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Ample vector bundles with zero loci of small ∆-genera
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Abstract. Let X be a smooth complex projective variety endowed with an ample vector bundle E
admitting a global section whose zero locus is a smooth subvariety Z of the expected dimension, and
let H be an ample line bundle on X , whose restriction HZ to Z is very ample. Triplets (X, E , H)

are studied and classified under the assumption that the delta genus of (Z, HZ) is either small (≤ 3)
or small in comparison with the corank of E or the degree.
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1 Introduction

Let X be a smooth complex projective variety and let L be an ample line bundle on X . In
order to study polarized manifolds (X,L) Fujita [9] introduced the ∆-genus of (X,L),
which is a nonnegative integer defined by the formula

∆(X,L) := dimX + LdimX − h0(X,L).

This character turned out to be very useful even in the classification of projective mani-
folds (e.g., see [11]) combined with other numerical characters like the sectional genus.
Extending classification results of smooth projective varieties in terms of hyperplane sec-
tions to the more general framework of ample vector bundles arises as a very natural
problem.

The setting we consider in this paper is as follows:

1.1. Let X be a smooth complex projective variety of dimension n and let E be an ample
vector bundle of rank r ≥ 2 on X such that there exists a section s ∈ Γ(E) whose zero
locus Z := (s)0 is a smooth subvariety of X of the expected dimension n− r.

Note that Condition 1.1 is certainly satisfied if the ample vector bundle E is also
globally generated. Next, consider an ample line bundle H on X and suppose that its
restriction HZ to Z is very ample.
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Generally speaking, our aim is to study and classify triplets (X, E ,H) as above under
the assumption that ∆(Z,HZ) is small. As a first thing we investigate the setting above
when ∆(Z,HZ) ≤ 3. Cases ∆ = 0 and 1 do not require any further restriction. More-
over, for ∆ = 0 we do not even need to require the very ampleness of HZ . However, to
study the next cases ∆ = 2 and 3 we have to assume that n − r ≥ 2. On the other hand
we should note that for n− r = 1 if HZ is very ample and non-special, then ∆(Z,HZ) is
simply the genus g of the smooth curve Z. Thus our problem overlaps that of classifying
pairs (X, E) as in 1.1 with E having curve genus g. As far as we know, results on this
related problem are available only for g ≤ 2, with E being very ample when equality
holds [25], [26]. For n − r ≥ 2, starting from the known classification of projective ma-
nifolds of small ∆ and using miscellaneous results concerning ample vector bundles, we
get satisfactory structure theorems for our triplets (X, E ,H). The results are expressed
by Theorems 3.2, 3.5, 3.6, and 3.12 for the values ∆ = 0, 1, 2, 3, respectively. They are
complete except for ∆(Z,HZ) = 3 and n− r = 2, because the case in which (Z,HZ) is
a nongeneral quintic surface in P3 and X has Picard number ρ(X) ≥ 2 is not covered.

Next we address the same problem when ∆(Z,HZ) is small in comparison with the
corank n − r of E . We assume that ∆(Z,HZ) ≤ cork(E) − 1. Of course, if n − r = 1
this means ∆ = 0 and this situation falls in Theorem 3.2. On the other hand, if n − r ≥
2, our assumption is equivalent to the requirement that Z is embedded in PN by |HZ |
with degree ≤ N . Relying on a nice classification result of Ionescu [12], we succeed to
describe the possible structures of the triplets (X, E ,H) for each pair (Z,HZ) occurring
in Ionescu’s list. Our result in this setting is expressed by Theorem 4.1. Apart from
triplets arising from a Fano manifold Z with Pic(Z) ∼= Z generated by HZ , (X, E ,H)
is described in precise way. We would like to note that, in both investigations above,
adjunction theoretic results for triplets (X, E ,H) developed by Maeda and the first author
provide a useful tool. This should be not surprising in view of the key role played by
adjunction theory in classification of projective manifolds.

One more way to rephrase that ∆(Z,HZ) is small is to compare this character with
the degree d = d(Z,HZ). If n − r ≥ 2 we show that condition ∆(Z,HZ) < d

2 implies
the non-nefness of the adjoint line bundleKX+det E+(n−r−2)H . As a consequence,
assuming n−r ≥ 3 we conclude that triplets (X, E ,H) satisfying this condition are those
occurring in an adjunction theoretic classification result for ample vector bundles due to
Maeda [24].

The paper is organized as follows. In Section 2 we provide some background material
including results of interest in themselves, like Lemmas 2.4, 2.5 and 2.9. Section 3 is
devoted to the study of ∆(Z,HZ) ≤ 3; in Section 4 we consider the case ∆(Z,HZ) ≤
cork(E)− 1 and in Section 5 the case ∆(Z,HZ) < d

2 .

2 Background material

We use the standard notation from algebraic geometry. The tensor products of line bundles
are denoted additively. The pullback i∗E of a vector bundle E on X by an embedding of
projective varieties i : Y ↪→ X is denoted by EY . We denote by KX the canonical bundle
of a smooth variety X . The blow-up of a variety X along a smooth subvariety Y is
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denoted by BlY (X). We say that a vector bundle is spanned to mean that it is generated
by global sections.

A smooth complex projective variety X is called a Fano manifold if its anticanon-
ical bundle −KX is ample. For a Fano manifold X , the largest integer, rX , which
divides −KX in the Picard group Pic(X) is called the index of X while the integer
qX := dimX − rX + 1 is called the coindex of X .

A polarized manifold is a pair (X,L) consisting of a smooth complex projective va-
riety X and an ample line bundle L on X . A polarized manifold (X,L) is said to be
a scroll over a smooth variety W if there exists a surjective morphism f : X −→ W
such that (F,LF ) ∼= (Pr,OPr (1)) with r = dimX − dimW for any fiber F of f . This
condition is equivalent to saying that (X,L) ∼= (PW (F),H(F)) for some ample vector
bundle F on W , where H(F) is the tautological line bundle on the projective space bun-
dle PW (F) associated to F . A polarized manifold (X,L) is said to be a quadric fibration
over a smooth curve W if there exists a surjective morphism f : X −→ W and any gen-
eral fiber F of f is a smooth quadric hypersurface Qn−1 in Pn with n = dimX such
that LF = OQn−1(1). A polarized manifold (X,L) is said to be a del Pezzo manifold if
KX + (dimX − 1)L = OX .

The following fact is well known.

Lemma 2.1. Let E be an ample vector bundle of rank r on a compact complex manifold
X . For any rational curve C ⊂ X we have

det E · C ≥ r.

Moreover, if C is smooth and equality holds, then (C, EC) ∼= (P1,OP1(1)⊕r).

Theorem 2.2 (Lefschetz–Sommese). Let X, E and Z be as in 1.1 and let ι : Z ↪→ X be
the inclusion. Then:

(1) Hi(ι) : Hi(X,Z) −→ Hi(Z,Z) is an isomorphism for i ≤ dimZ − 1, and injective
with torsion free cokernel for i = dimZ;

(2) Pic(ι) : Pic(X) −→ Pic(Z) is an isomorphism for dimZ ≥ 3, and injective with
torsion free cokernel for dimZ = 2.

We recall the following facts that we will use in our proofs.

Proposition 2.3. Let X , E and Z be as in 1.1 with n − r ≥ 3. Let H be an ample line
bundle on X . Assume that one of the following holds:

(1) (X,H) is a scroll over a smooth curve C and EF ∼= OPn−1(2)⊕OPn−1(1)⊕(r−1) for
any fiber F of the projection X −→ C;

(2) (X,H) is a quadric fibration over a smooth curve C and EF ∼= OQn−1(1)⊕r for any
general fiber F of the fibration X −→ C;

(3) (X,H) is a scroll over a smooth surface S and EF ∼= OPn−2(1)⊕r for any fiber F of
the projection X −→ S.

If (1) or (2) holds, then (Z,HZ) is a quadric fibration over C. If (3) holds, then (Z,HZ)
is a scroll over S.
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Proof. These assertions are shown in the proofs of [18, Theorem 2 and Theorem 3]. 2

Here is a general result that we will use in the proofs of Theorems 3.6, 3.12 and 4.1.

Lemma 2.4. Let X , E and Z be as in 1.1 with n− r ≥ 4. Let H be an ample line bundle
on X and let (X,H) be a quadric fibration over P1 with EF ∼= OQn−1(1)⊕r for any
general fiber F of the fibration. Then (Z,HZ) cannot be P1 ×Qn−r−1 Segre embedded.

Proof. We argue by contradiction. Consider the quadric fibration q : X −→ P1 and note
that q|Z : Z → P1 is the first projection of P1 × Qn−r−1. So, f := F ∩ Z ∼= Qn−r−1

for every fiber F of q. We know that EF ∼= OQn−1(1)⊕r for the general fiber F . Since
HF

∼= OQn−1(1), we know that

(E ⊗ [−H])F ∼= O⊕rQn−1

for the general fiber F of q.
Claim: (E ⊗ [−H]) restricted to every fiber of q is trivial.
Let F0 be a singular fiber of q and set E := (E ⊗ [−H])F0 . By [19, Lemma 0.3]

we know that (F0,HF0) is a quadric cone of Pn having a single point v as vertex, with
the polarization induced by OPn(1). Consider f0 := F0 ∩ Z and note that (f0,Hf0) ∼=
(Qn−r−1,OQn−r−1(1)) can be identified with the section of the quadric cone F0 ⊂ Pn
with r general hyperplanes. Let ` ⊂ f0 be any line. As the lines contained in the fibers of
q|Z belong to a single algebraic family we know that deg E` = r; moreover H`

∼= O`(1).
Since E is ample, this implies that E` ∼= O⊕r` for every line ` ⊂ f0. By applying [36,
Lemma 3.6.1] we thus get

Ef0
∼= O⊕rQn−r−1 . (2.4.1)

Let W be a smooth hyperplane section of F0 in the linear system having f0 as base locus.
Then W ∼= Qn−2. Moreover we can look at F0 ⊂ Pn as the cone projecting W from v.
Since there is a ladder of (W,HW ), all of whose elements from f0 to W itself are smooth
quadrics, by applying inductively the same argument as in [18, Proof of Lemma 2.1]
(inspired by [32, Chapter I, Section 2.3]), we can infer from (2.4.1) that

EW ∼= O⊕rQn−2 . (2.4.2)

Set T = O⊕rF0
and call ϕ : TW → EW the inverse of the isomorphism in (2.4.2). Now

consider the exact sequence

0 −→ OF0(−W ) −→ OF0 −→ OW −→ 0. (2.4.3)

Tensor with E(k) := E ⊗ [kH]F0 , and consider the cohomology exact sequence

. . . −→ H1(E(k − 1)) −→ H1(E(k)) −→ H1(EW (k)) −→ . . . .

Since W ∼= Qn−2 we know that h1(EW (k)) = rh1(OW (k)) = 0 for every integer k.
Thus h1(E(k − 1)) ≤ h1(E(k)). But the latter is zero for k >> 0. Hence

h1(E(k)) = 0 for every integer k. (2.4.4)
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Now tensor (2.4.3) with T∨⊗E, where ∨ denotes the dual, and consider the cohomology
exact sequence

. . . −→ H0(T∨ ⊗ E) −→ H0((T∨ ⊗ E)W ) −→ H1(T∨ ⊗ E(−1)) . . . .

Note that H1(T∨ ⊗ E(−1)) = (H1(E(−1)))⊕r = 0 by (2.4.4). Thus the section of
(T∨ ⊗ E)W corresponding to the isomorphism ϕ : TW −→ EW can be extended to a
section of T∨⊗E, i.e. to a homomorphism φ : T −→ E. Note thatKZ+(n−r−1)HZ−
q|∗ZOP1(n−r−3) = OZ . ThereforeKX+det E+(n−r−1)H−q∗OP1(n−r−3) = OX ,
by the Lefschetz–Sommese theorem. This says that

det(E ⊗ [−H])F = (det E − rH)F = −(KX + (n− 1)H)F ∼= OF

for every fiber F of q. In particular, we get detE ∼= OF0 , and so

detφ ∈ Hom(detT,detE) = H0(HomOF0
(OF0 ,OF0)) = H0(OF0) = C.

Since detφ is non-zero on W and constant on F0, detφ vanishes nowhere. Therefore φ
is an isomorphism and E = (E ⊗ [−H])F0 is trivial as claimed.

Due to the claim there exists a vector bundle G of rank r on P1 such that

E ∼= H ⊗ q∗G. (2.4.5)

Denote by p1 : Z −→ P1 and p2 : Z −→ Qn−r−1 the projections onto the factors and
let l ⊂ Z be a fiber of p2. Then p1|l : l −→ P1 is an isomorphism. As EZ is ample,
deg El ≥ rk(E) by Lemma 2.1. Since EZ ∼= (H ⊗ q∗G)Z ∼= HZ ⊗ p∗1G, we get

r = rk(El) ≤ deg El = deg(EZ)l = deg(HZ ⊗ p∗1G)l = rHZ · l + deg G = r + deg G,

hence
deg G ≥ 0. (2.4.6)

Note that Hn−r
Z = Hn−r · Z = Hn−r · cr(E). So in view of (2.4.5) we have

cr(E) =
r∑
j=0

q∗cj(G) ·Hr−j = Hr + q∗c1(G) ·Hr−1 = Hr + deg GHr−1 · F.

Therefore, noting that Hn−1 · F = (HF )n−1 = 2, we deduce that

2(n− r) = Hn−r
Z = Hn + 2 deg G. (2.4.7)

Now come back to the quadric fibration q : X −→ P1 and set V := q∗H . Then V
is a vector bundle of rank n + 1 on P1. Set P := PP1(V), let π : P −→ P1 be the
projection, and let ξ and D be the tautological line bundle and a fiber respectively. Then
X is embedded fiberwise in P as a divisorX ∈ |2ξ−bD| for some integer b, and ξX = H .

Note thatHn = (ξX)n = ξn ·X = ξn · (2ξ−bD). So taking into account the relation
ξn+1 = degV provided by the Chern–Wu formula and the fact that ξn · D = 1, (2.4.7)
gives

2(n− r) = 2(degV + deg G)− b. (2.4.8)
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Now look at Z = P1×Qn−r−1 and recall that ξZ = HZ = OP1×Qn−r+1(1, 1). Moreover
any fiber f of the first projection p1 can be regarded as Z ∩ F = Z ∩D, for some fiber
D of π, in view of the commutative diagram

Z = P1 ×Qn−r−1

p1

&&NNNNNNNNNNNNNN
� � // X

q

��

� � // P := PP1(V)

π

yyssssssssssss

P1.

Due to the inclusion Z ⊂ X , adjunction and the canonical bundle formula for P-bundles
allow us to compute KZ . We have

KZ = (KX + det E)Z = ((KP +X)X + det E)Z =
= ((−(n+ 1)ξ + (−2 + degV)D + 2ξ − bD)X + rH + q∗ detG)Z =
= −(n− r − 1)HZ + (degV + deg G − 2− b)f.

On the other hand, we know that

KZ = OP1×Qn−r−1(−2,−(n− r − 1)) = −(n− r − 1)HZ + (n− r − 3)f,

since OP1×Qn−r−1(1, 0) = p∗1OP1(1) = OZ(f). Comparing the expressions obtained for
KZ we get the following relation

degV + deg G = n− r − 1 + b. (2.4.9)

Thus, (2.4.8) and (2.4.9) show that

b = 2 and degV = (n− r + 1)− deg G. (2.4.10)

Now, by the same argument as in [8, (3.3)] we can compute the number δ of singular
fibers of q and get

0 ≤ δ = 2degV − (n+ 1)b.

Combining this with (2.4.10) gives

0 ≤ δ = −2(r + deg G).

But this is a contradiction, since we know that r ≥ 2 and deg G ≥ 0 by (2.4.6). 2

Lemma 2.5. Let X , E and Z be as in 1.1 with n− r ≥ 3. Let H be an ample line bundle
on X such that HZ is very ample. Suppose that g(Z,HZ) = 3 and (Z,HZ) is a scroll
over P2. Then n− r = 3.

Proof. Assume that n − r ≥ 4. Then, by [12, Proof of Proposition 5] and [11, Proposi-
tion 4.7], (Z,HZ) ∼= (PP2(F),H(F)), where F is one of the following vector bundles:

(i) F ∼= TP2 ⊕OP2(1);
(ii) F ∼= OP2(2)⊕OP2(1)⊕2;
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(iii) F ∼= OP2(1)⊕4.

We have b2(X) = b2(Z) = 2 by the Lefschetz–Sommese theorem. Moreover, denoted
by p the bundle projection, KZ + rk(F)HZ = p∗(KP2 + detF) is nef, since in all three
cases KP2 + detF = KP2 + OP2(4) is ample; so KZ + (dimZ − 1)HZ is nef. Note
that KZ + (dimZ − 2)HZ is not nef since it is negative on curves in a fiber of p. So
we are in the assumption of [18, Theorem 3]. Note that condition b2(X) > 1 rules out
Cases (1)–(9), while the fact that n− r > 3 rules out Case (11). Therefore we get one of
the following possibilities:

(a) there exists an effective divisor E on X such that

(E, EE ,HE ,OE(E)) ∼= (Pn−1,OPn−1(1)⊕r,OPn−1(1),OPn−1(−1));

(b) (X,H) is a scroll over a smooth curve C and EF ∼= OPn−1(2)⊕OPn−1(1)⊕(r−1) for
any fiber F of the projection X −→ C;

(c) (X,H) is a quadric fibration over a smooth curve C and EF ∼= OQn−1(1)⊕r for any
general fiber F of the fibration X −→ C;

(d) (X,H) is a scroll over a smooth surface S and EF ∼= OPn−2(1)⊕r for every fiber F
of the projection X −→ S.

We check this list case-by-case to rule out all possibilities.
Case (a). The restriction of the section s toE is a section sE ∈ Γ(OPn−1(1)⊕r), hence

its zero locus Z0 := (sE)0 = Z ∩ E is a linear subspace of E, so dimZ0 ≥ n − r − 1.
Note that Z0 cannot be equal to Z, otherwise Z would be Pn−r contradicting b2(Z) = 2;
moreover, Z is irreducible, hence Z0 is a divisor in Z. Therefore Z0

∼= Pn−r−1. This
implies that p(Z0) cannot have positive dimension. On the other hand the restriction of
p to Z0 cannot be constant, otherwise Z0 would be contained in a fiber of p, which is
impossible.

Cases (b) and (c). In both cases the restriction q := fZ of the morphism f : X −→ C
toZ gives to (Z,HZ) a structure of quadric fibration, by Proposition 2.3. SoZ is endowed
with two morphisms

Z

p

  @
@@

@@
@@

@@
q

����
��

��
��

�

C P2

where p is the scroll projection over P2. Let F ∼= Pn−r−2 be any fiber of the scroll
projection. Note that q(F ) is a point since dimF ≥ 2. Hence the general fiber F ∼=
Pn−r−2 is contained in a smooth fiber∼= Qn−r−1 of q. Recalling that dimZ is either 4 or
5 we get a contradiction, since a smooth Qn−r−1 can contain a linear space of dimension
at most [n−r−1

2 ].
Case (d). The restriction πZ of the projection π : X −→ S to Z gives to (Z,HZ) a
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structure of scroll over S, by Proposition 2.3. So Z is endowed with two morphisms

Z

p

  A
AA

AA
AA

AA
πZ

����
��

��
��

�

S P2.

We claim that πZ = p. Assume by contradiction that πZ 6= p. Then there is a fiber F of
p such that πZ |F : F −→ S is not constant. Hence F ∼= P2, otherwise πZ |F would give
a fibration of P3 either onto S or onto a curve of S, which is a contradiction. Moreover
πZ |F : F −→ S is a surjective morphism onto a smooth projective surface, so S ∼= P2.
By [35, Theorem A], we obtain Z ∼= P2×P2, which is not one of our cases. We have thus
proved that πZ = p, therefore the scroll structure of (Z,HZ) comes from that of (X,H)
and S ∼= P2. So we have the following commutative diagram

Z = PP2(F)

p=πZ

%%KKKKKKKKKKKK
� � ι // X := PP2(V)

π

yyssssssssssss

P2.

Now denote by F a fiber of the scroll projection π : X −→ P2. We observe that HF
∼=

OPn−2(1); so (E ⊗ [−H])F ∼= O⊕rF , hence E ⊗ [−H] ∼= π∗G for a vector bundle G of
rank r on P2. We can thus write

det E = det(π∗G ⊗ [H]) = rH + π∗ detG.

Let V be the ample vector bundle of rank n−1 on P2 such that (X,H) = (PP2(V),H(V)).
Clearly Pic(X) ∼= Z2 generated by H and π∗OP2(1); moreover, by the canonical bundle
formula,

KX = −(n− 1)H + π∗(detV +OP2(−3)).

We have the following equalities

−(n− r − 1)HZ + π∗Z(KP2 + c1(F)) = KZ =
= (KX + det E)Z = (−(n− r − 1)H + π∗OP2(c1(V) + c1(G)− 3))Z

where F is the ample vector bundle such that (Z,HZ) ∼= (PP2(F),H(F)). From this we
derive

π∗Z(KP2 + c1(F)) = π∗ZOP2(c1(V) + c1(G)− 3),

which, recalling that c1(F) = 4 in all three Cases (i)–(iii), gives

c1(V) + c1(G) = 4. (2.5.1)

Note that in each case F has a summand given by copies of OP2(1). Let

Σ :=


PP2(OP2(1)) in Case (i);
PP2(OP2(1)⊕2) in Case (ii);
PP2(OP2(1)⊕4) in Case (iii).
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Then Σ ∼= P2, P2 × P1 or P2 × P3 respectively and we have the following diagram

Σ

πΣ

**UUUUUUUUUUUUUUUUUUUUUUUUUU
� � // Z = PP2(F)

πZ

%%KKKKKKKKKKKK
� � ι // X := PP2(V)

π

yyssssssssssss

P2,

where πΣ is the restriction of πZ to Σ. Moreover the surjection from F to the sum-
mand defining Σ gives an injection Σ ⊆ Z such that HΣ = (HZ)Σ is either OP2(1),
OP2×P1(1, 1), or OP2×P3(1, 1), respectively. Let l ⊂ Σ be a line in Case (i) and a line
contained in a fiber of the second projection in Cases (ii) and (iii). Then

H · l = HΣ · l = 1.

Note that the restriction of π to l maps l isomorphically onto a line ` ⊂ P2. Recalling that
E is ample we thus get

r ≤ deg El = deg(π∗G ⊗H)l = deg(π∗G)l + rH · l = deg G` + rH · l = c1(G) + r.

Hence c1(G) ≥ 0. Recalling (2.5.1), the ampleness of V implies

4 = c1(V) + c1(G) ≥ c1(V) ≥ rk(V) = n− 1.

So, n ≤ 5. On the other hand, n = r + (n− r) ≥ 2 + 4 = 6, a contradiction. 2

Lemma 2.6. Let S ⊂ P3 be a smooth quintic surface and let G be an ample and spanned
vector bundle of rank r ≥ 2 on S. Then c1(G)2 ≥ 6.

Proof. Put P := PS(G) and let π : P −→ S be the bundle projection. Denote by ξ
the tautological line bundle associated to G on P . Note that ξ is spanned, since G is
so. Then there exists a smooth surface S̃ =

⋂r−1
i=1 Di, where Di ∈ |ξ| (i.e. S̃ = (τ)0

with τ a regular section of Γ(ξ⊕(r−1))). Note that (S̃, ξS̃) has (S,detG) as adjunction
theoretic reduction. Indeed, the canonical bundle of S̃ is KS̃ = (KP + (r − 1)ξ)S̃ =
(−rξ + π∗(KS + detG) + (r − 1)ξ)S̃ = −ξS̃ + π∗

S̃
(KS + detG), where πS̃ is the

restriction of π to S̃. Therefore d(P, ξ) = d(S̃, ξS̃) = ξ2
S̃

= ξ2 · ξr−1 = ξr+1. Since
ξr − ξr−1 · π∗c1(G) + ξr−2 · π∗c2(G) = 0 by the Chern–Wu relation, we derive ξr+1 =
ξr · π∗c1(G)− ξr−1 · π∗c2(G) = ξr−1 · π∗(c1(G)2 − c2(G)) = c1(G)2 − c2(G). So

c1(G)2 = d(S̃, ξS̃) + c2(G). (2.6.1)

Note that the morphism πS̃ is birational and contracts exactly c2(G) (−1)-curves of
(S̃, ξS̃). In particular, S̃ is not minimal, since c2(G) > 0.

Now we show that both summands on the right-hand side of (2.6.1) are ≥ 3.
If c2(G) = 1, then (S,G) ∼= (P2,OP2(1)⊕r), by [3, Theorem 11.1.3], but this is a

contradiction, since the Kodaira dimension of S is κ(S) = 2. If c2(G) = 2, by [23,
Corollary] and [28], we have the following possibilities for (S,G):
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(i) (P2,OP2(1)⊕OP2(2));
(ii) (Q2,OQ2(1)⊕2), where Q2 is a smooth quadric in P3;

(iii) S = PB(F) is a P1-bundle over an elliptic curve B and G = ξF ⊗ π∗V , where
π : S −→ B is the ruling projection, F and V are normalized rank-2 vector bundles
of degree 1 on B and ξF is the tautological line bundle of F ;

(iv) there exists a finite morphism f : S −→ P2 of degree 2 and G ∼= f∗OP2(1)⊕2.

The first three cases are ruled out since in our assumption κ(S) = 2. To exclude the
last one, let ∆ ∈ |OP2(2b)|, with b > 0, be the branch divisor of f . We can compute
KS = f∗OP2(b−3) to derive that b ≥ 4, since κ(S) = 2. Therefore 5 = K2

S = 2(b−3)2,
which is a contradiction. So c2(G) ≥ 3.

Now look at the summand d(S̃, ξS̃). Since ξS̃ is ample and spanned, if d(S̃, ξS̃) = 1,
then (S̃, ξS̃) ∼= (P2,OP2(1)), contradicting κ(S̃) = κ(S) = 2. On the other hand, if
d(S̃, ξS̃) = 2, then either (S̃, ξS̃) ∼= (P1 × P1,OP1×P1(1, 1)), or there exists a finite
morphism f : S̃ −→ P2 of degree 2 and ξS̃ ∼= f∗OP2(1). The former case gives again
a contradiction with the Kodaira dimension of S̃. In the latter case, denote again by
∆ ∈ |OP2(2b)|, with b > 0, the branch divisor of f . The canonical bundle of S̃ is
KS̃ = f∗((b− 3)OP2(1)) = (b− 3)ξS̃ ; hence b ≥ 4, as κ(S̃) = κ(S) = 2. But then KS̃

is ample, whence S̃ is minimal, a contradiction. 2

Let X be a smooth complex projective variety of dimension n and let E be an am-
ple vector bundle of rank r = 2 on X . If PX(E) is a Fano manifold, we say that
(PX(E), X, E) is a ruled Fano manifold, according to [29, Definition 3.1]. We need
the following result from [29] (see [29, Theorem 1.1, Propositions 5.1 and 5.2, Corol-
lary 5.3]), which we restate for our use in Lemma 2.9.

Theorem 2.7. Let X and E be as above and assume n = 4. Suppose that (PX(E), X, E)
is a ruled Fano manifold such thatKX+det E = OX . IfX has Picard number ρ(X) ≥ 2,
then either

(1) X is a Fano 4-fold of index 2 (for the classification of these manifolds see [37]) and
E = L⊕2, where L is an ample line bundle on X , or

(2) (X, E) is one of the following pairs:
(2a) (Blp(P4), [2h+ E]⊕ [3h+ E]);
(2b) (Bll(P4), [2h− E]⊕ [3h− E]);
(2c) (P2 × P2,OP2×P2(1, 2)⊕OP2×P2(2, 1));
(2d) (P2 × P2,OP2×P2(1, 1)⊕OP2×P2(2, 2));
(2e) X = PP2(TP2(−1)⊕OP2) ⊂ P2×P3 and E = (OP2×P3(1, 1)⊕OP2×P3(1, 2))X .
In (2a) and (2b) E stands for the exceptional divisor and h for the pullback ofOP4(1)
on X .

Remark 2.8. Note that the list in Table 0.3 of [37] is not affected by the missed case
in the Mori–Mukai classification of Fano 3-folds with b2 ≥ 2. Actually for such a 3-
fold Y (Case (13) in Table 4 of [27]) we know that ρ(Y ) = 4 and (−KY )3 = 26.
So, if X is a Fano 4-fold such that −KX = 2H with Y ∈ |H|, we have ρ(X) = 4
by the Lefschetz theorem. But then the validity of the generalized Mukai conjecture in
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dimension 4 [4] would imply that X = (P1)4. Therefore Y ∈ |O(P1)4(1, 1, 1, 1)|, which
gives (−KY )3 = (HY )3 = H4 = 24, a contradiction.

Lemma 2.9. Let X, E and Z be as in 1.1, with n− r = 2. Let H be an ample line bundle
on X such that HZ is very ample, and suppose that (Z,HZ) is a K3 surface of degree
≤ 8. Then Pic(X) ∼= Z, generated by H .

Proof. If Pic(X) ∼= Z, then Pic(X) is generated by H; otherwise H = aL, where L is
an ample line bundle and a ≥ 2. Note that L2

Z is even, by the genus formula, since KZ

is trivial. Hence H2
Z = a2L2

Z ≥ 2a2 ≥ 8. Since H2
Z ≤ 8, this implies H = 2L with

L2
Z = 2. We show that this is impossible. Note that |LZ | has no fixed part, otherwise we

could contradict the ampleness of LZ . It then follows from [34, Corollary 3.2] that LZ is
spanned, so, since h0(LZ) = 3, we have that the map ψ : Z −→ P2 defined by |LZ | is a
morphism of degree 2. As HZ = 2LZ = ψ∗OP2(2), we see that

ψ∗|OP2(2)| ⊆ |HZ |. (2.9.1)

On the other hand, by the Riemann–Roch theorem and the Kodaira vanishing theorem,
we get h0(HZ) = 6. This shows that (2.9.1) is in fact an equality. As a consequence,
the morphism ϕ : Z −→ P5 defined by |HZ | factors via ψ and the Veronese embedding
P2 ↪→ P5 as follows:

Z

ψ
!!C

CC
CC

CC
CC

C
ϕ // P5

P2.
. �

==zzzzzzzzzz

But then ϕ cannot be an embedding, since degψ = 2. This contradicts the very ampleness
of HZ .

Next, note that KX + det E = OX by the Lefschetz–Sommese theorem, hence X is
Fano. Now, suppose that X has Picard number ρ(X) ≥ 2. We claim that

4 ≤ n ≤ 5. (2.9.2)

This follows from [21, Proposition 5], for H2
Z = 4, but note that the same argument

works for H2
Z ≤ 8. The remaining part of the proof is devoted to show that (2.9.2) does

not occur. The procedure, which has to be adapted to many cases, is the following. We
find a suitable basis {Li}, i = 1, . . . , ρ := ρ(X), of Pic(X). Using an explicit expression
of E (which in most cases turns out to be decomposable) and writing H =

∑ρ
i=1 aiLi,

where the integers ai have to satisfy some conditions reflecting the ampleness of H , we
get

H2
Z = H2 · c2(E) = f(a1, . . . , aρ),

where f is a polynomial of degree 2 in the ai’s. Moreover, computing the intersection
indexes Lki ·L

(n−k)
j we succeed to show that f(a1, . . . , aρ) > 8 for all admissible values

of the ai’s.
First assume that n = 5. Then r = 3. As KX + det E = OX , by [30, Theorem 1],

(X, E) is one of the following:
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(i) (P2 ×Q3,OP2×Q3(1, 1)⊕3);
(ii) (P2 × P3,OP2×P3(1, 2) ⊕ OP2×P3(1, 1)⊕2 or OP2×P3(1, 0) ⊗ p∗2TP3), where p2 is

the projection onto the second factor;
(iii) X = PP3(V), where V = OP3(2) ⊕OP3(1)⊕2, and E = [ξ + π∗OP3(1)]⊕3, where

ξ is the tautological line bundle of V(−1) and π : X −→ P3 is the projection;
(iv) X = PP3(TP3) ⊂ P3 × P3 and E = (OP3×P3(1, 1)⊕3)X .

A direct computation shows that none of these cases can occur under the assumption
H2
Z ≤ 8. To give an example let us discuss Case (iv) in detail.

Case (iv). Put A1 := OP3×P3(1, 0) and A2 := OP3×P3(0, 1), and note that X ∈
|A1 +A2|. Moreover A4

1 = A4
2 = 0, while A3

1 ·A3
2 = 1. Set Li = (Ai)X ; clearly L1 and

L2 generate Pic(X). SinceH is ample, we can writeH = a1L1+a2L2 for some positive
integers a1 and a2. To see this, note that HFi is an ample divisor for any fiber fiber Fi of
the mapX −→ P3 induced by the i-th projection of P3×P3, i = 1, 2. AsL1+L2 is ample
and Fi = A3

i ·X , we have 0 < HFi
·(L1+L2)Fi

= (a1A1+a2A2) ·(A1+A2)2 ·(Ai)3 =
aj , j 6= i. We get H2

Z = H2 · Z = H2 · c3(E) = (a1L1 + a2L2)2 · (L1 + L2)3 =
(a1A1+a2A2)2 ·(A1+A2)4 = 4(a2

1+3a1a2+a2
2)A

3
1 ·A3

2 ≥ 20, which is a contradiction.
Let us discuss also the second possibility in (ii), the only case in which E is not

decomposable.
Case (ii) with E = OP2×P3(1, 0) ⊗ p∗2TP3 . Put L1 := OP2×P3(1, 0) and L2 :=

OP2×P3(0, 1), and note that L2
1 · L3

2 = 1 while L3
1 = 0 = L4

2. Since H is ample, we can
write again H = a1L1 + a2L2 for some positive integers a1 and a2. Moreover, we have
c3(E) = p∗2c3(TP3)+p∗2c2(TP3)·L1+p∗2c1(TP3)·L2

1+L3
1 = 4L3

2+6L2
2 ·L1+4L2 ·L2

1+L3
1.

We get H2
Z = H2 · Z = H2 · c3(E) = 4(a2

1 + 3a1a2 + a2
2)L

2
1 · L3

2 ≥ 20, which is a
contradiction.

Assume now that n = 4. Then r = 2 and (PX(E), X, E) is a ruled Fano 5-fold in the
sense of [29, Definition 3.1]. Since ρ(X) ≥ 2, pairs (X, E) are classified in Theorem 2.7.

We claim that Case (1) of Theorem 2.7 cannot occur under the assumption H2
Z ≤

8. Note that, in this case, E = L⊕2 where −KX = det E = 2L. So c2(E) = L2.
According to [37, Table 0.3] we have 18 possibilities. The last one (Case (18) in [37])
can be easily ruled out as in [21, Proof of Proposition 6, Case (d)]. In all remaining cases
L = t1L1 + t2L2 for suitable integers t1, t2 and then

f(a1, . . . , aρ) = (a1L1 + · · ·+ aρLρ)2 · (t1L1 + t2L2)2.

To provide details, let us discuss some specific cases: Cases (27), (30), (31), (32) and
(41) in [29, Table] (corresponding to Cases (4), (7), (11), (12), and (16) in [37, Table 0.3],
respectively). All remaining X’s in the list can be ruled out in similar ways.

Case (27). X is a double cover of P2×P2 branched along a divisor in |OP2×P2(2, 2)|.
Let π : X −→ P2 × P2 be the morphism giving the double cover. By [6], Pic(X) ∼=
Pic(P2 × P2) ∼= Z2, generated by L1 = π∗OP2×P2(1, 0) and L2 = π∗OP2×P2(0, 1).
We have KX = π∗OP2×P2(−2,−2), so L = π∗OP2×P2(1, 1) = L1 + L2. Note that
H = a1L1 + a2L2, for some positive integers a1, a2 ≥ 1, as H is ample. Moreover
L3

1 = L3
2 = 0, while L2

1 · L2
2 = 2. Therefore we can compute H2

Z = H2 · c2(E) =
(a2

1 + 4a1a2 + a2
2)L

2
1 · L2

2 ≥ 12, which is a contradiction with H2
Z ≤ 8.

Case (30). X is the intersection of two divisors in P3 × P3 of bidegree (1, 1). Let
A1 = OP3×P3(1, 0), A2 = OP3×P3(0, 1) and let Y ∈ |A1 + A2| be a smooth element
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containing X . The Picard group of X is Pic(X) ∼= Pic(Y ) ∼= Pic(P3 × P3) ∼= Z2,
generated by L1 = (A1)X and L2 = (A2)X . Clearly, the canonical bundle of X is
KX = −2(L1 + L2), hence L = L1 + L2. By the ampleness of H , we can write
H = a1L1 + a2L2 for some positive integers a1, a2. Indeed, let π1 : X −→ P3 be the
restriction of the first projection of P3 × P3 and let γ be a fiber of π1. Then γ = A3

1.
Since H is ample, we have H · γ > 0. As A4

1 = A4
2 = 0 and A3

1 · A3
2 = 1, we can

derive H · γ = (a1A1 + a2A2) · (A1 +A2)2 ·A3
1 = a2, hence a2 > 0. Similarly we get

a1 > 0. Therefore we can compute H2
Z = H2 · c2(E) = (a1A1 +a2A2)2 · (A1 +A2)4 =

4(a2
1 + 3a1a2 + a2

2)A
3
1 ·A3

2 ≥ 20; so we have a contradiction with H2
Z ≤ 8.

Case (31). X = PP3(N ) is the projectivization of a null-correlation bundle N on P3.
Recall that c1(N ) = 0 and c2(N ) = 1 (see [32, p. 80]). Here Pic(X) ∼= Z2, generated
by ξ and M := π∗OP3(1), where π is the bundle projection and ξ is the tautological line
bundle. So any line bundle on X can be written as D = a1ξ + a2M for suitable integers
a1, a2. Note that a1 > 0 ifD is ample, since it must intersect lines living in the fibers of π.
Notice thatN (2) is ample, whileN (1) is spanned but not ample. MoreoverM is spanned.
Thus, writingD = ξ+2M+(a1−1)(ξ+M)+(a2−a1−1)M , we see thatD is ample if
a2 ≥ a1 +1, while it is not if a1 = a2. It follows that the ample cone of X , being convex,
cannot contain D if a2 ≤ a1. Therefore D is ample if and only if a1 ≥ 1, a2 ≥ a1 + 1.
In particular, we can write H = a1ξ + a2M , where the integers a1 and a2 satisfy these
conditions. We haveM4 = 0 and ξ ·M3 = 1. Moreover, ξ2−ξ ·π∗c1(N )+π∗c2(N ) = 0,
hence ξ2 = −π∗c2(N ). We can thus derive ξ2 ·M2 = 0, ξ3 ·M = −1 and ξ4 = 0. By the
canonical bundle formula, we getKX = −2(ξ+2M)2. So c2(E) = (ξ+2M)2. Therefore
we can computeH2

Z = H2 ·c2(E) = (a2
1ξ

2+2a1a2ξ ·M+a2
2M

2)·(ξ2+4ξ ·M+4M2) =
2(a2 + 2a1)(2a2 − a1) ≥ 24 in view of the ampleness conditions above. So we have a
contradiction with H2

Z ≤ 8.
Case (32). X = Bll(Q4), l a line in Q4. Let σ : Bll(Q4) −→ Q4 be the blow-up and

denote by E the exceptional divisor; let π : E −→ l be the projection of the P2-bundle E.
The Picard group of X is generated by σ∗OQ4(1) and E; moreover the canonical bundle
ofX isKX = σ∗KQ4 +2E = σ∗OQ4(−4)+2E, whence L = σ∗OQ4(2)−E. Now, we
can writeH = σ∗OQ4(a1)+a2E. We claim that a1 > 0 and a2 < 0, due to the ampleness
of H . Indeed, to see the first inequality it is enough to take a line in Q4 not meeting l and
consider its proper transform, γ; then 0 < H · γ = (σ∗OQ4(a1) + a2E) · γ = a1. As to
the second one, let λ be a line in a fiber of π. Since λ ⊂ E andE inducesOP2(−1) on the
fibers of π, we get 0 < H ·λ = (σ∗OQ4(a1)+a2E)·λ = a2Eλ = −a2(−EE ·λ) = −a2.
Moreover, if we take a line in Q4 meeting l at one point, for its proper transform δ we
find that 0 < H · δ = (σ∗OQ4(a1) + a2E) · δ = a1 + a2. We can therefore compute
H2
Z = H2 ·c2(E) = (σ∗OQ4(a1)+a2E)2 ·(σ∗OQ4(2)−E)2 = 4a2

1(σ
∗OQ4(1))4+a2

2E
4.

Recalling that E = P(Nl/Q4), that −E induces the tautological line bundle on E and
the Chern–Wu relation, we get E4 = −degNl/Q4 , so the inequalities above imply that
H2
Z = 8a2

1 − 2a2
2 = 2(2a1 − a2)(2a1 + a2) > 2(2a1 − a2)(a1 + 1) ≥ 12, contradicting

H2
Z ≤ 8.

Case (41). X = P1 × PP2(TP2). Let p and q be the projections onto P1 and
PP2(TP2), respectively, and let π : PP2(TP2) −→ P2. Clearly Pic(PP2(TP2)) ∼= Z2 and it
is generated by the ample tautological line bundle ξ associated to TP2 and the pull-back
π∗OP2(1). Therefore Pic(X) ∼= Z3 and it is generated by L1 = p∗OP1(1), L2 = q∗ξ and
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L3 = q∗π∗OP2(1). Since KPP2 (TP2 ) = −2ξ+π∗(OP2(−3)+detTP2) = −2ξ, we derive
thatKX = p∗OP1(−2)+q∗(−2ξ), so L = L1+L2. Now we writeH = a1L1+q∗D, for
some positive integer a1 and an ample line bundle D ∈ Pic(PP2(TP2)). Put D = a2ξ +
a3π

∗OP2(1), where a2, a3 are integers. We claim that a2 > 0 and a2 +a3 > 0. Indeed, if
f is any fiber of π, then D · f = (a2ξ+a3π

∗OP2(1)) · f = a2ξ · f = a2, whence a2 > 0,
asD is ample. On the other hand TP2(−1) is spanned but not ample and so is its tautolog-
ical line bundle ξ − π∗OP2(1). Therefore there exists an irreducible curve γ ⊂ PP2(TP2)
such that γ · (ξ−π∗OP2(1)) = 0. Then D · γ = (a2 + a3)ξ · γ− a3(ξ−π∗OP2(1)) · γ =
(a2 + a3)ξ · γ, hence a2 + a3 > 0, since D and ξ are ample. Therefore we can write
H = a1L1+a2L2+a3L3, with a1 > 0, a2 > 0 and a2+a3 > 0. Now, by the Chern–Wu
formula, we have ξ2 − ξ · π∗c1(TP2) + π∗c2(TP2) = 0. So ξ2 = ξ · π∗c1(TP2) − 3f ,
and we obtain ξ · π∗OP2(1)2 = ξ · f = 1, ξ2 · π∗OP2(1) = 3 and ξ3 = 6. We can thus
derive L2

1 = 0, L4−i
2 · Li3 = 0 for i = 0, . . . , 3, L1 · L2 · L2

3 = 1, L1 · L2
2 · L3 = 3 and

L1 ·L3
2 = 6. Finally we computeH2

Z = H2 ·L2 = (a1L1+a2L2+a3L3)2 ·(L1+L2)2 =
6(2a2

2 + 2a1a2) + (2a2
3) + 3(2a1a3 + 4a2a3). Recalling that a3 ≥ −a2 + 1, we get

H2
Z ≥ 6a1a2 + 2a2

3 + 6(a1 + 2a2) ≥ 24, which is a contradiction with H2
Z ≤ 8.

The five possibilities in Case (2) of Theorem 2.7 can also be excluded. We provide
details case-by-case.

Case (2a). X = Blp(P4) and E = [2h + E] ⊕ [3h + E], E exceptional divisor
and h pullback of OP4(1) on X . Let σ : Blp(P4) −→ P4 be the blow-up and consider
the P1-bundle π : Blp(P4) −→ P3 induced by σ. If we call f a fiber of π, we derive
E · f = 1 and h · f = 1. We note that Pic(X) ∼= Z2, generated by h and E. Therefore
we can write H = a1h + a2E for some integers a1, a2. Recall that H is ample. So
0 < H · f = a1 + a2; moreover, for a line l ⊂ E, 0 < H · l = a1h · l + a2E · l = −a2.
Combining these inequalities gives a1 ≥ −a2 +1 ≥ 2. Note that h4 = 1, E4 = (EE)3 =
(OE(−1))3 = −1 and hi · E4−i = 0 for i = 1, 2, 3. Now we can compute H2

Z = (2h+
E) ·(3h+E) ·(a2

1h
2+2a1a2h ·E+a2

2E
2) = 6a2

1−a2
2 = 5a2

1+(a1+a2)(a1−a2) ≥ 23,
contradicting H2

Z ≤ 8.
Case (2b). X = Bll(P4) and E = [2h − E] ⊕ [3h − E], E exceptional divisor and

h pullback of OP4(1) on X . Let σ : Bll(P4) −→ P4 be the blow-up and denote by π the
P2-bundle π : E −→ l. If we call f a general fiber of π, we haveEf = Of (−1) and hf =
(σ∗OP4(1))f = Of . Now, we note that Pic(X) ∼= Z2, generated by h and E. Therefore
we can write H = a1h + a2E for some integers a1, a2. Let λ and γ ⊂ Bll(P4) be the
proper transforms of a line in P4 not meeting l and meeting l at one point, respectively;
let c a line in a fiber f . Recall that H is ample. Thus we find

0 < H · λ = a1, 0 < H · c = −a2 and 0 < H · γ = a1 + a2.

In particular, a1 ≥ −a2 + 1 ≥ 2. Now, recall that E = P(Nl/P4), with −E in-
ducing the tautological line bundle on E. From the Chern–Wu relation we thus get
E4 = −degNl/P4 = −3. Moreover we have h4 = 1, h3 · E = h2 · E2 = 0,
h · E3 = h · s = OP4(1) · l = 1, where s is a section of E. So we can compute
H2
Z = H2·c2(E) = (a2

1h
2+2a1a2h·E+a2

2E
2)·(2h−E)·(3h−E) = 6a2

1+2a1a2−8a2
2 =

2(a1 − a2)(3a1 + 4a2). We thus see that

(a1 − a2)(3a1 + 4a2) =
1
2
H2
Z , (2.9.3)
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where the first factor on the left-hand side is ≥ 3. Note that H2
Z = 4, 6 or 8, since HZ is

very ample and H2
Z ≤ 8. In the first Case (2.9.3) is clearly impossible. In the remaining

cases factoring the right term in (2.9.3) leads to systems of linear equations in a1, a2 not
admitting integral solutions. This is a contradiction.

Cases (2c) and (2d). X = P2 × P2 and E = OP2×P2(1, i) ⊕ OP2×P2(2, j), with
{i, j} = {1, 2}. Clearly H = OP2×P2(a1, a2) for some positive integers a1, a2. Let
L1 = OP2×P2(1, 0) and L2 = OP2×P2(0, 1); therefore L3

1 = L3
2 = 0 and L2

1 ·L2
2 = 1. So

H2
Z = (a1L1+a2L2)2 ·(L1+iL2)·(2L1+jL2) = 2(a2

1+a1a2(2i+j)+a2
2)L

2
1 ·L2

2 ≥ 12,
which contradicts H2

Z ≤ 8.
Case (2e). X = PP2(TP2(−1) ⊕ OP2) ⊂ P2 × P3, the inclusion deriving from the

Euler sequence of P2, and E = (OP2×P3(1, 1) ⊕ OP2×P3(1, 2))X . Let π : X −→ P2 be
the projection; denote by f a fiber of π and by ξ the tautological line bundle associated
to TP2(−1)⊕OP2 on X . Note that ξ = OP2×P3(0, 1)X and OP2×P3(1, 0)X = M , where
M = π∗OP2(1). Then ξ3 − ξ2 · π∗c1 + ξ · π∗c2 = 0, where ci = ci(TP2(−1) ⊕ OP2).
Hence ξ3 = ξ2 · π∗OP2(1) − Of (1). This gives ξ4 = 0. Since the Picard group of X is
generated by ξ andM , we can writeH = a1ξ+a2M , for some integers a1, a2. We claim
that a1, a2 > 0. To see the former inequality, take a line l ⊂ f ; then 0 < l · H = a1,
as l · ξf = 1. To see the latter, consider a section Σ of π corresponding to the surjection
TP2(−1) ⊕ OP2 −→ OP2 . Note that ξΣ = OΣ. If λ is a line in Σ, we get 0 < H · λ =
a1ξΣ · λ+ a2MΣ · λ = a2. We have M3 = 0 and ξ3 ·M = ξ2 ·M2 = 1. Therefore we
can compute H2

Z = (a1ξ + a2M)2 · (ξ +M) · (2ξ +M) = 4a2
1 + 10a1a2 + 2a2

2 ≥ 16,
contradicting H2

Z ≤ 8. 2

3 Ample vector bundles with zero loci of small ∆-genera

In this section we deal with triplets (X, E ,H) where (X, E) is as in 1.1 andH is an ample
line bundle on X such that HZ is very ample and ∆(Z,HZ) ≤ 3.

Remark 3.1. Let C be a smooth curve and let L ∈ Pic(C) be an ample line bundle on
C. Then ∆(C,L) = 0 if and only if C ∼= P1.

Theorem 3.2. LetX, E and Z be as in 1.1 with n−r ≥ 1. LetH be an ample line bundle
on X and assume that

∆(Z,HZ) = 0.

Then (X, E ⊕H⊕(n−r−1)) is one of the following:

(1) (Pn,OPn(1)⊕(n−1));
(2) (Pn,OPn(2)⊕OPn(1)⊕(n−2));
(3) (Qn,OQn(1)⊕(n−1));
(4) X ∼= PP1(V), where V is an ample vector bundle of rank n over P1, and (E ⊕

H⊕(n−r−1))F ∼= OPn−1(1)⊕(n−1) for every fiber F of the projection X −→ P1.

If n− r = 1, then H is any ample line bundle on X .
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Proof. Assume first that n− r = 1. Then, by Remark (3.1), Z ∼= P1. We can thus apply
[14, Theorem A] to the pair (X, E) to conclude. In all cases H is any ample line bundle
on X; moreover, H is actually very ample (for Case (4) use [3, Lemma 3.2.4]).

Assume now that n − r ≥ 2 and put F := E ⊕ H⊕(n−r−1). Then F is an ample
vector bundle of rank n − 1 on X . Note that g(Z,HZ) = 0 because ∆(Z,HZ) = 0 by
[9, Theorem 5.10]. Moreover, g(Z,HZ) = 1 + 1

2 (KZ + (n − r − 1)HZ) ·Hn−r−1
Z =

1+ 1
2 (KX+detF)·cn−1(F) = g(X,F), so the assertion follows by [25, Theorem 1]. 2

Remark 3.3. Let C be a smooth curve and let L ∈ Pic(C) be an ample line bundle on
C of degree d = degL. The following assertion is an easy consequence of the Riemann–
Roch theorem, combined with Clifford’s theorem when g(C) ≥ 2. If ∆(C,L) = 1, then
one of the following holds:

(1) g(C) = 1;
(2) g(C) ≥ 2 and C is a hyperelliptic curve (of genus g(C) ≥ 2) and |L| = g1

2 , hence
d = 2;

(3) g(C) ≥ 2 and d = 1.

In particular, if L is spanned then only (1) and (2) hold, while if L is very ample then
Case (1) is the only possibility.

Remark 3.4. In order to investigate the case ∆(Z,HZ) = 1, it is necessary to assume
HZ very ample. Indeed, even with the assumptionHZ spanned, in Case (2) of Remark 3.3
what is known at present on the adjunction map would not allow us to classify the pairs
(X, E), even when E is very ample of corank 1. On the other hand, note that HZ is very
ample in all the cases of Theorem 3.2.

Therefore we give the classification in case ∆(Z,HZ) = 1 under the assumption HZ

is very ample.

Theorem 3.5. LetX, E and Z be as in 1.1 with n−r ≥ 1. LetH be an ample line bundle
on X such that HZ is very ample and assume that

∆(Z,HZ) = 1.

Then (X, E ⊕H⊕(n−r−1)) is one of the following:

(1) (Pn,OPn(2)⊕2 ⊕OPn(1)⊕(n−3));
(2) (Pn,OPn(3)⊕OPn(1)⊕(n−2));
(3) (Qn,OQn(2)⊕OQn(1)⊕(n−2));
(4) (X,L) is a del Pezzo manifold, E ⊕H⊕(n−r−1) = L⊕(n−1) and d(X,L) ≥ 3. Such

pairs are classified in [7] (see also [9, Chapter I, Section 8]);
(5) (Q4,S(2)⊕OQ4(1)), where S is a spinor bundle over Q4;
(6) (P3,N (2)), where N is a null-correlation bundle over P3;
(7) (Q3,S(2)), where S is a spinor bundle over Q3;
(8) (P2 × P1, π∗TP2 ⊗OP2×P1(1, 1)), where π denotes the first projection;
(9) (P2 × P1,OP2×P1(2, 1)⊕OP2×P1(1, 1));
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(10) X ∼= PB(V), where V is an ample vector bundle of rank n over an elliptic curveB ∼=
Z and (E ⊕ H⊕(n−r−1))F ∼= OPn−1(1)⊕(n−1) for every fiber F of the projection
π : X −→ B.

If n − r = 1, then H is any ample line bundle on X except in Case (10). In that case,
let ξ be the tautological line bundle of V , let δ be a line bundle on B and let G be a
rank-(n− 1) vector bundle on B such that E ∼= ξ ⊗ π∗G; then H = αξ + π∗δ where the
integer α satisfies the condition α degV + α deg G + deg δ ≥ 3. Moreover, if n− r ≥ 2
Cases (6)–(9) do not occur.

Proof. Assume first that n−r = 1. Then, by Remark 3.3, the assumption on the ∆-genus
is equivalent to the condition g(Z,HZ) = 1. Therefore (X, E) is one of the pairs in the
list of [17, Theorem 1], where the last case is ruled out by [31, Theorem 1]. Moreover H
is any ample line bundle on X satisfying degHZ ≥ 3.

An easy check in Cases (1)–(9) of the statement shows that HZ is very ample for any
ample line bundle H on X . In Case (10) we can write H = αξ + π∗δ, where ξ the
tautological line bundle of V and δ a line bundle on B. The degree of HZ is given by

degHZ = (αξ + π∗δ) · cn−1(E) = αξ · cn−1(E) + (deg δ)F · cn−1(E) =
= αξ · cn−1(E) + deg δ, (3.5.1)

as F · cn−1(E) = cn−1(EF ) = 1. Now, since (E ⊗ (−ξ))F ∼= OPn−1(1)⊕(n−1) for every
fiber F of the projection, then E ∼= ξ ⊗ π∗G, for a vector bundle G of rank (n− 1) on B.
Moreover

cn−1(E) =
n−1∑
j=0

cj(π∗G) · ξn−1−j = ξn−1 + π∗c1(G) · ξn−2 = ξn−1 + deg G(ξn−2 · F ).

Recall that ξn = degV and ξn−1 · F = 1; substituting in (3.5.1) and recalling that
degHZ ≥ 3, we get the condition in the statement.

Assume now that n − r ≥ 2. By [9, (6.3)], ∆(Z,HZ) = 1 implies that (Z,HZ) is a
del Pezzo manifold; then g(X,F) = 1, where F = E ⊕ H⊕(n−r−1). So we are in the
assumption of [25, Theorem 2] which gives the following possibilities for (X,F):

(i) X ∼= PB(V), where V is an ample vector bundle of rank n over an elliptic curve
B ∼= Z and (F)F ∼= OPn−1(1)⊕(n−1) for every fiber F of the projection π : X −→
B, which gives Case (10) of the statement;

(ii) KX + detF = 0. Pairs (X,F) satisfying this condition are classified in [33, The-
orem 0.3 and Proposition 7.4]. Therefore the statement follows recalling again that
the doubtful case in [33, Proposition 7.4] is ruled out by [31, Theorem 1]. 2

Theorem 3.6. LetX, E and Z be as in 1.1 with n−r ≥ 2. LetH be an ample line bundle
on X such that HZ is very ample and assume that

∆(Z,HZ) = 2.

Then (X, E ,H) is one of the following:
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(1) X is a Fano manifold with Pic(X) ∼= Z generated byH , of index rX = n−r+e−2,
where det E = eH , and KX + det E + (n− r − 2)H = OX ;

(2) (X, E ⊕H) ∼= (P1 × P3,OP1×P3(1, 2)⊕OP1×P3(1, 1)⊕2);
(3) X ∼= PB(V), where V is an ample vector bundle of rank n over a smooth curve B

of genus 1, and EF ∼= OPn−1(1)⊕(n−2), HF
∼= OPn−1(1) for every fiber F of the

projection X → B;
(4) n − r ≤ 3, (X,H) is a quadric fibration over P1 and EF ∼= OQn−1(1)⊕r for any

general fiber F of the fibration.

Proof. By [11, Theorem 3.12 and Corollary 3.3] (Z,HZ) is one of the following:
(i) a hypersurface of degree 4;

(ii) an elliptic scroll of dimension n− r = 2;
(iii) a quadric fibration over P1 of sectional genus 2 (for the explicit list see [11, Theo-

rem 3.4]).
Consider Case (i). If n − r ≥ 3, then X is a Fano manifold with Pic(X) ∼= Z

generated by H , and KX +det E+(n− r−2)H = OX , by [20, Theorem, Case (ix); see
also Section 3]. We can write−KX = rXH and det E = eH for some positive integer e.
We getKZ = (−rX+e)HZ = (2−(n−r))HZ , so Z, which is a Fano manifold too, has
index rZ = rX − e. On the other hand, since (Z,HZ) is a smooth quartic hypersurface
we know that rZ = n − r − 2. Hence rX = n − r + e − 2 and therefore (X, E ,H) is
as in (1). Now assume that n− r = 2. Then (Z,HZ) is a K3 surface of degree 4 and the
conclusion follows from Lemma 2.9.

Case (ii) can be easily settled by using [16, Theorem] and leads to Case (3) of the
statement.

The last Case (iii) falls in [10, Theorem 0.1], Cases (ii) and (iii). Case (ii) is Case (2)
of the statement. As to the further specification provided in [11, Theorem 3.4], note that
n− r ≤ 3 in Case (iii), except when (Z,HZ) is P1 ×Q3 Segre embedded. However this
situation is ruled out by Lemma 2.4. Therefore we obtain Case (4). 2

In order to study the case ∆(Z,HZ) = 3, we recall first the following classification
result of Ionescu.

Theorem 3.7. [11, Theorem 4.8] Let Y be a smooth complex projective variety of dimen-
sion ≥ 2 polarized by a very ample line bundle L, and assume that ∆(Y, L) = 3. Then
(Y,L) is one of the following:

(I) a quintic hypersurface;
(II) a complete intersection of type (2, 3);

(III) a 3-dimensional scroll over a smooth curve of genus 1;
(IV) a pair with sectional genus g = 3, irregularity q = 0 and degree d ≥ 6.

Remark 3.8. Note that, in Case (III) of Theorem 3.7, (Y, L) has degree d ≥ 9 (e.g. [13,
Proposition 1(i)]); so d = 5 can occur only in Case (I).

Remark 3.9. Looking more closely at Case (IV) of Theorem 3.7 and combining re-
sults from [11, Theorems 4.1 and 4.2] and [3, Proposition 10.2.2 and Theorem 10.2.7,
Case (e)], we see that (IV) gives rise to the following possibilities:



Ample vector bundles with zero loci of small ∆-genera 245

(IV-i) a quadric fibration over P1;
(IV-ii) dimY ≥ 3 and (Y, L) is a scroll over P2; in particular, if dimY ≥ 4, then

Y = PP2(TP2 ⊕ OP2(1)) or Y = PP2(OP2(2) ⊕ OP2(1)⊕2), with L being the
tautological bundle in each case, or Y is the Segre embedding of P2 × P3;

(IV-iii) dimY = 2 and (Y,L) is a Bordiga surface (i.e. (Y, L) has (P2,OP2(4)) as
adjunction theoretic reduction), with 6 ≤ d ≤ 16;

(IV-iv) dimY = 2 and, either Y is a del Pezzo surface withK2
Y = 2 andHY = −2KY ,

or (Y,L) admits such a pair as simple adjunction theoretic reduction.

Remark 3.10. Note that, if (Y,L) is as in Theorem 3.7 with dimY ≥ 2, Pic(X) ∼= Z
and degree 6, then (Y,L) can only be as in Case (II) of Theorem 3.7.

Moreover note thatKY is not ample except in Case (I) of Theorem 3.7, when dimY =
2. So we have

Remark 3.11. LetX, E and Z be as in 1.1 with n−r ≥ 2. LetH be an ample line bundle
on X such that HZ is very ample and assume that ∆(Z,HZ) = 3. Then (KX + det E)Z
is not ample except for (Z,HZ) a quintic surface in P3.

Theorem 3.12. Let X, E and Z be as in 1.1 with n − r ≥ 2. Let H be an ample line
bundle on X such that HZ is very ample and assume that

∆(Z,HZ) = 3.

If (KX + det E)Z is not ample, then (X, E ,H) is one of the following:

(1) n− r ≥ 3, X is a Fano manifold of coindex qX ≤ 4 with Pic(X) ∼= Z generated by
H , such that KX + det E + (n − r − 3)H = OX . If n − r ≥ 4, then Z is a Fano
manifold of coindex qZ = 4;

(2) X is a Fano manifold of coindex qX ≤ 3 with Pic(X) ∼= Z generated by H , such
that KX + det E + (n− r− 2)H = OX . If n− r ≥ 3, then Z is a Fano manifold of
coindex qZ = 3;

(3) (X,H) is a scroll over a smooth curve of genus 1 and EF ∼= OPn−1(1)⊕(n−3) for any
fiber F of the scroll projection;

(4) (X,H) is a scroll over P1, and EF ∼= OPn−1(2) ⊕ OPn−1(1)⊕(r−1) for any fiber F
of the projection X −→ P1 (see [21, Proposition 1] for the complete description);

(5) n − r ≤ 4, (X,H) is a quadric fibration over P1 and EF ∼= OQn−1(1)⊕r for any
general fiber of the fibration;

(6) n − r = 2, X is a Pn−1-bundle over P1, EF ∼= OPn−1(1)⊕(n−2), HF
∼= OPn−1(2)

for any fiber F of the projection X −→ P1, and H2 · cn−2(E) = 16 (see [21,
Proposition 2] for the complete description);

(7) (Pn,OPn(1)⊕(n−2),OPn(4));
(8) n − r ≤ 3, there exists an ample vector bundle W of rank n − 1 on P2 such that

X = PP2(W), H is the tautological line bundle on X , and E ∼= H ⊗ p∗G for
some vector bundle G of rank r on P2, where p : X −→ P2 is the bundle projection;
moreover detW + detG = OP2(4) and Hn−r · cr(E) = 4c1(W)− c2(W) + c2(G);
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(9) X is a Fano manifold of index n − 1 with Pic(X) ∼= Z, generated by an ample line
bundle L with Ln = 2, and (E ,H) ∼= (L⊕(n−2), 2L).

Proof. We can apply Theorem 3.7 to the pair (Z,HZ), hence we investigate the four
possibilities case-by-case.

In Case (I), we recall first that in our assumption KX + det E cannot be ample, so
we infer that n − r ≥ 3 by Remark 3.11. It follows that Pic(X) ∼= Pic(Z) ∼= Z by
Theorem 2.2 and the Lefschetz theorem. We can compute (KX + det E)Z = KZ =
OPn−r+1(−(n−r)+3)Z . Arguing as in the proof of point (1) of Theorem 3.6, we deduce
that Pic(X) is generated by H and KX + det E + (n − r − 3)H = OX ; in particular
X is a Fano manifold. Now, let l be a line in Z. As is known, such a line exists, e.g. see
[5] or [1]. Put det E = eH for some positive integer e. Then e ≥ r by Lemma 2.1, since
l ·H = l ·HZ = 1. It thus follows that X has index rX = e + n − r − 3 ≥ n − 3, so
the coindex of X is qX ≤ 4. Moreover, if n− r ≥ 4, then −KZ = (n− r− 3)HZ , so Z
itself is a Fano manifold of coindex qZ = 4. This leads to Case (1) of the statement.

In Case (II), if n − r ≥ 3, argue as in Case (I). So X is a Fano manifold with Picard
group generated by H and KX + det E + (n − r − 2)H = OX . Note that also Z is a
Fano manifold; moreover, by [5], it contains a line l. So, with the same computations as
in Case (I), we find that the coindexes of X and Z are, respectively, qX ≤ 3 and qZ = 3.
If n − r = 2, then (Z,HZ) is a K3 surface of degree 6 and we can apply Lemma 2.9.
This leads to Case (2) of the statement.

Case (III) easily leads, e.g. by using [15, Theorem B], to Case (3) of the statement.
Finally we consider Case (IV). By Remark 3.9, we have four possibilities. Cases (IV-

i)–(IV-iv) are listed as Cases (2), (3), (5) and (6) respectively in [21, Section 1]. No-
tice that the extra assumption that |H| embeds Z used in [21, Section 1] to study our
Case (IV-ii) has been recently removed [22, Section 1]. Relying on this result, these four
possibilities lead to the triplets (X, E ,H) as in (4), (6)–(9) of the statement or to the fol-
lowing situation: n− r ≤ 5, and there exists a surjective morphism ϕ : X −→ P1 whose
general fiber F is a smooth quadric hypersurface Qn−1 in Pn with HF

∼= OQn−1(1)
and EF ∼= OQn−1(1)⊕r. In this last case, note that n − r = 5 occurs only when
(Z,HZ) = (Q4 × P1,OQ4×P1(1, 1)). But this possibility is ruled out by Lemma 2.4,
so we obtain Case (5) of the statement.

More specifically, (4), (5) and (6) come from (IV-i); Case (IV-iii) leads to (7) and to
(8) with n − r = 2; the remaining part of (8) comes from (IV-ii) taking into account
Lemma 2.5; finally, only the first subcase of (IV-iv) lifts to the vector bundle setting,
leading to (9). 2

Remark 3.13. All cases listed in Theorem 3.12 occur. This is obvious for Cases (7) and
(9) and we already said about Cases (4) and (6). As to Cases (5) and (8), examples can be
found in [21, (2.3)] and [20, Section 2], respectively. Here we produce examples for the
remaining cases.
Case (1):
(1a) X = Pn, E = OPn(5)⊕OPn(1)⊕(r−1), H = OPn(1);
(1b) X = V5 ⊂ Pn+1, a smooth quintic hypersurface, E = H⊕r, H = OV (1).
Note that (KX + det E)Z = HZ is ample for n− r = 2.
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Case (2):
(2a) X = Pn, E = OPn(3)⊕OPn(2)⊕OPn(1)⊕(r−2), H = OPn(1);
(2b) X = Qn ⊂ Pn+1, E = OQn(3)⊕OQn(1)(r−1), H = OQn(1);
(2c) X = V3 ⊂ Pn+1, a smooth cubic hypersurface, E = OV (2) ⊕ OV (1)(r−1), H =

OV (1);
(2d) X = V2,3 ⊂ Pn+2, a smooth complete intersection of type (2, 3), E = H⊕r,

H = OV (1).
Case (3): X = PB(V), with V a very ample vector bundle of rank n over a curve B of
genus 1, E = H⊕(n−3), H the tautological line bundle of V .

Unfortunately, when (KX + det E)Z is ample we cannot determine the structure
of (X, E ,H) in general. We confine to add some remarks under the assumption that
Pic(X) ∼= Z.

Proposition 3.14. Let X, E and Z be as in 1.1 with n − r = 2. Let H be an ample line
bundle on X such that HZ is very ample and assume that (Z,HZ) is a quintic surface in
P3. If Pic(X) ∼= Z and EZ is spanned, then X is a Fano manifold and H is the ample
generator of Pic(X).

Proof. Note first that the Picard group of X is generated by H . Indeed, let L be the
ample generator of Pic(X). Then H = aL for some positive integer a. So we have
5 = H2

Z = a2L2
Z , hence a = 1. Moreover KX + det E = H . We can write KX = kH

for some integer k and det E = eH for some positive integer e, hence we obtain k+e = 1.
Therefore either KX = OX and det E = H , or X is a Fano manifold.

We claim that the first case cannot happen. Recall that (Z,HZ) is a quintic surface of
P3. Arguing as in the proof of Lemma 2.6 with S = Z and G = EZ , we get c1(EZ)2 ≥ 6.
But det EZ = HZ under our assumption, hence c1(EZ)2 = H2

Z = 5, a contradiction. 2

This allows to characterize the examples we produced for Case (1) of Theorem 3.12
in the following way.

Proposition 3.15. Suppose that either (X, E ,H) and Z are as in Case (1) of Theo-
rem 3.12, or (KX + det E)Z is ample and Pic(X) ∼= Z. If E is decomposable and
H is very ample, then (X, E ,H) is as in (1a) or (1b) of Examples 3.13.

Proof. X is Fano, Pic(X) is generated by H and −KX = rXH in both cases. Since
E is decomposable, we can write E =

⊕r
i=1 aiH , with a1 ≥ · · · ≥ ar ≥ 1. We have

5 = Hn−r
Z = Hn−r · Z = (

∏r
i=1 ai)H

n, so either
(a) Hn = 1 and a1 = 5, a2 = · · · = ar = 1, or
(b) Hn = 5 and a1 = · · · = ar = 1.
On the other hand, fromKX+det E+(n−r−3)H = OX we get rX =

∑r
i=1 ai+(n−

r−3). So rX = n+1 in Case (a) and rX = n−3 in Case (b). Case (a) immediately leads
to (1a) by the Kobayashi–Ochiai theorem. In Case (b) E = H⊕r; since h1(OX) = 0,
by Theorem 2.2, |H| has a regular ladder [9, p. 28], hence ∆(X,H) = ∆(Z,HZ) = 3.
As H is very ample, by Theorem 3.7 and Remark 3.8 (X,H) turns out to be a smooth
quintic hypersurface of Pn+1. This gives (1b). 2
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Similarly for Case (2) we have

Proposition 3.16. Let (X, E ,H) and Z be as in Case (2) of Theorem 3.12. If E is decom-
posable and H very ample, then (X, E ,H) is as in (2a)–(2d) of Examples 3.13.

Proof. X is Fano, Pic(X) is generated by H and −KX = rXH . Since E is decompos-
able, we can write E =

⊕r
i=1 aiH , with a1 ≥ · · · ≥ ar ≥ 1. We have 6 = Hn−r

Z =
Hn−r · Z = (

∏r
i=1 ai)H

n, so we have the following possibilities:
(a) Hn = 1 and a1 = 6, a2 = · · · = ar = 1, or a1 = 3, a2 = 2, a3 = · · · = ar = 1;
(b) Hn = 2 and a1 = 3, a2 = · · · = ar = 1;
(c) Hn = 3 and a1 = 2, a2 = · · · = ar = 1;
(d) Hn = 6 and a1 = · · · = ar = 1.
On the other hand, from KX + det E + (n − r − 2)H = OX we get rX =

∑r
i=1 ai +

(n− r − 2).
Recall that the index of a Fano manifold X is bounded by 1 ≤ rX ≤ dimX + 1. So,

in Case (a), rX = n+1 and then, necessarily, a1 = 3, a2 = 2, a3 = · · · = ar = 1; hence
we get (2a). In Case (b), X turns out to be a smooth Fano manifold of index rX = n,
therefore we obtain (2b). Let now X be as in (c); we see that (X,H) is a del Pezzo
manifold with Hn = 3, so we derive (2c). In the last Case (d), we deduce that (X,H) is
a Mukai manifold with Hn = 6 and E = H⊕r; since h1(OX) = 0, by Theorem 2.2, |H|
has a regular ladder [9, p. 28], hence ∆(X,H) = ∆(Z,HZ) = 3. As H is very ample,
by Theorem 3.7 and Remark 3.10 (X,H) turns out to be a complete intersection of type
(2, 3). This gives (2d). 2

4 ∆-genera smaller than cork(E)

Here we classify triplets (X, E ,H) such that ∆(Z,HZ) ≤ cork(E)− 1. First of all note
that, if n − r = 1, then this means dimZ = 1 and ∆(Z,HZ) = 0, which implies that
Z ∼= P1. By Section 3, this implies that X and E are as in Theorem 3.2 and H is any
ample line bundle. So we can confine to the case n− r ≥ 2. As in Section 3 assume that
HZ is very ample. Then we have the following

Theorem 4.1. LetX, E and Z be as in 1.1 with n−r ≥ 2. LetH be an ample line bundle
on X such that HZ is very ample and assume that

∆(Z,HZ) ≤ cork(E)− 1.

Then (X, E ,H) is one of the following:

(1) (Pn,OPn(1)⊕(n−2),OPn(m)), with 1 ≤ m ≤ 3;
(2) (Pn,OPn(2)⊕OPn(1)⊕(n−3),OPn(1));
(3) (Pn,OPn(1)⊕(n−3),OPn(2));
(4) (Pn,OPn(2)⊕OPn(1)⊕(n−3),OPn(2));
(5) (Pn,OPn(2)⊕2 ⊕OPn(1)⊕(n−4),OPn(1));
(6) (Pn,OPn(3)⊕OPn(1)⊕(n−3),OPn(1));
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(7) (Qn,OQn(1)⊕(n−2),OQn(1));
(8) (Qn,OQn(1)⊕(n−2),OQn(2));
(9) (Qn,OQn(2)⊕OQn(1)⊕(n−3),OQn(1));

(10) X is a Fano manifold of index n − 1 with Pic(X) ∼= Z generated by H and E =
H⊕(n−2);

(11) n− r ≥ 3 and X is a Fano manifold with Pic(X) ∼= Z generated by H (as well as
Z) of index rX > rZ;

(12) (Q4,S ⊗OQ4(2),OQ4(1)), where S is a spinor bundle on Q4;
(13) (X,H) is a scroll over P1 and EF ∼= OPn−1(1)⊕r for every fiber F of the projection

X −→ P1;
(14) n − r ≥ 3, (X,H) is a quadric fibration over P1 and EF ∼= OQn−1(1)⊕r for any

general fiber F of the fibration X −→ P1;
(15) (P2 × P2,OP2×P2(1, 1)⊕2,OP2×P2(1, 1)).

Proof. We note first that, HZ being very ample, there is an embedding of Z in PN with
N = h0(HZ)− 1; moreover, denoted by d = d(Z,HZ) the degree of Z, the assumption
on the ∆-genus is equivalent to the condition d ≤ N .

This allows us to apply the main theorem of [12], obtaining the following possibilities
for Z:

(I) Z is a Fano manifold with b2(Z) = 1;
(II) (Z,HZ) is a del Pezzo manifold with b2(Z) ≥ 2, 2 ≤ dimZ ≤ 4 and 3 ≤ d ≤ 8;

(III) Z is the Segre embedding of P1 × F1, where F1 is the blowing-up of P2 in a point,
embedded in P4 as a rational scroll of degree 3;

(IV) (Z,HZ) is a scroll over P2; more precisely, Z = PP2(F) where F is either TP2 ⊕
OP2(1), OP2(2)⊕OP2(1)⊕2, orOP2(1)⊕4, and HZ stands for the tautological line
bundle.

(V) (Z,HZ) is a scroll over P1 with d ≥ dimZ (i.e. a linear section of the Segre
embedding of P1 × Pm);

(VI) there is a vector bundle G over P1 of rank dimZ + 1 ≥ 4 and of splitting type
η = (η0, . . . , ηn−r) such that, if L is the tautological line bundle on PP1(G) and
G denotes a fiber of the projection PP1(G) −→ P1, Z embeds in PP1(G) as Z ∈
|2L+ βG|, LZ = HZ and one of the following holds:

(VI-i) N = d = 2 dimZ − 1, η = (1, . . . , 1, 0, 0), β = 1;
(VI-ii) N = d = 2 dimZ, η = (1, . . . , 1, 0), β = 0;

(VI-iii) N = d = 2 dimZ + 1, η = (1, . . . , 1), β = −1;
(VI-iv) dimZ ≥ 4, N = d + 1 = 2 dimZ + 1, η = (1, . . . , 1), β = −2 or,

equivalently, Z ∼= P1 ×Qn−r−1 Segre embedded;
(VI-v) N = d = 2 dimZ + 2, η = (1, . . . , 1, 2), β = −2.

Moreover the proof of the main theorem in [12] shows that, in Case (I), either (Z,HZ)
is (P2,OP2(m)), m = 2, 3, (P3,OP3(2)), or Pic(Z) is generated by HZ , due to the
Barth–Larsen theorem.

We proceed with a case-by-case analysis.
Case (I). Assume first that dimZ = 2. In this case Z ∼= P2, we have (X, E) ∼=

(Pn,OPn(1)⊕(n−2)) by [14, Theorem A]. Now, denoted by H := OPn(1) the ample
generator of Pic(X), we have HZ = OP2(m) = mHZ for some positive integer m,
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hence H = mH = OPn(m). Moreover the condition H2
Z ≤ N gives m2 ≤

(
m+2

2

)
− 1,

so m ≤ 3. Therefore we get Case (1) of the statement.
Assume now that dimZ ≥ 3. Let L be the ample generator of Pic(Z). As we noted

above, either (Z,HZ) ∼= (P3,OP3(2)), in which case (X, E) ∼= (Pn,OPn(1)⊕n−3) and
L ∼= OP3(2), so this leads to Case (3) of the statement, or L ∼= HZ . In this last case we
have rZHZ + KZ = OZ . Hence, by adjunction and the Lefschetz–Sommese theorem,
rZH + (KX + det E) = OX and H generates Pic(X). Writing det E = eH with e a
positive integer, we get −KX = (rZ + e)H . Therefore X is a Fano manifold of index
rX = rZ + e. So we are in Case (11) of the statement.

Case (II). A complete description of the triplets (X, E ,H) and of the corresponding
pairs (Z,HZ), with (Z,HZ) a del Pezzo manifold, is given in [18, Theorem 4 and Re-
mark]. Note that for dimZ ≥ 3, condition b2(Z) ≥ 2 rules out all cases listed in that
theorem. So dimZ = 2 and the remark leads to Cases (4)–(6), (8)–(10), (12) and (15) of
the statement.

Cases (III) and (VI). In Case (VI), let G be any fiber of q̃ : PP1(G) −→ P1; then
G ∼= Pn−r. Let G0 := Z ∩G be the fiber of q̃ restricted to Z. Since Z ∈ |2L+ βF |, we
get G0

∼= Qn−r−1, a smooth quadric hypersurface in Pn−r provided that G is a general
fiber of q̃. Moreover (LZ)G0 = (HZ)G0 = OQn−r−1(1), hence q := q̃|Z is a quadric
fibration over P1. In Case (III), every fiber of the morphism q : P1 × F1 −→ P1 induced
by the ruling projection F1 −→ P1 is isomorphic to P1 × P1. Moreover, denoted by F
the general fiber of q, we get (HZ)F ∼= OP1×P1(1, 1), hence q is a quadric fibration over
P1. In other words (Z,HZ) has the same structure as in (VI), so we treat Cases (III) and
(VI) at the same time. Moreover n − r ≥ 3 and, by [19, Theorem 0.4], (X, E ,H) is one
of the following:

(a) (X,H) is a scroll over P1 and EF ∼= OPn−1(2) ⊕OPn−1(1)⊕(r−1) for every fiber F
of the projection π : X −→ P1;

(b) (X,H) is a quadric fibration over P1 and EF ∼= OQn−1(1)⊕r for any general fiber F
of the fibration X −→ P1.

Claim: Case (a) cannot occur.
To prove this fact we need to know the genus g = g(Z,HZ). In Cases (III) and

(VI-i)–(VI-v), let q : Z −→ P1 be the quadric fibration.
In Case (III) it is immediate to compute g. Denote by p1 and p2 the projections of Z

onto the first and the second factor, respectively, and consider the diagram

Z

p2
  A

AA
AA

AA
AA

p1
~~}}

}}
}}

}}
}

q

((PPPPPPPPPPPPPPPPP

P1 F1
// P1.

The Picard group of Z is Pic(Z) ∼= Z3, generated by S,Σ and F , where S = p−1
1 (t) for

a point t ∈ P1, Σ = p−1
2 (σ) with σ the (−1)-section of F1, and F = p−1

2 (f) for a fiber f
of the projection F1 −→ P1. We have

KZ = p∗1KP1 + p∗2KF1 = [−2S − 2Σ− 3F ]
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and
HZ = p∗1OP1(1) + p∗2[σ + 2f ] = [S + Σ + 2F ].

By the genus formula, noting that F 2 = 0, S2 = 0 and Σ2 · F = 0, we get

2g − 2 = (KZ + 2HZ) ·H2
Z = F · (S + Σ + 2F )2 = 2F · S · Σ = 2,

whence g = 2 = n− r − 1.
Next we compute g = g(Z,HZ) in all subcases of (VI). Consider the following dia-

gram
Z

q

��

� � // P := PP1(G)

q̃
yyssssssssssss

P1

and let L be the tautological line bundle of G on P . Denoted by G = q̃∗OP1(1), the
canonical bundle of P is

KP = −(n− r + 1)L+ (deg G − 2)G,

whence the canonical bundle of Z is

KZ = (KP + Z)Z = (−(n− r − 1)L+ (deg G − 2 + β)G)Z .

Again by the genus formula, we derive

2g − 2 = (KZ + (n− r − 1)HZ) ·Hn−r−1
Z = (deg G − 2 + β)GZ ·Hn−r−1

Z =
= 2(deg G − 2 + β),

since GZ · Hn−r−1
Z = G0 · Hn−r−1

Z = (HG0)
n−r−1 = (OQn−r−1(1))n−r−1 = 2.

Therefore g = deg G+β− 1 and we have the following table, where rk(G) = n− r− 1:

Subcases deg G β deg G + β

(VI-i) rk(G)− 2 1 n− r
(VI-ii) rk(G)− 1 0 n− r
(VI-iii) rk(G) −1 n− r
(VI-iv) rk(G) −2 n− r − 1
(VI-v) rk(G) + 1 −2 n− r

Hence {
g(Z,HZ) = n− r − 2 in Subcase (VI-iv);
g(Z,HZ) = n− r − 1 in all the other subcases.

Now we assume by contradiction that (X, E ,H) is as in (a). The following argument
is inspired by [10]. We can write X ∼= PP1(V), where V ∼=

⊕n
i=1OP1(ai), with a1 ≥

a2 ≥ · · · ≥ an = 0. Let ξ denote the tautological line bundle of V on X and identify
any fiber F of π : X −→ P1 with π∗OP1(1). We know that HF

∼= OPn−1(1) ∼= ξF ,
hence H = ξ + bF , with b ≥ 1 because of the ampleness of H by [3, Lemma 3.2.4].
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Moreover we have EF ∼= OPn−1(2) ⊕ OPn−1(1)⊕(r−1). Therefore (E ⊗ [−2ξ])F ∼=
OPn−1⊕OPn−1(−1)⊕(r−1) and h0((E⊗[−2ξ])F ) = 1 for any fiberF , so π∗(E⊗[−2ξ]) =
OP1(c) ∈ Pic(P1). Pulling back via π, we have an injection 0 −→ π∗OP1(c) −→
E ⊗ [−2ξ]. Now, twisting by [2ξ], we obtain an exact sequence

0 −→ [2ξ + cF ] −→ E −→ Q −→ 0 (4.1.1)

where the rank-(r − 1) vector bundle Q is ample, being a quotient of an ample vector
bundle. Restricting (4.1.1) to any fiber F , we get c1(QF ) = c1(EF )−2ξ ·F = r+1−2 =
r − 1 = rk(QF ). Therefore QF is uniform of splitting type (1, . . . , 1), hence QF ∼=
OPn−1(1)⊕(r−1) [32, Theorem 3.2.1, p. 51]. Moreover, being (Q⊗ [−ξ])F ∼= O⊕(r−1)

F ,
there exists a rank-(r − 1) vector bundle W ∼=

⊕r−1
j=1 OP1(bj) such that Q ⊗ [−ξ] ∼=

π∗W , whence Q ∼=
⊕r−1

j=1[ξ + bjF ]. Recalling that Q is ample, we have bj ≥ 1 for all
j = 1 . . . , r − 1. The sequence (4.1.1) gives

det E = (2ξ+cF )+detQ = (2ξ+cF )+(r−1)ξ+(degW)F = (r+1)ξ+(degW+c)F.

Since det E is ample, we obtain degW + c ≥ 1. Now put F := E ⊕H⊕(n−r−1). Note
that F is ample and of rank (n − 1). Moreover g = g(Z,HZ) = g(X,F), the curve
genus of (X,F), so we can compute g with the genus formula

2g − 2 = (KZ + (n− r − 1)HZ) ·Hn−r−1
Z .

The canonical bundle of Z is given by

KZ = (KX + det E)Z = ((−nξ + (degV − 2)F + (r + 1)ξ + (degW + c))Z =
= (−(n− r − 1)ξ + (degV − 2 + degW + c)F )Z ,

therefore

2g − 2 =

= (−(n− r − 1)ξ + (degV − 2 + degW + c)F + (n− r − 1)(ξ + bF ))Z ·Hn−r−1
Z

= 2(degV − 2 + degW + c+ (n− r − 1)b),

since F ·Hn−r−1
Z = (OQn−r−1(1))n−r−1 = 2. We have thus proved that

g = degV − 1 + degW + c+ (n− r − 1)b, (4.1.2)

from which we derive
g ≥ n− r − 1. (4.1.3)

This is clearly a contradiction in Subcase (VI-iv). In Case (III) and Subcases (VI-i)–(VI-
iii) and (VI-v) the Inequality (4.1.3) is actually an equality, so all the following condition
hold: V = O⊕nP1 , degW + c = 1 and b = 1. Therefore X = P1 × Pn−1 and H = ξ + F .
Let l be any fiber ofX −→ Pn−1. We note that ξn = degV = 0 and ξn−1 = l. Therefore
we have

r ≤ deg El = (det E) · ξn−1 = ((r + 1)ξ + (degW + c)F ) · ξn−1 = degW + c = 1,

which is a contradiction. This finally proves the claim.
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So only Case (b) can occur. Hence both Cases (III) and (VI) lead to (14). Note that,
by Lemma 2.4, (Z,HZ) cannot be as in Subcase (VI-iv).

Case (IV). This is ruled out by Lemma 2.5.
Case (V). We claim thatKZ+(dimZ−1)HZ is not nef and thatKZ+(dimZ)HZ is

nef. Indeed, let F be a fiber of the scroll projection; to show the first assertion it is enough
to note that (KZ + (dimZ − 1)HZ)F = OPn−r−1(−1), since KF = (KZ + F )F =
(KZ)F and (HZ)F = OPn−r−1(1). As to the second, we note that if KZ + (dimZ)HZ

is not nef, then (Z,HZ) ∼= (Pn−r,OPn−r (1)) (e.g. see [3, Theorem 7.2.1]), which is a
contradiction. Therefore recalling that (Z,HZ) is a scroll over P1, we get the following
possibilities for (X, E ,H) by [18, Theorem 2], Cases (2), (3) and (4), respectively:
(a) (Pn,OPn(2)⊕OPn(1)⊕(n−3),OPn(1));
(b) (Qn,OQn(1)⊕(n−2),OQn(1));
(c) (X,H) is a scroll over P1 and EF ∼= OPn−1(1)⊕r for every fiber F of the projection

X −→ P1.
They give Cases (2), (7) and (13) of the statement, respectively. 2

5 Final remarks

Another way to say that (Z,HZ) has small ∆-genus is to mean that ∆(Z,HZ) is small
in comparison with the degree. In this section we prove a result of the same type as
Theorem 4.1 in this direction.

We first need a lemma. Let S be a smooth surface and let L be a very ample line
bundle on S. Set d = L2. By ruled surface we mean a birationally ruled surface.

Lemma 5.1. If ∆(S,L) < d
2 , then S is a ruled surface.

Proof. Recall that ∆(S,L) = 2 + d − h0(L). Let C be a smooth element in |L|. From
the exact cohomology sequence of

0 → OS → L→ LC → 0,

we get
h0(LC) ≥ h0(L)− 1 = d+ 1−∆(S,L). (5.1.1)

Suppose that S is not ruled. Then L ·KS ≥ 0, otherwise all plurigenera of S would be
zero, a contradiction with the Enriques ruledness criterion [2, Theorem VI.17]. Therefore
d ≤ 2g(C) − 2, by genus formula. By applying Clifford’s theorem to LC we thus get
h0(LC) ≤ 1

2 degLC + 1 = d
2 + 1. Combining this with (5.1.1) we get ∆(S,L) ≥ d

2 ,
which contradicts our assumption. 2

Proposition 5.2. Let X , E and Z be as in 1.1 with n − r ≥ 2. Let H be an ample line
bundle on X such that HZ is very ample and assume that

∆(Z,HZ) <
1
2
cr(E) ·Hn−r. (5.2.1)

Then KX + det E + (n− r − 2)H is not nef.
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Proof. By [9, p. 28], we have ∆(S,HS) ≤ ∆(Z,HZ), where S is the smooth surface
cut out by n − r − 2 general elements of |HZ |. Note that cr(E) ·Hn−r is the degree of
Z embedded by |HZ |, since cr(E) is represented by Z. But this is also the degree d of
its surface section (S,HS). Thus ∆(S,HS) < d

2 by (5.2.1), and therefore S is ruled, by
Lemma 5.1. By adjunction, KS = (KZ + (n − r − 2)HZ)S = (KX + det E + (n −
r− 2)H)S = (KX + detF)S , where F = E ⊕H⊕(n−r−2) is an ample vector bundle of
rank n− 2 on X . Since S is ruled we conclude that KX + detF is not nef. 2

In particular, for n − r ≥ 3, the vector bundle F = E ⊕H⊕(n−r−2) in the Proposi-
tion 5.2 has at least a direct summand H , so we obtain the following

Corollary 5.3. Let X , E and Z be as in 1.1 with n − r ≥ 3. Let H be an ample line
bundle on X such that HZ is very ample and assume that

∆(Z,HZ) <
1
2
cr(E) ·Hn−r.

Then (X, E ⊕Hn−r−2) is one of the pairs listed in [24, Theorem], except Case 7.

Proof. Simply note that Case (7) of [24, Theorem] cannot happen under our assumption,
since it would require that F has no direct summands. 2

Acknowledgements. We would like to thank E. Meksi for some experimental material
contained in his undergraduate thesis we used in Section 4. During the preparation of
this paper the first named author has been supported by the Ministry of University of the
Italian Government in the framework of PRIN “Geometry on Algebraic Varieties” (Cofin
2004) and by the University of Milan (FIRST 2004). Both authors would like to thank the
University of Milan for making this collaboration possible.

References

[1] W. Barth, A. Van de Ven, Fano varieties of lines on hypersurfaces. Arch. Math. (Basel) 31
(1978/79), 96–104. MR510081 (80j:14004) Zbl 0383.14003

[2] A. Beauville, Complex algebraic surfaces, volume 34 of London Mathematical Society Stu-
dent Texts. Cambridge Univ. Press 1996. MR1406314 (97e:14045) Zbl 0849.14014

[3] M. C. Beltrametti, A. J. Sommese, The adjunction theory of complex projective varieties. de
Gruyter 1995. MR1318687 (96f:14004) Zbl 0845.14003

[4] L. Bonavero, C. Casagrande, O. Debarre, S. Druel, Sur une conjecture de Mukai. Comment.
Math. Helv. 78 (2003), 601–626. MR1998396 (2004d:14057) Zbl 1044.14019

[5] J. Cordovez, M. Valenzano, On the Fano scheme of k-planes in a projective complete intersec-
tion. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 140 (2006), 101–112 (2007). MR2342877

[6] M. Cornalba, Una osservazione sulla topologia dei rivestimenti ciclici di varietà algebriche (A
remark on the topology of cyclic coverings of algebraic varieties). Boll. Un. Mat. Ital. A (5)
18 (1981), 323–328. MR618353 (83k:14006) Zbl 0462.14007

http://www.ams.org/mathscinet-getitem?mr=510081
http://www.emis.de/MATH-item?0383.14003
http://www.ams.org/mathscinet-getitem?mr=1406314
http://www.emis.de/MATH-item?0849.14014
http://www.ams.org/mathscinet-getitem?mr=1318687
http://www.emis.de/MATH-item?0845.14003
http://www.ams.org/mathscinet-getitem?mr=1998396
http://www.emis.de/MATH-item?1044.14019
http://www.ams.org/mathscinet-getitem?mr=2342877
http://www.ams.org/mathscinet-getitem?mr=618353
http://www.emis.de/MATH-item?0462.14007


Ample vector bundles with zero loci of small ∆-genera 255

[7] T. Fujita, On the structure of polarized manifolds with total deficiency one.
I. J. Math. Soc. Japan 32 (1980), 709–725. MR589109 (82a:14015) Zbl 0474.14017
II. J. Math. Soc. Japan 33 (1981), 415–434. MR0620281 (82j:14034) Zbl 0474.14018
III. J. Math. Soc. Japan 36 (1984), 75–89. MR0723595 (85e:14061) Zbl 0541.14036

[8] T. Fujita, Classification of polarized manifolds of sectional genus two. In: Algebraic geometry
and commutative algebra, Vol. I, 73–98, Kinokuniya, Tokyo 1988. MR977755 (90c:14025)
Zbl 0695.14019

[9] T. Fujita, Classification theories of polarized varieties, volume 155 of London Mathemat-
ical Society Lecture Notes Series. Cambridge Univ. Press 1990. MR1162108 (93e:14009)
Zbl 0743.14004

[10] B. Gaiera, A. Lanteri, Ample vector bundles with zero loci of sectional genus two. Arch. Math.
(Basel) 82 (2004), 495–506. MR2080048 (2005f:14106) Zbl 1078.14058

[11] P. Ionescu, Embedded projective varieties of small invariants. In: Algebraic geometry,
Bucharest 1982 (Bucharest, 1982), volume 1056 of Lecture Notes in Math., 142–186, Springer
1984. MR749942 (85m:14024) Zbl 0542.14024

[12] P. Ionescu, On manifolds of small degree. Comm. Math. Helv., to appear.
Eprint math.AG/0306205

[13] P. Ionescu, M. Toma, On very ample vector bundles on curves. Internat. J. Math. 8 (1997),
633–643. MR1468354 (98h:14036) Zbl 0899.14011

[14] A. Lanteri, H. Maeda, Ample vector bundles with sections vanishing on projective spaces or
quadrics. Internat. J. Math. 6 (1995), 587–600. MR1339647 (96d:14039) Zbl 0876.14027

[15] A. Lanteri, H. Maeda, Ample vector bundle characterizations of projective bundles and
quadric fibrations over curves. In: Higher-dimensional complex varieties (Trento, 1994), 247–
259, de Gruyter 1996. MR1463183 (98h:14051) Zbl 0891.14011

[16] A. Lanteri, H. Maeda, Geometrically ruled surfaces as zero loci of ample vector bundles.
Forum Math. 9 (1997), 1–15. MR1426451 (97i:14027) Zbl 0876.14026

[17] A. Lanteri, H. Maeda, Ample vector bundles of curve genus one. Canad. Math. Bull. 42
(1999), 209–213. MR1692011 (2000e:14070) Zbl 0956.14033

[18] A. Lanteri, H. Maeda, Special varieties in adjunction theory and ample vector bundles. Math.
Proc. Cambridge Philos. Soc. 130 (2001), 61–75. MR1797731 (2001k:14018)
Zbl 0992.14020

[19] A. Lanteri, H. Maeda, Ample vector bundles with zero loci having a bielliptic curve section.
Collect. Math. 54 (2003), 73–85. MR1962945 (2004c:14082) Zbl 1034.14016

[20] A. Lanteri, H. Maeda, Ample vector bundles and Bordiga surfaces. Math. Nachr. 280 (2007),
302–312. MR2292152 Zbl 1115.14035

[21] A. Lanteri, H. Maeda, Ample vector bundles with sections vanishing on submanifolds of
sectional genus 3. In: Algebra, geometry and their interactions, volume 448 of Contemporary
Math., 165–182. Amer. Math. Soc. 2007. Zbl pre05245239

[22] A. Lanteri, H. Maeda, Projective manifolds of sectional genus three as zero loci of ample
vector bundles. Math. Proc. Camb. Phil. Soc. 144 (2008), 109–118. pre05249381

[23] A. Lanteri, F. Russo, A footnote to a paper by Noma. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat.
Natur. Rend. Lincei (9) Mat. Appl. 4 (1993), 131–132. MR1277004 (95a:14045)

[24] H. Maeda, Nefness of adjoint bundles for ample vector bundles. Matematiche (Catania) 50
(1995), 73–82. MR1373571 (97f:14042) Zbl 0865.14024

http://www.ams.org/mathscinet-getitem?mr=589109
http://www.emis.de/MATH-item?0474.14017
http://www.ams.org/mathscinet-getitem?mr=0620281
http://www.emis.de/MATH-item?0474.14018
http://www.ams.org/mathscinet-getitem?mr=0723595
http://www.emis.de/MATH-item?0541.14036
http://www.ams.org/mathscinet-getitem?mr=977755
http://www.emis.de/MATH-item?0695.14019
http://www.ams.org/mathscinet-getitem?mr=1162108
http://www.emis.de/MATH-item?0743.14004
http://www.ams.org/mathscinet-getitem?mr=2080048
http://www.emis.de/MATH-item?1078.14058
http://www.ams.org/mathscinet-getitem?mr=749942
http://www.emis.de/MATH-item?0542.14024
http://arxiv.org/abs/math.AG/0306205
http://www.ams.org/mathscinet-getitem?mr=1468354
http://www.emis.de/MATH-item?0899.14011
http://www.ams.org/mathscinet-getitem?mr=1339647
http://www.emis.de/MATH-item?0876.14027
http://www.ams.org/mathscinet-getitem?mr=1463183
http://www.emis.de/MATH-item?0891.14011
http://www.ams.org/mathscinet-getitem?mr=1426451
http://www.emis.de/MATH-item?0876.14026
http://www.ams.org/mathscinet-getitem?mr=1692011
http://www.emis.de/MATH-item?0956.14033
http://www.ams.org/mathscinet-getitem?mr=1797731
http://www.emis.de/MATH-item?0992.14020
http://www.ams.org/mathscinet-getitem?mr=1962945
http://www.emis.de/MATH-item?1034.14016
http://www.ams.org/mathscinet-getitem?mr=2292152
http://www.emis.de/MATH-item?1115.14035
http://www.emis.de/MATH-item?pre05245239
http://www.emis.de/MATH-item?pre05249381
http://www.ams.org/mathscinet-getitem?mr=1277004
http://www.ams.org/mathscinet-getitem?mr=1373571
http://www.emis.de/MATH-item?0865.14024


256 Antonio Lanteri and Carla Novelli

[25] H. Maeda, Ample vector bundles of small curve genera. Arch. Math. (Basel) 70 (1998), 239–
243. MR1604076 (99a:14067) Zbl 0928.14028

[26] H. Maeda, A. J. Sommese, Very ample vector bundles of curve genus two. Arch. Math. (Basel)
79 (2002), 74–80. MR1923041 (2003f:14062) Zbl 1001.14015

[27] S. Mori, S. Mukai, Extremal rays and Fano 3-folds. In: The Fano Conference, 37–50, Univ.
Torino, Turin 2004. MR2112566 (2005k:14085) Zbl 1070.14018

[28] A. Noma, Classification of rank-2 ample and spanned vector bundles on surfaces whose zero
loci consist of general points. Trans. Amer. Math. Soc. 342 (1994), 867–894.
MR1181186 (94f:14040) Zbl 0802.14006

[29] C. Novelli, G. Occhetta, Ruled Fano fivefolds of index two. Indiana Univ. Math. J. 56 (2007),
207–241. MR2305935 Zbl 1118.14048

[30] G. Occhetta, On some Fano manifolds of large pseudoindex. Manuscripta Math. 104 (2001),
111–121. MR1820732 (2002g:14018) Zbl 0976.14027

[31] G. Occhetta, A note on the classification of Fano manifolds of middle index. Manuscripta
Math. 117 (2005), 43–49. MR2142900 (2005m:14071) Zbl 1083.14047

[32] C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces.
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