in evaluating the impact of spectrum-sharing techniques and regulatory poli-
cies.

• Cost Analysis: Simulations can reveal the cost-effectiveness of various network de-
ployment strategies and technologies, enabling network operators to make informed
investment decisions.

Overall, system-level simulation in wireless communication engineering is crucial for de-
signing and optimizing wireless networks, ensuring they meet performance requirements
and effectively utilizing available resources while taking into account the complexity of real-
world scenarios. In this field, simulation tools such as NS-3, OPNET,MATLAB/Simulink,
and custom-built software are frequently used to conduct these exhaustive analyses.

3.3 NetworkSimulator3 (ns-3):AdvancingWirelessCommunicationResearch

ns-3 is a popular open-source network simulator that can be used for modeling and simulat-
ing wireless communication networks, including sub-THz channels. ns-3 provides a flexible
and extensible platform for the development of wireless communication models and algo-
rithms and can be used to study awide range of network configurations and communication
scenarios. It also provides a large number of tools andmodules that can be used to study vari-
ous aspects of wireless communication, including the physical layer, theMAC layer, and the
network layer. ns-3 is a discrete-event network simulator which is a highly effective tool for
communication and networking researchers to develop novel protocols and analyze complex
systems. It is the successor to ns–2, which had been utilized by the networking community
for over a decade to design and validate network protocols. The ns–3 source code can be
downloaded from the project’s website. ns–3 can now be used to simulate a wide variety of
wireless and wireline networks, protocols, and algorithms, thanks to the addition of several
modules by an active community of researchers from both industry and academia. There is
comprehensive documentation on themodels on the ns–3website, regarding the bothmod-
els’ structure and what a user can do with them. In addition, the documentation provides
a comprehensive tutorial on how to install ns–3, configure ns–3 scenarios and topologies,
manage the collection of statistics, and log valuable messages. The tutorial is an excellent
starting point for researchers who are new to ns–3.
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Multiple folders constitute the ns–3 simulator. The src directory contains a collection
of C++ classes that implement a variety of modular simulation models and network proto-
cols. ns-3 is particularly useful for cross-layer design and analysis because themodules can be
aggregated and instantiated to create diverse simulated network scenarios. The modularity
and use of object-oriented design patterns alsomake it simple to incorporate and experiment
with new algorithms in the network architecture. Each module is organized into numerous
subfolders that contain themodel’s documentation and source code, as well as its helpers, ex-
amples, and tests. The helpers affiliated with everymodel play a crucial role. They are classes
that conceal from the end user the complexity of setting up a complete scenario, for instance
by automatically assigning IP addresses or by connecting the various classes of a protocol
stack. The build subdirectory contains the simulator’s binaries. Lastly, the scratch folder is a
special folder where scripts containing examples and scenarios can be generated on the run.

• Modularity and Extensibility: ns-3 is renowned for its modular architecture, which
enables researchers to simulate a vast arrayofnetworkprotocols, including thoseunique
to wireless communication. Its extensibility permits the incorporation of new wire-
less models, mobility scenarios, and custom protocols in order to accurately simulate
the behavior of real-world networks.

• Realistic ChannelModels: ns-3 provides a variety of realistic channelmodels for a va-
riety of wireless technologies, including Wi-Fi, LTE, mmWave, and sub-THz*, allow-
ing researchers to analyze and optimize the performance of wireless communication
systems in various environments and scenarios.

• Protocol Development: Using ns-3, researchers can design, test, and evaluate novel
wireless communication protocols. This is especially useful in the context of 6G,
where newprotocols are anticipated to be developed to support ultra-low latency,mas-
sive connectivity, and high data rates.

• Integration with External Tools: ns-3 can be integrated with other tools and li-
braries, thereby enhancing its capabilities and allowing researchers toutilize additional
features for their simulations. This integration is useful for modeling complex situa-
tions and incorporating actual data. As an example, the QD-realization † raytracer,

*Sub-THz channel models are limited and are developing
†https://github.com/signetlabdei/qd-realization
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which is written inMatlab, has the capability of exporting rays to be easily integrated
in ns-3.

• Scalability: From small-scale scenarios to large-scale network deployments, ns-3 can
simulate networks of varying sizes. This scalability is essential for assessing network
performance under varying conditions.

3.4 ns-3-Terasim module

TeraSim is the first simulation platform for THz communication networks that supports
THz devices’ capabilities, from the protocol stack to the modeling of directional antenna
patterns [24]. TeraSim considers two types of application scenarios, i.e., nano-scale scenar-
ios, for short-range communications, and macro-scale, for traditional macro (e.g., cellular)
scenarios. Themodule features common channel, antenna, and energymodels for nano and
macro applications, and separate MAC and Physical (PHY) models. A summary of the sim-
ulator’s key features are listed below:

• THz Band: TeraSim is dedicated to simulating communication networks operating
in the 0.1 to 10 THz frequency range.

• THz Device Capabilities: Captures the capabilities of THz devices, making it an
all-inclusive platform for simulating THz-band communication.

• Open source: TeraSim is an open-source platform developed as an extension for ns-3
which is available at this link‡.

• Nanoscale andMacroscale Scenarios: TeraSim is versatile, as it supports simulations
for both nanoscale and macroscale scenarios in the THz communication domain.

The antenna model of TeraSim is based on the directional communication scheme intro-
duced in [24], where alignment between mobile nodes is achieved with a rotating antenna.
The model is implemented in the THzDirectionalAntenna class, which extends the ns-3 co-
sine antenna with the possibility to rotate. The THzDirectionalAntenna class calculates the
antenna gain based on the mobility and the RX orientation. It is possible to configure dif-
ferent parameters for the antenna model, including whether the antenna is static or rotates,

‡https://apps.nsnam.org/app/thz/
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the rotation speed and initial phase, the maximum gain and beamwidth. A beamwidth of
360 degrees models an omnidirectional antenna.
The already implemented channel model (based on [25]) accounts for the frequency se-

lectivity based on different molecular absorption patterns at different frequencies of the ter-
ahertz spectrum. However, the current implementation of TeraSim only accounts for LoS
propagation (more details Terasim can be found in [25]).

3.5 SOACHANNELMODELINGABOVE 100 GHZ

In the paragraphs that follow, we go over various channel models and modeling techniques
for the sub-THz, mmWave, and sub-6 GHz spectrums. Additionally, we describe Terasim,
a ns-3 module for simulating THz communication, at the end of the section.

3.5.1 Physics-based ChannelModeling

To assess the THz communication potential and to proceed with a realistic and accurate
description of the actual capacity and channel model in the THz band, it is important to
study a physics-based channel model [26]. The purpose of physics-based channel model-
ing is to describe the wireless communication devices in the electromagnetic (EM) spec-
trum. In [25], researchers focus on electromagnetic communications between nano devices
and develop a physical channel model for wireless communication in the THz Band (0.1-
10.0 THz). Physics-based channel models allow us to compute the signal path loss and the
molecular absorption noise per each frequency and, finally, the channel capacity of EMnano
networks [27]. The most remarkable example of this sort of channel model is [25], which
takes the first step toward clearly defining the communication model for devices communi-
cating wirelessly in the THz spectrum. This study offers a channel model for EM commu-
nications in the THz Band by addressing molecular absorption and providing formulations
for total path loss and molecular noise. The CIR is represented as

hC(f, d) = (
c

4πfd
) exp

(
−kabs(f)d

2

)
, (3.1)

where c, f , d, and kabs refer to the speed of light, frequency, the distance between receiver
and transmitter, and the molecular absorption coefficient of the medium, respectively. kabs
is determined by the transmission medium’s molecular composition, i.e., the type and con-
centration of molecules present in the channel. However, physics-based channel modeling

20



approaches are limited toLoS scenarios and cannot describe theNLoS or fading effects, both
of which are critical in the THz spectrum.

3.5.2 Stochastic ChannelModeling

Stochastic Channel Model (SCM) is a mathematical approach used in wireless communi-
cation to predict the behavior of a wireless channel based on probabilistic models that cap-
tures the statistical properties of the wireless channel. The SCMs are employed to assess the
effectiveness of communication and localization systems by simulating a radio channel be-
havior. The SCMmethod relies on datasets derived from empirical channel measurements.
This is less computationally complex than alternative channel modeling techniques, e.g., ray
tracing. Several SCM models use fitted distributions to describe the temporal and spatial
channel features, such as Angle of Arrival (AoA), Angle of Departure (AoD), Time of Ar-
rival (ToA), and complex amplitudes. Clusters of multipath components can be described
using the Saleh-Valenzuela (S-V) model with the tapped delay line [28]. [29] and [30] pro-
vide examples of such channel modeling applied to 140 GHz and 300 GHz signals, respec-
tively. In comparison, other SCMs quantitatively explain the impulse response of channel
and antenna parameters without explicitly including propagation. [31] reports on indoor
wide-band propagation and penetration measurements for a typical building using wide-
band channel sounder equipment working at 140 GHz. The same group provides indoor
measurements and models for reflection, scattering, transmission, and large-scale path loss
at mmWave and sub-THz frequencies [32]. [33] represents the statistical characterization
of three bands between 300 and 400 GHz which is based on a broad set of measurements in
LoS and NLoS environments and includes spatial and temporal variations. [30] introduces
stochastic indoor 300 GHz spatial-temporal channel model that considers parameters such
as polarization, ray amplitudes, ToAs, AoAs and AoDs, and path specific frequency disper-
sion. Furthermore, THz channelmodeling via amixture of gammadistributions is proposed
in [34]. A geometric-based stochastic time-varying model at 110 GHz is proposed in [35]
for THz vehicle-to-infrastructure communications. The next paragraph is an example of a
detailed explanation of SCM channel model operating at 140 GHz, which we will refer to it
in upcoming sections.
Authors in [29] introduced a 3GPP-like indoor spatial SCM, which we will refer to it as

The FS channel model in the rest of paper. This model is based on an experimental channel
measurement campaign at 28 GHz and 140 GHz, in an office environment. The channel
model is based on the concept of TimeCluster (TC) and Spatial Lobe (SL), which represent
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the temporal and spatial statistics of the channel model, respectively. TCs comprise Multi
Path Components (MPCs) propagating adjacent in time, which may come from different
AoA (AoD), whereas SLs define the main direction of arrival (departure). The directional
CIR is

hFS(τ,φ, θ) =
N∑

n=1

Mn∑

m=1

an,me
jϕn,mδ(τ − τn,m)

gTX(φ− φn,m)gRX(θ − θn,m),

(3.2)

where a, τ , φ, and θ are the magnitude, absolute propagation delay, AoD vector, and AoA
vector, respectively. Also, gTX and gRX are the TX and RX complex amplitude antenna
patterns, respectively.

3.5.3 Ray tracing ChannelModels

The stochastic nature of the SCM (3.5.2) channel models makes them generic, i.e., they can
represent a general rural or urban scenario but without details. As a result, they do not pre-
cisely describe the THz signal’s interactions in a particular deployment and hence are not
very efficient to be utilized for thorough planning and capacity analysis in real-world sce-
narios [36]. RT can be used to accurately simulate the propagation of mmWave signals in
a variety scenarios [37]. RTs is based on the scenario’s geometry and characterizes the var-
ious propagation aspects of each MPC, such as ToA, Doppler shift, polarization, AoD at
the TX, and AoA at the RX, offering higher accuracy of rays propagation in channel model-
ing [38]. Additionally, simulators can perform ray tracing to model the channel’s temporal
and spatial evolution, a significant point for appropriate wireless system planning. Recently,
numerous RTmodeling for THz band was done in order to evaluate the RT’s suitability for
THz waves. For example, [39] presents a ray tracing channel model at 300 GHz for close
proximity THz communication, such as kiosk downloading. Besides that, [40] employs a
ray tracing simulatorwith validated electromagnetic parameters for vehicle-to-infrastructure
THz communication. Similarly, [41] describes how to characterize sub-THz channels oper-
ating at 90-200 GHz using deterministic simulations in indoor office and outdoor in-street
scenarios.
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3.5.4 Quasi-DeterministicModeling

As described in 3.5.2 and 3.5.3, RT channel modeling enables high accuracy at the cost of
time and resource, whereas, stochastic channel modeling is computationally lightweight but
sacrifices accuracy. Thus, by strategically integrating two or more approaches, the devel-
opment of Quasi-deterministic channel modeling methods for resolving complicated THz
channelmodelswith low latency is becoming interesting andpromising [42]. Quasi-deterministic
channel models properly represent the propagation of waves as described by the EM wave
theory by modeling the propagation of radio waves in a given environment. This scheme
is become interesting in THz communications due to its high time efficiency and accuracy
compared to the individual methods. The hybrid method has been utilized in [43] for sub-
THz communication channel modeling. In the following paragraphs, we will discuss a re-
cent example of these channel modelings. The HB model [44] describes indoor sub-THz
propagation by integrating RT and stochastic approaches. This channel model is based on
wideband channel measurements obtained in a typical conference room operating at fre-
quencies between 130 and 143 GHz. To investigate cluster behavior and wave propagation
in the THz band, the HB model integrates MPC clustering and matching processes with
RTmethodologies [45]. The RT component enables the accurate representation of realistic
scattering conditions in a given situation, whereas the stochastic componentmodels random
scatterers (e.g., wall texture or small objects) that may be difficult to capture correctly within
the RT scenario [46]. The CIR as a function of the frequency f is given by

hHB(τ, θ, f) = hRT (τ, θ, f) + hS(τ, θ, f), (3.3)

where τ and θ indicate the delay and azimuth AoA, and hRT (·) and hS(·) are the channel
components modeled throughRT and stochastic methods. hRT combines the Fresnel equa-
tions with the geometrical data to estimate the LoS and the reflection losses from the scat-
tering of the walls (central sub-path in RT clusters). hS , on the other hand, stochastically
models the diffraction of extra sub-paths within the RT clusters, as well as the scattering
of reflections from additional obstacles (non-RT clusters). The CIR generated by the RT,
hRT (τ, θ, f), is represented as

hRT (τ, θ, f) = At(φLoS)αLoS(f)δ(τ − τLoS)δ(θ − θLoS)

+
LRT∑

l=1

Att(φl,0)αl,0(f)δ(τ − τl,0)δ(θ − θl,0),
(3.4)
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where the subscript l, 0 indicates the central path in the lth sub-path,At(·) represents the an-
tenna pattern at the TX, and αl,0, τl,0, θl,0 and φl,0 represent amplitude gain, ToA, azimuth
AoA, andAoD vectors of the sub-path, respectively. LRT is the number of RT clusters. The
CIR of the stochastic component, hS(τ, θ, f), is represented as

hS(τ, θ, f) =
LRT∑

l=1

Pl∑

p=−Ql,
p ̸=0

At(φl,p)αl,p(f)δ(τ − τl,p)δ(θ − θl,p)

+
Ls∑

q=1

Sq∑

s=−Tq

αq,s(f)δ(τ − τq,s)δ(θ − θq,s),

(3.5)

where subscripts l, p and s, q indicates the pth sub-path in the lth RT cluster, and the sth sub-
path in the qth non-RT cluster, respectively. Notice that the antenna pattern of the TX is not
involved in the statistical CIR in (3.5). The reason for this is that using a directional antenna
atTX, all statistical parameters for the hybridmodel are derived fromchannelmeasurements.
As a result, the produced amplitudes contain the impact of the antenna pattern at TX.

3.5.5 Machine Learning Aided ChannelModeling

In recent years, the rapid advance of Artificial Intelligence (AI) has shown howDNN-based
methods such as deep belief networks, deep convolutional neural networks, and recurrent
neural networks, can be effective in a variety of research fields and demonstrated remark-
able performance inwireless systems [47, 48]. Traditional channelmodeling aforementioned
above needs extensive domain understanding and technical skill in radio signal propagation
over electromagnetic fields. To overcome the constraints associated with traditional chan-
nel modeling methodologies, neural networks, and machine learning techniques are being
investigated as possible universal solutions for a variety of 6G application and communica-
tion environments [49, 50, 51]. Incorporating deep learning techniques into the channel
modeling could solve high-complexity knowledge requirements in higher frequency prop-
agation, particularly sub THz communication. As a result, it motivates researchers in the
wireless communicationfield communication todescribewireless propagationusing aDNN
[52, 53]. Although machine learning might open up new possibilities for wireless channel
modeling, its usefulness in practical applications may be limited by the need to gather large
amounts of data, tune hyperparameters, and undergo a lengthy training process. DNNs are
usually used for supervised learning tasks where the desired output is known, while GANs
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are used for unsupervised learning tasks where the goal is to generate new data that is simi-
lar to existing data and more suitable choice for channel modeling. [54] is a recent illustra-
tion of the use of transfer learning in THz channel modeling. In this research, authors use
GAN as the core of modeling to capture the distributions. However GAN are well-known
to generate data, they cannot control and specify channel conditions in producing channel
response which results in a lack of generality. On the other hand, to resolve issue of high
dataset required for machine learning approaches transfer learning concept has been intro-
duced, which try to transfer the acquired information from the source domain (subject) to
the target domain (object) in order to reduce the performance loss of themodels in the target
domain. This strategy involves applying the knowledge acquired from one problem to a dis-
tinct but related problem. These methods should address the fundamental transfer issues of
What, How, and FromWhere. When prior experiences (from other sources of knowledge)
are insufficiently relevant to the new domain, a brute-force transfer may degrade learning
performance, resulting in negative knowledge transfer phenomena. [55] is one of the exam-
ples of mitigating transfer learning in wireless communication. They address the problem
of joint user-cell association and the selection of a number of beams to maximize the aggre-
gate network capacity. They show that in stationary scenarios, the transfer learning-based
approach achieves about 29% convergence speedup, and under mobility, scenarios improves
12% traffic load. In [56] authors proposed low resolution Multiple Input, Multiple Out-
put (MIMO) channel estimation in mmWave which takes advantage of transfer learning to
speed up new environment adaptation. [57] utilize DNNbased transfer learning in channel
modeling operating at mmWave using RT dataset that they reach acceptable accuracy.
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4
Proposed channel modeling in Sub-THz

Communication

It is anticipated that 6G mobile networks will switch to carrier frequencies in the spectrum
above 100 GHz to fulfill the demand for higher data rates and bandwidth. The effective
utilization of THz frequencies requires a thorough understanding of wireless channel char-
acteristics. An accurate performance evaluation that highly relies on channel models pro-
vides essential input for defining and developing wireless network components above 100
GHz. The harsh propagation environment, as well as the requirement for directional com-
munications and signal processing at high data rates, present challenges for the development
of networking solutions at such high frequencies and in particular leads traditional chan-
nel modeling approaches to be less effective in this spectrum. In this chapter, we introduce
THz-GAN channel, an ML-based channel model in order to deal with the usefulness of
conventional channel modeling approaches in the THz spectrum and the absence of general
channel modeling approaches. We validate the generality of THz-GAN channel by utiliz-
ing transfer learning and test approach in two indoor scenarios. In addition, we introduce
the SSCH-THz which is based on fitted distributions and works based on simplified math-
ematics formulas. Also, we propose channel model implementation in ns-3 in order to vali-
date byKPI performancemetrics. We compare the full-stack performance ofUDP andTCP
using the proposed channel models versus benchmarks in different scenarios. The results in-
dicate that with 1000× lower training steps and dataset size, THz-GAN channel and the
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benchmark channel models generate similarly with a maximum 10 dBm mismatch. In ad-
dition, UDP and TCP application KPIs in the ns-3 of different channel models follow very
closely.

4.1 Introduction

The development of 6G solutions has become the industry and research community’s pri-
mary focus as 5G is now being commercially deployed [58]. As wireless communication
systems progress toward 6G, there is a growing need to address the exponentially increasing
demand for faster data rates, ultra-low latency, and massive connectivity In order to satisfy
the demand for higher bandwidth, it is anticipated that 6G networks will support carrier
frequency in spectrum above 100 GHz, in the lower part of the THz band. Exploring the
THz frequency band has shown promise, as it offers the potential for order-of-magnitude
higher data rates and ultra-low latency wireless communication systems which could be also
used for high-capacity backhaul and sensing [59, 60]. For instance, the IEEE 802.15.3d stan-
dard (described in Sec. 3.1.1) provides up to 69 GHz bandwidth in sub-THz spectrum to
support cutting-edge applications like Virtual Reality (VR) and telepresence using 3D holo-
grams [23]. Notably, the spectrum that is available above 100 GHz is anticipated to enable
terabit-per-second links and to make it easier to integrate new communications and sensing
paradigms.
Developing new approaches, algorithms, and protocols in the spectrum above 100 GHz

poses challenges since it requires tools that are extremely accurate and dependable. Due to
the requirement for specialized Radio Frequency (RF) components, wireless testbeds for
these frequency bands are currently very expensive. This limits them to a small number of
nodes [61], and mostly physical layer focused evaluation. So, simulations can serve as a plat-
form for end-to-end, full-stack performance evaluation. However, as discussed in [38], the
accuracy of simulators is highly dependent on the channelmodel accuracy and its interaction
with higher layers and protocols.
Channel modeling is a fundamental task of theoretical studies and practical implemen-

tations of wireless communication systems. The effective utilization of THz frequencies
requires a thorough understanding of wireless channel characteristics and the development
of accurate channel models. Accurate channel models enable us to comprehend the precise
physical effects of wireless channels on transmitted radio signals, which is critical for design-
ing and deploying effective and feasible communication technologies in real-world applica-
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tion environments. Modeling THz channel in terms of propagation and fading has become
critical for advancing investigation at the physical layer and higher [62]. The current channel
models for lower frequencies lack key modeling elements for the THz spectrum; in particu-
lar, significant propagation loss and frequency-dependent molecule absorption complicate
traditional channel modeling. Thus, researchers conducted several measurement campaigns
and used different channel modeling approaches to represent the THz spectrum’s character-
istics in a variety of scenarios and environments, resulting in different channel model formu-
lations with distinct levels of complexity and precision. The traditional channel modelings
at the sub-THz is ineffective because it requires extensive channel modeling knowledge, a
dependence on scenarios, a lack of a generic model, and an excess of modeling time.
All of these complexities affect the channel modeling development at higher frequencies,

resulting in the lack of a comprehensive and precise channel model in sub-THz communi-
cation, which highlighted the requirement for novel channel modeling approaches in this
spectrum. The GANs have the advantage of learning and modeling complex datasets with-
out making any statistical assumptions, which makes them superior to other types of DNN
methods. The problem of generality and accuracy of channel modeling can be resolved by
using cGANs, which enables the flexibility to define various scenarios and combine them
with transfer learning to quicken the learning process, by reducing the required datasets in
learning and initiation of the model based on previously learned channels. By placing the
burden of channel modeling complexity on the algorithm, this approach makes generality
in channel modeling possible at higher frequencies.

4.2 Dataset generation

In this section, we describe the data generation process, which we need to model channels at
140GHz. First, we describe deployment scenarios, then the process of data gathering in ns-3
is discussed. A well-curated dataset is required to validate the models and algorithms used
to simulate the sub-THz wireless channel. This ensures that the models accurately reflect
the behavior of the real-world channel, which is essential for the development of dependable
wireless communication systems in the real-world. Building a real-world test bed for sub-
THz communication is very expensive and time-consuming, especially it requires the con-
struction of specialized test facilities. In contrast, simulators provide a more cost-effective
alternative and allowing to quickly generate large amounts of data at a lower cost. However,
the accuracy of the datasets generated by simulators can be affected by assumptions made in
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the model, and there is always a trade-off betweenmodel complexity and computation time.
RT is a great tool for generating accurate dataset of propagation of THz signals. RT allows
for the creation of a controlled and reproducible environment for channel modeling. In ad-
dition, RT provides a great deal of flexibility in terms of studied scenarios. Ease of varying
parameters in the simulators, such as the distance between the transmitter and receiver, the
number of obstacles, and the type of environment, in order to study the impact of these fac-
tors on the sub-THz channel is required. For example, it is possible to study the impact of
specific channel impairments, such as multipath fading or atmospheric absorption, on the
performance of sub-THz communication systems. In the following subsections, we describe
the simulation scenarios and the full process of data generation.

4.2.1 Deployment Scenarios

We define three distinct indoor scenarios: the Lecture room (SC1), conference room (SC2),
and L-shape (SC3) room that are shown in Fig 4.1. In order to be able to examine differ-
ent channel modeling performances we consider different geometry and furniture in each
scenario. We consider SC1, which has the same size as that used for channel measurements
in [44], as the baseline scenario. For all scenarios, we consider a mobility pattern that covers
bothNLoS and LoS conditions. In the following sub-sections geometrical details of deploy-
ment scenarios are provided.

SC1

In order to be able to use the proposed channel model in [44], the lecture room’s floor plan
is closely aligned with the proposed channel model, with the dimension of 7.9 m× 10.5 m.
Three wooden tables and 18wooden chairs are in the room. North of the floor plan is where
the television is located. The material of the walls, including the ceiling and roof walls are
limestones, whereas the right wall is made of glass.

SC2

The dimensions of the Conference Room are 5 m× 8 m. The room is equipped with eight
wooden chairs and two wooden tables in the center of the room, as well as four additional
wooden chairs on the room’s right. The presentation area is located to the left of the floor
plan and contains one wooden chair, a wooden table, and a television. Notice that the mate-
rial of all walls is limestone.
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(a) Lecture room (SC1)

(b) conference room (SC2) (c) L‐shape (SC3)

Figure 4.1: Top view of the floor plan of the deployment scenarios including furniture

SC3

The dimensions of the L-shape room are 5.18 m× 6.10 m plus 2.44 m× 3.64 m The room
is equipped with ten wooden chairs and a wooden table in the center of the room and a
television set in the south of the floor plan. Notice that the material of all walls is limestone.

4.2.2 Dataset generation through ns-3

Tocollect dataweused twodifferent channelmodel representations, theHBchannelmodel [44]
is a quasi-deterministic channel model that contains ray tracing and statistics modeling, and
the FS channel model [29], which is a fully stochastic channel modeling approach. We
choose the portion of HB and FS in the total dataset is 70% and 30% respectively due to
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reason of higher specific detailed consideration in RT. We used two channels to provide a
more complete and accurate representation of the wireless THz channel due to the lack of
general approaches to channel modeling at 140 GHz frequency. This approach helps to ac-
count for the different propagation characteristics of the direct and scattered signals, and
provides insights into the behavior of the channel in different environments. Ray tracing
is a more accurate and flexible method for generating datasets for sub-THz communication
compared to statistical models. We used the following steps to gather the channel dataset for
each scenario from ns-3.

• Set up the simulation scenario: Define the simulation scenario, including the network
topology, the communication parameters, and the channel conditions.

• Run the simulation multiple times with different parameters or channel conditions
to generate a large dataset.

• Collect and store the channel data.

We described the ns-3 implementation of HB and FS channel models here [63].

4.3 Stochastic channel model

In this section, we introduce the SSCH-THz, as an example of a novel simplified stochas-
tic channel modeling concept for the sub-terahertz spectrum. The purpose of developing
SSCH-THz is to keep the channel model accurate while reducing its complexity compared
to traditional channel modeling approaches. The SSCH-THz model captures the statistical
properties of the channel such as fading, scattering, and attenuation, and represents them
by utilizing random distributions. The SSCH-THz channel model produces the channel
response using a statistical method. The SSCH-THz approach works in all frequency bands
and inparticularweutilize it to represent the channelmodel for theLectureRoom(Fig. 4.1a)
at 140 GHz. In the first step, as described in Section 4.2, we utilize the ns-3 implemen-
tations [63] of two-channel models [29, 44] to generate the dataset for the Lecture room
scenario (Fig. 4.1a). Then we fit the received power based on three parameters: distance
from TX to RX (d), RX antenna beamwidth (β), and channel condition (δ) -LoS/NLoS-.
In order to fit we examine different random distributions and choose the distribution with
minimum distance to dataset. Finally, we present a fully stochastic channel model based on
the statistical distribution that could be utilized efficiently in industry and research. Notably,
the SSCH-THz channel model supports 180◦ RX β and d up to 15 m.
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Figure 4.2: Different distribution parameter learning, (a) x param fitting for LoS and NLoS of SSCH‐THz, (b) loc param
fitting for LoS and NLoS of SSCH‐THz, (c) scale param fitting for LoS and NLoS of SSCH‐THz.

4.3.1 Formulation

In this subsection,we elaborate on the distributionfitting of statistical channelmodeling. To
do the fitting, we compare the empirical Cumulative Distribution Function (CDF ) of the
collected dataset derived from the dataset,CDFdata, with different random distributions by
applying Kolmogorov-Smirnov (KS)test. The KS test is an important performance metric
for fitting distributions because it provides a way to compare the goodness-of-fit of a sam-
ple distribution to a theoretical distribution. The KS test measures the maximum distance
between the Empirical Distribution Function (EDF) of the sample and the CDF of the
theoretical distribution being tested. By using the KS test, we derive the optimal parameter
values for minimizing the error between CDFdata and random distributions and quantify
the divergence of the randomdistributions from theCDFdata. In the proposedmethod, the
LoS and NLoS components are expected to fluctuate differently and follow different distri-
butions, as is common in the real world. So, we proposed separate formulas to quantify CIR
of the LoS and NLoS. The SSCH-THz channel CIR is denoted by the formula (4.1) where
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log-gamma and log-normal distributions are fitted to LoS andNLoS channelmodels, respec-
tively. In Fig. 4.2a the values per different distances of distribution and the fitted lines are
presented. In the proposed channelmodel the value of δ, d, andβ are required and sufficient
to generate the channel response.

H(δ, d,β) =

⎧
⎨

⎩
Log −Gamma(xlos, llos, slos) δ = los

Log −Normal(xnlos, lnlos, snlos) δ = nlos
(4.1)

Where x, l, and s indicate the shape, location, and scale of distributions, respectively, which
are described below. All parameters of the channel model in the following equations are
summarized in Table 4.1. In the LoS scenario, xlos and slos are fitted with polynomials of
degree 2, which are represented by Equations( 4.2) and (4.3) respectively. For llos, the equa-
tion shown in Eq. (4.4), there are two case statements: if β is greater than 30 degrees, the
distribution is fitted by a polynomial of degree 2, otherwise by a polynomial of degree 3. the
reason for using a higher order model for the field of 30 is that for β greater than 30 the ma-
jority of MPCs are received, whereas the number of receivedMPCs is restricted when the β
is less than 30.

xlos(d) = a1 ∗ d+ a2 ∗ d2 + a3, (4.2)

slos(d) = b1 ∗ d+ b2 ∗ d2 + b3, (4.3)

llos(d,β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 ∗ d+ c2 ∗ d2 + c3, β ≥ 30

d1 ∗ d+ d2 ∗ β + d3 ∗ d2 + d4 ∗ d ∗ β

+d5 ∗ β2 + d6 ∗ d3 + d7 ∗ d2 ∗ β

+d8 ∗ d ∗ β2 + d9 ∗ β3 + d10, otherwise

(4.4)

In contrast, lnlos and snlos are fitted with polynomials of degree 2, which are represented
by Equations (4.5) and (4.6), respectively, in the NLoS scenario. Equation (4.7) contains
two case statements for xnlos: we fitted by a polynomial of degree 2 if β is greater than 30
degrees, otherwise we formulated a polynomial of degree 3 for β less than 30 degrees.

lnlos(d) = e1 ∗ d+ e2 ∗ d2 + e3, (4.5)
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snlos(d) = f1 ∗ d+ f2 ∗ d2 + f3, (4.6)

xnlos(d,β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 ∗ d+ g2 ∗ d2 + g3, β ≥ 30

h1 ∗ d+ h2 ∗ β + h3 ∗ d2 + h4 ∗ d ∗ β

+h5 ∗ β2 + h6 ∗ d3 + h7 ∗ d2 ∗ β

+h8 ∗ d ∗ β2 + h9 ∗ β3 + h10, otherwise

(4.7)

In summary, in this section, we describe how to model the channel using simplified mathe-

Table 4.1: Parameters for the channel coefficient generation procedure

Parameter Value Parameter Value Parameter Value

a1 0.00042 a2 −0.000003 a3 0.292
b1 −0.0042 b2 0.0004 b3 1.605
c1 −0.18 c2 −0.021 c3 −71.02
d1 −1.1 d2 3.9 d3 0.74
d4 −0.2 d5 −0.18 d6 −0.058
d7 0.0078 d8 0.0023 d9 0.0029
d10 −98.23

e1 −0.0042 e2 −0.0007 e3 −135.19
f1 −0.36 f2 0.031 f3 1.608
g1 −0.0088 g2 0.00189 g3 1.28
h1 −0.5 h2 −0.045 h3 0.061
h4 0.01 h5 −0.004 h6 −0.0023
h7 −0.00078 h8 −0.000013 h9 0.000097
h10 1.17

matics equations and distribution which works at 140 GHz frequency. To model the chan-
nel, we fit the β, and d, in both δ (LoS or NLoS) to find the distribution with the best KS
score among more than 80 distributions *. Figure. 4.2 illustrates the regression line to find
the best parameters for distribution at different distances, whereas we summarize the coeffi-
cients of parameters in Table 4.1.

4.4 THz-GAN channel

TheTHz-GANchannel is a subTHzmodel-free indoor channelmodeling approach that re-
lies on cGAN. GANs are novel sorts of DNNwidely recognized for their ability to produce
data based on the exact statistics of a dataset through indirect learning. Channel conditions

*Distributions list can be found https://fitter.readthedocs.io/
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as a controlling procedure are an integral part of channel modeling, determining the requi-
site cGAN architecture in this context. In the THz-GAN channel approach, we employ a
conventional cGANarchitecturewith a customized architecture, which is described in detail
in subsection 4.4.3. The cGAN-based channel modeling framework completely avoids the
critical analysis and complexprocessingof rawmeasurement data in traditional channelmod-
elingmethods. Sowe introducedTHz-GANchannel as an alternative to traditional channel
modeling and SSCH-THz to get beyond the need for considerable prior knowledge of chan-
nel modeling and complex processing of rawmeasurements in traditional channel modeling
approaches. The architecture of the THz-GAN channel is trained based on the 140 GHz
indoor channel model of SC1 to act as a baseline model, which allows for rapid and precise
channel modeling. We define the adaptability feature, which employs this baseline model
and adapts a new dataset through transfer learning in order to model new channels for SC2
and SC3 scenarios. The adaptability feature of the THz-GAN channel enables generality
and a detailed channel model approach, which reduces the time and cost associated with de-
veloping novel channel models for each scenario. In the next paragraphs, first, the GAN and
cGAN will be described, then the architecture of cGAN, and then the parameter learning
method will be emphasized. Finally, the transfer learning approach will be introduced.

4.4.1 GAN

GANare auniquekindofDNNknown for their capacity to generate databasedonadataset’s
precise statistics using indirect learning. GANs can be trained on the limited available data
to generate synthetic data that can help in modeling the THz channel. As discussed ear-
lier in Sec. 3.5, the THz spectrum has unique channel characteristics such as high attenua-
tion, directional propagation, and susceptibility to atmospheric absorption. These complex
characteristics make it difficult to model the THz channel accurately using traditional ap-
proaches [64]. GANs can capture the complex channel characteristics of the THz spectrum
and generate synthetic data that can be used for channel modeling [54]. These features lead
GAN to fit very well into the concept of channel modeling to generate channel responses
based on previously collected data. GAN are a class of data distribution modeling methods
that consist of two functions: the generator G, which converts a sample from a random
uniform distribution to the data distribution, and the discriminator D, which determines
whether a given sample corresponds to the data distribution or not. BothG andD may be
non-linear mapping functions, for example, a DNN. Adversarial networks have the advan-
tages of using just backpropagation to acquire gradients, requiring no inference during learn-
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ing, and efficiently including a large range of inputs and interactions into the model, which
renders GANs applicable to a variety of applications, including image processing [65, 66],
medicine [67, 68], text transmission [69, 70], etc. Additionally, as proved in [71], GAN is
capable of producing cutting-edge log-likelihood estimates and realistic samples. To learn a
generator distributionpg over the dataset, the generator constructs amapping functionG(z)

from a noise distribution pz(z) where z is input noise. The discriminator,D(x), returns a
single scalar indicating the likelihood that x originated from training data (Xr) rather than
pg (Xf ) which indicates that data is real or fake. Both G and D are trained concurrently,
parameters are adjusted for G and D to minimize log10(1 − D(G(z))) and log10 D(x),
respectively, by following min-max value function V (D,G):

min︸︷︷︸
G

max︸︷︷︸
D

V (D,G) = Ex∼!data(x)[log10 D(x)]

+ Ez∼!z(z)[log10(1−D(G(z)))]

(4.8)

4.4.2 Conditional generative adversarial network (cGAN)

cGAN is a subtype of GAN that applies the Y space (channel conditions) to the Generator
and Discriminator, resulting in a controllable training approach. In wireless communica-
tion systems, the channel conditions such as distance and receiver bandwidth can change in
different scenarios due to various factors such as the mobility of the TX or RX, changes in
the environment, and interference from other signals. Thus integrating these conditions as a
controlling strategy establishes the necessary cGAN architecture compared toGAN. If both
the generator and discriminator are conditioned on some additional information y, such as
class labels or input from other domains, generative adversarial networks can be expanded to
a conditional model. As we are modeling the channel based on cGAN, y is a channel condi-
tion,e.g, d, β and LoS/NLoS. Conditioning can be accomplished by feeding y into both the
discriminator and generator as an extra input layer. The generator integrates the previous in-
put noise pz(z) and y into a joint hidden representation, and the adversarial training frame-
work enables substantial flexibility in the composition of this hidden representation. The
discriminator accepts x and y as inputs and applies a discriminative function on them [72].
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Figure 4.3: Structure of the THz‐GAN channel including architecture

min︸︷︷︸
G

max︸︷︷︸
D

V (D,G) = Ex∼!data(x)[logD(x | y)]

+ Ez∼!z(z)[log(1−D(G(z | y)))]
(4.9)

4.4.3 Architecture

In this section, we define theTHz-GANchannel architecture, based on cGAN (described in
Subsection 4.4.2). Figure 4.3 illustrates the architecture of the THz-GAN channel, whereas
Z, Y,Xr, andXf represent the input noise, channel conditions, original path loss, and gen-
erated channel response, respectively. The generator (G) adapts to channel conditions and
noise, whereas the Discriminator (D) is responsible for identifying real and fake data. Fig-
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ure 4.3a represents the architecture ofG andDwhereasG andD take as input and {Xr, Y }
& {Xf , Y }, respectively. Figure 4.3b depictsG ’s architecture that comprises twelve layers:
{Z , Y } feeds as input to the network seven convolutions (size 64), and MaxPool layers (size
1 × 2) are in charge of feature extraction and reducing size followed by three Dense layers
(sizes: 512, 256, and 128) and batch normalization. Finally, we apply one flatten layer with
Rectified Linear Unit (ReLU ) Activation function of size 1 as output. The architecture of
D is detailed in Figure 4.3c, which comprises eleven layers: combination of {Xr,Y } or {Xf ,
Y } feeds as input to the network. Seven convolutions (size 32), andMaxPool (size 1×2) lay-
ers are in charge of feature extraction and reducing size followed by two Dense layers (sizes:
128, 64) and batch normalization. Finally, we apply one flatten layer withReLU Activation
function of size 1 as output. The dense layer implements the operation:Output = activa-
tion(dot(input, Kernel weight)), where activation is the passed-in element-wise activation
function argument for activation kernel weight which determines the matrix of weights of
the output. Specifically, in all dense layers, we utilized the ReLU function in our imple-
mentation as an activation function. The main reason for employing theReLU activation
function is that it works well in practice [73] and could reduce the time and complexity re-
quired for training and operating steps THz-GAN channel in real-time applications. Batch
Normalization is the application of a transformation that preserves the mean near to 0 out-
put and close to 1 output standard deviation. A Flatten layer modifies the form of the row
data, which equals the number of elements included in the row data, equivalent to creating
a 1d array of elements. Notice that, after training,G is used as a channel response generator
(depicted as gray in Figure 4.3), however both G and D are necessary to adapt and learn the
new channel models.

Finding the best parameters for training a cGAN is a challenging task as it requires opti-
mizing multiple hyperparameters, including the learning rate, batch size, number of epochs,
numberof generator anddiscriminator layers, activation functions, regularization techniques,
etc. We trained the THz-GAN channel with different combinations of hyperparameters
and evaluated the performance using the evaluation metric and keep the hyperparameters
that achieve the best results which are as follows. We utilize ReLU as an activation func-
tion, 80000 epochs, batch size of 32with Stochastic gradient descent as optimizer with 0.001
learning rate. For loss function forG andD we utilize mean absolute error and binary cross-
entropy, respectively.
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4.4.4 Adaptability Feature

In this section, we introduce the adaptability feature of the proposed channel modeling ap-
proach, which enables re-usability of the THz-GAN channel in new scenarios with a lower
dataset and higher speed. Themost important advantages of using transfer learning in novel
channel modeling are listed below:

• Reduced required amount of data: The gathering of data for each new scenario
for training machine learning models for THz wireless communication is expensive
and time-consuming. Transfer learning can be used to leverage pre-trainedmodels on
other related scenarios, to extract useful features. So these pre-trained models have al-
ready learned features that are generalized to other similar scenarios and canbe applied
to the new scenario and adopted by limited data.

• Faster training: Training deep learning models from scratch on limited data can be
computationally expensive and time-consuming. Transfer learning allows for faster
training of models as pre-trained models can be used as a starting point, and only the
model needs to be adopted in the new scenario. This can significantly reduce the time
and resources required for training a deep learningmodel for THzwireless communi-
cation.

• Improved Accuracy: Transfer learning improves the accuracy of deep learning mod-
els for THz wireless communication by leveraging the knowledge learned from pre-
trained models in related scenarios. This can lead to better generalization and more
accurate predictions, especially when the amount of available data for training the
new scenario is limited.

The procedure of transfer-learning-based channel modeling for new scenarios is illustrated
in Figure 4.4. The required steps to generate a new channel model are as follows.

Pre-training the discriminator and generator

Pre-training the discriminator and generator on SC1 provides a starting point for indoor
channelmodeling. Weutilize theweights of theDiscriminator andGenerator ofSC1model
as initial weights of the THz-GAN channel neural networks for SC2 and SC3.
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Fine-tuning the discriminator and generator

After pre-training the THz-GAN channel for SC1, we fine-tune the THz-GAN channel
model based on the dataset from SC2 or SC3 to adapt to the specific characteristics of the
particular model to represent the new channel model.

4.5 ns-3 integration

To assess the channel modeling performance and how higher layers perform in the next gen-
eration of communication a full-stack study is required. So we integrated the proposed
channel models in the ns-3 Terasim module to compare the efficiency of channel modeling
approaches by full-stack performance analysis. In the THzChannel class of TeraSim, wave-
form propagation through a wireless channel is modeled. A waveform object is created by
theTHzSpectrumValueFactory class and provided to the channel object. TheTHzDirection-
alAntennamodule is used to first determine the direction of the devices and then to acquire
the antenna gains. The received power is then computed by the THzSpectrumPropagation-
Loss class using the estimated antenna gain and CIR. The CIR is frequency-selective and
dependent on both frequency and distance. The THzChannel object then transmits the
payload and the received power to the recipients’ physical layer.

4.5.1 Integration of HB and FS Channels

TeraSim models the waveform propagation through the wireless channel in the THzChan-
nel class, as shown in Figure 4.5. The THzSpectrumValueFactory class generates an object
representing a waveform and passes it to the channel object. This first checks the orientation
of the devices, and obtains the antenna gains through the THzDirectionalAntennamodule.
Then, theTHzSpectrumPropagationLoss class calculates the received power based on the cal-
culated antenna gain and the CIR. The CIR is frequency selective and a function of the
distance and frequency. Finally, the THzChannel object passes the packet along with the
received power to the physical layer of receivers.

41



Figure 4.5: TeraSim classes and new channel modeling code.

Figure 4.5 summarizes the integration that we have made to support the HB and FS in
TeraSim. Most of the updates have been introduced in the THzSpectrumPropagationLoss
class. Two new functions are responsible for calculating the received power for HB and FS
channels, and the type of channel can be selected through the ChannelType attribute in the
THzChannel class. Additionally, while the CIR for FS is generated at run-time in ns-3, the
CIR for the HB requires the generation of the RT MPCs offline. For this, we use the Q-
D Channel RT tool [74, 46], an open-source MATLAB-based RT tool for the mmWave
spectrum. We updated the parameters (e.g., permittivity) in thematerial library and the path
loss equation with those introduced in [44, 75]. The MPCs generated by the RT are then
loaded at run-time using the ns-3 qd-channel module.†

4.5.2 IntegrationoftheSimplifiedStochasticChannelModel inTHz (SSCH-
THz) in ns-3

The CIR of StatChannel relies on a random distribution which we implement in ns-3. So
the CIR for the channel model of SSCH-THz is produced at run-time based on the fully
stochastic channel model represented in Eq. (4.1). We integrate the channel model in the
ns-3 Terasim module whereas, the THzSpectrumPropagationLoss class has been the host of
themajority of the integrations. The received power for the channel is determined by a novel
function implemented in THzSpectrumPropagationLoss.

†https://github.com/signetlabdei/qd-channel
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4.5.3 Integration of THz-GAN channel in ns-3

Integration of THz-GAN channel is a bit more challenging. We follow these steps: First, in
order to train, we implement the THz-GAN channel model in Python language and Keras
toolbox. Then, we compile the code in C++ by utilizing the Frugally-deep‡ library. To serve
as a channel model, we then incorporate the code into the THzSpectrumPropagationLoss
class. It should be noted that thanks to ns3-ai§ real-time ns-3 to Python is available, but the
simulation run time decreased drastically in this manner.

4.6 Performance Evaluation

In this section, we describe the performance analysis. First, we describe a statistical analysis in
which we validate the proposed channel modeling approaches based on statistical tests and
validation. Then we show full-stack analysis based on ns-3, in order to highlight the advan-
tages of proposed channel modeling approaches. It is worthmentioning that, implement all
the channel models in SC1, whereas in SC2 and the SC3 scenarios we implemented the
THz-GAN channel by transfer learning approaches in which weights are derived from the
THz-GAN channel in SC1’s channel model. In order to validate the THz-GAN channel
in SC2 and SC3 evaluation we developed the HB as a benchmark.

4.6.1 Statistical Results

It is crucial to validate the chosen distribution by the appropriate performance metric after
we fit data into a distribution. KS is an important metric in statistical approaches that com-
pares the distributions of two datasets in order to determine if a dataset follows a particular
distribution or not [76]. The test yields a P-value that represents the likelihood of obtaining
the observed difference in distributions by chance. So, a higher P-value indicates that the
two datasets are likely drawn from the same distribution. The D-value, also known as the
KS statistic, is a numerical measure of the maximum difference between the CDF s of the
two datasets being compared. It represents the largest vertical distance between the CDF s
and quantifies the discrepancy between the distributions. Therefore, the datasets are more
similar if theD-value is small. We performe the KS test in SSCH-THz in SC1, and for the
THz-GAN channel in SC1, SC2, and SC3, which we summarized in the Table 4.2. It is

‡https://github.com/Dobiasd/frugally-deep
§https://github.com/hust-diangroup/ns3-ai
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shown that all channel models pass the test with acceptable outcomes (high P-value and low
D-value).

Table 4.2: A goodness of Fitting (two sample Kolmogorov Smirnov Test) forSC1, SC2, SC3 proposed channel models
compare to HB.

Channel Model P-value D-value

SSCH-THz 0.292 0.071
THz-GAN channel (SC1) 0.451 0.053
THz-GAN channel (SC2) 0.419 0.091
THz-GAN channel (SC3) 0.389 0.012

The reduction of learning time and data volume is the aim of transfer learning channel
modeling. So to assess this, we summarize the training Mean Absolute Error (MAE) for
three scenarios of the THz-GAN channel in Fig. 4.6. Notice that for SC1, SC2, and SC3

we collected 1000000, 1000 and 1000 samples, respectively. From the figure, it can be ob-
served that fine-tuned models in SC2 and SC3 reach less than 0.1MAE in less than 80
epochs while the THz-GAN channel in SC1 required 80000 epochs. This graph shows
how fine-tuning and transfer learning can increase learning speed while also requiring less
data.

4.6.2 Numerical Results (ns-3)

Channel CIR Analysis

Figure 4.7 depicts the ECDF of the received power (including antenna gain) for the HB,
SSCH-THz, and THz-GAN channel, including LoS and NLoS, for three scenarios. In this
simulation campaign, wemeasure the received power of the path in scenarios including both
LoS andNLoS, in which results are collected from 10 simulation runs. The simulation’s pri-
mary objective is to examine and contrast received power as a physical layer performance anal-
ysis of novel channel modeling approaches. It is obvious that the THz-GAN channel and
HB model channels gain comparable performance in SC1(in which the main THz-GAN
channel is trained), and theSC2 andSC3 (inwhich theTHz-GANchannel is trained based
on transfer learning) scenarios with a maximum difference of less than 10 dB (Fig. 4.8). On
the other other hand, we assess the SSCH-THz channel performance in SC1 as well. It is
evident that, the received power of SSCH-THz follows precisely other channels responses.
From a physical layer perspective, a noteworthy aspect of this simulation campaign is the sim-
ilarity of the results obtained by channel models in various scenarios, which emphasizes the
high caliber of the suggested channel modeling approaches.
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Figure 4.6: MAE of learning of the THz‐GAN channel during training of various Scenarios; SC2 and SC3 are fine‐
tuned by transfer learning, while SC1 is direct learning.

Channels Run Time Analysis

It is crucial to set up a large number of runs when using simulators in order to produce
fair results. In a large-scale simulation campaign using simulators, e.g., ns-3, channel execu-
tion time is one of the bottlenecks of the system simulation run time and and it can con-
strain the scope of simulation. For simulation campaigns, the channel response generation
process can vary depending on the implementation method and be time-consuming. Fig-
ure 4.9 shows the average run times for generating one-circle channel responses for the vari-
ous channel models in the three aforementioned scenarios. For this, we ran ten simulations
for each configuration and averaged the results. In SC1 we measure run times per Terasim,
FS, HB, THz-GAN channel, and SSCH-THz, whereas, Terasim hits the minimum average
run time which is consistent with the LoS condition and only depends on the frequency
of the channel model. Despite this, in SC1, among channel models that contain NLoS,
SSCH-THz achieves the minimal average run time anticipated given that it adheres to sim-
ple stochastic channel modeling. With a small difference, the THz-GAN channel model
achievesminimumexecution time,which is comparablewith FS andHB.HBchannelmodel
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requires the longest time to generate each channel response, combining two ray tracing and
stochastic parts. On the other hand, In SC2 and SC3 in line with SC1, THz-GAN chan-
nel achieves a comparable lower run time average than HB. For instance in SC2 and SC3

THz-GAN channel is 9.3 and 11.3 times faster than HB, respectively.
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Figure 4.9: Average channel run times in SC1, SC2, and SC3 scenarios using Terasim, FS, HB, SSCH‐THz, and THz‐
GAN channel.

UDP application Performance Analysis

We investigate UDP-based simulation for various source rates in order to assess full-stack
system analysis based on novel channel modeling approaches. Figures 4.10a and 4.10b show
the throughput and latency of Terasim, HB, FS SSCH-THz, and THz-GAN channel, for
various system source rates, ranging from 4 [Gbit/s] to 60 [Gbit/s], respectively.
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From the results, can be seen that for lower source rate values, the performance of the
five-channel models in SC1 scenario are similar. The TeraSim channel results indicate a
slightly higher latency in comparison to FS, HB, SSCH-THz, and THz-GAN channel in
whichperformancemetrics are almost constant. Increasing source rate to60 [Gbit/s] results
in 30.3 and 3.1 times higher latency and 2.5 and 1.2 times lower throughput of the Terasim
and FS compared to other channelmodels, respectively. HB andTHz-GANchannel catches
similar results in terms of throughput and latency in SC2 and SC3 which are in line with
other performance analysis and demonstrate the benefits of transfer learning based channel
modeling.

TCP application Performance Analysis

However, UDP analysis is valuable, especially for real-time applications where low latency is
critical. UDPanalysis often focuses onmeasuringpacket loss rates, andmonitoring application-
specific data within the UDP payloads. TCP provides more built-in features for analyzing
network traffic due to its reliable and connection-oriented nature. This makes TCP analysis
more comprehensive and detailed for understanding network behavior and troubleshooting.
Consequently, we run simulations based on various channel modeling techniques and using
TCP to extend full-stack analysis. We summarized the TCP throughput as the performance
metric, for different channel modeling techniques, in Fig. 4.11. by comparing the through-
put evaluation of full-stack analyses of various channel modeling techniques in SC1, SC2,
and SC3. We note that the novel channel models adhere to existing techniques.
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5
Integrated and Access (IAB) in 5G

Networks

The topic of 5G networks will be covered in some detail in the following chapter. Here, we
provide an explanation of the 3gpp standard thatmakes 5gNRpossible. After that, a discus-
sion of the difficulties and opportunities presented by wireless communication at mmwave
frequencies follows. In conclusion, we present the RIS and IAB as possible solutions to ex-
tend the communication range. These potential solutions will be discussed in further depth
in the following chapters.

5.1 Introduction

5G, an abbreviation for the fifth generation of wireless communication technology, repre-
sents a substantial advancement in the field of connectivity. It is designed to deliver re-
markable improvements in wireless network speed, responsiveness, and capabilities. 5G is
intended to reach transmission speeds of up to 20 Gbps, making it significantly faster than
its predecessors [77]. This speed is a game-changer, as it allows for rapid downloads, seamless
streaming, and support for emerging technologies such as augmented reality (AR) and the
Internet of Things (IoT). A key characteristic of 5G is its reduced latency. This enables real-
time applications, such as autonomous vehicles and remote surgery, to be implemented [78].
In essence, 5G is not just about faster smartphones; it’s the foundation for amore connected
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world. It will enable previously unimaginable smart cities, advanced healthcare, and trans-
formative experiences. 5G is poised to drive the next wave of innovation and connectivity on
a global scale, given its potential to transform industries and daily life. 5G utilizes multiple
frequency bands, each with their own characteristics and use cases [79]:

• Low-Band 5G (Sub-1GHz): This band encompasses frequencies between 600MHz
and 1 GHz, with some sources extending it up to 2.3 GHz. Low-band 5G offers a
larger service area,making it suitable for rural and suburban areas. It provides amodest
increase in data transfer speeds over 4G.

• Mid-Band 5G (1 GHz to 6 GHz): These frequencies are utilized for mid-band 5G.
They include frequencies such as 2.1 GHz and 2.3 GHz. Mid-band 5G provides a
balance between coverage and data speeds and is suitable for urban and suburban en-
vironments.

• High-Band 5G (Above 24 GHz): Also referred to as mmWave (millimeter wave),
high-band 5G operates between 24 GHz and 71 GHz. It offers incredibly fast data
transfer rates but has limited coverage and is primarily deployed in dense urban areas.

5.2 3GPPNR: the Set of Specifications for 5GNetworks

3GPPNR (ThirdGeneration Partnership ProjectNewRadio) is a set of technical standards
that define 5G networks [80]. These specifications are crucial for ensuring interoperability
and compatibility between equipment and devices from various manufacturers within the
5G ecosystem. 3GPP introduced 5G NR due to the limitations of LTE (Long-Term Evolu-
tion) networks [81]. These constraints include:

1. In terms of data speeds, LTE networks had reached their practical limits, despite of-
fering faster data transfer rates than earlier technologies. The demand for faster con-
nections and applications requiring more bandwidth necessitated a new solution.

2. As the number of connected devices and data-intensive applications such as stream-
ing and IoT grew, LTE networks faced capacity challenges. 5GNewRadio (NR) was
created to support a significantly larger number of devices and to provide greater ca-
pacity.

3. LTE networks had relatively low latency, but 5G aimed to reduce latency even further
to meet the needs of autonomous vehicles and real-time remote control applications.
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4. LTE networks operated within a limited range of frequency bands and coverage ar-
eas. 5G NR introduced mmWave frequencies and a broader spectrum, allowing for
improved coverage and performance, particularly in dense urban areas.

5. 5G NR was designed to be more energy-efficient than LTE, making it suitable for a
wider range of IoT and battery-powered devices.

6. 5GNR introduced network slicing, which enables operators to createmultiple virtual
networks within a single physical network. This customization was not possible on
the LTE network.s.

In summary, 3GPP introduced5GNRtoaddress the limitations ofLTEnetworks, such as
the need for faster speeds, increased capacity, lower latency, broader coverage, greater energy
efficiency, and advanced features such as network slicing. Thesemodificationswere necessary
to meet the requirements of emerging technologies and applications. Key aspects of 3GPP
5GNRnetwork specifications are as follow [2]: The specifications cover a variety of technical
aspects of 5G technology, such as network architecture, radio frequencies, and protocols.
The 3GPP periodically releases new versions of these specifications. Release 15, for example,
introduced the initial 5GNRspecifications. 3GPPNRensures that 5Gdevices fromvarious
manufacturers are compatible with 5Gnetworks, fostering a competitive and diversemarket.
These specifications enable network operators to deploy 5Gnetworks that can serve a variety
of user devices, including smartphones and IoT devices.

5.3 Potential and Challenges of mmWave band communication

In5Gnetworks,mmWave is an essential technology component. mmWaveoperates between
24GHz and 100GHz in the high-frequency range. This frequency band has a significantly
larger bandwidth than lower frequency bands, allowing for faster data transmission [82].
mmWave technology offers high capacity and gigabit-plus throughput. This is essential for
the delivery of high-speed and high-capacity data services, which are fundamental to the 5G
experience. While mmWave technology does not inherently reduce latency, its high capacity
and data transfer speeds contribute to lower latency in 5G networks, enabling real-time ap-
plications such as autonomous vehicles and augmented reality. mmWave is essential to the
realizationof 5G’s potential, enablingnewapplications and services that requiremassive data
transfer capabilities [83]. It complements other frequency bands used in 5Gnetworks to pro-
vide extensive capacity and coverage. mmWave technology enables innovative use cases, such
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as Fixed Wireless Access (FWA), where 5G is used to bypass traditional wired connections
and deliver broadband internet to homes and businesses [84]. In summary, the ability of
mmWave technology to provide high capacity, broad bandwidth, and low latency makes it
a crucial component of 5G networks. It enables the delivery of high-speed data services and
supports a wide range of innovative applications that drive the advancement of 5G technol-
ogy. Despite significant aforementioned advantages, mmWave and 5G network deployment
comes with numerous challenges [85]:

• mmWave signals have a limited range and are easily blocked by obstacles such as build-
ings and vegetation. Effective coverage requires a dense network of small cells.

• mmWave signals require a direct line of sight between the transmitter and receiver,
making themsusceptible to signal interruptions inurban environmentswith tall build-
ings.

• Interference from a variety of sources degrademmWave signal quality and impact net-
work performance.

• Building the necessary infrastructure for mmWave and 5G networks, including the
installation of small cells, can be costly, particularly in urban areas.

• mmWave signals are susceptible to atmospheric losses as a result of path loss, atmo-
spheric absorption, rain, ally, and alluvium losses.

• Existing devices may not be compatible withmmWave frequencies, requiring users to
upgrade to 5G-capable devices.

• Regulatory Difficulties Spectrum allocation for mmWave frequencies and navigating
regulatory requirements can be challenging.

5.4 Relays

Relays are an essential component of 5G mmWave networks, addressing the unique chal-
lenges posed by high-frequency mmWave signals and ensuring that the network delivers on
its promises of high data rates, low latency, and reliable connectivity in a variety of environ-
ments [86]. Relays play an important role in 5GmmWave radio access networks that mains
are listed below [87].
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• CoverageEnhancement: mmWave signals have limited coveragebecauseof their high
attenuation. By acting as intermediaries between base stations and user devices, relays
can extend coverage by bridging coverage gaps.

• Path Loss Compensation: mmWave frequencies are especially susceptible to path
loss in urban environments. This loss can be compensated for through the strategic
placement of relays, ensuring dependable connectivity.

• Improved SignalQuality: Relays can improve signal quality by reducing interference
and ensuring a direct line-of-sight connection between the base station and the user
equipment. This is essential for achieving the high data rates promised by 5G.

• Enhanced Capacity: By offloading traffic from the base station, relays help distribute
network loadmore evenly, thereby increasing network capacity and decreasing conges-
tion.

• Diversity and Reliability: Relays introduce diversity into the network, which in-
creases its reliability. They can retransmit signals to overcome signal loss or obstruc-
tions, ensuring a strong connection.

• Low Latency Services: Relays can reduce latency for ultra-low latency applications
such as autonomous vehicles and remote surgery by providing a shorter path for data
transmission.

InmmWave communication, both active andpassive relays are essential for signal propaga-
tion. Using Reflecting Intelligent Surfaces (RIS) and Integrated Access and Backhaul (IAB)
as examples, here is a list of the distinctions between them, which I describe in more detail
in the next sections.

1. Reflecting Intelligent Surface - Passive Relay: RIS is composed of passive elements
(reflectors) that modify the propagation of incoming signals [88]. It operates by con-
trolling signal reflections and does not require active amplification equipment. RIS
is excellent for optimizing beamforming, signal steering, and mitigating path loss in
mmWave settings.

2. IAB - Integrated Access and Backhaul - Active Relay: Similar to conventional re-
lays, the IAB amplifies and retransmits signals actively. Components: Power sources
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and active amplification apparatus are required [89]. IAB is suitable for extending
coverage and enhancing signal quality in weak signal locations. IAB configurations
are typically more complex and require meticulous network planning.

In terms of hardware and power requirements, RIS is less complex than IAB. IAB is an
active relay that amplifies and retransmits signals, whereas RIS is a passive relay that manip-
ulates signal propagation using reflecting surfaces. The choice between them is dependent
on the particular use case and network requirements, taking into account factors such as
complexity and energy consumption [90].

5.4.1 Reconfigurable Intelligent Surface (RIS)

Wireless communications rely on the transmission and reception of electromagnetic pulses,
which are frequently produced and detected by antennas. Each type of antenna is designed
to operate over a particular frequency range and to deliver a particular level of performance.
As antennas are responsible for converting electrical signals into electromagnetic waves and
vice versa, their design and placement have a significant impact on the performance of a wire-
less communication system. RISs are a new form of technology that can be used to transmit
and receive electromagnetic waves in lieu of conventional antennas. These surfaces are made
up of a large number of small, individually controllable elements, each of which can be used
to manipulate the phase and amplitude of the electromagnetic waves that pass through it.
By altering the shape and orientation of these elements, RISs can reflect, absorb, or transmit
electromagnetic radiation, enabling them to serve a variety of purposes. The fundamental
principles underlying RISs stem from the concept of metasurfaces. A metasurface is a two-
dimensional structure made up of a large number of subwavelength-sized elements, each of
which can be individually controlled to modify the phase and amplitude of electromagnetic
waves passing through it [91]. These elements can be constructed from a variety of mate-
rials, such as metals, dielectrics, and semiconductors, and arranged in a variety of configu-
rations to accomplish specific electromagnetic properties [92]. Metasurfaces have been uti-
lized in numerous applications, such as antennas, filters, polarizers, and beamformers [93].
However, the concept of RISs adds the capacity to control the geometry and orientation
of the elements in real time to the concept of metasurfaces. This enables RISs to modify
their shape and configuration to the particular requirements of the wireless communication
system, making them more versatile and efficient than conventional antennas [94]. In ad-
dition to their adaptable shape and configuration, RISs have a number of additional advan-
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tages over conventional antennas. These surfaces can bemade significantly smaller andmore
compact than conventional antennas, making them better suited for use in devices with lim-
ited space [95]. Recently, reconfigurable intelligent surfaces have attracted a great deal of
interest as a potentially effective means of enhancing the performance of wireless commu-
nication systems. RISs are passive, reconfigurable metasurfaces that can control the phase,
amplitude, and polarization of electromagnetic waves that impinge upon them. The ability
to intelligently control the reflection of impinging waves enables the RIS to function as a
programmable reflector, allowing the wireless propagation environment to be tailored to en-
hance the performance of wireless communication systems. Prior to now, research on RISs
has concentrated on three primary application areas [96]:

• Spectrum efficiency: By judiciously regulating the phase shifts of the RIS elements,
the interference level between various transmission channels can beminimized, result-
ing in increased spectrum efficiency.

• Energy efficiency: Wireless communication systems can increase energy efficiency by
directing signal energy to the intended receiver.

• Physical layer security: By producing a favorable propagation environment for au-
thorized users and a hostile environment for eavesdroppers, the physical layer security
of wireless communication systems can be improved.

Beamforming is a technique used to direct electromagnetic radiation in a particular direc-
tion, and it is frequently employed in wireless communication systems to expand the net-
work’s range and capacity. Intelligent surfaces that are reconfigurable can be used to shape
the beam of electromagnetic waves, allowing them to target specific devices or avoid obsta-
cles [97]. This is particularly useful in environments where signal interference is prevalent
or where multiple devices need to be connected. Cloaking is the process of rendering an ob-
ject or region invisible to electromagnetic radiation; this technique has been of interest to
scientists for decades. Intelligent surfaces that can be reconfigured can be used to construct
cloaking devices that render an object or region invisible to electromagnetic radiation over a
specific frequency range [98]. This could have numerous applications in the real world, in-
cluding military, security, and medical applications. In addition, it enables the deployment
of machine learning algorithms to the device at the data’s source.
RISs have several advantages over conventional antennas, including their size, versatility,

and adaptability. These surfaces can be made significantly smaller and more compact than
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conventional antennas, making them better suited for use in devices with limited space [99].
In addition, these surfaces can alter their shape and configuration to the particular require-
ments of the wireless communication system, allowing them to perform a broader range
of functions than conventional antennas [100]. Despite these benefits, the widespread im-
plementation of reconfigurable intelligent surfaces in wireless communications confronts a
number of obstacles. These surfaces require a large number of individually controllable el-
ements, which can be expensive to produce and maintain [101]. Another challenge is the
complexity of these surfaces, as they require sophisticated control algorithms to maximize
their performance and adapt to shifting conditions [102]. In addition, regulatory and stan-
dards concerns must be resolved before these surfaces can be implemented on a significant
scale [103]. The implementation of a RIS-enabled smart radio network [104] must resolve
a number of challenges that may arise including the following:

• Channel Modeling: The behavior of signal propagation in the presence of an RIS is
poorly understood, making it difficult to model the channel accurately.

• Protocol Design: Integration of RISs into a radio network necessitates the develop-
ment of new protocols to govern and coordinate the RIS’s operation with other net-
work elements.

• Complexity: the control and management of a large number of RIS elements can
be computationally complex and may require advanced algorithms to optimize the
network’s performance;

• Synchronization: The RIS elements must be synchronized to work together effi-
ciently, which can be difficult when the network is highly dynamic;

• Energy Efficiency: Because the operation of a RIS-enabled network can be power-
hungry, it is crucial to design energy-efficient algorithms for managing the RIS;

• Security and Privacy: The use of a large number of RIS components can pose se-
curity risks, and it is crucial to employ robust security mechanisms to safeguard the
network frommalicious attacks;

• Deployment andMaintenance: The deployment andmaintenance of aRIS-enabled
network can be expensive and requires careful planning to ensure that the network is
deployed as efficiently and effectively as possible;
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Figure 5.1: Different types of BS in IAB network and backhaul connection

Figure 5.2: illustration of an example of UE connection to the network (Uplink) in the IAB Network.

• Interference: Due to the reflection of the signals, introducing a RIS can increase in-
terference in the network, which can make its management more difficult.

5.4.2 Integrated Access and Backhaul (IAB)

As discussed earlier, operating in the mmWave spectrum presents a unique set of challenges,
including severe path and penetration losses [105, 106]. Using high-gain antennas to help
close the link, thereby introducingdirectionality in the communication, and electronicbeam-
forming to support mobile users is a promising strategy for overcoming such limitations.
Network densification is also used to enhance performance by decreasing inter-site distance
to establish more robust access channels. However, an ultra-dense deployment incurs high
capital and operational expenses (capex and opex) for network operators [107] due to the
need to provide high-capacity backhaul connections to a greater number of cellular base sta-
tions than in networks operating at lower frequencies. Network disaggregation (the separa-
tion of the layers of the protocol stack into different physical equipments) [108] and virtu-
alization (the use of software-based rather than hardware-based protocol stack implementa-
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tions) [107] can lower capex and opex by reducing the complexity of individual base stations.
Some researchers have also begun investigating the viability of Integrated Access and Back-
haul (IAB), in which only a subset of gNB connect to traditional fiber-like infrastructures
and the rest wirelessly relay the backhaul traffic, possibly via multiple hops and at mmWave
frequencies [109]. The 3GPP has acknowledged the significance of the IAB framework as a
cost-effective alternative to wired backhaul. In fact, it has recently concluded a Study Item
for 3GPP NR Release 16 [81] that investigates the architectures, radio protocols, and phys-
ical layer aspects of sharing radio resources between access and backhaul links. Although
the 3GPP LTE and LTE-Advanced standards already provide specifications for base stations
withwireless backhauling capabilities, the Study Itemon IAB envisions amore advanced and
flexible solution, including the support of multi-hop communications, dynamic multiplex-
ing of the resources, and a plug-and-play design to reduce deployment complexity. How-
ever, despite widespread agreement regarding IAB’s ability to reduce costs, the design of a
cost-effective and high-performance IAB network remains an open research problem. Re-
search on wireless backhaul solutions has spanned the last two decades in an effort to re-
place expensive fixed links with more flexible wireless connections. For example, mesh and
multihop wireless backhaul architectures for IEEE 802.11 networks have been extensively
studied [110, 111]. However, integrated solutions that provide both access and backhaul
functionality have not yet been extensively adopted in the cellular domain. There is relay
functionality built into the LTE specifications, but it has not been widely deployed due to
its limited flexibility [111]: the resource configuration is fixed, it only supports single-hop
relaying, and there is a fixed association between the relay and the parent base station that
connects it to the wired core network. In contrast, the wireless backhaul links used to sup-
plement fiber optic cables for backhauling traffic in sub-6 GHz cellular networks are typi-
cally point-to-point solutions that are not integratedwith theRAN. In spite of this, wireless
backhaul integration with radio access is viewed as a promising solution for 5G cellular net-
works. Preliminary results on wireless backhaul for 5G using mmWave links were presented
in [112, 113] and demonstrated that such solutions canmeet the anticipated increase in mo-
bile traffic demands. However, they did not contemplate a close integration between the
access and the backhaul, which is instead the focus of the more recent 3GPP SI on IAB for
NR [2], recently finalized by the 3GPP. In this instance, the primary goal was to evaluate the
viability of integrated access and wireless backhaul over NR (i.e., the 5G radio interface) and
to propose potential solutions to assure efficient backhauling operations. This Study Item
resulted in aWork Item and is anticipated to be incorporated into future 3GPP specification
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Figure 5.3: Protocol stack and basic architecture of an IAB network.

releases. The Study Item examined fixed wireless relays with both in-band and out-of-band
backhauling capabilities, with a focus on the former, which is more difficult in terms of net-
work design andmanagement butmaximizes spectrumutilization. Half-duplex relayingwill
be supported for the in-band scenario, although the 3GPP Specification does not rule out
support for full-duplex relaying [2]. According to [2], IAB operations are spectrum agnos-
tic, so relays can be deployed in a plug-and-play fashion in either the above-6 GHz or sub-6
GHz spectrum, and can operate in both SA (connected to the 5G core network) and NSA
(connected to the 4G EPC)modes. (i) a Spanning Tree (ST) in which each IAB-node is con-
nected to a single parent, and (ii) a Directed Acyclic Graph (DAG) in which each IAB-node
may be connected to multiple upstream nodes. In addition, IAB relays will provide greater
network deployment and configuration flexibility compared to LTE. As stated in [2, 114],
5G IAB relays will be used in both outdoor and indoor scenarios, with multiple wireless
steps, to extend coverage, and should be able to reconfigure the topology autonomously to
prevent service outages. In addition, a flexible allocation of access and transmission resources
is envisioned in order to improve resource allocation efficiency.

5.4.3 Architecture

As depicted in Figure 5.3, the logical architecture of an IAB network consists of multiple
IAB-nodes, which have wireless backhauling capabilities and can serve both UEs and other
IAB-nodes, and IAB-donors, whichhave fiber connectivity to the core network and can serve
both UEs and IAB-nodes. Initially, the Study Item proposed five distinct configuration op-
tions for the architecture, with varying degrees of decentralization of network capabilities
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and backhauling solutions. The final version, which was chosen for future standardization,
was favored due to its minimal impact on the core network specifications, lower relay com-
plexity and processing requirements, and reduced signaling overhead. According to the se-
lected architecture, each IAB-node hosts twoNRfunctions: (i) aMobileTermination (MT),
used to maintain the wireless backhaul connection to an upstream IAB-node or IAB-donor,
and (ii) a Distribution Unit (DU), used to provide access connection to UEs or the down-
stream MTs of other IAB-nodes. The DU connects to a CU hosted by the IAB-donor by
means of the NR F1 interface operating over the wireless backhaul link. In the access of
IAB-nodes and donors, two interfaces coexist, namely the Uu interface (between the UEs
and the DU of the gNBs) and the previously mentioned F1 interface. With this option, it is
possible to exploit the functional separation of the radio protocol stack: the CU at the IAB-
donor retains all control and upper layer functionality, while the lower layer operations are
delegated to the DUs at the IAB-nodes. RRC, Service Data Adaptation Protocol (SDAP),
and PDCP layers reside in the CU, whereas RLC, MAC, and PHY layers are hosted by the
DUs. On top of RLC, an additional adaptation layer is added to route data across the IAB
network topology, thereby permitting an end-to-end connection between DUs and the CU.

5.4.4 Network Procedures and TopologyManagement

In an IAB deployment, the establishment andmanagement of the network topology are cru-
cial factors to consider. This is due to the fact that the end-to-end performance of the entire
network is highly dependent on the number of steps between the donor and the end relay,
thenumberof relays thedonormust support, and the strategies employed fornetwork forma-
tion, route selection, and resource allocation. It is necessary to optimize the performance of
various network procedures involving topology and resourcemanagement in order to ensure
efficient IAB operations. During the IAB-node configuration, the topology is established,
which is an essential phase. When an IAB-nodebecomes active, it chooses the upstreamnode
to which it will attach. To achieve this, the MT executes the same initial access procedure as
a user equipment (UE), i.e., it uses the synchronization signals conveyed by the available cells
(officially referred to as synchronization signal block (SSB) in NR) to estimate the channel
and select the parent. In addition, althoughnot currently supportedby the specifications, we
argue that it would be advantageous if the MT could retrieve additional information (e.g.,
the number of hops to reach the donor, the cell load, etc.) and then choose the cell to at-
tach to based on more advanced path selection metrics [115] than just the Received Signal
Strength (RSS). The IAB-node then configures its DU, establishes the F1 connection to the
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CU in the remote IAB-donor, and is prepared to offer services to UEs and other IAB-nodes.
During this initial phase, the IAB-nodemay transmit its topological locationwithin the IAB
network to the IAB-donor. The topology management function then dynamically adapts
the IAB topology in order to maintain service continuity (e.g., when a backhaul link is de-
graded or lost), or for load balancing purposes (e.g., to avoid congestion). The IAB-nodes
may transmit periodic information about traffic volume and backhaul link quality in addi-
tion to the information provided during the initial setup procedure. This enables the CU
to be aware of the overall IAB topology, determine the optimal configuration, and alter it
by modifying network connectivity (i.e., the associations between IAB-nodes). It is also pos-
sible to provide increased redundancy and load balancing if the IAB-nodes support a DAG
topology with multiple connections to multiple upstream nodes. In this instance, the CU
manages the addition/removal of redundant channels based on propagation conditions and
traffic demand for each wireless backhaul link.

5.4.5 Scheduling and ResourceMultiplexing

The requirement to multiplex access and backhaul traffic within the same frequency band
necessitates half-duplex operations for in-band IAB operations. This limitation is acknowl-
edged in the 3GPP Study Item report [81], but full-duplex solutions are not ruled out. Con-
sequently, the radio resources must be partitioned orthogonally between the access and the
backhaul, either in time (Time Division Multiplexing (TDM), which is the preferred solu-
tion in [2]), frequency (Frequency DivisionMultiplexing (FDM)), or space (Space Division
Multiplexing (SDM)), using a centralized or decentralized scheduling coordination mecha-
nism across the IAB-nodes and the IAB-donor. Regardless of the limitations imposed by the
half-duplex constraint, the IABnetworkmustmeet the access trafficneeds of all users. There-
fore, the available resources should be allocated equitably, taking into consideration channel
measurements and topology-related data that may be exchanged between IAB-nodes. In ad-
dition, both hop-by-hop and end-to-end flow control mechanisms should be implemented
to mitigate the risk of congestion on intermediate hops, which may occur under poor prop-
agation conditions.
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6
Research study of ’IAB’: Safehaul:

Risk-Averse Learning for Reliable mmWave
Self-Backhauling in 6GNetworks

Wireless backhauling at millimeter-wave frequencies (mmWave) in static scenarios is a well-
established practice in cellular networks. However, highly directional and adaptive beam-
forming in today’smmWave systemshave openednewpossibilities for self-backhauling. Tap-
ping into this potential, 3GPP has standardized IAB allowing the same base station to serve
both access and backhaul traffic. Although much more cost-effective and flexible, resource
allocation and path selection in IAB mmWave networks is a formidable task. To date, prior
works have addressed this challenge through a plethora of classic optimization and learn-
ing methods, generally optimizing KPIs such as throughput, latency, and fairness, and lit-
tle attention has been paid to the reliability of the KPI. We propose Safehaul, a risk-averse
learning-based solution for IAB mmWave networks. In addition to optimizing average per-
formance, Safehaul ensures reliability byminimizing the losses in the tail of the performance
distribution. We develop a novel simulator and show via extensive simulations that Safehaul
not only reduces the latency by up to 43.2% compared to the benchmarks, but also exhibits
significantly more reliable performance, e.g., 71.4% less variance in latency.
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6.1 Introduction

The emergence of mmWave cellular systems created a unique opportunity for Mobile Net-
work Operators (MNOs) to leverage a scalable and cost-effective approach to deal with net-
work densification. The fact that mmWave base stations can support fiber-like data rates
facilitates the use of the same base station for both access and backhaul traffic, a solution
which in 3GPP parlance is referred to as IAB. Consequently, 3GPP has included IAB in the
standard [116, 80] covering the details on architecture, higher layer protocols, and the ra-
dio. AlthoughRelease 17 of 5G-NR defines the interfaces, architectures, and certain system
parameters, the actual configuration and resource allocation is left to MNOs.
Traditional self-backhauled networks featured fixed-wireless links decoupled from access

networkswith static configurations. In contrast, IAB should account for the dynamicnature
of the backhaul links (particularly in mmWave deployments) and their integration with the
access network. Further, IAB allows the traffic to traverse several hops (i.e., base stations) to
reach its destination, thus increasing the problem’s complexity. In addition to the scheduling
problem, an IAB network should: (i) solve the problem of path selection and link activation
at the backhaul while considering inter-cell interference and (ii) decide on serving access or
backhaul traffic depending on the access load and the ingress backhaul traffic fromneighboring
base stations.
Prior work. Methodologically, the majority of the existing works [117, 118, 119, 120,

121, 122, 123, 124, 125] focusonclassic optimization techniques to solve the above-mentioned
problem. However, given the large number of parameters involved, such formulations often
result innon-convexproblems that are too complex for real-timeoperations, but are nonethe-
less valuable indicators as performance upper bounds. Recently, some works focus on more
practical solutions which can be deployed in real networks[126, 127, 128]. Specifically, these
works leverage RL to tackle both resource allocation and/or path selection in IABmmWave
networks and demonstrate that RL-based solutions achieve real-time performance.
Regardless of the methodology, prior works mostly aim at maximizing the network ca-

pacity [117, 118, 119, 120, 121, 122, 123, 124], minimizing latency [129, 7] and improving
throughput fairness [118, 130]. Although these approaches successfully improve the net-
work performance, MNOs are often more concerned about their reliability. For this reason
many commercial products rely on simplified but reliable algorithms for resource allocation,
despite their sub-optimal performance. In this article, we propose Safehaul, a reinforcement
learning-based solution for reliable scheduling and path selection in IAB mmWave systems
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under network dynamics. We use the concept of risk aversion, commonly used in economics
[6, 131], to measure and enhance the reliability of Safehaul. The following summarizes our
contributions:

• We model the scheduling and path selection problem in IAB mmWave networks as
a multi-agent multi-armed bandit problem (Section 6.3). We consider multiple fiber
base stations, simultaneously supportingmany self-backhauledmmWavebase stations.
In our model, the self-backhauled base stations independently decide the links to ac-
tivate. The consensus among the base stations is reached via standard-defined proce-
dures (Section 6.4.3).

• Wepresent the first solution to provide reliable performance in IAB-enabled networks
(Section 6.4). Specifically, we investigate the joint minimization of the average end-to-
end latency and its expected tail loss. To this aim, we propose Safehaul, a learning
approach that leverages the coherent risk measure CVaR[6]. CVaR measures the tail
average of the end-to-end latency distribution that exceeds the maximum permitted
latency, thus ensuring the network’s reliability.

• We analytically bound the regret of Safehaul, i.e., we bound the loss of Safehaul com-
pared to the casewhen thedelays associated to all end-to-endpathsbetween self-backhauled
base stations and fiber base stations are known a priori. We show that, for the case
when there are no conflicts between the decision of the self-backhauled base stations,
the average regret of Safehaul tends to zero as the time increases. This regret bound
characterizes the learning speed and proves that Safehaul converges to the optimal
scheduling and path selection solution that jointly minimizes the average end-to-end
latency and its expected tail loss.

• Weprovide anewmeansof simulatingmulti-hop IABnetworksby extendingNVIDA’s
GPU-accelerated simulator Sionna [1] (Section 6.5). Specifically, we add codebook-
based analog beamforming capabilities for both uplink and downlink communica-
tions. Further, we extend Sionna by implementing system-level components such as
layer-2 schedulers and buffers and BAP-like routing across the IAB network. We be-
lieve our IAB extensionswill be instrumental for the open-source evaluation of future
research on self-backhauled mmWave networks.

• Exploiting the above simulator, we evaluate andbenchmark Safehaul against two state-
of-the-art algorithms [7, 8] based on deployment in two different locations (Manhat-
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tan and Padova). The results confirm that Safehaul is significantly more reliable than
the considered benchmarks, as it exhibits much tighter variance in terms of both la-
tency (up to 71.4%) and packet drop rate (at least 39.1%). Further, Safehaul achieves
up to 43.2% lower average latency and 11.7% higher average throughput than the ref-
erence schemes.

6.2 SystemModel

We consider a cellular system with N base stations capable of self-backhauling and D base
station with a fiber connection to the core network. Following 3GPP terminology, we refer
to self-backhauled base stations as IAB-nodes (BS-nodes) and the fiber base stations as IAB-
donors (BS-donors)*. Each BS-node connects to the core network via a (multi-hop) wireless
link to aBS-donor. The sets of all BS-nodes andBS-donors are denoted byN = {1, . . . , N}
andD = {1, . . . , D}, respectively. The systemworks in a time-slotted fashion starting from
time slot i = 1 until a finite time horizon I . All the time slots i = 1, . . . , I have the same
duration. The BS-nodes are equipped with twoRF chains. OneRF chain is used exclusively
for the communication with cellular users (access network), while the second RF chain is
used for self-backhauling. In line with the 3GPP specification [114], we assume half-duplex
self-backhauling, i.e., in each time slot i a BS-node can either transmit, receive or remain idle.
Wemodel the connections between the base stations in slot i as a graph Gi = {V , Ei}, see

Fig. 6.1. The set V = N ∪ D of vertices is formed by all the BS-nodes and BS-donors in
the system. The set Ei of edges is composed of the available wireless links (n, l) between a
BS-node n ∈ N and any BS (BS-donor or BS-node) l ∈ V in time slot i. Note that Gi is not
static. In a given time slot i, some links may be unavailable due to failure, blockage, or inter-
ference. Thus, only feasible wireless links are considered in the set Ei. The pathXn,d from
BS-node n to any BS-donor d is a sequence of intermediate links (n, l). Xn,d changes over
time according to the traffic loads of the intermediate BS-nodes and to the channel condi-
tions. Wemodel the activation of link (n, l)with the binary variable xn,l,i. When xn,l,i = 1,
the link is activated and BS-node n transmits to BS l ∈ V in time slot i. xn,l,i = 0 indicates
that the link is deactivated.
Each BS-node n has a finite data buffer with capacityBmax

n to store the backhaul data to
be transmitted to any of the BS-donors. In each time slot i, BS-node n is characterized by

*Please note that throughout the paper wewill use interchangeably BS-nodes and IAB-nodes (and similarly
for BS-donors and IAB-donors)”
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Figure 6.1: Example of a graph Gi

its load and average queuing time. The load, denoted byBn,i ∈ N, indicates the number of
data packets stored in the buffer at the beginning of time slot i. The average queuing time
tqn,i ∈ R+ is the average number of time slots the current packets in the data buffer have
been stored. Additionally, we denote by ttxn,l,i ∈ R+ andMn,l,i ∈ R+ the transmission time
from BS-node n to BS l in time slot i, and the amount of successfully transmitted data on
the link, respectively. We define the maximum tolerable latency Tmax as the maximum time
a packet can take from its source BS-node to any BS-donor. Any packet that is not delivered
before Tmax milliseconds will be dropped. The average maximum end-to-end latency T̄n,d

from BS-node n to BS-donor d is the average, over the complete time horizon I , of the maxi-
mum delay a packet originating fromBS-node n takes to reach any BS-donor d in time slot i.
This is calculated as T̄n,d =

1
I

∑I
i=1 Tn,d,i, where Tn,d,i is the maximum end-to-end latency

among all the packets originating in BS-node nwhich reach BS-donor d in time slot i. Tn,d,i

is a sample of the random variable Tn,d drawn from an unknown stationary probability dis-
tribution P that depends on the links xn,l,i′ , n ∈ N , l ∈ V , i′ = 1, . . . , i, activated up
to time i, the user’s mobility, the location of the BS-node n, the interference in the system,
and the queue dynamics. Accordingly, we define the average maximum end-to-end latency
in the system T̄ as

T̄ =
1

ND

N∑

n=1

D∑

d=1

T̄n,d. (6.1)

6.3 Problem Formulation

The joint minimization of the average maximum end-to-end latency and the expected value
of its tail loss in IAB-enabled networks is formulated in this section. We first introduce
CVaR, the riskmetric accounting forminimizing the events in which the end-to-end latency
is higher than Tmax. Next, we formulate the optimization problem in the complete network.
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6.3.1 Preliminaries on CVaR

Traditionally, latencyminimization in IAB-enabled networks has focused on optimizing the
expected value of a latency function [129, 7]. However, such an approach fails to capture
the time variability of the latency distribution, thus leading to unreliable systems in which
Tn,d,i > Tmax, for any i = 1, ..., I , n ∈ N and d ∈ D. For this purpose, we consider not
only the average end-to-end latency T̄ in the system, but also its expected tail loss based on the
CVaR[6].
Having in mind that Tn,d is a random variable, we assume it has a bounded mean on a

probability space (Ω,F , P ), with Ω and F being the sample and event space, respectively.
Using a risk level α ∈ (0, 1], the CVaRα(Tn,d) of Tn,d at risk level α quantifies the losses
that might be encountered in the α-tail. More specifically, it is the expected value of Tn,d in
its α-tail distribution [? ]. Formally,CVaRα(Tn,d) is defined as [6]

CVaRα(Tn,d) = min
q∈R

{
q +

1

α
E [max{Tn,d − q, 0}]

}
, (6.2)

where the expectation in (6.2) is taken over the probability distribution P . Note that lower
CVaRα(Tn,d) results in higher system reliability because the expected end-to-end latency
in the α-worst cases is low. Moreover, note that α is a risk aversion parameter. For α =

1, CVaRα(Tn,d) = E[Tn,d] which represents the traditional risk-neutral case. Conversely,
lim
α→0

CVaRα(Tn,d) = sup{Tn,d}. CVaR has been shown to be a coherent risk measure,
i.e., it fulfills monotonicity, subadditivity, translation invariance, and positive homogeneity
properties [132].

6.3.2 Optimization Problem

We jointly minimize the average maximum end-to-end latency and its expected tail loss for
each BS-node. For this purpose, we decide which of the (n, l) links to activate in each time
slot i during the finite time horizon I . In the following, we formulate the optimization prob-
lem from the network perspective and consider the sumover all BS-nodes in the system. The
latency minimization problem should consider three different aspects: (i) link activation is
constrained by the half-duplex nature of self-backhauling, (ii) only data stored in the data
buffers can be transmitted, and (iii) packet drop due to buffer overflow should be avoided.
Formally, the problem is written as:
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minimize
{xn,l,i}

∑

n∈N

(
∑

d∈D

(
1

I

I∑

i=1

Tn,d,i

)
+ ηCVaRα(Tn,f )

)
(6.3a)

subject to
∑

l∈V,l ̸=n

xn,l,i +
∑

l∈N
xl,n,i = 1, n ∈ N , i = 1, . . . , I, (6.3b)

i∑

j=1

Bn,i ≥
i∑

j=1

Mn,l,i, n ∈ N , l ∈ V , i = 1, . . . , I, (6.3c)

i∑

j=1

Bl,j +
i∑

j=1

Mn,l,j ≤ Bmax
l , n ∈ N , l ∈ V , i = 1, . . . , I, (6.3d)

xn,l,i ∈ {0, 1}, n ∈ N , l ∈ V , i = 1, . . . , I. (6.3e)

In (6.3a), η ∈ [0, 1] is a weighting parameter to control the trade-off betweenminimizing
the average maximum end-to-end latency T̄n,d and the expected loss of its tail. As the con-
sidered scenario is not static, solving (6.3) would require complete non-causal knowledge of
the system dynamics during the complete time horizon I . However, in practical scenarios,
knowledge about the underlying random processes is not available in advance. For example,
the BS-node’s loadsBn,i dependnot only on the transmitted and received backhaul data, but
also on the randomly arriving data from its users. Similarly, the amounts of transmitted data
Mn,l,i depend on the varying channel conditions of both BS n and l. As a result, the exact
values of Tn,l,i, Bn,i andMn,l,i are not known beforehand. For this reason, we present in
Sec. 6.4 Safehaul, a multi-agent learning approach to minimize in each BS-node the average
maximum end-to-end latency and the expected value of the tail of its loss.

6.4 Our proposed solution: Safehaul

In this section, we describe Safehaul, a multi-agent learning approach for the joint minimiza-
tion of the average maximum end-to-end latency and its expected tail loss in IAB mmWave
networks. In Safehaul, each BS-node independently decides which links (n, l) to activate
in every time slot i by leveraging a multi-armed bandit formulation. The consensus among
the BS-nodes is reached by exploiting the centralized resource coordination and topology
management role of IAB-donors [116, Sec. 4.7.1].
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6.4.1 Multi-Armed Bandit Formulation

Multi-armed bandit is a tool well suited to problems in which an agent makes sequential
decisions in an unknown environment[133]. In our scenario, each BS-node n decides, in
each time slot i, which of the links (n, l) to activatewithout requiring prior knowledge about
the system dynamics. The multi-armed bandit problem at BS-node n can be characterized
by a setAn of actions and a setRn of possible rewards. The rewards rn,i ∈ Rn are obtained
in each time slot i as a response to the selected action an,i ∈ An. The actions are the links
that BS-node n can activate, and the rewards are a function of the observed latency. We
define An as An = {(n, l), (m,n)|n,m ∈ N , l ∈ V}, where link (n, n) indicates that
BS-node n remains idle. As blockages, overloads, or failures might render certain links (n, l)
temporarily unavailable, we define the set An,i ⊆ An of available actions in time slot i as
An,i = {(n, l), (l, n)|(n, l), (l, n) ∈ Ei}. Selecting action ai = (n, l) in time slot i implies
xn,l,i = 1.
The rewards rn,i are a function of the end-to-end latencies Tn,d,i and depend on whether

at BS-node n a link (n, l) or (l, n) is activated. BS-node n is connected to the BS-donor
via multi-hop wireless links. Consequently, Tn,d,i cannot be immediately observed when a
link (n, l), with l /∈ D is activated. In fact, the destination BS-donor d might not even be
known to BS-node n in time slot i. To overcome this limitation, we define the rewards rn,i
as a function of the next-hop’s estimated end-to-end latency T̂l,d,i as

rn,i =

⎧
⎨

⎩
tql,i + ttxn,l,i + T̂l,d,i, for link (n, l)

tqn,i + T̂n,d,i, for link (l, n),
(6.4)

where T̂l,d,i is calculated as T̂l,d,i = min
(l,m)∈Ei

T̂l,m,i.

6.4.2 Latency and CVaR Estimation

As given in (6.4), BS-node n learns which links (n, l) to activate by building estimates of the
expected latency T̂n,l associated to each of them. LetKn,l,i =

∑i
j=1 xn,l,i be the number of

times link (n, l) has been activated up to time slot i. The estimated T̂n,l is updated using the
sample mean as

T̂n,l,i+1 =
Kn,l,iT̂n,l,i + rn,i

Kn,l,i + 1
, (6.5)

where the subindex i is introduced to emphasize that the estimate is built over time.
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The CVaR definition given in (6.2) requires Tn,d which, as discussed before, is known a
priori. Hence, we leverage the CVaR estimator derived in [134] to calculate the estimated
CVaR of a link (n, l). Let r̃1n, . . . , r̃

Kn,l,i
n be all the rewards received up to time i. The esti-

mated ĈVaRi(n, l) in time slot i is calculated as [134]

ĈVaRi(n, l) := inf
t∈R

⎛

⎝t+
1

α ·Kn,l,i

Kn,l,i∑

k=1

[r̃kn − t]+

⎞

⎠ . (6.6)

Using the estimates in (6.5) and (6.6), BS-node computes the value Qn(an,i = (n, l))

associated to the selected action an ∈ An, and defined as

Qn(an,i) = T̂n.l,i + ηĈVaRi(n, l). (6.7)

Note that (6.7) is aligned with the objective function in (6.3a). Actions with an associated
low valueQn(an,i) lead to lower end-to-end latency and a low expected value on its tail.

6.4.3 Consensus

All the BS-nodes independently decidewhich links to activate based on their estimates of the
end-to-end latency. As a consequence, conflicting actions may be encountered. A conflict
occurswhen twoormoreBS-nodesn andm aim at activating a link to a commonBS l, l ∈ V ,
i.e., xn,l,i = xm,l,i = 1. We reach consensus by first retrieving the buffer and congestion
status of the various IAB-nodes, leveraging the related BAP layer functionality [116, Sec.
4.7.3]. With this information at hand, conflicts are resolved by prioritizing the transmission
of the BS-node with the larger queuing times tqn,i and loads Bn,i. Then, we let the IAB-
donormark as unavailable the time resources of the remaining base stations with conflicting
scheduling decisions [116, Sec. 10.9]. Note that as the learning is performed at eachBS-node,
only the link activation decision and theweighted sumof tqn,i andBn,i are transmitted. Thus,
low communication overhead is achieved.

6.4.4 Implementation of Safehaul

Here, we describe how the above-mentioned solution can be implemented in a real system.
Specifically, we elaborate on the required inputs and the interactions among the different
entities as well as the pseudo-code of Safehaul, see Alg. 6.1.
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Algorithm 6.1 Safehaul algorithm at each BS-node
Require: α, η,An

1: Initialize T̂n,l, ĈVaR(n, l), andQn for all (n, l) ∈ E1
2: Set countersKn,l = 0 and initial action an,1 = (n, n)
3: for every time slot i = 1, ..., I
4: perform action an,i, observe reward rn,i and increase counterKn,l by one ◃ Eq. (6.4)
5: update latency estimate T̂n,l ◃ Eq: (6.5)
6: update CVaR estimate ĈVaR(n, l) ◃ Eq: (6.6)
7: updateQn(an,i) ◃ Eq: (6.7)
8: select next action an,i+1 using ϵ-greedy ◃ Eq. (6.8)
9: share an,i+1, tqn,i andBn,i with the other BS-nodes
10: if required, update an,i+1 to reach consensus ◃ Sec. 6.4.3

Safehaul is executed at each BS-node n. For its implementation, the MNO provides α,
η and An as an input. α is the risk level parameter that influences the level of reliability
achieved in the system. Similarly, η controls the impact the minimization of the latency in
the α-worst cases has on the overall performance. Both parameters, α and η, are set by the
MNOdepending on its own reliability requirements. The setAn depends on the considered
network topology, which is perfectly knownby theMNO.The setAn includes all links (n, l)
and (l, n) to and from the first-hop neighbors of BS-node n.
The execution of Safehaul begins with the initialization of the latency and CVaR esti-

mates, and the valuesQ of the actions inAn. Additionally, the countersKn,l, that support
the calculations of T̂n,l and ĈVaR(n, l), are initialized for all links inAn (lines 1-2). These
parameters are updated and learnt throughout the execution of Safehaul. At time slot t = 0,
no transmission has occurred and Bn,0 = 0. Hence, BS-node n remains idle for the first
time slot i = 1, i.e., an,1 = (n, n) (line 2). Next, and in each of the subsequent time slots
i ∈ {1, . . . , I}, the selected action is performed and the corresponding reward is obtained
(line 4). If BS-node n transmits in time slot i, i.e., an,i = (n, l), the reward rn,i is sent by the
receivingBS l through the control channel. Ifan,i = (l, n), the reward rn,i depends, as given
in (6.4), only on the current estimates at BS-noden and the status of its bufferBn,i. With the
observed reward rn,i, the counter for action an,i is increased and the latency and CVaR esti-
mates are updated (lines 4-6). Using the new estimates (lines 5 and 6), the valueQ(an,i) of
the performed action an,i is updated (line 7). The next action an,i+1 is then selected accord-
ing to ϵ-greedy (line 8), which is a well-known method to balance the exploitation of links
with estimated low latency, and the exploration of unknown but potentially better ones. In
ϵ-greedy, a random action an,i+1 from the setAn,i+1 is selected with probability ϵ ∈ [0, 1].
With probability (1− ϵ), instead, the action that yields the estimated lowest value is chosen,
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i.e.,

an,i+1 =

⎧
⎪⎨

⎪⎩

randomly selected action fromAn,i+1, if x ≤ ϵ

argmax
bn∈An,i+1

Qn(bn), if x > ϵ,
(6.8)

where x is a sample taken from a uniform distribution in the interval [0, 1]. Once the action
an,i+1 is selected, it is shared with other BS-nodes in the network along with tqn,i and Bn,i

(line 9). As described in Section 6.4.3, this goes through the control channel. If conflicts
arise, consensus is reached by prioritizing the transmission of the BS-node with the largest
loads and queuing times (line 10).

6.4.5 Regret Analysis

The regret ζ is defined as the expected loss caused by the fact that the optimal action is not
always selected [135]. Let T̄ ∗ and T̄an be the expected delay associated to the optimal action
a∗ ∈ An and the non-optimal action an ∈ An, respectively. Similarly, let CVaR∗ and
CVaRan be the CVaR of the optimal action a∗ ∈ An and the non-optimal action an ∈ An,
respectively. Formally, the regret ζi after i time slots is defined as

ζi =
∑

an∈An

((
T̄ ∗ + ηCVaR∗)−

(
T̄an + ηCVaRan

))
E[Kan,i]

=
∑

an∈An

∆anE[Kan,i], (6.9)

whereKan,i is the number of times action an has been selected up to time slot i.

Proposition 1. For a networkG inwhich the independent decisions of the BS-nodes do not lead
to conflicts, letAn = |An| be the number of available actions for BS-node n. Additionally, let
c > 0, 0 < d ≤ 1, and ϵi := min(1, cAn

d2i ). Then, there exists a positive constantC > 1, such
that the probability that Safehaul chooses a non-optimal action an after i ≥ cAn/d time slots
is upper bounded as

P[an,i = an] ≤
c

d2i
+

4e

d2
B

c
2
i +

2Cd2

cln
(

(i−1)d2e0.5

cAn

)

+ 4C

(
c

d2
ln

(
(i− 1)d2e0.5

cAn

))
B

c
5d2

i ,

withBi =
cAn

(i−1)d2e0.5 .
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Proof. See the Appendix (Sec. 6.6.6).

Theorem 1. For a network G in which the independent decisions of the BS-nodes do not lead
to conflicts, the regret ζi of Safehaul after i time slots is upper bounded by

ζi ≤
∑

an∈An

∆an

⎛

⎝1 +
i∑

i′=2

⎡

⎣ c

d2i′
+

4e

d2
B

c
2
i′ +

2Cd2

cln
(

(i′−1)d2e0.5

cAn

)

4C

(
c

d2
ln

(
(i′ − 1)d2e0.5

cAn

))
B

c
5d2

i′

])
,

where c > 0and0 < d ≤ 1. The leading order of the regret ζi isO
(
Cid2

(
cln
(

(i−1)d2e0.5

cAn

))−1
)
.

Proof. From the definition in (6.9), the regret can be upper bounded as

ζi ≤
∑

an∈An

∆an

(
1 +

i∑

i′=2

P[an,i′ = an]

)
, (6.10)

by considering thatE[Kan,i] ≤ 1+
∑i

i′=2 P[an,i′ = an]. The bound is obtained by includ-
ing the result of Proposition 1 in (6.10) as

ζi ≤
∑

an∈An

∆an

⎛

⎝1 +
i∑

i′=2

⎡

⎣ c

d2i′
+

4e

d2
B

c
2
i′ +

2Cd2

cln
(

(i′−1)d2e0.5

cAn

)

4C

(
c

d2
ln

(
(i′ − 1)d2e0.5

cAn

))
B

c
5d2

i′

])
, (6.11)

It is now easy to see that the leading order is given by the fourth summand in the brackets,
i.e.,

O

⎛

⎝ Cid2

cln
(

(i−1)d2e0.5

cAn

)

⎞

⎠ , (6.12)

which means the average regret ζi/i→ 0when i→∞.

6.5 Simulation setup

Given the lack of access to actual 5G (and beyond) network deployments, priorworksmostly
rely onhome-grown simulators forperformance evaluation. Although this is a valid approach,
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Figure 6.2: Schematic of the hierarchical beam management procedure. First, the general direction is estimated using
wide beams (top). Then, the search is refined using the narrow beams codebook.

these simulators often cannot fully capture the real network dynamics, introducing strong
assumptions in the physical and/or the upper layers of the protocol stack. Until very recently,
themost complete simulator for IAB networks was a system-level simulator [136] developed
as an extension of the ns-3mmWavemodule [137]. However, despite accurate modeling of
the IAB protocol stack, it is currently behind the latest IAB specifications†. Moreover, the
ns-3 IAB extension is unsuitable for large simulationswith hundreds of nodes due to reliance
on an older version of themmWavemodule. Therefore, in our work we opt for Sionna [1],
which is an open-source GPU-accelerated toolkit based on TensorFlow.
However, unlike the aforementioned ns-3 module, Sionna is a physical layer-focused sim-

ulator that does not explicitly model 5G networks, thus lacking the characterization of the
5G-NR upper-layer protocol stack. Hence, we extend Sionna by including the system-level
functionalities such as MAC-level scheduling and RLC-level buffering. Furthermore, since
Sionna exhibits slight differences compared to the 5G-NRphysical layer, we extend Sionna’s
physical layermodel [1]with the 5G-NRprocedures In the following, we describe the details
of our extensions, which we make publicly available‡.

6.5.1 Extensions to Sionna’s physical layer module

In this section, we describe the physical layer modification that were necessary to evaluate
IAB scenarios using Sionna.

†For instance due to the assumption of L-3 (instead of L-2) relaying at the IAB-nodes which was based on
a draft version of the TR 38.874 [114].

‡https://github.com/TUDA-wise/safehaul_infocom2023
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Codebook-based Beamforming

Sionna’s nativebeamformingonly supportsZero-Forcing (ZF)pre-coding indownlink. There-
fore, as a first step, we extend Sionna by implementing an NR-like codebook-based analog
beamforming both at the transmitter and at the receiver. Specifically, we assume that the
beamforming vectors at the transmitter wtx and at the receiver wrx are a pair of codewords
selected from a predefined codebook. The codebook is computed by defining a set of beam
directions {ωn,m} which scans a given angular sector with a fixed beamwidth. The steering
vector an,m corresponding to direction ωn,m can be computed as:

an,m=
[
1,...,ej

2π
λ d(iH sinαpsinβq+iV cosβq),...,

ej
2π
λ d((NH−1)sinαpsinβq+(NV −1)cosβq)

]T
,

(6.13)

whereNH andNV are the number of horizontal and vertical antenna elements, respectively.
Thehorizontal andvertical indexof a radiating element is denotedby iH ∈ {0, . . . , NH −
1} and iV ∈ {0, . . . , NV − 1}, respectively. αp and βq represent the azimuth and eleva-
tion angles of ωp,q. Next, we define the codebook as the set {

(√
NHNV

)−1
wp,q}.

In line with the 5G-NR beammanagement procedure [138], we assume the lack of com-
plete channel knowledge, i.e., the communication endpoints donot know the corresponding
channel matrix. Accordingly, an exhaustive search is conducted to identify the best pair of
codewords resulting in the highest SINR.We leverage a hierarchical search, inwhich the com-
munication pairs first perform a wide-beam search in which the transmitter and the receiver
approximate the direction of communication, see Fig. 6.2. Next, the beamforming direction
is fine-tuned through a beam refinement procedure going through a codebook with narrow
beams. Consequently, we employ two types of codebooks, one with wide beams for sector
sweep and another with narrow beams for beam refinement.

SINRComputations

Since Sionna does not natively calculate the SINR,we add this functionality to the simulator
to better model the impact of interference in our simulations. We compute the SINR expe-
rienced by Transport Blocks (TBs) by combining the power of the intended signal with that
of the interferers and of the thermal noise. Specifically, we first compute the powerPn of the
intended signal at receiver n over frequency f and at time slot i. Then, we obtain the over-
all interference power by leveraging the superposition principle and summing the received
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Figure 6.3: Overall design of our Sionna’s extension. The red blocks represent our additions to the baseline simulator, i.e.,
Sionna [1].

power from all other interfering base stations Pm(i, f) wherem ̸= n. For the purposes of
this computation, we assume that each interferer employs the beamforming vector yielding
the highest Signal-to-Noise Ratio (SNR) towards its intended destination. Similarly, the
transmitter and the receiver use the beamforming configuration estimated via the hierarchi-
cal search procedure. Finally, the SINR is γn(i, f) = Pn(i,f)∑

m ̸=n
Pm(i,f)+σ(i,f) where σ(t, f) is

the thermal noise at the receiver.

6.5.2 System-level extensions to Sionna

As mentioned, Sionna is mainly a physical layer simulator. However, to get closer to IAB
networks as specified in Rel. 17, we have extended Sionna by implementing a selection of
system-level features. To such end, we introduced a discrete-event network simulator for
modeling IABnetworks. This system-level extension operates on top of Sionna andprovides
basic functionalities such as a MAC-level scheduler, layer-2 buffers, and data flow and path
selection mechanisms. Our simulator, as depicted in Fig. 6.3, generates a variety of system-
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level KPIs such as latency, throughput, and packet drop rate.

Data Flow and buffer

3GPP has opted for a layer-2 relaying architecture for BS-nodes where hop-by-hop Radio
Link Control (RLC) channels are established. This enables retransmissions to take place
just over the afflicted hops, thus preventing the need for traversing again the whole route
from the BS-donor whenever a physical layer TB is not decoded. This design results in a
more efficient recovery from transmission failures and reduces buffering at the communica-
tion endpoints [139]. To mimic this architecture, we have implemented RLC-like buffers
at each base station. Specifically, each BS-node features layer-2 buffers for both received and
transmitted packets. For instance, the data flow for an uplink packet is the following. The
UE generates packets and sends a transmission request to the base station. Consequently,
the scheduler allocates OFDM symbols for this transmission, which is eventually received
and stored at the RX buffer of its Distributed Unit (DU). Next, the packet is placed into
the TX buffer to be forwarded to the suitable next hop BS-node. This procedure is repeated
until the packet crosses all the wireless-backhaul hops and reaches the BS-donor. Note that
the packet can be dropped due to latency constraints or to interference.

BAP

Tomanage routing within the wireless-backhauled network, the 3GPP introduced BAP, i.e.,
an adaptation layer above RLC which is responsible for packet forwarding between the BS-
donor and the access BS-nodes [81]. Our simulator mimics this by associating each BS-node
to a uniqueBAP ID.Moreover, we append aBAP routing ID to eachpacket at its entry point
in the Radio Access Network (RAN) (i.e., the BS-donorand the UEs for DL and UL data,
respectively). Then, this identifier is used to discern the (possiblymultiple) routes toward the
packet’s intended destination [81]. The choice of the specific route is managed by Safehaul.

Scheduler

Finally, we implemented aMAC-level scheduler which operates in aTimeDivisionMultiple
Access (TDMA) mode. The scheduler periodically allocates the time resources to backhaul
or access transmissions in a Round-Robin fashion. Specifically, each cell first estimates the
number ofOFDMsymbols neededby each data flowby examining the corresponding buffer.
Then, the subframe’s OFDM symbols are equally allocated to the users. If a user requires
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Figure 6.4: Location of BS‐nodes in Manhattan and Padova topologies.
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Figure 6.5: Average network performance for 50 UEs and 80Mbps per‐UE source rate (Scenario 1).

fewer symbols to transmit its complete buffer, the excess symbols (the difference between
the available slot length and the needed slot length) are dispersed to the other active users.

6.6 Performance Evaluation

In our simulations, we consider realistic cellular base station deployments in Manhattan,
New York City§ and in the historical city center of Padova. Specifically, for the former we
collect the locations ofN = 223 5G-NR base stations in an area of 15 Km2 as depicted in
Fig. 6.4a. On the other hand, in the Padova topology we combine locations of N = 100

4G-LTE BS of different MNOs (WINDTRE, TIM, and Vodafone) in an area of 10 Km2

as depicted in Fig. 6.4b, due to the lack of 5G-NR base station deployment at the time of

§The locations correspond to the network of T-Mobile, as it has the largest deployment among theMNOs.
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Table 6.1: Simulation parameters.

Parameter Value

Carrier frequency and bandwidth 28 GHz and 400MHz
IAB RF chains 2 (1 access + 1 backhaul)
Pathloss model UMi-Street Canyon [2]
Number of BS-nodesN {223NY, 100 Padova}
Source rate {40, 80} Mbps
IAB Backhaul and access antenna array 8H×8V and 4H×4V
UE antenna array 4H×4V
IAB and UE height 15 m and 1.5 m
IAB antenna gain 33 dB
Noise power 10 dB
Risk levelα 0.1
Reliability weight factor η 1

writing this paper. The detailed simulation parameters are provided in Table 9.5. We used
the channel model outlined by 3GPP in TR 38.901 [2], which provides a statistical channel
model for 0.5-100 GHz, and analyzed the ”UrbanMicro (UMi)-StreetCanyon” scenario.
Benchmarks. To provide better insights on the performance of Safehaul, we replicate

two approaches from the state of the art: (i) Scalable andRobust Self-backhauling Solution
(SCAROS), a learning-based approach thatminimizes the average latency in the network [7],
and (ii)Maximum-local-rate (MLR), a greedy approach aiming tomaximize throughput by
selecting the links with the highest data rate.
Our evaluation consists of six scenarios, in which we study the convergence of the algo-

rithms to a steady state, the number of BS-nodes, the number of BS-donors, and the impact
of risk aversion. When demonstrating the results, we show the average throughput, latency,
and packet drop rate per UE. Furthermore, we show the statistical variance of the obtained
results using candlesticks which include the corresponding max, min, mean, and 10 and 90
percentiles.

6.6.1 Scenario 1: Average Network Performance

Analyzing the performance of the algorithms as a function of time is crucial to determine
the convergence speed of the learning-based techniques, i.e., Safehaul and SCAROS.Hence,
in Fig. 6.5 we show the average network performance over time for three metrics: latency,
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Figure 6.6: Network performance for {25, 50, 75, 100, 200} BS‐node, 2UEs per BS‐nodes on average, and 40Mbps
per‐UE source rate (Scenario 2).

throughput, and packet drop rate.
In Fig. 6.5a, we can observe that Safehaul rapidly converges to an average latency of ap-

proximately 8.6mswhich is 12.2%and 43.4% lower than the latency of SCAROS andMLR,
respectively. The high performance of Safehaul stems from the joint minimization of the av-
erage latency and the expected value of its tail loss, which results in avoiding risky situations
where latency goes beyond Tmax. This is not the case for SCAROS where we observe a high
peak in the latency before convergence, i.e., between zero and 1000ms. It is exactly the avoid-
ance of such transients in Safehaul that leads to higher reliability in the system. The reliability
offered by Safehaul allows MNOs to deploy self-backhauling in an online fashion and with-
out disrupting the network operation. The performance of MLR is constant throughout
the simulation, as it is not designed as an adaptive algorithm.
Figure 6.5b shows that the risk-aversion capabilities of Safehaul have no negative impact

on the average throughput of the network. The performance of Safehaul is comparable to
that of SCAROS, approximately 79.3 Mbps, and 11.7% larger than the performance of
MLR. The performance shown in Figure 6.5c is consistent with the behavior observed in
Figure 6.5a. As Safehaul additionally minimizes the α-worst latency, it achieves the low-
est packet drop rate compared to the reference schemes, namely, 30.1% (84.0%) lower than
SCAROS (MLR).

6.6.2 Scenario 2: Impact of the Network Size

In Fig. 6.6 we evaluate the reliability of the three considered approaches for different net-
work sizes. Specifically, we vary the number of BS-nodes starting from 25 up to 200. At the
same time, we increase the load in the network by increasing the number of UEs. From the
figures, we can clearly see that Safehaul consistently achieves a lower variation compared to
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Figure 6.7: Network performance for 50UEs and 40Mbps per‐UE source rate, versus the number of BS‐donors (Scenario
3).

the reference schemes. This verifies that Safehaul achieves the intended optimization goal,
i.e., the joint minimization of the average end-to-end delay and its expected tail loss.
Fig. 6.6a shows that Safehaul is able tomaintain an almost constant latency as the number

of BS-nodes increases. Specifically, the variation of latency with Safehaul is 56.1% and 71.4%
less than with SCAROS andMLR, respectively. Furthermore, Safehaul achieves 11.1% and
43.2% lower latency compared to SCAROS andMLR, where the high variance exhibited by
the latter is due to a lack of adaptation capabilities.
As shown in Fig. 6.6b, the average throughput of the learning-based approaches Safehaul

and SCAROS remains constant for the different values of network size. However, the lowest
variation in the throughput is achieved by Safehaul, i.e., only 0.90 compared to 1.9 and 2.8
in the benchmark schemes. Such behavior corroborates Safehaul’s reliability capabilities.
Thepacket drop rate for different numbers of BS-nodes is shown inFig. 6.6c. Safehaul not

only consistently outperforms the reference schemes, but also has theminimum variation in
the results (by at least 47.3%compared to benchmarks). Considering the largest network size
and load, i.e., 200 BS-nodes and 400 UEs, Safehaul achieves 49.3% and 81.2% lower packet
drop rate compared to SCAROS andMLR, respectively.

6.6.3 Scenario 3: Impact of the number of BS-donors

Although the benchmark schemes do not support multiple BS-donors, Safehaul is designed
to accommodate such scenarios. In Fig. 6.7, we investigate the impact of the number of BS-
nodes on Safehaul. To this end, we keep the number of UEs and their data rate constant.
We observe in Fig. 6.7a that the highest latency is experienced when only one BS-donor is
present in the network. This stems from the tributary effect of self-backhauling where the
traffic flows towards a central entity which itself can become a bottleneck. As the number of

84



0.2 0.4 0.6 0.8
Risk level

2.0

2.2

L
at

en
cy

[m
s]

Figure 6.8: Average latency for 50 UEs and 20 Mbps per‐UE source rate, versus the risk level α (Scenario 4)

BS-donors increases, the traffic is more evenly distributed, resulting in lower latency. Specif-
ically, the average latency decreases from 8.2 ms for D = 1, to 1.7 ms when D = 5. As
mentioned, since the load is constant in this scenario, the average throughput also remains
constant for all different numbers of BS-donors, see Fig. 6.7b. Notably, Safehaul’s learning
speed is maintained for the different values ofD. This is an important design feature of Safe-
haul because having more BS-donors means that the number of paths a BS-node has to the
core network increases exponentially. From a learning perspective, such increment implies
a larger action set and a lower learning speed. Safehaul avoids this problem by learning the
average latency based on the estimates of its neighbors and not on the complete paths to the
BS-donors. Finally, Fig. 6.7c shows that increasing the number of BS-donors significantly
reduces the packet drops, which also stems from a better distribution of traffic flows in the
network, as observed in Fig. 6.7a.

6.6.4 Scenario 4: Impact of the risk parameter α

The definition of losses in the tail of the latency distribution is controlled by the risk level
parameter α. Its impact on the average latency is shown in Fig. 6.8, where an increasing
behavior is observed for α ≤ 0.7. The lowest latency is achieved for α = 0.1, which corre-
sponds to the most risk-averse, and therefore the most reliable, case out of all the considered
ones. The non-monotonic behavior of the average latency versus α can be explained by the
so-called exploration-exploitation trade-off: the higher α, the higher the level of risk, which
in turn leads Safehaul to learnmore about the environment and choose amore reliable action.
Eventually, asα grows beyond approximately 0.7, the performance of Safehaul tends to that
of the risk-neutral case. As a consequence, the algorithm undertakes excessive exploration,
which causes a degradation of the average latency performance.
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Figure 6.9: Average network performance for 50 UEs and 80Mbps per‐UE source rate (Scenario 1) in Padova.
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Figure 6.10: Network performance for {25, 50, 75, 100} BS‐nodes,2 UEs per BS‐node on average, and 40Mbps per‐
UE source rate (Scenario 2) in Padova.

6.6.5 Scenario 5: Performance in different topologies

To verify the generality of the proposed algorithms, it is essential to examine how they per-
form in different topologies, and consider both typical network performance metrics (i.e.,
along the lines of Scenario 1) and their stability with respect to the number of BS-nodes and
BS-donors (Scenarios 2 and 3). To this end, we ran additional simulations in the deployment
depicted in Fig. 6.4b, which mimics the BS-nodes locations of the historic center of Padova.
We report the average network performance over time, in terms of end-to-end packet drop
rate, throughput, and latency in Fig. 6.9. Overall, the outcomes of this simulation campaign
are in linewith those obtained in Scenario 1. Specifically, as seen in Fig. 6.9a, Safehaul quickly
converges to an average latency of approximately 8 ms, which is 14% and 31% lower than
SCAROS and MLR’s latency. Fig. 6.9b shows the average per-UE throughput, in terms of
which Safehaul achieves about 4% and 17% better performance than SCAROS and MLR,
respectively. Similarly, the performance depicted in Fig. 6.9c is in line with the one reported
in Figs. 6.9a and 6.9b, with Safehaul achieving approximately a 24% and 38% smaller packet
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drop rate than SCAROS andMLR, respectively.
In Fig. 6.10, we compare the consistency of the performance of the three algorithms with

respect to the network size. In particular, we change the number of BS-nodes from 25 to
100, keeping fixed the number of UEs per BS-node and thus effectively increasing the net-
work load on the BS-donor. Results show that Safehaul, when compared to other schemes,
exhibits minimal performance degradation when introducing additional BS-nodes andUEs.
As can be seen in Fig. 6.10a, the latency achieved by Safehaul increases by at most 16% in
the case of 100 BS-nodes, while SCAROS and MLR lead to a latency which is consistently
higher and increases up to 27% and 25%when deploying additional nodes, respectively. Sim-
ilar trends can be observed in Figs. 6.10b and 6.10c, which report throughput andpacket loss
versus the network size, respectively. Indeed, Safehaul is the best performer across the whole
range of BS-nodes which have been considered. Furthermore, Safehaul loses 20%more pack-
etswith the denser network deployment (i.e., 100BS-nodes), while reference schemes exhibit
an increase in the packet loss of up to 33%.
We complete this analysis by examining how the number of donors affects the perfor-

mance achieved by Safehaul in the Padova-like topology. As can be seen in Fig. 6.11, increas-
ing the number of fiber-backhauled base stations progressively reduces the latency. Similarly,
and in line with the results obtained in Scenario 3 and reported in Fig. 6.11c, the packet drop
rate varies from approximately 0.08%when considering a single BS-donor, to approximately
0.003% in the presence of five BS-donors. The performance improvements introduced by
additional fiber links saturate after 3 donors, thanks to the efficient routing and scheduling
performed by Safehaul.
In summary, the results obtained in the additional topology mimicking the historical cen-

ter of Padova are well aligned with those obtained in the Manhattan, NYC topology. Al-
though the specific values of the network metrics achieved by the considered schemes in the
two topologies are different (for instance, SCAROS achieves a 66% lower packet drop rate
in Scenario 1 compared to Scenario 5), the trends among the various schemes are the same.
Specifically, we observed that Safehaul consistently achieves the best performance in com-
parison to SCAROS and MLR across different metrics, which supports the claim that the
proposed scheduler is capable of learning how to optimize arbitrary deployment topologies.

6.6.6 Scenario 6: Network resilience

In networking, resilience refers to the ability of a network to recover in a quick and effective
fashion from disruptions, thus providing reliable and high-quality communication services

87



0 1000 2000 3000 4000 5000
Simulation time [ms]

2

4

6

8

L
at

en
cy

[m
s] 1 IAB-Donor

2 IAB-Donors

3 IAB-Donors

4 IAB-Donors

5 IAB-Donors

(a) Average per‐UE end‐to‐end Latency

0 1000 2000 3000 4000 5000
Simulation time [ms]

30

35

40

45

50

55

60

T
h
ro

u
gh

p
u
t

[M
b
p
s]

1 IAB-Donor

2 IAB-Donors

3 IAB-Donors

4 IAB-Donors

5 IAB-Donors

(b) Average per‐UE throughput

0 1000 2000 3000 4000 5000
Simulation time [ms]

0

1

2

3

4

5

P
ac

ke
t

d
ro

p
ra

te
[%

]

1 IAB-Donor

2 IAB-Donors

3 IAB-Donors

4 IAB-Donors

5 IAB-Donors

(c) Average per‐UE packet drop rate

Figure 6.11: Network performance for 50 UEs and 40 Mbps per‐UE source rate, versus the number of BS‐donors in
Padova (Scenario 3).
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Figure 6.12: Average network performance for 50UEs and 80Mbps per‐UE source rate where 1 random BS‐node is shut
down.

to its users. Specifically, the ability to recover from link failures is particularly important in
IAB networks, where backhaul links are susceptible to the typical disruptions which plague
the RAN due to its mobile and wireless nature. For instance, the links among BS-nodes can
be degraded by adverse environmental conditions such as heavy rain and monsoons, physi-
cal obstacles and network congestion. These disruptions can cause temporary or permanent
communication failures, which in turn result in degradedperformance and/or loss of connec-
tivity for the end users. To prevent and/or recover from these undesired events, a backhaul
scheduler must detect, mitigate, and recover from various types of disruptions and failures,
andmustmaintain the required level of service availability and performance despite the time-
varying channel conditions.
We benchmark the resilience of the proposed algorithm by mimicking radio link failures,

which we simulate by stopping BS-nodes at a fixed time instant (2000 s), and inspecting the
resultingperformancedegradation. Since the failednode(s) is (are) chosen at random,we run
multiple simulations to estimate the average network performance, as shown in Figs. 6.12
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Figure 6.13: Average network performance for 50 UEs and 80 Mbps per‐UE source rate where 3 random BS‐node are
shut down.

and 6.13 for the case of one and three link failures, respectively.
Results show thatMLR is unable to react to the link failure(s) due to its static andmyopic

policy. Specifically, the disruption causes an increase of 33% (60%) in the latency, and a de-
crease of up to 15% (23%) in the throughputwhen considering one (three) link failure(s). On
the other hand, both Safehaul and SCAROS are capable of adapting the scheduling to the
new topology. Indeed, both schemes show a transitory region where performance is slightly
degraded since the algorithms are learning new routes and resource partitions to account for
the lost link. Nevertheless, Safehaul and SCAROS eventually converge to a solution which
provides approximately the samenetwork performance as before the failures, both in the case
of one and three lost links.

Appendix

For the proof of Proposition 1, Theorem 3 in [134] is needed. For completeness, we first
present the theorem for the special case in which the considered random variables are inde-
pendent. Next, we present the proof of Proposition 1.

Theorem2. LetTan,i be independent randomvariableswheremax1≤j≤i Tan,j = Tmax, with
i ∈ {1, 2, ...}. Then, for any 0 < δ ≤ 1/2, ξ > 0 and γ > 0, there exists a positive con-
stant C which only depends on ξ and γ, such that the probability of the event |ĈVaRan,i −
CVaRan,i| ≥ 2ξα−1Tmaxi−δ(ln ln i)1/2 ln i is smaller or equal thanCe−(1+γ) ln i.

Proof. See Theorem 3 in [134].

89



Proof of Proposition 1

From the system model and Proposition 1, we have that c > 0, 0 < d ≤ 1, and ϵn :=

min(1, cAn
d2i ). Moreover, an,i is the action chosen by ϵ-greedy in time slot i andKan,i is the

number of times, up to time slot i, in which Safehaul chose action an at random. Similarly,
we use K∗

i for the counter of the optimal action. Tan,i are independent random variables
distributed according to the rewards linked to action an. We use T ∗

i for the optimal action,
and T̂an,i is the estimated mean of the probability distribution of the rewards linked to ac-
tion an usingKan,i samples. As before, we use T̂ ∗

i for the optimal action. ĈVaRan,i is the
estimated CVaR of action an up to time slot i and ĈVaR

∗
i is the estimated CVaR of the

optimal action up to time slot i. Then, the probability that action an is chosen in time slot
i is upper bounded as

P[an,i = an] ≤P
[
δan,i−1 ≤ δ∗i−1

] (
1 − ϵi

An

)
+

ϵi
An

, (6.14)

with δan,i−1 = T̂an,i−1 + ηĈVaRan,i−1 and δ∗i−1 = T̂ ∗
i−1 + ηĈVaR

∗
i−1. The first term in

(6.14) is the probability of exploitation and the second term to the probability of exploration.
Using the mean T̄an andCVaRan of action an, and the likewise defined T̄ ∗ andCVaR∗ for
the optimal action, we set∆mean

an := T̄an − T̄ ∗ and∆cvar
an := CVaRan − CVaR∗. Using

these definitions in (6.14) we conclude

P
[
δan,i−1 ≤ δ∗i−1

]
≤

P
[
δan,i−1 ≤ ηCVaRan −

∆mean
an

2
+ T̄an − η

∆cvar
an

2

]
+

P
[
T̄ ∗ +

∆mean
an

2
+ ηCVaR∗ + η

∆cvar
an

2
≤ δ∗i−1

]
(6.15)

P
[
T̂an,i−1 ≤ T̄an −

∆mean
an

2

]
+ P

[
T̄ ∗ +

∆mean
an

2
≤ T̂ ∗

i−1

]
+

P
[
ĈVaRan,i−1 ≤ CVaRan −

∆cvar
an

2

]
+

P
[
CVaR∗ +

∆cvar
an

2
≤ ĈVaR

∗
i−1

]
. (6.16)

Similar to [135], we use theChernoff-Hoeffding bound for the first two terms in (6.16). For
the last two summands, it remains to find a bound for the difference between the CVaR and
its estimate ĈVaR. From Theorem 2, we set ξ := ∆cvar

an α/4Tmax, δ = 0.5 and by using
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the limit γ → 0, we obtain

P
[
|ĈVaRan,i − CVaRan,i| ≥

∆cvar
an

2
i−0.5(ln ln i)0.5 ln i

]
≤ C

i
. (6.17)

Asmaxi i−0.5(ln ln i)0.5 ln i < 1, the condition (∆cvar
an /2)i−0.5(ln ln i)0.5 ln i ≤ ∆cvar

an
2

holds for all i. Therefore, considering the last two summands in (6.16), we conclude that
there exists a positive constantC that satisfies

P
[
|ĈVaRan,i − CVaRan,i| ≥

∆cvar
an

2

]
≤ C

i
. (6.18)

The number of times action an has been selected up to time slot i is smaller than or equal to
i, i.e.,Kan,i ≤ i. Using (6.18) we write the last two summands in (6.16) as

P
[
ĈVaRan,i−1 ≤ CVaRan −

∆cvar
an

2

]
≤ C

Kan,i−1
, (6.19)

and

P
[
CVaR∗ +

∆cvar
an

2
≤ ĈVaR

∗
i−1

]
≤ C

K∗
i−1

. (6.20)

As in [135], we use Bernstein’s inequality to get an estimate forKan,i−1. Defining x0 :=

1/2An

∑i−1
j=1 ϵj for i − 1 ≥ cAn

d2 we get P (Kan,i−1 ≤ x0) ≤ e−
x0
5 . Additionally, from

[135]:
x0 ≥

c

d2
ln

(
(i − 1)d2e0.5

cAn

)
=: C ′(i). (6.21)

The same holds for the optimal action and K∗
i−1. Using these estimations for x0, we can

conclude that for i − 1 ≥ cAn/d2

P
[
ĈVaRan,i−1 ≤ CVaRan −

∆cvar
an

2

]
(6.22)

≤
i−1∑

j=1

P[Kan,i−1 = j]
C

j

=

⌊x0⌋∑

j=1

P[Kan,i−1 = j]
C

j
+

i−1∑

j=⌊x0⌋+1

P[Kan,i−1 = j]
C

j

≤ Cx0e
−x0

5 +
C

x0
≤ Cx0e

−x0
5 +

C

C ′(i)
. (6.23)
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The same holds again for the optimal action

P
[
CVaR∗ +

∆cvar
an

2
≤ ĈVaR

∗
i−1

]
≤ Cx0e

−x0
5 +

C

C ′(i)
. (6.24)

Together with the bounds from Theorem 3 in [135] it follows that forC ≥ 1:

P [an,i = an]

≤ ϵi
An

+ 4Cx0e
−x0

5 +
4

(
∆mean

an

)2 e
−(∆mean

an )2⌊x0⌋
2 + 2

C

C ′(n)

≤ c

d2i
+ 2

Cd2

c ln
(
(i−1)d2e0.5

cAn
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4e
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) c
2
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4C
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d2
ln
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) (
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(i − 1)d2e0.5

) c
5d2

.
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7
Study of ’RIS’: End-to-End Simulation of

5GNetworks Assisted by RIS and AF
Relays

High propagation and penetration loss at millimeter wave (mmWave) frequencies necessi-
tate ultradense deployments of 5th generation (5G) base stations, which may be impractical
and expensive for network operators. Integrated Access and Backhaul (IAB) has been pro-
posed as a partial solution to this problem, despite concerns regarding power consumption
and scalability. Recently, the research community has been examining Reconfigurable Intel-
ligent Surface (RIS) andAmplify-and-Forward (AF) relays asmore energy-efficient solutions
to coverage problems in 5G scenarios. In this chapter we introduce a new simulation frame-
work, based on ns-3, to simulate RIS/AF systems from a full-stack, end-to-end perspective,
taking into account the impact of the channelmodel and protocol stack of 5GNRnetworks.
Our objective is to determine if these technologies canbeused to relay 5G traffic requests and,
if so, how to dimension RIS/AF nodes based on the number of end users.

7.1 Introduction

5Gnetworks are being carried out globally in order to provide 20 times greater peak through-
put and 10 times lower latency than previous generations. In order to achieve this, the 3GPP
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has released a new set of innovations for 5G networks [140], including support for net-
work operations in the mmWave spectrum in conjunction with massiveMIMO (m-MIMO)
technologies. In turn, mmWave transmissions introduce several propagation issues, most
notably severe path and penetration losses, which force short-range communication [141].
Denser deployment of 5GmmWave base stations could be a solution, but it would be costly
for network operators, particularly in terms of sites acquisition campaigns, rental fees, and
fiber architecture to provide wired backhauling [142]. As part of its 5G NR Rel-16 [143]
specifications, the 3GPP approved Integrated Access and Backhaul (IAB) as a new paradigm
to supplantfiber-like infrastructureswith self-configuring relays operatingoverwireless (mmWave)
backhaul links. Despite its potential, m-MIMO-assisted IAB still requires sophisticated sig-
nal processing as well as hardware that is both expensive and energy-intensive [144]. This
issue is exacerbated in rural/remote areas, where harsh weather and terrain, and the lack of
a powerful electrical infrastructure in many instances, may further confound IAB installa-
tion [145]. Consequently, new technologies based on RIS and Amplify-and-Forward (AF)
relays have been proposed as promising energy-efficient alternatives to surmount the cover-
age issues of mmWave networks [146]. An RIS is a metasurface that can be programmed to
alter an electromagnetic (EM) field in a favorable direction. RISs are nodes that passively
beamform the impinging signal without amplification, allowing them to guarantee mini-
mum capacity requirements in inactive areas while consuming less power than IAB [147].
Instead, it is envisioned that AF relays will capture an incident electromagnetic wave ema-
nating from a base station, actively amplify the received signal, and re-radiate it towards a
target area to be served. They are candidates for attaining higher capacity compared to RIS
nodes, albeit at a higher cost and at the expense of noise amplification [148]. Whether or
not these technologies will be able to meet 5G (and beyond) service requirements, and if so,
how to appropriately dimension RIS/AF systems, remain unanswered questions of critical
importance. For testing and calibrating RIS/AF deployments, computer-based simulations
are a viable alternative to field experiments with actual hardware due to scalability and flex-
ibility concerns, as well as the high cost of testbed components. Prior works, such as [149],
[150], have addressed this task, albeit with a focus on link-level analyses, which typically em-
ploy conservative system architecture assumptions and should be considered a lower bound
for more representative end-to-end performance studies.

To address this deficiency, we present a more comprehensive system-level performance
evaluation of RIS/AF deployments using a new simulation framework that operates end-to-
end, thus incorporating the interaction with the 5GNR protocol stack and relative control

94



tasks, as well as the impact of the upper (transport and application) layers. ns-3, an open-
source discrete-event simulator for wireless networks, serves as the foundation for our frame-
work. Specifically, we describe our ns-3 implementation of the RIS/AF channel, which is
based on the current 3GPP channel model for 5G networks as specified in [2] and imple-
mented, for example, in the ns3-mmwave module [151], which models the Physical (PHY)
and Medium Access Control (MAC) layers of the 5G NR protocol stack. On this basis,
we undertake an extensive simulation campaign to compare the efficacy of RIS/AF nodes
for relaying connectivity requests from end users to a baseline solution in which relays are
not deployed. RISs and AF relays are valid solutions, particularly in small networks, despite
the requirement for highEIRP AF relays to support more aggressive traffic applications. We
provide guidelines for the optimal dimensioning of RIS and AF configurations, in terms of
a number of antenna elements and amplification power, based on our simulations.

7.2 Implementation of the RIS SignalModel in ns-3

In Section III-A of [152], we described howour simulator calculates the channel (in terms of
PSD) for RIS/AF relays, which is then used to compute the end-to-end SINR at the destina-
tion D. SINR can refer to either the SINR relative to the entire bandwidth for narrowband
signals transmitted over frequency-flat channels or the SINR experienced over a single sub-
carrier for wideband signals transmitted over frequency-selective channels. In the second
case, the SINRs corresponding to the different frequency chunks are mapped into a singu-
lar SINR value using additional maps derived from link-level simulations [153]. Based on
this, our simulator defines a Link-to-System Mapping (L2SM), i.e. a table that associates a
given SINRwith aMAC-layer Transport Block (TB) error rate [154], which is then used to
determine whether or not the TB has been received accurately. The upper layers of the 5G
NR protocol hierarchy are modeled based on the ns3-mmwave module [151]. It employs
a custom PHY layer that supports the NR frame structures and numerologies, as well as
a MAC layer with ad hoc beamforming and scheduling policies. The Radio Link Control
(RLC) andPacketDataConvergenceProtocol (PDCP) layers implement network functions
including segmentation, retransmissions, and/or reassembly of packets.

7.3 Performance Evaluation

In this section, we describe our simulation setup and parameters and evaluate the perfor-
mance of RISs and AF relays as a function of various antenna array configurations.
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Figure 7.1: Simulation scenarios, where we deploy one gNB, NU UEs and, possibly, a relay. A building (the gray rectangle)
blocks the direct link (dashed red line) from the gNB to the UEs. In turn, the relay guarantees a LoS link (dashed black line)
to all the devices.

7.3.1 Simulation Setup

Inour simulations, we investigate two simple yet realistic urban canyon scenarios inwhichwe
deploy a single Next GenerationNode Base (gNB), NU user equipments (UEs), withNU=
1 (5) in Scenario 1 (2), and a single relay, whichmaybe either anRISor anAF relay. Modeling
the wireless channel as anUrbanMacro (UMa) link [2]. The LoS/NLoS condition depends
on the scenario’s geometry. Specifically, we presume that the direct wireless link between the
UEs and the gNB is obstructed by a building, as depicted in Fig. 7.1, which introduces an
additional penetration loss modeled according to [[2], Sec. 7.4.3.1]. Through the relay, the
end nodes can continue to communicate in LoS.
The parameters for our simulation are listed in Table 7.1 Specifically, UEs obtain User

datagram protocol (UDP) data from a remote server. At each transmission opportunity to-
wards the generic k-th UE, we presume that both AF and RIS relays can use their optimal
configuration, i.e. the codeword yielding the highest end-to-end SINR towards UE k. The
system operates at 28 GHz with a total bandwidth of 100 MHz, which will be shared by all
devices using TDMA. The gNB is equipped with a 64-element antenna array and operates
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Table 7.1: Simulation parameters

at 33 dBm. We evaluate between 200 and 7,200 reflecting elements for RIS purposes. We
consider antenna arrays with 16 to 256 elements for the AF relay.

7.3.2 Numerical Results

Now we compare the end-to-end performance of RIS- and AF-relay assisted networks:

• SINR: It is a measurement of the channel’s excellence. It is dependent upon PHY-
layer characteristics, such as the relative distance between the transmitter, receiver, and
relay (if applicable), the operating frequency, propagation conditions, and channel
bandwidth.

• End-to-end throughput: It ismeasured as the total number of received bytes per user
divided by the total.

• End-to-end latency: It is measured from the time each packet is generated at the
application layer to when it is successfully received. Accordingly, it accounts for both
transmission and queuing times.

• Packet Error Rate (PER). It is the ratio of the number of packets delivered with
errors to the total number of packets transmitted.

The efficacy of the RIS/AF will be compared to a baseline scenario (referred to as ”gNB-
only”) in which there is no intermediate relay.

SINR

Our analysis begins with the SINR statistics depicted in Figure 7.2 for Scenario 1withNU=
1. First, we observe in Fig. 7.2a that the relay enhances the SINR(on average byup to+55dB)
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(a) (b)

Figure 7.2: SINR statistics for Scenario 1.

compared to the ”gNB only” baseline, in which theUE communicates inNLoS.Notably, as
illustrated in Figure 7.2b, both RIS and AF relays offer an end-to-end SINR gain that scales
proportionally to the number of radiating elements at the relay. This effect is produced by
theRIS beamforming gain and the fact that the power collected by theRIS is proportional to
its surface area, which is in turnproportional to the number of radiating elements [155]. The
AF-assisted configurations consistently outperform the RIS-assisted configurations in terms
of SINR (on average up to +40 dB, with the same number of antennas): this is expected
because the AF relay amplifies the signal, obtaining a greater end-to-end gain. SINR is less
than 0 dBwhen theRIS has fewer than 800 elements, which justifies the use of very largeRIS
panels. In fact, a 60 120 element RIS panel has an average SINR of 13 dB, which is sufficient
to support reliable transmissions as long as communication requirements are not excessively
stringent, as we will demonstrate in the following paragraphs.

End-to-end throughput

In Fig. 7.3, we illustrate the end-to-end throughput at the application layer, taking into ac-
count the impact of the entire 5G NR protocol stack. When NU equals one (Scenario 1),
the average throughput reveals the ergodic capacity. Given the extremely low SINR (below
the sensitivity threshold for the majority of commercial receivers) at the physical layer, the
throughput for the ”gNB only” baseline is zero. Interestingly, even though the AF relay
with 16 × 16 antennas guarantees, on average, 15 dB higher SINR than an RIS with 60 ×
120 elements (from Fig. 7.2a), we see that the end-to-end throughput of the two configura-

98



Figure 7.3: End‐to‐end per‐UE throughput at the application layer in Scenario 1 (wide bars) and Scenario 2 (narrow bars)
for different relay configurations.

tions is comparable. This demonstrates that in a straightforward scenario with a single UE,
a SINR average of 15 dB is sufficient to meet all traffic demands. Due to its simplicity, the
RIS is preferable to an AF relay in this situation. In addition, it is impractical to increase the
RIS size further because the throughput is alreadymaximal and equal to theUDP source rate
(50Mbps in our simulations). WhenNU=5 (Scenario 2), the average per-UE throughput is
substantially lower than in Scenario 1 because, in amulti-user scenario, radio resources must
be shared among UEs, which can result in channel congestion. This result verifies the preci-
sion and veracity of our ns-3 architecture. However, this effect is diminished for extremely
massive antenna panels. For instance, for anAF relay with 44 antennas, the per-UE through-
put decreases by nearly 60%, whereas for a 16×16 element array, the per-UE throughput
decreases by only 2%. Even in Scenario 2, AF assisted networks can continue to support the
application source rate if at least 16 16 antennas are utilized. RISs, on the other hand, are
unable to attain the full source rate offered by the application due to the limited SINR avail-
able at the PHY layer. Maximum achievable throughput is approximately 40 Mbps for 60
120 elements, which is 20% greater than in the case where NU = 1.

End-to-end latency

The 95th percentile of the end-to-end latency encountered at the application layer is plot-
ted in Figure 7.4. Even in the simplest scenario with a single user equipment (UE) deployed
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(Scenario 1), the performance is generally poor, as the latency is greater than 100 ms for the
majority of relay configurations, indicating system instability. In reality, the use of relays
with small antenna panels results in extremely high levels of queuing and buffering, which
degrades latency. Despite the increased system complexity, this problem is solvable by con-
figuring larger RIS and AF relays. For instance, an RIS with 60 120 elements and an AF
relay with 8×8 elements can guarantee an end-to-end latency of less than 10 milliseconds,
which satisfies the requirements of the majority of 5G applications. Notice that the latency
for the configuration ”gNB only” is not particularly representative, as it is relative to only
the accurately received packets. In fact, without the relay, transmissions are in NLoS and
several packets are lost (see the PER in Fig. 7.5), which makes the system less congested; the
(few) packets that make it to the application layer are then transmitted with less latency. In
spite of this, the latency is still greater than two orders of magnitude above the best RIS and
AF configurations, indicating that relays are preferable for these types of networks. When
NU equals 5 (Scenario 2), the latency is typically greater than when NU equals 1. This is to
be anticipated given that UEs compete for available resources. In addition, using UDP as a
transport protocol, thus with a full buffer source traffic model, each end-to-end flow does
not self-regulate to the actual network conditions, thus congestion arises. Considering non-
UDP traffic could improve performance: for instance, the congestion control mechanism
available in Transmission Control Protocol (TCP) would regulate source traffic and prevent
network congestion and buffer overflow. Even with the most aggressive RIS architecture of
60120 elements, the average latency is greater than 1000ms, compared to 6.5 ms in Scenario
1. This is because, in this scenario, more than 20% of the packets are lost and retransmitted
(see Fig. 7.5), thereby increasing the packet latency. In contrast, for an AF relay with 16×16
antennas, the latency is approximately 130mson average, with aPERas lowas 3%,which can
still support some essential target communication requirements. Even though RIS-assisted
networks consume less energy, they are inappropriate in this scenario unless extremely large
RIS panels are utilized.

100



Figure 7.4: 95‐th percentile of the end‐to‐end latency at the application layer in Scenario 1 (wide bars) and Scenario 2
(narrow bars) for different relay configurations.

Figure 7.5: Average PER at the application layer in Scenario 1 (wide bars) and Scenario 2 (narrow bars) for different relay
configurations
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8
Potential of Sub-THz in Backhauling

IAB is a flexible and low-cost solution to deploy ultra-dense fifth and sixth generation (5G
and 6G) systems, as it enables wireless backhaul links based on the same technology and
specifications as for the access links. In this chapter, we consider the deployment of mixed
mmWave and sub-terahertz links to increase the capacity of the backhaul network, and pro-
vide the first performance evaluation of the potential of sub-terahertz frequencies for 6G
IAB. To do so, we develop a greedy algorithm that allocates frequency bands to the backhaul
links (considering constraints on spectrum licenses, sharing, and congestion) and generates
the wireless network mesh. We then profile the performance through a custom extension
of the open-source system-level simulator Sionna that supports Release 17 IAB specifica-
tions and channel models up to 140 GHz. Our results show that IAB with sub-terahertz
links can outperform a mmWave-only deployment with improvements of 4× for average
user throughput and a reduction of up to 50% for median latency.

8.1 Introduction

Future wireless networks will accommodate data-rate intensive use cases which include un-
tethered VR andmobile metaverse applications. This will further exacerbate the congestion
on mobile access networks and backhaul systems [156]. For this reason, 5G cellular systems
have pushed into the mmWave band, with typical deployments in the spectrum around 28
GHz and 39GHz [157], and sub-terahertz mobile links are being considered for 6G applica-
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tions [158, 159].
Wireless networks operating at such high frequencies will be deployed with extremely

high density, to improve the probability of LoS coverage and mitigate the impact of the
harsh propagation environment. To make ultra-dense deployments viable, the 3GPP has
standardized an extension of 5G NR, i.e., IAB, which exploits the same waveform and pro-
tocol stack to provide access to mobile users and wireless backhaul for Next Generation
Node Bases (gNBs) (i.e., the IAB nodes) thus limiting the need for fiber drops. The wire-
less backhaul topology terminates at a gNBwith fiber connectivity to the data core, the IAB
donor [160, 161, 80]. IAB also simplifies the deployment of cellular networks in on-demand
or ad hoc contexts, as it removes the need for part of the wired backhaul.
IAB networks in 5G systems are a natural application for mmWave deployments, as tele-

com operators can easily fit carriers with 400 MHz of bandwidth in this spectrum. In addi-
tion, thedirectionality thatmmWave arrays introducehelps reduce the interference. Nonethe-
less, studies have shown that bottlenecks can emerge at IAB donors, creating congestion,
high latency, and degraded Quality of Service (QoS) for the end users, especially when back-
haul links are constrained to re-using the same spectrumof the access (as in in-band IAB) [85].
In this context, out-of-band IAB with sub-terahertz links is seen as a solution to support

immersive multimedia data-hungry streams. Specifically, the spectrum above 100 GHz has
several sub-bands that could provide bandwidths wider than 10 GHz, thus potentially data
rates in the excess of tens ofGbps [162]. Backhaul—a static deployment—is a promising use
case for sub-terahertz links, which need pencil-sharp beams to close the link budget and are
thus less resilient to mobility compared to traditional sub-6 GHz or mmWave frequencies.
In recent years, the literaturehas closed several gaps in termsof circuit, antennadesign [163]

and physical and MAC layer solutions for sub-terahertz systems [164]. When it comes to
IABwithmixed sub-terahertz andmmWave links,* however, there are still several open ques-
tions in terms of network design and path selection. In this paper, we consider the problem
of identifying a viable topology between IAB nodes and the IAB donors, including the car-
rier frequency of the backhaul links, and profile the performance that network planners can
expect when mixing sub-terahertz and mmWave IAB links.
To this end, we develop a greedy path generation algorithm that automatically selects the

frequency band of an IAB link (between 28 GHz and 140 GHz) and assigns routes so that
each IAB node can reach the IAB donor. The frequency selection aims at avoiding bottle-
necks, i.e., the algorithm selects the band that provides the highest capacity when accounting

*In this research, we consider the FR2 range of 3GPPNR (24.25 GHz to 71 GHz) as mmWaves.

104



for the congestion thatmay arise in the proximity of the IABdonor. In addition, we consider
and compare different ratios of sub-terahertz and mmWave links, which can be mapped to
licensing constraints for out-of-band backhaul, and two different bandwidths for the sub-
terahertz links (10 GHz and 32 GHz), which consider exclusive licensing or sharing with
other services, respectively [9].
We model the IAB network in a custom-developed 3GPP Release 17 simulator based on

the open-source tool Sionna [1], with 3GPP and state-of-the-art mmWave and sub-terahertz
channelmodels, and realistic and detailed 3GPP-based physical andMAC layers. Our results
quantify for the first time the performance improvement that sub-terahertz links can intro-
duce in IAB networks, which can push beyond the limits of the in-band mmWave backhaul
and support more than 50 users with 120Mbps streams and a single donor without conges-
tion (compared to about 33Mbps for in-band mmWaves).
This is the one of the first researches that provides a numerical evaluation of the potential

associated with sub-terahertz links for IAB. Notably, [165] evaluates the sub-THz potential
in backhaul networks from a physical layer perspective. This research demonstrates that sub-
THz spectrum links can achievemulti-Gbps ratios in outdoor backhaul scenarios. [166] pro-
posed unmanned aerial vehicles (UAV)-assisted backhaul solution to improve network cov-
erage and data rate in heterogeneous networks with multiple tiers composed of sub-6 GHz,
THz and UAV layers. In addition, the authors of [167] successfully adopted concurrent
scheduling to increase system throughput in dense THz backhaul scheduling. Finally, [168]
considers a multi-band IAB deployment, but with a bandwidth that is more limited than
those considered in future 6G scenarios.
The rest of the paper is organized as follows. Sec. 8.2 introduces the systemmodel. Sec. 8.3

describes the algorithmfor frequency andpath selection,which is thennumerically evaluated
in Sec. 8.4.

8.2 SystemModel

We consider a TDMA system in which a single IAB donor, featuring a fiber connectivity
towards the Core Network (CN) and the Internet, exchanges data withNU UEs. Without
loss of generality, we consider uplink traffic only. To achieve uniform coverage, the donor is
aided byNI IAB nodes, which can be either connected to the former, or to neighboring base
stations thus possibly realizing a multi-hop wireless backhaul.
We partition the time resources in T radio subframes of duration Tsub = 1 ms, and we
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equip all nodes with buffers. Accordingly, the data that node i transmits to gNB k during
subframe t is stored in its bufferBk(t), and represents either successfully received packets, in
the case of the donor, or data to be relayed to the next hop along the path during subframe
t + 1, in the case of IAB nodes.

We assume that the backhaul links operate either in the mmWave or in the THz bands
and that each IAB node features two RF chains, which are used for the backhaul and the
fronthaul communications, respectively. In both cases, gNBs are equipped with directional
antennas.

When gNB k = 0, . . . , NI, with index 0 denoting the IAB donor, receives data from
node j, packets experience a SINR γs,d which can be expressed as

γs,d =
|hl

s,d|2σ2
x

σ2
n +

∑
i∈I σ2

i

, (8.1)

where hl
s,d, l ∈ {mW, sT} represents the equivalent channel response between the com-

munication endpoints when using mmWave or sub-THz links, respectively. I denotes the
set of interferers, σ2

x, σ2
i and σ2

n are the powers of the transmitted signal, the i-th received
interfering signal, and the thermal noise at the receiver, respectively.

The corresponding access (backhaul) throughputRA
j,k(t) (RB

j,k(t)) reads

RA
j,k(t) =

1

Tsub

Bt
j∑

l=1

{
b̂l(γj,k) = bl

}
, (8.2)

whereBt
j denotes the number of bits transmitted from user (IAB node) j to gNB k during

subframe t and b̂l(γj,k) is the l-th decoded bit at the receiver, as a function of γj,k.

Our goal is to maximize the average system sum-rate, defined as

R̄
.
=

1

T

NI∑

j=1

T∑

t=1

RB
j,0(t), (8.3)

by tuning the carrier frequency (either mmWave or THz) of each backhaul link. We remark
that in this metric we take into account only the packets which are received at their final
destination, i.e., the IAB donor.
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argmax
P ,{S(t)}t,T

R̄, (8.5a)

s.t. C1: RB
j,k(t)Tsub ≤ Bj(t) ∀ j, ∀ t (8.5b)

C2: Bj(t + 1) = Bj(t) + Tsub

(
NU∑

k=1

RA
k,j(t) +

NI∑

k=1

RB
k,j(t) −

NI∑

k=0

RB
j,k(t)

)
∀ j, ∀t

(8.5c)

C3:
NI∑

k=0

S [j, k] (t) +
NI∑

k=1

S [k, j] (t) ≤ 1 ∀ j, ∀t (8.5d)

C4: RB
j,k(t)S [j, k] (t) = RB

j,k(t) ∀ j, ∀k, ∀t (8.5e)

C5:
NI∑

j,k=0

T ≤ ρmax

NI∑

j,k=0

P (8.5f )

8.2.1 ChannelModels

mmWave channel model

For the mmWave links, we consider the 3GPP 38.901 SCM [2], which models MIMOwire-
less channels for frequencies between 0.5 and 100GHz.
In particular, [2] outlines the procedures for generating a channel matrix Hs,d whose

entries hj,k
s,d correspond to the impulse response of the channel between the j-th radiating

element of the antenna array of the transmitter (S), and the k-th radiating element of the
antenna array of the receiver (D). Then, the channel matrix entries are combined with a
frequency-flat path loss term PL.
When considering analog beamforming at both the transmitter and the receiver, the equiv-

alent channel response hmW
s,d can be evaluated as

hmW
s,d =

√
10PL/10 · wdHs,dws, (8.4)

withws andwd the beamforming vectors used at S and D, respectively.

THz channel model

For sub-THz, we use the physics-based channel modeling approach from [169], which in-
cludesmolecular absorption andpath loss. AtTHz-band frequencies,molecular absorption,
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Figure 8.1: THZ link Selection based on tier and load

which causes both molecular absorption loss and molecular absorption noise, is the princi-
pal factor affecting electromagnetic wave propagation. htH

s,d is the THz-band channel model
introduced in [169], with additional transmit and receive antenna gainsGS andGD, and is
given by

htH
s,d(f, d) =

c

4πfd
exp

(
−kabs(f)d

2

)
GSGD, (8.6)

where c stands for the speed of light and kabs for the medium’s molecular absorption coeffi-
cient, based on the type and composition of molecules [170].

8.3 Sum-rate optimization via THz Link Selection

We define P ∈ {0, 1}NI+1×NI+1 as the matrix which represents the possible active links
among gNBs, i.e.,P [i, j] = 1 if and only if the wireless backhaul link between gNBs i and
j is a feasible link; index 0 refers to the donor. Similarly,S(t) ∈ {0, 1}NI+1×NI+1 andT ∈
{0, 1}NI+1×NI+1 represent the links which are active during subframe t, and whether they
use THz spectrum or not, respectively. Our objective is tomaximize the average system sum-
rate, by choosing whether each link is operating in the THz or the mmWave bands and the
active links at each subframe. We perform the choice of T and P only once, with the goal
of reducing the computational complexity of the algorithm.
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(a) Example Matrix (Mx) of possible path
deployment

(b) Primary Network Map (c) Network Map associated with Mx

Figure 8.2: Example of Distance Aware Path Generation process and Matrix generation

The optimization problem is thus formulated as (8.5a). ConstraintC1 ensures that nodes
do not transmit more data than available in their buffer. C2 enforces the proper evolution
over time of the buffers occupancy, i.e., the buffer occupancy at time t must be equal to
the one at subframe t − 1, minus (plus) the outgoing (incoming) traffic from other nodes.
Constraint C3 relates to the TDMA mode of operation, and ensures that each backhaul
RF chain is used at most for one transmission/reception at any given subframe, while C4
imposes that only active links can exhibit a positive rate. Finally, with C5 we set an upper
bound ρmax on the maximum percentage of THz links.

8.3.1 Backhaul Scheduler

We remark that due to the binary nature of theP , S(t) andT optimization variables, (8.5a)
is an IntegerLinearProgram(ILP), thusNP-hard andnot solvable inpolynomial time. There-
fore, in this section, we present a set of algorithms that solve the path selection and configu-
ration problem heuristically and with low complexity.
Specifically, we first describe the pre-processing steps, referred to as distance-aware path

generation (Alg. 8.1) and THz-link selection (Alg. 8.2), which prune the set of possible links
established among gNBs and decide which of them are to operate in the THz bands, respec-
tively. Then, we describe the SINR-based scheduler (Alg. 8.3), which differs from the former
procedures as it is executed in each subframe to track the dynamic nature of the backhaul net-
work.
The distance-aware path generation algorithmcomputes theP matrix, which encodes the

potential connections between IAB nodes. P reduces the system complexity by restricting
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(a) Primary Network Map (b) Sorted nodes respect to their loads and SINR scheduler

Figure 8.3: Example of SINR‐based Scheduler

possible paths from each IAB node and by avoiding looping. Specifically, Alg. 8.1 iterates
over each IAB node nj , establishing a connection towards the donor whenever the distance
between them is smaller than dmax, i.e., a scenario- and frequency-dependent distance that
guarantees a link performance above a certain threshold. In our case, the considered scenario
involves a small and dense deployment of IAB nodes, so the path loss distance can be com-
pensated by antenna gain, and dmax for THz and mmWave are assumed to have the same
value. Moreover, the proposed pre-processing step performs additional attachments from
neighboring nodes to nj , as long as the resulting link exhibits a lower length compared to a
direct connection toward the donor. In the opposite case, i.e., whenever a node nk, neigh-
bour of nj , is closer to the donor than to the former, an attachment from nj towards nk is
performed. Even though the latter may be topologically redundant, it can provide an alter-
native route for load balancing purposes, while still avoiding the creation of cycles.
The THz link selection policy identifies bottleneck links based on two heuristics: 1) links

involving IAB nodes which are closer to the donor are more likely to be congested since
they are usually used also for relaying traffic of subtending nodes; and 2) the average buffer
occupancy provides an estimate of the loads incurred on each link. Accordingly, Alg. 8.2
partitions the IAB nodes into disjoint sets, referred to as tiers. Nodes are assigned to tiers
based on their distance with respect to the donor, with tier 0 indicating the closest level to
the donor. Then, the various backhaul links are marked as THz in descending order with
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respect to the tier of the corresponding transmitting node, until the maximum ratio of non-
mmWave links ρmax is reached. Note that the algorithm may eventually reach a tier whose
IAB nodes can not be all set as THz. In this case, ties within the same tier are broken by
sorting its nodes with respect to their average traffic load, which we estimate by measuring
the respective buffers. That is to say, nodes with higher buffer occupancy are given priority
and thus they are set as THz before nodes exhibiting a lower traffic load. Note that this
procedure can be based on long-term statistics, thus averaging the load of the nodes over
multiple frames.
Finally, the SINR-based scheduler dynamically allocates resources, with the objective of

maximizing the average sum rate by choosing a list of paths to be activated in each subframe.
The rationale behind the proposed scheme is to schedule links based on their load. Specifi-
cally, inAlg. 8.3we assign a transmission resource allocationprioritywhich is directly propor-
tional to the buffer occupancy of the transmitting node. Once the first endpoint is chosen,
we determine the outgoing link by selecting the one with the highest SINR among those
calculated in Alg. 8.1. Then, we set all links involving the corresponding transmitting and
receiving nodes as infeasible (assigning zero to the corresponding transmitting (n) and re-
ceiving node (p∗n) indexes inPtemp), and repeat the procedure by considering the remaining
nodes and links only, thus ensuring that the TDMA constraint is satisfied.

8.4 Performance Evaluation

This section introduces aperformance evaluationbasedonanovel simulation setup (Sec. 8.4.1)
in a dense cellular network (Sec. 8.4.2), with a comparison between different results of THz
and mmWave networks (Sec. 8.4.3).

8.4.1 Simulation Setup

We have developed a system-level simulator that runs on top of Sionna [1], an open-source
TensorFlow-based GPU-accelerated toolbox, and that includes the IAB networks described
in Rel. 17. The proposed simulator, which is written in Python, is a system-level simula-
tor that features 3GPP-compliant channel modeling and lower layers of the protocol stack.
However, it lacks the implementation of 5GNR higher layers. Therefore, we added system-
level functions likeMAC-level scheduling andRLC-level buffering [51]. In addition, in this
research we use the Terasim channel simulator [170] to generate channel responses and inte-
grate them into Sionna. To accomplish this, we generate traces for each IAB node’s channel

111



Figure 8.4: Network Simulator Extended to support sub‐THz links

response and load them into Sionna. Terasim channel model integration allows us to gener-
ate channels up to 10 THz; in this simulation campaign, the sub-THz carrier frequency is
140 GHz. Several system-level KPIs, including latency, throughput, and packet loss rate, are
produced by our simulator.

8.4.2 Simulation Scenario

We take a dense cellular base station deployment into account in our models. As shown in
Fig. 8.5, we place IAB nodes at a density of 150 gNB/km2, thus with an average intersite
distance of 40 m. In Table 9.5, the specific simulation settings are displayed. For mmWave,
we used the channel model outlined by 3GPP in TR 38.901 [2], a statistical 3GPP channel
model for 0.5-100 GHz, while for sub-THz we used the THz-band channel model intro-
duced in [169] and detailed in Sec. 8.2.1. The range of the user rate is 20Mbps to 500Mbps.
We used a phased array antenna for mmWave and a horn antenna for THz, respectively. In
mmWave we do beamforming based on a pre-generated codebook, in order to find the best
beam pair for connection. For the purposes of SINR calculation, we assume that each inter-
fering device utilizes the beamforming vector with the greatest SINR towards its intended
target. In a similar fashion, both the transmitter and the receiver utilize the beamforming
configuration calculated by the hierarchical search technique. We consider a scenario with a
single donor to focus on the issues related to the bottleneck in the air interface of the donor
itself, while extension tomultiple donors is left for futurework. We also set dmax = 70m, as
it has been experimentally shown that sub-THz links can operate in this range also in adverse
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Figure 8.5: Simulation Scenario

weather conditions [171].

8.4.3 Results

In this section we report the outcomes of our numerical evaluation, focusing on end-to-end
metricsmeasured at the IABdonor. We compare the performance achievedbydifferent back-
haul configurations, i.e., different maximum ratios of THz links and bandwidth, in terms of
throughput, latency and packet drop ratio. We consider two baselines: Random Scheduler
(RS) andRandomLinks (RL). The former uses Alg. 8.2 and chooses at random a feasible set
of active links during each subframe. On the contrary, RL randomly picks which links to
set as THz, and uses Alg. 8.3 for scheduling. 10 simulations per configuration are executed,
to obtain estimates which are averaged over the realizations of the wireless channels.
Fig. 8.6 reports theUE throughput achievedby theproposed solution, versus that achieved

by RS and RL. Focusing on the former, it can be seen that Alg. 8.3 leads to a throughput in-
crease of up to 40% compared to a random scheduling policy, thanks to the prioritization
of the backhaul links incurring a higher load and exhibiting a higher number of subtending
IAB nodes. Moreover, Alg. 8.2 introduces an additional throughput increase of up to 15%
compared to RL.
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Table 8.1: Simulation parameters.

Parameter Value

Carrier frequency (mmWave) 28GHz
Bandwidth (mmWave) 400MHz
Carrier frequency (THz) 140 GHz
Bandwidth (THz) {10, 32}GHz
IAB RF Chains 2 (1 access + 1 backhaul)
Pathloss model (mmWave) UMi-Street Canyon [2]
Pathloss model (THz) Physics-based [169]
Number of IAB nodesNI 23
Number of usersNU 50
Per-UE source rate {40, 80, 100, 200} Mbps
ρmax {0, 0.1, 0.3, 0.5, 0.7, 1}
gNB antenna array 8H× 8V
UE antenna array 4H× 4V
gNB and UE height 15m and 1.5m
gNB antenna gain (mmWave) 30 dB
gNB antenna gain (THz) 38 dB
Noise power 10 dBm
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Figure 8.6: Throughput per UE for different schedulers and THz link selection policies, for THz bandwidth 32 GHz and
ρmax = 0.3.

114



20 40 80 200
0

20

40

60

80

100

120

UE Source rate [Mbps]

Th
ro
ug
hp
ut
[M

bp
s]

ρmax = 0.1, 10 GHz ρmax = 0.1, 32 GHz
ρmax = 0.3, 10 GHz ρmax = 0.3, 32 GHz
ρmax = 0

Figure 8.7: Throughput per UE for different configuration.

Fig. 8.7 illustrates the UE throughput for various configurations of sub-THz backhaul-
ing links and different UE source rates. The performance always improves by adding more
bandwidth to the system through sub-THz links, despite the harsher propagation environ-
ment at higher frequencies. The performance gap increaseswith the user source rate. Indeed,
mmWaves successfully sustain a source system rate of 1 Gbps (20Mbps for 50 UE), but can-
not match higher source rates, as the capacity saturates. The configuration with sub-THz
links achieves a higher throughput in all scenarios and in particular for ρmax = 0.3, 32GHz
achieves the highest throughput for all source rates. It is obvious that increasing the band-
width improves the performance; nevertheless, increasing the percentage of the THz links
from ρmax = 0.1 to ρmax = 0.3 has a more significant impact on throughput. This may
be explained by considering the effects of replacing bottleneck backhauling mmWave links
with THz links with higher bandwidth.
Similar considerations can be drawn from the results shown in Fig. 8.8, which reports

the packet drop percentages for various backhaul configurations. The highest and lowest
packet drop percentages across all UE source rates are achieved when using the mmWave
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Figure 8.8: Backhaul packet drop percentage for different configurations.

and ρmax = 0.3, 32 GHz configurations, respectively. Packet drop percentages at 20Mbps
source rates are close to zero for all configurations. The highest packet drop percentages
among configurations including THz is ρmax = 0.1, 10 GHz. It is noteworthy that the
system performance is influenced directly by both the THz bandwidth and the link ratio, as
seen in Fig 8.7.
Fig. 8.9 depicts the ECDF of the E2E latency experienced by packets which reach the

donor, for different bachkaul configurations. Accordingly, both latencies accumulated over
the fronthaul and backhaul links are taken into account, from the time packets are generated
at the UE until they eventually reach the IAB donor. The plot shows that packet latency
decreases as more sub-THz links are added to the network. In accordance with the afore-
mentioned observations (Fig. 8.7 and Fig. 8.8), ρmax = 0.3, 32 GHz has the lowest latency,
whereas mmWave has the highest latency. The average latency for ρmax = 0.3, 32 GHz,
ρmax = 0.3, 10 GHz, ρmax = 0.1, 32 GHz, and ρmax = 0.1, 10 GHz is approximately
51%, 24%, 24%, and 18% less than in mmWave.
Finally, the average system throughput for different ratios ρmax of THz link is shown in
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Figure 8.9: E2E latency ECDF for different configurations for 80 Mbps user rate.

Fig. 8.10. The system throughput increases with the inclusion of additional THz links. The
figure also shows that system source rates of 2 Gbps, 4 Gbps, and 10 Gbps can be satisfied
by a single donor when ρmax is properly set. However, the larger demand of the 25 Gbps
system source rate still cannot be satisfied, as the system becomes saturated. ρmax = 0.1 and
1 can increase system throughput by up to four times and twelve times, respectively.
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Figure 8.10: System throughput for different source rate and ratio of THz links.

Algorithm 8.1Distance Aware Path Generation
P = [0]NI+1×NI+1

for ni = 1, 2, . . . , NI

di ← 3D distance between ni and IAB donor
if di < dmax

P [ni, 0] = 1

for nj = n1 + 1, . . . , NI

di,j ← 3D distance between ni and nj

if di,j < dmax

dj ← 3D distance between nj and IAB donor
if di < dj

P [nj , ni] = 1
else

P [ni, nj ] = 1
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Algorithm 8.2 THz Link Selection
NT =Vector of IAB nodes tier index
Nsort =Vector of IAB node indexes, sorted with respect to their load
T ← [0]NI+1×NI+1

for n = 1, 2, . . . , NI

d ← 3D distance between n and IAB donor
NT[n] ← d // dtier

for i = 1, . . . , max(NT)
N i

T ← {j | NT [j] == i}
Li ← links inP where nodes ofN i

T are the transmitting node
if
∑

j,k T [j, k] + dim(Li) < ρmax
∑

j,k P [j, k]
T [j, k] ← 1 ∀ (j, k) ∈ Li

else
while

∑
j,k T [j, k] < ρmax

∑
j,k P [j, k]

n∗ ← minn | Nsort[n] ∩ N i
T ̸= ∅

(n∗, k) ← link ∈ Li | n∗ is the transmitting node
T [n∗, k] ← 1;Li ← Li \ (n∗, k)

Algorithm 8.3 SINR-based Scheduler
Nsort =Vector of IAB nodes, sorted with respect to their load
Ptemp = P
S(t) ← [0]NI+1×NI+1

for n inNsort

γmax ← −∞
for i in 0, . . . , NI

if γn,i > γmax

γmax ← γn,i
p∗n ← i

S(t)[n, p∗n] ← 1
Ptemp[:, n], [n, :] ← [0];Ptemp[:, p∗n], [p

∗
n, :] ← [0]
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9
Statistical Analysis and End-to-End

Performance Evaluation of TrafficModels
for Automotive Data

In this chapter, we will describe recent research on end-to-end lidar communication studies.
First, we will provide a brief introduction to recent works and research motivation. After
that, we will propose a statistical model of HSC models. In addition, the models were im-
plemented in ns-3 to assess full-stack analysis. The section concludes with numerical and
statistical results.

9.1 Introduction

Autonomous driving will redefine the way we perceive, interact with, and utilize vehicles on
the roads, and support the transition fromhuman-dependent tomachine-driven transporta-
tion. This approach will reduce accidents, enhance traffic, reduce fuel consumption, and
provide newfound mobility options for individuals with disabilities and the elderly [172].
Unlike conventional vehicles where a human driver takes control, autonomous vehicles

will be equipped with a complete suite of sensors and powerful computing units to perceive
the environment, make driving decisions, and navigate autonomously [173]. Besides cam-
eras, Light Detection andRanging (LiDAR) sensors are often used, as they are themost pre-
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cise systems to measure range, and robust under almost all lighting and weather conditions
with or without glare and shadows [174].
Notably, autonomous vehicles will implement object detection algorithms for detecting

and classifying objects and obstacles in the surroundings [175, 176], including cars, pedes-
trians, and road signs, which allow the vehicles to make real-time decisions on how to nav-
igate safely and avoid collisions. In this context, more robust scene understanding could
be achieved if vehicles exchanged their sensor data to other vehicles and/or roadside infras-
tructures, a concept that is usually referred to as cooperative perception [177, 178], thereby
enhancing the perception range of the vehicles beyond the capabilities of on-board instru-
mentation. However, object detection and cooperative perception come with at least two
main concerns.

1) Availability of data for training. Object detection usually consists of different subtasks
such as clustering, blob analysis, image segmentation, and feature extraction [179], which
involve machine learning or deep learning to produce meaningful results. This approach re-
quires the availability ofmassive amounts of labeled data for proper training, which are often
expensive and time-consuming to generate [180]. Amongmanyoptions, SemanticKITTI [181]
is a popular open-source dataset providing multimodal (stereo RGB and LiDAR) data for
road scenes. The dataset has more than 23 201 scenes for training, and 20 351 for testing,
whichmakes it one of the largest publicly available datasets for autonomous driving research.
Overall, SemantiKITTI consists of around 80 GBytes of data, which is not easy to store,

handle, and process. In particular, transmitting sensor data, e.g., for cooperative perception,
can be challenging with standard Vehicle-To-Everything (V2X) communication technolo-
gies [182]. For example, a raw LiDAR perception frame in SemantiKITTI is, on average,
18 Mb: with a frame rate of 10 fps, it would produce a data rate of around 130 Mbps. For
comparison, 3GPP C-V2X and IEEE 802.11p, i.e., the de-facto standards for V2X commu-
nication, can only offer a nominal data rate a few tens of Mb/s [183]. One possible method
to solve capacity issues is by compressing data before transmission, which in turn introduces
additional complications. First, compression may sacrifice accuracy to reduce the file size,
with severe implications for operations that rely on data such as object detection. Second,
data compression requires point-level processing of data, which may not be implemented
in real time. For example geometry-based point cloud (G-PCC) [184], a possible standard
for point cloud compression, can compress only 440k points/s [185] (for comparison, the
HDL-32 LiDAR sensor used in SemantiKITTI captures 1.3M points/s). Moreover, com-
pression involves expensive and energy-consuming hardware (especially high-end graphics
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processing unit (GPUs)), that may not be available onboard the vehicles. Finally, while com-
pressing data from cameras is relatively straightforward, there is no accepted standard for
compression of LiDAR data.

2) Performance validation. To establish the accuracy and functionality of the algorithms
developed for autonomous driving, it is imperative to subject them to a rigorous process
of validation. In this sense, validation with real testbed is impractical due to limitations in
scalability, flexibility, and the high cost of hardware components. Theoretical analyses, in
turn, often introduce conservative and/or unrealistic assumptions on the systemmodel, and
may lead to wrong or misleading conclusions. On the contrary, simulations in a sandbox
environment has the advantage to reduce costs and time consumption for validation, and
would facilitate the research process. In particular, system-level simulators enables end-to-
end simulations with considerations related to the full protocol stack. Notably, ns-3 [186]
has gained great popularity within the network simulation community. It consists of a large
set of predefined, ready-to-use, open-access modules to simulate different parts of the net-
work, as well as different types of (wireless) systems, thus enabling scalable simulations. It
also comes with modules to simulate V2X networks based on the most recent 3GPP speci-
fication for NR V2X [187], mobility traces using SUMO [188], and a simulation pipeline
able to simulate and test machine learning algorithms within the network [189]. As such, it
stands out as one of the most complete 5G-oriented tools to perform accurate simulations
in the context of vehicular networks.
However, computer simulations need accurate modeling of the different components of

the network at all the layers. As long as the application layer is concerned, autonomous driv-
ing requires sending automotive data, e.g., from the SemantiKITTI dataset. This requires:
(i) the dataset to be available and stored on the simulator machine; (ii) the dataset to be ac-
cessed, saved, and processed on the RAM as the simulation progresses, which is source of a
delay proportional to the size of the dataset; and (iii) the data to be converted into a streamof
packets to be sent between two simulated network nodes. Another alternative is to consider
synthetic traffic according to a statistical model of how the application operates. This is in
contrast to a network simulation using packet-level traffic, since now the traffic is simulated
based on the sole arrival process of packets (especially the packet size and the inter-packet
time) according to some mathematical process. Our early results indicate that a single ns-3
simulation of 15 s takes on average around 605 s (10min) to complete using automotive data
from SemantiKITTI, vs. only 20 s using the corresponding statistical model. In the litera-
ture, statistical methods have been proposed to model, for example, the propagation of the
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signal [74], the application (e.g., for web browsing [190] or, more recently, XR traffic [191])
or, in the vehicular domain, automotive radar reflections [192] or multi-sensor data fusions
systems [193].
However, to date, there is no universal model for automotive data generated from sensors,

especially from LiDARs. Ideally, this can be modeled as periodic traffic with a fixed frame
rate and constant frame size proportional to the resolution of the sensor. However, auto-
motive data may be compressed before transmission to reduce the burden on the channel,
resulting in frames of variable size. Moreover, data may be possibly correlated both in space
and time, whichmakes themodel aperiodic. Therefore, automotive data should bemodeled
as a combination of random variables, after proper fitting via statistical methods.

9.1.1 Contributions

Based on the above introduction, the contributions of this paper can be summarized as fol-
lows.

• We provide a realistic statistical characterization of automotive data, specifically, of
the size of LiDAR frames. To the best of our knowledge, this is the first model for au-
tomotive traffic, and is based on 4Gb of data from the SemanticKITTI dataset.Given
the importance of compression in the automotive scenario, we provide seven differ-
entmodels to characterize rawdata and six representative compression configurations.
Specifically, data is compressed using the state-of-the-art HSC algorithm, first pro-
posed in [194], which supports different levels of compression to trade off efficiency
against speed. We claim that the availability of stochastic models for automotive data
brings several advantages compared to using actual data, including faster simulations
and processing at the application layer, and no to limited storage of data.

• We quantify the accuracy of our statistical models. Specifically, we test different dis-
tributions, and identify the corresponding fitting parameters. The measure of ac-
curacy is assessed via a custom statistical test based on the MLE, the Kolmogorov-
Smirnoff, and the Bootstrap Resampling schemes [195]. Our results show that the
uncompressed dataset can be accurately modeled with to a tLocationScale random
variable, while the compressed datasets can be modeled based on the tLocationScale,
Nakagami, Logicstic or Gamma distributions according to the level of compression.
Interestingly, six of the seven models pass the test.

124



• We validate the accuracy of our statisticalmodels via ns-3 simulations. First, we extend
the ns-3 code base with new custommethods to generate random variables according
to the tLocationScale, Nakagami, and Logicstic distributions, which are not natively
available in ns-3. Then, we simulate the transmission of automotive data between
two vehicles as a function of their distance. At the application layer, we consider the
transmission of both packet-level (raw or compressed) data from the SemanticKITTI
dataset, or synthetic data from our statistical traffic models, and evaluate the impact
of the accuracy of the latter on some network metrics. We observe that, even though
only six of the seven models pass the test, all the models provide similar, if not the
same, results thanusing real data in terms of end-to-end latency and throughput. This
shows that statistical models are a valid alternative to simplify network simulations
while ensuring that results are statistically strong and accurate.

The rest of the chapter is organized as follows. In Sec. 9.2 we present some related works.
In Sec. 9.3we formalize our statistical analysis to identify accurate stochasticmodels for auto-
motive data. Moreover, we evaluate the accuracy of those models based on the Kolmogorov-
Smirnov test based on the Bootstrap method. In Sec. 9.4 we evaluate the impact of the accu-
racy of the models on the network under several metrics.

9.2 RelatedWork

Communication among vehicles is one of the key elements of the autonomous driving revo-
lution. The combination of the highly dynamic and heterogeneous road environment and
of the strict requirements imposed by the envisioned use cases [196] makes traditional com-
munication systems and protocols unsuitable for V2X systems. Although it is clear that the
traffic load generated by autonomous vehicles calls for novel network solutions [183, 197],
and the 3GPP has already outlined the requirements, the data stream of the sensors for au-
tonomous cars has yet to be fully characterized. A complete traffic characterization is neces-
sary to choose the appropriate communication technology and to perform accurate network
dimensioning. Furthermore, as network functions become increasingly virtualized, traffic
modeling has become central for the assignment of the network resources [198]. Finally, a
generative traffic model can be used in network simulations, greatly reducing the economic
costs and the time required to design and test novel solutions and architectures. For these
reasons, modeling the network traffic has been a central research topic for the last decades.
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Authors in [199] present an extensive list of envisioned 5G applications and their corre-
sponding traffic models, with limited references to the autonomous driving scenario. Sev-
eral works model the data stream for Internet of Things (IoT) applications andMachine to
Machine (M2M) traffic. Specifically, authors in [200] model the aggregated M2M traffic
and the corresponding message delivery delay in a 5G network. On the contrary, [201] and
[202] focus on the modeling of a single traffic source, deriving stochastic models based on
Markov Chains. The survey in [203] reports an overview of traffic models used for peer-
to-peer (P2P) information exchange in IoT blockchain networks. The traffic generated by
video streaming has also been extensively investigated [204]. [205] proposes using nonlin-
ear autoregressive models to predict the future frame size. Besides classic video applications,
with the emergence of eXtended Reality (XR), the first efforts in characterizing the interac-
tive video traffic have started [206, 207]. In addition to the more classical models based on
state machine and autoregression techniques [201, 202, 208], more recently Machine and
Deep Learning techniques were employed to model complex traffic streams. For instance,
authors in [209] combine a deep-belief network with a compressed-sensing approach to pre-
dict the fast and the slowvarying components of the traffic in awirelessmeshnetwork. Other
works in [210, 211] introduce long short-term memorys (LSTMs) to capture and replicate
different traffic flow patterns.

For the specific case of automotive sensor data, fewworks exist which give a complete char-
acterization of the network trafficor even of itsmagnitude. [208] introduced amachine-type
communication traffic model specific to automotive traffic, that is spatially and temporally
correlated. However, due to the limited number of available automotive applications, the
model is quite general to guarantee the flexibility needed to reflect any resulting arrival pro-
cess. [197] reports possible ranges of the datarate for different sensors, obtained from the
specifications of commercial products and from conversations with industrial partners. Au-
thors in [212] measure the mean frame size, frame rate, data bandwidth, and delay of the
experimental demo system presented in the paper. Similarly, the datarates for the commer-
cial VelodyneHDL-64 are reported in [213]. 9.1 summarizes the datarates reported in these
works. However, this information is only partial, and a complete characterization of the traf-
fic generated by sensor data remains vague, making it difficult to evaluate and design new
systems.
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[197] [213] [212]

LiDAR 10 − 100
9.75 (5Hz)
39 (20Hz)

167 (9.95Hz)

Camera 100700 (raw),
1090 (compressed) - 10.87 (4.36Hz)

Radar < 1 - -

Table 9.1: Data stream characterization in existing literature. All values are in Mbps.

9.2.1 Hybrid Semantic Compression (HSC)

The compression pipeline described in Sec. 9.2.1 exploits the semantic understanding of the
3D scene to further reduce its size. The deep learning module (RangeNet++) contributes
to prioritize safety-critical over less relevant information, while the compression module
(Draco) exploits the 3D spatial correlation of the data to represent it efficiently. The high
number of parameters involved results in a rich set of compression levels and models, which
make HSC a flexible solution for vehicle-to-vehicle and vehicle-to-infrastructure scenarios.
However, the complexity required by a system to dynamically control such models signifi-
cantly increases with their numerosity: approximately five hundreds differentmodels can be
identified combining the Draco parameters and HSC priority levels. Moreover, to quantify
the benefits of the proposed framework from a network perspective, end-to-end system-level
simulations are required. In general, such simulations can be time-consuming and compu-
tationally heavy, considering that HSC needs the inference processing of a large DL model
(e.g., [214]) to be performed for the semantic analysis. Thus, hardware requirements to run
those simulations become prohibitive, and often deep learning accelerators, like GPUs or
TPUs, are needed.
To enable a more efficient scheduling system and to reduce the amount of resources at

simulation time needed to compute network performance, we propose:

• A refinement of the all possible models by inspecting the rendered point-clouds af-
ter Draco compression, and clustering similar models together based on the average
encoding and decoding time, and the average file size produced (Sec. 9.2.2);

• A statistical-based analysis of the simulated network traffic generated by individual
HSC models. Our goal is to generate statistically representative traffic patterns with-
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out requiring the complete pipeline computation. In this way, we can significantly
save time and reduce energy consumption during the simulation process (Sec. 9.3).

9.2.2 CompressionModel Refinement

Semanticunderstandingofdata is a key component for thedevelopmentof reliable autonomous
vehicles [194]. The context of the sensed/received data, such as the location and orientation
of objects in the environment, as well as the relationships between different obstacles in the
scene, play a vital role in enabling a safe and efficient navigation. In the recent years, the
adoption of Deep Learning models to address data semantic understanding has achieved re-
markable results [215, 216, 217, 218, 219]. However, the inference performance of these
statistical models can decrease as the input data deviates from the training set statistics, for
example due to lossy compression of the input [220, 221, 222]. This poses a challenge in the
considered scenario, as the lossy compression performed byDraco in theHSC paradigm can
significantly alter the data distribution, potentially compromising the semantic performance.
In this regard, we perform a qualitative analysis to assess the influence of Draco compression
on the degradation of the point-clouds*.
Draco primary relies on two parameters: the Quantization Parameter (QP) and the Com-

pression Level (CL).While QP specifies the number of bits used for quantizing input values,
CL trades-off compression with encoding/decoding speed. Assuming that in a lossy com-
pression pipeline the main source of distortion is quantization, we investigate the effect of
QP on the compressed point, and we study the encoding/decoding time as function of CL.
Thereby, we select a subset of parameters as qualitatively acceptable and most relevant for
LiDAR automotive data.

Quantization Analysis

We perform a quantitative and qualitative analysis. In both cases, point-clouds are (i) en-
coded at a defaultCLvalueof7, for differentquantizationparameters,QP∈ {0, 1, . . . , 14} ⊂
N, and (ii) decoded. Specifically, for the quantitative analysis, we compute

• the numberU of unique points in the compressed point-cloud: Draco preserves the num-
ber of points between input and output, but as a result of the compression process,

*In general, quantifying the impact of quantization on theDLmodel inference performance is challenging,
and requires the definition of proper metrics, which are out of the scope of this work.
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it condenses multiple points into a single one, reducing the number of unique points
in the compressed point-cloud;

• the Point-to-Plane PSNR (p2p-PSNR) [223] to quantify the geometric distortion of
point-cloud compression.

Both the quantities are computed and averaged over a sample of 550 point clouds uniformly
selected fromSemanticKITTI dataset. In the qualitative analysis we render† the point-cloud
for visual inspection. Fig.9.1 concisely summarizes the results of our analysis, showingU and
the p2p-PSNR as function ofQP, and the rendered point-clouds forQP= {8, 9, 10, 12} .
We observe that employing compression settings with QP values below than 10 proves to be
excessively aggressive, significantly impairing the visual perception of rendered point clouds,
thus leading to considerable challenges in object identification. Furthermore, atQP= 10we
empirically notice a change in the slope of the p2p-PSNR curve corresponding to≈ 50 dB,
and a reduction of the number of unique points post-compression by a factor of six. Hence,
based on these observations we selected values for Draco QP to be {10, 11, 12, 13, 14, 0},
whereQP= 0means no quantization. It is worth noting that our analysis is consistent with
the algorithm description in the Draco repository‡, where it is stated that ”most projects can
set quantization values of about 11 without any noticeable difference in quality”.

Compression Level Analysis

In order to gain a deeper understanding of the impact of compression on point clouds, a
similar methodology is applied to the CL. Specifically, for each QP previously identified
as qualitatively acceptable, the file size, encoding and decoding time are calculated for CL
values in {0, 1, . . . , 10} using a sample of 550 point clouds uniformly selected from the
SemanticKITTI dataset. The metrics are computed as the average over the sample and are
depicted in Fig.9.2. Consistently with the parameters’ definition, for a fixed QP, the file size
exhibits relativelyminimal changes as functionofCL.Amore relevant impact canbenoticed
for encoding/decoding time: in fact, for a fixed QP, we can observe a growing trend with in-
creasingCL. In particular, the encoding/decoding curves related toQP∈ {12, 13, 14}have
a similar behaviour. For this reason, we cluster them together and choose the corner case QP
= 14 as cluster representative. From aCL perspective, we notice a relevant increment in the

†The point-clouds are rendered using Open3D [224].
‡https://github.com/google/draco
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Figure 9.1: QP refinement.
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Figure 9.2: Compression Level analysis

encoding/decoding curves at CL = 5 without excessively affecting the file size. Therefore,
we fix CL= 5 as it represents a sweet-spot between file size and encoding/decoding time.
In summary, we restrict the Draco parameter set to those that are deemed qualitatively

acceptable andmost relevant forLiDARautomotive data, specificallyQP∈ {0, 10, 11, 14},
CL ∈ {5}. Combined with the semantic priority levels of HSC {HSC-0, HSC-1, HSC-
2}, we define 12models, each of them identified with the following syntax: DX/SY, where
X∈ {11, 14} represents thequantizationparameter usedby (D)raco, andY∈ {0, 1, 2} the
(S)emantic priority level ofHSC. Finally, to simplify the trafficmodelling at simulation time,
we further reduce the models considered. Specifically, we focus on a entire HSC exploration
for QP ∈ {0, 14}, leading to D0/S0, D0/S1, D0/S2, D14/S0, D14/S1, D14/S2, while for
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QP ∈ {10, 11} we consider D11/S0, which represents a pure Draco compression with no
Downlink (DL) semantic module. In this way, the model space is effectively reduced to 7,
allowing us to investigate whether the elimination of non-critical points by the semantic DL
module in D14/S1 andD14/S2 yields comparable results to the scenario in which all points
are retained but with reduced bit allocation during the quantization phase, i.e., D11/S0.

9.3 StatisticalModels for Automotive Data

Considering that network-relatedmetrics (e.g, channel occupancy, transmission latency) rely
on the size of the transmitted file after compression, we conduct a statistical analysis of the
traffic generated by HSC when semanticKITTI [181] is used as input data. We provide a
CDF of the size of the transmitted file after compression, for each of the model defined in
Sec. 9.2.2. In this way, according to the model selected in the running simulation, the size in
Mb of the compressed 3D scene can be statistically generated, thus saving computation and
time resources. To do so, we consider a rich setP of theoreticalCDF families (see Tab.??) as
hypothesis about the target unknownCDF F . Then, we test whether our hypothesis agrees
with theCDF FN of a random sample ofN observations drawn fromF . If it is not the case,
this is the evidence that our hypothesis should be rejected. This is a well-known procedure
referred to as goodness-of-fitting test. In particular, we perform aKS goodness-of-fitting test
[? ], whose statistics compare the hypotheticalCDF Fi(x) and the observed one FN(x) as
follows

DN = max
x

|FN(x) − Fi(x)|. (9.1)

In general, for continuousCDF and assuming that the sample comes fromFi (null hypoth-
esis), FN → Fi as N → ∞ (strong law of large numbers), thereby DN converges to zero
almost surely. Moreover, under the same hypothesis, the limiting distribution of

√
NDN

converges to a Kolmogorov distribution, regardless ofFi. As a result, under the null hypoth-
esis and for N sufficiently large, (9.1) has a known distribution, and tabular critical values
can be used.
We denote the set of 3D point-clouds in SemanticKITTI as

D = {pj : pj ∈ R3×nj , j = 1, . . . , N}, (9.2)

where nj is the number of points in the point cloud pj ∈ D. We consider eachHSCmodel
(denoted by DX/SY) as a functionm : D → D̂ that receives as input a point-cloud p ∈ D
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and outputs its compressed version p̂ ∈ D̂. Let’s also denote the set of compressed file sizes
through the modelm as

Bm(D̂) = {bj ∈ R : bj = g(p̂j), (9.3)
p̂j = m(pj) ∈ D̂, j = 1, . . . , N}, (9.4)

where g(p) corresponds to the number of bits used to encode p (namely, the file size of p).
The goal of our analysis is to find, for each HSC model m, the class of functions Pi =

{Fi( · ; θ) : θ ∈ Θi} ∈ P, and the correspondent CDF Fi(·, θi), i ∈ {1, 2, . . . , |P|}
(our hypothesis) that best fitBm(D̂) (sample of observation) according to some evaluation
metric hm : Pi → R. In other words, our goal is performing a goodness-of-fit test for each
classPi in the presence of unknown parameters θ ∈ Θi, and comparing the evaluationmet-
ric obtained for each class. For example, if Pi is the family of Normal distributions, θi =
(µ, σ2) ∈ R2.
We construct the statistical test by first estimating the parameters θ̂i within each class Pi,

thus identifying a representative CDF Fi(·, θ̂i), and then performing a KS goodness-of-
fitting test across the representatives. However, estimating the parameters θ from the ob-
served datamay alter the limiting distribution of the test statistic in (9.1), whichwill become
dependent on such parameters and, even under the null hypothesis, will drift from the Kol-
mogorov distribution, thereby causing critical values shift [? ]. As a consequence, using
tabular values in this scenario may lead to statistical inconsistent conclusions. For this rea-
son, we adopt a parametric bootstrap re-sampling scheme as proposed in [? ? ]. We now
outline the mathematics underlying these techniques, and carefully describe each step.

Parameter Estimation

We perform, for each classPi ∈ P, a MLE from the observed dataBm(D̂) to estimate θ̂i =
θML
i . We select the CDFFi(· ; θ̂i) ∈ Pi as representative for the classPi, thus as the model
being tested.

Target KS statistic

We define the composite null hypothesis of the statistical test as

H i
0 : dataaredrawnfromFi(· ; θ̂i), ∀i,
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and we compute the KS statistic as follows

DN(i) = max
x∈Bm(D̂)

|FN(x) − Fi(x; θ̂i)|, (9.5)

whereFN(·) is the empiricalCDF of the observeddataBm(D̂). It isworthnoticing that the
hypotheticalCDF Fi(·; θ̂i) depends onBm(D̂), andDN(i) is no longer distribution-free.
Therefore, a bootstrapping re-sampling scheme is necessary.

Parametric Bootstrap Re-sampling Scheme

We construct L independent bootstrap resamples {B∗
m,l(D̂)}Ll=1 from the estimated popu-

lation Fi(·; θ̂i), and for each B∗
m,l(D̂), MLE is performed to estimate θ̂∗i,l. Our goal is to

compute, for eachm and i, L KS statistics and compare them in a statistical sense with the
target KS statistic in (9.5). Let’s denote the empiricalCDF ofB∗

m,l(D̂) asF ∗
N,l(x), then the

KS statistic computed on the l-th bootstrap resample is

D∗
N,l(i) = max

x∈B∗
m,l(D̂)

|F ∗
N,l(x) − Fi(x, ; θ̂

∗
i,l)|, (9.6)

∀i ∈ {1, 2, . . . , |P|}. Since
√
N
(
FN(x) − Fi(x; θ̂i)

)
and
√
N
(
F ∗
N,l(x) − Fi(x, ; θ̂∗i,l)

)

converge to the sameGaussian process, then
√
NDN(i) and

√
ND∗

N,l(i) have the same lim-
iting distribution [? ]. Therefore, the corrected critical values to test (9.5) at a significance
level α can be obtained computing the (1 − α)-percentile of

{√
ND∗

N,l(i)
}L
l=1

. Equiva-
lently, one can compute the bootstrap p-value π∗

i,m as

π∗
i,m =

1

L

L∑

l=1

1{D∗
N,l(i)>DN (i)} (9.7)

= 1 − F̂D∗
N (i)(DN(i)) ≈ Prob

(
D∗

N(i) > DN(i)
)
, (9.8)

where F̂D∗
N (i)(DN(i)) is the empiricalCDF of

{
D∗

N,l(i)
}L
l=1

. Therefore,H i
0 canbe rejected

at significance levelα if π∗
i,m < α, i.e., Prob

(
D∗

N(i) ≤ DN(i)
)
> 1 − α. In simple words,

for small value of α, we reject the null hypothesis if the probability of observing high values
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for KS statistic is greater than 1 − α§.

Model Selection

The KS statistical test with the bootstrap re-sampling scheme described in Sec.9.3 provides,
for each modelm, |P| statistical test outcomes, one for each distribution family. We define
the set of indexes of distribution families for which the null hypothesis cannot be rejected as
Jm. For each i ∈ Jm, we select as best fit the CDF family Pi⋆m and Fi⋆m(·, θ̂i⋆m) such that
i⋆m = arg maxi∈Jm π∗

i,m. IfJm = ∅, we select as best fitting model the one that minimize
the Normalized Root Mean Square Error (NRMSE), computed as

NRMSE =

√√√√
∑N

k=1

(
FN(xk) − Fi(xk; θ̂i)

)2
∑N

k=1

(
FN(xk) − F̄i(θ̂i)

)2 , (9.9)

where F̄i(θ̂i) =
1
N

∑N
k=1 Fi(xk; θ̂i).

9.3.1 Results

In this sectionwepresent anddiscuss the results obtained from the statistical analysis. Tab. ??
shows the bootstrap p-values π∗

i,m computed according to (9.7) for each HSCmodelm and
CDF family i. The statistical analysis is carried with a significance level α = 0.01, and
for L = 1000. For each modelm, we represent in bold the p-values that pass the test, i.e.,
π∗
i,m ∈ Im, and we highlight in grey the entries selected as best fit, that is i⋆m. It is worth
noticing that the model D0/S0 does not pass the test (Im = ∅), meaning that the KS statis-
tic will assume high values almost surely. However, for consistency, we choose as best fitting
the distribution with the minimum NRMSE, i.e., the tLocationScale distribution achiev-
ing a NRMSE = 7.4e−3. In Tab. ?? we report the MLE parameters θ̂i⋆ for the best fitting
models. These values will be adopted for ns-3 implementation (Sec. 9.4) and the end-to-end
perfomance evaluation (Sec. 9.5). In order to provide a comprehensive overview of the statis-
tical results achieved, we complement the numerical analysis with fitting plots. Specifically,
for eachmodel, the empiricalCDF of the observed dataFN(·) and the validated theoretical
CDF Fi⋆(·; θ̂i⋆) are depicted in Fig. 9.3, together with the qq-plot (quantile-quantile plot).
The latter represents a graphical diagnosticmethod to visually assess the numerical results ob-

§The reader should think the KS statistic as a ”distance” between the the hypothetical distribution and the
one of the observed data.

134



P D0/S0 D0/S1 D0/S2 D11/S0 D14/S0 D14/S1 D14/S2
BirnbaumSaunders 0 0.0 0.061 0.013 0.0 0.0 0.0
ExtremeValue 0 0.0 0.0 0.0 0.0 0.003 0.0
Gamma 0 0.0 0.375 0.114 0.0 0.0 0.012
GeneralizedExtremeValue 0 0.003 0.039 0.006 0.0 0.0 0.0
HalfNormal 0 0.0 0.003 0.0 0.0 0.0 0.0
InverseGaussian 0 0.0 0.002 0.018 0.0 0.0 0.0
Logistic 0 0.009 0.0 0.0 0.036 0.024 0.0
Loglogistic 0 0.0 0.018 0.037 0.01 0.0 0.0
Lognormal 0 0.0 0.065 0.02 0.0 0.0 0.0
Nakagami 0 0.001 0.0 0.128 0.0 0.0 0.004
Normal 0 0.109 0.0 0.012 0.0 0.0 0.0
Poisson 0 0.0 0.0 0.0 0.007 0.0 0.0
Rayleigh 0 0.0 0.0 0.0 0.0 0.0 0.0
tLocationScale 0 0.029 0.0 0.014 0.026 0.026 0.0
Weibull 0 0.044 0.15 0.0 0.003 0.0 0.01

Table 9.2: P‐values π∗
i,m computed according to (9.7), where i ∈ P represents the row index, whilem is the column

index and identify the HSC model under test. For each modelm, we represent in bold the p‐values that pass the test, i.e.,
π∗
i,m ∈ Im, and we highlight in grey the entries selected as best fit, that is i⋆m.

tained by hypothesis testing. It plots on the x-axis the quantile function of one distribution
and on the y-axis the quantile function of the other distribution. Therefore, if two distribu-
tions are identical, the qq-plot follows the bisector of the first quadrant. Although in Fig. 9.3
the Probability Density Function (PDF) and CDF of all the models fit the empirical data
overall, the qq-plots visually highlight the local discrepancies between the theoretical model
and the empirical observations. In fact, consistent with our previous numerical findings, the
qq-plot of the model D0/S0 attributes the failure of the hypothesis testing to the heavy left
tail of the empirical data with respect to the theoretical model. Conversly, for the rest of the
models, only a light tail is observed, further diminishing with higher HSC semantic priority
level. We interpret this trend as a consequence of the inherent data structure: as we increas-
ingly leverage semantic information for compression, the qq-plot tail becomes progressively
lighter.
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m Distribution P ParametersΘ Values
D0/S0 tLocationScale µ, σ, ν 3172.74, 64.41, 1.49
D0/S1 Normal µ, σ 1458.7, 455.36
D0/S2 Gamma a, b 1.87, 131.97
D11/S0 Nakagami µ, ω 9.31, 4914.06
D14/S0 Logistic µ, σ 197.54, 8.96
D14/S1 tLocationScale µ, σ, ν 98.11, 16.83, 4.08
D14/S2 Gamma a, b 2.81, 6.06

Table 9.3: MLE parameters for the statistical distributions selected.

9.4 ns-3 Implementation

9.4.1 Intro on ns-3

To address the need for a realistic performance evaluation of the statistical traffic model at
mmWave spectrum, we develop the StatisticalTraffic module for popular ns-3 and make it
publicly available¶. Integration with ns-3 makes it possible to study complex, end-to-end
performance analysis of scenarios with several kinds of applications and mobility patterns.
StatisticalTraffic module is a bursty traffic generator for HSC models which works on top
of BurstyApplication [225]. StatisticalTraffic enables the full stack analysis and validation
of different HSC models in various scenarios. In the following paragraphs, we will briefly
describe the BurstyApplication module, and then discuss the integration of the Statistical-
Trafficmodule.

Bursty Application

BurstyApplication is one of the first traffic model simulation platforms for VR applications
whichuses traffic traces obtained from industrialVRstreaming software [225]. TheBurstyAp-
plicationmodule enables generating and processing large bursts of packets; it continuously
transmits data bursts, divided into smaller fragments of a given size. This framework enables
a TX to send a packet that bursts fragmented intomultiple packets, later re-aggregated in the
RX. BurstyApplication can operate in different policies. For instance, it could send packets

¶https://github.com/signetlabdei/kitti-statistical-dataset

136



2,000 2,500 3,000
0

0.2
0.4
0.6
0.8
1

D0/S0

2,000 2,500 3,000
0

2

4

6·10−3

2,000 2,500 3,000

2,500

3,000

3,500

0 1,000 2,000
0

0.2
0.4
0.6
0.8
1

D0/S1

0 1,000 2,000
0
2
4
6
8

·10−4

0 1,000 2,000
0

1,000

2,000

0 500 1,000
0

0.2
0.4
0.6
0.8
1

D0/S2

0 500 1,000
0

1

2

3
·10−3

0 500 1,000
0

500

1,000

40 60 80 100
0

0.2
0.4
0.6
0.8
1

D11/S0

40 60 80 100
0
1
2
3

·10−2

40 60 80 100

40
60
80

100

160180200220
0

0.2
0.4
0.6
0.8
1

D14/S0

160180200220
0

1

2

3
·10−2

160180200220

150

200

50 100 150
0

0.2
0.4
0.6
0.8
1

D14/S1

50 100 150
0

1

2

·10−2

50 100 150

50

100

150

0 20 40
0

0.2
0.4
0.6
0.8
1

D14/S2

0 20 40
0

2

4

·10−2

0 20 40

0
20
40
60

Figure 9.3: Fitting plots

in a deterministic or statistical fashion, indicating burst size and period time. A variety of
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applications are made possible by the BurstGenrator, interface of BurstyApplication, which
allows users to control the burst size and frame period.

Statistical Traffic Application

we developed StatisticalTraffic on top of BurstyApplication which is Application Program-
ming Interface (API) for generating statistical traffics model in application layer. Statistical-
Traffic periodically updates the BurstSize and FramePeriod based on prefer statistic traffics.
StatisticalTraffic supports sevenHSC trafficmodels in which the favored trafficmodel is de-
termined by the GetModel interface, as depicted in Fig. 9.4. StatisticModelInit is in charge
of initializing the random distribution parameters based on Table ?? (described in Sec. 9.3).
Afterward, in each timestep BurstSize and FramePeriod is generated based on random dis-
tributions and feed to BurstyApplication by BurstGenarator API. Figure 9.4 summarizes the
integration that we have made to support statistical traffic in ns-3. The remainder of the 5G
NR protocol stack is emulated using the ns3-mmwave module [226]. This module imple-
ments a customized PHY layer that supports NR frame formats and numerologies, as well
as aMAC layer that supports ad hoc beamforming and scheduling strategies. The RLC and
Packet Data Convergence Protocol (PDCP) layers are based on the ns-3 Lena module and
provide network tasks like as packet segmentation, re transmissions, and/or reassembly. Ad-
ditionally, the module enables non-standalone deployments, handover, and mobility man-
agement through dual connection, as well as Carrier Aggregation (CA) at the MAC layer.

9.4.2 ns-3 implementation of the statistical distributions

Due to the statistical nature of StatisticalTraffic, random statistical distributions must be
implemented directly in ns-3 in order to assess the full-stack performance of proposed traffic
models. Although ns-3 has built-in support for many well-known distributions, including
Normal, Exponential, Gamma, etc., not all random distributions related to proposed traffic
methods are included. So, as a first step in implementing ns-3, we created a random number
generator of tLocationScale, Nakagami, Logistic distributions. To achieve this, we use two
techniques to create the necessary randomdistributionswhich are described in the following.
1) The built-in distributions of ns-3 implicitly exclude random distributions like Nak-

agami. We try to create new distributions for these kinds of distributions using built-in ran-
dom distributions since this distribution can be explained by combining built-in distribu-
tions. 2) Since built-in distributions are unable to accurately express all random distribu-
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Figure 9.4: Application layer. how the StatisticalTraffic integrated to BurstyApplication

tions, we must implement them from scratch. In order to implement a random number
generator, we used The Inverse Cumulative Distribution Function (Inverse CDF) sampling
approachwhich is well-known for generating random variables from a specified distribution
for its generality and simplicity. If the CDF of a probability distribution is known, the In-
verse CDF creates a random sample of distribution using the procedures below. F is the
mapping of the domain CDF to the interval on a one-to-one basis (0,1). If U is a uniform
random variable on the interval (0, 1), thenX = F−1(U) has the same distribution as F .
So to feed traffic models in ns-3, we generate random values using F−1(U) distributions
with this approach.

1. tLocationScale [Inverse CDF] Direct implementation of Inverse CDF of tLocation-
Scale is Np hard, so variant approaches for implementation of Inverse CDF of tLoca-
tionScale is proposed [227]. We implement central power series for the Inverse CDF
which introduces in [227]. Equation 9.10 represents Inverse CDF of tLocationScale,
where v is calculated in eq. 9.11 and coef are coefficient of series which shown in
Table ??.
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F−1
tLoc(µ, σ, v) = (

∞∑

i=1

v2×i+1 × coef(i, v) + v) ∗ σ + µ (9.10)

v = (u − 1

2
)
√
n × π

Γ[n/2]

Γ[(n + 1)/2]
(9.11)

2. Logistic [Inverse CDF]: In order to implement Inverse CDF of Logistic distribution,
we adhere to the process outlined in [228]. Equation. 9.12 represents theCDF of the
Logistic distribution with the input parameters µ and σ that indicates location and
scale of distribution, respectively.

Flogistic(µ, σ) =
1

1 + exp
{
− (x−µ)

σ

} (9.12)

The Pseudo-version is obtained by solving the Eq. 9.13, where x is the unknown.

p =
1

1 + exp
{
− (x−µ)

σ

} (9.13)

Equation. 9.14 represents the solution which obtained by solving Eq. 9.13.

x = µ − ln (
1

p
− 1) × σ (9.14)

Thus a sampleX of Logistic distribution is obtained by formula in Eq.9.15.

X = µ − ln (
1

U
− 1) × σ (9.15)

where the U is output of the random generator. so the Inverse CDF of logistic distri-
bution is obtained as Eq.9.16.

F−1
logistic(µ, σ) = µ − ln (

1

u
− 1) × σ (9.16)

3. Nakagami: Nakagami PDF can be explained explicitly based on Gamma PDF, which
is built-in in ns-3. Equation 9.17 illustrates the relation between aforementioned dis-
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Table 9.4: p‐values of implemented distribution in ns‐3

P p-value

tLocationScale 0.296
Logistic 0.880
Nakagami 0.702

tributions. So to generate a random variable for the Nakagami we can use a random
number generator of the Gamma distribution.

FNakagami(µ, w) =

√
FGamma(µ,

w

µ
) (9.17)

Where µ, w represents xx and xx, respectively.So we implemented (9.17) in ns-3 to
generate random numbers for the Nakagami distribution.

9.4.3 ns-3 Implementation Evaluation

In order to assess the implementation of statistical distributions in the ns-3, an evaluation
methodology was devised. The evaluation aimed to measure the accuracy and performance
of the implemented distributions in ns-3. So the following steps were followed: To measure
howwell-implemented distributions’CDF s fitwith the primary distribution, Kolmogorov-
Smirnoff test statistics were developed. Kolmogorov-Smirnoff test metric allowed for a com-
prehensive assessment of the accuracy of the implemented distributions. Required datawere
gathered using the recently added random generator in ns-3(tLocationScale: Eq. 9.10, Lo-
gistic: Eq. 9.16, Nakagami: Eq. 9.17), and as a comparison, expected values were gathered
using the Scipymodule in Python. For validation, the generated data from the applied statis-
tical distributions were compared to expected values or actual data. The collected data were
statistically compared to evaluate the performance of the implemented distributions. The
Kolmogorov-Smirnoff test statistics were computed to determine the level of similarity be-
tween the simulated results and the expected or real-world values, which are summarized in
Table 9.4. This analysis provided insights into the accuracy and fidelity of the implemented
statistical distributions. As it is depicted in Table 9.4, all implementations pass the test very
well. As a result, the evaluation shows the strengths of the implemented statistical distribu-
tions, which show the reliability and validity of the ns-3 implementation of distributions.
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Table 9.5: Network parameters used for the ns‐3 simulation.

Parameter Value

Carrier frequency 28 GHz
Bandwidth 200MHz
Transmit Power 30 dBm

Channel Model 3GPP TR 38.901
(UMi-Street Canyon) [2]

LiDAR Inter Burst Interval 100 ms
Buffer Size 12MB
Data direction Uplink

9.5 Performance Evaluation

This section presents the simulation setup and the network metrics used for the validation
of the ns-3 StatisticalTraffic Application, and the corresponding results.

9.5.1 Simulation Setup

To validate the StatisticalTraffic application, we consider a simple yet realistic urban scenario,
designed to isolate and highlight the effects of the different statistical models: a vehicle trans-
mits theLiDARdata to a gNB through ammWave link. The twonodes have the sameheight,
and the distance d between them is increased from 15 to 300 m as the vehicle moves away
from the gNB.
The network simulation is run using ns-3, with the parameters reported in 9.5. We con-

sider 28 GHz as the central frequency and 200 MHz of bandwidth. The channel is simu-
lated according to the 3GPP standard channel model for frequencies ranging from 0.5 to
100 GHz [2]. Both the gNB and the vehicle are equipped with a 8 × 8Uniform Planar Ar-
ray (UPA). The beamforming vector at the TX and at the RX is based on the Singular Value
Decomposition (SVD) of the channel matrix. The transmission power is 30 dBm.
At the application layer, the LiDAR bursts are generated every 100 ms. The data is com-

pressed using HSC at the PDCP layer according to 7 representative the compression levels
introduced in 9.3 (D0/S0, D0/S1, D0/S2, D11/S0, D14/S0, D14/S1, D14/S2) [194]. We
measure the following E2E metrics at PDCP layer, which provides the first entry point for
the packet stream:

• E2E throughput, measured as the ratio between the number of bytes received through-
out the entire simulation and the total simulation time.

• E2E latency, measured as the difference between the time each packet is generated at
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Table 9.6: Median source rate and throughput of the considered HSC compression levels. All values are measured in
Mbps.

HSCModel D0/S0 D0/S1 D0/S2 D11/S0 D14/S0 D14/S1 D14/S2
Source Rate 260.3 122.1 14.5 5.7 16.4 8 1.2
Throughput
(d < 50m) 259.4 124.3 20.2 5.6 17.3 8.6 1.4

Throughput
(d > 50m) 151 72.2 11.3 2.9 10 5 0.7
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Figure 9.5: SINR at the receiver and LoS probability of the mmWave channel [2] at different TX‐RX distances.

the application layer and when it is successfully received. Accordingly, it accounts for
the transmission, compression, queuing, and decompression time.

9.5.2 Network Simulation results

In this section, we analyze the network performance obtained using Semantic Kitti [181].
The file size of the individual point clouds is extracted from the dataset and used as input
to the BurstyApplication in ns-3, which in turn generates the packet stream according to the
procedure outlined in 9.4.
In 9.5 we report the SINR at the RX as measured throughout the simulation with the

settings presented in 9.5.1. We can observe that, as expected, at short distances the SINR
presents very large values (around 50 dB) consistently, as the channel is mainly in LoS con-
ditions. As the vehicle moves away from the gNB, the LoS probability (green line) decreases
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vals (shaded areas) for different TX‐RX distances and HSC compression levels.

d [m] 15-45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300
PRR 100.0 87.0 82.8 78.4 74.5 69.6 65.4 60.6 48.3 45.3 41.2 37.5 34.3 18.0 16.8 16.4 15.2 14.0

Table 9.7: Median PRR at the considered TX‐RX distances.

according to [2], and the path loss increases. Accordingly, the SINR values have greater vari-
ance and lower values, down to−12 dB at 300 m.
This translates to a slow degradation of the theoretical capacity of the channel, that, con-

sidering the median (25% quantile) SINR, varies between 3.14 (3) Gbps, 2.75 (1.63) Gbps,
and 16.42 (1.8) Mbps at 15, 45, and 300 m, respectively.
The first line of 9.6 reports the median source rate of the application, obtained by mul-

tiplying the median file size of the data compressed with the different HSC configurations
by the frame rate of the LiDAR (10 Hz).‖ We can observe that the current technologies for
vehicular communications, like the Dedicated Short-Range Communication (DSRC) pro-
tocol [229] which has a 27 Mbps peak throughput, can not support the source rate of raw
data (D0/S0) or of the lowest compression level (D0/S1). On the contrary, the mmWave
channel can sustain the datarate of all the considered HSC levels. Indeed, the source rate

‖Note that, differently from the throughput, the source rate does not include the headers nor the commu-
nication overhead introduced by the protocol stack, which might lead to a throughput larger than the source
rate in some cases (D0/S2, D14/S0−2).
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Figure 9.7: Median latency (solid for KITTI and dashed for the statistical model) and corresponding confidence intervals
(shaded areas) for different TX‐RX distances and HSC compression levels.

of all the HSC compression levels is well below the theoretical capacity, thus excluding a
capacity-limited scenario. The steady decline of the E2E throughput reported in 9.6 is rather
caused by the channel instability due to the greater NLoS probability at large distances, as
further confirmed by the PRR values reported in 9.7. For short distances (d < 45 m), all
the packets are successfully delivered. As the TXmoves further away from theRX, the chan-
nel conditions worsen and a larger number of packets is dropped, leading to an increasing
number of retransmissions and a corresponding throughput degradation. Correspondingly,
from9.7we canobserve that the latency for all themodels steadily increaseswith the distance,
up to 170 m, when it sharply exceeds 200 ms. Note that, in general, the requirement for the
latency in vehicular networks is set to 100 ms [230]. The delay associated to all the HSC lev-
els remains below the threshold for distances shorter than 100 m, except for D0/S1. This is
counter-intuitive, as D0/S1 reduces the size of the pointclouds with respect to D0/S0 (raw),
and thus the transmission requires less time. However, in this case, the compression ratio is
not large enough to compensate for the de/compression delay, well-exemplifying the trade-
off between the two metrics. On the contrary, D0/S2 is shown to compress effectively, with
a reduction in the file size large enough to keep the latency below the threshold. Finally, the
D11/S0 latency does not exceed 50 ms for distances up to 75 m, showing how reducing the
number of quantization bits alone can be beneficial both in terms of source rate and delay.
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However, D14/S2 is more effective in terms of rate reduction, at the cost of a larger latency,
still below the 100 ms threshold, due to the semantic inference. Thus, the choice of the best
HSC compression level should be made taking into account the availability of the network
resources and the communication constraints. Furthermore, a more aggressive compression
policy might lead to the degradation of the pointcloud quality, which in turn might affect
the performance of the inference algorithms at the receiver. However, this analysis, partially
presented in [231], is left for future works.
Thus, we can conclude that

• only the mmWave channel can support the streaming of raw lidar data, for communi-
cation links up to 100m, where the LoS is dominant;

• the packet loss when the mmWave channel is in NLoS conditions leads to higher la-
tency and lower throughput;

• compressing the pointclouds with HSC can effectively reduce the latency;

• a more aggressive compression policy is required if more traditional protocols, e.g.
DSRC, are employed;

• the trade-off between compression ratio and delay is not trivial and should be taken
into account when analyzing and designing communication protocols.

9.5.3 StatisticalModel Evaluation

In this section, we assess whether using the statistical models derived in 9.4 and in 9.3 for the
file size of the individual pointclouds instead of that of Kitti results in a valid distribution of
the E2E metrics. Namely, we compared the throughput and the latency obtained with the
BurstyApplication and the size of Kitti pointclouds as input, used as the baseline, with those
obtained with the StatisticalTraffic application.
In 9.6 and 9.7, the dashed and the solid lines represent the median values of the metrics

obtained with Kitti and the statistical models, respectively, thus offering a visual comparison
between the two methods. We can observe that there is an almost perfect overlap between
the two, for all HSC compression levels and TX-RX distances.
The numerical evaluationwas carried out by repeating theKS test on the E2Emetrics. 9.8

reports whether the throughput distribution passes the test. As expected, this is verified for
all compression levels and distances, with the exception of D0/S0, which did not pass the
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d [m] D0/S0 D0/S1 D0/S2 D11/S0 D14/S0 D14/S1 D14/S2
15 ✓ ✓ ✓ ✓ ✓ ✓ ✓
30 ✓ ✓ ✓ ✓ ✓ ✓ ✓
45 ✓ ✓ ✓ ✓ ✓ ✓ ✓
60 ✓ ✓ ✓ ✓ ✓ ✓ ✓
75 ✓ ✓ ✓ ✓ ✓ ✓ ✓
90 ✓ ✓ ✓ ✓ ✓ ✓ ✓
105 ✓ ✓ ✓ ✓ ✓ ✓ ✓
120 ✓ ✓ ✓ ✓ ✓ ✓ ✓
135 ✓ ✓ ✓ ✓ ✓ ✓ ✓
150 ✓ ✓ ✓ ✓ ✓ ✓ ✓
165 ✗ ✓ ✓ ✓ ✓ ✓ ✓
180 ✗ ✓ ✓ ✓ ✓ ✓ ✓
195 ✗ ✓ ✓ ✓ ✓ ✓ ✓
210 ✗ ✓ ✓ ✓ ✓ ✓ ✓
225 ✗ ✓ ✓ ✓ ✓ ✓ ✓
240 ✗ ✓ ✓ ✓ ✓ ✓ ✓
255 ✗ ✓ ✓ ✓ ✓ ✓ ✓
270 ✓ ✓ ✓ ✓ ✓ ✓ ✓
285 ✓ ✓ ✓ ✓ ✓ ✓ ✓
300 ✗ ✓ ✓ ✓ ✓ ✓ ✓

Table 9.8: The distribution of the E2E throughput obtained using the statistical model is compared with that obtained
using the KITTI dataset. All the distributions pass the KS test, with the exception of D0/S0 at larger distances, when the
channel fluctuations are more significant.

test for the input distribution either. Notably, we can notice that the test fails at distances
greater than 150m,where theNLoS introduces additional randomness into the distribution.
Nevertheless, in all the other cases, the distribution matches the baseline.
Finally, in 9.8 we report the run time of the simulations run with the BurstyApplication

and the Kitti data (narrow bars) and with the StatisticalTraffic (wide bars). As expected,
using the statistical models consistently reduces the run time of the simulations, with an
average speed-up factor of×18. The largest gain is obtained when considering the raw data
(D0/S0), with a×26 gain, bringing the simulation time from more than 10 minutes down
to about 22 seconds.
We can thus conclude that the StatisticalTraffic application can effectively be used in place

of theBurstyApplication, with a huge boost in terms of simulation run timewhile preserving
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d [m] D0/S0 D0/S1 D0/S2 D11/S0 D14/S0 D14/S1 D14/S2
15 ✓ ✓ ✓ ✓ ✓ ✓ ✓
30 ✓ ✓ ✓ ✓ ✓ ✓ ✓
45 ✓ ✓ ✓ ✓ ✓ ✓ ✓
60 ✓ ✓ ✓ ✓ ✓ ✓ ✓
75 ✓ ✓ ✓ ✓ ✓ ✓ ✓
90 ✓ ✓ ✓ ✓ ✓ ✓ ✓
105 ✓ ✓ ✓ ✓ ✓ ✓ ✓
120 ✓ ✓ ✓ ✓ ✓ ✓ ✓
135 ✓ ✓ ✓ ✓ ✓ ✓ ✓
150 ✓ ✓ ✓ ✓ ✓ ✓ ✓
165 ✓ ✓ ✓ ✗ ✓ ✗ ✗
180 ✓ ✓ ✓ ✓ ✓ ✗ ✓
195 ✓ ✓ ✓ ✓ ✓ ✓ ✓
210 ✓ ✓ ✓ ✓ ✓ ✓ ✓
225 ✓ ✓ ✓ ✓ ✗ ✓ ✓
240 ✓ ✓ ✓ ✓ ✓ ✓ ✓
255 ✓ ✓ ✓ ✓ ✗ ✓ ✓
270 ✓ ✓ ✓ ✓ ✓ ✓ ✓
285 ✓ ✓ ✓ ✓ ✓ ✓ ✓
300 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 9.9: The distribution of the E2E latency obtained using the statistical model is compared with that obtained using
the KITTI dataset. All the distributions pass the KS test, with the exception of some compression levels at larger distances,
when the channel fluctuations are more significant.

good accuracy. The results were shown to be less statistically consistent for distances greater
than 150 m when the channel becomes less stable. However, we showed that the transmis-
sion of LiDAR data at longer distances is not feasible under the current latency constraints.
Thus, the StatisticalTraffic application is effective in generating a realistic stream of LiDAR
pointclouds for the valid range of operation.
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Figure 9.8: Average run time of HSC models measured in ns‐3 based on KITTI (narrow bars) and Statistical (wide bars).
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10
Conclusion

This thesis has investigated the design and performance of mmWave and sub-THz of 5G
and 6G cellular networks from an end-to-end and system-level perspective. The main con-
clusions are as follows

• In the first part of the thesis we introduced the implementation of two SCMs for the
ns-3moduleTeraSim, based on the 140GHzmodels from [29, 44]. Thismakes it pos-
sible to simulate LoS and NLoS scenarios for future 6G networks, including fading
and the possibility of interacting with antenna array models. We also compared the
two-channelmodels (based on a fully stochastic and anRT-basedmodeling) with sim-
ulations in an indoor scenario, which have highlighted how the two modeling strate-
gies differ in their interaction with the directional antenna model of TeraSim.

• In Chapter 4, we proposed two novel channel modeling approaches to reduce the
complexity of channel molding approaches in sub-THz spectrum. SSCH-THz is
the fully stochastic approach. We also introduce THz-GAN channel, cGAN based
channel modeling approach that supports generality based on transfer learning. We
obtained the baseline dataset to feed our models from the ns-3 implementation of
benchmark channelmodels, andwe also implemented our own channelmodels in the
ns-3. We showed that new channel models follow benchmark channel modeling very
closely, and network performances based on different channelmodelings are compara-
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ble. Based on its simplicity of use and adaptability to all scenarios, THz-GANchannel
outperforms all channel modeling techniques.

• In Chapter 6, we proposed the first reliability-focused scheduling and path selection
algorithm for IABmmWave networks. We illustrated that our RL-based solution can
cope with the network dynamics including channel, interference, and load. Further-
more, we demonstrated that THz-GAN channel not only exhibits highly reliable per-
formance in the presence of the above-mentioned network dynamics, but also out-
performs the benchmark schemes in terms of throughput, latency and packet-drop
rate. The reliability of THz-GAN channel stems from the joint minimization of the
average latency, and the expected value of its tail losses, by leveraging CVaR as a risk
metric.

• RISs and AF relays are among the most promising 6G network-enabling technolo-
gies. Not only can these elements enhance wireless device communication and cov-
erage, but they can also reduce energy consumption in comparison to IAB systems.
In Chapter 7, we proposed a signal model for RISs and AF relays based on the 3GPP
TR 38.901 channel for 5G New Radio (NR) networks and described the methodol-
ogy we used to execute network-level simulations of 5G scenarios with IRS and AF
relay nodes. On the basis of this framework, simulations were conducted to provide
numerical guidelines for sizing IRS/AF-assisted networks.

– Both IRS and AF relays can increase the throughput, latency, and PER of end
users relative to a baseline scenario in which relays are not deployed.

– RISs are preferable to AF relays in small networks due to their inherent simplic-
ity and energy efficiency.

– AF relay are more appropriate in congested networks, while IRSs should be
large, despite the increased system complexity

• We conclude Chapter 8 by providing the first performance evaluation of the possibil-
ities of sub-terahertz frequencies for 6G IAB using the customized extension to the
open-source Sionna simulator. This permits the use of greedy algorithms to evaluate
the deployment of mixed mmWave and sub-terahertz lines to boost the backhaul net-
work’s capacity. We will broaden the analysis of the network’s performance to cover
a range of source traffic patterns, scenarios (including multi-donor instances, deploy-
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mentswith lower node density, ormore realisticmap-based scenarios as in [232, 233]),
and protocol stack implementations as future work.

10.1 FutureWork

Here we listed the future works.

• Wewill utilize the suggested channelmodels and a real dataset in the sub-THz domain
to examine and authenticate proposed approaches to actual scenarios.

• We intended to augment the functionality and performance metrics of the novel IAB
Simulator by incorporating additional modules. In addition, we intend to incorpo-
rate real-world datasets that I obtained from Telefonica during my internship as base-
line scenarios for the simulator.
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