
Sede Amministrativa: Università degli Studi di Padova
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Abstract

The primary objective was to estimate the cumulative incidence function (CIF), defined

as the probability of occurrence of the main event of interest over time, allowing pa-

tients to be censored or to fail from competing events. The CIF is often of great interest

in medical research and can be estimated by different regression models and inferen-

tial approaches. The performance among cause-specific hazard (CSH), sub-distribution

hazard (SDH), pseudo-value, and binomial regression approaches were compared using

a simulation study in the presence of competing risks survival data. The empirical bias

was found higher under some of these approaches. However, no substantial differences

between the estimated and empirical standard errors of the estimators, were reported

among the regression approaches, and this is essential in clinical studies to establish

a treatment effect with precision. Meanwhile, a slight under-estimation was observed

only for the pseudovalue approach. It was found that time-varying regression coeffi-

cients improve the coverage probability under the binomial approach. Furthermore, the

binomial and pseudo-value approaches showed a gain in efficiency compared to the CSH

approach. Additionally, a real data application was illustrated for estimating the CIF of

dying from Covid-19 as well as for other causes. Several risk factors and patient charac-

teristics such as sex, age, and race, were found to increase significantly the cumulative

risk of death due to Covid. SDH and CSH approaches showed very similar model-based

predictions of CIF. Another objective of the thesis was to give guidelines to a new user

for estimating the sample size under a fixed design and a group sequential (Gs) design,

following the CSH and SDH approaches. For this scope, several simulation studies were

performed. The Weibull, exponential, and Gompertz time-to-event distributions were

studied under fixed design. When there was a positive treatment effect on the compet-

ing event, CSH provided a smaller required sample size than the SDH approach, given

a fixed power for all these distributions. Under Gs design, the contribution of a new



treatment was studied by analyzing interim stage clinical data under various competing

risks scenarios. Within this scope, efficacy and futility boundaries were computed, and

the decision to continue or stop a trial was taken by calculating the conditional power.

It was concluded that the SDH approach could be preferred when the main attention is

devoted to increasing conditional power, and on the other hand, CSH is the best choice

when the main focus is to reduce the required number of events.



Sommario

L’obiettivo principale della tesi è stato quello di stimare la funzione d’incidenza cu-

mulata (CIF), definita come la probabilità cumulata che accada l’evento di interesse nel

tempo, sotto la condizione che i soggetti possano essere censurati a destra o sperimen-

tare altri eventi competitivi. La CIF è spesso di grande interesse nella ricerca medica

e può essere stimata con diversi modelli di regressione ed approcci inferenziali. È stato

condotto uno studio di simulazione per confrontare le prestazioni tra diversi approcci

in presenza di dati di sopravvivenza con rischi competitivi: modelli per i rischi causa-

specifici (CSH), modelli per i rischi della sotto-distribuzione (SDH), modelli basati sui

pseudovalori e modelli di regressione binomiale. Si è trovato che la distorsione empirica

è maggiore in alcuni degli approcci considerati. Tuttavia, non è stata rilevata alcuna

differenza sostanziale tra gli errori standard stimati e quelli empirici, e ciò è essenziale

negli studi clinici che hanno lo scopo di stabilire con precisione l’effetto di un intervento.

Il solo approccio basato sui pseudovalori ha mostrato una lieve sottostima. È stato tro-

vato che l’uso di coefficienti di regressione tempo-dipendenti nell’approccio binomiale,

migliora le probabilità di copertura. Inoltre, si è constatato che l’approccio binomiale

e quello basato sui pseudovalori conducono ad una maggiore efficienza statistica degli

stimatori, rispetto al metodo CSH. Infine, è stata riportata un’applicazione su dati reali

con lo scopo di stimare la CIF per la mortalità dovuta al Covid-19 come anche la morta-

lità dovuta ad altre cause. È stato trovato che diversi fattori di rischio e caratteristiche

dei pazienti, quali sesso, età e razza, aumentano significativamente il rischio cumulato

di morte per il Covid. Gli approcci SDH e CSH hanno mostrato risultati molto simi-

li per quanto riguarda le previsioni della CIF basate sul modello di regressione. Un

secondo obiettivo della tesi è stato quello di fornire linee guida per stimare la dimen-

sione campionaria sotto un disegno fisso e sotto un disegno sequenziale a gruppi (Gs)

seguendo gli approcci CSH e SDH. Per questo scopo, sono stati condotti diversi studi

di simulazione. Abbiamo studiato le distribuzioni esponenziale, Weibull e Gompertz



per il tempo all’evento, sotto un disegno fisso. Sotto l’ipotesi che si sia verificato un

effetto positivo del trattamento sull’evento competitivo, l’approccio CSH ha fornito una

dimensione campionaria richiesta inferiore rispetto all’approccio SDH, data una certa

potenza fissata per tutte le distribuzioni. Nell’ambito dei disegni Gs, abbiamo studia-

to il contributo di un nuovo trattamento analizzando i dati clinici nei successivi stadi

intermedii (interim), sotto diversi scenari di rischi competitivi. In questo ambito, sono

stati calcolati i limiti di efficacia e futilità, e la decisione di continuare o interrompere

lo studio è stata presa sulla base della funzione di potenza condizionata, calcolata ai

vari stadi sequenziali. Abbiamo concluso che l’approccio SDH potrebbe essere prefe-

rito quando l’attenzione principale è rivolta all’aumento della potenza condizionata e,

allo stesso tempo, si ha preferenza per il metodo CSH quando si mira principalmente a

ridurre il numero richiesto di eventi.
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Introduction

Overview

Competing Risks (CR) survival analysis answers questions about the time to occurrence

of events with the extension of multiple causes of failure. Many studies have investigated

identifying appropriate statistical models for a given clinical data by either ignoring the

competing events or using inappropriate regression-based statistical methods to analyze

complex clinical information. Thus, one of the objectives in this thesis is to consider the

competing risks settings to estimate the probability of the event of interest among the

many possible events over time using the Cumulative Incidence Function (CIF). The

quantity CIF estimates the marginal probability of patients who actually developed the

event of interest, regardless of whether they were censored or failed in other competing

events. The CIF can be estimated using a conventional survival technique, which is

called the Kaplan-Meier (K-M) estimate. When there is only one event of interest,

then the CIF equals the complementary of the K-M estimate. However, in the presence

of CR data, the K-M method for estimating cumulative incidence, the log-rank test

for comparing cumulative incidence curves, and the standard Cox model for assessing

covariates lead to incorrect and biased results (Kim, 2007). This bias arises because

these conventional techniques assume that all events are independent, which means

they censor events other than the event of interest. In this context, four regression

approaches were studied to estimate the CIF in the presence of competing events. These

are Cause-Specific Hazard (CSH), Sub-Distribution Hazard (SDH), pseudo-value, and

binomial regression approaches as proposed by Andersen et al. (2012), Fine and Gray

(1999), Andersen et al. (2003), and Scheike et al. (2008) respectively. The idea was

to compare all the regression approaches and provide guidelines to users to help them

choose the best method. Although the interpretation of the regression parameters for

all the regression approaches is not straightforward, but the graphical representation

of CIF curves between treatment and control groups are always appealing and thus

popular in medical research.

3



4 Main contributions of the thesis

Another objective of the thesis is to compute the sample sizes for fixed and Group

sequential (Gs) design under CR survival data. When a randomized clinical trial is

designed, sample size computations are important to detect the efficacy of treatments

with sufficient power. In a survival study, this size is determined not by the number

of patients accrued but by the number of events observed during a specific follow-up

period. If the follow-up continues until all patients enrolled in the trial have experienced

the event of interest, the required sample size coincides with the number of patients.

However, clinical trials often have to be completed within a relatively short period and

only part of the trial population experience the event of interest, allowing patients to be

censored or fail in competing events. In the fixed design, the CSH and SDH approaches

were considered for the Weibull, exponential, and Gompertz time-to-event distributions

to estimate the main event’s probability over time and determine the necessary number

of patients.

In the sample size under the Gs design settings, the objective is to perform analysis

at any time points (interim stages) after having some data information. Here, the

analysis can be conducted after each patient is accrued (sequential design), but this is

unrealistic as it is common for data about efficacy to be available only at discrete times

(once or twice each year) while multi-center clinical trials are being monitored. Thus,

the motivation for using the Gs design is to allow for the study to be stopped early

for efficacy or for futility. Here, the former means faster access to the new treatment

during an interim analysis, while the latter refers to the actual unknown effect is far from

anticipated under the alternative hypothesis. Additionally, interim analyses are also a

requirement of data monitoring committees as it is highly dependent on patients’ ethical

issues. Specifically, it may be inappropriate to ask patients to continue to participate

in trials in which the high-level outcome already seems clear (Gallo et al., 2014). This

design helps reduce the number of randomized patients per treatment group, thus saving

the resources that can be reallocated later to more productive undertakings. However,

Gs design is ubiquitous in modern clinical research, and hence, computation of the

decision boundaries and the sample size is not trivial. Here, the sample size fixed design

results are extended to the Gs design settings under the CSH and SDH approaches.

Main contributions of the thesis

Regression approaches for the cumulative incidence function

Chapter 1 discusses the computational aspects of the CIF in the non-parametric and
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semi-parametric regression approaches for competing risks data by reviewing the liter-

ature. In particular, the CSH, SDH, pseudo-value, and binomial regression approaches

are compared through a simulation study, which was conducted based on the inverse

probability method. In the context, Bender et al. (2005) explained the general settings

for survival data. The survival function is a probability distribution function that maps

a number in the domain [0,∞] to a probability between 0 and 1. Here, random num-

bers are generated from a standard uniform distribution in the interval [0,1] and then

inverted the survival function to transform uniformly distributed random numbers into

event times. It is assumed that the hazards for the event of interest and competing

events follow Weibull distributions. Specifically, the idea to choose the Weibull distri-

bution is based on the Bone Marrow Transplant (BMT) data as it was found that the

survival probability in the Weibull distribution fits the BMT data well (Figure 1.1).

The BMT data are available in the timereg package in R as well as in the International

Blood and Marrow Transplant Research (CIBMTR) study (Sierra et al., 2002). Next,

the latent failure time approach is applied to simulate the event-time distribution. The

simulation settings have been described in Section 1.4.

Additionally, helpful insights and representations of a complex phenomenon are pro-

vided through simulation in Section 1.4.6. In particular, the following are computed:

bias, ratios of estimated to empirical standard errors, coverage probabilities (CP), and

relative efficiencies of the CIF for both events for the experimental and control groups in

all the regression approaches by assuming four discrete time points {10, 50, 90, 130} with

3, 000 replications of size 500. Furthermore, the following are shown: the computational

techniques of the true CIF, the regression coefficients in the four regression approaches,

and the variance and confidence interval calculations of CIF using the pseudo-value re-

gression approach beacuse the estimated variance of CIF using this approach was not

straightforward to obtain.

Application to real data

Chapter 2 contains a real data application to validate the simulation results ob-

tained in Chapter 1. Here, we provide practical guidelines for using all the regression

approaches and interpreting the results using the R statistical software. In particular,

the non-parametric techniques (without covariates) for the CSH and SDH approaches are

discussed in Section 2.2.1. Next, Section 2.2.2 describes all the regression approaches

(CSH, SDH, binomial, and pseudo-value approaches) to explore the covariates effect.

Moreover, in Section 2.3, the results from an application to COVID-19 data are re-

ported to study the competing risks of dying from Covid and other causes. Finally,

results from the different approaches are compared and some relevant aspects that have
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not been explained elsewhere, are highlighted.

Sample size computation using fixed design

Chapter 3 provides guidelines to a new user to estimate the sample size using a fixed

design. Here, two of the most popular approaches for regression modeling of competing

risks data are investigated: CSH and SDH approaches for the Weibull, exponential, and

Gompertz distributions. Specifically, Tai et al. (2018) compared sample size calculation

for these two different approaches with some limitations. Additionally, the following

novel aspects are discussed: the computational methods employed and the comparison

between CSH and SDH approaches for Weibull and Gompertz distributions, which have

not been explored elsewhere. Next, in Section 3.1, the importance of sample size under

fixed design as well as the novel contributions of this method are discussed. Here, the

inferential algorithms under the CSH, and SDH approaches are implemented. In partic-

ular, Section 3.2 explains the theoretical aspects, while Section 3.3 describes practical

guidelines for computing sample size for CSH and SDH approaches with a simulation

study. Further, different shape parameter values are studied for the Weibull and Gom-

pertz distributions to observe how sample size behaves when the shape parameter values

are changed in Section 3.4. Finally, Section 3.5 explained the summary results. The

guidelines for computing sample size when using the fixed design and the results of our

simulations provide better insights than simulation studies in the existing literature.

Sample size computation using group sequential design

Chapter 4 focuses on the Gs design used for a new treatment to justify the contin-

uation or interruption of a clinical trial in interim analyses when there are competing

risks data. One of the main scopes in Gs design is to calculate the boundary values after

adjusting for type I and type II errors. Among several functional forms proposed by

Gordon Lan and DeMets (1983), a flexible approach with Wang-Tsiatis bounds. This

approach has the possibility of applying the most popularly used methods in terms of

O’Brien-Fleming and Pocock bounds in the computations. An efficacy boundary offers

the possibility of early stopping and savings in sample size if the alternative hypoth-

esis is true. However, if the null hypothesis is true, then a futility stopping rule has

to be added. Within this scope, efficacy and futility boundaries are computed, and

finally, conditional power (following the findings of Jennison and Turnbull (1999)) was

calculated. The motivation of using this conditional power is that it potentially stops

a trial early due to poor or disappointing efficacy results. In the Gs design, the main

contributions are as follows: the guidelines to compute the SDH ratios, events size, and

conditional power in each interim stage in the CSH and SDH approaches are explained

through simulation studies. Moreover, in Section 4.2, the theoretical aspects to compute
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boundary values are examined. Error spending function and conditional power formu-

lations are then described in Sections 4.3 and 4.4, respectively. A simulation study is

undertaken in Section 4.5. Next, the guidelines for deriving sample size using the direct

modeling approach is provided in Section 4.6.

Finally, the necessary future directions to create a valid and feasible user-friendly

interface to compute fixed and Gs design using R Shiny for the daily use of a practicing

statistician are discussed in Chapter 5. Specifically, the functions and the naming of

the arguments in existing software are not straightforward or even confusing. Thus, for

daily use of a friendly user interface would be of much help. Furthermore, the guidelines

to compute sample size under the binomial and pseudo-value regression approaches

are also provided. Overall, this thesis will help a new user to compare all competing

risks regression approaches and to compute sample size under a fixed or Gs design for

competing risks survival data.





Chapter 1

Regression approaches for the

cumulative incidence function

1.1 Introduction

Competing-Risks (CR) analysis is a technique that extends the conventional survival

analysis such as the Kaplan-Meier (K-M) estimate, the log-rank test, and the Cox regres-

sion to handle data that have multiple event types. The Cause-Specific Hazard (CSH)

function and the Cumulative Incidence Function (CIF) are two important quantities of

interest in medical research. The CIF can be modeled either by the Fine-Gray method

(Fine and Gray, 1999) for one particular event of interest, or by performing the cause-

specific survival analysis by modeling the CSHs which models the CSH of all causes. The

Fine-Gray method is also known as Sub-Distribution Hazard (SDH) approach. When

there is only one event of interest, the CIF can be correctly estimated using the K-M

estimator, which equals the complementary of the survival function. However, in the

presence of CR data, the K-M method for estimation of cumulative incidence, the log-

rank test for comparison of cumulative incidence curves, and the standard Cox model

for assessing covariates lead to incorrect and biased results (Kim, 2007). This bias

arises because the aforementioned conventional techniques assume that all events are

independent, which means they censor events other than the event of interest. Under

the CR settings, the log-rank test and the Cox regression do not automatically lead to a

correct analysis of the CIF, although they can be adapted with minimal effort to make

inferences about the CSH function (Guo and So, 2018). This can be overcome with the

use of the Fine and Gray methodology, which is specialized to estimate the CIF (Gray,

1988; Fine and Gray, 1999). The Fine-Gray method provides an important contribution

to modeling the CIF. However, this method has limitations in terms of interpretation.

9
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The model covariates, although they can be interpreted as having an effect on the CIF,

do not directly link to an underlying event rate, which is interpretable in the real world

(Andersen et al., 2012).

Then to simulate data in a CR context, the latent failure time model (David and

Moeschberger, 1978) has been used in the literature, where survival time and cause

are modeled as arising from the minimum of latent failure times corresponding to the

different causes (Moriña and Navarro, 2017). In the existing literature, see, for instance,

Andersen et al. (2002), Kalbfleisch and Prentice (2002), Prentice et al. (1978), and

Tsiatis (1975), the dependence structure between the postulated latent failure times

cannot be identified from the observable data. Moreover, the literature search reported

in Beyersmann et al. (2009) found that most of the published papers using simulations

in a competing risks setting, used a latent failure time model (Moriña and Navarro,

2017).

It is convenient to model survival times through the hazard function because of

censoring (Bender et al., 2005). It may be completely specified the joint distribution

of event time and event cause through the CSH. In this thesis, the CSH and SDH

approaches are discussed to estimate the CIF in presence of competing events. Moreover,

modeling these two functions leads to different types of regression models with the

presence of covariates. With the CSH approach, the CIF for event k has no direct

relation to the CSH rate (λk) since this cause-specific CIF is determined by all CSHs.

On the contrary, with the SDH approach, CIF can be modeled by its direct relation

with the SDH rate (λ∗k) under the assumption that only one event is possible at a given

time t. Furthermore, the CSH and SDH approaches differ in the definition of the risk

set. The risk set decreases when there is an event with a competing cause or censoring

with the former, whereas with the latter, patients who failed from an event other than

the one of interest before t, remain in the risk set. The SDH approach is similar to a

Cox proportional regression model, but the cumulative incidence is associated with the

SDH rate. The motivation for this model is that the effect of a covariate on the CSH

function may be quite different from the effect on CIF. This means that a covariate

may have a strong influence on the CSH function, but have no effect on the CIF (Fine

and Gray, 1999). Thus, the difference between CSH and SDH is that the CR events

are treated differently. The former considers CR events as non-informative censoring,

whereas the latter takes into account the informative censoring nature of the CR events

(Satagopan et al., 2004).

Meanwhile, this thesis further discussed two alternative regression approaches avail-

able in the literature: pseudo-value and binomial. Nevertheless, the interpretation of
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the regression parameters in all the approaches is not straightforward, depending on the

relationship between the CIF and link function. However, the graphical representation

of CIF curves between treatment and control groups is always possible to help make

clinical decisions.

This chapter is organized as follows. In Section 1.2, the non-parametric (without

covariate) estimation technique, and parametric (with covariate) estimation techniques

are discussed for all the approaches in Section 1.3. The settings of the simulation studies

are mentioned in Section 1.4. In Subsection 1.4.1, the censoring parameter formulation

is described. Next, the comparison of link functions is described in Subsection 1.4.2

and the computational techniques to compute true CIF are explained in Subsection

1.4.3. The computation of regression coefficients using the four regression approaches

is explained in Section 1.4.4. Then, the variance of the CIF estimators is shown in

Subsection 1.4.5. Finally, the simulation settings are described in Section 1.4 and the

simulation results based on the four regression approaches are in Section 1.4.6.

1.2 Non-parametric estimation technique

Consider a CR setting with an event (i.e. cause) of interest (type 1; k=1) and a compet-

ing event (type 2; k=2). Here, the indicator would be ε ∈ k = {1, 2}. Then assume that,

T1, T2 are the potential unobservable event times of type k = 1 and k = 2, respectively.

For the CR data, T = min (T1, T2) are observed, and the indicators of the type of event

are, ε = 1, if T = T1 and ε = 2, if T = T2.

Denote the observed data on the i−th individual (i.e. patient) by (Ti, Ci), i =

1, . . . , n, where Ti and Ci are the event time and censoring time for the i−th patient.

Then for right-censored CR data, ti = min (Ti, Ci) for each patient is observed. The

event indicator δi = 1 (Ti ≤ Ci) , where 1(.) is an indicator function, δi = 1 if {Ti ≤ Ci}
and δi = 0 if {Ci < Ti} , and ki ∈ {1, 2}, for the causes of event types 1 and 2. The

CIF for event tpe 1 is the probability that an event of type 1 occurs at or before time

t, i.e., CIF1(t) = P (T ≤ t, k = 1). In this context, the CIF in clinical trial settings can

be defined as follows: assume that, a is the patients accrued time and f̃ is the follow-up

time. Then, the probability of a patient who has the event of death within the time

interval [t, a + f̃ ] can be observed, given that they entered the study at time t. This is

a conditional CIF that can be rewritten as CIF1(a+ f̃ − t) = P (T̃ ≤ a+ f̃ − t, k = 1)

where T̃ = T − t is the survival time given that the patient enters at time t without

having an event before t.



12 Section 1.2 - Non-parametric estimation technique

1.2.1 The CSH approach

The advantage of using a non-parametric estimator in the CSH approach is that it

provides a template for predicting the CIF in regression models for the CSHs. This

approach is used in this study to replace the Nelson-Aalen estimator with its model-

based counterparts (Klein et al., 2014). The CSH function of event type k is defined as

follows:

λk(t) = lim
∆t↓0

P(t ≤ T < t+∆t, ε = k|T ≥ t)

∆t

For simplicity, event type 1 (main event of interest) and event type 2 (competing event)

have considered in this thesis. The CIF for main event of interest (type 1) is then

determined by considering all other events:

CIF1 (t) =

∫ t

0

λ1(u)e
−{Λ1(u)+Λ2(u)}du

where, Λk(u) =
∫ u

0
λk(v)dv is the cumulative CSH function for event k and k = 1, 2. It

is clear that CIF1(t) involves not only the hazard function but also all the competing

CSH functions when k > 1. When k = 1, the sub-distribution function degenerates to

CIF1(t) = 1− exp(−Λ1(t)) and becomes a function of only λ1(t).

To estimate CIF1(t) non-parametrically, let us assume D distinct event time points,

0 = t0 < t1 < . . . < tD. Then, at a particular event time ti, let d1 and d2 be the number

of patients who experienced event types 1 and 2, respectively, and assume, R (ti) denotes

the risk set at event times ti and includes individuals who did not fail due to any causes

or are not censored before ti. Here, it should be noted that under the CSH approach,

a patient is no longer at risk for having the event of interest if he/she experiences a

competing event and thus leaves the risk set. Therefore, the CSH rate λk is estimated

by counting the number of events of type k, divided by the observed number at risk:

λ̂k (ti) =
dk (ti)

R (ti)
.

Subsequently, the variance can be estimated by, ̂V [Λk(t)] =
∑

ti≤t λ̂k(ti) =
∑

ti≤t
dk(ti)

(R(ti))2

for k= 1, 2.

The overall survival function for T can be obtained by using the Kaplan-Meier esti-

mate (Kaplan and Meier, 1958):

Ŝ(t) =
∏
ti≤t

(
1− d (ti)

R (ti)

)
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where d(ti) = d1(ti) + d2(ti). Alternatively, S(t) can be obtained through Ŝ(t) =

exp
[
−∑2

k=1 Λ̂k(t)
]
. Here, Λ̂k(t) is the Nelson-Aalen estimator for the cumulative CSH

function for the event type k.

Finally, the CIF function for event type k can be obtained from the CSHs through

CIFk(t) =
∫ t

0
λk(u)S(u)du, and a natural non-parametric estimate of CIFk(t) is

ĈIF k(t) =

∫ t

0

λ̂k(u)Ŝ(u)du =
∑
ti≤t

dk (ti)

R (ti)
Ŝ
(
t−i
)

for, k = 1, 2.

A step function is returned by the estimator for the CIF, with jumps at time points

of observed events of type k, and constant values at times where no events or an ob-

served competing event is observed (Haller, 2014). That estimator for the CIF in a

CR setting is a special case of the Aalen-Johansen estimator for transition probabilities

in multi-state models (Aalen, 1978). Aalen-Johansen estimator can be obtained as the

product–integral of the Nelson–Aalen estimators for the cumulative transition intensities

(Borgan, 2014).

1.2.2 The SDH approach

Contrary to the CSH approach, patients who experienced an earlier competing event

remain included in the risk set. Thus, in the SDH, the risk set at time t is,

R∗ (ti) = {i : (t ≤ Ti) ∪ (t ≥ Ti ∩ εi ̸= 1) , i = 1, . . . , N} .

A patient who has not failed due to the event of interest by time t is at risk. This

includes two distinct groups: those who have not failed due to any cause and those who

have previously failed due to another cause. Here, the hazard of the subdistribution

can be interpreted as the probability of observing an event of interest in the next time

interval while knowing that either the event of interest did not happen until then or

that the CR event was observed. It is called a subdistribution function because it is

not a proper distribution: as time progresses, the value does not increase from zero to

one because a competing event can prevent the event of interest from happening. Gray

(1988) described SDH for cause 1 as:

λ∗1(t) = lim
∆t→0

P (t ≤ T ≤ t+∆t, ε = 1|T ≥ t ∪ {T ≤ t ∩ ε ̸= 1})
∆t

=
−∂ log{1− CIF1(t)}

∂t
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The cumulative SDH is defined as, Λ1(t) =
∫ t

0
λ∗1(s)ds. For SDH approach, a direct

relationship exists between the CIF1(t) and SDH rates (λ∗1) (Fine and Gray, 1999):

CIF1(t) = 1− S∗
1(t) = 1− e−Λ∗

1(t) = 1− e−
∫ t
0 λ∗

1(u)du.

where λ∗1 is the SDH rate for both groups. This implies∫ t

0

λ∗1(u)du = − log(1− CIF1(t)) = g(CIF1(t)) (1.1)

where g(·) is the log link function. In terms of estimation, this means that the occurrence

of a competing event is ignored and such patients remain in the risk set until the time

at which they are censored for another reason than the competing event. This suggests

the existence of the following estimator: λ̂∗k (ti) =
dk(ti)
R∗(ti)

, where R∗ (ti) is never smaller

than R (ti) . Therefore, the classical K-M is always at least as steep as the estimator of

the cause-specific cumulative incidence due to overestimation.

1.3 Modeling using regression approaches

The difference in the cumulative incidence curves between treatment groups is identified

either using a Cox PH model for the main event of interest (considering other CR as

censored) or with the direct regression model of the effect of covariates on the CIF

(without censoring CR events).

1.3.1 The CSH regression approach

The PH model assumed that hazards are proportional in the follow-up period, and a

separate model can be fit for each event type. However, the analysis is more powerful

when all competing events are combined. Specifically, Prentice et al. (1978) and Cheng

et al. (1998) considered the following Cox proportional hazards models for all causes:

λk(t|x) = λk0(t) exp
{
βT
k x
}

(1.2)

where λk0(t) is the baseline hazard function for cause k, x is a binary covariate and

assumed to be equal among events and βk is the vector of regression coefficients.
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The regression coefficients βk can be estimated for cause k, by maximizing the mod-

ified Cox partial likelihood and log partial likelihood as,

L(βk) =
N∏
i=1

[
exp (βkxi)∑

j∈R(ti)
exp (βkxj)

]δi

⇒ lnL(βk) =
N∑
i=1

δi

βkxi − ln

 ∑
j∈R(ti)

exp (βkxj)


where xi = 0 and xi = 1 indicate that the ith patient is assigned to the control and

experimental groups, respectively. The score statistic is,

s =
∂ lnL(βk)

∂βk
=

N∑
i=1

δi

[
xi −

∑
j∈R(ti)

xj exp (βkxj)∑
j∈R(ti)

exp (βkxj)

]

Asymptotically, when N → ∞, the maximum likelihood estimate β̂ is normally dis-

tributed as,
√
N
(
β̂ − β

)
≃ N (0,V), where V = I−1

β is the asymptotic variance-

covariance matrix of the
√
Nβ̂.

Here, let us assume the asymptotic variance of
√
Nβ̂ is obtained from the diagonal

elements of information matrix, thus V = Vjj. According to the Wald test, the test

statistic for the null hypothesis β = β0 is

Z =

√
N
(
β̂ − β0

)
√
V̂

≃ N (0, 1)

However, in practice, the variance is evaluated under the alternative hypothesis (HA :

β ̸= β0). So, let V be the variance of
√
Nβ̂ for the alternative. Theoretically, it is proved

by Slutsky’s theorem that, the distributions of Z and
√
N
(
β̂ − β0

)
/
√
V are equivalent

for large N (Demidenko, 2013, 2007; Bickel and Doksum, 2001).

Now, let us consider the time-varying effect in the model. When the covariate effects

are strongly time-varying and when there is an extended follow-up or the data at hand

are sufficiently large, then the Cox model will often be unable to describe sufficiently

noticeable and essential features of the data (Cortese et al., 2010). Then, there is a

need for alternative and more flexible regression models to extract key data elements.

Moreover, the Cox proportional hazard model and the additive model by Lin and Ying

(1994) do not allow the covariates to have a time-varying effect. However, one extension

of the former that allows some effects to be non-proportional assumes that the hazard
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is of the following form:

λk,i(t|xi, zi) = λ0(t) exp[β
T(t)xi + γTzi]

This extension allows some covariates to have time-varying effects while that of other

covariates is of the standard relative risk form. The parameters of this model can be esti-

mated by considering the partial likelihood and choice of smoothing parameters (Cortese

et al., 2010). A flexible additive-multiplicative model that combines the Cox propor-

tional model and Aalen’s additive model (Cox-Aalen model) is proposed by Scheike and

Zhang (2002, 2003):

λk,i(t|xi, zi) =
{
αT
k (t)xi

}
exp

{
γTk zi

}
Here, some covariates, xi, have additive and time-varying effects and others zi, have

constant multiplicative effects. This model is a special form of the Cox model when

xi = 1. Moreover, when zi = 0, it leads to Aalen’s additive model. Here, it is suggested

to include those covariates that have a time-varying effect in the additive part of the

model.

Next to predict the CIF is not straightforward when using the CSH approach. To

do so for a particular event type, the fitted cause-specific Cox model has to be used for

each event type. Here, if we assume that, the goal is to fit separate models to each of

the k events for the given covariates x, then the cause-specific Cox model leads to,

Λ̂k (t|x) = exp
(
β̂

T

k x
)
Λ̂k0(t),

where β̂k is the maximum partial likelihood estimate and Λ̂k0(t) is the Breslow estimator

of the baseline cumulative CSH function.

Then, the predicted CIF is,

ĈIF k (t|x) =
∫ t

0

Ŝ
(
s−|z

)
dΛ̂k (s|x)

where the predicted survival function is,

Ŝ (t|x) =
∏

s:ti=s≤t

[
1− Λ̂0 (s|x)

]

where Λ̂0 (t|x) =
∑2

k=1 Λ̂k (t|x) is the predicted cumulative baseline function estimate

for a patient with the covariates x.
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1.3.2 The SDH regression approach

For the SDH approach, the likelihood function differs from that of the CSH approach

in terms of the definition of risk set. Although the risk set is unconventional, it leads to

a proper partial likelihoood (Fine and Gray, 1999), which can be expressed as:

L̃(βk) =
N∏
i=1

[
exp (βkxi)∑

j∈R∗
i
exp (βkxj)

]δi

To allow the SDH model to have time-dependent covariates or to test proportionality

by adding a time-dependent covariate, the following model can be considered:

λ∗1(t|z) = λ∗10(t) exp[β
T(t)zi + γTzi].

Alternatively, a flexible Cox-Aalen subdistribution hazards model can be used:

λ∗1(t|x, z) =
{
αT
k (t)xi

}
exp

{
γTk zi

}
where x is a (p+ 1)− dimensional covariate with the first element as 1 for all patients,

and z is a q− dimensional covariate.

After fitting the CR models, one can use the models to make predictions about

future CIFs. For the Fine and Gray model, predicting them for the event of interest

is a straightforward task because the subdistribution hazard is modeled directly, and

the CIF is only one transformation away. The Cox-type proportional sub-distributional

hazard model can be written as (Fine and Gray, 1999):

− log{1− CIFk(t | X)} =

∫ t

0

λ∗10(u) exp(X
Tβk)du = exp(XTβk)

∫ t

0

λ∗10(u)du

Then, the predicted CIF with the time-invariant covariates, X = x, can be estimated

by,

ĈIF k (t|x) = 1− exp
[
−Λ̂k0(t) exp

(
β̂kx

)]
where Λ̂k0(t) is the baseline cumulative subdistribution hazard function.

Although the estimation technique by Fine and Gray (1999) is efficient to estimate the

proportional SDHs, alternative approaches such as pseudo-value and binomial regression

approaches have more flexibility to model CIF directly through different link functions.
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1.3.3 The pseudo-value regression approach

The pseudo-value approach is used to make inferences with incomplete survival data

based on pseudo-values or pseudo-observations obtained from jackknife statistics con-

structed from non-parametric estimators for the quantity of interest (Klein et al., 2014).

These pseudo-values are then used as outcome variables in a generalized linear model,

and model parameters are estimated using generalized estimating equations (GEE)

(Liang and Zeger, 1986). Most importantly, this method can handle the assumption

of proportional hazard being violated by the cost of minimal loss of efficiency, and can

be very easily applied to a broad class of multi-state models for which standard re-

gression analysis is often not available. Furthermore, pseudo-value regression can be

easily implemented using existing software packages once the pseudo-values have been

obtained (Klein et al., 2014).

When using the pseudo-value approach, a set of fixed time points have to be selected

to perform the analysis because using all event times is not practical for large datasets

due to the complexity of algorithm. Although five to ten time points spaced equally on

the event scale works well in most cases, the number of points can be chosen based on

the objectives of interest by the researchers (Zhang et al., 2008; Klein and Andersen,

2005; Klein, 2006). Here, consider a prefixed grid of time points, t1, . . . , tM . At any

grid time point, tj, the CIF can be estimated by a standard non-parametric estimator

based on the complete data set, ĈIF 1 (tj) , and based on a sample of size n−1, which is

obtained by deleting the ith observation, ĈIF
(i)

1 (tj). The pseudo-value of the i
th patient

at time ti is defined as,

θ̂ij = nĈIF 1 (tj)− (n− 1)ĈIF
(i)

1 (tj)

where, i = 1, 2, · · · , n; j = 1, 2, · · · ,m. Once a pseudo-value for each patient is obtained,

these are used to estimate the parameters of a generalized linear model. Pseudo-value

regression works when the pseudo-values come from a consistent and an approximately

unbiased estimator of the parameter of interest being modeled. The regression parame-

ters can be estimated by solving a pseudo-score equation and its covariance matrix can

be estimated by a sandwich variance estimator (Klein and Andersen, 2005). Here, it

should be noted that the GEE approach requires the selection of a working covariance

matrix, and with that selection, one may improve efficiency.
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1.3.4 The binomial regression approach

The key to using the binomial regression for survival outcomes is that at any time horizon

after the time origin the event status is binary and takes the value 1 if the event has

occurred and 0 otherwise (Klein et al., 2014). The inference is based on weighting the

observed status by the so-called inverse of the probability of censoring weights (IPCW),

the details of which can be found in the work of Van der Laan et al. (2003). This

is a very general regression model that allows covariates to have time-varying effects

(Zhang et al., 2008), which is in contrast to the pseudo-value approach that assumes

that the censoring mechanism is independent of observed covariates. Here, one can

specify a working regression model for the censoring times to increase efficiency and to

reduce bias. Moreover, the advantages of binomial regression are feasibility and direct

interpretation of regression parameters, while the disadvantages are that the censoring

mechanism needs to be modeled and the estimates of the regression coefficients depend

on that of the baseline risk (Klein et al., 2014). By assuming different known link

functions, the proposed model ends up with different known models. For instance, a

fully non-parametric additive model as explained by Scheike and Zhang (2011) can be

expressed as,

− log {1− CIF1(t;x, z)} = α(t)⊤x+ γ⊤z

Although some goodness-of-fit tests have been studied to test the time-varying effects,

in practice, it is sufficient to plot and visually examine the estimated regression function

with the confidence bands (Scheike et al., 2008).

1.4 Simulation studies

Simulations have been conducted based on the inverse probability method. The gen-

eral settings under survival data is explained by Bender et al. (2005) whereas the CR

survival data for generating event time distribution are discussed by Beyersmann et al.

(2009, 2011), and Moriña and Navarro (2017). The main consideration in the process

of simulation of event times, is that since the survival function S(t) is a probability

distribution function that maps a number in the domain [0,∞] to a probability between

0 and 1, random numbers can be generated from a standard uniform distribution in

the interval [0,1]. Then one can invert the survival function S(t) and transform uni-

formly distributed random numbers into event times (Wan, 2017). The survival function

with a marginal cumulative baseline hazard function Λ0(t) and relative risk component
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exp (β′X) can be written as,

S(t | X) = exp (−Λ0(t) exp (X
′β))

where for two competing causes, Λ0(t) :=
∫ t

0

∑2
k=1 λ0k(u)du = Λ01(t)+Λ02(t) and Λ0k(t)

are the CSH functions. Then, with U ∼ Uniform(0, 1), the random variable

T = S−1(U | X) = Λ−1
0

(
− log(1− U)

exp (X′β)

)
has the survival function S(· | X). This means that to generate a survival time T ∼
S(· | x), given the covariate vector, it suffices to draw u from U ∼ Uniform(0, 1) and

to make the inverse transformation t = S−1(u | x).
Moreover, the computation of the inverse of the cumulative baseline hazard function,

Λ−1
0 (·) is not straightforward and thus requires numerical inversion. For the complex

cumulative hazard function, one can use the R function uniroot. It searches for a root

such that,

Λ0(t) +

(
log(1− u)

exp (x′β)

)
= 0.

The design of the simulations is as follows. It is assumed that the hazards for event

types 1 and 2 followWeibull distribution. The idea to choose this distribution is based on

BMT data (see Section 2.2 for the explanation) since the associated survival probability

fits the data well (Figure 1.1). Further, one independent categorical covariate X = {x1}
∼ Ber (p1) is assumed for both event types. The CSH for event types 1 and 2 are,λ1(t) = a1b1t

a1−1ex1β1

λ2(t) = a2b2t
a2−1ex1β2

Then, the cumulative hazard functions for event types 1 and 2 are,Λ1(t) = b1t
a1ex1β1 = Λ01(t)e

x1β1

Λ2(t) = b2t
a2ex1β2 = Λ02(t)e

x1β2
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Figure 1.1: Fitting a model using BMT data with Weibull time-to-event distribu-
tion (smoothed lines) and K-M (step-wise lines) to choose true parameter values of
(a1, b1, a2, b2, β1, β2) for the simulation study.

The overall survival function is, S(t) = e−Λ(t) = e−[Λ1(t)+Λ2(t)] = e−[Λ01(t)ex1β1+Λ02(t)ex1β2 ].

Now, a system of equations are required to generate survival times. Here, it is assumed

that U = F (y) ∼ Uniform[0, 1]. Thus, S(y) = 1 − U ∼ Uniform[0, 1]. Now, the

following is known,

F (t) = 1− S(t)

⇒ 1− F (t) = S(t)

⇒ 1− U = e−Λ(t) = e−(Λ1(t)+Λ2(t))

⇒ log(1− U) = −(Λ1(t) + Λ2(t))

⇒ − log(1− U) = Λ1(t) + Λ2(t)

= b1t
a1ex1β1 + b2t

a2ex1β2
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Finally, the following equation is obtained,

⇒ [b1t
a1ex1β1 + b2t

a2ex1β2 + log(1− U)] = 0.

So, once the distribution of event-time T is found, then the latent failure time ap-

proach (David and Moeschberger, 1978; Prentice et al., 1978) can be applied. Finally, a

follow-up time is assumed and right-censoring times C is generated. Then, the observed

time is computed as the minimum between the event and censoring times as well as the

observed event indicator. In addition, the individual is considered as censored if the

generated survival time is over the maximum follow-up time.

1.4.1 Choosing a predefined censoring rate

The value of the censoring parameter τ can be selected in such a way that the desired

nominal censoring proportions (p) is drawn in the simulated data. Here, it is assumed

that censoring time is C ∼ Uniform (0, τ) with censoring distribution as g(C) and time

to event as T ∼ Weibull (γ, λ̃) with density f(T ) and T ⊥ C with δ̃ = 1(T ≥ C). To

derive a value of τ in the censoring distribution g(c | τ) that yields censoring proportion

p, a function η(τ) is set up using individual censoring probabilities, P
(
δ̃ = 1 | λ̃, γ, τ

)
,

and density functions for covariates, fX(u):

η(τ | p) = P(δ̃ = 1 | γ, λ̃, τ)− p =

∫ +∞

0

P(δ̃ = 1 | λ̃, γ, τ)fX(u)du− p

Then, for each possible combination of individual censoring probability and density

function for the covariate, η(τ | p) = 0 is solved for censoring parameter τ. However,

the equation cannot be solved explicitly and thus requires numerical integration. In this
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context, Wan (2017) explained the techniques to identify the censoring proportions.

P(δ̃ = 1 | λ̃, γ, τ) = P(C ⩽ T ⩽ ∞, 0 ⩽ C ⩽ τ)

=

∫ τ

0

∫ ∞

c

g(c | τ)f(t | λ̃, γ)dtdc

=

∫ τ

0

∫ ∞

c

1

τ
f(t | λ̃, γ)dtdc

=

∫ τ

0

1

τ
e−Λ0(c|λ̃,γ)dc

=

∫ τ

0

1

τ
(e−λ̃cγ )dc

=

∫ τ

0

1

τ
e−(λ̃

1/γc)
γ

dc

=
1

τλ1/γ

∫ τλ̃1/γ

0

exp (−zγ) dz, z = cλ̃1/γ

=
1

γτλ̃1/γ

∫ (τγ λ̃)

0

s
1
γ
−1 exp(−s)ds , s = zγ

=
1

γτλ̃1/γ
Γ

(
1

γ
, τ γλ̃

)

where Γ(1/γ, u) =
∫ u

0
x1/γ−1 exp(−x)/Γ(1/γ)dx is the incomplete gamma function. If it

is assumed that λ̃ = e(α0+β1x1), where covariate x1 ∼ Ber (p1) , the following equation is

derived:

η(τ | p) =
1∑

uc=0

1

γτ

(
eα0+β1∗uc

)1/γ
Γ

(
1

γ
, τ γe(α0+β1∗uc)

)
∗ puc

1 (1− p1)
1−uc − p

Here, it should be noted that to solve η(τ) = 0 for a numerical solution of τ , one needs

to use a statistical software.

1.4.2 Comparison of link functions

Figure 1.2 shows that when the CIF is low (< 0.3), the link functions between

logistic and complementary log-log are very close, which indicates that with lower CIF,

the coefficients in the SDH approach can be interpreted as odds ratios (Austin and Fine,

2017). Furthermore, when the CIF increases, the differences are higher among all the

link functions. In the simulations, a complementary log-log link function was used.
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Figure 1.2: Comparison of logit, probit, and complementary log-log link functions

1.4.3 Computation of the true CIF

In this section, the true CIF is computed using the CSH approach, and the same value

are then used for the SDH, binomial, and pseudo-value regression approaches. Here, it

is assumed that the time-to-event follows Weibull distribution with one independent

categorical covariate X = {x1} ∼ Ber (p1) for both event types 1 and 2. Thus, for a

fixed values of (a1, b1, a2, b2, β1, β2) , the assumed CSH rates for event types 1 and 2 in

the CSH approach are λ1(t | x) = a1b1t
a1−1ex1β1

λ2(t | x) = a2b2t
a2−1ex1β2 .

Moreover, the CIF for the main event of interest (event type 1) can be written as,

CIF1(t | x) =
∫ t

0

λ1(u | x)S(u | x)du

=

∫ t

0

(
a1b1u

a1−1ex1β1
)
exp [−{Λ1(u | x) + Λ2(u | x)}] du

=

∫ t

0

(
a1b1u

a1−1ex1β1
)
exp

[
−
{
b1e

x1β1ua1 + b2e
x1β2ua2

}]
du
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Then, the equation for the experimental and control groups can be written asCIF1(t | x = 1) =
∫ t

0

(
a1b1u

a1−1eβ1
)
exp

[
−
{
b1e

β1ua1 + b2e
β2ua2

}]
du

CIF1(t | x = 0) =
∫ t

0
(a1b1u

a1−1) exp [−{b1ua1 + b2u
a2}] du

Similar steps can be followed to compute the CIF for event type 2.

1.4.4 Computation of regression coefficients using the four re-

gression approaches

While the interpretation of the regression coefficient is not straightforward, it provides

a positive or negative sign, which gives information about increases in the covariate that

are associated with an increase or decrease in the probability of the occurrence of events

(CIF, taken in the c-log-log scale). For instance, assuming that when using the SDH

approach for event type 1, β shows more negative values, this indicates that over time,

a 1-unit increase in the covariate is associated with a reduction in the CIF.

The regression coefficient β varies based on the approach. In the CSH approach, the

β provides the effect of covariates on the cause-specific hazards and it is computed as

follows:

log

[ ∫ t

0

λ1(u | x)du
]
− log

[ ∫ t

0

λ01(u)du

]
= βx,

where, λ01 is the baseline hazard for cause 1. For the binomial or pseudo-value regression

approaches, β is computed through the complementary log-log link function with the

CIF. However, using the SDH approach, the computational technique of the regression

coefficients is not straightforward. Here, the β∗ has a direct relationship with the SDH

rate λ∗.

β∗ coefficient in the SDH approach

The CIF for event type 1 can be written as,

1-CIF1(t | x) = S∗
1(t | x) = e−Λ∗

1(t|x) = exp(−
∫ t

0

λ∗1(u | x)du).

Now, if the complementary log-log link function is assumed, the following can be

derived:

log{− log{1-CIF1(t | x)}} = log{− log{exp(−
∫ t

0

λ∗1(u | x)du)}} = log

∫ t

0

λ∗1(u | x)du.
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The covariate effect on CIF with the Cox regression model for event type 1 can be

computed as follows:

λ∗1(t | x) = λ∗01(t)e
β∗x

⇒
∫ t

0

λ∗1(u | x)du =

∫ t

0

λ∗01(u)e
β∗xdu = eβ

∗x

∫ t

0

λ∗01(u)du

⇒ log

[ ∫ t

0

λ∗1(u | x)du
]
= β∗x+ log

[ ∫ t

0

λ∗01(u)du

]
⇒ log

[ ∫ t

0

λ∗1(u | x)du
]
− log

[ ∫ t

0

λ∗01(u)du

]
= β∗x

To compute λ∗1(t | x) and λ∗01(t), the CSH and SDH relationship (Gray, 1988) was

used: λ
∗
1(t | x = 1) =

[
S(t|x=1)

(1−CIF1(t|x=1)

]
λ1(t | x = 1)

λ∗1(t | x = 0) =
[

S(t|x=0)
(1−CIF1(t|x=0)

]
λ1(t | x = 0)

Here, we can find the values of S(t),CIF1(t), λ1(t) can be found using the CSH

approach along with the SDH rate:


λ∗1(t) =

[
exp[−{b1eβ1 ta1+b2eβ2 ta2}]

1−
∫ t
0(a1b1ua1−1eβ1) exp[−{b1eβ1ua1+b2eβ2ua2}]du

]
(a1b1t

a1−1eβ1)

λ∗01(t) =

[
exp[−{b1ta1+b2ta2}]

1−
∫ t
0(a1b1ua1−1eβ1) exp[−{b1ua1+b2ua2}]du

]
(a1b1t

a1−1).

β coefficient in the binomial or pseudo-value regression approaches

In the binomial and pesudo-value approaches, the same link function clog-log(x) is

chosen to model the CIF:

Φ(CIF1(t | x) = log{− log(1-CIF1(t | x))} = α01(t) + β(t)x (1.3)

where, α01(t) and β(t) are the possibly time-varying regression coefficients. Equation

(1.3) corresponds to a Cox regression model type for the fixed value of t.

In a simpler case of a time-constant regression coefficient β, equation (1.3) can be

derived for the experimental and control groups, and then the difference can be taken
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as follows:

log{− log(1-CIF1(t | x = 1))} − log{− log(1-CIF1(t | x = 0))} = β

⇒ log

[− log(1-CIF1(t | x = 1))

− log(1-CIF1(t | x = 0))

]
= β

⇒ log

[
− log(1-

∫ t

0

(
a1b1u

a1-1eβ1
)
exp

[
-
{
b1e

β1ua1 + b2e
β2ua2

}]
du)

− log(1-
∫ t

0
(a1b1ua1-1) exp [- {b1ua1 + b2ua2}] du)

]
= β (1.4)

Here, log(− log(1− CIF1(t | x = 0))) = α01(t)

1.4.5 Variance and confidence interval calculations of the CIF

in the pseudo-value regression approach

In the simulation, four discrete time points, i.e., j = {10, 50, 90, 130}, were assumed

along with a time-constant regression coefficient β. Then, at each time point, the CIF

values were computed. Here, it is noted that the R package pseudo did not provide

the observed CIF values, but gave the estimated regression parameter β̂ and s.e.(β̂).

Thus, to compute the variance of the estimated CIF, it is further needed to compute

v(α̂01(j) + β̂) as follows:

α̂01(j)
·∼ N(α01(j), v(α̂01(j)))

β̂
·∼ N(β, v(β̂))

If it is assumed that α̂01(j) + β̂ = ˆ̃α01(j), then the following can be stated,

ˆ̃α01(j)
·∼ N(α01(j) + β, v(α̂01(j)) + v(β̂) + 2cov(α̂01(j), β̂))

where, v(α̂01(j)) + v(β̂) + 2cov(α̂01(j), β̂) can be estimated as, v̂(ˆ̃α01(j)) = v̂(α̂01(j)) +

v̂(β̂) + 2ĉov(α̂01(j), β̂), and the s.e. is, s.e.(ˆ̃α01(j)) =
√
v̂(ˆ̃α01(j)).

Variance computation of CIF: First, it is assumed that the relation between

the regression coefficients and CIF are established by the complementary-log-log link

function.



28 Section 1.4 - Simulation studies

When the event type 1 is studied, and x = 0:

α̂01(j) = g
(
ĈIF

(0)

1j

)
⇒ ĈIF

(0)

1j = 1− e−e
α̂01(j)

, j = 1, 2, 3, 4

When the event type 1 is studied, and x = 1:

ĈIF
(1)

1j = 1− e−e
ˆα01(j)+β̂

= 1− e−e
ˆ̃α01(j)

where, ˆ̃α01(j) = α̂01(j) + β̂.

Then the variance for CIF can be found using the delta method as follows:

v
(
ĈIF

(0)

1j

)
= v

(
1− e−e

α̂01(j)
)

= v̂
(
α̂01(j)

) [ ∂

∂α̂01(j)

(
1− e−e

α̂01(j)
)]2

= v̂
(
α̂01(j)

) [
− ∂

∂α̂01(j)

(
e−e

α̂01(j)
)]2

= v̂
(
α̂01(j)

) [
e−e

α̂01(j) · eα̂01(j)

]2
= v̂

(
α̂01(j)

) [
e−e

α̂01(j)+α̂01(j)

]2
Similarly,

v
(
ĈIF

(1)

1j

)
= v̂

(̂̃α01(j)

)[
e−e

̂̃α01(j)+̂̃α01(j)

]2
where, ̂̃α01(j) = α̂01(j) + β̂.

Next, the confidence interval of the CIF can be estimated in two different ways:

(1) The delta method:

ĈIF
(0)

1j ± zα ×
√
v
(
ĈIF

(0)

1j

)
and ĈIF

(1)

1j ± zα ×
√
v
(
ĈIF

(1)

1j

)
(2) Transforming β: An alternative way is to compute the CI for the α01(j), α̃01(j)

parameters and then transform them using the link function in relation with the CIF

as follows:
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P
(
α̂01(j) − Zα · se

(
α̂
(0)
01(j)

)
≤ α01(j) ≤ α̂01(j) + Zα · se

(
α̂
(0)
01(j)

))
= 0.95

⇒ P

(
e
α̂01(j)−Zα·se

(
α̂
(0)
01(j)

)
≤ eα01(j) ≤ e

α̂01(j)+Zα·se
(
α̂
(0)
01(j)

))
= 0.95

⇒ P

(
−eα̂01(j)+Zα·se

(
α̂
(0)
01(j)

)
≤ −eα01(j) ≤ −eα̂01(j)−Zα·se

(
α̂
(0)
01(j)

))
= 0.95

⇒ P

(
e−e

α̂01(j)+Zα·se(α̂(0)
01(j)) ≤ e−e

α01(j) ≤ e−e
α̂01(j)−Zα·se(α̂(0)

01(j))
)

= 0.95

⇒ P

(
−e−e

α̂01(j)−Zα·se(α̂(0)
01(j)) ≤ −e−e

α01(j) ≤ −e−e
α̂01(j)+Zα·se(α̂(0)

01(j))
)

= 0.95

⇒ P

(
1− e−e

α̂01(j)−Zα·se(α̂(0)
01(j)) ≤ 1− e−e

α01(j) ≤ 1− e−e
α̂01(j)+Zα·se(α̂(0)

01(j))
)

= 0.95

⇒ P

(
1− e−e

α̂01(j)−Zα·se(α̂(0)
01(j)) ≤ CIF

(0)
1j ≤ 1− e−e

α̂01(j)+Zα·se(α̂(0)
01(j))

)
= 0.95.

Similarly, the C.I. for CIF
(1)
1j can be calculated as follows:

P

(
1− e−e

ˆ̃α01(j)−Zα·se( ˆ̃α(0)
01(j)) ≤ CIF

(1)
1j ≤ 1− e−e

ˆ̃α01(j)+Zα·se( ˆ̃α(0)
01(j))

)
= 0.95

where,

ˆ̃α01(j) = α̂01(j) + β̂

The first approach, where the CI is computed using the s.e. from the delta method,

provides different results as compared to the second approach, where the CI is directly

transformed. In the simulation, the second approach was used because an investigator

never gets values above 1 or lower than 0 for the CIF (as this is a probability). On

the contrary, in the first approach, one can also get a lower bound smaller than 0 or an

upper bound greater than 1.

1.4.6 Simulation results among the four regression approaches

A simulation study with 3, 000 replications is conducted for generating datasets of size

n = 500. Here, it is assumed that the following are known in advance: shape parameters

a1 = 0.45, a2 = 0.5; scale parameters b1 = 0.15, b2 = 0.06; regression coefficient β1 =

−0.6, β2 = −0.17; censoring parameter τ = 180 with censoring proportion 0.01. Further,

one categorical covariate was assumed for both event types as, x ∼ Ber (0.32).
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The analysis has been implemented in the freeware statistical software R (http:

//cran.r-project.org) using the libraries Survival (Lumley and Therneau, 2003)

and prodlim (Gerds, 2019) for the CSH approach, cmprsk (Gray et al., 2004) for the

SDH approach, timereg (Scheike and Martinussen, 2006) for the binomial regression

approach, and pseudo (Pohar Perme and Gerster, 2017) for the pseudo-value approach.

Then, the bias and other specific characteristics among all the regression approaches

were computed. Under binomial approach, for computing coverage probabilities (CP),

both time-fixed and time-varying coefficients were applied, whereas in all the other

computations, only the time-fixed coefficient was used.

Figure 1.3 (and Table 1.1) shows the bias between the true and simulated CIF values

for event types 1 and 2 for both treatment groups in the CSH, SDH, binomial and

pseudo-value regression approaches for 3000 simulations at time, t = {10, 50, 90, 130}.
Overall, it was found that the bias was lower in the CSH and SDH approaches for both

causes. Furthermore, at the beginning of the study (time point 10), the biases were very

close among the CSH, SDH, and pseudo-value approaches for both the experimental and

control groups. However, the biases were higher in the binomial approach as compared

to all other approaches. Specifically, the maximum bias for the main event of interest

for the experimental group was 0.024 for the binomial approach at time 130. For this

approach, the bias was always higher for the main event of interest at time points 90

and 130. Meanwhile in the pseudo-value approach, the bias was higher at the beginning

of the study for event type 1 and there was a substantial reduction over time for both

groups. On the contrary, for event type 2, the bias was higher at the beginning and

ending of the study (at time 10 and 130) for both groups.

http://cran.r-project.org
http://cran.r-project.org
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Figure 1.3: Comparison of the biases between the true and simulated CIF values
among all the regression approaches for event types 1 (Black lines) and 2 (Blue lines).
All the figures on the left show the experimental groups while those on the right show
the control groups
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Figures 1.4 and 1.5 show the ratios of estimated (estimated mean of all 3, 000 repli-

cations standard errors at time t) to empirical (standard deviation of all 3, 000 replica-

tions of the estimated CIF at time t) standard errors of CIF1 over 3000 simulations with

t = {10, 50, 90, 130} for the experimental and control groups in the CSH, SDH, binomial,

and pseudo-value regression approaches. Most of the ratios were near 1, indicating no

substantial differences between the estimated and empirical standard errors of the CIF

for event type 1. Thus, the estimators of the variance of CIF were in good agreement

with the simulated sample variance in all the approaches. However, the binomial and

pseudo-value approaches showed a slight underestimation of the variance at all time

points in the experimental groups.
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Figure 1.4: Ratio of estimated to empirical standard errors for the CIF1 for exper-
imental and control groups in the CSH, SDH, binomial, and pseudo-value regression
approaches
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Figure 1.5: Ratio of estimated to empirical standard errors for CIF2 for experi-
mental and control groups in the CSH, SDH, binomial, and pseudo-value regression
approaches



Chapter 1 - Regression approaches for the cumulative incidence function 35

Figures 1.6, 1.7, 1.8, 1.9, and 1.10 depict the coverage probabilities (CP) of CIF1

and CIF2 for the experimental and control groups in the CSH, SDH, binomial, and

pseudo-value regression approaches. In the binomial approach, when the time-fixed

coefficient was assumed, the CP performed worse in the experimental group for event

type 1 at later time points and was the worst for event type 2. However, when the time-

varying coefficient was assumed, the CP improved considerably for the experimental

group as compared to the time-fixed coefficient scenario. Moreover, under the pseudo-

value approach (Figure 1.10), it was found that the CP performed well at each of the

time points for event type 1 for experimental group whereas for event type 2, it was

below 95% level at later time points. On the contrary, the CP performance was worst

for event type 2 for control group.

Under the direct binomial regression approach, the time-varying coefficients are used

to improve the CP and thus it is important to focus on the general guidelines related

to that approach. The direct binomial regression approach is based on the inverse

probability of censoring weighting (IPCW) technique, which can be used to improve

efficiency. However, the weights need to be estimated without bias so that the estimates

of the CIF are also unbiased. It was found that the censoring distribution depends

significantly on the covariates and this dependence is partially captured by a Cox’s

regression model for the censoring times. Therefore, the option cens.model=“cox” was

added in the function call to specify Cox models for the IPCW.
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Figure 1.6: Coverage probability of CIF for event types 1 and 2 over 3, 000 simu-
lations with t = {10, 50, 90, 130} for the experimental and control groups in the CSH
approach

Figure 1.7: Coverage probability of CIF for event types 1 and 2 for the experimental
and control groups in the SDH approach
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Figure 1.8: Coverage probability of CIF for event types 1 and 2 for the experimental
and control groups in the binomial approach with time-fixed coefficient

Figure 1.9: Coverage probability of CIF for event types 1 and 2 for the experimental
and control groups in the binomial approach with time-varying coefficient
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Figure 1.10: Coverage probability of CIF for event types 1 and 2 for the experimental
and control groups in the pseudo-value approach

To check the performance of the estimated variance when using the binomial and

pesudo-value approaches in comparison to the CSH approach, the relative efficiencies

(RE) of CIF were computed over 3000 replications asREbinomial vs. CSH = empirical variance of CIF for the binomial approach
empirical variance of CIF for the CSH approach

REpseudo-value vs. CSH = empirical variance of CIF for the pseudo-value approach
empirical variance of CIF for the CSH approach

Figure 1.11 depicts the RE performances. When using the binomial approach for both

event types, the experimental group showed efficiency gain as compared to the CSH

approach, while for the control group, there was a loss in efficiency gain after time point

90.Meanwhile, when using the pseudo-value approach, there was a gain in the effeciency

as compared to the CSH approach for both events and in both groups.
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Figure 1.11: Relative efficiency of estimators when using the binomial, and pseudo-
value as compared to the CSH over 3000 simulations with t = {10, 50, 90, 130} for the
experimental and control groups
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Table 1.1: Comparison of the true and simulated CIF values among all the regression
approaches for event types 1 and 2. For the binomial approach, only the time-fixed
coefficient scenario is reported. E indicates experimental group and C indicates control
group.

Time points 10 50 90 130 10 50 90 130

x Cause 1 x Cause 2

E True 0.193 0.327 0.383 0.416 E True 0.132 0.239 0.286 0.315

Sim 0.193 0.328 0.384 0.419 Sim 0.131 0.238 0.285 0.314

Bias 0.000 0.001 0.001 0.003 Bias 0.001 0.001 0.001 0.001

CSH C True 0.318 0.494 0.554 0.589 C True 0.140 0.232 0.265 0.282

Sim 0.318 0.495 0.554 0.586 Sim 0.139 0.232 0.264 0.282

Bias 0.000 0.001 0.000 0.003 Bias 0.001 0.000 0.001 0.000

E True 0.193 0.327 0.383 0.416 E True 0.132 0.239 0.286 0.315

Sim 0.194 0.329 0.385 0.419 Sim 0.131 0.238 0.285 0.314

Bias 0.001 0.002 0.002 0.003 Bias 0.001 0.001 0.001 0.001

SDH C True 0.318 0.494 0.554 0.589 C True 0.140 0.232 0.265 0.282

Sim 0.318 0.495 0.554 0.587 Sim 0.139 0.232 0.264 0.280

Bias 0.000 0.001 0.000 0.002 Bias 0.001 0.000 0.001 0.002

E True 0.193 0.327 0.382 0.416 E True 0.132 0.239 0.286 0.315

Sim 0.193 0.320 0.367 0.391 Sim 0.136 0.232 0.268 0.290

Bias 0.000 0.007 0.015 0.025 Bias -0.004 0.007 0.018 0.025

Binomial C True 0.318 0.494 0.554 0.589 C True 0.140 0.232 0.265 0.282

Sim 0.312 0.489 0.549 0.578 Sim 0.134 0.229 0.265 0.285

Bias 0.006 0.005 0.005 0.011 Bias 0.006 0.003 0.000 -0.003

E True 0.193 0.327 0.382 0.416 E True 0.132 0.239 0.286 0.315

Sim 0.203 0.335 0.384 0.413 Sim 0.143 0.244 0.283 0.305

Bias 0.010 0.005 0.002 0.003 Bias 0.011 0.005 0.003 0.010

Pseudovalue C True 0.318 0.494 0.554 0.589 C True 0.140 0.232 0.265 0.282

Sim 0.315 0.493 0.555 0.589 Sim 0.134 0.229 0.265 0.286

Bias 0.003 0.001 0.002 0.000 Bias 0.006 0.003 0.000 0.004

In conclusion, it can be said that the bias was lower when using the CSH and SDH

approaches for both causes. The bias was higher for the binomial approach than all

the other approaches, and the maximum bias for the main event of interest for the

experimental group was 0.013 at time 130. Meanwhile, when using the pseudo-value

approach, the bias was higher at the beginning of the study, and there was a substantial

reduction over time. Moreover, the ratios of estimated to empirical standard errors of the
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CIF for both event types and treatment groups for all approaches were near 1, indicating

that there were no substantial differences between the observed and empirical standard

errors. However, when using the pseudo-value, there was a slight underestimation of the

variance over time. Further, with the binomial approach, the CP performed the worst

for event type 2 when the time-fixed coefficient was assumed. However, when the time-

varying coefficient was used, the CP improved considerably, but it decreased slightly

at time point 10 for both events as compared to the time-fixed coefficient scenario.

Furthermore, the efficiency measurements between the binomial and CSH as well as

the pseudo-value and CSH approaches were studied. With the pseudo-value approach,

there was a gain in effeciency in all the scenarios. However, with the binomial approach,

there was a loss in efficiency for control group. In general, for a study on clinical

trials, it is important to investigate the efficiency measurements as the objective here

is to establish the effect of an intervention. On the contrary, in an observational study,

heterogeneity exists as the inferences are based on individual preferences, thus making

other measurement (for instance, bias and CP) more important.





Chapter 2

Application to real data

2.1 Introduction

The methods described in Chapter 1 will be illustrated using Bone Marrow Trans-

plant (BMT) and Covid-19 data. Specifically, BMT data are described for the purpose

of providing practical guidelines to a new user using R in Section 2.2. The Covid-19

data are used as an example of real data as described in Section 2.3. Further, BMT

data are available under the timereg package in R and also in the International Blood

and Marrow Transplant Research (CIBMTR) study (Sierra et al., 2002). Covid-19 data

are obtained from the Ministry of Health of Brazil database for all COVID-19 patients

from January 01, 2020 to April 30, 2021 period.

Section 2.2.1 discusses the non-parametric techniques (without covariates) for the

cause-specific hazard (CSH) and sub-distribution hazard (SDH) approaches, while Sec-

tion 2.2.2 describes regression approaches. In Sections 2.3.1 and 2.3.2, we explored

Covid data using non-parametric and regression approaches, respectively to estimate

cumulative risk of dying from Covid and the effect of covariates on such risk.

2.2 Practical guidelines using BMT data in R

The study has two competing risks (CR): treatment-related mortality (TRM), defined

as death in complete remission, and relapse, defined as the recurrence of myelodysplasia

(MDS). Complete information from 408 patients was included in this example (161

patients died in complete remission, and 87 patients relapsed). The CIBMTR study

indicated that the CIFs of TRM were different for patients with low and high platelet

counts (< 100 × 109/l [n=280] versus ≥ 100 × 109/l [n=128]). The covariates of the

study were as follows: age (continuous variable, standardized and centered at a mean

43
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of 35 years old, ranging from 2 to 64 years); platelet counts (1 for high platelet counts

and 0 for low platelet counts); and graft versus host disease (GVHD) prophylaxis (1 for

T-cell depletion BMT and 0 for non-T-cell depletion BMT) for TRM and relapse.

The removal of T-cells from the donor graft (T-cell depletion) offers the possibility

of preventing GvHD and thereby reducing transplant-related morbidity and mortality

(Daniele et al., 2012). Factors predictive of poor survival following chronic GVHD

diagnosis includes low platelet count and a history of acute liver GVHD (Pavletic et al.,

2005).

In this thesis, the main interest is to compute the CIF. To this end, a conventional

technique such as the K-M method, will first be applied. However, it should be noted

that the KM method may give biased estimates because it considers the CR events as

censored. Thus, the CIF will be computed non-parametrically by using the cuminc()

function in the cmprsk package. This function also allows for group comparison and

visualization of the estimated CIF. Subsequently, the results will be compared with the

classical Aalen-Johansen estimator using the prodlim package. The model proposed by

Fine and Gray (1999) can be fitted with the crr() function using the cmprsk package.

Time-varying covariates are allowed in the crr() function as specified by cov2 and tf

arguments. Then, predictions and visualizations of the CIF for patients can be under-

taken with the given covariate values for the crr() object. An alternative method to

fit the CR model is the riskRegression package with different link functions between

covariates and outcomes.

Meanwhile, Scheike and Zhang (2011) developed the comp.risk() function in the

binomial regression approach, which is available in the timereg package. It implements

two classes of flexible models: proportional and additive models. These are special

sub-models of the proportional regression model proposed by Fine and Gray (1999),

special additive model by Lin and Ying (1994), and Aalen’s full additive regression

model (Zhang, 2017). In addition, a useful goodness-of-fit test was proposed by Scheike

and Zhang (2011) to identify whether the time-varying effect is present for a specific

covariate. In medical studies, it is often useful to estimate the predicted CIF for a given

set of values of covariates. The predict() function in the timereg package computes the

predicted CIF and an estimate of its variance at each fixed time point, after which it

constructs (1-α)100% simultaneous confidence bands over a given time interval.

Finally, the pseudo-value approach can be analyzed using the pseudo package. Here,

the pseudo-values will first be computed, after which the parameters can then be es-

timated using generalized estimating equations (GEE) with the function geese (Klein

et al., 2008).
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2.2.1 Non-parametric techniques

Under this technique, the CIF is computed using K-M as well as with the CSH and

SDH approaches without considering any covariates.

Naive approach: K-M

The K-M approach focuses on the non-occurrence of events. The outcome of interest

indicates that no death and no relapse is important. Further, the K-M plot estimates

the proportion of patients who have not experienced any of the endpoints (relapse or

death). Figure 2.1 (left panel) shows that the patients with high platelet counts have a

better chance of surviving without experiencing relapse or death. Here, the CIF can be

obtained by plotting inversely (i.e., 1-KM estimate), which is the estimated proportions

of patients undergoing one of the endpoints (relapse or death) over time (Figure 2.1,

right panel).

The R code is explained below:

library(survival)

km=survfit(formula = Surv(time, cause != "Censored") ~ platelet,

data = bmt, type = "kaplan-meier",

error = "greenwood", conf.type = "log-log")

autoplot(km, xlab="days", ylab = "Survival Probability")

autoplot(km,fun = function(x) {1 - x}, xlab="days", ylab = "CIF") ##1-KM

Figure 2.1: left- K-M survival probability for event of interest (TRM) and CR event
(Relapse), right-(1-event free survival probability). Here, 0 indicates “low platelet
count”, while 1 indicates “high platelet count”



46 Section 2.2 - Practical guidelines using BMT data in R

Sub-distribution function

The sub-distribution function can be estimated using the cmprsk package with ftime

and fstatus arguments. Specifically, ftime defines the variable containing the obser-

vation time, while fstatus represents the event rate (by default, 0 denotes censored

observations). The command is thus cuminc(ftime, status). The group argument takes

a variable specifying distinct groups. The basic results and estimates contained within

the ci.cmprsk object may be obtained with the option print.cuminc(). In that option,

the argument ntp indicates number of the periods (for instance, ntp=3 indiactes 3− time

points) for which the estimates of the sub-distribution functions and their variances are

needed. It is also possible to estimate the CIF values for a particular time point. Here,

the CIF estimates are shown for the 10, 50, and 90 time points.

library(cmprsk)

ci.cmprsk=cuminc(ftime=bmt$time,fstatus=bmt$cause, group = bmt$platelet)

print(ci.cmprsk, ntp=3)

CIF=cuminc(bmt$times,bmt$cause, bmt$platelet)

CIF=timepoints(CIF, c(10,50,90))

Estimates and Variances are as follows:

$est

10 50 90

Low Platelet Count Death from TRM 0.4035896 0.4457578 0.4582107

High Platelet Count Death from TRM 0.2377285 0.3310266 0.3310266

Low Platelet Count Relapse 0.1451157 0.2235970 0.2429186

High Platelet Count Relapse 0.1544569 0.2412607 0.2412607

$var

10 50 90

Low Platelet Count Death from TRM 0.0008761345 0.0009252231 0.0010397042

High Platelet Count Death from TRM 0.0014547312 0.0021189199 0.0021189199

Low Platelet Count Relapse 0.0004534633 0.0007111760 0.0008672657

High Platelet Count Relapse 0.0010742456 0.0016472975 0.0016472975

The estimated CIFs can be visualized with generic function plot().

plot(ci.cmprsk, curvlab = c("Low Platelet Count, Death from TRM",

"High Platelet Count, Death from TRM",
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"Low Platelet Count, Relapse",

"High Platelet Count, Relapse"),

col=c(1:4))

Figure 2.2 shows that a low platelet count has a higher risk of death from TRM than a

high platelet count. However, difference between low and high platelet counts was not

prominent for the other causes (Relapse). The formal statistical test for the difference

between groups can be performed using the modified χ2 statistic (Gray, 1988).

Figure 2.2: CIF for both causes (TRM and Relapse) among different groups for
“platelet” covariate

Tests:

stat pv df

Death from TRM 8.68527512 0.003207912 1

Relapse 0.02290726 0.879698496 1

The first column of the output shows the χ2 statistic for the between-group test,

and the second column shows the respective p values. The test results point to the

statistically significant difference between the TRM sub-distribution functions for low

and high platelet counts (p=0.003) and lack of difference for relapse (p=0.88).
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Classical approach: Aalen-Johansen estimator

Now, the previous results can be compared with those from the classical Aalen-Johansen

estimator. The package used is prodlim, and the CIF for time points 10, 50, and 90

for event types 1 and 2 are computed separately. Here, similar results were obtained as

from the previous function.

library (prodlim)

aj <- prodlim(Hist(time, cause) ~ platelet, data = bmt2)

res1=summary(aj, cause=1, times=c(10, 50, 90))

res2=summary(aj, cause=2, times=c(10, 50, 90))

----------> Cause: 1 (TRM)

platelet=0 (Low Platelet Count) :

time n.risk n.event n.lost cuminc se.cuminc lower upper

1 10 116 0 0 0.404 0.0295 0.346 0.461

2 50 49 0 0 0.446 0.0303 0.386 0.505

3 90 9 0 0 0.458 0.0321 0.395 0.521

platelet=1 (High platelet count) :

time n.risk n.event n.lost cuminc se.cuminc lower upper

1 10 72 0 0 0.238 0.0380 0.163 0.312

2 50 22 0 0 0.331 0.0456 0.242 0.420

3 90 5 0 0 0.331 0.0456 0.242 0.420

----------> Cause: 2 (Relapse)

platelet=0 (Low Platelet Count) :

time n.risk n.event n.lost cuminc se.cuminc lower upper

1 10 116 0 0 0.145 0.0212 0.103 0.187

2 50 49 0 0 0.224 0.0266 0.172 0.276

3 90 9 0 0 0.243 0.0292 0.186 0.300

platelet=1 (High Platelet Count) :

time n.risk n.event n.lost cuminc se.cuminc lower upper

1 10 72 0 0 0.154 0.0326 0.0906 0.218

2 50 22 0 0 0.241 0.0403 0.1623 0.320

3 90 5 0 0 0.241 0.0403 0.1623 0.320

The plot option gives the CIF for the grouping factor “platelet” (Figure 2.3).
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par(mfrow=c(1,2))

plot(ajx)

plot(ajx,cause=2)

Figure 2.3: CIF for event type 1 (TRM, left panel) and CIF for event type 2 (relapse,
right panel). 0 indicates the “low platelet count” while 1 indiactes the “high platelet
count”.

2.2.2 Regression approaches

The CSH approach

The CSH regression model can be fitted with Cox regression by considering only the

event of interest and failure in other events as the censored observation. The effect of

covariates on the CSH can be estimated using Cox proportional hazard regression. The

model is fitted with coxph() function in the survival package.

summary(coxph.TRM<-coxph(Surv(time, cause == 1)~

age+ platelet + tcell, data=bmt))

summary(coxph.Relapse<-coxph(Surv(time, cause == 2)~

age+platelet+tcell, data=bmt))

Call:

coxph(formula = Surv(time, cause == 1) ~ age + platelet + tcell,

data = bmt)

n= 408, number of events= 161
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coef exp(coef) se(coef) z Pr(>|z|)

age 0.40836 1.50435 0.08903 4.587 4.51e-06 ***

platelet -0.51987 0.59460 0.18721 -2.777 0.00549 **

tcell -0.65169 0.52116 0.27634 -2.358 0.01836 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

age 1.5043 0.6647 1.2635 1.7912

platelet 0.5946 1.6818 0.4120 0.8582

tcell 0.5212 1.9188 0.3032 0.8958

Concordance= 0.645 (se = 0.022 )

Likelihood ratio test= 37.35 on 3 df, p=4e-08

Wald test = 33.68 on 3 df, p=2e-07

Score (logrank) test = 34.72 on 3 df, p=1e-07

The first argument of the coxph() function takes an object of class Surv, where

the cause== 1 indicates the event type 1 and other values are considered as censored.

Similarly, event type 2 can be computed as cause== 2. In the latter case, the software

assumes interest in computing event type 2 and thus considers it the main event of

interest, which also allows it to assume that event type 1 is censored. The summary

output shows the coefficients and corresponding hazard ratio (eβ̂). The last section on

the above code displays statistics for model’s goodness of fit.

An alternative way to perform the analysis is to use the CSC() function contained

in the riskRegression package. The summary output is similar to that of the coxph()

function except that the CSC() function automatically produces the results of the CSH

models for both types of events together.

install.packages ("riskRegression")

library (riskRegression)

fit3<-CSC(Hist (time, cause) ~ platelet + age+ tcell, data=bmt)

summary(fit3)

----------> Cause: 1

Call:

coxph(formula = survival::Surv(time, status) ~ age + platelet +

tcell, x = TRUE, y = TRUE)
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n= 408, number of events= 161

coef exp(coef) se(coef) z Pr(>|z|)

age 0.40836 1.50435 0.08903 4.587 4.51e-06 ***

platelet -0.51987 0.59460 0.18721 -2.777 0.00549 **

tcell -0.65169 0.52116 0.27634 -2.358 0.01836 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

age 1.5043 0.6647 1.2635 1.7912

platelet 0.5946 1.6818 0.4120 0.8582

tcell 0.5212 1.9188 0.3032 0.8958

Concordance= 0.645 (se = 0.022 )

Likelihood ratio test= 37.35 on 3 df, p=4e-08

Wald test = 33.68 on 3 df, p=2e-07

Score (logrank) test = 34.72 on 3 df, p=1e-07

----------> Cause: 2

Call:

coxph(formula = survival::Surv(time, status) ~ age + platelet +

tcell, x = TRUE, y = TRUE)

n= 408, number of events= 87

coef exp(coef) se(coef) z Pr(>|z|)

age 0.1425 1.1532 0.1118 1.275 0.202

platelet -0.2346 0.7909 0.2321 -1.011 0.312

tcell 0.3015 1.3519 0.2827 1.067 0.286

exp(coef) exp(-coef) lower .95 upper .95

age 1.1532 0.8671 0.9263 1.436

platelet 0.7909 1.2644 0.5018 1.246

tcell 1.3519 0.7397 0.7769 2.353
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Concordance= 0.584 (se = 0.033 )

Likelihood ratio test= 4.46 on 3 df, p=0.2

Wald test = 4.45 on 3 df, p=0.2

Score (logrank) test = 4.48 on 3 df, p=0.2

Predictions using the Cox PH model

Moreover, patients’ risk can be predicted with the given covariates with the results

from the fitted regression model. As an example, let us consider predicting the risk of

a patient aged “36 years” old who has “non t-cell depleted BMT” and “high platelet

count.” The prediction can be made using the pec package. Then, a data frame is

created for the predicted patients and then used in the predict object along with the

fitted model for event type 1.

library (pec)

fit3<-CSC(Hist (time, cause) ~ age+platelet + tcell, data=bmt)

newdata=data.frame

(age=c(36,36),

platelet=c("High Platelet Count","Low Platelet Count"),

tcell=c("T-cell Depleted BMT", "Non T-cell Depleted BMT"))

newdata

age platelet tcell

1 36 High Platelet Count T-cell Depleted bmt2

2 36 Low Platelet Count Non T-cell Depleted bmt2

predictEventProb(fit3, cause=1 ,newdata=newdata, time=c(10, 20))

The CIF at time points of 10 and 20 days are:

Times

[,1] [,2]

[1,] 0.4019179 0.4349749

[2,] 0.2502650 0.2753849

The first row represents CIF of death from TRM for the aforementioned patient at time

points 10 and 20, whereas the second row represents the CIF for the same patient, but

with “low platelet count” and “non t-cell depleted BMT” at the same time points. The

visual representation for this patient can be done as shown in the figure below (Figure

2.4):

par(mfrow=c(1,2))
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plotPredictEventProb(fit3,newdata=newdata,cause=1,col=c("red","blue"))

legend("topleft",legend=c("High Platelet Count","Low Platelet Count"),

lty=1,col=c("red","blue"))

plotPredictEventProb(fit3,newdata=newdata,cause=2,

col=c("red","blue"), ylim=c(0.2,0.28))

legend("topleft",legend=c("High Platelet Count","Low Platelet Count"),

lty=1,col=c("red","blue"))

Figure 2.4: CIF for event type 1 for patient aged 36 years (left panel); CIF for event
type 2 for the patient aged 36 years (right panel)

The SDH approach

Here, the following formula can be used to obtain the CIF and it’s predicted value

at time points {10, 50, 90} using the cmprsk package:

CIF=cuminc(bmt$times, bmt$cause, bmt$platelet)

CIF=timepoints(CIF, c(10,50,90)) ##timepoints is a function, so need object CIF.

$est

10 50 90
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Low Platelet Count TRM 0.4035896 0.4457578 0.4582107

High Platelet Count TRM 0.2377285 0.3310266 0.3310266

Low Platelet Count Relapse 0.1451157 0.2235970 0.2429186

High Platelet Count Relapse 0.1544569 0.2412607 0.2412607

$var

10 50 90

Low Platelet Count TRM 0.0008761345 0.0009252231 0.0010397042

High Platelet Count TRM 0.0014547312 0.0021189199 0.0021189199

Low Platelet Count Relapse 0.0004534633 0.0007111760 0.0008672657

High Platelet Count Relapse 0.0010742456 0.0016472975 0.0016472975

However, the following alternatives need to be applied to obtain the covariate ef-

fects. The Fine-Gray model can be fitted using the FGR() function shipped with the

riskRegression package.

SDH <- FGR(Hist(time,cause)~ platelet+tcell+age,data=bmt)

> SDH

Right-censored response of a competing.risks model

No.Observations: 408

Pattern:

Cause event right.censored

1 161 0

2 87 0

unknown 0 160

Fine-Gray model: analysis of cause 1

Competing Risks Regression

Call:

FGR(formula = Hist(time, cause) ~ age + platelet + tcell, data = bmt,

cause = "1")

coef exp(coef) se(coef) z p-value

age 0.344 1.410 0.0803 4.28 1.8e-05

platelet -0.425 0.654 0.1806 -2.35 1.9e-02

tcell -0.596 0.551 0.2704 -2.20 2.7e-02

exp(coef) exp(-coef) 2.5% 97.5%

age 1.410 0.709 1.205 1.650
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platelet 0.654 1.530 0.459 0.931

tcell 0.551 1.815 0.324 0.936

Num. cases = 408

Pseudo Log-likelihood = -909

Pseudo likelihood ratio test = 28.8 on 3 df,

Convergence: TRUE

##Fine-Gray model: analysis of cause 2

Call:

FGR(formula = Hist(time, cause) ~ age + platelet + tcell, data = bmt2,

cause = 2)

coef exp(coef) se(coef) z p-value

age -0.0113 0.989 0.122 -0.0929 0.930

platelet -0.0398 0.961 0.228 -0.1744 0.860

tcell 0.5304 1.700 0.280 1.8930 0.058

exp(coef) exp(-coef) 2.5% 97.5%

age 0.989 1.011 0.779 1.26

platelet 0.961 1.041 0.615 1.50

tcell 1.700 0.588 0.981 2.94

Num. cases = 408

Pseudo Log-likelihood = -502

Pseudo likelihood ratio test = 3.3 on 3 df,

Convergence: TRUE

As observed, the estimated coefficient for cause 1 deviated a little from that obtained

from the CSH model (Hazard ratio for age: 1.41 vs. 1.50), which reflected the different
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assumptions for the CR. Moreover, the numerical values derived from the Fine-Gray

model have no simple interpretation, but it reflects the ordering of cumulative incidence

curves (Fine and Gray, 1999). Here, it should be noted that the CSH is the rate of

cause 1 failure per time unit for still alive patients. However, event type 1 when using

the SDH is the rate of event type 1 failure per time unit for patients who are either

alive or have already failed in terms of event type 2. This function then calls another

function crr() from the cmprsk package.

Alternatively, a crr function in the cmprsk package developed by Gray et al. (2004)

can be applied to fit the proportional SDH approach. This allows the model to have

time-dependent covariates or test proportionality by adding a time-dependent covari-

ate. The predicted CIF for a given set of covariate values can be calculated using the

predict.crr function and then to produce a plot, the plot.predict.crr function can be

used. Here, the function arguments are different from those in FGR() function. The

model.matrix function can be used to generate suitable matrices of covariates from the

factors.cov1 argument that specifies the matrix of explanatory variables for which the

sub-distribution functions are to be estimated. Meanwhile, the argument failcode indi-

cates the event of interest in the specified variable in the fstatus argument for which the

model is estimated. The results are similar, and therefore, were not reported here.

crr.mat <- model.matrix(~age+platelet+tcell, data=bmt)[,-1]

mod.trm<-crr(bmt$time,bmt$cause,cov1=crr.mat,failcode=1 )

mod.relapse<-crr(bmt$time,bmt$cause,cov1=crr.mat, failcode=2)

summary(mod.trm)

summary(mod.relapse)

Model prediction

The fitted Fine-Gray model can predict new observations with the given combinations

of covariates. In the following example, a new dataset containing three patients is given.

newdata<-data.frame(platelet=c("Low Platelet Count",

"Low Platelet Count","High Platelet Count"),

age=c(30,31,32),

tcell=c("Non T-cell Depleted BMT",

"Non T-cell Depleted BMT","T-cell Depleted BMT"))

newdata

platelet age tcell
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1 Low Platelet Count 30 Non T-cell Depleted BMT

2 Low Platelet Count 31 Non T-cell Depleted BMT

3 High Platelet Count 32 T-cell Depleted BMT

However, the data frame had to be transformed to a matrix and the factor variables

to dummy variables. Further, the predict() function applied to the crr object requires

the columns of cov be in line with that in the original call to crr() function. This

is because both platelet and t-cell are factor variables and need to be transformed

to dummy variables using the model.matrix() function. Alternatively, a custom-made

function called factor2ind() by Scrucca et al. (2010) can be useful.

dummy.new<-model.matrix(~platelet+age+tcell,data=newdata)[,-1]

dummy.new

plateletLow Platelet Count age tcellT-cell Depleted BMT

1 1 30 0

2 1 31 0

3 0 32 1

Here, the variables “platelet” and “t-cell” are transformed to 0/1 variables, while the

varaible “age” is continuous and thus unchanged. So, the prediction code will be as

shown below:

pred<-predict(mod.trm,dummy.new)

plot(pred,lty=1:3,col=1:3,xlab="Failure time(days)",

ylab="Cumulative incidence function")

legend("topleft",

c("Low Platelet,age=30,Non T-cell Depleted BMT",

"Low Platelet,age=35, Non T-cell Depleted BMT",

"High Platelet,age=50, T-cell Depleted BMT"),

lty=1:3,col=1:3)

An object of crr class is passed to the predict() function, followed by a matrix

containing the covariate combinations (Zhang, 2017). The predict() function returns a

matrix (not shown) with the unique cause =1 event times in the first column, and the

other columns give the estimated subdistribution function corresponding to the covariate

combinations at each event time. Figure 2.5 was produced using the generic function

plot() to draw CIF for each patient.



58 Section 2.2 - Practical guidelines using BMT data in R

Figure 2.5: CIF for three patients with given covariate values.

Here, prediction and plotting are more convenient using functions in the riskRegression

package. Specifically, the function riskRegression() provides a variety of link functions

for the survival regression model in the presence of CR (Gerds et al., 2012). The link

argument controls the link function to be used: prop for the regression model of Fine

and Gray (1999), relative for the absolute risk regression model, and logistic for the

logistic risk regression model.

reg<-riskRegression(Hist(time, cause) ~ age+platelet+tcell,

data = bmt, cause = 1,link="prop")

reg

plot(reg,newdata=newdata)

> reg

Competing risks regression model

IPCW weights: marginal Kaplan-Meier for the censoring distribution.

Link: ’cloglog’ yielding sub-hazard ratios \citep{Fine}

No covariates with time-varying coefficient specified.

Time constant regression coefficients:

Variable Levels Coef Lower Upper Pvalue

age 1.383 1.155 1.656 0.00041

platelet 0.571 0.382 0.852 0.00605

tcell 0.499 0.276 0.903 0.02171
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Note: The coefficients (Coef) are sub-hazard ratios

(Fine & Gray 1999)

The binomial regression approach

The binomial regression approach depends on the censoring weighting technique.

More generally, it has been established that regression modeling for inverse probabil-

ity censoring weights (IPCW) can improve efficiency (Scheike et al., 2008). Thus, it

is important that before estimating the cumulative incidence curve when using this

approach, the censoring weights need to be estimated without bias. For instance, if

it is found that the censoring distribution depends significantly on the covariates X

and is well described by Cox’s regression model, using a simple Kaplan-Meier estimate

for the censoring weights may lead to severely biased estimates. Therefore the option

cens.model = “cox” would need to be selected in the function call. To analyze the data,

the timereg package in R was used as previously mentioned. Here, the event time and

censoring variable are specified in timereg’s comp.risk() function as Event (time, cause).

The cause variable gives the causes associated with the different events. Then, causes

= 1 specifies that type 1 events be considered.

Assuming that the time-varying effect of a covariate has to be identified, the following

fully non-parametric additive model can be first fit using log link function

− log {1− CIF1(t;x, z)} = α(t)⊤x+ γ⊤x

where, the regression coefficients α(t) and γ are estimated by a simple binomial

regression approach. Then a proportional SDH model proposed by Fine and Gray

(1999) is fit for comparison purposes. Finally, a flexible model that incorporates both

time-varying and time fixed covariates is fit.

library ("timereg")

Aalen <- comp.risk(Event(time, cause) ~ age + platelet + tcell,

data = bmt, cause=1, n.sim=5000,

model = "additive", cens.model = "cox")

> summary(Aalen)

Competing risks Model

Test for nonparametric terms

Test for non-significant effects
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Supremum-test of significance p-value H_0: B(t)=0

(Intercept) 11.00 0.0000

age 5.64 0.0000

platelet 3.23 0.0142

tcell 4.99 0.0000

Test for time invariant effects

Kolmogorov-Smirnov test p-value H_0:constant effect

(Intercept) 0.441 0.0000

age 0.134 0.0000

platelet 0.193 0.0034

tcell 0.183 0.0352

Cramer von Mises test p-value H_0:constant effect

(Intercept) 4.710 0.0000

age 0.291 0.0000

platelet 0.739 0.0028

tcell 0.844 0.0162

The tests of significance based on the non-parametric tests show that all the covariates

are significant. Then a figure can be created using the sim.ci and score options to plot

the estimated regression coefficients with their 95% confidence bands and the observed

test process for constant effects and simulated test processes under the null, respectively

(Scheike and Zhang, 2011). R code was used to create the time-varying coefficient effects

shown in Figure 2.6:

plot(Aalen, sim.ci=2)

plot(Aalen, score=1)
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Figure 2.6: Observed (black line) and simulated test processes under the null (gray
lines).

These effects are not constant over time. Here, there were 95% pointwise confidence

intervals and bands (sim.ci=2 in the plot call, 2 for broken lines).

Alternatively, the model can be fit using the survival package, and then the esti-

mates shown in Figure 2.7 can be created using ggplot2 and ggfortify packages. The

fitted model results are not reported here because of the similar results, however, the

plot has been shown.

aa_fit <-aareg(Surv(time, cause==1) ~ age+platelet + tcell , data = bmt)

library(ggfortify)

library(ggplot2)

autoplot(aa_fit)
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Figure 2.7: Estimates of time-varying effects with 95% confidence intervals

Figure 2.6 shows the related test processes under the null hypothesis of constant

effect, together with the observed processes (black lines), for deciding whether covariate

effects are significantly time-varying or whether a null hypothesis can be accepted. The

summary of these graphs is given in the output, and it is observed that all of the

covariates (age, platelet, t-cell) are time-varying, and thus not consistent with the model

by Fine and Gray (1999) as shown below. The intercept is also time-varying and in

Figure 2.7 it is increasing until time point 20 and then becomes flat after that time

point. Moreover, the p values related to these plots are given in the above output, and

it can be seen that the Kolmogorov-Smirnov (supremum) test leads to p values of 0.00,

0.003, and 0.035, for age, platelet, t-cell, respectively. Similarly, the Cramer von Mises

test statistics based on the same score processes are 0.00, 0.003, and 0.016, respectively.

These test statistics are described in detail in the paper by Scheike and Zhang (2011).

Here, it should be noted that the two different summaries of the test processes using

the Kolmogorov-Smirnov and Cramer von Mises tests statistics are consistent with the

figures, and the overall conclusion is that none of the three variables have proportional

Cox type effects. This means that, in each figure, the observed process of the data
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(black line) is outside (far from) the process simulated under the null hypothesis under

the model (gray lines).

Fine and Gray model for comparison:

FG <- comp.risk(Event(time, cause) ~ const(age) + const(platelet) +

const(tcell), data = bmt, cause=1, n.sim=5000,

model = "fg", cens.model = "cox")

summary(FG)

> summary(FG)

Competing risks Model

Test for nonparametric terms

Test for non-significant effects

Supremum-test of significance p-value H_0: B(t)=0

(Intercept) 10.3 0

Test for time invariant effects

Kolmogorov-Smirnov test p-value H_0:constant effect

(Intercept) 0.496 0

Cramer von Mises test p-value H_0:constant effect

(Intercept) 13.4 0

Parametric terms :

Coef. SE Robust SE z P-val lower upper

2.5% 97.5%

const(age) 0.326 0.0918 0.0918 3.55 0.000388 0.146 0.506

const(plat)-0.555 0.2040 0.2040 -2.73 0.006420 -0.955 -0.155

const(tcell)-0.691 0.3020 0.3020 -2.29 0.022000 -1.280 -0.099

We can conclude from the above results that both the Fine-Gray and non-parametric

additive models show non-proportionality. Thus, the Aalen model will be used as the

final model for prediction. For instance, a new data set as assigned below for the ages

25 and 65 years old with the covariates of “platelet,” and “t-cell” are:

ndata<-data.frame(platelet=c("Low Platelet Count",

"High Platelet Count"),

age=c(65,25),
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tcell=c("Non T-cell Depleted BMT",

"T-cell Depleted BMT"))

ndata

out<-predict(FG,ndata)

par(mfrow=c(2,2))

plot(out,multiple=1,uniform=0, ylim=c(0.5,1),

col=c("red", "blue"),lty=1,se=0)

legend("bottomright",c("Low Plat with Non T-cell Depltd BMT

for age 65,",

"High Plat with T-cell Depleted BMT

for age 25"),lty=1:2,col=c("red", "blue"))

Moreover, the predictions can be plotted (Figure 2.8) without pointwise confidence

intervals (se = 0 ) and confidence bands (uniform = 0 ).

Figure 2.8: Predictions of the cumulative incidence curves for different ages under
Aalen model

Alternatively, these estimates can be obtained using theARR object in the riskRegression

package.

> library(riskRegression)

> fit.arr <- ARR(Hist(time,cause)~age+platelet+tcell, data=bmt, cause=1)
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> print(fit.arr)

Competing risks regression model

IPCW weights: marginal Kaplan-Meier for the censoring distribution.

Link: ’log’ yielding absolute risk ratios

No covariates with time-varying coefficient specified.

Time constant regression coefficients:

Factor Coef exp(Coef) StandardError z CI_95 Pvalue

age 0.2484 1.2820 0.0735 3.3809 [1.110;1.481] 0.0007224

platelet -0.456 0.634 0.173 -2.635 [0.452;0.890] 0.0084249

tcell -0.566 0.568 0.261 -2.169 [0.341;0.947] 0.0300456

Note: The values exp(Coef) are absolute risk ratios

The pseudo-value approach

The R function pseudoci in the pseudo package has three arguments: time (the event

time variable), event (1, if there is occurrence of risk 1; 2 if there is occurrence of risk

2; and 0 otherwise), and tmax (a list of time points at which the pseudo-values are to

be computed). This routine produces an object containing the pseudo-values for both

CR. In this context, a grid is presented of the three-time points from 10, 30, and 50 days

since the transplant and fitted with the regression model with three variables as follows:

Z1 = platelet counts (binary variable); Z2 = patient age (continuous variable); and Z3

= t-cell (binary variable). First, a regression model ϕ(θij) = αj + β1Zi1 + β2Zi2 + β3Zi3

with a complementary log-log link function is fitted, which is equivalent to the Fine and

Gray (1999) proportional SDH model. Here, the probability of TRM is being modeled.

For each time cutoff, the pseudoci function generated several columns of pseudo-

values (one column for each CR). Then, a generalized estimating equation (GEE) is run

using the geese function. To use this function, only the TRM pseudo-values (if we are

interested in TRM as a main event of interest) are needed and arranged in one column.

In another column, the pseudo-value’s time points are needed with the original BMT

data, and these are prepared for analysis using the function geese. By default, this

function uses a different “sandwich” estimator of the variance. An alternative to this

estimator is the jackknife variance estimators (Yan and Fine, 2004). Here, the routine

geese allows the user to decide between the fully iterated one-step and approximate
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jackknife (AJ) variance estimates. The AJ variance estimate is recommended by Klein

et al. (2008).

The R code and output are given below:

library(pseudo)

data(bmt)

#calculate the pseudo-observations

cutoffs <- c(10,30,50)

pseudo <- pseudoci(time=bmt$time,event=bmt$cause,tmax=cutoffs)

##for each time cutoff the "pseudoci" function generated several

## columns of pseudovalues (one column for each competing risk)

#rearrange data into long format

#use only pseudo-observations for TRM (in the code: pseudo$pseudo[[1]]

#for cause 1 TRM)

b <- NULL

for(j in 1:length(pseudo$time)){

b <- rbind(b,cbind(bmt,pseudo = pseudo$pseudo[[1]][,j],

tpseudo = pseudo$time[j],id=1:nrow(bmt)))

}

b <- b[order(b$id),]

> head(b)

X time cause platelet age tcell pseudo tpseudo id

1 1 0.03 2 0 0.19566 0 0.000000e+00 12 1

1100 1 0.03 2 0 0.19566 0 0.000000e+00 36 1

1102 1 0.03 2 0 0.19566 0 2.842171e-14 60 1

2 2 0.03 2 0 0.63005 0 0.000000e+00 12 2

2100 2 0.03 2 0 0.63005 0 0.000000e+00 36 2

2102 2 0.03 2 0 0.63005 0 2.842171e-14 60 2

# fit the model for cause 1

fit <- geese(pseudo ~ age+platelet+tcell,data =b, jack = TRUE,

scale.fix=TRUE, family=gaussian, mean.link = "cloglog",

corstr="independence")

#The results using the Approximate Jackknife (AJ) variance estimate

cbind(mean = round(fit$beta,4), SD = round(sqrt(diag(fit$vbeta.ajs)),4),

Z = round(fit$beta/sqrt(diag(fit$vbeta.ajs)),4),

PVal = round(2-2*pnorm(abs(fit$beta/sqrt(diag(fit$vbeta.ajs)))),4))
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mean SD Z PVal

(Intercept) -0.5504 0.0959 -5.7420 0.0000

age 0.3035 0.0844 3.5972 0.0003

platelet -0.3873 0.1906 -2.0318 0.0422

tcell -0.5638 0.2926 -1.9267 0.0540

Similarly, results can be obtained for cause 2. Here, the b matrix has to be replaced as

follows:

b2 <- NULL

for(j in 1:length(pseudo$time)){

b2 <- rbind(b2,cbind(bmt,pseudo = pseudo$pseudo[[2]][,j],

tpseudo = pseudo$time[j],id=1:nrow(bmt)))

}

In this model, positive values of β for a covariate suggest a larger cumulative incidence

for patients with Z = 1 or equivalently more TRM.

It should be noted that while the observed CIF value was not obtained from the

R package pseudo, the estimated regression parameters β̂ and s.e.(β̂) were obtained.

To compute the variance of the estimated CIF, the procedures explained in Subsection

1.4.5 were followed.

###first we have all parameters beta0 and beta1

pseudo_mean_1=cbind(mean =fit$beta[1:4],

VAR = diag(fit$vbeta.ajs[1:4,1:4]))

pseudo_mean_1

mean VAR

(Intercept) -0.5503886 0.009187705

age 0.3035054 0.007118617

platelet -0.3873073 0.036337434

tcell -0.5637857 0.085625006

### only beta0 for 4 time points, so when x=0

pseudo_mean_10=cbind(mean =fit$beta[1:3],

VAR = diag(fit$vbeta.ajs[1:3,1:3]))

>pseudo_mean_10

mean VAR
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(Intercept) -0.5503886 0.009187705

age 0.3035054 0.007118617

platelet -0.3873073 0.036337434

###when x=1, so beta0+beta1

pseudo_mean_11=cbind(mean=pseudo_mean_1[1:3,1]+pseudo_mean_1[4,1],

VAR=pseudo_mean_1[1:3,2]+pseudo_mean_1[4,2]

+ 2*fit_11$vbeta.ajs[1:3,4])

>pseudo_mean_11

mean VAR

(Intercept) -1.1141743 0.1025666

age -0.2602802 0.1026712

platelet -0.9510930 0.1327096

The pseudo-value approach allows direct regression modeling of the CIF for CR data.

The pseudo-values for each observation need to be computed to apply this technique.

Next, a standard generalized estimating equation approach is used to obtain regression

estimates. The interpretation under the pseudo-values approach is based on the model-

ing of CIFk(t | z) = 1−exp
{
−Λ0(t)e

βz
}
. Here, negative values of β for a covariate (say,

platelet) suggest a smaller cumulative incidence for subjects with high platelet count

(z = 1).

Under BMT data, the objective was to explore all the regression approaches for com-

puting CIF using R software. To this end, we first introduced conventional techniques

such as the K-M method. It was clear that the K-M technique showed biased results

and thus appropriate techniques need to be addressed. Next, we applied nonparametric

and semi-parametric regression approaches under CSH and SDH competing risks set-

tings. The CIF under these approaches was found almost similar over time. Under the

CSH approach for the main event of interest, if all variables are kept constant except

age in two subjects, one-year older subject has a 50% higher risk of dying. Moreover,

those who have high platelet counts were 40% less at risk of dying in comparison to low

platelet counts. Next, similar results were found for the covariate t-cell. Under the SDH

approach, the results were slightly different (for covariate age, the hazard is 1.41; for

platelet 0.65, and for t-cell 0.55). Furthermore, we applied binomial and pseudo-value

regression approaches which allow direct modeling of the CIF through an appropriate

link function. Moreover, under the binomial regression approach, we used time-varying

coefficients and found that the covariates age, platelet, and t-cell were not constant over

time. It is important to note that while using the binomial approach, the censoring
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weights need to be estimated without bias before estimating correctly the CIF.

2.3 Real data example from subjects with Covid-19

A novel coronavirus was identified by the end of 2019 as the cause of a cluster of pneumo-

nia cases in Wuhan, a city in China’s Hubei Province. It rapidly spread, resulting in an

epidemic throughout China, followed by several outbreaks in other countries worldwide

(Ge et al., 2020). In February 2020, as the situation worsened, the World Health Or-

ganization named the disease COVID-19, caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). Later on March 11th, the COVID-19 was classified as

a global pandemic. In COVID-19 subjects, the time between exposure and symptom

onset is estimated to be around 5 days, but may range from 2 to 14 days. Among those

who died from the disease, the time from development of symptoms to death is between

6 to 41 days, with a median of 14 days (Ghosh et al., 2021).

Data analysis from COVID-19 subjects is required to study clinical prognostic ex-

posures, generate possible treatment drugs, and design intervention strategies. Many

studies have investigated on Covid-19 data (Zuccaro et al., 2021; Salinas-Escudero et al.,

2020; Nijman et al., 2021; Rathouz et al., 2021) to identify important exposures for the

occurrence of death or cured. However, statistical models were presented by either

ignoring the competing events or using inappropriate regression-based statistical meth-

ods. We applied competing risk survival analyses for estimating the CIF of dying from

Covid-19 and the CIF of dying from other causes in subjects with Covid-19, which have

been under observation from the date of symptoms to the date of death or exit from the

study because they are cured. Our time-to-event data are obtained from the Ministry

of Health of Brazil for all COVID-19 patients from January 01, 2020 to April 30, 2021.
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Figure 2.9: Outcome variable for one main event of interest and two competing
events

The exposures that we considered are as follows: asthma (1:yes, 2:no), cardio.dis

(chronic cardiovascular disease 1:yes, 2:no), cough (1:yes, 2:no), diabetes (1:yes, 2:no),

diarrhea (1:yes, 2:no), dyspnea (1:yes, 2:no), fatigue (1:yes, 2:no), fever (1:yes, 2:no),

flu.vaccine (Flu vaccine last campaign 1:yes, 2:no), hepatic.dis (chronic liver dis-

ease 1:yes, 2:no), immuno (Immunodepression which is decreased from immunological

system function 1:yes, 2:no), kidney (Chronic kidney disease 1:yes, 2:no), loss.smell

(1:yes, 2:no), loss.taste (1:yes, 2:no), neuro (Neurological diseases 1:yes, 2:no), obe-

sity (1:yes, 2:no), other.risk (Other risk factors 1:yes, 2:no), other.symp (1:yes, 2:no),

parto (Has the subject given birth less tan 45 days from the first symptoms? 1:yes,

2:no), pneumo (lung chronic disease 1:yes, 2:no), pneumo.dis (Other Chronic Pneu-

matopathy 1:yes, 2:no), resp.disc (Respiratory Discomfort 1:yes, 2:no) , fatigue (1:yes,

2:no), sore.throat (1:yes, 2:no), vomit (1:yes, 2:no), saturation (oxygen saturation <

95%? 1:yes, 2:no), abdom.pain (Abdominal pain 1:yes, 2:no), race (1:white; 2:black;

3:yellow; 4:brown; 5:indigenous), risk.factor (the subject does present some risk factor?

1:yes, 2:no), age (age in years at first symptoms), sex (Male=1; Female=2), and ICU

(admitted to Intensive care Unit 1:yes, 2:no).

It was found in the recent literature (for instance, Ghosh et al. (2021)) that about 80%

of deaths were in those over 60 years of age, and 75% had pre-existing health conditions.

Thus, it was meaningful to study the effect of Covid-19 outcomes on different age groups.

The variable age is categorized as follows: less than 40 years (“Young”); between 40−50

years (“Young-Old”); between 50 − 60 years (“Medium-Old”), between 60 − 70 years

(“Old”), and finally age greater than 70 years (“Old-old”).

In our preliminary analysis (Sections 2.3.1 and 2.3.2), the time to become cured is



Chapter 2 - Application to real data 71

considered the cause of interest and investigated on its own. However, in the competing

risks regression analysis, this was considered as a censored time, since the main focus was

on the causes of death. The latter violates the assumption of non-informative censoring,

i.e., the cured patients are not representative of those who are still admitted to the

hospital in terms of their risk of dying. However, when the approaches are analyzed

based on the IPCW technique, these are particularly relevant because regression models

can also account for dependent censoring.

2.3.1 Non-parametric estimation of the CIF

Figure 2.10 shows the CIF for cured subjects, death due to Covid, and death due to

other causes, which is estimated non-parametrically by the Aalen Johansen estimator.

Here, the estimated probability of death was 24% during the first 20 days from the day

of symptoms and became 35% after 30 days. Meanwhile, the likelihood of cured was 50%

during the first 20 days and around 60% after 40 days. The death due to other causes

was found incomparable as the probability of death over time was slightly over 0%. The

reason was that there were very few subjects who experienced death due to other causes

(n=1, 730) compared to death due to covid (n=219, 325) and cured (n=376, 549) events.

Figure 2.10: CIF curve for cured, death due to Covid and other causes in the total
population

2.3.2 Comparison between Kaplan-Meier (K-M) and CSH ap-

proach

The objective here was to compute the CIF based on conventional technique (K-

M) and then compare the results with the competing risks CSH approach. The K-M
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plot for death from Covid estimates the survival probability of subjects who have not

experienced the death from Covid. The CIF can be obtained by plotting inversely (1-

KM), which estimates the cumulative risk of dying from Covid over time, in the absence

of the competing events (here, treated all as right-censored times). Overall, the figures

(2.11 to 2.20) satisfied the proportional hazards assumption since survival risk curves do

not cross during the analyzed period. A clear overestimation of the CIF function over

time was observed under the K-M estimation technique compared to the CSH approach.

The overestimation gap between (1-KM) and CSH approaches was severe, mainly for

death due to covid.

The subjects who developed the exposures of chronic liver disease (hepatic.dis), other

symptoms, respiratory discomfort (resp.disc), oxygen saturation level and ICU admis-

sion, have lower probability of survival after 20 days of hospitalization than subjects

who did not experience these characteristics. In particular, the most severe exposure

group was the one who entered in the ICU and they have about 40% less probability

of survival after 20 days than those subjects who did not admit in this unit (Figure

2.18). Furthermore, the gap between the CIF curves among the subjects who had a

fever and those who had not experienced fever were negligible (Figure 2.12). Moreover,

the CIF for the subjects who had been vaccinated was indistinguishable from the CIF

of those who had not been vaccinated (Figure 2.13). Additionally, the probability of

death due to Covid for male subjects was higher as compared to female subjects (Figure

2.11). However, flu vaccine and sex exposures were found statistically significant with

the hazard ratio 0.94 and 1.06, respectively (Table 2.1). The probability of death due

to covid was more severe for the age group greater than 70 years (it is > 50% after 30

days, Figure 2.19). For the subjects from the race with indigenous was found a higher

probability of dying as compared to other race (Figure 2.20).

Figure 2.11: CIF curve for exposure sex
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Figure 2.12: CIF curve for exposure fever

Figure 2.13: CIF curve for exposure flu vaccine

Figure 2.14: CIF curve for exposure hepatic.dis
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Figure 2.15: CIF curve for exposure other.symp

Figure 2.16: CIF curve for exposure resp.disc

Figure 2.17: CIF curve for exposure saturation
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Figure 2.18: CIF curve for exposure ICU

Figure 2.19: CIF curve for exposure age

Figure 2.20: CIF curve for exposure race
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2.3.3 Regression analysis to estimate the parameters

To analyze the effect of the exposures on the CIF, it was found that there were

confounding effects among the symptoms and some of the patients’ risk factors. Thus, we

separated those confounding exposures and investigated the remaining risk factors on the

cause of interest. In particular, the stepwise variable selection techniques were applied

based on AIC and likelihood ratio test under the Cox proportional hazard assumptions

for the CSH, and SDH approaches. The data were analyzed in R statistical software.

The final model was as follows: asthma, diabetes, obesity, other.risk, immuno, kidney,

neuro, flu.vaccine, hepatic.dis, age, sex, ICU, pneumo, and race.

Regression analysis for the CSH approach

From Table 2.1, the worst outcomes were observed for the age group Old-old (> 70

years) with a hazard ratio around two-folds (HR: 2.03784, CI: 1.9703− 2.1048) as com-

pared to the reference group of medium-old age (50 − 60 years). Furthermore, the

subjects who were admitted to the emergency unit (ICU) had a significantly higher

Covid-mortality than those not admitted in the ICU (HR: 1.53741, CI: 1.5046−1.5709).

Moreover, the exposures diabetes, other risks, male sex, yellow race (category level 3),

had approximately 1.06 hazard ratios. It was found that, the subjects who had been

vaccinated were less risky than those who had not been vaccinated (HR: 0.93863, CI:

0.9180 − 0.9598). Moreover, subjects with a state of decreased immunological system

function (Immuno), chronic kidney disease, neurological disease, and chronic liver dis-

ease (hepatic.dis1) had approximately 28% higher risk of dying of Covid (HR= 1.28)

as compared to those who had no such disease status. Additionally, the risk of dying

was higher for the indigenous subjects (HR: 1.37049 with a larger confidence interval:

1.1361−1.6532) than other race subjects. Subsequently, the mortality rate for the black

and brown race subjects was also found significantly higher than white race subjects.

Interestingly, the subject with the state of asthma was found to have a lower probability

of dying (HR: 0.89099, CI: 0.8418−0.9430) compared to those who had no asthma. This

may be justified as the subjects with asthma received extra care in the hospital. Thus,

the lesser the risk of dying undertaken.
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Table 2.1: The estimated hazard ratio of the exposures for the main event of interest
(death due to covid) under CSH approach

Exposures Estimates HR S.E. Lower CI Upper CI P-value

asthma1 -0.115 0.891 0.029 0.842 0.943 <0.001

diabetes1 0.077 1.080 0.011 1.058 1.104 <0.001

obesity1 0.034 1.034 0.018 0.998 1.072 0.06.

other.risk1 0.058 1.060 0.011 1.038 1.082 <0.001

immuno1 0.252 1.286 0.024 1.227 1.348 <0.001

kidney1 0.238 1.269 0.019 1.222 1.317 <0.001

neuro1 0.270 1.310 0.019 1.262 1.360 <0.001

flu.vaccine1 -0.063 0.939 0.011 0.918 0.960 <0.001

hepatic.dis1 0.247 1.280 0.040 1.184 1.384 <0.001

age2Old 0.276 1.318 0.018 1.272 1.366 <0.001

age2Old-old 0.712 2.038 0.017 1.973 2.104 <0.001

age2Young -0.333 0.717 0.031 0.675 0.761 <0.001

age2Young-Old -0.120 0.887 0.026 0.844 0.933 <0.001

sexM 0.060 1.062 0.011 1.040 1.085 <0.001

ICU1 0.430 1.537 0.011 1.504 1.571 <0.001

pneumo1 0.133 1.143 0.019 1.100 1.187 <0.001

race2 (black) 0.198 1.219 0.023 1.165 1.275 <0.001

race3 (yellow) 0.064 1.066 0.049 0.968 1.174 0.194

race4 (brown) 0.149 1.160 0.011 1.135 1.187 <0.001

race5 (indigenous) 0.315 1.370 0.096 1.136 1.653 <0.001

Regression analysis for the SDH approach

This section explores the performance of the SDH (Fine-Gray model) model. This

approach makes it possible to obtain both the naive and model-based standard errors.

Here, only model-based (robust) standard errors are reported. It is observed from Table

2.2 that the estimated coefficients for death due to covid deviate slightly from those

obtained from the CSH model. The differences in the estimated parameters reflected

the different underlying assumptions under competing risks survival data. The estimates

derived from the Fine-Gray model have no simple interpretation, but they go in the same

direction.
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Table 2.2: The estimated hazard ratios of the exposures for the main event of interest
(death due to covid) under SDH approach

Exposures Estimates HR Robust S.E. Lower CI Upper CI P-value

asthma1 -0.115 0.891 0.029 0.842 0.943 <0.001

diabetes1 0.078 1.081 0.011 1.058 1.105 <0.001

obesity1 0.037 1.037 0.018 1.001 1.075 0.042 *

other.risk1 0.056 1.058 0.011 1.036 1.081 <0.001

immuno1 0.241 1.272 0.025 1.211 1.338 <0.001

kidney1 0.235 1.265 0.021 1.216 1.317 <0.001

neuro1 0.267 1.306 0.021 1.253 1.361 <0.001

flu.vaccine1 -0.062 0.940 0.011 0.919 0.961 <0.001

hepatic.dis1 0.244 1.276 0.044 1.171 1.391 <0.001

age2Old 0.278 1.321 0.017 1.277 1.367 <0.001

age2Old-old 0.710 2.035 0.016 1.971 2.101 <0.001

age2Young -0.335 0.715 0.030 0.674 0.759 <0.001

age2Young-Old -0.120 0.887 0.025 0.845 0.931 <0.001

sexM 0.061 1.063 0.011 1.041 1.086 <0.001

ICU1 0.434 1.543 0.011 1.510 1.577 <0.001

pneumo1 0.132 1.141 0.020 1.097 1.188 <0.001

race2 (black) 0.198 1.21932 0.02367 1.1640 1.277 <0.001

race3 (yellow) 0.053 1.05427 0.047 0.961 1.157 0.264

race4 (brown) 0.144 1.155 0.012 1.129 1.181 <0.001

race5 (indigenous) 0.323 1.381 0.106 1.121 1.701 0.002 **

Comparison of model prediction between CSH and SDH approaches

In this section, the model-based predictions are undertaken and compared by ana-

lyzing the subject’s risk with the given exposures resulting from the fitted regression

models. As an illustration, let us predict the risk of a subject with vaccination sta-

tus and chronic liver disease under CSH, and SDH approaches. Figure 2.21 shows two

groups based on the subjects’ risk factors: group 1 is those who had been vaccinated

and had no chronic liver disease, and group 2 is those who had not been vaccinated and

had chronic liver disease. From the Figure 2.21 (left panel), it is observed that, at the

beginning of the study, the CIF curves between the two groups seem to be similar until

day 10. Then, the gap of the CIF probabilities is increased over time. In particular,

in the CSH approach, the probability of death (CIF) due to Covid has reached 50% in
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25 days for group 1, and in 30 days for group 2. Moreover, the CIF probability gap

is almost similar from 30 days to more than 100 days. On the contrary, in the SDH

approach, the CIF probability gap after 10 days increased slightly, and then this gap

extends more after 25 days up to 70 days, and after that period, the CIF curves seem

flat (see Figure 2.21, right panel).

Figure 2.21: Prediction of subjects with flu vaccine and saturation status under
CSH (left panel) and SDH approaches (right panel)

In conclusion, it can be said that the exposures of asthma, diabetes, obesity, other.risk,

immuno, kidney, neuro, flu.vaccine, hepatic.dis, age, sex, ICU, pneumo, and race, signif-

icantly increase the probability of death due to Covid. The highest hazard ratio (2.03)

was observed for the subjects with age greater than 70 years compared to the age group

50− 60 years. SDH approach shows a slightly higher survival probability compared to

the CSH approach. In this study, ICU is considered time-constant exposure, but one

can consider ICU a time-dependent covariate. Moreover, it is of interest to study its

time-varying effect on the CIF. The reason is that a significant proportion of COVID-19

cases develop pneumonia and acute severe respiratory failure, which commonly require

hospitalization, ICU admission, and intubation (Lai et al., 2020). Thus, the binomial re-

gression approach can help to predict such an objective, allowing to model time-varying

coefficients.





Chapter 3

Computing sample size using fixed

design

3.1 Introduction

To design a randomized clinical trial, an essential step is the calculation of the sample

size or the number of patients to be recruited to detect the efficacy of treatments with

sufficient power. Many studies have investigated sample size calculations under clinical

trials settings with time-to-event endpoints. In particular, Freedman (1982); Schoenfeld

(1983); Lakatos (1988); Collett (2003) and others, were discussed the sample size com-

putation under the proportional hazards model. Next, some methods were proposed,

under a constant hazard function, i.e., exponential distribution (George and Desu, 1974;

Bernstein and Lagakos, 1978; Lachin, 1981; Lachin and Foulkes, 1986) and many others.

Very few considered the Weibull distribution (Heo et al., 1998; Wu, 2015).

In a time-to-event study, the sample size is determined not by the number of patients

accrued, but by the number of events observed during a specific follow-up period. If the

follow-up continues until all patients enrolled in the trial have experienced the event of

interest, the required sample size coincides with the number of patients. However, clini-

cal trials often have to be completed within a relatively short time period. Furthermore,

one of the main objectives is to study the main event of interest, given that patients can

experience competing events. Moreover, in the presence of competing risks (CR), only

part of the trial population will experience the event of interest, allowing patients to

be censored or fail in competing events. Therefore, in determining the required number

of patients, the probability of having the main event over time, denoted here with Ψ,

should also be estimated.

In CR settings, Ψ can be calculated using the Cumulative Incidence Function (CIF),

81
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which is often of great interest in medical research and can be estimated by different

alternative approaches. When there is only one event of interest, then the CIF can be

easily calculated with the complementary of the Kaplan-Meier (K-M) estimator. The

Cause-Specific Hazard (CSH) or the Sub-Distribution Hazard (SDH) approach can be

employed to estimate the CIF in the presence of competing events. Meanwhile, Tai

et al. (2018) compared sample size calculation for these two different approaches for a

fixed design. With this in mind, in this chapter, novel aspects are discussed: the com-

putational methods that can be employed are studied; the comparison between the CSH

and SDH approaches are investigated in terms of Weibull and Gompertz distributions,

which have not been explored elsewhere.

In Section 3.2, the theoretical aspects of the sample size is described. In particular,

the derivation of N is shown in Appendix A.1, derivation of D is in Subsection 3.2.1,

and Ψ is in Subsection 3.2.2. Meanwhile, Section 3.3 describes practical guidelines for

computing sample size under the fixed design for the CSH and SDH approaches. Next,

in Section 3.3.3, a simulation study is undertaken. Section 3.4 discusses a procedure to

compute the sample size when changing the shape parameter values in the Weibull and

Gompertz distributions. Finally, 3.5 explained the summary results under fixed design.

3.2 Sample size formulation

Let us consider, a simple survival setting with a single event of interest. Here, let D

be the number of events required to be observed in the study, and t̃ be the duration of

a study. Further, if it is assumed that a is the first time period during which patients

are being accrued into the study and f̃ is the follow-up period, during which patients

are under observation and no new patients enter the study, then t̃ = a + f̃ . Here,

it should be noted that if f̃ is small, correspondingly more patients will need to be

recruited to achieve a specific number of events. Here, g(t) denotes the density of the

entry distribution with S(t) as the survival distribution and L(t) as the distribution

of the loss due to the follow-up pattern. L(t) is required because patients entered the

study at different calendar times and may be right censored, i.e., they may still be alive

when data are collected at the end of the study or may fail to complete the course of

the study for reasons unrelated to the event of interest. Then, the general formula for

the required number of patients in a survival study is expressed as follows (Latouche

et al., 2004; Collett, 2003):

N =
D

Ψ
=

f(α, β̃, θ)

p{S(t), g(t), L(t), a, f̃}
, (3.1)
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where D is obtained as a function f(·) of the type I error probability α, the power 1− β̃,
and the effect size θ, while Ψ is a function p(·) that depends on S(t), g(t), L(t), a, and f̃ .
In this context, let us consider an experimental group E for instance, a group of patients

where an experimental treatment is administrated and a control group C. Here, the

effect size is usually expressed as either the hazard ratio, (HR), θ = λE(t)/λC(t),∀t, or
log θ, the regression coefficient in a proportional hazards model. The derivation steps

of N are shown in Appendix (A.1).

3.2.1 Derivation of D

In survival analysis, the Cox proportional hazards (PH) regression model assumes that

the hazard function λj(t) for the survival time T for patient j, given the predictors

Xj1, Xj2, . . . , Xjk, has the following regression formulation:

log [λj(t | X)/λ0(t)] = β1Xj1 + β2Xj2 + . . .+ βkXjk

where λ0(t) is the baseline hazard. The survival analysis allows the response, the survival

time variable t, to be censored. In medical research, one may wish to test the effect of

a specific predictor or covariate (say, treatment effect) possibly in the presence of other

predictors on the response variable. To consider this, the model can be redefined by

relabelling the covariates. For each patient j, the treatments are relabeled as 0 and 1

with x as the treatment label. For other covariates, it is assumed that there is a vector

Yj = (Yj1, . . . , Yjk)
′ of covariates. The probability that Patient j receives treatment x is

Px, which is independent of yj. Then, the hazard function for the jth patient is given

by

λj(t | Z) = λ0(t) exp

(
β0Xj +

K∑
i=1

βiYj

)
The null hypothesis is H0 : [β0, β1, . . . , βk] = [0, β1, . . . , βk] , which is tested against

alternative [β∗, β1, . . . , βk] .

Binary covariate: treatment

First, it is assumed that there is only one binary predictor (treatment variable) in the

model. The PH model assumes that the hazard function has the following relationship:

log [λ(t | X)/λ0(t)] = βX
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To test the null hypothesis, H0 : β = β0 ≥ 0, against H1 : β = β∗ < 0, the score

statistic for the Cox proportional hazards model can be written in a simple form:

S2 =

[∑
i∈D (Xi − Ei)

]2∑
i∈D Vi

where i indexes the ordered death times; D(i) identifies the death set at the ith death

time; Ei = PE, Vi = PE(1 − PE), and ΣD is summations over D(i). Under the null

hypothesis, S2 is treated as a chi-square distributed with one degree of freedom, or

equivalently, S is the standard normal with a mean of 0 and variance of 1. To follow the

derivation of Schoenfeld (1983), the following is defined:

ei =

[∑
j∈R Xj exp (βXj)

]
[∑

j∈R exp (βXj)
]

Here, R(i) identifies the risk set, and
∑

R is the summations over R(i). The numerator

of S can be written as,

∑
i∈D

(Xi − Ei) =
∑
i∈D

(Xi − ei) +
∑
i∈D

(ei − Ei)

The first term is asymptotically normal with a mean of 0 and variance of
∑
ej (1− ej) ,

where the summation is over D (Cox, 1975; Tsiatis, 1981). Since β → 0, ej approaches

PE, and the variance
∑
ej (1− ej) approaches

∑
D PE(1− PE), which is DPCPE.

Upon expanding the second term in a Taylor series to about β = 0, this term ap-

proaches β
∑
Ej(x) {1− Ej(x)} . With the same argument of β → 0, Ej approaches PE

and the term β
∑
Ej(x) {1− Ej(x)} approaches β

∑
D PE(1 − PE), which in turns is

βDPCPE.

By adding the two terms together and dividing by the denominator [
∑

D Vi]
1/2 , S is

asymptotically normal with the mean,

E(S) =
ΣDE (Xi − ei) + ΣD (ei − Ei)√

ΣDVi

=
0 + βDPCPE√

DPCPE

= β
√
DPCPE
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and variance,

V (S) =
1

(
√
ΣDVi)2

ΣD [V (Xi − Ei)]

=
ΣDV (Xi)

ΣDVi

=
DPCPE

DPCPE

= 1.

Thus, S is asymptotically normal with unit variance and mean equal to β (PCPE)
1
2 times

the square root of the expected number of deaths on the trial.

So, the following is obtained:

S ∼ N (0, 1) , under the null hypothesis

and

S ∼ N (β
√
PCPED, 1) , under the alternative hypothesis.

From formula 3.1, it is seen that to calculate the number of events, the probability of

type I error (significance level, α), power (1− β̃ or the probability of type II error, β̃),

and the effect size, β should be calculated.

Step (1)

The significance level, α, is set as equal to the probability of rejecting the null hy-

pothesis when it is true:

α = P (ΣD (Xi − Ei) < −c | H0)

= P

(
ΣD (Xi − Ei)√

ΣDVi
< − c√

ΣDVi
| H0

)
= P

(
Z < − c√

ΣDVi

)
= Φ

(
− c√

ΣDVi

)
so z1−α =

c√
ΣDVi

or c = z1−α ∗
√
ΣDVi

Step (2)
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The probability of rejecting the null hypothesis when H1 is true is calculated here.

First, the probability of a Type II error is considered as follows:

β̃ = P ( accept H0 | H1)

so 1− β̃ = P ( reject H0 | H1)

= P (ΣD (Xi − Ei) < −c | H1)

= P

(
ΣD (Xi − Ei)− β∗

√
ΣDVi

<
−c− β∗
√
ΣDVi

∣∣∣∣
H1

)

= P

(
Z <

−c− β∗
√
ΣDVi

)
.

So, it can be said that zβ̃ = −z1−β̃ = −c−β∗√∑
D Vi

. Now, c from Step (1) is substituted as

follows:

−z1−β̃ =
−z1−α

√∑
D Vi − βPCPED√∑

D Vi

= z1−α − βPCPED√
PCPED

= z1−α − β
√
PCPED

⇒ β
√
PCPED = z1−α + z1−β̃

⇒
√
D =

z1−α + z1−β̃

β
√
PCPE

⇒ D =

(
z1−α + z1−β̃

)2
(log θ)2 PCPE

. (3.2)

where D is the total number of events, PC and PE are the proportions of the sample

assigned to the control group and experimental group, respectively, and Z1−α and Z1−β̃

are standard normal deviates at the desired one-sided significance level α and power

1− β̃, respectively.

Considering other covariates along with Treatment

Schoenfeld (1983) extended the multivariate model power calculation for binary x1 to

include additional covariates y1 . . . yk. The assumption here is that x1 is independent of

y1 . . . yk, as would occur if x1 was randomly assigned in a controlled experiment.
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Here, a function Ej{.} is defined as:

Ej{g(x, y)} =

∑
k∈R g (xk, yk) exp (Σβmykm)∑

k∈R exp (Σβmykm)

Here, let Êj be Ej with maximum likelihood estimates (assuming β = 0 ) replacing the

parameters {βm}. Letting yi be the ith compound of y, the elements of the k× 1 vector

B are defined by

B̂i = N−1
∑
j∈D

(
Êj (xyi)− Êj(x)Êj (yi)

}
Meanwhile, the elements of the p× p matrix M are defined as

M̂ik = N−1
∑
j∈D

{
Êj (yiyk)− Êj (yi) Êj (yk)

}
The score statistic can then be expressed as

N−1/2
[∑

j∈D

(
xj − Êj(x)

)]
(
N−1

[∑
j∈D Êj(x)

(
1− Êj(x)

}]
− B̂′M̂−1B̂

)1/2
Here, the term B̂′M̂−1B̂ is the effect of the estimation of β1, β2, . . . , βk on the variance

of xj − Êj(x).

Moreover, it is assumed that β is O
(
N− 1

2

)
. At the start of the trial, the distribution

of vectors y will be the same in the two treatment groups. Since β → 0, this will remain

true for any time, t, so Êj (xyi) → Êj(x)Êj (yi). Thus, B̂
p→ 0 and the second term in

the denominator of S can be ignored. The term B̂ appears in the Taylor expansion of

Ê(x) about β1, β2, . . . , βm, which implies that

N−1/2
∑
j∈D

{
Êj(x)− Ej(x)

}
p→ 0

Thus, S can be written as

S =
N−1/2

∑
j∈D (xj − Ej(x))[

N−1
∑

j∈D Ej(x) (1− Ej(x)}
]1/2

Further, the following can be defined:

ej =

{∑
k∈R

xk exp

(
βxk +

p∑
m=1

βmykm

)}
/

{∑
k∈R

exp

(
βxk +

p∑
m=1

βmykm

)}
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The numerator of S can be written as

N−1/2
∑
j∈D

(xj − Ej(x)) = N−1/2
∑
j∈D

(xj − ej) +N−1
∑
j=D

(ej − Ej(x))

Similarly, as depicted before, it can be shown that S is asymptotically normal with

unit variance and mean equal to β (PCPE)
1/2×

√
D, which yields a formula to calculate

the sample size for the survival endpoints. Additionally, it can be shown that Schoen-

feld’s argument also works when x1 is not binary and is independent of other covarites.

If the covariates are correlated with the main covariate of interest, x1, then the formu-

lation is different to adjust sample sizes to preserve power (for more details see Hsieh

and Lavori (2000)).

3.2.2 Derivation of Ψ

The quantity Ψ, given that death is the single event of interest, can be formulated as

(Collett, 2003) follows:

Ψ =

∫ a

0

P (death | entry at time t)× P (entry at time t)dt, (3.3)

where g(t) = P (entry at time t) and P (death | entry at time t) is the probability that a

subject has the event of death within the time interval [t, a+ f̃ ], given that the patient

entered the study at time t. This is a conditional CIF that can be rewritten as,

CIF1(a+ f̃ − t) = P (T̃ ≤ a+ f̃ − t, k = 1)

where, T̃ = T − t is the survival time given that the patient enters at time t without

having an event before t.

Now, let us consider a CR setting with an event of interest (type 1) and a competing

event (type 2); then, the indicator ε ∈ {1, 2}. Here, the scope is to derive the required

sample size in (3.1) for event 1, N1 = D1/Ψ1. Then, assuming that a patient enters in

the study at time t with an uniform distribution g(t) over the accrual period [0, a] for

both treatment and control groups, the cumulative probabilities for the event of interest

in each group (j = C,E) reduce as follows (Collett, 2003; Schulgen et al., 2005):

Ψ1j = (1/a)

∫ a

0

CIF1j(a+ f̃ − t)dt. (3.4)
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With a change of variable a+ f̃ − t = u in the integration, the equation (3.4) becomes,

Ψ1j = (1/a)

∫ (a+f̃)

f̃

CIF1j(u)du. (3.5)

Therefore, the results can be combined to obtain Ψ1 = PC Ψ1C + PE Ψ1E.

When using the CSH approach, the CIF for cause 1 is

CIF1 (t) =

∫ t

0

λ1(u)e
−{Λ1(u)+Λ2(u)}du (3.6)

which depends on both the cause-specific rates λ1(t) and λ2(t), where Λk(t) =
∫ t

0
λk(s)ds,

for k = 1, 2. Considering both events in the control and experimental groups, for

j = (C,E) and k = (1, 2), the following are defined λj(t) = λ1j(t) + λ2j(t), and λ̃j(t) =

λ2j(t)/λ1j(t). To compute sample size, any parametric distribution can be assumed for

the two CSHs; as an example, if an exponential distribution is assumed in the control

and experimental groups, then since rates are constant over time, equation (3.6) becomes

CIF1j(t) =
1− e−t{λ1j(1+λ̃j)}

1 + λ̃j
and CIF2j(t) =

1− e
−

t{λ1j [1+(1/λ̃j)]}
[1/λ̃j ]

1 + [1/λ̃j]
. (3.7)

Then, equation (3.5) is

Ψ̃1j = (λ1j/λj)[1− (e−λj f̃ − e−λj(a+f̃))/(aλj)]. (3.8)

Under the SDH approach, there exists a direct relationship between the CIF and the

subdistribution hazard (Fine and Gray, 1999):

CIF1j(t) = 1− S∗
1j(t) = 1− e−Λ∗

1j(t) = 1− e−
∫ t
0 λ∗

1j(u)du.

where λ∗1j is the SDH rate for both groups. This implies

∫ t

0

λ∗1j(u)du = − log(1− CIF1j(t)) = g(CIFkj(t)) (3.9)

where g(·) is the log link function.

However, the CSH and SDH approaches differ by the definition of the risk set. In the

former, the risk set decreases when there is an event from competing cause or censoring,

whereas in the latter, patients who failed from an event, other than the one of interest

prior to t, remain in the risk set. This difference also affects the computation of sample
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size. Here, Ψ∗
1j can be computed in equation (3.5) based on the survival function at the

different time points f̃ , (0.5a+ f̃), and (a+ f̃), according to Simpson’s approximation,

as follows:

Ψ∗
1j =

1

6

[
CIF1j

(
f̃
)
+ 4CIF1j

(
0.5a+ f̃

)
+ CIF1j

(
a+ f̃

)]
(3.10)

where t = (f̃ , (0.5a+ f̃ , a+ f̃)). Equation (3.10) is also applicable in the CSH approach

when the exponential distribution is not a valid assumption (Pintilie, 2006).

However, the presence of right censoring, which has been ignored so far will now be

considered. Therefore, it is now neceessary to specify the loss to follow-up parametric

distribution L(t). When using the CSH approach, for example, it can be assumed that

both failure time and loss to follow-up distributions are exponential with the follow-up

period
[
0, a+ f̃

]
: Λk(t) = λkt and L(t) = 1−e−τt, where τ is the overall censoring rate.

This provides (Lachin and Foulkes, 1986) the followinh equation:

Ψ̃τ
1j = (λ1j/(λj + τ))[1− (e−(λj+τ)f̃ − e−(λj+τ)(a+f̃))/(a(λj + τ))]. (3.11)

Under the SDH approach, equation (3.10) can be modified as follows (Latouche et al.,

2004):

Ψτ∗
1j =

(1− τ)

6

[
CIF1j

(
f̃
)
+ 4CIF1j

(
0.5a+ f̃

)
+ CIF1j

(
a+ f̃

)]
(3.12)

3.3 Practical guidelines for computing sample size

The scope of this study is to derive the required sample size N1 for the event of interest

(type 1) within the CR settings. Under the CSH approach, it is necessary to calculate

Ñ1 = D̃1/Ψ̃1 where Ψ̃1 = pCΨ̃1C + pEΨ̃1E. Ψ̃1j, which is the probability of observing

an event of type 1. If it is assumed that the time to event follows an exponential

distribution, then the quantity Ψ̃1 can be derived from equations (3.7) and (3.8) as a

function of λkj(t), whereas when the Weibull and Gompertz distributions are assumed,

then equation (3.10) can be employed.

Similarly, when using the SDH approach, it is necessary to calculate N∗
1 = D∗

1/Ψ
∗
1,

where Ψ∗
1 = pCΨ

∗
1C + pEΨ

∗
1E. The numerator D∗

1 can be computed based on the SDH

ratio θ∗1, and the probabilities Ψ∗
1j are obtained from equation (3.10). In the practical

guidelines as well as simulations study (Section 3.3.3), it is assumed that the values

for CIF1E and CIF2E are known at time point t = t̃, irrespective of any parametric

distribution in the CSH and SDH approaches.
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3.3.1 The CSH approach

In addition to knowing CIF1E(t̃) and CIF2E(t̃) values, it is necessary to assume the

hazard ratio for both events (θ1, θ2) for the exponential time-to-event distribution as

well as the shape parameters γ̃ and η̃ with the assumptions of γ̃1E = γ̃1C , γ̃2E = γ̃2C ,

η̃1E = η̃1C , η̃2E = η̃2C in the Weibull and Gompertz distributions, respectively. Below,

the steps used to calculate the exponential distribution are discussed:

1. For the known value of θ1, the D̃1 applying formula (3.2) is first computed.

2. To compute Ψ̃1, the hazard rates, λ1E(t) and λ2E(t) are computed following the

proposal by Pintilie (2002). Then, the probabilistic relation CIF1j(t)+CIF2j(t)+

Sj(t) = 1 is applied along with the equation (3.7) to obtain the following:λ1E(t) = CIF1E(t)× − log(1−CIF1E(t)−CIF2E(t))
t(CIF1E(t)+CIF2E(t))

.

λ2E(t) = CIF2E(t)× − log(1−CIF1E(t)−CIF2E(t))
t(CIF1E(t)+CIF2E(t))

(3.13)

For given values of CIF1E and CIF2E at t = t̃, equations (3.13) can be computed.

3. Now, the CSH ratios formula, θ1 = λ1E(t)/λ1C(t) and θ2 = λ2E(t)/λ2C(t), is

applied to obtain λ1C(t) and λ2C(t).

4. Plugg-in all the values of λkj(t) for j = E,C and k = 1, 2 in equation (3.8), Ψ̃1E

and Ψ̃1C can be computed.

5. Finally, given the proportion of patients allocated to control (pC) and experimental

(pE) groups, Ψ̃1 = pCΨ̃1C + pEΨ̃1E. Hence, the sample size is obtained from

Ñ1 = D̃1/Ψ̃1.

Now, the steps followed in the Weibull time-to-event distribution are discussed. Here,

it is assumed that the CSH rates for event types 1 and 2 for j = (E,C) are

λ1j(t) = λ1j γ̃1t
γ̃1j−1 and λ2j(t) = λ2j γ̃2jt

γ̃2j−1

with the hazard ratios, θ1(t) = λ1E(t)/λ1C(t) = λ1E γ̃1Et
γ̃1E−1/λ1C γ̃1Ct

γ̃1C−1 and θ2(t) =

λ2E(t)/λ2C(t) = λ2E γ̃2Et
γ̃2E−1/λ2C γ̃2Ct

γ̃2C−1, respectively. Assuming that γ̃1E = γ̃1C

and γ̃2E = γ̃2C , the hazard ratios become, θ1(t) = λ1E/λ1C = θ1 and θ2(t) = λ2E/λ2C =

θ2. This implies that, the hazard ratios are constant over time (proportional hazard

assumptions). Thus, the values of λ1j, λ2j, j = (C,E) can be found from steps (2 − 3)

of the procedure from the exponential distribution.
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1. D̃1 is computed using the value of θ1 from exponential distribtuion, i.e., D̃1 is

similar in the exponential and Weibull distributions.

2. To compute Ψ̃1, the CIFs values for the three time points following equation (3.10)

need to be computed. However, the values at time t = t̃ are only known. Thus,

for the given values of CIF1E(t̃), CIF2E(t̃), λ1E, and λ2E, the unknown parameters

at other time points can be computed. Let us find γ̃1E and γ̃2E solutions to the

system of equations are as follows:CIF1E(t̃)−
∫ t

0
(λ1E γ̃1Eu

γ̃1E−1) exp
[
−
(
λ1Eu

γ̃1E + λ2Eu
γ̃2E
)]
du = 0.

CIF2E(t̃)−
∫ t

0
(λ2E γ̃2Eu

γ̃2E−1) exp
[
−
(
λ2Eu

γ̃2E + λ2Eu
γ̃2E
)]
du = 0.

(3.14)

This system has no analytical solution and thus requires the use of the numerical

integration technique.

3. With the assumptions of γ̃1E = γ̃1C , γ̃2E = γ̃2C and the values of λ1C , λ2C found

using the exponential distribution procedure, the unknown quantities of CIF1C

and CIF2C can be computed at the desired t as follows:

CIF1C(t) =

∫ t

0

(λ1C γ̃1Cu
γ̃1C−1) exp

[
−
(
λ1Cu

γ̃1C + λ2Cu
γ̃2C
)]
du. (3.15)

CIF2C(t) =

∫ t

0

(λ2C γ̃2Cu
γ̃2C−1) exp

[
−
(
λ1Cu

γ̃1C + λ2Cu
γ̃2C
)]
du. (3.16)

4. CIF1E, CIF1C values at time points t = f̃ , and t = (0.5a+ f̃) can be computed by

using equations (3.14) and (3.15). For instance, the CIF1E at time point (0.5a+f̃)

can be computed by rewriting the equation (3.14) as,

CIF1E(0.5a+ f̃) =

∫ 0.5a+f̃

0

(λ1E γ̃1Eu
γ̃1E−1) exp

[
−
(
λ1Eu

γ̃1E + λ2Eu
γ̃2E
)]
du.

5. Step 5 of the exponential distribution should be repeated here.

Finally, the steps in the Gompertz time-to-event distribution will be explained below.

The CSH rates for event types 1 and 2 with the shape parameter η̃ for j = (E,C) are

λ1j(t) = λ1je
η̃1jt and λ2j(t) = λ2je

η̃2jt
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with the hazard ratios, θ1(t) = λ1Ee
η̃1Et/λ1Ce

η̃1Ct and θ2(t) = λ2Ee
η̃2Et/λ2Ce

η̃2Ct. These

hazard ratios are constant over time with the assumptions of η̃1E = η̃1C and η̃2E = η̃2C ,

i.e., θk(t) = θk = λkE/λkC for k = (1, 2). Thus, with the assumption of the proportional

hazard, the values of λ1j and λ2j for j = (E,C) can be found assuming that θ1, θ2 are

the rates in an exponential distribution (see exponential procedure steps 2− 3).

1. As before, the values of CIF1E(t̃) and CIF2E(t̃) are already known.

2. D̃1 is computed by applying the value of θ1 from the exponential distribution.

Thus, under the CSH approach, the number of events are the same for the ex-

ponential, Weibull, and Gompertz time-to-event distributions. However, the Ψ̃1

parameter differs among them.

3. Now, Ψ̃1 is computed using the Gompertz time-to-event distribution. Given the

values for CIF1E(t̃), CIF2E(t̃), λ1E, and λ2E, the unknown parameters of η̃1E, η̃2E

can be computed by applying the numerical integration technique to the following

system of equations:
CIF1E(t̃)−

∫ t̃

0
(λ1Ee

η̃1Eu) exp

[
−
{

λ1E

η̃1E

(
eη̃1Eu − 1

)
+ λ2E

η̃2E

(
eη̃2Eu − 1

)
}
]
du = 0

CIF2E(t̃)−
∫ t̃

0
(λ2Ee

η̃2Eu) exp

[
−
{

λ1E

η̃1E

(
eη̃1Eu − 1

)
+ λ2E

η̃2E

(
eη̃2Eu − 1

)
}
]
du = 0.

(3.17)

4. Given the values of λkj that were found using the exponential distribution and η̃kj,

the unknown quantities of CIF1C(t) and CIF2C(t) can be computed as follows:

CIF1C(t) =

∫ t

0

(λ1Ce
η̃1Cu) exp

[
−
{
λ1C
η̃1C

(
eη̃1Cu − 1

)
+
λ2C
η̃2C

(
eη̃2Cu − 1

)
}
]
du

(3.18)

CIF2C(t) =

∫ t

0

(λ2Ce
η̃2Cu) exp

[
−
{
λ1C
η̃1C

(
eη̃1Cu − 1

)
+
λ2C
η̃2C

(
eη̃2Cu − 1

)
}
]
du

(3.19)

5. To compute ψ̃1j for all the three time points, step 4 as per the Weibull distribution

should be followed and thus equations (3.17), (3.18) should be recomputed to

obtain CIF1j(0.5a+ f̃) and CIF1j(f̃).

6. Step 5 of the exponential distribution should be repeated to compute sample size.
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3.3.2 The SDH approach

As discussed in the Section 3.2 that the computation of hazard ratio is different under

the SDH and the CSH approaches, the steps to compute D∗
1 and Ψ∗

1j are also different.

Further, the SDH ratio θ∗1 is computed using the following formula:

θ∗1 =

∫ t

0
λ∗1E(u)du∫ t

0
λ∗1C(u)du

=
− log{1− CIF1E(t)}
− log{1− CIF1C(t)}

. (3.20)

Here, it should be noted that, the value for CIF1E(t) is known irrespective of any

parametric distribution. However, CIF1C(t) has three possible values depending on

three time-to-event distributions (exponential, Weibull and Gompertz), and thus three

different θ∗1 values are obtained when using the SDH approach. Hence, there are three

different D∗
1. This was not the case in the CSH approach because here a known value

for θ1 was assumed to directly obtain D̃1. Meanwhile, to obtain Ψ∗
1j, equation (3.10) is

applied and CIF1j(t) values are solved for at three time points f̃ , (0.5a + f̃) and t̃ for

all the distributions. As previously shown, equation (3.10) was also applied using the

CSH approach for Weibull and Gompertz time-to-event distributions. However, now

the CIF1j(t) values are different than those in that approach because of the relation in

equation (3.9). Here, it should be noted that only the values of CIF1E and CIF2E are

known at time point t = t̃. To compute the CIF1E values at other time points, equation

(3.9) is inverted as

CIF1j(t) = 1− exp[−
∫ t

0

λ∗1j(u)du], (3.21)

where λ∗1j(t) is the SDH rate, which has different values for different time-to-event

distributions. Now, the steps to compute D∗
1 and Ψ∗

1j in the exponential time-to-event

distribution are explained.

1. Assuming that CIF1E(t̃) is known as is CIF1C(t̃). If not, the latter is found by

applying the CSH procedure using exponential distribution. In this case, θ1 and

θ2 using the CSH approach would need to be given in advance (known).

2. Suppose CIF1E(t̃) and CIF1C(t̃) are known, then by plugging-in these values in

equation (3.20), θ∗1 is obtained. Thus, D∗
1 can be computed by applying formula

(3.2).

3. To compute Ψ∗
1j, first equation (3.21) has to be solved by assuming the exponential

distribution, i.e., λ∗1j(t) = λ∗. Then, CIF1j(t) = 1 − e−λ∗t, which implies λ∗ =
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− log(1−CIF1j(t))/t. Now, for given values of CIF1E, CIF1C at time point t = t̃,

λ∗1E and λ∗1C are obtained.

4. CIF1j is recomputed for time points f̃ and (0.5a+ f̃),

CIF1j(f̃) = 1− e−λ∗f̃ , CIF1j(0.5a+ f̃) = 1− e−λ∗(0.5a+f̃)

5. Then, all the CIF1j(t) values are plugged in in equation (3.10) to obtain Ψ∗
1j.

6. Finally, given the proportion of patients allocated to control (pC) and experimental

(pE) groups, Ψ
∗
1 = pCΨ

∗
1C+pEΨ

∗
1E is computed. Hence, the sample size is obtained

from N∗
1 = D∗

1/Ψ
∗
1.

Now, the steps in the Weibull time-to-event distribution will be described.

1. Assuming that CIF1E(t̃) is known as is CIF1C(t̃). If the latter is not, it is found

by applying the CSH procedure using the Weibull distribution. In this case, θ1 and

θ2 as per the CSH approach would again need to be given. In addition, the shape

parameters γ1E, γ2E have to be computed. Finally, it is assumed that γ1E = γ1C .

2. Plugging-in CIF1E(t̃) and CIF1C(t̃) values in equation (3.20), θ∗1 is obtained and

thus D∗
1 is computed by applying formula (3.2).

3. To compute Ψ∗
1j, the SDH rate is assumed as λ∗1j(t) = λ∗γ∗tγ

∗−1, where λ∗ and

γ∗ are scale and shape parameters, respectively. Then, upon integrating this

function in equation (3.21), CIF1j(t) = 1− e−λ∗tγ
∗
, which implies λ∗ = − log(1−

CIF1j(t))/t
γ∗
. Here, it is necessary to assume a fixed value for γ∗. Thus, for a

given value of γ∗ and CIF1j at time t = t̃, λ∗ is obtained.

4. CIF1j is then recomputed for time points f̃ and (0.5a+ f̃),

CIF1j(f̃) = 1− e−λ∗f̃γ∗

, CIF1j(0.5a+ f̃) = 1− e−λ∗(0.5a+f̃)γ
∗

5. Then, all the CIF1j(t) values are plugged in equation (3.10) to obtain Ψ∗
1j.

6. Step 7 of the SDH approach for the exponential distribution is then repeated.

Finally, for the Gompertz distribution, the steps are as follows:

1. Assuming that CIF1E(t̃) is known as is CIF1C(t̃). If the latter is not, it is found

by applying the CSH procedure using the Gompertz distribution. In this case, as

per the CSH approach, θ1 and θ2 need to be given again. In addition, the shape

parameters η1E, η2E require computing. Finally, it is assumed that η1E = η1C .
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2. Then, the CIF1E(t̃) and CIF1C(t̃) values are plugged in equation (3.20) to obtain

θ∗1. D
∗
1 is computed by applying formula (3.2).

3. To compute Ψ∗
1j, it is assumed that λ∗1j(t) = λ∗eη

∗t, where λ∗ and η∗ are the scale

and shape parameters, respectively. Then, applying equation (3.21) is applied to

obtain

CIF1j(t) = 1− exp

[
− λ∗(eη

∗t − 1)

η∗

]
. (3.22)

Then,

λ∗ =
η∗[− log(1− CIF1j(t))]

eη∗t − 1
.

Again, here, it is necessary to assume a fixed value for η∗. Thus, for given values

of η∗ and CIF1j(t), λ
∗ is obtained.

4. Then, the values of λ∗, η∗ are plugged in equation (3.22) and considering the time

points t = f̃ , t = (0.5a + f̃) and t = t̃, CIF1j(f̃), CIF1j(0.5a + f̃), and CIF1j(t̃)

can be computed.

5. All the CIF1j(t) values are plugged in equation (3.10) to obtain Ψ∗
1j.

6. Step 7 of the SDH approach for exponential distribution is then repeated.

3.3.3 Simulation results

The simulation study was conducted for the CSH and SDH approaches using the ex-

ponential, Weibull and Gompertz time-to-event distributions following the guidelines

in Section 3.3. An R package rootSolve was used to compute the shape parameter

values. Here, the shape parameters for the Weibull and Gompertz distributions were

denoted as γ̃, and η̃, respectively, as per the CSH approach. Similarly, for the SDH

approach the shape parameters for aforementioned distributions were denoted as γ∗

and η∗, respectively. To compute results in Table 3.1, the following values were as-

sumed for event types 1 and 2: CIF1E = (0.1, 0.2, 0.3);CIF2E = 0.1; hazard ratios:

θ1 = (0.8, 0.6, 0.4), θ2 = (0.8, 1.0, 1.2); total study period: t̃ = (a + f̃) = (2 + 2) = 4

years; type I and II error rates: α = 0.05, β̃ = 0.20. Then, the following were computed:

CIF1C at time points t = (f̃ , 0.5a+ f̃ , t̃), CIF1E at time points (f̃ , 0.5a+ f̃), and SDH

ratio θ∗1. Finally, (D̃, ψ̃) and (D∗
1, ψ

∗
1) were obtained using the CSH and SDH approaches,

respectively.
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Comparing sample sizes between the CSH and SDH approaches

Using the general overview of all the results reported in Table 3.1, it can be noted

that when a lower number of events occured in both event types and groups, (with

consequently lower CIF s) and the hazard ratio for the main event was 0.80 (first three

rows of the three scenarios in Table 3.1), then the required sample size is very high

for all distributions. Further, when CIFjk < 0.13, for j = (C,E) and k = (1, 2), then

the required sample size increased substantially in comparison to that with a very high

positive effect of treatment (θ1 < 0.80). Moreover, the computed sample size under

CSH and SDH approaches are very similar for the three parametric distributions, with

slightly systematically lower values for the Gompertz. For comparison purposes in Table

3.1, the same shape parameter values were used for the CSH and SDH approaches. Here,

it should be noted that distribution is a special case of Weibull distribution when γ = 1.

Thus, with a very small change in γ = 0.95, slight reductions were observed in the

sample size for both approaches.

For a fixed θ1(e.g., θ1 = 0.80), assuming an increased number of type 1 events in the

experimental group (i.e., a number that leads from CIF1E = 0.10 to CIF1E = 0.20),

there is approximately a two-fold increase in the CIF1C and thus, the required sample

size is nearly halved. Likewise an even larger CIF1E (e.g., CIF1E = 0.30) provides even

smaller sample sizes (from about 3600 to 2400). Similar conclusions can be stated by

comparing all results for θ1 = 0.60 or all results for θ1 = 0.40 in Table 3.1.

For θ2 ≤ 1, the CSH approach provides lower sample sizes as compared to the SDH,

and is thus preferable. However, when θ2 > 1 (e.g., θ2 = 1.20), the sample size is lower

in the SDH approach, which is instead preferable.
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Table 3.1: Sample sizes using the CSH and SDH approaches with different event
time distributions

Here, (a, f̃) indicates accrual and follow up duration; CIF1E , CIF2E , CIF1C , CIF2C

indicate CIF for main event and competing event for the experimental and control
groups respectively; θ is the CSH ratio; θ∗ is the SDH ratio; γ, η indicate shape pa-
rameter for the Weibull and Gompertz distributions respectively. Ñ1exp represents
sample size when using the CSH approach whereas N∗

1exp indicates sample size under
the SDH approach for the exponential distribution for event type 1 and so on. Mean-
while, CIF1CWeib

= CIF1CGom
indicate the value of CIF1C at time point t = t̃ in the

Weibull and Gompertz distributions, respectively.

CSH Approach SDH Approach

t̃ = a+ f̃ = (2 + 2)

α = 0.025( one-sided), β̃ = 0.20
CIF1Cexp

CIF1CWeib

= CIF1CGom

θ1 θ2 Ñ1exp Ñ1Weib
Ñ1Gom

θ∗1exp
θ∗1Weib

= θ∗1Gom

N∗
1exp N∗

1Weib
N∗

1Gom

CIF1E = 0.10 0.122 0.121 0.80 0.80 7379 7283 7270 0.81 0.82 8584 8473 8441

CIF2E = 0.10 0.123 0.121 0.80 1.00 7337 7241 7228 0.80 0.82 7465 7368 7341

γ1E = 0.9475 0.125 0.121 0.80 1.20 7309 7213 7200 0.79 0.82 6830 6741 6716

γ2E = 0.9475 0.159 0.161 0.60 0.80 1203 1187 1185 0.61 0.60 1300 1283 1278

η1E = −0.04 0.161 0.161 0.60 1.00 1195 1179 1177 0.60 0.60 1217 1201 1197

η2E = −0.04 0.161 0.161 0.60 1.20 1190 1174 1172 0.60 0.60 1165 1150 1146

0.227 0.232 0.40 0.80 293 289 289 0.41 0.40 309 305 304

0.232 0.232 0.40 1.00 291 287 286 0.40 0.40 296 293 292

0.232 0.232 0.40 1.20 289 286 285 0.40 0.40 288 285 284

CIF1E = 0.20 0.241 0.241 0.80 0.80 3663 3657 3656 0.81 0.81 4366 4355 4357

CIF2E = 0.10 0.243 0.243 0.80 1.00 3641 3635 3634 0.80 0.81 3734 3725 3726

γ1E = 0.9933 0.246 0.249 0.80 1.20 3626 3621 3620 0.79 0.78 3381 3373 3375

γ2E = 0.9933 0.306 0.311 0.60 0.80 604 603 603 0.61 0.60 665 663 663

η1E = −0.005 0.311 0.311 0.60 1.00 600 599 599 0.60 0.60 617 616 616

η2E = −0.005 0.311 0.311 0.60 1.20 598 597 597 0.60 0.60 588 586 586

0.420 0.420 0.40 0.80 151 151 151 0.41 0.41 163 162 162

0.428 0.428 0.40 1.00 150 150 150 0.40 0.40 155 155 155

0.428 0.428 0.40 1.20 149 149 149 0.40 0.40 150 150 150

CIF1E = 0.30 0.353 0.349 0.80 0.80 2422 2402 2400 0.82 0.83 2983 2962 2957

CIF2E = 0.10 0.360 0.360 0.80 1.00 2407 2388 2386 0.80 0.80 2496 2478 2474

γ1E = 0.967 0.363 0.360 0.80 1.20 2397 2379 2377 0.79 0.80 2231 2215 2211

γ2E = 1.05 0.437 0.437 0.60 0.80 405 401 401 0.62 0.62 456 453 452

η1E = −0.023 0.448 0.448 0.60 1.00 402 399 399 0.60 0.60 419 416 415

η2E = 0.034 0.448 0.448 0.60 1.20 400 398 397 0.60 0.60 396 393 393

0.572 0.581 0.40 0.80 104 103 103 0.42 0.41 115 114 114

0.581 0.581 0.40 1.0 103 103 102 0.41 0.41 109 108 108

0.590 0.590 0.40 1.20 103 102 102 0.40 0.40 105 104 104

Study of the power

In this section, the objective is to study and compare power under the CSH and SDH

approaches for exponential, Weibull, and Gompertz distributions. To visualize results

in Figures 3.1, 3.2, and 3.3, the hazard ratios were as assumed as follows- event type
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1: θ1 = (0.8, 0.6, 0.4); event type 2 : θ2 = (0.8, 1.2). Then, three scenarios of CIF were

assumed for the experimental group: (a) CIF1E = 0.10, CIF2E = 0.10; (b) CIF1E =

0.20, CIF2E = 0.10; and (c) CIF1E = 0.30, CIF2E = 0.10. The total study duration was

assumed to be 4 years (a = 2, f̃ = 2). Next, 1000 sample sizes were simulated and the

shape parameters for Weibull and Gompertz distributions as per the CSH approach were

obtained for the aforementioned three scenarios: γ̃1E = γ̃2E = 0.9475 and η̃1E = η̃2E =

−0.04 for the first scenario; γ̃1E = γ̃2E = 0.9933 and η̃1E = η̃2E = −0.005 for the second

scenario; γ̃1E = 0.967, γ̃2E = 1.05, and η̃1E = −0.023, η̃2E = 0.034 for the third scenario.

For the SDH approach, the same shape parameter values were assumed for event type

1 : γ∗1E = 0.9475, η∗1E = −0.04, γ∗1E = 0.9933, η∗1E = −0.005, γ∗1E = 0.967, η∗1E = −0.023

for the three different scenarios, respectively.

Using the general overview of all the results depicted in Figures 3.1, 3.2, and 3.3,

it was found that, when the positive treatment effect on the competing event, i.e.,

θ2 = 0.8 is considered, then most of the plots show that the CSH approach performs

better than the SDH. However, when θ2 was moved from the positive to adverse effect

(i.e., a value that leads θ2 from 0.8 to 1.2), then all the figures showed that the SDH

approach is as good as CSH. Furthermore, for θ1 = 0.60, when the number of type 1

events was increased in the experimental group (i.e., CIF1E values from 0.10 to 0.30),

then the sample size requirements reduced substantially. For instance, in Figure 3.1, for

θ2 = 1.2, the sample size reduced from 1000 to 400 to achieve 80% power.

Figure 3.1 shows the power computation for exponential distribution in both ap-

proaches. In the first scenario (CIF1E = 0.10, CIF2E = 0.10) when θ2 = 0.8, with

a very large postive effect of treatment on event type 1 (i.e., θ1 = 0.4), the required

sample size is 300 to keep 80% power for both approaches. This sample size increases

considerably to more than 1000 when θ1 = 0.6. When moving from a positive effect

(θ2 = 0.8) to an adverse effect (θ2 = 1.2) of treatment on the competing event, the

required sample size is slightly changed for θ1 = 0.4 (i.e., 275). Meanwhile, for θ1 = 0.6,

the sample size is about 1000. In the second scenario (CIF1E = 0.20, CIF2E = 0.10),

when θ2 = 0.8 and then for θ1 = 0.4, the required sample size is less than 200 for both

approaches; when θ1 = 0.6, then a sample size of 600 is required for the CSH approach

and about 700 for the SDH; when θ2 = 1.2, then both approaches require a sample size

of 600. In the third scenario (CIF1E = 0.30, CIF2E = 0.10), when θ2 = 0.8, then for

θ1 = 0.4, the power shows about 100% with a very less sample size (< 200), and for

θ1 = 0.6, the sample size is 400 with 80% power; when θ2 = 1.2, the SDH approach is as

good as the CSH. For all the scenarios in Figure 3.1, the CSH approach performs better

when θ2 = 0.8 and θ1 = 0.6.
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Figure 3.1: Effect on power for exponential distribution under the CSH and SDH
approaches by changing the effect of the competing event for the positive effect (θ2 =
0.8) and the adverse effect (θ2 = 1.2)

Figure 3.2 shows the power computations for Weibull distribution in both approaches.

In the first scenario (CIF1E = 0.10, CIF2E = 0.10), in both cases of θ2 (postitive

or adverse effect of treatment), to attain 80% power, a very large treatment effect is

required for event type 1, i.e., θ1 = 0.4. This is because, when θ1 = 0.6 is assumed
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then, slightly more than 1000 is required for the sample size. This indicates that if an

investigator wants to capture a positive effect of a treatment in the range 0.6 < θ1 < 1,

given a statistical power of 80%, then the required sample size is a value far above 1000.

In the second scenario (CIF1E = 0.20, CIF2E = 0.10), the sample size requirement

for θ1 = 0.6 reduces to 600 when θ2 = 1.2 in both approaches, and for θ2 = 0.8, the

reduced value is 700 and 600 for the SDH and CSH approaches. In the third scenario

(CIF1E = 0.30, CIF2E = 0.10), the sample size for θ1 = 0.6 is even less when θ2 = 1.2

(i.e., about 400 for both approaches) and when θ2 = 0.8, it is 400 or 450 for the CSH

and SDH approaches, respectively.
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Figure 3.2: Effect on power for Weibull distribution under the CSH and SDH
approaches by changing the effect of the competing event for the positive effect
(θ2 = 0.8), and adverse effect (θ2 = 1.2)

Figure 3.3 shows the power computation for Gompertz distribution for both ap-

proaches. In the first scenario (CIF1E = 0.10, CIF2E = 0.10), when θ2 = 1.2, the SDH

approach performs slightly better for θ1 = 0.4 (275 for SDH and 300 for CSH) and for

θ1 = 0.6, the sample size is about 1000 for the SDH approach and even more for the
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CSH. In the second scenario (CIF1E = 0.20, CIF2E = 0.10), when θ2 = 1.2, the two ap-

proaches perform equally for all θ1. In the third scenario (CIF1E = 0.30, CIF2E = 0.10),

when θ1 = 0.6 and θ1 = 0.8, then for θ2 = 0.8, the CSH approach performs better and

for θ2 = 1.2, the SDH approach performs slightly better.

Figure 3.3: Effect on power for the Gompertz distribution under the CSH and SDH
approaches by changing the effect of the competing event for positive effect (θ2 = 0.8)
and adverse effect (θ2 = 1.2)
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For a small change in the shape parameters in the two distributions (γ̃1E = γ̃2E =

0.9475; γ̃1E = γ̃2E = 0.9933; γ̃1E = 0.967, γ̃2E = 1.05 for Weibull in Figure 3.2 and

γ̃1E = 1 for the exponential in Figure 3.1), the sample size is almost unchanged. In all

three types of distributions, when there is a positive treatment effect on the competing

event (θ2 = 0.8), given a fixed power, CSH performs better in term’s of proving that

smaller sample size is required as compared to the SDH approach. This is true in

particular for θ1 > 0.4. However, in the case of an adverse effect for the competing event

(θ2 = 1.2), the two approaches seem to perform equally, with a negligible increase in

sample size for the CSH approach, as compared to the SDH.

Study of power and sample size for different follow-up durations

Now, the objective is to conduct a study to observe the effect of increasing the follow-

up duration on power and sample size. Here, the values of θ1 = (0.9, 0.8, 0.7), θ2 = 0.9,

a = 2 years, f̃ = (1 to 8 years ), CIF1E = 0.30, and CIF2E = 0.10 were assumed. Then,

the shape parameters when using the CSH approach for the Weibull and Gompertz

distributions were obtained: γ̃1E = 0.967, γ̃2E = 1.05 and η̃1E = −0.023, η̃2E = 0.034,

respectively. For the SDH approach the same shape parameter values obtained in the

CSH approach for event type 1wereassumed : γ∗1E = 0.967 and η∗1E = −0.023.

Study the effect on power At the beginning, it was necessary to fix the sample

size to 1500 for all the distributions under the CSH and SDH approaches. In Figure

3.4 (all scenarios), it can be observed that, in general, the power increases with longer

study durations. In particular, when treatment is more effective on event type 1 (i.e.,

θ1 = 0.7), then all the distributions achieved 80% or more power with a study duration

of less than 3 years. However, for θ1 = 0.7, this power always increases when the study

period is extended upto 6 years. Meanwhile, when the treatment effect was slightly

reduced (i.e., θ1 = 0.8), then the power for all distributions increases more for the CSH

approach than the SDH for longer study periods. In contrast, the latter shows stability

for all the distributions after 6 years with a slight reduction of power (about 75%).
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Figure 3.4: Effect on power when using the CSH and SDH approaches for the
exponential, Weibull, and Gompertz distributions. Here, a = 2 and f̃ = 1 to 8 years,
i.e., the total study duration ranges from 3 to 10 years.

Study of the effect on sample size In Figures 3.5 and 3.6 (i.e., all scenarios),

it is observed that, with a minimal positive effect of treatment (θ1 = 0.9), there is a

considerable decrease in sample size when the study period increased in length. Further-

more, when using the CSH approach for all the distributions, the sample size continues

to decrease for study periods longer than 8 years. On the contrary, when using the

SDH approach, this reduction in sample size stops after 8 years and remains constant

after this period. When the treatment effect has a higher positive impact (θ1 = 0.8 and

θ1 = 0.7), then the sample size has some changes until 7 years of the study period for all

the distributions. After 7 years, the sample size remains approximately constant. Thus,

the increment in the study duration for θ1 < 0.9 does not have a meaningful impact on

the sample size after 7 years of the total study duration.
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Figure 3.5: Effect on sample size when using the CSH and SDH approaches for
the exponential distribution. Here, a = 2 and f̃ = 1 to 8 years, i.e., the total study
duration ranges from 3 to 10 years.

Figure 3.6: Effect on sample size when using the CSH and SDH approaches for the
Weibull, and Gompertz distributions. Here, a = 2 and f̃ = 1 to 8 years, i.e., the total
study duration ranges from 3 to 10 years.

3.4 Simulation study with the change of shape pa-

rameter values

Choosing one best model from the exponential, Weibull, or Gompertz time-to-event

distributions depends on a particular study design. If the study design suggests that

the time-to-event follows the Weibull distribution, then assuming the other distributions

indicate smaller sample sizes would be misleading. However, different shape parameter

values for a particular distribution can be studied to observe how sample size behaves

by changing the shape parameter values.
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As seen in Section 3.3.3, shape parameters were computed for the Weibull and Gom-

pertz distributions using the CSH approach with CIF1E, CIF2E at time t = t̃. Thus,

when there are different shape parameter values, then comparison following the guide-

lines explained in Section 3.3.3 is not possible. In this context, to study the sample size

with the change of shape parameter values for Weibull and Gompertz distributions, a

simulation study (Table 3.2) is conducted using the CSH and SDH approaches, where

the shape parameter values were already known. Furthermore, the CSH rates λ1E and

λ2E for the main and competing events for the experimental group were assumed. Then,

for fixed values of θ1 and θ2, the control group hazard rates, λ1C and λ2C were com-

puted using the formula: θk = λkE/λkC , for k = (1, 2). Finally, CIF1E, CIF1C values

were computed at time points t = (f̃ , 0.5a + f̃ , t̃) for event type 1 (event of interest).

Here, it is assumed that γ̃1E = γ∗1C = (0.5, 1.5) and η̃1E = η∗1E = (−0.5, 0.5) for the

Weibull and Gompertz distributions, respectively, given that, γ̃1E = γ̃1C and η̃1E = η̃1C .

For instance, using CSH, the CIF s values for event type 1 at time point t = t̃ are
Weibull: CIF1j(t̃) =

∫ t̃

0
(λ1j γ̃1ju

γ̃1j−1) exp
[
−
(
λ1ju

γ̃1j + λ2ju
γ̃2j
)]
du

Gompertz: CIF1j(t̃) =
∫ t̃

0
(λ1je

η̃1ju) exp

[
−
{

λ1j

η̃1j

(
eη̃1ju − 1

)
+

λ2j

η̃2j

(
eη̃2ju − 1

)
}
]
du

In a similar manner, the CIF values were computed at time points t = (f̃ , and 0.5a+f̃).

Using the SDH approach, it is first necessary to compute the SDH ratio θ∗1 and rate

λ∗1j. To compute θ∗1, the following equation was used:

θ∗1 =
log{1− CIF1E(t̃)}
log{1− CIF1C(t̃)}

. (3.23)

Here, either fixed values are assumed for CIF1E(t̃) and CIF1C(t̃), or these can be found

using the CSH approach. Because it is here necessary to control the changes in the shape

parameters using the second option and CIF1E(t̃) and CIF1C(t̃) values are obtained

from the exponential distribution in the CSH approach by applying equation (3.7).

To compute λ∗1j, the following formula is applied:

Weibull: λ∗1j = − log(1− CIF1j(t̃))/t̃
γ∗
1j

Gompertz: λ∗1j =
η∗1j [− log(1−CIF1j(t̃))]

e
η∗
1j

t̃−1
.

Here, for a given value of CIF1j(t̃) and assuming γ∗1j = (0.5, 1.5), η∗1j = (−0.5, 0.5),

λ∗1j is obtained. Then, CIF1j values can be recomputed at other time points using the
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following formula:
Weibull: CIF1j(t) = 1− e−λ∗

1jt
γ∗1j

Gompertz: CIF1j(t) = 1− exp

[
− λ∗

1j(e
η∗1jt−1)

η∗1j

]
.

Now, with all the CIF s values, ψ̃1j can be computed using the CSH approach and

ψ∗
1j using the SDH approach following equation (3.10). To compute sample size, it is

also necessary to know the number of events that occured for event type 1 in both

approaches (D̃1 for the CSH approach and D∗
1 for the SDH approach) . To compute

D̃1, a fixed value was assumed for θ1, and the value was plugged in equation (3.2). On

the contrary, for the SDH approach, θ∗1 was computed from equation (3.23) and thus

the value was plugged in equation (3.2), from which D∗
1 was obtained. Finally, given

the proportion of patients allocated to the control (pC) and experimental (pE) groups,

Ψ̃1 = pCΨ̃1C +pEΨ̃1E was computed using the CSH approach and Ψ̃∗
1 = pCΨ

∗
1C +pEΨ̃

∗
1E

using the SDH approach. Thus, Ñ1 = D̃1/Ψ̃1 and N
∗
1 = D∗

1/Ψ
∗
1 were obtained using the

CSH and SDH approaches.

Study of sample size

Two scenarios are shown in Table 3.2. In both scenarios, it was assumed that θ1 =

(0.8, 0.6, 0.4) and θ2 = (0.8, 1.2). Furthermore, the following were assumed- in Scenario

(a), the hazarad rates for both event types are equal (λ1E = λ2E = 0.03); and in Scenario

(b), an increased proportion in the hazard rate for event type 1 : λ1E = 0.10, and kept

fixed for event type 2 : λ2E = 0.03. Overall from Table 3.2, it is observed that with

γ̃ = γ∗ = 0.5, the SDH approach requires a less sample size, and with γ̃ = γ∗ = 1.5, the

CSH requires a less sample size for Weibull distribution. Similar results were seen for

the Gompertz distribution.

In Scenario (a), when the shape parameters γ̃ increased from 0.5 to 1.5, and η̃ in-

creased from −0.5 to 0.5, the sample size reduced by about one-third when using the

CSH approach. Contrarily, with the same shape parameter values, the changes in sam-

ple sizes for the SDH approach had the opposite results (i.e., sample size increased by

about 30%).

In Scenario (b), an increment in the hazard rate in event type 1, yielded a substantial

reduction in the sample sizes for all the distributions using both approaches compared

to Scenario (a).
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Table 3.2: Sample size for Weibull and Gompertz distributions using the CSH and
SDH approaches with different shape parameter values to observe the effect of sample
size.

Here, a = 2, andf̃ = 2. CIF1E at time point t̃ is only reported. However, CIF1E , and
CIF1C at all the time points are considered to compute sample sizes. For the SDH
approach, CIF at time t = t̃ is computed based on the exponential distribution when
using the CSH approach.

CSH approach SDH approach

θ1 θ2 ÑWeib1 ÑWeib1 ÑGom1 ÑGom1 N∗
Weib1

N∗
Weib1

N∗
Gom1

N∗
Gom1

γ̃ = 0.5 γ̃ = 1.5 η̃ = −0.5 η̃ = 0.5 θ∗1 γ∗ = 0.5 γ∗ = 1.5 η∗ = −0.5 η∗ = 0.5

Scenario (a):

λ1E = 0.03 CIF1E =

0.06

CIF1E = 0.19 CIF1E = 0.05 CIF1E = 0.27 λ∗1E = 0.06 λ∗1E = 0.02 λ∗1E = 0.07 λ∗1E = 0.01

λ2E = 0.03 CIF1E = 0.11 CIF1E = 0.11 CIF1E = 0.11 CIF1E = 0.11

0.8 0.8 11495 4272 12827 3319 0.81 7124 9230 6929 10538

0.8 1.2 11427 4196 12760 3238 0.79 5568 7213 5416 8235

0.6 0.8 1865 703 2079 551 0.61 1075 1389 1046 1585

0.6 1.2 1852 690 2067 536 0.60 956 1235 930 1409

0.4 0.8 449 175 500 140 0.41 257 330 250 376

0.4 1.2 446 171 497 136 0.40 238 306 232 348

Scenario (b):

λ1E = 0.10 CIF1E =

0.18

CIF1E = 0.50 CIF1E = 0.15 CIF1E = 0.62 λ∗1E = 0.19 λ∗1E = 0.05 λ∗1E = 0.22 λ∗1E = 0.03

λ2E = 0.03 CIF1E = 0.31 CIF1E = 0.31 CIF1E = 0.31 CIF1E = 0.31

0.8 0.8 3688 1562 4085 1300 0.82 2517 3189 2456 3611

0.8 1.2 3667 1538 4065 1274 0.79 1912 2422 1866 2742

0.6 0.8 607 268 671 226 0.62 389 490 380 553

0.6 1.2 604 263 668 222 0.60 340 428 332 483

0.4 0.8 152 72 167 63 0.41 99 123 97 138

0.4 1.2 151 71 166 62 0.40 91 113 89 126

3.5 Discussion

In this chapter, the objectives was to calculate the fixed design sample size for detecting

a particular treatment effect for the Weibull, exponential and Gompertz time-to-event

distributions using the CSH and SDH approaches. It was found that, in all three

types of distributions, when there is a positive treatment effect on the competing event

(θ2 = 0.8) given a fixed power, it was observed that CSH performs better in terms of

providing a smaller required sample size than the SDH approach. This statement is true

in particular for θ1 > 0.4. However, in case of an adverse effect for a competing event

(θ2 = 1.2), the two approaches seem to perform equally, with a negligible increase in

sample size for the CSH approach, as compared to the SDH.





Chapter 4

Computing sample size using group

sequential design

4.1 Introduction

It is of common interest to justify a clinical trial about effectiveness of a new treatment

by conducting interim analyses (the percentage of sample used from the fixed sample

design) within the study period, which is referred to as the Group sequential (Gs)

design. This design helps to reduce the number of allocated patients per treatment

group, which in turns saves time and money. One of the main scopes in Gs design is to

calculate the boundary values after having adjusted for type I and II errors using the

error spending functions proposed in Gordon Lan and DeMets (1983) and Pampallona

et al. (1995) as well as the conditional power proposed in Jennison and Turnbull (1999).

These quantities help making an early decision to stop a trial at any time before the

final stage analysis.

Moreover, the interim analysis is also a requirement by data monitoring committee.

Most importantly, it is unethical to ask a patient to continue participation in a trial

that should be stopped early either due to efficacy or futility. Specifically, the former

means the drug was already found very effective during the interim period, while the

latter occurs when the condition of a patient is futile due to the adverse effect of the

treatment or alternatively, the true effect is far from the anticipated under the alternative

hypothesis. For the Gs design, the main contributions are as follows: guidelines to

compute the Sub-Distribution Hazard (SDH) ratios, events size, and conditional power

at each interim stage for the Cause-Specific Hazard (CSH) and SDH approaches were

explained through simulation studies.

In Section 4.1, the importance of sample size and the novel contributions in the

111
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Gs design are discussed. Section 4.2 explains the theoretical aspects of computing

boundary values. Next, error spending function and conditional power formulations

are described in Sections 4.3 and 4.4, respectively. A simulation study is undertaken

in Section 4.5. Finally, guidelines for deriving sample size using the direct modeling

approach are provided in Section 4.6.

4.2 Calculation of boundary values

Let us suppose that the interest is to test the parameter β, obtained as β = log θ, where

θ is the hazard ratio in a proportional hazard model. Let β̂ be an estimate of β. The

hypothesis then

H0 : β ≥ 0 against H1 : β < 0

Now, assuming that β̂ is efficient, properly normalized and computed sequentially over

time, it has an asymptotically normal independent increment process whose distribution

depends only on the parameter β and Fisher’s information I (Scharfstein et al., 1997).

Here, the total number of analyses is considered equal to K, indexed by k = 1, . . . , K.

Then, it is assumed that perform (K − 1) interim analyses are performed, where K

indicates the final stage analysis. Then, for each analysis, the estimator is

β̂k ∼ N
(
β, {Ik}−1)

and the covariance of estimators from the two interim analyses, k1 and k2, with k1 < k2,

is

Cov
(
β̂k1 , β̂k2

)
= Var

(
β̂k2

)
= {Ik2}−1

This is termed as the canonical joint distribution (Jennison and Turnbull, 1999). More-

over, the standardized statistic at analysis k is

Zk =
β̂k√

Var
(
β̂k

) = β̂k
√

I k

For this statistic, the canonical joint distribution of
(
β̂1, . . . , β̂K

)
implies that (Z1, . . . , ZK)

has a multivariate normal distribution where,

Zk ∼ N
(
β
√

I k, 1
)

and

Cov (Zk1 , Zk2) =
√

Ik1/Ik2 for k1 < k2.
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Here, Fisher’s information I for β can be written in terms of the number of observed

events, I = D/4 (Jennison and Turnbull, 1999). Proof in this context has been given

in Appendix B.1. This information I is then applied in the group sequential design to

compute the final stage information IK as

IK = I ∗ IF

where, IF is called the inflation factor, which is a ratio of the group sequential test’s

maximum to fixed sample size. This IF needs to be computed and involves the Z-critical

values (also called efficacy or futility boundary limits) at each interim stage and error

spending functions. In this context, the derivation as well as the desired values for the

interim stage and error rates can be found in Jennison and Turnbull (1999).

Once the final stage information (IK) is computed, then the interim stages informa-

tion are straightforward to compute using the formula,

Ik = (k/K)IK .

Here, it was assumed that the number of events occured equally over the interim stages,

which are referred to as equally spaced information. Once Ik is computed, since it is

known that Dk = 4 ∗ IK , the interim event size Dk can be immediately derived.

To obtain the Z-critical values and number of events at each interim stage, an easy

method is to use the R package gsDesign (Anderson, 2016). When the Z− critical values

which are called here (lk, uk) are obtained at each interim stage from either Jennison

and Turnbull (1999) or R package gsDesign, then the decision to continue or terminate

the trial at any stage can be made according to the following rule:
Zk ∈ Mk = (lk, uk), trial continue to the next stage

Zk ∈ Uk = (uk,+∞), stop the trial for efficacy and conclude H1

Zk ∈ Lk = (−∞, lk), stop the trial for futility and conclude H0

where, Zk is the observed z-values at interim stage k, {uk} is the upper limit or the

efficacy boundary, and {lk} is the lower limit or the futility boundary. Further, lk ≤ uk

until the final stage, and at this stage, lK = uK .
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4.3 Calculation of the error spending function

Since the same sample data are used in the clinical trial over the study period, it is

essential to adjust the error rate by using flexible approaches of error spending functions

that do not require the number and exact timing of interim stages to be fixed in advance.

Here, the proportion of events at interim k are defined as equal to the information

fraction t = k/K = Ik/IK . Then, the non-decreasing error spending functions for

α(t) and β̃(t) will be used to set α (under null, θ ≥ 0) and β̃ (under alternative,

β = log θ < 0).

Among several functional forms proposed by Gordon Lan and DeMets (1983), the

following are used O’Brien-Fleming (spends very little α at the beginning), with α(t) =

2 − 2ϕ(z1−α/
√
t); and Pocock (spends α more evenly across the stages), with α(t) =

α log{1 + (e− 1)t}. The β̃-spending function is calculated in a similar manner.

However, a more flexible way is to consider Wang-Tsiatis bounds (Wang and Tsiatis,

1987) with both O’Brien-Fleming and Pocock approaches together. Here, let ω be

a real-value shape parameter that characterizes the boundary shape, which generally

ranges from 0 (O’Brien-Fleming design) to 0.5 (Pocock design). The value 0.25 yields

intermediate rejection boundaries between those of O’Brien-Fleming and Pocock. The

upper and lower boundaries are defined as uk = C1(ω, α, k) (IK/Ik)
ω−0.5 and lk =

θA
√

Ik − C2(ω, β̃, k) (IK/Ik)
ω−0.5 , where C(.) is a positive constant chosen in such

a way that in the final stage, uk = lk. It is important to note that when the interim

analysis was done at unplanned information fraction than initially planned, the values

of boundaries at that stage is required to be recalculated.

4.4 Calculation of conditional power (CP)

In an interim analysis, the power depends on the interim stage and changes over time.

Here, CP is defined as the probability of rejecting H0 (when H1 is true) given the

observed interim stage data. When the trial starts, the CP is actually equal to the

unconditional power. Once the CP is calculated at each stage, the decision can be made

to stop the trial due to the futility or efficacy if CP is found to be very small or very

large, respectively. Specifically, the CP is a function of the assumed hazard ratio θ for

future patients entering the study at a follow-up time.

Following the findings of Jennison and Turnbull (1999), to reject a null hypothesis

about β = log θ < 0 for a given value of observed Zk (calculated using data collected
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up-to k − 1), the general lower one-sided CP at interim stage k is,

Pk(β) = Φ[(−Zk

√
Ik − ZK

√
IK − (IK − Ik)β)/

√
IK − Ik]. (4.1)

where, β is the log hazard ratio at the end of the trial.

When the values of β are changed for the CSH and SDH approaches, different CP

are obtained at interim k.

4.5 Simulation results using Gs design

This simulation is conducted for 4 interim stages and 1 final stage (i.e., a total of 5

stages). Here, Wang-Tsiatis error spending function with ω = 0.25 is considered for the

adjustment of type I and type II error rates (see Section 4.3 for Wang-Tsiatis bound).

Furthermore, it is assumed that α = 0.025(one-sided test), β̃ = 0.20, θ1 = θ2 = 0.8, PE =

PC = 0.5, CIF1E = CIF2E = 0.10, and t = t̃ = (a + f̃) = 2 + 1 = 3 years with the

overall censoring rate τ = 0.01. Using the CSH approach, the event size D̃1 = 632 is

obtained using equation (3.2) for fixed design. Next, for the SDH approach, the hazard

ratio is not assumed and is instead computed (this was referred to SDH ratio, θ∗1) using

the equation (3.20); thus, the event size (D∗
1) differs from that of the CSH approach.

Here, a short explanation of the computation of D∗
1 is provided. To compute equation

(3.20), the values of CIF1E(t) and CIF1C(t) are necessary. However, while CIF1E(t) is

known, CIF1C(t) is unknown. This value can be found using exponential distribution

with the CSH approach as follows:

CIF1C(t) =
1− e−t{λ1C(1+λ̃C)}

1 + λ̃C
, (4.2)

where, λ̃C = λ2C/λ2C . Equation (4.2) is further required to find the values of λ1C , λ2C .

These values are obtained using the equation, λ1C(t) = λ1E(t)/θ1 and λ2C(t) = λ2E(t)/θ2.

Furthermore, the CSH rates λ1E(t) and λ2E(t) are computed using the system of equa-

tions (3.13). Finally, CIF1C(t) = 0.12 and θ∗1 = 0.81 are obtained. Then, keeping the

values of α, β, PE, PC the same, the event size D∗
1 = 716 is computed using equation

(3.2). To compute Z-critical values and number of events at each interim stage, the R

package gsDesign (Anderson, 2016) is used.
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4.5.1 Computation of boundary critical values and error rates

From Figure 4.1 (left panel) it is observed that, boundary critical values (lk, uk) are

larger in the first interim stages and have about one-third reduction in the final stage.

When fixed design is used, the error rate is fixed, whereas in the Gs design, the error

spending function increases with the stages and is always lower in comparison (Figure

4.1, right panel).

Figure 4.1: Boundary values (lk, uk) when using the CSH approach (left panel).
The comparison of type I error rates in fixed and Gs designs (right panel).

4.5.2 Computation of conditional power

The information I is computed using the equation Appendix (B.1), I = [(1.97 +

0.84)/ log 0.8]2 = 158 from the CSH approach. Then, the fixed design event size is

D̃1 = 158 ∗ 4 = 632. To compute information at final stage (I5), the inflation factor

(IF)= 1.072 from statistical Table 2.10 in Jennison and Turnbull (1999) is used. Thus,

the information at final stage is, I5 = 158∗1.072 = 169. Then, the information at inetrim

stage 3 is I3 = (3/5) ∗ 169 = 101.63. Thus, the event size for stage 3 is 101.63 ∗ 4 = 407

using the CSH approach (Figure 4.2, left panel). When using the SDH approach, the

information I = [(1.97 + 0.84)/ log 0.81]2 = 179. Then, the fixed design event size is,

D∗
1 = 179 ∗ 4 = 716. With the inflation factor (IF)= 1.072, the final stage event size is,

179 ∗ 1.072 = 192 and at stage 3, it is (3/5) ∗ 192 = 115.20. Thus, the event size for

stage 3 is 115.20 ∗ 4 = 461 for the SDH approach (Figure 4.2, left panel).
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Figure 4.2: Comparison of the CSH and SDH approaches with the Gs design. Left:
Estimated number of events at each stage. Right: Conditional power as a function of
the assumed hazard ratio at stage 3.

Here, the observed z values are assumed to be −2 and 2.14 at interim stage 3 and final

stage 5, respectively. Now, suppose that an investigator wants to compute conditional

power at interim stage 3 for a patient that enters the study in a later period with

a CSH ratio of 0.80 and SDH ratio of 0.81. These hazard ratio values can then be

directly used in the equation (4.1). However, the standard error of a given hazard ratio

was computed in interim stage 3 using the CSH and SDH approaches. The standard

error with the former is se(β̂k) = β̂k/z = log 0.8/ − 2 = 0.112 and with the latter is

se(β̂k) = log 0.81/−2 = 0.105. Then, the assumed treatment effect (β) for interim stage

3 for both approaches are as follows:CSH approach : βCSH = log 0.80/

√
var(β̂k) ∗ I3 = −0.22/(0.112 ∗

√
102) = −0.194.

SDH approach : βSDH = log 0.81/

√
var(β̂k) ∗ I3 = −0.21/(0.105 ∗

√
115) = −0.186.

Then, the CP at stage 3 is


CSH approach : P3(βCSH) = Φ

[
{−(−2)∗

√
102}−2.14∗

√
169−{(169−102)∗(−0.194)}√

(169−102)

]
= 0.74.

SDH approach : P3(βSDH) = Φ

[
{−(−2)∗

√
115}−2.14∗

√
192−{(192−115)∗(−0.186)}√

(192−115)

]
= 0.76.

This indicates that, under H1, the probability of rejecting the null hypothesis if the

experiment stops at stage 3 is reduced from 0.80 to 0.74 when using the CSH approach

in comparison with trial completion. The first 407 of the planned 678 patients achieved

74% conditional power resulting in the detection of a hazard ratio of 0.80 at a significance
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level of 0.025 using a one-sided test. Moreover, the study was designed to have 50% of

the patients in the experimental group. When the assumed log θ is changed, given the

other parameters fixed, then the CP changes accordingly, e.g., if we assume θ = 0.9, the

CP reduces to 0.45.

When using the SDH approach at stage 3, the computed SDH ratio is 0.81, which is

a slightly higher value than the CSH ratio of 0.80. However, for such a small amount

of change in the hazard ratio (0.01), the D∗
1 has changed considerably with a slight

increase in CP; the latter shows that 54 additional events are required as compared to

that of the CSH approach (Figure 4.2, left panel). Additionally, for larger changes in the

hazard ratio, e.g., from 0.79 to 0.85, the CP reduces from ≈ 0.80 to 0.60. For instance,

if a patient that enters the study at an accrual period with assumed treatment effect,

θ1 = 0.85, then the conditional power is reduced to 0.60 (Figure 4.2, right panel). Thus,

the SDH approach yields a higher D∗
1 and a slight gain in power as compared to the

CSH approach (depending on the discrepancy between the two hazard ratios).

For an investigator, an easy way to decide on trial continuation or stoppage is to

calculate the futility index, which is 1 − CP. For example, with a hazard ratio of

0.8, this index is 0.26 for the CSH approach (calculated as 1 − 0.74). If the index is

found greater than 0.8, which means the conditional power is lower than 0.20, then the

study may be stopped because there is then a very small chance of achieving statistical

significance.

4.6 Sample size when using the alternative direct

modeling approach

This section details how sample size computations can be undertaken using the pseudo-

value and binomial regression approaches and appropriate link functions. For simplic-

ity, time-independent covariates will be considered, but the inference procedures for

time-dependent covariate can be generalized. Moreover, the Cox-type proportional sub-

distributional hazard model can be written as

− log{1− CIF1(t | X)} =

∫ t

0

α01(u)exp(X
Tβ)du = exp(XTβ)

∫ t

0

α01(u)du (4.3)

where α01(·) is a completely unspecified, invertible, and monotone increasing function,

and β is a regression parameter. By considering one binary covariate (treatment) for
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experimental group (E) and control group (C),− log{1− CIFE(t | x = 1)} = exp(β)
∫ t

0
α01(u)du

− log{1− CIFC(t | x = 0)} =
∫ t

0
α01(u)du

Dividing this equation implies that

⇒ − log{1− CIFE(t)}
− log{1− CIFC(t)}

= exp(β).

Further, using the log in equation (4.3) implies the following complimentary log-log link

function:

⇒ log{− log{1− CIF1(t | x)}} = xβ + log

∫ t

0

α01(u)du = xβ + α01(t),

Now, assuming a proportional odds model, the CIF is,

logit (CIF1(t;x, β)) = log(α01(t)) + xβ

where α01(t) is an increasing positive function with α01(0) = 0. The cumulative incidence

is thus linear on the logit scale with an intercept increasing over time and a time-constant

log-odds ratio for failure from cause one. Then, the CIF is,

CIF1(t;x) =
exp{logα01(t)} exp(xβ)

1 + exp{logα01(t)} exp(xβ)

=
α01(t) exp (xβ)

1 + α01(t) exp (xβ)

⇒ -log(1− CIF1(t;x)) = log{1 + α01(t−) exp(xβ)}.

Upon taking the first derivative for event type 1,

− ∂

∂t
log (1− CIF1(t;x)) =

exp(xβ)α01
′(t)

1 + α01(t−) exp(xβ)
=

1

exp(−xβ) + α01(t−)
α01

′(t)

where α′
01(t) is the derivative of α01(t). Now, the distribution of

n1/2
{
g
(
ĈIF 1(t;x)

)
− g (CIF1(t;x))

}
can be investigated by calculating the score function for regression parameters and then

calculate the required sample size.
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Discussion

Many studies have investigated the identification of appropriate statistical models

for given clinical data by either ignoring the competing events or using inappropriate

regression-based statistical methods to analyze complex clinical information. Hence,

one of the objectives when using Competing Risks (CR) data was to estimate the prob-

ability of the main event among the many possible events over time, thus allowing the

subjects to fail in competing events. This probability can be calculated by using the

Cumulative Incidence Function (CIF), which is often of interest in medical research due

to it’s graphical representation. Moreover, there are four regression approaches available

in the literature to estimate the CIF in the presence of competing events: Cause-Speciflc

Hazard (CSH), Sub-Distribution Hazard (SDH), pseudo-value, and binomial regression

approaches. However, the interpretation of the regression parameters for all the regres-

sion approaches are not straightforward and depend on the relationship with the CIF

through link functions. However, patient’s disease status can be examined using the

CIF curves between treatment and control groups. In particular, the following objec-

tives were studied: calculating the CIF using non-parametric and parametric regression

approaches for CR data by reviewing the literature; providing a practical guideline us-

ing R data applications (BMT data); comparing the CIF among CSH, SDH, binomial,

and pseudo-value regression approaches through simulation studies; validating the re-

sults with a medical application (Covid-19 data); computing sample sizes for fixed and

Group sequential (Gs) designs.

The simulation study was conducted with 3, 000 replications for generating datasets

of size n = 500. Here, the following values were assumed: shape parameters a1 =

0.45, a2 = 0.5; scale parameters b1 = 0.15, b2 = 0.06; regression coefficient: β1 =

−0.6, β2 = −0.17; censoring parameter: τ = 180 with censoring proportion 0.01.

Additionally, one categorical covariate was assumed for both event types as x ∼ Ber

(0.32). The analysis was then implemented in the freeware statistical package R (http:

//cran.r-project.org) and the bias was computed for all the regression approaches.
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It was found that the bias is lower in the CSH and SDH approaches for both causes.

Furthermore, at the beginning of the study (time point 10), the biases were very close

among the CSH, SDH, and pseudo-value approaches for both the experimental and con-

trol groups. However, the biases are higher for the binomial approach in comparison

to all other approaches. The maximum bias for the main event of interest for the ex-

perimental group is 0.025 for the binomial approach at time 130. For this approach,

the bias is always higher for both events at time points 90 and 130. Meanwhile, for the

pseudo-value approach, the bias was higher at the beginning of the study, and there was

a substantial reduction over time. The ratios of observed to empirical standard errors

of CIF for both event types and treatment groups for all approaches were near 1, in-

dicating no substantial differences between the observed and empirical standard errors.

However, for those approaches, there were underestimations of the variance over time.

It was further compared time-fixed and time-varying coefficient effcts for the binomial

approach. When the time-fixed coefficient was assumed, the CP performs worse after

time point 40 for the experimental group for both event types. However, with the time-

varying coefficient, the CP improved considerably for the experimental group, but also

decreased slightly at time point 10 for both events, as compared to the time-fixed coeffi-

cient scenario. Furthermore, the efficiency measurements of binomial and pseudo-value

with respect to the CSH were also studied and found that the pseudo-value approach

showed a gain in effeciency for both events and in both groups. However, under the bi-

nomial approach, there was a loss in efficiency for the control group at later time points.

In the clinical trial study, it is essential to study the efficiency as the objective of clinical

trials is to establish the effect of an intervention. On the contrary, bias measurement is

vital in the observational study as the inferences are individual preferences based.

Then, the regression methods using the Bone Marrow Transplant (BMT) and Covid-

19 data were illustrated. Under BMT data, a practical guidelines using R for a new user

was provided. Under Covid-19 data, it has been investigated the CR survival analyses

for estimating the CIF of dying from Covid-19 and the CIF of dying from other causes

in subjects with Covid-19. It was concluded that the exposures of asthma, diabetes,

obesity, other.risk, immuno, kidney, neuro, flu.vaccine (who had not been vaccinated),

hepatic.dis, age, sex, ICU, pneumo, and race, significantly increase the probability of

death due to Covid. The highest hazard ratio (2.04) was observed for the subjects with

age greater than 70 years compared to the age group 50− 60 years.

Then, the focus was on designing a sample size under fixed and Gs designs for

competing risks survival data. To design a randomized clinical trial, an essential step

is the calculation of the sample size or the number of patients to be recruited to detect
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the efficacy of treatments with sufficient power. In a time-to-event study, the sample

size is determined not by the number of patients accrued, but instead by the number of

events observed during a specific follow-up period. Here the objectives were as follows:

to calculate the fixed design sample size for detecting a particular treatment effect for

the Weibull, exponential and Gompertz time-to-event distributions using the CSH and

SDH approaches and extend the fixed design sample size analysis into group sequential

design by calculating conditional power. We first computed sample size and power under

fixed design for exponential, Weibull, and Gompertz time-to-event distributions under

CSH and SDH approaches. In all three types of distributions, when there is a positive

treatment effect on the competing event (θ2 = 0.8) given a fixed power, it was observed

that CSH performs better in terms of providing a smaller required sample size than the

SDH approach. This statement is true in particular for θ1 > 0.4. However, in case of

an adverse effect for a competing event (θ2 = 1.2), the two approaches seem to perform

equally, with a negligible increase in sample size for the CSH approach, as compared to

the SDH. To implement Gs design, interim stage information had to be computed to

justify sample size in clinical trials as an ethical concern. Then simulation studies for

this design were conducted assuming the same CIF for the experimental group using

the CSH and SDH CR approaches. Even for a negligible increase in the hazard ratio

(e.g. 0.01), it was found that the SDH model yields a higher number of events at each

interim compared to CSH but with the advantage of a slight gain in conditional power.

As a general recommendation, the SDH approach can be preferred when the main focus

is to increase conditional power, while CSH is better at reducing the required number

of events.

Future directions of research

A possible future work direction is to compute sample size using the binomial and

pseudo-value regression approaches according to the theory given in Section 4.6. Then, a

feasible user-friendly interface using R Shiny can be created for calculating the fixed and

group-sequential design sample sizes in clinical trials. With this interface, a user can un-

dertake design and interim monitoring without requiring any computational knowledge

of R. Moreover, the estimates of a treatment effect can be biased when a clinical trial

is terminated at an early stage regardless of whether a sequential or group sequential

approaches are applied. Here, an alternative approach can be the use of an adaptive

design that includes a prospectively planned opportunity to modify one or more spec-

ified aspects of the study design and interim data based on subjects in the study. In
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this manner, an investigator has the flexibility to identify the optimal clinical benefits of

the new treatment under investigation without undermining the validity and integrity

of the intended study.
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Appendix A

Appendix for chapter 3

A.1 Derivation of N

The derivation of N is motivated from noninferiority clinical trial with time-to-event

data in the presence of competing risks by the paper of Han et al. (2018). Consider the

hypotheses of interest: H0 : β = log θ ≥ 0 against H1 : β = log θ < 0. We can write the

power function and the required sample size as,

Z1−β̃ = −Z1−α +
(β − β0)

√
N√

V
(A.1)

⇒ N =

(
Z1−α + Z1−β̃

)2
V

(β − β0)
2 (A.2)

Now, we will calculate the variance V by deriving the information matrix I (β) for

binary covariate x for Cox proportional hazard model,

I (β) = Ex∼F

 N∑
i=1

I {di = 1}

[∑
j∈R x

2
j exp (βxj)

] [∑
j∈R exp (βxj)

]
−
[∑

j∈R xj exp (βxj)
]2[∑

j∈R exp (βxj)
2
]

 .
Define, Ei(g(x)) =

∑
j∈R [g(x) exp (βxj)]. Since x is a binary covariate, we can write,

x2j = xj and rewrite the formula as,

I (β) = Ex∼F

[
N∑
i=1

I {di = 1} Ei (xj)Ei(1)− E2
i (xj)

E2
i (1)

]
,

where, Ei(1) = NCi + NEi exp(β) is a combination of patients with experimental (E)

and control (C) group and Ei (xj) = NEi exp(β) is the patients with experimental group
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only. This implies,

I (β) = Ex∼F

[
NEi exp β ∗ (NCi +NEi exp(β))− (NEi exp(β))

2

(NCi +NEi exp(β))2

]
= Ex∼F

[ ∏1
x=0Nxi exp(βx)[∑1
x=0Nxi exp(βx)

]2
]

=
NCi

NCi +NEi exp(β)
× NEi exp(β)

NCi +NEi exp(β)

=
pCi

pCi + pEi exp(β)
× pEi exp(β)

pCi + pEi exp(β)

using Taylor series expansion =
pCipEi(1 + β)

(pCi + pEi(1 + β))2

=
pCipEi(1 + β)

(pCi + pEi + pEiβ)2

=
pCipEi(1 + β)

(1 + pEiβ)2

≈ pCpE

where pCi = NCi/Ni, pEi = NEi/Ni and pCi + pEi = 1. Note the Taylor expansion

assumes that β is small. Therefore, the variance is expressed as follows:

V = I −1
β = (pCpE)

−1

So, the sample size formula A.1 becomes,

N =

(
Z1−α/2 + Z1−β̃

)2
(β − β0)

2 (pCpE)
= D.

The derivation of D =
(z1−α+z1−β̃)

2

(log θ)2PCPE
is shown in Section 3.2.1.

The censoring mechanism and study duration are not considered here, thus it is

assumed that the total number of deaths of all patients are observed and hence N is

equal to D. However, in practice this is not feasible and we need to consider censoring

mechanism and study duration. The following section explains on this issue.

A.1.1 Considering accrual period and loss to follow-up

Let CIFx and fx be the CIF and density function of the event of interest in group x and

Lx be the cumulative incidence function of censoring. N denotes the total number of

patients required in the two groups. px denotes the assignment proportion of subjects
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to group x. Therefore, Nxi can be rewritten as follows:

Nxi = Npx (1− CIFx (Ti)) (1− Lx (Ti))

So, given px, f(x), and Hx, we can define, P (t) =
∑1

x=0 pxfx(t) (1− Lx(t)) .

The information now can be expressed as,

I (b) = Ex∼F

[ ∏1
x=0Nxi exp(βx)[∑1
x=0Nxi exp(βx)

]2
]

=

∫ Tf

0

[ ∏1
x=0Nxi exp(βx)[∑1
x=0Nxi exp(βx)

]2
]
P (t)dt

=

∫ Tf

0

∏1
x=0 [Npx (1− CIFx(t)) (1− Lx(t))] exp(bx){∑1
x=0 [Npx (1− CIFx(t)) (1− Lx(t))] exp(bx)

}2P (t)dt

=

∫ Tf

0

N [pC (1− CIFE(t)) (1− LC(t))] exp(0)× [pE (1− CIFE(t)) (1− LE(t))] exp(b)

{[NpC (1− CIFC(t)) (1− LC(t))] exp(0) + [NpE (1− CIFE(t)) (1− LE(t))] exp(b)}2
P (t)dt

In practice, CIFE(t) ≈ CIFC(t), LE(t) ≈ LC(t). Then we have,

I (b) =

∫ Tf

0

pCpE exp(b)

[pC + pE exp(b)]2
P (t)dt

=
pCpE exp(b)

[pC + pE exp(b)]2

∫ Tf

0

P (t)dt

=
pCpE exp(b)

[pC + pE exp(b)]2
Ψ

where, Ψ =
∫ Tf

0
P (t)dt.

Therefore, the variance is expressed as follows:

V (b) =

(
pCpE exp(b)

[pC + pE exp(b)]2
Ψ

)−1

As before, we can expand using Taylor series with pC + pE = 1 and obtain,

V (b) = (pCpEΨ)−1
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So, plug-in the variance on sample size equation, we obtained,

N =

(
Z1−α/2 + Z1−β̃

)2
(β − β0)

2 (pCpEΨ)−1

=

(
Z1−α/2 + Z1−β̃

)2
(β − β0)

2 (pCpE)
∗ 1

Ψ

=
D

Ψ



Appendix B

Appendix for chapter 4

B.1 Fisher’s information I for β̂ can be written in

terms of the number of observed events, I =

D/4 when pE = pC = 1/2.

Proof:

Recall the hypotheses of interest: H0 : β = log θ ≥ 0 against H1 : β = log θ < 0

Step (1): Calculate the significance level, α (probability of Type I error):

α = P ( reject H0 | H0 is true )

= P
(
β̂ < −cα | H0

)
= P

 β̂ − β√
V (β̂)

<
−cα − β√
V (β̂)

∣∣∣∣H0


= P

(
Z <

−cα − 0√
1/I

)
= P

(
Z < −cα

√
I
)

= Φ
(
−cα

√
I
)

= 1− Φ
(
cα
√

I
)

⇒ 1− α = Φ
(
cα
√

I
)

⇒ Φ−1(1− α) = cα
√

I

⇒ cα = Φ−1(1− α)/
√

I .
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Step (2):Calculate the significance level, β̃ (probability of Type II error). Assume

β < 0.

β̃ = P ( accept H0 | H1 is true )

⇒ 1− β̃ = P ( reject H0 | H1 is true )

= P
(
β̂ < −cα | H1

)
= P

 β̂ − β√
V (β̂)

<
−cα − β√
V (β̂)

∣∣∣∣H1


= P

(
Z <

−cα − β√
1/I

)
= P

(
Z < (−cα − β)

√
I
)

= P
(
Z < −cα

√
I − β

√
I
)

= P
(
Z < −

(
cα
√

I + β
√

I
))

= Φ
(
−
(
cα
√

I + β
√

I
))

⇒ 1− β̃ = 1− Φ
(
cα
√

I + β
√

I
)

⇒ β̃ = Φ
(
cα
√

I + β
√

I
)

⇒ Φ−1(β̃) = cα
√

I + β
√

I

We can also write, −Φ−1(1− β̃) = cα
√

I + β
√

I . Thus, Φ−1(β̃) = −Φ−1(1− β̃) =

cα
√

I + β
√

I . Now we substitute cα from Step (1) :

−Φ−1(1− β̃) =

[
Φ−1(1− α)/

√
I

]√
I + β

√
I

⇒ −Φ−1(1− β̃) = Φ−1(1− α) + β
√

I

⇒ −β
√

I = Φ−1(1− α) + Φ−1(1− β̃)

⇒ β
√

I = −
[
Φ−1(1− α) + Φ−1(1− β̃)

]
⇒

√
I = −

[
Φ−1(1− α) + Φ−1(1− β̃)

]
/β

Thus, we have,

I =

[
Φ−1(1− α) + Φ−1(1− β̃)

β

]2
(B.1)
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Now recalling formula (3.2), D = [z1−α + z1−β̃]
2/[(log θ)2PEPC ] which is equivalent

to,

D =

[
Φ−1(1− α) + Φ−1(1− β̃)

β

]2
∗ (1/PEPC)

= I ∗ (1/PEPC) = 4I , when, PE = PC = 1/2.

⇒ I = D/4.

It is clear from this equation that the information I is a function of fixed design events

size.
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