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Abstract: Metric k-center clustering is a fundamental unsupervised learning primitive. Although
widely used, this primitive is heavily affected by noise in the data, so a more sensible variant seeks
for the best solution that disregards a given number z of points of the dataset, which are called
outliers. We provide efficient algorithms for this important variant in the streaming model under the
sliding window setting, where, at each time step, the dataset to be clustered is the window W of the
most recent data items. For general metric spaces, our algorithms achieve O(1) approximation and,
remarkably, require a working memory linear in k + z and only logarithmic in |W|. For spaces of
bounded doubling dimension, the approximation can be made arbitrarily close to 3. For these latter
spaces, we show, as a by-product, how to estimate the effective diameter of the window W, which is
a measure of the spread of the window points, disregarding a given fraction of noisy distances. We
also provide experimental evidence of the practical viability of the improved clustering and diameter
estimation algorithms.

Keywords: k-center with outliers; effective diameter; big data; data stream model; sliding windows;
coreset; doubling dimension; approximation algorithms

1. Introduction

In a number of modern scenarios (e.g., social network analysis, online finance, online
transaction processing, etc.), data are produced as a continuous stream, and at such a high
rate that on-the-fly processing can only afford to maintain a small portion of the data in
memory, together with a limited amount of working space. This computational scenario
is captured by the well-established streaming model [1]. The sliding window setting [2,3]
introduces the additional desirable constraint that the input for the problem of interest
consists of the window W of the most recent data items, whereas older data are considered
“stale” and disregarded by the computation.

The k-center clustering problem (k-center, for short) is a fundamental unsupervised
learning primitive with ubiquitous applications [4–6]. Given a set W of points from a metric
space, the k-center problem requires determining a subset C ⊂W of k centers that minimize
the maximum distance of any point of W from its closest center. However, since the
objective function involves a maximum, the solution is at risk of being severely influenced
by a few “distant” points, which are called outliers. In fact, the presence of outliers is
inherent in many large datasets, since these points are often artifacts of data collection,
either representing noisy measurements or simply erroneous information. To cope with
this limitation, the k-center admits a heavily studied robust formulation that takes into
account outliers [7–9]: when computing the objective function for a set of k centers, the z
largest distances from the centers are to be discarded, where z < |W| is an additional
input parameter representing the tolerable level of noise. This formulation is known as
the k-center problem with z outliers. We remark that the values of k and z are provided by
the user and are typically chosen using either domain knowledge or some internal quality
measure (see e.g., [10,11]).
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The decision versions of the k-center problem and its variant with z outliers are NP-
complete [12]; hence, only approximate solutions may be returned within reasonable time
bounds. In this paper, we present approximation algorithms for the k-center problem
with z outliers in the sliding window setting. Moreover, as a by-product, we also derive
an algorithm to estimate the α-effective diameter of the window, which is an interesting
measure of the spread of a noisy dataset.

1.1. Related Work

In the sequential setting, the k-center problem (without outliers) admits simple
2-approximation algorithms [12,13]. Recently, a sequential, randomized, fully dynamic (i.e.,
admitting arbitrary insertions and deletions of points) (2 + ε)-approximation algorithm for
the problem was presented in [14]. This algorithm features update times linear in k and
1/ε, and polylogarithmic in the aspect ratio ∆ = dmax/dmin of the pointset, that is, the ratio
between the maximum distance dmax and minimum distance dmin of any two points in the
set. For the k-center problem with z outliers, a simple, fully combinatorial 3-approximation
algorithm running in O(k|W|2 log(|W|)) time was devised in [7]. In [8,9], an adaptation of
this latter algorithm was proposed for weighted pointsets (where z represents the aggregate
weight of the outliers). Recently, sequential 2-approximation algorithms were developed
in [15,16] that, however, are based on a more complex LP-based approach that is less
amenable to practical implementation. A bi-criteria randomized algorithm, which is only
suitable for (small) constant k, that returns a 2-approximation as long as a slightly larger
number of outliers is excluded from the objective function, was presented in [17].

For the classical streaming setting, which seeks, at any step, a solution for the full
stream seen so far, a (4 + ε)- approximation algorithm for the k-center problem with z
outliers was given in [18]. The approximation was later improved to 3 + ε in [9]. Whereas
the former algorithm requires O(kz/ε) working memory space, the latter requires space
O((k + z)(c/ε)D), where c is a constant and D is the doubling dimension of the input stream,
which is a widely used generalization of the notion of Euclidean dimension to arbitrary
metrics [19,20], and is formally defined in Section 2.2.

For the stricter sliding window setting, in [21], the authors devised an algorithm able
to compute a (6 + ε)-approximation to the k-center problem for the current window, while
keeping O(k log(∆)/ε) points stored in the working memory. Based on the same techniques,
the authors also developed a (3 + ε)-approximation algorithm for the diameter of the
current window. In [22], we presented a (2 + ε)-approximation algorithm for the k-center
problem in the sliding window setting, where the improved approximation is obtained at
the expense of a blow-up of a factor O((c/ε)D) in the working memory, with c constant.

Concerning the k-center problem with z outliers in the sliding window setting, the only
known algorithm was devised very recently in [23]. At every time step, the algorithm
maintains an ε-coreset for the problem on the current window, namely, a subset of the
window points, such that, if used as an input of any c-approximation sequential algorithm
for k-center with z outliers, yields a (c + ε)-approximate solution to the problem on the
entire window. The algorithm requires the knowledge of the aspect ratio of the stream,
and uses O

(
log(∆)kz(1/ε)D) working memory. Moreover, since it relies on the execution

of a sequential algorithm for k-center with z outliers on the coreset every time a new
point is added, it has an O

(
log(∆)

(
kz(1/ε)D)3

)
update time per point, which makes it

very impractical for streams with high arrival rates, and when values of k and z are not
too small. In [23], the authors also prove that any sliding-window algorithm for k-center
with z outliers, which features a (1 + ε) approximation ratio, must use Ω(log(∆)kz/ε)
working memory.

In [24,25], sliding window algorithms have been proposed for the k-median and
k-means clustering problems, whose objective is to minimize the average distance and
squared distance of all window points from the closest centers, respectively. For distributed
solutions to the k-center problem (with and without outliers) targeting the volume rather
than the velocity of the data, see [6,9] and the references therein.
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The notion of the α-effective diameter was introduced in [26] in the context of graph
analytics to characterize the growth rate of the neighborhood function, but it naturally
extends to general metrics, providing a robust substitute of the diameter in the presence
of noise. For α ∈ (0, 1), the α-effective diameter of a metric dataset W is the minimum
threshold such that the distances of at least α|W|2 pairs of window points fall below
the threshold.

1.2. Our Contribution

We present approximation algorithms for the k-center with z outliers in the sliding
window setting, which feature constant approximation ratios and small working memory
requirements and update times. As is customary for clustering in the big data realm, our
algorithms hinge on the maintenance of a coreset, that is, a small subset of representative
points of the current window from which an accurate solution can be extracted. Cru-
cial to the effectiveness of our approach is the introduction of weights for coreset points,
where the weight of a point is (an estimate of) the number of window points it represents.
To efficiently maintain the weights, we employ a succinct data structure inspired by the
smooth histograms of [27], which enable considerable space savings if some slackness
in the account of outliers is permitted. As an interesting by-product, we also devise an
algorithm that employs our coresets to approximate the α-effective diameter of the current
window W.

The analysis of our algorithms is carried out as a function of two design parameters, δ
and λ, which control, respectively, the level of accuracy and the slackness in the account of
outliers, and as a function of a number of characteristics of the stream S, namely, the values
dmin and dmax, representing the minimum and the maximum distance of two distinct points
of S and the doubling dimension D of S.

Our main results are listed below.

• A sliding window algorithm for general metric spaces that, at any time, is able to re-
turn a set of centers covering all but at most z(1 + λ) points of the current window W,
within a radius that is an O(1) factor larger than the optimal radius for z ouliers. The al-
gorithm requires a working memory of size O

(
log(dmax/dmin)(k + z) log1+λ(|W|)

)
and processes each point in time linear in the working memory size. By setting
λ = 1/(2z), the number of uncovered points becomes, at most, z;

• An improved algorithm with the same coverage guarantee as above, featuring a radius
that is only a factor (3+O(δ)) larger than the optimal radius, at the expense of an extra
O((c/δ)D) factor in both the working memory size and update time, for a suitable
constant c;

• A sliding-window algorithm for streams of bounded doubling dimension that, starting
from a (possibly crude) lower bound on the ratio between the α-effective and the full
diameter of the window W, returns upper and lower upper bounds to the α-effective
diameter of W. The algorithm features accuracy–space tradeoffs akin to those of the
improved algorithm for 1-center with z = 0 outliers;

• Experimental evidence that both the improved k-center and the effective diameter
algorithms feature a good performance and provide accurate solutions.

It is important to remark that our algorithms are fully oblivious to the metric parameters
dmin, dmax, and D, in the sense that the actual values of these parameters only influence the
analysis but are not needed for the algorithms to run. This is a very desirable feature, since,
in practice, these values are difficult to estimate.

Compared to the algorithm of [23] for k-center with z outliers, our algorithms feature a
considerably lower update time, which makes them practically viable. Moreover, in the case
of noisy streams for which z = Ω(log |W|), our algorithms require considerably less work-
ing memory, as long as some slackness in the number of outliers can be tolerated. Finally,
whereas the algorithm of [23] requires the knowledge of dmin and dmax, our algorithms are
oblivious to these values.
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1.3. Organization of the Paper

The rest of the paper is structured as follows. Section 2 provides preliminary defi-
nitions. Sections 3 and 4 present, respectively, the algorithms for the k-center problem
with z outliers and for the effective diameter. Section 5 reports on the experimental re-
sults. Section 6 concludes the paper with some final remarks and pointers to relevant
open problems.

2. Preliminaries

Consider a (possibly unbounded) stream S of points from some metric space with
distance function dist(·, ·). At any time t, let W denote the set of the last N = |W| points
arrived, for a fixed window length N. In the sliding window model, for a given com-
putational problem, we aim to develop algorithms that, at any time t, are able to solve
the instance represented by the current window W, using working memory considerably
smaller than N (possibly constant or logarithmic in N).

2.1. Definition of the Problems

For any point p ∈ W and any subset C ⊆ W, we use the notation
dist(p, C) = minq∈C dist(p, q), and define the radius of C with respect to W as

rC(W) = max
p∈W

dist(p, C).

For a positive integer k < |W|, the k-center problem requires finding a subset C ⊆ W
of k centers that minimizes rC(W). For a given W and k, we denote the radius of the
optimal solution of this problem by r∗k (W). Given any radius value r, a subset C ⊆W with
rC(W) ≤ 2r can be incrementally built using the greedy strategy of [13]: starting from an
arbitrary center, a new center selected among the points of W at a distance > 2r from the
current centers is iteratively added to C until all points of W are at a distance of at most
2r from C. An easy argument shows that, if r ≥ r∗k (W), the set C obtained in this fashion
has a size of, at most, k. By combining this strategy with a suitable guessing protocol,
a 2-approximate solution to the k-center problem for W is obtained.

Note that any subset C ⊆ W induces a partition of W into |C| clusters by assigning
each point to its closest center (with ties broken arbitrarily).

In this paper, we focus on the following important extension to the k-center problem.
For positive k, z < |W|, the k-center problem with z outliers requires finding a subset C ⊆ W
of size k minimizing rC(W − ZC), where ZC is the set of z points in W with the largest
distances from C, which are regarded as outliers to be discarded from the clustering. We
denote the radius of the optimal solution of this problem by r∗k,z(W). Observe that the
k-center problem with z outliers reduces to the k-center problem for z = 0. In addition,
it is straightforward to argue that the optimal solution of the k-center problem (without
outliers) with k + z centers has a radius not larger than the optimal solution of the problem
with k centers and z outliers, that is,

r∗k+z(W) ≤ r∗k,z(W). (1)

In a more general formulation of the k-center problem with z outliers, each point
p ∈ W carries a positive integer weight w(p), and the desired set C of k centers must
minimize rC(W − ZC), where ZC is the set of points with the largest distances from C
of maximum cardinality and an aggregate weight of, at most, z. We will refer to this
weighted formulation as k-center with z weighted outliers.

The algorithms presented in this paper for k-center with z outliers crucially rely on
the extraction of a succinct coreset T from the (possibly large) input W, so a solution to the
problem can be efficiently computed by running a sequential algorithm on T rather than
on W. The quality of a coreset T is captured by the following definition.
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Definition 1. Given a pointset W and a value ε > 0, a subset T ⊆W is an ε-coreset for W w.r.t.
the k-center problem with z outliers if maxp∈W dist(p, T) ≤ εr∗k,z(W).

An ε-coreset T of W ensures that each point in W is “represented” by a close enough
point in T, where closeness is defined w.r.t. ε and r∗k,z(W). In fact, our algorithms will make
use of weighted coresets, where, additionally, each coreset point p ∈ T features a weight that
is (an approximation of) the number of points of W represented by p.

An important characteristic of a pointset W is its diameter, defined as
∆W = maxp,q∈W dist(p, q), which can be computed exactly in quadratic time. The diameter
is very sensitive to noise in the dataset and, in the presence of outliers, its value might
turn out to be scarcely representative of most pairwise distances in W. Thus, the more
robust notion of the effective diameter has been introduced in [26]. Let d1,W , d2,W , . . . be an
enumeration of the |W|2 distances between all pairs of points of W in non-decreasing order.
For a given parameter α ∈ (0, 1), the α-effective diameter of W is defined as ∆α

W = ddα|W|2e,W ,
namely, the smallest value such that at least α|W|2 pairs of points in W are within distance
∆α

W .

2.2. Doubling Dimension

The analysis of our algorithms will be carried out as a function of a number of relevant
parameters, including the dimensionality of the data. To deal with arbitrary metric spaces,
we resort to the following well-established general notion of dimensionality. For any x ∈W
and r > 0, the ball of radius r centered at x, denoted as B(x, r), is the subset of all points of
W at a distance of, at most, r from x. The doubling dimension of W is the minimum value
D such that, for all x ∈ W, any ball B(x, r) is contained in the union of, at most, 2D balls
of radius r/2 centered at points of W. The notion of doubling dimension has been used
extensively in previous works (see [22,28] and the references therein).

3. k-Center with z Outliers

Let S be a (possibly unbounded) stream of points from some metric space, and let N
be the selected window length. For any point p ∈ S, its Time-To-Live TTL(p) is N when
p arrives, and it decreases by 1 at each subsequent step. We say that p is active when
TTL(p) > 0, and that it expires when TTL(p) becomes 0. For convenience, the analysis will
also consider expired points with negative TTLs. At any time t, the current window W
consists of all arrived points with positive TTL; hence, |W| = N.

In this section, we present coreset-based algorithms that, at any time t, are able
to return accurate approximate solutions to the k-center problem with z outliers for W.
The section is structured as follows. Section 3.1 describes and analyzes the weighted coreset
construction. Section 3.2 discusses how to extract the final solution from the weighted
coreset whose radius is, at most, a constant factor away from r∗k,z(W), as long as a slightly
larger number of outliers is tolerated. Section 3.3 shows how to remove an assumption
made to simplify the presentation. Finally, Section 3.4 shows that, for spaces of bounded
doubling dimension, the approximation factor can be lowered to a mere 3 + ε for any fixed
ε at the expense of larger working memory requirements.

3.1. Weighted Coreset Construction
3.1.1. Algorithm

The proposed coreset construction hinges upon the approach by [21] for k-center
without outliers, with major extensions introduced to maintain weights. Let dmin and
dmax denote, respectively, the minimum and maximum distances between any two distinct
points of the stream. For a user-defined constant β ∈ (0, 1], let

Γ = {(1 + β)i : blog1+β dminc ≤ i ≤ dlog1+β dmaxe},
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The values in Γ will be used as guesses of the optimal radius r∗k+z(W) of a (k+ z)-center
clustering without outliers of the current window (recall that r∗k+z(W) is a lower bound to
the optimal radius r∗k,z(W) for the problem with z outliers), and the algorithm will maintain
suitable data structures capable of identifying the right guess. For ease of presentation,
we assume for now that dmin and dmax are known to the algorithm. In Section 3.3, we will
show how the assumption can be removed by maintaining estimates of the two values.
For each guess γ, the algorithm maintains three sets of active points, namely Aγ, Rγ, and
Oγ, and the coreset is extracted from these sets. Aγ is a small set of active points, called
attraction points, such that, for any two distinct a1, a2 ∈ Aγ, dist(a1, a2) > 2γ.

At every time t, the arrival of a new point p is handled as follows, for every guess γ.
If there exist attraction points a such that dist(p, a) ≤ 2γ, we define aγ(p) as the one with
minimum TTL, and say that p is attracted by aγ(p). Otherwise, p becomes a new attraction
point in Aγ, and we let aγ(p) = p (i.e., p is attracted by itself). Set Rγ maintains, for each
a ∈ Aγ, one representative rγ(a), defined as the most recent point attracted by a. Note that,
whereas aγ(p) is fixed at p’s arrival, the representative rγ(a) may change with time. When
an attraction point a expires, its representative rγ(a) becomes an orphan and is moved to
the set Oγ.

Since the pairwise distance between the points of Aγ is > 2γ, if |Aγ| ≥ k + z + 1, it is
clear that γ < r∗k+z(W), and, as will be seen below, the points in Aγ ∪ Rγ ∪Oγ will not be
used to extract the coreset. Therefore, to save memory, we set k + z + 1 as a threshold for
|Aγ|: when |Aγ| = k + z + 1 and the newly arrived point qualifies to be an attraction point,
the algorithm discards the point a ∈ Aγ with minimum TTL, and moves its representative
rγ(a) to Oγ. As further space saving, all points in Oγ older than a are discarded, since
throughout their residual lifespan, |Aγ| ≥ k + z + 1, and hence they cannot contribute to a
valid coreset.

At any time t, the coreset for the k-center problem with z outliers, w.r.t. the current
window W, is obtained as T = Rγ̂ ∪ Oγ̂, where γ̂ is the smallest guess such that: (i)
|Aγ̂| ≤ k + z; and (ii) by running the simple greedy strategy of [13], reviewed in Section 2.1,
a set C of k + z points can be selected from Aγ̂ ∪ Rγ̂ ∪Oγ̂, such that any other point in this
set is at a distance of, at most, 2γ̂ from a selected point. To ensure that an accurate solution
to the k-center problem with z outliers can be extracted from the coreset T, we need to
weigh each point p ∈ T with (a suitable accurate estimate of) the number of window points
for which p can act as a proxy. This requires maintaining additional information with the
points of the various sets Rγ and Oγ, as explained below.

For each guess γ and each active point p ∈W, we define its proxy πγ(p) ∈ Rγ ∪Oγ as
the most recent active point r such that both p and r are attracted by aγ(p). (Note that r may
be an orphan if aγ(p) was discarded from Aγ.) Thus, πγ(p) = rγ(aγ(p)). Therefore, at any
time t, the proxy function πγ(·) defines a mapping between active points and points of
Oγ ∪ Rγ, and, for every r ∈ Oγ ∪ Rγ we define its weight wγ(r) = |{p ∈W : πγ(p) = r}|.
For each r ∈ Rγ ∪Oγ, our algorithm maintains a histogram Lr,γ = {(tr,1, cr,1), (tr,2, cr,2), . . .},
which is a list of pairs (timestamp, weight) such that there are cr,j points p assigned to r
(i.e., for which πγ(p) = r) that arrived at or after time tr,j. When a point p arrives at time t,
the histograms are updated as follows (for the sake of readability, from now on, we drop the
subscript γ from histograms and weights, when clear from the context.). If p becomes a new
attraction point (hence, p = aγ(p) = rγ(p)), a new histogram Lp = {(t, 1)} is created and is
assigned to p. If, instead, p is attracted by some a ∈ Aγ, then p becomes the representative
rγ(a) and inherits the histogram from the previous representative, modified by increasing
all weights by 1 and adding the new pair (t, 1). In addition, all histogram entries with
timestamp t− |W| are discarded, since they refer to the point that expired at time t. The
pairs in each histogram are naturally sorted by an increasing order of timestamps and
decreasing order of weight. Observe that, when a representative r becomes an orphan, and
hence is moved from Rγ to Oγ, its histogram Lr does not acquire new entries until r expires.

At any time t, for a histogram Lr, we denote by cLr the weight of the pair in Lr with
the smallest timestamp (which is greater than or equal to t − |W| + 1 by virtue of the
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elimination of the old entries described above). It is easy to see that cLr = w(r), that is,
the number of points p for which r is the proxy. Unfortunately, keeping the full histogram
Lr for each r ∈ Rγ ∪Oγ requires a working memory of size Θ(|W|), which is far beyond
the space bound targeted by sliding window algorithms. Therefore, taking inspiration from
the smooth histograms of [27], we maintain in Lr only a trimmed version of the full list,
which, however, ensures that cLr is an estimate of w(r) with a controlled level of accuracy.
Specifically, let λ > 0 be a user-defined accuracy parameter. Every time a histogram Lr is
updated, a scan of the pairs is performed that implements the following trimming:

• The first pair (t, c) is kept in the histogram;
• If a pair (t, c) is kept in the histogram, all subsequent pairs (t′, c′) with t′ > t and

c ≤ (1 + λ)c′ are deleted, except for the last such pair, if any.

At any time t, the weighted coreset that will be used to solve the k-center problem
with z outliers for the current window W consists of the set T = Rγ̂ ∪Oγ̂, where the guess
γ̂ is computed as described above, and each r ∈ T is assigned weight w̃(r) = cLr . As will be
shown in the next subsection, the w̃(r)s are good approximations of the true weights w(r)s,
and this will provide good bi-criteria approximation quality for the returned solution.

The pseudocode detailing the algorithm is provided below. The arrival of a new
point p at time t is handled by the main Procedure UPDATE(p, t) (Algorithm 1), which,
for every guess γ, invokes, in turn, Procedure INSERTATTRACTION(p, γ) (Algorithm 2)
when p must be added to Aγ, or Procedure UPDATEHISTROGRAMS(Lp,γ) (Algorithm 3)
when p becomes a new representative of some existing point of Aγ. To extract the weighted
coreset, Procedure EXTRACTCORESET() (Algorithm 4) is executed.

Algorithm 1: UPDATE(p, t)
1 foreach γ ∈ Γ do
2 foreach expired p ∈ Aγ do
3 Aγ ← Aγ \ {p}
4 Move rγ(p) from Rγ to Oγ

5 foreach r ∈ Oγ do
6 if r is expired then
7 Remove r (and its histogram) from Oγ

8 Remove from Lr,γ the entry (if any) with timestamp t− |W|
9 x ← argminq∈Aγ :dist(p,q)≤2γ TTL(q)

10 if x == null then
11 INSERTATTRACTION(p, γ)
12 Lp,γ ← {(t, 1)}
13 else
14 Move the content of Lrγ(x),γ to Lp,γ

15 UPDATEHISTOGRAM(Lp,γ)
16 Set rγ(x) = p in Rγ

Algorithm 2: INSERTATTRACTION(p, γ)

1 Aγ ← Aγ ∪ {p}
2 rγ(p)← p
3 Rγ ← Rγ ∪ {rγ(p)}
4 if |Aγ| > k + z + 1 then
5 vold ← argminv∈Aγ

TTL(v)
6 Aγ ← Aγ \ {vold}
7 Move rγ(vold) from Rγ to Oγ

8 if |Aγ| > k + z then
9 tmin ← minv∈Aγ

TTL(v)
10 Remove from Oγ all q with TTL(q) < tmin (and their histograms)
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Algorithm 3: UPDATEHISTOGRAM(L)
1 Let L[i] = (L[i].t, L[i].c) denote the ith pair in L, for i = 1, 2, . . . |L|
2 for i = 1 to |L| do
3 L[i].c← L[i].c + 1
4 Append (t, 1) to L
5 Create a new histogram M = {L[1]}
6 last = 1
7 for i = 2 to |L| − 1 do
8 if L[last].c > (1 + λ)L[i + 1].c then
9 Append L[i] to M

10 last = i
11 Append L[|L|] to M
12 L = M

Algorithm 4: EXTRACTCORESET()

1 for increasing γ ∈ Γ such that |Aγ| ≤ k + z do
2 C ← ∅
3 for p ∈ Aγ ∪Oγ ∪ Rγ do
4 if dist(p, C) > 2γ then C ← C ∪ {p}
5 if |C| ≤ k + z then
6 γ̂← γ
7 break;
8 T ← Rγ̂ ∪Oγ̂

9 foreach r ∈ T do w̃(r) = cLr

10 return T together with the approximate weights.

3.1.2. Analysis

The following two technical lemmas state important properties of the sets Aγ, Oγ, and
Rγ, and of the histograms maintained by the algorithm.

Lemma 1. At any time t, the following properties hold for every γ ∈ Γ:

1. If |Aγ| ≤ k + z, then maxq∈W dist(q, πγ(q)) ≤ 4γ.
2. |Aγ|, |Rγ|, |Oγ| ≤ k + z + 1.

Proof. In order to prove the lemma, it suffices to show that, if the properties hold after the
processing of the (t− 1)-th point, they are inductively maintained after the invocation of
UPDATE(p, t). The proof makes use of essentially the same arguments employed in [21]
[Lemmas 7, 8], straightforwardly adapted to account for the fact that, in our algorithm,
each new point that does not become an attraction point is made representative of a single
attraction point, whereas, in [21], it would be made representative of all attraction points at
a distance of, at most, 2γ.

Recall that, at any time t and for any guess γ, the histogram Lr associated with each
point r ∈ Rγ ∪Oγ is a list of pairs (tr,i, cr,i) indicating that there are currently cr,i points
that have arrived after time ≥ tr,i, whose proxy is r, for i = 1, 2, . . .. We have:

Lemma 2. For any time t, guess γ, and r ∈ Rγ ∪Oγ, the following properties hold for Lr.

1. For every 1 ≤ i ≤ |Lr|, cr,i ≤ |W|;
2. For every 1 ≤ i ≤ |Lr| − 1, cr,i ≤ (1 + λ)cr,i+1 or cr,i = 1 + cr,i+1 > (1 + λ)cr,i+1;
3. For every 1 ≤ i ≤ |Lr| − 2, cr,i > (1 + λ)cr,i+2;
4. |Lr| ∈ O

(
log1+λ |W|

)
.

Proof. First, observe that Property 4 is an immediate consequence of Properties 1 and 3.
Hence, we are left with proving Properties 1, 2, and 3. The properties clearly hold when
the histogram Lr is first created (Line 12 of UPDATE); thus, we only need to show that if
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they hold prior to an invocation of UPDATEHISTOGRAM(Lr), they continue to hold for the
histogram M created by UPDATEHISTOGRAM(Lr), which becomes the new Lr at the end
of the procedure. Property 1 holds since the weights are updated only as long as aγ(r),
the oldest point accounted for in the histogram, is active; hence, weights always represent
sizes of subsets of points of the same window, and thus they never exceed |W|. Consider
now Properties 2 and 3. Let L′r denote the histogram Lr after the execution of Line 4 of
UPDATEHISTOGRAM(Lr) (i.e., after the increment of the weights and the addition of (t, 1) at
the end of the list). It is easy to argue that Properties 2 and 3 continue to hold for L′r. Let us
now show that they also hold for histogram M at the end of the procedure. As for Property 2,
consider two adjacent pairs (tr,i, cr,i) and (tr,i+1, cr,i+1) in M, with cr,i > (1 + λ)cr,i+1. Then,
two pairs with the same timestamps and weights must exist in L′r, and we can argue that
these two pairs must be adjacent in L′r, and hence their weights must differ by 1, since
Property 2 holds for L′r. Indeed, if the two pairs were not adjacent in L′r, then at least one
pair with a timestamp between tr,i and tr,i+1 must have been removed in the for loop of
UPDATEHISTOGRAM(Lr). However, this is not possible, because, due to the way the loop
operates, this would ensure that cr,i ≤ (1 + λ)cr,i+1. Finally, Property 3 is enforced by the
for loop of UPDATEHISTOGRAM(Lr).

The following theorem states the main properties of the weighted coreset T computed
by our algorithm.

Theorem 1. At any time t, the weighted coreset T returned by EXTRACTCORESET() is a 4(1+ β)-
coreset of size O(k + z) for the current window W w.r.t. the k-center problem with z outliers.
Moreover, for each point r ∈ T, we have w(r)/(1 + λ) ≤ w̃(r) ≤ w(r).

Proof. Recall that T = Rγ̂ ∪Oγ̂, where γ̂ is the minimum guess for which the following
two conditions are verified: |Aγ̂| ≤ k + z, and the greedy selection strategy of [13] applied
to Aγ̂ ∪ Rγ̂ ∪Oγ̂ returns a set C of k + z points such that dist(p, C) ≤ 2γ̂, for every p ∈
Aγ̂ ∪ Rγ̂ ∪Oγ̂. It is easy to see that these two conditions are surely verified for any γ ≥
r∗k+z(W). Therefore, considering the density of the guesses in Γ, we must have γ̂ ≤
(1 + β)r∗k+z(W). By Lemma 1, we have |T| = O(k + z) and maxp∈W dist(p, T) ≤ 4γ̂, which
implies maxp∈W dist(p, T) ≤ 4(1 + β)r∗k+z(W) ≤ 4(1 + β)r∗k,z(W).

We now show the relation concerning the approximate weights w̃(r). Recall that, for
each r ∈ T, the value w̃(r) is set equal to cLr , which is the weight component of the pair
in Lr with the smallest timestamp ≥ t− |W|+ 1. Let (tr,i, cr,i) be the pair of Lr such that
cr,i = cLr . If i > 1, then the relation cr,i ≤ w(r) ≤ cr,i−1 must hold, and Property 2 of
Lemma 2 ensures that cr,i−1 ≤ cr,i(1 + λ) or cr,i−1 = cr,i + 1. In the former case, we have
w(r)/(1+λ) ≤ cr,i = cLr ≤ w(r), whereas, in the latter case, it is easy to see that cLr = w(r).
If, instead, i = 1, it is easy to see that cLr = w(r), since the first pair of the histogram is
always relative to the arrival of the attraction point aγ(r), and hence the weight of such
pair accounts for all points assigned to it.

The following theorem analyzes the space and time performance of our coreset con-
struction strategy.

Theorem 2. The data structures used by our coreset construction strategy require a working
memory of size O

(
log1+β(dmax/dmin) · (k + z) · log1+λ(|W|)

)
. Moreover, Procedure UPDATE

can be implemented to run in time

O
(

log1+β(dmax/dmin) ·
(
(k + z) + log1+λ(|W|)

))
,

whereas Procedure EXTRACTCORESET can be implemented to run in time

O
(

log1+β(dmax/dmin) · (k + z)2
)

.
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If binary search is used to find the value γ̂, the running time of EXTRACTCORESET decreases to

O
(

log(log1+β(dmax/dmin)) · (k + z)2
)

.

Proof. The bound on the working memory is an immediate consequence of
Lemmas 1 and 2, and of the fact that |Γ| = O

(
log1+β(dmax/dmin)

)
. Procedure UPDATE

is easily implemented through a constant number of linear scans of Aγ, Rγ, and Oγ,
for every γ ∈ Γ, and a linear scan of, at most, one histogram. For what concerns Proce-
dure EXTRACTCORESET, for each γ ∈ Γ, the computation of C requires time quadratic in
|Aγ|+ |Rγ|+ |Oγ|, and the number of guesses γ ∈ Γ to be checked are at most |Γ| if a linear
search is used, and O(log(|Γ|)) if binary search is used. In addition, time O(|T|) is needed
to compute w̃(r) for all r ∈ T. Based on these considerations, the complexity bounds follow
again from Lemmas 1 and 2 and the size of |Γ|.

3.2. Computation of the Solution from the Coreset

At any time t, to compute a solution to the k-center problem with z outliers on the
window W, we first determine a weighted coreset T, as explained in the previous subsection,
and then, on T, we run a sequential strategy for the weighted variant of the problem. To
this purpose, we make use of the algorithm developed in [8,9], which generalizes the
sequential algorithm of [7] to the weighted case. Given as an input a weighted set T, a value
k, a precision parameter ε, and a radius ρ, the algorithm computes a set X of k centers
incrementally in, at most, k iterations. Initially, all points are considered uncovered. At
each iteration, the next center is selected as the point that maximizes the aggregate weight
of the yet uncovered points within distance (1 + 2ε)ρ, and such a center covers all points
in T within the larger distance (3 + 4ε)ρ. The algorithm terminates when either |X| = k
or no uncovered points remain, returning X and the subset T′ of uncovered points. This
algorithm is implemented by procedure OUTLIERSCLUSTER(T, k, ρ, ε). The next lemma
states an important property related to the use of OUTLIERSCLUSTER (Algorithm 5) in
our context.

Algorithm 5: OUTLIERSCLUSTER(T, k, ρ, ε)
1 T′ = T
2 X = ∅
3 while |X| < k and T′ 6= ∅ do
4 for r ∈ T do
5 Br = {v : v ∈ T′and dist(v, r) ≤ (1 + 2ε)ρ}
6 x = argmaxr∈T ∑v∈Br

w̃(v)
7 X = X ∪ {x}
8 Ex = {v : v ∈ T′and dist(v, x) ≤ (3 + 4ε)ρ}
9 T′ = T′ \ Ex

10 return X, T′

Lemma 3. For any time t, let T = Rγ̂ ∪ Oγ̂ be the weighted coreset returned by
EXTRACTCORESET(). For any ρ ≥ r∗k,z(W), the invocation OUTLIERSCLUSTER(T, k, ρ, ε) with
ε = 4(1 + β) returns a set of centers X and a set of uncovered points T′ ⊆ T, such that

• dist(r, X) ≤ (3 + 4ε)ρ ∀r ∈ T \ T′

• ∑r∈T′ w̃(r) ≤ z.

Proof. The proof can be obtained as a simple technical adaptation of the one of [9]
[Lemma 5] to the case of approximate weights. For clarity, we detail the entire proof
rather than highlighting the changes only. The bound on dist(r, X) for every r ∈ T \ T′ is
directly enforced by the algorithm. We are left to show that ∑r∈T′ w̃(r) ≤ z. If |X| < k, then
T′ = ∅ and the claim holds trivially. We now concentrate on the case |X| = k. Consider the
i-th iteration of the while loop of OUTLIERSCLUSTER(T, k, ρ, ε) and define xi as the center
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of X selected in the iteration, and T′i as the set T′ of uncovered points at the beginning of
the iteration. Recall that xi is the point of T that maximizes the cumulative approximate
weight of the set Bxi of uncovered points in T′i at a distance of, at most, (1 + 2ε) · ρ from xi,
and that the set Exi of all uncovered points at a distance of, at most, (3 + 4ε) · ρ from xi is
removed from T′i at the end of the iteration. Let

σT = ∑
r∈T

w̃(r).

We now show that
k

∑
i=1

∑
r∈Exi

w̃(r) ≥ σT − z, (2)

which will immediately imply that ∑r∈T′ w̃(r) ≤ z. To this purpose, let O be an optimal
set of k centers for the current window W, and let Z be the set of, at most, z outliers at a
distance greater than r∗k,z(W) from O. Let also W̃ be a subset of the current window that,
for every r ∈ T, contains exactly w̃(r) points q, including r, for which r is a proxy, that is,
points q ∈W such that πγ̂(q) = r. Note that W̃ is well defined since, by Theorem 1, w̃(r) is
always less than or equal to the actual weight of r. For each o ∈ O, define Co ⊆ W̃ \ Z as
the set of nonoutlier points in W̃ that are closer to o than to any other center of O, with ties
broken arbitrarily. It is important to remark, that while there may be some optimal center
o ∈ O that is not in W̃, its proxy πγ̂(o) is in T; hence, it is guaranteed to be in W̃. To prove
Equation (2), it is sufficient to exhibit an ordering o1, o2, . . . , ok of the centers in O so that,
for every 1 ≤ i ≤ k, it holds

i

∑
j=1

∑
r∈Exj

w̃(r) ≥ |Co1 ∪ · · · ∪ Coi |.

The proof uses an inductive charging argument to assign each point in
⋃i

j=1 Coj to a

point in
⋃i

j=1 Exj , where each r in the latter set will be in charge of, at most, w̃(r) points. We
define two charging rules. A point can be either charged to its own proxy (Rule 1) or to
another point of T (Rule 2).

Fix some arbitrary i, with 1 ≤ i ≤ k, and assume, inductively, that the points in
Co1 ∪ · · · ∪ Coi−1 have been charged to points in

⋃i−1
j=1 Ej for some choice of distinct optimal

centers o1, o2, . . . , oi−1. We have two cases.

Case 1. There exists an optimal center o still unchosen such that there is a point v ∈
Co with πγ̂(v) ∈ Bxj , for some 1 ≤ j ≤ i. We choose oi as one such center. Hence,
d(xj, πγ̂(v)) ≤ (1 + 2ε) · ρ. By repeatedly applying the triangle inequality, we have that,
for each u ∈ Coi ,

d(xj, πγ̂(u)) ≤ d(xj, πγ̂(v)) + d(πγ̂(v), v) + d(v, oi)

+ d(oi, u) + d(u, πγ̂(u)) ≤ (3 + 4ε) · ρ

hence, πγ̂(u) ∈ Exj . Therefore we can charge each point u ∈ Coi to its proxy by Rule 1.

Case 2. For each unchosen optimal center o and each v ∈ Co, πγ̂(v) 6∈
⋃i

j=1 Bxj . We
choose oi to be the unchosen optimal center that maximizes the cardinality of {πγ̂(u) : u ∈
Coi}∩ T′i . We distinguish between points u ∈ Coi with πγ̂(u) /∈ T′i ; hence, πγ̂(u) ∈

⋃i−1
j=1 Exj ,

and those with πγ̂(u) ∈ T′i . We charge each u ∈ Coi with πγ̂(u) /∈ T′i to its own proxy by
Rule 1. As for the other points, we now show that we can charge them to the points of
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Bxi . To this purpose, we first observe that Bπγ̂(oi)
contains {πγ̂(u) : u ∈ Coi} ∩ T′i , since, for

each u ∈ Coi ,

d(πγ̂(oi), πγ̂(u)) ≤ d(πγ̂(oi), oi) + d(oi, u) + d(u, πγ̂(u))

≤ (1 + 2ε) · r∗k,z(W) ≤ (1 + 2ε) · ρ.

Therefore, the aggregate approximate weight of Bπγ̂(oi)
is at least∣∣{u ∈ Coi : πγ̂(u) ∈ T′i

}∣∣. Since Iteration i selects xi as the center, such that Bxi has
maximum aggregate approximate weight, we have that

∑
r∈Bxi

w̃(r) ≥ ∑
r∈Bπγ̂(oi)

w̃(r) ≥
∣∣{u ∈ Coi : πγ̂(u) ∈ T′i

}∣∣,
hence, the points u ∈ Coi with πγ̂(u) ∈ T′i can be charged to the points in Bxi , since Bxi has
enough aggregate approximate weight.

Note that the points of Bxi did not receive any charging by Rule 1 in previous iterations,
since they are uncovered at the beginning of Iteration i, and will not receive chargings
by Rule 1 in subsequent iterations, since Bxi does not intersect the set Co of any optimal
center o yet to be chosen. In addition, no further charging to the points of Bxi by Rule 2 will
happen in subsequent iterations, since Rule 2 will only target sets Bxh with h > i. These
observations ensure that any point of T receives charges through either Rule 1 or Rule 2,
but not both, and never in excess of its weight, and the proof follows.

At any time t, to obtain the desired solution, we invoke Procedure COMPUTESOLUTION,
which works as follows (see Algorithm 6 for the pseudocode). The procedure first extracts
the coreset T = Rγ̂ ∪Oγ̂ calling EXTRACTCORESET. Then, it sets ε = 4(1 + β) and runs
OUTLIERSCLUSTER(T, k, ρ, ε) for a geometric sequence of values of ρ between dmin and
dmax, with step 1 + β, stopping at the minimum value ρmin for which the pair (X, T′)
returned by OUTLIERSCLUSTER(T, k, ρmin, ε) is such that the aggregate approximate weight
of set T′ is, at most, z. (Note that the parameter β in the definitions of ε and of the step
used in the geometric search for ρmin is the same one that appears in the definition of Γ;
hence, β ∈ (0, 1].) At this point, the set of centers X is returned as a solution to the k-center
problem with z outliers on the current window W.

Algorithm 6: COMPUTESOLUTION()
1 T ← EXTRACTCORESET()
2 ρ← dmin
3 ε← 4(1 + β)
4 (X, T′)← OUTLIERSCLUSTER(T, k, ρ, ε)
5 w̃(T′)← ∑r∈T′ w̃(r)
6 while w̃(T′) > z do
7 ρ← ρ · (1 + β)
8 (X, T′)← OUTLIERSCLUSTER(T, k, ρ, ε)
9 w̃(T′)← ∑r∈T′ w̃(r)

10 return X

The following theorem highlights the tradeoff between the accuracy (in terms
of both the radius and excess number of outliers) and the performance exhibited by
COMPUTESOLUTION.

Theorem 3. At any time t, COMPUTESOLUTION returns a set X ⊆W of, at most, k centers, such
that at least |W| − (1 + λ)z points of W are at a distance of, at most, (23 + 55β)r∗k,z(W) from X.

The procedure requires a working memory of size O
(
(k + z) log1+β(dmax/dmin) log1+λ(|W|)

)
and runs in time

O
(

log1+β(dmax/dmin) · k(k + z)2
)

.
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If the while loop is substituted by a binary search for ρmin, the running time decreases to

O
(

log(log1+β(dmax/dmin)) · k(k + z)2
)

.

Proof. Let ρmin be such that OUTLIERSCLUSTER(T, k, ρmin, ε) yields (X, T′), where X is
the returned solution, and let W ′ be the set of points of W whose proxies are in T′.
By Lemma 3 and the choice of the step of the geometric search for ρmin, we have that
ρmin ≤ (1 + β)r∗k,z(W); hence, for each p ∈ W −W ′, dist(πγ̂(p), X) ≤ (3 + 4ε)ρmin ≤
(3 + 4ε)(1 + β)r∗k,z(W). Since T is an ε-coreset (Theorem 1) and β ∈ (0, 1], we conclude that,
for every p ∈W −W ′,

dist(p, X) ≤ dist(p, πγ̂(p)) + dist(πγ̂(p), X)

≤ εr∗k,z(W) + (3 + 4ε)(1 + β)r∗k,z(W)

< (23 + 55β)r∗k,z(W)

Moreover, by Theorem 1, we also have that |W ′| ≤ (1 + λ)∑r∈T′ w̃(r) ≤ (1 + λ)z.
The working memory bound is an immediate consequence of Theorem 2, since the working
memory is dominated by the data structures from which the coreset is extracted. For what
concerns the running time, observe that OUTLIERSCLUSTER can be easily implemented
to run in time O

(
k · |T|2

)
, which is O

(
k · (k + z)2), since |T| = O(k + z) by Theorem 1.

Therefore, the bound on the running time follows, since EXTRACTCORESET requires time
O
(

log(log1+β(dmax/dmin)) · (k + z)2
)

(by Theorem 2), and the while loop performs, at

most, O
(

log1+β(dmax/dmin)
)

executions of OUTLIERSCLUSTER, which can be lowered to

O
(

log log1+β(dmax/dmin)
)

using binary search.

The above result shows that allowing for a slight excess in the number of outliers
governed by parameter λ results in improved space and time complexities. Note that if
the upper bound z on the number of outliers must be rigidly enforced, it is sufficient to set
λ = 1/(2z). In this case, (1 + λ)z = z + 1/2, and since the number of outliers must be an
integer, it cannot be larger than z. The following corollary is an immediate consequence of
Theorem 3, of this observation, and of the fact that log1+λ x = Θ((1/λ) log x) for λ ∈ (0, 1).

Corollary 1. Let λ = 1/(2z). At any time t, COMPUTESOLUTION returns a set X ⊆
W of, at most, k centers, such that at least |W| − z points of W are at a distance of,
at most, (23 + 55β)r∗k,z(W) from X. The procedure requires a working memory of size

O
(

z(k + z) log1+β(dmax/dmin) log(|W|)
)

and runs in time

O
(

log1+β(dmax/dmin) · k(k + z)2
)

.

If the while loop is substituted by a binary search for ρmin, the running time decreases to

O
(

log(log1+β(dmax/dmin)) · k(k + z)2
)

.

3.3. Obliviousness to dmin and dmax

The algorithm described in Sections 3.1 and 3.2 requires the knowledge of the values
dmin and dmax. In this subsection, we show how to remove this requirement by employing
the techniques developed in [22], suitably extended to cope with histograms, which were
not used in that work.

Let p1, p2, . . . be an enumeration of all points of the stream S based on their arrival
times. For t > k + z, let dt be the minimum pairwise distance between the last k + z + 1
points of the stream (pt−k−z, . . . , pt−1, pt). Let also Dt be the maximum distance between
p1 and any pi with i ≤ t, and note that, by the triangle inequality, the maximum pairwise
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distance among the first t points of S is upper bounded by 2Dt. It is easy to argue that
dt/2 ≤ r∗k+z(W) ≤ r∗k,z(W) ≤ 2Dt. By storing p1 and the last k + z + 1 points of the
stream, the values dt and Dt can be straightforwardly maintained by the algorithm with
O
(
(k + z)2) operations per step. We define

Γt = {(1 + β)i : blog1+β dt/2c ≤ i ≤ dlog1+β 2Dte}.

Suppose that, at any time t, the algorithm maintains the sets Aγ, Rγ and Oγ, and the
histograms for the points in Rγ ∪Oγ, only for γ ∈ Γt, and assume that the properties
stated in Lemmas 1 and 2 hold for every γ ∈ Γt and r ∈ Rγ ∪Oγ. Then, by running
procedure EXTRACTCORESET and limiting the search for γ̂ to the set Γt, we still obtain
a 4(1 + β)-coreset for the current window. To see this, we first note that, based on the
previous observation, Γt definitely includes a value γ with r∗k+z(W) ≤ γ ≤ (1 + β)r∗k+z(W).
By repeating the same argument used in the proof of Theorem 1, we can show that, for such
a value of γ, we have that |Aγ| ≤ k + z, and that the inner for loop of EXTRACTCORESET

computes a set C of, at most, k + z points. This immediately implies that EXTRACTCORESET

determines a guess γ̂ ≤ (1 + β)r∗k+z(W) and that the returned coreset T = Rγ̂ ∪Oγ̂ is a
4(1 + β)-coreset.

We now show how to modify the algorithm described in the previous subsections
(referred to as full algorithm in what follows) to maintain, without the knowledge of dmin
and dmax, the sets Aγ, Rγ, and Oγ and the required histograms, for every guess γ ∈ Γt.
Suppose that this is the case up to some time t− 1 > k + z, and consider the arrival of pt.
Before invoking UPDATE(pt, t), the algorithm executes the operations described below.

First, the new values dt and Dt are computed, and all sets relative to values of
γ ∈ Γt−1 − Γt are removed. If dt < dt−1, then, for each γ ∈ Γt with γ < min{γ′ ∈
Γt−1} ≤ dt−1/2, the algorithm sets Aγ = {pt−k−z−1, . . . , pt−1} = Rγ and Oγ = ∅. More-
over, for each pτ ∈ Rγ, it sets Lpτ = {(τ, 1)}, as each point represents itself only. Since any
two points in Aγ are at a distance of at least dt−1 > 2γ, it is easy to see that these newly
created data structures coincide with the ones that the full algorithm would store at time
t− 1 (for the same γ’s) if the stream started at time t− (k + z + 1); hence, they satisfy the
properties of Lemmas 1 and 2.

If Dt > Dt−1, then for each γ ∈ Γt with γ > max{γ′ ∈ Γt−1}, the algorithm sets
Aγ = {pt−|W|}, Rγ = {pt−1} and Oγ = ∅. It is easy to see that these newly created sets
coincide with the ones that the full algorithm would store at time t− 1 (for the same γ’s) if
the stream started at time t− |W|; hence, they satisfy the properties of Lemma 1. It has to
be remarked that, although point pt−|W| is not available at time t− 1, this is not a problem
since the point immediately expires at time t and is removed from the data structures
without even being used in the processing of pt. Hence, in this context, pt−|W| acts as a
mere placeholder. For what concerns the histogram Lpt−1 to associate with pt−1 (for every
γ > max{γ′ ∈ Γt−1}), its exact version represents the entire active window, and hence it
would be the list {(t− |W|, |W|), . . . , (t− 2, 2), (t− 1, 1)}. In order to satisfy the properties
of Lemma 2, Lpt−1 can be trimmed as follows. Let f (x) =

⌈
x

1+λ

⌉
. Then, Lpt−1 contains the

set of pairs (t− ci, ci), with i ≥ 0, where the cis form a decreasing sequence of values ≥ 1
such that c0 = |W| and, for each i ≤ 0 with ci > 1, ci+1 = min{ci − 1, f (ci)}.

Lemma 4. The list Lpt−1 defined above satisfies the properties stated in Lemma 2.

Proof. Property 1 clearly holds. As for Property 2, consider two consecutive pairs (t− ci, ci)
and (t− ci+1, ci+1). If ci+1 = f (ci), then it is certain that ci ≤ (1 + d)ci+1. Hence, when
ci > (1 + λ)ci+1, we must have ci+1 = ci − 1, and the property follows. Property 3 holds,
since, for 1 ≤ i ≤ |Lr| − 2, ci+2 ≤ ci+1 − 1 < (ci/(1 + λ) + 1)− 1, and hence (1 + λ)ci+2 ≤
ci. Finally, the bound stated by Property 4 follows as a direct consequence of the first three
properties.
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Once the correct configurations of the data structures for all guesses γ ∈ Γt are ob-
tained, Procedure UPDATE(pt, t) is invoked to complete step t, thus enforcing the properties
of Lemmas 1 and 2 for all of these data structures.

3.4. Improved Approximation under Bounded Doubling Dimension

Consider a stream S of doubling dimension D. We now outline an improved coreset
construction that is able to provide a δ-coreset T for the k-center problem with z outliers,
for any given δ > 0, at the expense of a blow-up in the working memory size, which is
analyzed as a function of D and is tolerable for small (e.g., constant) D. This improved
construction allows us to obtain a much tighter approximation for the k-center problem
with z outliers in the sliding window setting.

Fix any given δ > 0. In [22], a refinement of the k-center strategy of [21] is presented
that, for every guess γ, maintains two families of attraction, representative, and orphan
points. The first family, referred to as validation points, features three O(k)-sized sets of
attraction, representative, and orphan points, equivalent to those described in Subection 3.1.
Validation points are employed to identify a constant approximation γ̂ to the optimal radius
r∗k (W). The second family, referred to as coreset points, contains, for any guess γ, three
“expanded” sets of attraction, representative, and orphan points, which refine the coverage
provided by the corresponding sets of validation points, in the sense that the coreset points
relative to the guess γ̂ yield a coreset T such that maxp∈W d(p, T) ≤ δr∗k (W). For each γ,
these larger sets contain O(k(c/δ)D) points for a suitable constant c.

We can augment the algorithm of [22] in the same fashion as we augmented the
algorithm of [21] by endowing the representative and orphan coreset points with the
histograms described in Section 3.1. Then, by running the resulting algorithm for k + z
(instead of k) centers, the result stated in the following lemma is immediately obtained,
where parameter λ and functions w(·) and w̃(·) have the same meanings as before.

Lemma 5. Let δ, λ > 0 be two design parameters. For a stream S of doubling dimension D,
suitable data structures can be maintained, from which, at any time t, a weighted δ-coreset T of size
O((c/δ)D(k + z)) for a fixed constant c can be extracted such that, for each p ∈W, there exists a
proxy π(p) ∈ T with

dist(p, π(p)) ≤ δr∗k+z(W) ≤ δr∗k,z(W).

Moreover, for each r ∈ T, an approximate weight w̃(r) can be computed, with w(r)/(1+λ) ≤
w̃(r) ≤ w(r), where w(r) = |{p ∈ W : π(p) = r}|. The data structures require a working
memory of size O

(
(c/δ)D(k + z) log(dmax/dmin) log1+λ(|W|)

)
.

The analysis in [22] implies that the constant c can be fixed arbitrarily close to 32. We
remark that the construction described in Section 3.1 cannot return δ-coresets with δ ≤ 4,
whereas the result of Lemma 5 yields δ-coresets for any δ > 0.

To obtain the desired solution at any time t, we first compute a δ-coreset T satisfying
the properties stated in the above lemma. Then, analogously to COMPUTESOLUTION, we
run OUTLIERSCLUSTER(T, k, ρ, δ) for a geometric sequence of values of ρ of step 1 + β
between dmin and dmax, stopping at the minimum value ρmin for which, if (X, T′) is the
output of OUTLIERSCLUSTER(T, k, ρmin, δ), then the aggregate approximate weight of set
T′ is at most z. The algorithm returns X as the final set of (at most) k centers. By choosing
β = δ/(3 + 4δ), we obtain the the following result:

Theorem 4. Let δ, λ > 0 be two design parameters and consider a stream of doubling dimension
D. There exists a sliding window algorithm that, at any time t, returns a set of, at most, k centers
X ⊆W, such that at least |W| − (1+ λ)z points of W are at a distance of, at most, (3+ 6δ)r∗k,z(W)
from X. For a suitable constant c > 0, the algorithm makes use of a working memory of size
O((c/δ)D(k + z) log(dmax/dmin) log1+λ(|W|)). In addition, the algorithm requires time

O
(

log1+β(dmax/dmin) ·
(
(c/δ)D(k + z) + log1+λ(|W|)

))
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to update the data structures after each point arrival, and time

O
(

log
(

log1+β(dmax/dmin)
)
· ((c/δ)D · k(k + z))2

)
to compute the final solution, with β = δ/(3 + 4δ).

Proof. By reasoning as in the proof of Lemma 3, we can show that, by execut-
ing OUTLIERSCLUSTER(T, k, ρ, δ), with any ρ ≥ r∗k,z(W), the set of uncovered points
at the end of the execution has an aggregate approximate weight of, at most, z.
This immediately implies that ρmin ≤ (1 + β)r∗k,z(W). Let (X, T′) be the output of
OUTLIERSCLUSTER(T, k, ρmin, δ), and let W ′ be the set of points of W whose proxies are in T′.
We have that, for each p ∈W −W ′, dist(π(p), X) ≤ (3+ 4δ)ρmin ≤ (3+ 4δ)(1+ β)r∗k,z(W).
Since T is an δ-coreset, we conclude that, for every p ∈W −W ′,

dist(p, X) ≤ dist(p, π(p)) + dist(π(p), X)

≤ δr∗k,z(W) + (3 + 4δ)(1 + β)r∗k,z(W)

≤ (3 + 6δ)r∗k,z(W),

where the last inequality uses the fact that β = δ/(3 + 4δ). Moreover, we also have
that |W ′| ≤ (1 + λ)∑r∈T′ w̃(r) ≤ (1 + λ)z. Finally, the bound on the working memory
follows from Lemma 5, whereas the time bounds for updating the data structures and
extracting the solution from the coreset are obtained by adapting the arguments used to
prove Theorems 2 and 3.

The following corollary is the counterpart of Corollary 1 for the dimension-sensitive
algorithm developed in this section.

Corollary 2. Let λ = 1/(2z). At any time t, the algorithm is able to compute a set X ⊆
W of, at most, k centers, such that at least |W| − z points of W are at a distance of, at most,
(3 + 6δ)r∗k,z(W) from X. For a fixed constant c > 0, the algorithm requires a working memory of
size O

(
(c/δ)Dz(k + z) log(dmax/dmin) log(|W|)

)
and runs in time

O
(

log(log1+β(dmax/dmin))(c/δ)D · k(k + z)2
)

,

with β = δ/(3 + 4δ).

It is important to remark that the algorithm in [22] that we have built upon is fully
oblivious to D, dmax, and dmin. Its augmentation discussed above inherits the obliviousness
to D straightforwardly, whereas the obliviousness to dmax and dmin is inherited through
the technique described in Section 3.3.

4. Effective Diameter Estimation

Consider a stream S of doubling dimension D. Building on the improved coreset
construction of Lemma 5, we now outline an algorithm that, at any time t, is able to
compute lower and upper estimates of the α-effective diameter ∆α

W of the current window
W. The algorithm requires the knowledge of a (possibly crude) lower bound η ∈ (0, 1) on
the ratio between ∆α

W and the diameter ∆W (i.e., ∆α
W ≥ η∆W).

For a given ε > 0, let T be a weighted δ-coreset for W computed with the properties
stated in Lemma 5, with δ = εη/2, k = 1 and z = 0. Hence, |T| = O((c′/(εη))D),
with c′ = 2c, where c is the same constant appearing the statement of the lemma. Assume
for now that, for each r ∈ T, the true weight w(r) = |{p ∈W : π(p) = r}| is known. (Later,
we will discuss the distortion introduced by using the approximate weights w̃(r).) An
approximation to ∆α

W can be computed on the coreset through the following quantity:
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∆α
T,W = argmin

d

 ∑
r1,r2∈T:

dist(r1,r2)≤d

w(r1)w(r2) ≥ α|W|2

.

Lemma 6. (1− ε)∆α
W ≤ ∆α

T,W ≤ (1 + ε)∆α
W .

Proof. Let d̂ = max{dist(p, π(p)) : p ∈ W}. Recall that the δ-coreset T was computed
with k = 1 and z = 0; hence, using the properties of T and the fact that ∆α

W ≥ η∆W , we
have that

d̂ ≤ δr∗1(W) ≤ (εη/2)∆W ≤ (ε/2)∆α
W .

Using the triangle inequality, for any d and any pair (p, q) ∈ W ×W, we have
that, if dist(π(p), π(q)) ≤ d − 2d̂, then dist(p, q) ≤ d. Thus, when |{(p, q) ∈ W ×W :
dist(π(p), π(q)) ≤ d− 2d̂}| ≥ α|W|2, we must also have |{(p, q) ∈ W ×W : dist(p, q) ≤
d}| ≥ α|W|2. Consequently,

∆α
W = argmin

d

{
|{(p, q) ∈W ×W : dist(p, q) ≤ d}| ≥ α|W|2

}
≤ argmin

d

{
|{(p, q) ∈W ×W : dist(π(p), π(q)) ≤ d− 2d̂}| ≥ α|W|2

}

= argmin
d

 ∑
r1,r2∈T:

dist(r1,r2)≤d−2d̂

w(r1)w(r2) ≥ α|W|2


= argmin

d

 ∑
r1,r2∈T:

dist(r1,r2)≤d

w(r1)w(r2) ≥ α|W|2

+ 2d̂

= ∆α
T,W + 2d̂ ≤ ∆α

T,W + ε∆α
W ,

thus proving the first stated inequality. The proof of the other inequality is accomplished
with a symmetrical argument. The triangle inequality ensures that, for every pair (p, q) ∈
W ×W, if dist(p, q) ≤ d, then dist(π(p), π(q)) ≤ d + 2d̂. Thus, when |{(p, q) ∈ W ×W :
dist(p, q) ≤ d}| ≥ α|W|2, we must also have |{(p, q) ∈ W ×W : dist(π(p), π(q)) ≤
d + 2d̂}| ≥ α|W|2. Consequently,

∆α
W = argmin

d

{
|{(p, q) ∈W ×W : dist(p, q) ≤ d}| ≥ α|W|2

}
≥ argmin

d

{
|{(p, q) ∈W ×W : dist(π(p), π(q)) ≤ d + 2d̂}| ≥ α|W|2

}

= argmin
d

 ∑
r1,r2∈T:

dist(r1,r2)≤d+2d̂

w(r1)w(r2) ≥ α|W|2


= argmin

d

 ∑
r1,r2∈T:

dist(r1,r2)≤d

w(r1)w(r2) ≥ α|W|2

− 2d̂

= ∆α
T,W − 2d̂ ≥ ∆α

T,W − ε∆α
W .
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Recall now that, for every coreset point r ∈ T, only an approximation w̃(r) to the actual
weight w(r) is available, with w(r)/(1 + λ) ≤ w̃(r) ≤ w(r). We define the approximate
counterpart of ∆α

T,W as

∆̃α
T,W = argmin

d
∑

r1,r2∈T:
dist(r1,r2)≤d

w̃(r1)w̃(r2) ≥ α|W|2.

Our approximation algorithm returns (1/(1+ ε))∆̃α/(1+λ)2

T,W and (1/(1− ε))∆̃α
T,W as the

lower and upper estimates, respectively, of the true effective diameter ∆α
W . The following

theorem establishes the tightness of these estimates and the space and time performance of
the algorithm.

Theorem 5. Consider a stream S of doubling dimension D, and a value α ∈ (0, 1). Suppose that
a value η < 1 is known such that, for every window W, ∆α

W ≥ η∆W . For any ε, λ > 0, there
exists a sliding window algorithm that, at any time t, is able to compute a weighted coreset T of size
O((c′/(εη))D), such that

1
1 + ε

∆̃α/(1+λ)2

T,W ≤ ∆α
W ≤

1
1− ε

∆̃α
T,W ,

where W is the current window and c′ > 0 is a suitable constant. The algorithm makes use of a
working memory of size O

(
(c′/(εη))D log(dmax/dmin) log1+λ(|W|)

)
. In addition, the algorithm

requires time
O
(

log1+β(dmax/dmin) ·
(
(c′/(εη)) + log1+λ(|W|)

))
to update the data structures after each point arrival, where β = δ/(3 + 4δ). The lower and upper
estimates to ∆α

W can be computed from T in time O
(
|T|2

)
= O

(
(c′/(εη))2D).

Proof. We first prove that

∆̃α/(1+λ)2

T,W ≤ ∆α
T,W ≤ ∆̃α

T,W .

Then, the stated approximation interval will immediately follow by Lemma 6. Let
us first prove the leftmost inequality. From Lemma 5 we have that, for every r ∈ T,
w̃(r) ≥ w(r)/(1 + λ). Hence, for any d such that

∑
r1,r2∈T:

dist(r1,r2)≤d

w(r1)w(r2) ≥ α|W|2,

we have that
∑

r1,r2∈T:
dist(r1,r2)≤d

w̃(r1)w̃(r2) ≥
α

(1 + λ)2 |W|
2,

which implies ∆̃α/(1+λ)2

T,W ≤ ∆α
T,W . The righmost inequality is proved in a symmetrical

fashion. Again, from Lemma 5, we have that, for every r ∈ T, w(r) ≥ w̃(r). Hence, for any
d such that

∑
r1,r2∈T:

dist(r1,r2)≤d

w̃(r1)w̃(r2) ≥ α|W|2,

we have that
∑

r1,r2∈T:
dist(r1,r2)≤d

w(r1)w(r2) ≥ α|W|2,

which implies ∆α
T,W ≤ ∆̃α

T,W . The bounds on the working memory and on the update time
follow directly from Theorem 4 and from the choice of k = 1 and z = 0. Finally, the estimates
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∆̃α/(1+λ)2

T,W and ∆̃α
T,W can be computed from T in time O

(
|T|2

)
= O

(
(c′/(εη))2D) using a

simple strategy based on binary search.

The theorem implies that by setting ε and λ sufficiently small, we can obtain tight
estimates for ∆α

W for all windows for which the value of the α-effective diameter behaves
smoothly in an interval to the left of α. Finally, we remark that the algorithm is fully
oblivious to D, dmin, and dmax. Moreover, while the theoretical space bound exhibits a
dependency on (1/η)D, in the next section, we provide experimental evidence of a much
lesser impact of η for datasets where outliers represent true noise, proving that the working
space requirements exhibit a milder dependence on the crudeness of the lower bound η.

5. Experiments

We implemented the algorithms for k-center with z outliers and for the estimation
of the effective diameter presented in Sections 3 and 4. For what concerns k-center with
z outliers, we implemented the dimensionality-sensitive algorithm of Section 3.4, which
offers a wider spectrum of performance–accuracy tradeoffs. We ran proof-of-concept
experiments aimed at testing the algorithms’ behavior against relevant competitors in terms
of approximation, memory usage, and running time for processing each point arrival (update
time) and for computing a solution for the current window whenever needed (query time).
All tests were executed using Java 13 on a Windows machine running on an AMD FX8320
processor with 12GB of RAM, with the running times measured using System.nanoTime,
and with the points to the algorithms being fed through the file input stream.

5.1. k-Center with Outliers

Along with our algorithm (dubbed OUR-SLIDING), we implemented the sequential
3-approximation by [7] (dubbed CHARIKAR) to be run on the entire window W, consisting
of a search for the minimum ρ such that OUTLIERSCLUSTER(W, k, ρ, 0), run with unit
weights, ends with, at most, z uncovered points. We chose this sequential benchmark
over the existing LP-based 2-approximation algorithms since these latter algorithms do
not seem to admit practical implementations. Since CHARIKAR itself is plagued by a
superquadratic complexity, which makes it unfeasible for larger windows, we also devised
a sampled version (dubbed SAMP-CHARIKAR) where the center selection in each call to
OUTLIERSCLUSTER examines only a fixed number of random candidates, rather than all
window points. We deemed it unnecessary to perform a comparison of our algorithm with
the one in [23], since, as mentioned in the introduction, this latter algorithm needs to run
an instance of OUTLIERSCLUSTER for each update operation, and would thus prove to be a
poor competitor of our strategy, where the execution of this expensive sequential procedure
is confined only to the query operation.

Also, to assess the importance of using a specialized algorithm to handle outliers, we
compared the quality of our solution against the one returned by the algorithm of [12] for
k-center without outliers (dubbed GON), where the radius is computed excluding the z
largest distances from the centers.

The algorithms were tested on the following datasets, often used in previous works [8]:
the Higgs dataset (http://archive.ics.uci.edu/ml/datasets/HIGGS), (accessed on 10 Jan-
uary 2022), which contains 11 million seven-dimensional points representing high-energy
particle features generated through Monte-Carlo simulations; and the Cover dataset
(https://archive.ics.uci.edu/ml/datasets/covertype), (accessed on 10 January 2022), which
contains 581,012 55-dimensional points from geological observations of US forest biomes,
and was employed as a stress test for our dimensionality-sensitive algorithm. We also gen-
erated inflated versions of the original datasets, dubbed Higgs+ and Cover+, by artificially
injecting a new true outlier point after each original point with probability p, where the
new point has a norm 100 times the diameter of the original dataset (e.g., as if produced
by a malfunctioning sensor). The probability p was chosen to yield z/2 true outliers per
window, in expectation. We performed tests for k = 10, z = 10, 50, and window sizes
|W| = N ∈ {104, 105, 106} using Euclidean distance.

http://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/covertype
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For OUR-SLIDING, we set δ = 2/3, β = 0.5, and λ = 0.5; moreover, we set
dmin = 0.01 and dmax = 104, which are conservative lower and upper estimates
of the clustering radii for all windows and all datasets. The implementations of
CHARIKAR and SAMP-CHARIKAR execute, for a window W, a search for a minimum ρ
such that OUTLIERSCLUSTER(W, k, ρ, 0) with unit weights ends with ≤ z uncovered points.
For SAMP-CHARIKAR, OUTLIERSCLUSTERS has been modified so that each new center is
selected among a set of random window points of expected size 1000.

Tables 1 and 2 detail the full results of the experiments on k-center clustering with z out-
liers. All quantities are provided as one-sigma confidence intervals, based on 10 windows
sampled every 104 timesteps after the first N insertions. Starred results are based on a
single sample due to the excessively high running time. Table 1 reports the average ratio
between the clustering radius obtained by each tested algorithm and the one obtained
by OUR-SLIDING, as well as the average number of floats maintained in memory by the
algorithms. (All radii have been computed with respect to the entire window, excluding
the z largest distances from the centers.) As shown in the table, OUR-SLIDING is always
within a few percentage points from the radius of the solution of CHARIKAR (which did not
finish in reasonable time for N = 106). On the other hand, the quality of the solution of
SAMP-CHARIKAR degrades as the window size grows, since the fraction of center candi-
dates decreases. Moreover, as expected, GON yields a poorer performance, especially in
the presence of true outliers, as these are mistakenly selected as centers instead of being
disregarded. Hence, GON is not considered in the successive experiments. Figure 1 plots
the memory usage (in floats) of the algorithms for Higgs, confirming that the working
memory required by OUR-SLIDING grows sublinearly with N, and it is much smaller than
the one required by CHARIKAR and SAMP-CHARIKAR, which is linear in N.

Figure 1. Working memory (Higgs, z = 10).
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Table 1. Comparison between clustering radii and between working memory requirements.

Dataset Algorithm

Obj. Ratio Memory (×106 Floats)

Window Size Window Size

104 105 106 104 105 106

HIGGS
(z = 10)

OUR-SLIDING 1± 0 1± 0 1± 0 0.13± 0.01 0.27± 0.02 0.42± 0.02
CHARIKAR 1.02± 0.05 0.99± 0.04 - 0.07± 0 0.7± 0 7± 0

SAMP-CHARIKAR 1.07± 0.05 1.43± 0.23 2.74± 0.7 0.07± 0 0.7± 0 7± 0
GON 1.18± 0.12 1.17± 0.08 1.05± 0.03 0.07± 0 0.7± 0 7± 0

HIGGS
(z = 50)

OUR-SLIDING 1± 0 1± 0 1± 0 0.26± 0.01 0.65± 0.03 1.25± 0.02
CHARIKAR 1.02± 0.04 - - 0.07± 0 0.7± 0 7± 0

SAMP-CHARIKAR 1.04± 0.06 1.14± 0.08 1.59± 0.15 0.07± 0 0.7± 0 7± 0
GON 1.54± 0.19 1.5± 0.15 1.19± 0.06 0.07± 0 0.7± 0 7± 0

COVER
(z = 10)

OUR-SLIDING 1± 0 1± 0 0.72± 0.18 2.06± 0.13
CHARIKAR 0.97± 0.17 1.02 * 0.55± 0 5.5± 0

SAMP-CHARIKAR 0.96± 0.17 0.98± 0.18 0.55± 0 5.5± 0
GON 1.1± 0.17 0.94± 0.15 0.55± 0 5.5± 0

COVER
(z = 50)

OUR-SLIDING 1± 0 1± 0 1.83± 0.22 5.38± 0.22
CHARIKAR 0.98± 0.09 - 0.55± 0 5.5± 0

SAMP-CHARIKAR 0.99± 0.1 1.04± 0.2 0.55± 0 5.5± 0
GON 1.13± 0.11 1.02± 0.17 0.55± 0 5.5± 0

HIGGS+
(z = 10)

OUR-SLIDING 1± 0 1± 0 1± 0 0.12± 0.01 0.26± 0.02 0.43± 0.02
CHARIKAR 0.98± 0.18 0.97± 0.04 - 0.07± 0 0.7± 0 7± 0

SAMP-CHARIKAR 1.09± 0.17 1.61± 0.2 3.03± 0.51 0.07± 0 0.7± 0 7± 0
GON 1.63± 0.29 1.3± 0.16 1.4± 0.02 0.07± 0 0.7± 0 7± 0

COVER+
(z = 10)

OUR-SLIDING 1± 0 1± 0 0.65± 0.17 1.93± 0.21
CHARIKAR 0.99± 0.15 1.02 * 0.55± 0 5.5± 0

SAMP-CHARIKAR 0.97± 0.14 0.96± 0.15 0.55± 0 5.5± 0
GON 3.07± 2.02 1.44± 0.22 0.55± 0 5.5± 0

Table 2 reports update times (in milliseconds) and query times (in seconds). For OUR-
SLIDING, the update time is the time required to process any newly arrived point, whereas
the query time includes the time to extract the coreset and compute the final solution on the
coreset. For CHARIKAR and SAMP-CHARIKAR, the update time is null, whereas the query
time is the time taken to extract the solution from the whole window. The running times
reveal that, by virtue of the coreset-based approach, OUR-SLIDING features a query time
that is much smaller than the one of CHARIKAR and SAMP-CHARIKAR. The update times for
OUR-SLIDING, although not negligible, are three orders of magnitude smaller than the query
times. The experiments for z = 50 show that, whereas the working memory requirements
and running times increase with z, for reasonably large values of N, OUR-SLIDING still
exhibits a much lower memory footprint than CHARIKAR and still returns solutions of
comparable quality.
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Table 2. Comparison between update times and between query times.

Dataset Algorithm

Update Time (ms) Query Time (s)

Window Size Window Size

104 105 106 104 105 106

HIGGS
(z = 10)

OUR-SLIDING 0.66± 0.17 1± 0.44 1.98± 0.7 2.52± 1.22 5.5± 0.87 8.2± 0.42
CHARIKAR 0± 0 0± 0 0± 0 24.88± 2.52 3080.8± 160.8 -

SAMP-CHARIKAR 0± 0 0± 0 0± 0 2.51± 0.26 31.5± 1.34 297.8± 30.9

HIGGS
(z = 50)

OUR-SLIDING 1.24± 0.66 4.03± 0.53 5.39± 1.14 10.51± 0.76 93.22± 24.76 75.99± 10.38
CHARIKAR 0± 0 0± 0 0± 0 27.97± 2.68 – –

SAMP-CHARIKAR 0± 0 0± 0 0± 0 2.87± 0.24 47.95± 2.11 384.4± 90.92

COVER
(z = 10)

OUR-SLIDING 1.05± 0.46 3.74± 0.57 12.85± 2.59 87.82± 46.08
CHARIKAR 0± 0 0± 0 314.93± 55.21 5 · 104 *

SAMP-CHARIKAR 0± 0 0± 0 32.1± 5.25 400.81± 66.89

COVER
(z = 50)

OUR-SLIDING 3.31± 0.8 11.22± 1.28 44.06± 6.88 892.82± 654.3
CHARIKAR 0± 0 0± 0 310.87± 43.6 -

SAMP-CHARIKAR 0± 0 0± 0 31.06± 3.05 431.18± 28.42

HIGGS+
(z = 10)

OUR-SLIDING 0.65± 0.26 1.22± 0.37 1.89± 0.42 0.92± 0.93 5.28± 1.82 8.37± 0.31
CHARIKAR 0± 0 0± 0 0± 0 27.53± 3.53 3224.2± 252.4 –

SAMP-CHARIKAR 0± 0 0± 0 0± 0 2.7± 0.22 35.34± 3.14 328.1± 36.08

COVER+
(z = 10)

OUR-SLIDING 1.21± 0.5 3.14± 0.6 7.08± 6.54 51.22± 39.68
CHARIKAR 0± 0 0± 0 402.32± 71.95 4 · 104 *

SAMP-CHARIKAR 0± 0 0± 0 41.47± 9.44 418.03± 47.58

We also tested the sensitivity of our algorithm’s performance to the λ parameter,
making it range in [0, 1]. The results for Higgs are shown in Figure 2 and in Tables 3 and 4.
Specifically, Table 3 reports on the sensitivity of the clustering radius and of the memory
requirements, whereas Table 4 reports on the sensitivity of the update and query times.
The experiments were run on Higgs and Cover, with k = z = 10, setting, as before, δ = 2/3,
β = 0.5, dmin = 0.01, dmax = 104. For λ, we used the values: 0, 0.1, 0.5, 1. As shown
in Figure 2, setting λ = 0 (i.e., maintaining the full histograms) leads to an unbearable
increase in memory usage, and, hence, in execution times. With approximate histograms
(i.e., λ > 0), the memory usage decreases as λ increases, with a significant drop already
for λ = 0.1. While λ = 0 yields the solution with the best approximation, in our tests, we
often obtained the same solution using λ = 0.1. Most importantly, the degradation of the
clustering radius never exceeded 1%, even for λ = 1.

Figure 2. OUR-SLIDING: sensitivity to λ (Higgs, z = 10).
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Table 3. Sensitivity of OUR-SLIDING to λ: clustering radii and working memory requirements.

Dataset Algorithm

Clustering Radius Memory (×106 Floats)

Window Size Window Size

104 105 106 104 105 106

HIGGS
(z = 10)

λ = 0 2.826± 0.178 4.289± 0.162 - 0.53± 0.04 4.85± 0.96 -
λ = 0.1 2.826± 0.178 4.289± 0.162 5.981± 0.124 0.15± 0.01 0.36± 0.03 0.6± 0.02
λ = 0.5 2.808± 0.195 4.297± 0.165 6.031± 0.027 0.13± 0.01 0.27± 0.02 0.42± 0
λ = 1 2.812± 0.178 4.281± 0.176 6.031± 0.021 0.12± 0.01 0.24± 0.02 0.37± 0

COVER
(z = 10)

λ = 0 1177.56± 400.03 1976.02± 150.66 0.75± 0.17 2.3± 0.15
λ = 0.1 1177.56± 400.03 1973.31± 149.53 0.74± 0.17 2.23± 0.14
λ = 0.5 1177.56± 400.03 1954.08± 145.71 0.72± 0.18 2.06± 0.13
λ = 1 1180.44± 405.86 1967.02± 150.61 0.71± 0.18 2± 0.12

Table 4. Sensitivity of OUR-SLIDING to λ: update and query times.

Dataset Algorithm

Update Time (ms) Query Time (s)

Window Size Window Size

104 105 106 104 105 106

HIGGS
(z = 10)

λ = 0 3.49± 0.69 35.18± 21.11 - 2.49± 1.16 5.91± 0.74 -
λ = 0.1 0.72± 0.38 1.56± 0.53 2.58± 0.41 2.47± 1.18 5.88± 0.89 8.88± 0.47
λ = 0.2 0.57± 0.12 1.39± 0.42 2.06± 0.67 2.46± 1.19 5.82± 0.91 7.74± 0.25
λ = 1 0.57± 0.1 1.32± 0.36 1.99± 0.32 2.47± 1.2 5.81± 0.92 7.77± 0.15

COVER
(z = 10)

λ = 0 1.12± 0.38 3.75± 0.32 12.44± 2.38 90.65± 51.26
λ = 0.1 1.33± 0.69 3.72± 0.53 12.31± 1.92 90.36± 51.44
λ = 0.2 1.27± 0.5 3.57± 0.25 12.41± 2.19 90± 51.14
λ = 1 1.21± 0.5 4.29± 2.28 12.32± 2.17 90.34± 50.61

Overall, the experiments confirm that OUR-SLIDING is able to achieve a precision
comparable to the sequential algorithms at a fraction of their memory/time requirements.

5.2. Effective Diameter

We compared our algorithm for estimating the effective diameter described in Section 4
(dubbed EFF-SLIDING) against the following sequential baseline (dubbed EFF-SEQUENTIAL).
EFF-SEQUENTIAL computes all N2 distances in the window W and, to avoid storing all of
them, only keeps track of how many distances lay in each interval [dmin · (1 + ρ)i, dmin ·
(1 + ρ)i+1], for i ≥ 0, by maintaining the appropriate counters. We set ρ = 0.01 so that
the error due to this discretization is minimal. After all distances have been computed,
the algorithm sweeps the counters and returns the minimum value dmin · (1 + ρ)i for which
at least dα|W|2e distances fall below that value. This same procedure, adapted to account
for weights, is also used in EFF-SLIDING to compute the solution on the weighted coreset.

We experimented on the Higgs-eff dataset, which is another artificially inflated ver-
sion of the Higgs dataset where a true outlier (i.e., a random point whose norm is 100 times
the diameter of the original dataset) is injected, on average, every 1000 points. In the exper-
iment, we set α = 0.9. Since, for every tested window size N, αN2 � (N − N/1000)2, we
expect, in this controlled experiment, the α-effective diameter of each window of Higgs-eff
to be close to the diameter of the non-outlier points in the window. For our algorithm, we
set ε = 5/3 and λ = β = 0.5. Moreover, we set dmin = 0.01 and dmax = 104. Finally, we set
η = 1/1000, which is a very conservative lower bound to the ratio between the effective
diameter and the diameter of the dataset for any window W.
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The results of these experiments are reported in Tables 5 and 6. Table 5 reports the
ratio between the effective diameter computed by EFF-SEQUENTIAL and the (conservative)
upper estimate ∆̃α

T,W computed by EFF-SLIDING, as well as the average number of floats
maintained in memory by the algorithms. As shown in the table, the solution returned by
EFF-SLIDING is almost indistinguishable from the one returned by EFF-SEQUENTIALfor those
window sizes for which EFF-SEQUENTIAL, whose complexity grows quadratically, could be
executed within reasonable times. On the other hand, the memory usage of EFF-SLIDING

grows very slowly with N, and, thus, for large enough window sizes, becomes lower
than the one of EFF-SEQUENTIAL. Table 6 reports the update and query times for the two
algorithms. Due to the reduced coreset size, the query times of EFF-SLIDING are orders of
magnitude lower than those of EFF-SEQUENTIAL, and the updated times of EFF-SLIDING,
although not negligible, are significantly smaller than the query times.

Table 5. Effective diameter: comparison between estimates and between working memory requirements.

Dataset Algorithm

Diameter Ratio Memory (×106 floats)

Window Size Window Size

104 105 106 104 105 106

HIGGS-EFF
EFF-SLIDING 1± 0 1± 0 1± 0 0.52± 0.36 0.41± 0.23 0.53± 0.1

EFF-SEQUENTIAL 0.991± 0.019 0.992± 0.009 - 0.07± 0 0.7± 0 7± 0

Table 6. Effective diameter: comparison between update times and between query times.

Dataset Algorithm

Update Time (ms) Query Time (s)

Window Size Window Size

104 105 106 104 105 106

HIGGS-EFF
EFF-SLIDING 3.63± 3.76 2.53± 1.57 3.33± 1.16 0.05± 0.01 0.77± 0.16 7.41± 0.57

EFF-SEQUENTIAL 0± 0 0± 0 0± 0 9.26± 1.23 994.81± 38.63 -

Finally, we tested on tailor-made artificial datasets the impact of the parameter η,
which is a (possibly crude) lower bound on the ratio between the effective diameter and the
diameter. In fact, the theoretical bounds on the coreset size embody a factor proportional
to (1/η)D, which could lead to a severe deterioration of the performance indicators for
low (i.e., conservative) values of η. In reality, for datasets where the discrepancy between
the diameter and effective diameter is caused by few distant outliers (noisy points), since
the balls centered on coreset points have radius O(εη∆W) = O

(
ε∆α

W
)

and since most of
the points will be contained in a ball of radius O

(
∆α

W
)
, with only a few outliers at distance

O(∆W), the actual number of points maintained in the coreset should not really depend
on η. To test this intuition, we created artificial datasets by generating random points in a
ball of unit radius with a few outliers (one every 1000 points, on average) on the surface of
a ball of radius R for values of R in {10, 100, 1000}. We set α = 0.9 as before, and ran our
algorithm with ε = 10/3 and λ = 0.5. Moreover, we set η = 1/(2R) as it lower bounds the
ratio between the effective diameter and the diameter. We report the results for window
size N = 105, since a similar pattern emerges for other values of N. Indeed, as Table 7
shows, the memory usage is, in practice, almost constant across all values of η.
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Table 7. Effective diameter: sensitivity to η.

Dataset Eff. Diameter Memory (×106 floats) Update Time (ms) Query Time (s)

R = 10 1.175± 0 0.22± 0.05 0.91± 0.31 1.69± 0.5
R = 100 1.175± 0.006 0.24± 0.11 1.79± 1.01 0.84± 0.25
R = 1000 1.178± 0.006 0.35± 0.14 1.9± 1.39 4.2± 1.34

6. Conclusions

In this paper, we have presented coreset-based streaming algorithms for the k-center
problem with z outliers and for the estimation of the α-effective diameter under the sliding
window setting. Our algorithms require a working memory that is considerably smaller
than the window size, and, with respect to the state-of-the-art sequential algorithms ex-
ecuted on the entire window, they are up to orders of magnitude faster while achieving
a comparable accuracy. The effectiveness of our approach has been confirmed by a set of
proof-of-concept experiments on both real-world and synthetic datasets.

Based on the theoretical analysis conducted in the paper, the space and time required
by our algorithms to attain a high accuracy seem to grow steeply (in fact, exponentially)
with the doubling dimension of the stream. An interesting, yet challenging, research
avenue is to investigate whether this steep dependence can be ameliorated by means of
alternative techniques (e.g., the use of randomization). In addition, it would be interesting
to incorporate some notion of local density in the clustering quality measure; for example,
by using a robust distance measure, such as the one proposed in [29].
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