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Abstract

The world is at the dawn of a new era, characterized by a large number of connected devices and
a resultingmassive availability of networked data. In this scenario, Multi-access Edge Computing
(MEC) is the candidate reference paradigm to provide mobile users with low-latency processing
and storage services. In contrast with Mobile Cloud Computing (MCC), MEC entails the deploy-
ment of computing facilities closer to the end devices, thus becoming a key enabler for applica-
tions such as augmented reality, tactile Internet, smart home, healthcare monitoring, connected
cars, online gaming, etc. However, the problem of the energy efficiency of the decentralizedMEC
infrastructure arises. In this doctoral thesis, themanagement of theMEC platform is optimized to
reduce the global carbon footprint of the network, i.e., to maximize the use of Renewable Energy
Resources (RERs) for the initial placement and the subsequent execution and offloading of jobs.
Themain body of the thesis is organized into three chapters: the first one tackles the green energy
management of edge servers equipped with a battery in a hierarchical MEC network and the elec-
tricity tradewith the power grid; the second chapter considers a vehicular scenariowhere vehicles’
trajectories are proactively trackedwhenmigrating the users’ computing tasks towards increasing
the energetic efficiency of this process; the third chapter presents a comparison of the two decen-
tralized optimization approaches designed, based on message passing. The results show that the
proposed optimization frameworks, based on Model Predictive Control (MPC), can significantly
reduce the carbon footprint of the edge network when compared to simple heuristics and other
approaches in the scientific literature. The designed algorithms can reach almost complete carbon
neutrality in a vast range of network conditions.
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1
Introduction

Mobile Cloud Computing (MCC) has traditionally been seen as the main computing and storage
facility provider for the Internet users. In recent years, however, we have witnessed a paradigm
shift towards Multi-access Edge Computing (MEC) [1], [2]. MEC, by deploying the computing
devices directly at the edge of the access networks, will significantly reduce the end-to-end de-
lay between servers and clients, thus being the key enabler of applications that require extremely
low latencies. A few examples of these are Augmented Reality (AR), healthcare monitoring, on-
line gaming, remote control of robots, drones, and unmanned (aerial, water and ground) vehi-
cles. To these, we can add all those applications that require processing data collected by sensors
spread in the environment. The world is also facing the digital revolution of connected devices,
which will increase dramatically the Internet traffic and data volume in the near future. In 2020,
Cisco predicted that, by 2023, there will be more than 9 connected devices per capita in Europe
andMachine-to-Machine (M2M) communications will be responsible for 50% of the traffic share.
Among these, the vertical expected to be developing themost is connected cars, with a Compound
Annual GrowthRate (CAGR) of 30% [3]. Equinix, a leading data center and edge computing com-
pany, forecasts that 800 billion USD will be spent on new edge equipment worldwide by 2028,
with the COVID-19 pandemic most likely accelerating the transition to a digitized society [4].

This thesis analyzes the energy problem that arises in Information and Communication Tech-
nologies (ICT) and, specifically, in the modern MEC platform, proposing efficient solutions for
the management and operation of the network infrastructure by integrating the use of Renewable
Energy Resources (RERs) from the design phase.
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1.1 The energy problem

As discussed above, the Internet traffic demand and the number of connected devices has expe-
rienced a large growth in recent years and is expected to maintain this trend for the near future.
As an example, video content was responsible for 80% of the traffic share in 2020 and the work
in [5] shows the different agents responsible for the energy consumption, from service genera-
tion at remote servers to the execution at end terminals. The cellular and access networks have
the largest share of energy consumption (9500 and 4500 GWh, respectively), but metro and core
networks also contribute significantly to the carbon footprint (2000 GWh). In [6] it is said that
the streaming of an HD quality video for 10 minutes is comparable to a 2 kW oven working at full
power for 5minutes. MEC reduces the distance that the data has to travel across the network from
the servers to the clients (i.e., avoiding metro and core networks) therefore inherently lowering
energy consumption. Nonetheless, the management of a distributed platform has more complex
challenges to be tackled concerning the paradigm of MCC, and using efficiently the energy can
be a trickier task. Moreover, even though electronic devices are becoming more efficient, their de-
ployment in communication networks will increase proportionally to the data traffic. As a direct
consequence of the Jevons’ paradox [7], which states that the increased efficiency of a resource
and the consequent reduction of its cost will increase its demand (often with a higher rate), the
global energy consumption of the ICT infrastructure is expected to increase significantly.

A possible (partial) solution to this challenge is the use of Energy Harvesting (EH) devices
(e.g., Photovoltaic Panel (PV) panels) at the edge, as they can be easily equipped to the small
servers spread in the urban environment. This proposal also supports one of the main outcomes
of the Paris Agreement of 2015: the Sustainable Development Goals (SDGs) towards 2030, pro-
moted by the United Nations Organization (UNO) [8]. Among these, objective nr. 7 seeks the
use of “affordable and clean energy”, incentivizing the use of renewable resources in the coming
years. Furthermore, developing the MEC platform and enabling the previously mentioned verti-
cals for both private customers and industry 4.0 directly involves objectives nr. 8 (“decent work
and economic growth”) and nr. 9 (“industry, innovation and infrastructures”) of the SDGs.

In this thesis, the focus is on the design of algorithms for the management of edge computing
facilities. The primary objective is the minimization of the carbon footprint of the infrastructure,
i.e., finding the best ways to handle the energy coming from renewables to allocate computing
and communications resources. An example of the system considered is depicted in Fig. 1.1.

1.2 Green solutions for jobs offloading in the MEC platform

This section introduces a review of the state-of-the-art algorithms to manage the task of jobs of-
floading in theMECwith the primary objective of reducing the energy consumption and/or max-
imizing the use of green sources, the motivation behind this thesis [11]. A specific related work
section for the two main contributions of this thesis is provided in chapters 2 and 3.

To reduce the energy consumption of end devices, tasks can be partially or totally offloaded to

2



Figure 1.1: The considered architecture. A network of sustainable MEC cells, with BSs equipped with
EH hardware, a battery, and an edge server is reported on the left. Edge computing resources can either be
managed in a centralized or distributed [9] manner. A novel conceptual framework for edge computing

through distributed renewable energy farms, edge computing facilities, and energy brokers to intelligently
allocate computing resources across edge and cloud facilities is shown on the right [10].

the edge servers. This helps reduce the computation burden on end devices, which usually have
limited processing and energy resources, while meeting processing deadlines. In some cases, end
devices can execute a portion of the tasks.

Centralized schedulers The authors of [12] propose a constrained mixed-integer non-linear con-
strained program to jointly set the task offloading ratio (i.e., the fraction of task that is offloaded
to the edge server(s)), transmission, and computing parameters subject to latency requirements,
processing power, and memory availability. The problem is solved via a meta-heuristic algo-
rithm that seeks to decrease the overall energy consumption across end devices and edge servers
by leveraging the end devices’ resources to their maximum extent. It is assumed that tasks can
be decomposed into independent parts which can be executed in parallel and partially offloaded.
The solution provides good schedules, achieving better energy savingswith respect to using other
meta-heuristic solvers. The processing energy consumption per Central Processing Unit (CPU)
cycle is estimated as κf2cpu, where κ is a hardware-dependent constant (effective switched capac-
itance) and fcpu the CPU frequency. The obtained policies achieve the desired behavior for a
small/medium number of end devices. Furthermore, additional methods should be devised to
distribute the load, to keep the complexity low in a distributed setup with many end nodes. In
addition to optimizing the offloading ratio, a wise selection of the server(s), i.e., where to offload
the task (or portion thereof), can further reduce energy consumption. The authors of [13] pro-
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pose an end-to-end deep reinforcement learning (DRL) algorithm to maximize the number of
executed tasks that are completed on time while minimizing the associated energy consumption.
This method assumes monolithic tasks (no partitioning allowed) and leaves the study of tasks
that can be partitioned as future work. Thanks to the use of DRL, this algorithm does not require
modeling the MEC system dynamics (model-free optimization), which are learned sequentially.
The algorithm reduces the energy cost of executed tasks through optimal server selection and
computing power allocation for the task offloading. It uses the same energy model of [12] and
may have scalability problems due to the centralized nature of the DRL solver. The authors of [14]
propose a centralized intelligent energy management system to control energy consumption and
flow in a two-tier mobile cellular network. A deep reinforcement learning algorithm is devised
to maximize the use of the green energy harvested by observing and interacting with the sur-
rounding environment. The algorithm objective amounts to reducing the energy drained from
the power grid, subject to traffic level constraints. The environment is initially described through
the harvested energy from each Base Station (BS), the BS battery levels, and the load experienced
by the BSs across all hours of the day. The impact of different environment representations on
network performance is then investigated. Numerical results indicate that considering the battery
level and hour of the day is sufficient to achieve high performance.

Themain differencewith theworks presented in this thesis is the development of decentralized
network controllers, which better adapt to the distributed nature of devices in edge computing
systems. This type of controller is presented in the following paragraph.

Distributed schedulers In the work [9], further described in Chapter 2, we propose a fully decen-
tralized optimization framework based on Douglas-Rachford Splitting (DRS) to allocate the com-
puting resources of edge servers and decide where to offload tasks subjected to a time deadline.
The dynamic and multi-variable heuristic optimization algorithm distributes workload among
MEC servers to achieve load balancing or server consolidation while encouraging RER utiliza-
tion and reducing the transmission costs. The solution, model-based, employs Model Predictive
Control (MPC), showing high performance even with simple predictors, e.g., just knowing the
average value of the incoming processing load and energy from renewable resources. The algo-
rithm’s low complexity and fast convergent nature allow energy-efficient utilization of EH-MEC
facilities. Numerical results show a 50% reduction in the RER energy that is sold to the power
grid, which is instead being retained within the network to handle computing tasks. Further-
more, we conclude that consolidation is particularly beneficial when the network load is low,
while load balancing is preferred in high load conditions. Overall, utilizing energy-aware, fast re-
sponse, and low complexity schedulers results in an increased equivalent computation capacity
for the edge network as a whole for a given energy consumption level. The elastic and predic-
tive online scheduling algorithm for energy harvesting Internet of Things (IoT) edge networks
in [15] demonstrates the benefits that are attainable through careful energy- and RERs-aware
redistribution of the processing load. Their MPC based scheduler solves a sequence of low com-
plexity convex problems, taking as input estimates for future processing and renewable energy
arrivals and, based on these, outputs scheduling decisions using a look-ahead approach. This
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method outperforms a recently proposed scheduling algorithm based on Markov Decision Pro-
cesss (MDPs) [16] in terms of drop rate and residual energy reserve at theMEC nodes. Moreover,
its performance is 90% of that of the globally optimal scheduler, obtained by an offline solver with
perfect knowledge about future jobs and energy arrivals. Along the same lines, [17] investigates
energy scheduling solutions to maximize green energy utilization on microgrid-connected MEC
networks. Green energy availability and load demand arrivals are estimated. The optimization
objective amounts to minimizing the residual expected energy and demand by capturing the tail
risk of the uncertain energy and demand arrivals. This risk is used as the input metric for a dis-
tributed reinforcement learning mechanism to control the distributed computing resources. The
proposed scheme is model-free and learns computing policies in an online fashion achieving up
to 96% accurate energy scheduling.

1.2.1 Mobility-aware schedulers

Vehicular edge computing networks In the presence of user mobility, computing processes may
be migrated among servers for a better user experience. If a mobile user generates a task prior to
performing a handover to a different BS, the task may be migrated to the future serving BS, exe-
cuted there, and delivered by the new serving BS to the end user following movement to the new
radio cell. Inmaking these decisions, several considerations arise. If the current server (before the
handover) chooses to execute the task without offloading it, it may degrade the user’s experience.
If it decides tomigrate the task, itmust first choosewhere to offload it. Migration of the correspond-
ing container/Virtual Machine (VM) must also occur, so that the destination server can continue
the computation without interruption. In addition, deciding where to migrate the task further
complicates the resource scheduling problem, as user mobility patterns also come into play. The
authors of [18] devised an online algorithm to estimate the next cell hosting the mobile/vehicle
user in a 5G vehicular network 4 seconds before the handover execution, with an accuracy of 88%.
This method combines Markov Chains (MCs) and Recurrent Neural Network (RNN) based pre-
dictors, using MCs to forecast the mobility across BSs and RNNs for the fine-grained mobility
tracking inside each BS site. Mobility estimation algorithms of this type are key to devising pre-
dictive schedulers to proactively allocate resources where they are actually needed. In [19], the
work presented in Chapter 3, a task scheduling algorithm for EH-MEC networks serving vehic-
ular users is proposed. The objective is to minimize the network carbon footprint subject to task
latency constraints and mobility patterns. A centralized MPC-based algorithm is formulated as a
first step to predict available green energy and computing resources based on workload arrivals
at the Mobile Edge Hosts (MEHs) and handover probabilities in upcoming time slots. The pro-
posed scheduler prioritizes executing those tasks with high computational intensities and those
approaching deadlines, exploiting the available green energy. As a result, it prevents high task
migration costs and packet loss. In a second phase, a distributed heuristic determines the best
target servers for task migration by utilizing the trajectory predictor from [18]. As the objective is
to minimize the energy consumption from the power grid, servers accept incoming tasks only if
the locally available green energy is deemed sufficient to process them locally in future time slots.
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The significant advancement of this thesis concerning [18] is that previous work does not con-
sider the actual feasibility of the migration of the tasks in terms of computation capacities of the
target host. In Chapter 3 we devise an algorithm to manage the network in an energy-efficient
way while considering both delay and computational constraints.

UAV-assisted edge computing networks Infrastructure-assistedUnmannedAerial Vehicle (UAV)
systems are another remarkable example of mobility-aware edge networks. There, UAVs may be
assigned to execute tasks in predefined positions such as monitoring/surveillance, network cover-
age extension, data traffic relay, and network assistance in high-demand hours. Since UAVs have
often limited processing power and battery capacities, computing the desired tasks onboard may
take longer than with a standard network server, which may result in excessive energy consump-
tion. To overcome this, UAVs may offload their tasks to high processing power edge servers to
reduce the decision-making time and save onboard energy. It is expected that a tradeoff between
job offloading, flight time, and Quality of Service (QoS) requirements exists. The authors of [20]
proposed a decision process where the UAV reads the network state and estimates the task com-
pletion time. It then solves an optimization problem to minimize a weighted sum of delay and
energy consumption and decides whether to offload the task or not.

1.2.2 Distributed learning at the edge

Massive datasets and spare computational power are abundant at the network edge. Collaborative
edge learning algorithms allow leveraging edge computational powers to trainMachine Learning
(ML) models locally, using the data collected by end nodes. Specifically, learning distributedly
a model over N edge devices with global parameters www and dataset D amounts to solving the
problem

min
[
F (www | D) =

N∑
i=1

piFi(wwwi | Di)

]
, (1.1)

for a set of weights pi, where Fi are the local loss functions and wwwi and Di are the local model
parameters and datasets, respectively.

Distributed ML models are appealing due to privacy considerations, as the local data that is
collected at the distributed node sites does not have to be disclosed (sent). Local computations
are instead performed at the nodes using their own data, and only model updates (gradients) are
sent across the network. Although this is highly attractive, it also presents challenges related to
the time-varying nature of computational power, communication rate, and energy availability at
each device. Furthermore, communication, energy, and computation resources are often highly
heterogeneous across wireless and edge devices, which leads to further complications. Hereafter,
we refer to the difference in communication/computing/energy resources across nodes as system
heterogeneity, while the fact that the data may be non-i.i.d. across devices is referred to as statis-
tical heterogeneity. Utilizing heterogeneous edge resources to accurately train ML models in an
energy-efficient manner is a challenging and still open endeavor. Distributed Learning (DL) al-
gorithms come in two primary flavors: (i) Federated Learning (FL) [21], where theworkers are con-
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Figure 1.2: Decentralized learning paradigms. On the left, a network of edge devices acting as clients
locally train the model with their own data and periodically upload it to the server. The server aggregates
the local models coming from the clients and sends to them an updated version of the global model. On
the right, edge devices are connected via a general mesh topology. They update the model parameters
using some message passing algorithm, by periodically communicating with their neighbor nodes and

without involving any central aggregator.

nected with a star topology to a physical unit serving as an aggregator for their local models (see
Fig. 1.2a), or (ii) fully decentralized communication/learning process, where workers share their
locally updated ML model with their direct neighbors in any generic mesh topology (Fig. 1.2b),
progressively reaching consensus on a common model.

Context-agnostic efficient communication

The amount of data exchanged for the model updates represents one of the major DL challenges
(the communication bottleneck problem) due to the large size of typical ML models. This affects
both the convergence time and the energy drained to transmit the model updates. According
to [22], context-agnostic approaches to tackle this problem subdivide into (i) sparsification, i.e.,
pruning of some elements of the local gradients, (ii) quantization, i.e., reducing the number of bits
to encode the local gradients, and (iii) local Stochastic Gradient Descent (SGD), namely, performing
multiple local gradient descent steps before performing the aggregation. The first two methods
reduce the number of bits sent for the aggregation steps, while the latter aims to reduce the total
number of aggregation rounds needed.

Context-aware DL optimization

Despite the fact that the mechanisms mentioned above can be combined, this is not enough to
make communication efficient in large-scale DL setups. In fact, the above strategies are indepen-
dent of the communication channel and protocols used. A higher level of context awareness (in
this case, channel characteristics and communication resources) in wireless networks holds the
potential to significantly improve the efficiency of model training, as the channel quality varies
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across network devices and over time, and local resources such as bandwidth and transmission
power are limited. Scheduling and resource allocation thus assume a prominent role in improving
the efficiency of DL.

Client selection and resources allocation Client selection refers to picking, at each learning step,
a subset of clients that contribute to updating the model parameters within the global aggrega-
tion phase, hence saving network resources. As a simple approach, scheduling algorithms could
select those clients with the best experienced channel. This choice, although speeding up the
model training by avoiding the so-called stragglers, may result in a biased ML model in the pres-
ence of statistical heterogeneity, polarizing it towards the local models of those clients with a
better channel quality, e.g., better positioned with respect to the access point. To cope with this,
the authors of [22] propose a scheduling policy that considers the age of information (AoI) (i.e.,
the number of iterations from the last update) of each client in conjunction with the experienced
channel quality. By penalizing this metric, they obtain a better performing model by using net-
work (communication) resources efficiently. The use of analog transmissions to aggregate the
model over-the-air is proposed in [23], where client selection is performed at the beginning of
each round by optimizing (with a Lyapunov approach) a learning bound obtained in the paper,
subject to communication and processing energy constraints. This procedure is shown to perform
close to an optimal benchmark in terms of accuracy while outperforming a myopic scheduler. In
papers [24]–[26] a convergence result is exploited to bound the squared norm of the gradients of
the local model loss functions as∥∥∥∇Fi (wwwk

i | Di
)∥∥∥2 ≤ θ

∥∥∥∇Fi (wwwk−1
i | Di

)∥∥∥2 , (1.2)

for some 0 ≤ θ ≤ 1. In particular, when θ = 0, the model will get an exact solution to the local
problem, while if θ = 1, no progress is observed between iterations k − 1 and k. If the objective
is strongly convex, the convergence rate is proven to be O (log (1/θ)). In [24], the joint optimiza-
tion of a weighted average of computing, transmission energy, and training time is considered.
In their scenario, the server can select the proper bandwidth to communicate with the clients to
adjust transmission energy and time while the clients decide their processing frequency locally.
The authors of [25] realized a customized frequency division multiple access (FDMA) strategy
to jointly optimize the energy used for communication and local computations by selecting the
CPU frequency, the transmission power, and bandwidth and also providing a formal convergence
analysis of the proposed algorithm. Their scheme outperforms selected benchmarks, including
a time division multiple access (TDMA) approach, when looking at the tradeoff between energy
and completion time. Further, in [26] a vehicular scenario is considered, where the authors per-
form both vehicle selection and resource allocation, again optimizing completion time and energy.
The selection task is performed in a greedy manner to get higher image quality data, while the
resource allocation is formulated as a min-max problem, devoted to minimizing the time and en-
ergy needed for the worst scheduled vehicle. Due to the absence of benchmark algorithms for a
vehicular environment, the authors compare their proposal with the performance obtained by op-
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timizing either the accuracy or the communication resources, demonstrating that their framework
leads to fairer solutions.

System heterogeneity Heterogeneous capacities of edge devices are a crucial problem. Some
may be equipped with a GPU, while others only have the CPU. Some may be interconnected via
unreliable wireless channels, whereas others through optical fiber backhaul links. System het-
erogeneity is the special focus of papers [27]–[30]. The authors of [27] first theoretically analyze
the convergence rate of distributed gradient descent algorithms and then develop an adaptive
control framework to find the best tradeoff between the number of local steps at the distributed
nodes (the clients) and the number of model aggregation rounds, optimizing theoretical learning
bound subjected to a local energy budget. The proposed network controller is evaluated on both
convex problems and neural networks, obtaining close to optimal performance. Of particular
note, this also holds for models based on Support Vector Machines (SVMs). The same objective
is investigated in [28], where client selection is also addressed besides the number of local steps
for the clients. The problem is formulated asmulti-objective optimization, considering aweighted
energy and completion time average, subject to an expected accuracy constraint. A real testbed
implementation comprising 30 devices with heterogeneous computing capacities has been car-
ried out, and results for neural networks training show that the proposed scheme is faster to
converge and globally consumes less energy against competing solutions while also achieving a
better model accuracy. The approach suggested in [29] additionally involves personalization of
the gradient sparsification strategy for each client, where the (gradient) compression parameters
are decided by evaluating the available energy resources for computation and communication.
The proposed scheme drains significantly less energy with respect to benchmark algorithms in
the presence of highly heterogeneous systems, almost without affecting the test error. An RL
framework for client selection called AutoFL is proposed in [30] to obtain a data-driven solution
to the problem of system heterogeneity with the objective of optimizing training time and energy
efficiency. Taking as input the resources that are locally available to each client, AutoFL obtains
a speed gain of 3.6 and an energy efficiency gain of about 5 times over traditional methods.

Fully decentralized learning The research described in the previous paragraphs considers fed-
erated learning solutions, where a central aggregator is in charge of updating the model from
inputs received from a set of clients. Theworld of fully decentralized learning is insteadwidely unex-
plored when it comes to energy optimization. Although context-agnostic methods can always be
applied to improve energy efficiency and the utilization rate of resources, an essential and unique
feature of decentralized learning is the possibility of adjusting the communication network topol-
ogy. In [31], the authors select a subset of the available links to perform model broadcasting so
as to minimize the transmission power levels. A constraint on the minimum number of links re-
quired to guarantee the convergence of learning is added. This results in a combinatorial NP-hard
problem over a graph that is relaxed to obtain an approximate solution. The considered scenarios
involve the presence of interference and packet collisions. The results show that the proposed
optimization can reduce energy consumption by more than 20% compared to simple heuristics,
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without impacting the model performance.

1.3 On distributed optimization

This section is devoted to providing the reader with the minimum required mathematical back-
ground on distributed optimization to understand the main body of this thesis. The algorithms
of the dual ascent and the Alternating Direction Method of Multipliers (ADMM) will be intro-
duced and described in a general way here whereas they will be deepened and specialized for
the specific optimization problems in chapters 2 and 3. The reader might refer to [32] for a more
complete treatment of the topic.

1.3.1 The dual ascent

The dual ascent is a widely used method to solve constrained convex problems of the type

min
xxx

f(xxx)

s.t. A1xxx = bbb1
A2xxx ≤ bbb2,

(1.3)

where xxx ∈ Rd, d ≥ 1 is the optimization variable. Thus, with the dual ascent, one can easily
handle both equality and inequality constraints. To solve this constrained problem we can resort
to the Lagrangian multipliers method, which consists of the introduction of new variables λ and
μ, namely, the Lagrange multipliers and solve the dual unconstrained problem

sup
λ,μi≥0

inf
xxx
L (xxx,λ,μ) , (1.4)

where
L (xxx,λ,μ) = f(xxx) + λT (A1xxx− bbb1) + μT (A2xxx− bbb2) (1.5)

is the Lagrangian associated to problem (1.3). Under sufficientlymild conditions, it can be proven
that problem (1.4) is equivalent to (1.3). The dual ascent algorithm solves this problem iteratively
using gradient ascent with the following steps:

xxx+ = argmin
xxx
L (xxx;λ,μ) , (1.6)

λ+ = λ+ α
(
A1xxx+ − bbb1

)
, (1.7)

μ+ = max
{
λ+ α

(
A2xxx+ − bbb2

)
, 000
}
. (1.8)

The+ operator stands for the update at the following algorithm iteration and themax in (1.8) is to
be intended element-wise. It constrains the Lagrange multiplier μi to be null if the i-th inequality
constraint is inactive at xxx+. The coefficient α is the step size and tunes the convergence speed
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and precision of the solution. It must be sufficiently small to ensure the convergence (see [33] for
more details on this).

This tool can be used as the dual decomposition in special cases where f is separable, i.e., f(xxx) =∑M
m=1 fm(xxxm), with xxxm subvectors of xxx. In this way, the primal step (1.6) becomes

x+m = argmin
xxxm

L (xxxm;λ,μ) . (1.9)

This algorithm can be used by network agents to optimize their private local objective fm when
the global objective is f. The problem is coupled by the constraints and the agents, therefore, need
to broadcast and gather the value of the Lagrange multipliers to update the price of the primal for
the following iteration. The procedure can be hence solved via message passing.

1.3.2 The alternating direction method of multipliers

TheADMMwas introduced to preserve the decomposability of the problem coming from the dual
ascent and the better convergence characterization of the method of multipliers, another ancestor.
Given two variables xxx ∈ Rn and zzz ∈ Rm, we want to solve the problem

min
xxx,zzz

f(xxx) + g(zzz)

s.t. Axxx+ Bzzz = ccc.
(1.10)

A fundamental assumption here is that the main original variable can be split in two and the
objective can be written as a sum of independent functions of these two variables. The augmented
Lagrangian associated to (1.10) is

L (xxx, zzz,λ) = f(xxx) + g(zzz) + λT (Axxx+ Bzzz− ccc) + ρ
2 ∥Axxx+ Bzzz− ccc∥2 (1.11)

and the iterative steps to solve the problem are

xxx+ = argmin
xxx
L (xxx; zzz,λ) , (1.12)

zzz+ = argmin
zzz
L
(
zzz; xxx+,λ

)
, (1.13)

λ+ = λ+ ρ
(
Axxx+ + Bzzz+ − ccc

)
. (1.14)

Hence, this algorithm consists in splitting the objective and separating the optimization in xxx and zzz,
fromwhich the name “alternating direction”. Again this method can be used in networks to solve
distributedly optimization problems via message passing. An advanced version of this, namely,
the Douglas-Rachford splitting, is detailed and specialized for the specific network problem of
Chapter 2 in this thesis.
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1.4 Thesis contributions

This thesis advances the state-of-the-art of the design, management, and operation of sustainable
MEC networks with the original contributions detailed in the following list.

• The abstract design of an edge agent comprising i) computing equipment to provide the
users with processing power, ii) a wireless communication unit to exchange data with the
users, iii) connection to wired backhaul links to offload tasks to other edge agents, and iv)
connection to the power grid and to EH devices, possibly having also the availability of an
energy accumulator (battery).

• The proposal of a fully decentralized online andpredictivemodel-based optimization frame-
work to i) plan the local execution of the jobs, ii) decide the portions to offload to neighbor-
ing servers, and iii) trade electrical energywith the power grid. This is donewith the general
objective of minimizing the carbon footprint to manage in the best possible ways the RERs
(Chapter 2).

• The design of solutions for load balancing and server consolidation (i.e., try to switch some
servers off to save further energy) (Chapter 2).

• The introduction into the systemof users’mobility in anurban vehicular scenario, increasing
the carbon footprint minimization objective with the requirement of following the mobility
patterns when possible (Chapter 3).

• A comparison study of the communication and computation overhead between solving en-
tirely distributedly the problem and performing first a local estimation of resources and
solving the global problem on average afterwards – which is the difference between the
solutions proposed in Chapters 2 and 3, respectively (Chapter 4).

More specific contributions for each chapter will be detailed therein.

1.5 Thesis organization

The main body of this thesis is organized into three chapters, presenting my main two scientific
contributions, published in international journals. Chapter 2 deals with the problem of jobs exe-
cution and offloading in a hierarchical MEC platform with servers equipped with a battery and
PV panels and further connected to the power grid [9]. Chapter 3 presents Energy-Aware job
Scheduling at the Edge (EASE), an algorithm developed for the jobs execution and migration in
urban MEC with user mobility [19]. Here the energy objective is increased with the additional
goal of following the vehicles’ trajectories during the handovers. Chapter 4 is a comparison of
the optimization and control methods used in the two works in terms of network overhead and
computational efficiency. The thesis ends by drawing some concluding remarks and outlining
future research directions with Chapter 5.
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2
Managing renewable energy resources at the

network edge

2.1 Introduction

Information andCommunication technologies have pervaded our everyday lives. Thanks to them,
we enjoy a great variety of mobile apps while we are on the go, such as exchanging audio and
video content and having our voice recognized in a snap. New applications, such as extended
reality and autonomous driving are on their way and all of these apps generate a great amount of
data. The International Data Corporation (IDC) predicts that the yearly amount of data generated
worldwide will grow 5 times and that the percentage of real-time data generated by connected
devices will reach 30% of the global data volume by 2025 (it was 15% in 2017) [34]. Most of
such data has to be processed by either cloud or network servers. In an attempt to make this
processing more efficient, a paradigm shift is occurring, going from a centralized MCC model
towards a highly distributed MEC one, where computing power, network control, and storage
are pushed to the network edge [35]. What is often ignored, is that this computation drains a
noticeable amount of energy, drastically increasing the carbon footprint of mobile networks [36].

MEC is inherently more energy-efficient than its cloud computing counterpart, as computing
units aremoved closer to theUser Equipment (UE), and, in turn, the consumption associatedwith
communicating the data to the servers is drastically reduced. Moreover, edge servers do not need
powerful cooling systems, which cause about 40% of the total energy consumption of large data
centers [37], and represent a root cause of global overheating. Despite this, MEC alone is unable
to solve the excessive energy consumption caused by computing tasks: sizeable benefits can only
be obtained through careful management of the available energy and computing resources, by
shifting theworkload over time to themore energy-efficient computingunits and, at the same time,
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taking advantage of the recent developments and portability of energy harvesting devices. The
objective is to distributedly control hybrid systems with harvesting and computing capabilities,
promoting the transition towards energy-neutral edge networks.

Hence, in the present chapter, we advocate the use of off-grid renewable energy, such as so-
lar radiation and wind, as a means to reduce the environmental impact of modern Information
Technology (IT) systems [35], and we devise new online scheduling techniques for in-network
computing tasks that are green by design. Specifically, we consider energy-hybrid MEC networks,
where edge servers are installed at the base stations (at the network edge) and are co-powered by
renewable energy sources and by the power grid. Any renewable energy surplus can be either
stored, via local energy storage devices (batteries) or sold back to the grid. The survey in [38]
deals with solar-powered BSs and their open issues and shows theworldwide distribution of such
BSs as of 2014. The industry has paid attention to this topic already for some years: LG built a
4G LTE network with self-sustained BSs in 2016 [39], and Moxa proposes market-ready hybrid
solar-grid solutions for IoT in smart-homes [40]. The Academia also recently started to build real
testbeds of hybrid-powered edge systems [41], [42].

In this chapter, computing jobs, subject to execution deadlines, are generated by access nodes
(mobile users), and our chief objective is to execute them by minimizing the amount of energy
that is purchased over time from the power grid while meeting all deadlines. Computing servers
can exchange workload (in full or in part) with their neighbors to relieve congested nodes. To
allocate computing resources at runtime, an online approach based on Model Predictive Control
(MPC) [43] with lookahead capabilities is devised, where external (exogenous) processes such
as renewable energy and job arrivals are estimated within a prediction window, and their esti-
mates are used to drive the online optimization of job schedules. A fully distributed solver for
the job scheduling problem is devised, whereby network servers iteratively solve simpler local
sub-problems communicating with their immediate neighbors, using the ADMM [32].

The main contributions of the present chapter are:

• energy efficiency is considered at all stages of our design, computing servers are equipped
with batteries for energy storage, have access to renewable energy sources, and are con-
nected to the power grid.

• Our system’s model accounts for transmission and computing resources under arbitrary
network topologies. It supports the processing of time-sensitive computing jobs with strict
execution deadlines, and workload re-distribution (load balancing).

• Twoobjective functions are devised, promoting contrasting resource allocation policy behav-
iors, namely consolidation (using as few servers as possible) and load-balancing (spreading
the load across servers). To allocate resources at runtime, we propose an online approach
based onModel Predictive Control (MPC), which uses future job and energy arrival estimates,
obtained via low-complexity predictors.

• For scalability purposes, a fully distributed iterative procedure for solving the predictive
control problem is proposed, based on the DRS algorithm.
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• The effectiveness and benefits of our predictive control policy are evaluated thanks to an
extensive simulation campaign, investigating the efficacy of the optimization goals, and the
performance of the distributed algorithm in terms of convergence rate and overall amount
of renewable energy utilized.

The proposed scheduling algorithm uses edge computing resources effectively, leading in the
best case to a decrease of 50% in the amount of renewable energy that is sold to the power grid by
heuristic policies, and that is instead utilized by the edge servers for processing. Other benefits
include server consolidation, reducing by up to 40% the number of active servers across the edge
network. These results are achieved by intelligently resorting to the cloud computing facility only
when the edge processing capacity is exceeded, and by never violating execution deadlines.

The rest of the chapter is organized as follows. Section 2.2 discusses the related works. Sec-
tion 2.3 presents the system model. The optimization problem and its distributed solution are
detailed in Sections 2.4 and 2.5, respectively. Numerical results are presented in Section 2.6, and
concluding remarks are given in Section 2.7.

2.2 State of the art

The multi-access edge computing paradigm has received considerable attention from academia
[35], [36], [44]–[46] and industry [47] alike. The typical objectives pursued by MEC resource
allocation algorithms are: minimizing power consumption, minimizing the execution delay, or
maximizing revenue. In some studies, these objectives are combined, e.g., through a weighted
sum of power consumption and delay [48]. In this chapter, we propose a distributed, online, and
adaptive optimization framework for computation load offloading in a network of edge servers,
to manage effectively the energy coming from renewable sources. We consider CPU power, trans-
mission bandwidth, and execution deadline constraints in the formulation, as only a few works
previously did, e.g., [15], [49].

Server power consumption models and how they relate to CPU load are the focus of [50]–[52].
Reducing the power consumption of such systems is beneficial for lowering both the providers’
costs and the environmental impact of the MEC infrastructure. Therefore, it is of paramount
importance to design these systems to be as energy-efficient as possible [15], [49], [53]. In [49],
a model for the allocation of processing tasks in hierarchical MEC environments is proposed,
by devising a distributed (ADMM-based) algorithm to solve the resource scheduling problem.
Although the authors consider job execution deadlines, they propose a centralized strategy for
inducing load-balancing, whereas, here, load-balancing and consolidation are a natural conse-
quence of the chosen optimization function and are obtained via a fully distributed algorithm.
Moreover, the setting of their work is static, while we propose an online and dynamic algorithm.
That is, the optimization is continuously adapted to the time-varying (exogenous) load and en-
ergy processes, exploiting a MPC based framework. The same technique with a similar system
model is used also in [15], where the authors build a dynamic, adaptive, and online resources
management scheme, but the approach here is centralized. The authors of [53] propose a Suc-
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cessive Convex Approximation (SCA) based algorithm to minimize the total mobile energy ex-
penditure for offloading augmented reality tasks under latency constraints. They allocate com-
munication and computation resources, considering the cloudlet as a single computation entity.
In contrast, we consider an edge network of distributed agents. Furthermore, our goal does not
correspond to globally minimizing the energy used by the system but to optimally exploiting the
energy coming from renewable sources at each server. Note that the two objectives do not nec-
essarily coincide: with renewables it is at times optimal to drain as much energy as possible, to
minimize the energy that goes unused, and thus lost. According to [50]–[52], moreover, the CPU
is energetically better exploited in high load conditions. In fact, under low load, most of the en-
ergy is drained to keep the CPU active. This is why we propose two optimization strategies, the
first one for load-balancing (high load) and the other one for consolidation (low load) purposes.

Several works have considered the exploitation of renewable energy sources to power edge de-
vices via EH technologies [36], [48], [54]–[57]. The authors of [48] devise an efficient reinforce-
ment learning-based resourcemanagement algorithm. Their approach is online and adaptive and
the goal is the correct management of the incoming energy arrivals. However, unlike what we do
in the present chapter, their framework requires a centralized controller, which is a strict require-
ment in edge networks. The authors of [54] and [57] investigate a green MEC system with EH
devices with equipped batteries, and develop an effective computation offloading strategy based
on Lyapunov optimization. Their approach also belongs to the class of online and adaptive policies,
but it is again centralized, and only the load-balancing objective is sought. In [36], an energy
hybrid system is deployed, where mobile devices are equipped with EH capabilities, powered by
the downlink channel. According to the heuristic scheme proposed by the authors, EH devices
are fully capable of reliably powering a small-scale edge computing prototype system, during
most (94.8%) of their experimental campaign. However, in their work, only end devices harvest
energy from the environment, and this energy does not necessarily come from renewable sources.
Conversely, in our work, edge servers are equipped with EH devices, and manage the incoming
workload from end devices in their coverage area accordingly. Nonetheless, as also highlighted
in [54] and [57], renewable energy sources are unreliable and often inadequate for fully support-
ing telecommunication networks demand. To cope with this, we propose a hybrid-energy model
integrating them with the power grid, as done in [58].

MPC-based approaches have been previously used for controlling networked systems [58]–
[62]. Data centers VMmanagement is the focus of [59], which presents an energy-aware consoli-
dation strategy. A resource management approach effectively capturing the non-linear behavior
in VM resource usage through fuzzy modeling is presented in [60]. The problem proposed in
their work, however, is NP-hard, and authors use a genetic algorithm to retrieve a satisfactory
solution. Besides being a centralized approach, it is also complex to solve. On the contrary, we
use a fast version of ADMM, finding solutions even for non-convex problems and establishing
a distributed implementation. The authors of [58] investigate how the monetary cost incurred
in the energy purchases from the power grid can be minimized by dispatching the computation
jobs to those servers that have enough energy and computation resources. However, they neither
consider execution deadlines for jobs nor propose a strategy to solve the problem in a distributed
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fashion.
In conclusion, the approaches found in the literature present the following main drawbacks:

i) most commonly, the proposed methods are centralized, or require an omniscient orchestrator;
ii) they do not adapt to varying workload intensities and arrival statistics; iii) often, they consider
load-balancing as the sole optimization metric, ignoring other objectives (such as server consoli-
dation); iv) minimization is carried out targeting the global energy consumption, which may be
suboptimal for the management of renewables in hybrid MEC systems, as it may be convenient
to drain more energy and maximize the consumption at those computing units with abundant
energy inflow. In contrast, we propose an online and predictive optimization framework based
on MPC, whose goal is to reduce the electric energy drainage from the power grid, while us-
ing the harvested energy as much as and where possible. To this end, we present a fast and
customized version of the ADMM algorithm, which makes the solution completely distributed,
using message-passing among one-hop neighbor servers.

2.3 System model

We consider aMEC network comprisingM computing entities or edge servers,M = {1, . . . ,M}, or-
ganized according to a given topology. Each node i ∈M has a set of neighboring nodes, denoted
by Ni, to communicate with.

We identify withMa ⊂ M the set of access nodes, i.e., those servers co-located with BSs that
receive job processing requests from end-users. An access node i ∈ Ma receiving a computing
request can either process locally or transfer such request (or a portion of it) to one or multiple
neighboring nodes. Once the job’s execution is completed, the computation result is sent back
to the user terminal that originated the request. In this chapter, jobs are characterized by the
computational effort they require, and by the time available for their execution. Edge servers can
partially offload jobs multiple times during the temporal window available to execute such tasks,
acting as relays. This amounts to a processing model where access nodes can:

1. process the workload locally, possibly splitting the task execution over the available time
window;

2. partially outsource jobs to neighboring servers, which will have to complete the execution
within the deadline.

In this way, the workload can be allocated across different servers, so that highly congested nodes
can relieve themselves by partially outsourcing the execution of the load towards more capable
or less congested ones.

An in-depth description of the job gathering process, as well as the execution and offloading
duties, is illustrated in the following sections. For simplicity, we assume that the system evolves
according to a discrete-time model, with slots of length Δ and indexed by variable k = 0, 1, . . . .
The notation used throughout the chapter is summarized in Table 2.1, whereas the main blocks
of the server architecture are shown in Fig. 3.2.
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Table 2.1: List of symbols used in the chapter.

Notation Description
k time slot index
N MPC prediction horizon (time slots)
Δ duration of a time slot
D set of execution deadlines (|D| = D)
M set of edge servers (|M| = M)
Ma set of access nodes
Ni set of neighbors of server i ∈ M
T set of time slots (k ∈ T , |T | = N)
sdi,k state of buffer d within edge server i at time k
si maximum amount of buffered workload at server i
ei,k amount of energy stored at server i (energy buffer state)
bi maximum battery capacity at server i
bi battery capacity threshold at server i
gi,k amount of energy exchanged with the power grid by i
odij,k CPU cycles with deadline d to be outsourced from i to j
oij maximum amount of workload exchanged from i to j
wd

i,k CPU cycles with deadline d allocated to CPU
wi maximum computing power of server i (CPU cycles/slot)

G, O,W dimensions of variables ggg, ooo, and www, respectively
hi,k amount of energy harvested by node i during slot k
tdi,k job (CPU cycles) with deadline d at server i, at time k
δEi discount factor accounting for energy decay
F Jain’s fairness index, defined in (2.37)
ε Job generation rate
φi,k load factor at server i at time k, defined in (2.15)
η efficiency metric, defined in (2.38)
Pℓ proximity operators, ℓ ∈ {1, 2}
Qℓ reflected proximity operators, ℓ ∈ {1, 2}
Tm edge network tier, m ∈ {0, 1, 2}

ξOFF
i,j , ξCPUi workload to energy consumption conversion factors

ξPUR
i,k , ξSOLD

i,k cost of purchasing (PUR) and selling (SOLD) energy
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2.3.1 Jobs gathered at access nodes

Computing tasks are collected by the access nodes i ∈ Ma and are locally executed or, alter-
natively, offloaded to other edge nodes. We abstract these generation processes by aggregating
computing tasks received by access node i with the same execution deadline d at the beginning
of time slot k into variable tdi,k. Note that tdi,k represents the number of CPU cycles that are re-
quired to complete these tasks, referred to in the following as the job intensity at time k. For any
(i, k, d), the intensity of a new job arrival is picked from a generic probability mass function, see
Section 2.3.4. We also consider a maximum deadline of D slots, and, accordingly, we denote by
ttti,k = [t1i,k, . . . , tdi,k, . . . , tDi,k]T the column vector containing the generated workload for all possible
execution deadlines d ∈ D = {1, 2, . . . ,D} at node i and time k.

According to our model, each new job has an associated execution deadline d, which means
that, from the time slot in which the job arrives, the system has at most d slots available to execute
it. So, if a job with deadline d arrives at time slot k, it will have to be executed anytime before slot
k+d. A time-sensitive service is one that provides some delay guarantees, either in a probabilistic
or deterministic sense. In this work, we adopt a deterministic approach, by requiring the strict
execution of the job before the associated deadline expires. Note that the generated workload ttti
enters the system at the beginning of a new time slot and, for the control framework, can either be
considered as a disturbance or estimated. Note that the external process ttti is instantaneous, i.e., it
collects new arrivals for the current slot only. Nonetheless, once jobs enter the system, theymodify
the state equation according to Eq. 2.1, using resources until either the task has been processed or
has expired. We remark that jobs are heterogeneous as their intensity is allowed to vary for each
node, at each time slot, and for each deadline. Further details on the stochastic model governing
the arrivals are provided in Section 2.3.4.

2.3.2 Edge server architecture

Each edge server i (see Fig. 3.2) has a maximum storage capacity si, representing the maximum
amount of buffered workload at the node, and a processing rate wi, representing the number of
CPU cycles per time slot that can be executed (Table 2.1). These quantities are free to vary across
servers.

The computational power of server i is shared by:

i. newly generated jobs that are neither offloaded nor backlogged (in case of an access node),

ii. the jobs offloaded from neighboring nodes, and

iii. backlogged jobs (previously arrived and temporarily kept in a queue for later processing).

Further, jobs can be partially offloaded or backlogged, and they also have to meet a certain ex-
ecution deadline. This suggests grouping the load at edge servers according to the remaining
slots available before the deadline d. That is, the buffered workload is organized according to its
remaining lifetime d before the deadline expires. We conveniently model an edge server using D
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Figure 2.1: Edge server architecture. Edge servers are co-located with the access points at BSs, and
directly receive jobs from end devices. The servers can process the incoming workload locally or offload it
to other servers. They are also equipped with a battery, which is charged by the energy harvested from the
environment (hi). Besides, the energy unit is also connected to the power grid, allowing the purchase and

sale of energy (gi).

buffers, where each buffer is devoted to meeting a specific deadline d, as depicted in Fig. 2.2. Ac-
cordingly, we define as sdi,k the buffer’s state, corresponding to the backlogged jobs for edge server
i ∈ M with deadline d at the beginning of time slot k, and we collect this information in column
vectors sssi,k = [s1i,k, . . . , sdi,k, . . . , sDi,k]T.

The time evolution of vector sssi,k depends onwhether the jobs (or portions thereof) are executed
locally, if they are backlogged, or transferred elsewhere, as well as on the locally generated jobs ttti,k.
To precisely model these interactions we distinguish between:

a) Local execution: edge server i must decide the amount of workload to process at each time
slot k: we denote by wd

i,k the amount of CPU cycles requested by tasks collected in buffer d
that edge server i locally processes in time slot k.

b) Offloading: edge server i can offload a portion of a backlogged task to a neighboring node:
we denote by odij,k the amount of computing tasks (CPU cycles) that edge server i transfers
to its neighbor j from buffer d in time slot k. We also assume that the expiring backlogged
workload, with a deadline of d = 1, cannot be offloaded.

Hence, the equation governing the buffer state evolution at server i from time k to k+ 1 reads as

sd−1
i,k+1 = sdi,k + tdi,k︸︷︷︸

locally generated

−

locally executed︷︸︸︷
wd

i,k +
∑
j∈Ni

odji,k︸ ︷︷ ︸
offloaded here

−

offloaded elsewhere︷ ︸︸ ︷∑
j∈Ni

odij,k , (2.1)

for d ∈ D/{1}, andwherewe further assume that sDi,k+1 is only fedwith locally generatedworkload.
Note that in (2.1)we explicitly account for the tasks locally generated at the access node, tdi,k where
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Figure 2.2: Detail of workload buffers. At each server i, workload can be received from a neighbor
(oooji,k) or generated locally (ttti,k). The incoming workload is sent to the appropriate buffer, according to its

execution deadline. Workload wwwi,k is executed locally, whereas oooij,k is offloaded to a neighbor server.

tdi,k = 0 if i ̸∈ Ma, the tasks that are locally executed, wd
i,k, those incoming from neighboring nodes,

odji,k, and the amount of workload that is outsourced odij,k.
By exploiting the shift-by-one-position binary matrix

TTTD =


0 1

. . . . . .
0 1

0

 (2.2)

of sizeD×D, having ones in the sup-diagonal and zeros elsewhere, (2.1) can be compactly rewrit-
ten in vector form as

sssi,k+1 = TTTD

(
sssi,k + ttti,k − wwwi,k +

∑
j∈Ni

(
oooji,k − oooij,k

))
, (2.3)

where wwwi,k, oooij,k, and oooji,k are vectors collecting all the offloading and local processing decision
variables for the D buffers. Refer to Fig. 2.2 for a pictorial representation of the relations between
these variables.

2.3.3 Energy consumption model

Edge nodes are equipped with energy harvesting capabilities. In particular, each node can collect
energy from a renewable energy source and store it in a local energy buffer. The use of renew-
able energy from an energy source different than the co-located one is not possible. Due to the
unreliable nature of such energy sources, each edge node is also connected to a power grid, from
which it can purchase the energy needed to support its operations at all times or even sell excess
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energy.
The energy buffer state ei,k, k = 0, 1, . . . , at node i ∈M evolves according to

ei,k+1 = δE
i ei,k + hi,k + gi,k −

∑
j∈Ni,d∈D

ξOFF
ij odij,k −

∑
d∈D

ξCPU
i wd

i,k (2.4)

where:

• δE
i ∈ [0, 1] is a discount factor accounting for the natural energy decay in the battery;

• hi,k represents the (random) amount of energy harvested from the environment, which is
either known or, more realistically, estimated;

• gi,k represents the energy exchanged with the grid, namely, purchased if gi,k > 0, or sold to
the grid if gi,k < 0;

• ξOFF
ij and ξCPU

i respectively represent the conversion factors between the offloaded and locally
processed workloads, and the energy required by such processing.

2.3.4 Job and energy arrivals: dynamics and prediction

As for the characterization of the amount of harvested energy hi,k and aggregated amount of com-
puting jobs tdi,k that enter the system, we rely on (correlated) Markov chains (MC) with parame-
ters that can be customized per node i (energy/workload), and buffer d (workload only). Arrivals
are modeled via two-state discrete time MC (ON-OFF behavior). Accordingly, each workload
buffer d can receive at most one aggregate computing job per time slot. If at the beginning of time
slot k the chain associated with buffer d at node i is in the OFF state, the job intensity is tdi,k = 0 for
this buffer. Instead, in the ON state the job intensity tdi,k is randomly picked from a state-specific
discrete probability mass distribution (pmd). The harvested energy process is generated analo-
gously.

Prediction is a key ingredient for an MPC framework. Next, we introduce three forecasting
strategies, entailing different degrees of knowledge about the generation processes.

i. Genie predictor (ideal). Arrival times and job intensities are known for all past and future
time slots; this predictor is used to derive an upper bound on the achievable performance.

ii. MC-unroll predictor. This predictor knows the statistical model governing the job arrivals,
i.e., the MC transition matrix, and also the pmd governing the intensities tdi,k. Then, a se-
quence of job arrival estimates for the future time slots k + 1, k + 2, . . . is obtained as a
realization of the corresponding MC over these future time slots, starting from the MC’s
current state. Arrival intensities tdi,k are sampled from the pmd in the ON state.

iii. i.i.d. predictor. Let us define the average probability of observing an arrival (in any arbitrary
time slot) as f̂

MC

i , and the average intensity of arrivals as pMC
i (expected pmd value). Once

these quantities are known, ormore realistically estimated, predictions over future time slots
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can be obtained as a realization of an i.i.d. process generating an arrival with probability f̂
MC

i
and with intensity pMC

i , and no arrivals with probability 1− f̂
MC

i .

2.4 Problem formulation

2.4.1 Model predictive control framework

The system state equations (2.3) and (2.4) constitute the backbone for an MPC framework [43]
which predicts the system state in the next N time steps (the prediction horizon), controlling the
scheduling of the incoming and outgoing workloads, as well as the amount of energy purchased
and sold. The computed input is applied immediately at the following step k+1 and the procedure
is repeated, updating the system state with newmeasures every time. This approach is known as
receding horizon.

For notation simplicity, in the following, we assume that the reference time slot is k = 1, so
that the time slots of interest for MPC are those with k ∈ T = {1, . . . ,N}, and the implemented
decisions are those at slot k = 1, namely, for each server i: a) the amount of workload to be
executed locally wwwi,1; b) the workload oooij,1 to offload towards neighbor nodes j ∈ Ni; and c) the
amount of energy gi,1 that is to be either purchased from or sold to the power grid.

Details on the optimization problem that must be solved under the said MPC framework are
given in the following sections.

2.4.2 Workload buffers evolution

We preliminarily generalize (2.3) in a form that projects the buffers’ state forward in time by n
time slots. By iterated application of (2.3), we obtain

sssi,k+n = TTTn
Dsssi,k +

n−1∑
m=0

TTTn−m
D

(
ttti,k+m − wwwi,k+m +

∑
j∈Ni

(oooji,k+m − oooij,k+m)

)
, (2.5)

where control actions are taken and job arrivals occur during time slots k, k+ 1, . . . , k+ n− 1.
We compactly write (2.5) by stacking vectors and matrices over the prediction horizon N. To

this aim, we collect buffers’ states in the column vector sss = {{sssi,k+1}k∈T }i∈M in such a way that
the information of node i = 1 is placed atop, followed by the information of node i = 2, etc. We
do similarly for the newly generated workload, ttt = {{ttti,k}k∈T }i∈M, the locally executed workload,
www = {{wwwi,k}k∈T }i∈M, and the offloaded workload, ooo = {{{oooij,k}k∈T }j∈Ni}i∈M. With this notation
in mind, the buffer state evolution (2.5) over the prediction horizon, and for the whole network,
is expressed by the linear relation

sss = AAAwsss1 + BBBw(ttt− www+ CCC′
wooo− CCC′′

wooo) , (2.6)

where sss1 = {sssi,1}i∈M collects the initial states of all buffers (memory), whileAAAw, BBBw,CCC′
w, andCCC′′

w are
appropriate matrices that can be deduced from (2.5). Specifically, CCC′

w and CCC′′
w are binary matrices
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that respectively collect the sums for j ∈ Ni in (2.5). Instead, for matrices AAAw and BBBw, we have

AAAw = IIIM ⊗
( N∑

k=1
eeek,N ⊗ TTTk

D

)
, (2.7)

BBBw = IIIM ⊗
( N∑

k=1
TTTk−1
N ⊗ TTTk

D

)
(2.8)

where ⊗ is the Kronecker matrix product, IIIM is the identity matrix of order M, and eeek,M is its kth
column.

We observe that, according to the MPC approach, in (2.6) the state variable sss1 is assumed to be
known, and, similarly, the newly generated workload ttt is assumed to be known in the reference
time slot (entries ttti,1) and estimated for future time slots (entries ttti,k for k > 1). When estimates for
the future generatedworkload are not available, they can be neglected and treated as disturbances,
i.e., ttti,k = 0 for k > 1. Instead, the locally executed workload, www, and the offloaded workloads, ooo,
play the role of optimization variables.

Some side constraints that govern the behavior of (2.6) further need to be formalized.
Positive bounds: workloads are, by definition, positive quantities, that is

wd
i,k, odij,k ≥ 0 (2.9)

for each node i ∈ M, neighbor node j ∈ Ni, and buffer d ∈ D, and through the entire time span
k ∈ T .
Offloading bounds: the amount of workload exchanged between nodes can be upper bounded
(due to the physical transmission constraints). We therefore assume∑

d∈D/{1}
odij,k ≤ oij (2.10)

for each node i ∈M, neighbor node j ∈ Ni, and slot k. We assume, for analytical tractability, that
the amount of transferred data is proportional to theworkload exchanged o. With this assumption,
this bound acts as a rate constraint.
Buffer bounds: the amount of workload buffered at each node i ∈M is bounded as

0 ≤ sdi,k ≤ si . (2.11)

Workload conservation: for each node i ∈ M and buffer d ∈ D/{1} the workload conservation
inequality

wd
i,k +

∑
j∈Ni

odij,k ≤ sdi,k + tdi,k (2.12)

applies, which ensures that nodes can process or offload only the existing workload, i.e, the back-
logged (sdi,k) or the newly generated (tdi,k) one. This corresponds to the assumption that the of-
floaded workload odij,k takes a full-time slot to be delivered to node j, and it will therefore be avail-
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able for execution (in buffer d− 1) starting from time k+ 1. Thus, workload offloading delays the
execution of at least one time slot.
Forced execution: as stated above, we force edge nodes to process expiring tasks, i.e., tasks with
just a time slot available before their deadline expires. Hence, workload offloading from buffer
d = 1 is prohibited. We therefore assume

w1
i,k = s1i,k + t1i,k , o1ij,k = 0 (2.13)

for every node i ∈M, neighbor node j ∈ Ni, and slot k.
Processing capacity: if we assume that an edge server has finite computing capabilities, that is, a
total computational power of wi CPU cycles per time slot, then it must hold∑

d∈D

wd
i,k ≤ wi (2.14)

for every edge server i ∈M and time slot k. We remark that (2.14) and (2.12), together with (2.9),
upper bound the amount of workload that can be moved across nodes, o, and locally executed, w.

Based on the processing capacity, the load factor of server i in slot k is

φi,k =

∑
d∈D wd

i,k
wi

. (2.15)

Note that 0 ≤ φi,k ≤ 1.

2.4.3 Energy buffers evolution

The evolution of the energy buffers (2.4) can be tracked similarly. In this case, the vectors of
interest are the energy buffer states eee = {{ei,k+1}k∈T }i∈M, the initial state eee1 = {ei,1}i∈M, the
harvested energy vector hhh = {{hhhi,k}k∈T }i∈M, and the exchange with the grid ggg = {{gggi,k}k∈T }i∈M.
The evolution over the prediction horizon is again expressed as a linear relation,

eee = AAAeeee1 + BBBe(hhh+ ggg− CCC′
eooo− CCC′′

e www) (2.16)

where ggg, ooo, and www play the role of optimization variables, eee1 is known, and hhh is known at time slot
k = 1 and is estimated for k > 1. In addition, the matrices AAAe and BBBe in (2.16) assume a form
similar to that of (2.7), namely

AAAe = IIIM ⊗
( N∑

k=1
(δE

i )
k eeek,N

)
(2.17)

BBBe = IIIM ⊗
( N∑

k=1
(δE

i )
k TTTk−1

N

)
(2.18)
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while CCC′
e and CCC′′

e are binary matrices collecting the two sums of (2.4). The only constraint that is
needed in this case is the following one.
Energy bounds: we require that the energy buffer updates ei,k+1 be limited by themaximumbattery
capacity bi, and a minimum working threshold bi, that is

bi ≤ ei,k+1 ≤ bi (2.19)

for every edge server i ∈M and time slot k ∈ T .

2.4.4 Objective functions

To facilitate the reader in following the flow of the Chapter, we recall here the meaning of the op-
timization variables used in the formalization of the optimization problem. i) ggg is the amount of
electrical energy traded with the power grid; ii) ooo is the quantity of workload offloaded to neigh-
boring servers; iii)www is the quantity ofworkload executed locally. As aforementioned,MPC solves
at every time step an optimization problem for every node i ∈ M, minimizing some predefined
cost which is a function of the current measured state and of the inputs to be optimized. We iden-
tify this cost with J(ggg, ooo,www) to underline its dependence on the global optimization variables. For
the same reason, (2.6) will be denoted more explicitly in the form sss(ooo,www), and (2.16) in the form
eee(ggg, ooo,www). This leads to the centralized optimization problem

P1 : min
ggg,ooo,www

J(ggg, ooo,www) (2.20)

s.t. (2.9)− (2.14), and (2.19) hold,

to be solved to find the resource allocation over the prediction horizon N.
In this chapter, two processing cost functions are compared: a quadratic and a logarithmic

one, the latter leading to a non-convex optimization problem. These have different purposes and
should be seen as complementary. Whether to choose the quadratic or the logarithmic one is up to
the service provider, as they force the system to behave in opposite manners. The quadratic func-
tion promotes load balancing, whereas the logarithmic one promotes consolidation, i.e., reduces,
as much as possible, the number of active servers.

For both functions, the importance of the workload buffers cost minimization concerning the
operation cost is tuned through the parameter γ ∈ [0, 1].
Quadratic cost function. Writing the dependency on the time slot k as a subscript, the quadratic
cost is compactly expressed as

J(ggg, ooo,www) = (1− γ)∥sss(ooo,www)∥2QQQs
+ γ
(
Re(ggg) + ∥ooo∥2RRRo + ⟨rrro, ooo⟩+ ∥www∥

2
RRRw

)
, (2.21)

where ∥xxx∥2QQQ = xxxTQQQxxx denotes a weighted norm, and ⟨·, ·⟩ denotes the inner product. All matrices
QQQ and RRR are positive semidefinite (and, typically, diagonal), and collect the workload buffering
cost (QQQ), and the energy cost of transmissions (RRRo) and processing (RRRw), respectively. To better
explain, let us consider a fully-connectedmesh network, and let ooo contain the amount of workload
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odij that is transmitted from server i to server j, expressed in vector form as

ooo = [o111, . . . , o11M, o121, . . . , o12M, . . . , o1M1, . . . , o1MM,

, o211, . . . , o21M, o221, . . . , o22M, . . . , o2M1, . . . , o2MM, . . . ,

, oD11, . . . , oD1M, oD21, . . . , oD2M, . . . , oDM1, . . . , oDMM]
T,

where M is the number of servers. If matrix RRRo is diagonal, then its element (RRRo)ℓℓ ≥ 0, ℓ ∈
{1, . . . ,M2D}, represents the cost of transmitting one unit of flow odij from buffer (deadline) d =

⌊(ℓ− 1)/M2⌋+ 1 from server i to server j, where

i = ⌊(ℓ− (d− 1)M2 − 1)/M⌋+ 1
j = [(ℓ− (d− 1)M2 − 1) mod M] + 1.

Non-diagonal cost matrices allow defining correlated cost components for the same sources ℓ or
destinations m. The same approach and considerations hold for matrix RRRw.

The linear term with cost rrro is an L1-norm penalty on transmissions that is added to promote
a spare use of channel resources. The cost Re(ggg) of the energy exchanged with the power grid
takes the piecewise linear form

Re(ggg) =
∑

i∈M,k∈T

Ri,k(gi,k) , Ri,k(x) =

ξPUR
i,k x, x ≥ 0
−ξSOLD

i,k x, x < 0
(2.22)

wherewe assume 0 < ξSOLD
i,k < ξPUR

i,k , to prioritize the use of the energy harvested over that purchased
from the power grid.

The choice of a quadratic operation cost naturally induces load balancing in the system, acting
as L2-norm regularizer. Note that, under the cost function (2.21), P1 can be solved in a central-
ized manner using a constrained Quadratic Programming (QP) solver. As a matter of fact, the
constraints in (2.20) are all linear, all the weighted norms in (2.21) have a quadratic expression
thanks to the fact that (2.6) and (2.16) are linear, and the energy cost in (2.22) can be expressed
in a linear form by separating ggg into its positive and negative contributions, that is ggg = ggg+ − ggg−
andRe(ggg) = Re(ggg+) +Re(−ggg−), with the additional linear constraints ggg+ ≥ 000 and ggg− ≥ 000.

Logarithmic cost function. The intuition behind the choice of a logarithmic (non-convex) cost
function is that it directly produces sparse solutions, promoting server consolidation. Because
this function is superlinear in the proximity of the zero, a sleeping server will prefer to offload the
workload to an already working neighbor if it can avoid turning its processing unit on. With the
same notation employed for the quadratic cost, the logarithmic objective function is defined as

J(ggg, ooo,www) = (1− γ)⟨qqqs, sss(ooo,www)⟩+ γ
(
Re(ggg) + ⟨rrro, ooo⟩+

∑
i∈M

log(1+ ⟨rrrw,i,wwwi⟩)
)
, (2.23)

where qqqs is the vector of workload buffers costs, whereas rrro and rrrw respectively represent the
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energy cost of transmitting and processing a unit of workload. These vectors are the counterparts
of matrices RRRo and RRRw defined above: they allow customizing the transmission cost for each link
and the processing cost for each server. Note that the cost function in (2.23) is non-convex and,
in turn, heuristic methods must be used to solve the associated optimization problem.

2.5 Decentralized problem solution

2.5.1 Background on Distributed Optimization

In this thesis, message passing techniques are used, as they nicely suit the considered distributed
network setup. In these frameworks, network agents exchange partial computation outputs with
their immediate (one hop) neighbors using (sub)gradient methods, where local gradient descent
steps are combinedwith consensus averaging. Among these techniques, ADMM[32] has recently
received considerable attention as an effective method to solve networked optimization problems
by iteratively applying simple optimization steps, while ensuring good convergence properties
(speed and stability) at both local and global level [63]–[65]. ADMM is in close relation with,
and in many cases equivalent to, a large number of alternative approaches, e.g., Douglas-Rachford
splitting, proximal point algorithms, and the split Bregman algorithm [63], [64]. With these algo-
rithms, the required level of coordination among network agents depends on factors such as the
considered decomposition strategy and the underlying graph (communication) topology [65],
[66]. Additionally, ADMM-like strategies can be heuristically used to deal with non-convex prob-
lems [32], [67].
Distributed MPC. Controlling networked systems of agents (servers) is common tomany engineer-
ing problems of interest, and previouswork investigating distributed procedures for solvingMPC
(here referred to as Distributed MPC (D-MPC)) can be found in [66], [68], [69]. In [68], differ-
ent algorithms are compared in terms of convergence speed, number of messages exchanged, and
distributed computation architecture. The authors of [66] propose an ADMM-based algorithm
to solve the D-MPC problem, and the effects of prematurely terminating the iterative ADMM
procedure are investigated in [69].

In this chapter, a customized DRS of the centralized MPC problem defined in (2.20) is derived,
optimizing a convex and a non-convex cost function in a distributed fashion over a given topology.

2.5.2 ADMM framework for scheduling computing jobs

The centralized problem P1 in (2.20) can be solved in a distributed fashion, provided that we split
the cost function and the constraints into node-dependent contributions that rely on separate
entries (i.e., a partition) of the global optimization variables. This can be obtained by duplicating
the offloaded workloads ooo in the pair (ooo, ooõ), where ooõ = ooo, that is, by considering the optimization
vector

xxx = [ggg; ooo; ooõ;www] (2.24)
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and the associated sub-space
X = {xxx|ooõ = ooo} , (2.25)

which identifies an added linear constraint to be solved. Accordingly, the cost functions and the
linear constraints in (2.20) must be slightly modified to obtain the said separation. This simply
requires replacing odij,k with õdij,k throughout the expressions of Section 3.5, in such a way that what
is offloaded elsewhere is associated with variables ooo, and what is offloaded from somewhere else is
associated with the duplicated variables ooõ. With this idea in mind, the state update expression
(2.6) assumes the alternative form

sss(xxx) = AAAwsss1 + BBBw(ttt− www+ CCC′
wooõ− CCC′′

wooo) , (2.26)

while the energy buffer update (2.16) is not modified (since it does not use ooõ). Also, the con-
straints (2.9)-(2.14) and (2.19), as well as the cost expressions (2.21) and (2.23), are not modified
but for the fact that state variables now exploit (2.26). Hence, problem P1 can be rewritten in the
equivalent form

P2 : min
xxx

J(xxx) (2.27)

s.t. xxx ∈ X
xxx ∈ Y = {xxx|(2.9)− (2.14) and (2.19) hold}

where the linear constraints of problem (2.20) are collected in the (linear) sub-space Y .

2.5.3 ADMM algorithm

P2 in (2.27) is a large scale optimization problem whose complicating constraints xxx ∈ X and
xxx ∈ Y make it non-separable in simple local sub-problems. However, it can be parallelized by
duplicating variable xxx in a form that separates the complicating constraints, and that is amenable
to distributed implementation by using ADMM.

Specifically, the reference problem for distributed processing is equivalently rewritten in the
form

P3 : min
xxx

J(xxx1) + IY(xxx1)︸ ︷︷ ︸
f1(xxx1)

+ IX (xxx2)︸ ︷︷ ︸
f2(xxx2)

(2.28)

s.t. xxx1 = xxx2

where

IX (xxx) =

0 if xxx ∈ X ,

+∞ otherwise .
(2.29)

is the indicating function of set X .
The solution to (2.28) is here obtained via ADMM,which finds a saddle point of the associated
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augmented Lagrangian through a minimization that alternates between the direction of xxx1 and
xxx2. The specific approach that we use is the so-called scaled variable ADMM (e.g., see [63], [64]),
illustrated in Algorithm 2.1, where the + sign denotes an updated variable, ρ and q are tuneable
parameters that control the convergence speed, and

Pℓ(uuu) = argmin
xxx

fℓ(xxx) +
ρ
2 ||xxx− uuu||2 , (2.30)

with ℓ = 1, 2, are proximity operators.

Algorithm 2.1 Scaled variables ADMM
1: xxx+1 = P1(xxx2 − λ) ▷ minimize with respect to xxx1
2: yyy+ = 2qxxx+1 + (1− 2q)xxx2 ▷ scale variables
3: xxx+2 = P2(yyy+ + λ) ▷ minimize with respect to xxx2
4: λ+ = λ+ yyy+ − xxx+2 ▷ update Lagrange multipliers

Nicely, the proximity operator (2.30) with ℓ = 2 assumes the simple form

P2(uuu) = argmin
xxx∈X

ρ
2 ||xxx− uuu||2 = LLLX · uuu (2.31)

where LLLX is the projector associated with the subspace X , which extracts the component of uuu that
lies on X , and, accordingly, removes the component orthogonal to X . We have

LLLX =


IIIG

1
2 IIIO

1
2 IIIO

1
2 IIIO

1
2 IIIO

IIIW

 , (2.32)

where G, O, and W are the dimensions (lengths) of, respectively, ggg, ooo, and www. Note that (2.32) is
a projection operator that allows extracting an average value from ooo and ooõ.

Instead, the proximity operator (2.30) with ℓ = 1 takes the form

P1(uuu) = argmin
xxx∈Y

J(xxx) + ρ
2 ||xxx− uuu||2 (2.33)

which, thanks to choice (2.24), is a separable form that corresponds to a number of local problems
of reduced dimension, which can be solved in parallel. Specifically, the local problem at the ith
edge server uses the (1 + (1 + 2|Ni|)D)N ≃ 2|Ni|DN variables xxxi = {gi,k, {oooij,k, ooõji,k}j∈Ni ,wwwi,k}k∈T ,
which store the information available locally, and can be written in the form

P1,i(uuu) = argmin
xxxi∈Yi

Ji(xxxi) +
ρ
2 ||xxxi − uuui||2 , (2.34)

where Yi collects the constraints (2.9)-(2.14), and (2.19) for the ith node, and Ji(·) is the cost con-
tribution ((2.21) or (2.23)) of node i.
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2.5.4 Douglas-Rachford splitting version

By further defining the reflected proximity Qℓ operators

Qℓ(uuu) = 2√ρPℓ(uuu/
√ρ)− uuu , (2.35)

Algorithm 2.1 can be equivalently rewritten in the extremely compact form of Algorithm 2.2,
namely a DRS counterpart that tracks the unique variable zzz =

√
ε(yyy+ + λ) (see details of this

formalization in [64]). The explicit relation with the system variables is in this case

xxx+1 = P1(Q2(zzz)/
√ρ) , xxx2 = P2(zzz/

√ρ) . (2.36)

Algorithm 2.2 Douglas-Rachford Splitting counterpart
1: zzz+ = (1− q)zzz+ qQ1(Q2(zzz))

InAlgorithm 2.2, q ∈ [0, 1], zzz is the global version of the variables zzzi = {γi,k, {σij,k, σ̃ji,k}j∈Ni ,ωi,k},
where γi,k, σij,k, σ̃ji,k and ωi,k respectively correspond to the projections of gi,k, oooij,k, ooõji,k and wwwi,k,
upon applying the transformation (2.36). Algorithm 2.2 works on a unique state variable zzz, as op-
posed to the three state variables of Algorithm 2.1, namely, xxx1, xxx2, and λ, hence it is to be preferred
from a computational perspective, also because the computational complexities of operators Pℓ

and Qℓ is identical. In addition, we empirically verified that, despite its simplicity (or, possi-
bly, because of it), Algorithm 2.2 shows improved numerical stability, which represents a further
added value. Type-II Anderson acceleration is also added, to reduce the number of iterations for
reaching convergence. It is a higher-order acceleration technique that computes the new optimal
direction of the variable zzz considering a linear combination of all the stored values back in time
up to a certain memory limit (see A2DR [70] for further details).
Stopping criterion. The variable zzz, which, as aforementioned, is the only one tracked, carries in-
formation from both the primal and the dual residuals. Therefore, a suitable method is to fix the
desired threshold zobj, and stop when ||zzz+ − zzz|| < zobj. Besides evaluating the residuals, we also
compute the current objective function value, and put a further threshold on the relative differ-
ence concerning the previous iteration:

∣∣∣ f(xxx1)f(xxx+1 )

∣∣∣− 1 < fobj.

2.5.5 Convergence properties

Quadratic cost function: when the quadratic objective function of (2.21) is used, (2.33) amounts
to solving a convex quadratic problem with linear constraints. Any QP solver can be used to
obtain local updates and the algorithm is ensured to converge linearly (e.g., see [63]) thanks
to the fact that functions fℓ(xxx) are proper, lower semicontinuous, and convex. Interestingly, the
convergence speed can be tracked by observing the behavior of ∥zzz+ − zzz∥, which is guaranteed to
strictly decrease [64].
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Logarithmic cost function: when, instead, the non-convex logarithmic cost function (2.23) is used,
then the target function in (2.33) assumes a form proportional to J(xxx) = pppTxxx+

∑
i∈M log(1+ qqqTi xxx),

which is a concave function, for some values ppp and qqqi, i ∈ M. In this case, a suitable method to
control convergence is provided by [67], which uses DC programming with linear approxima-
tion. Specifically, convergence is ensured under weak assumptions if the cost function in (2.33)
is replaced by its convex (actually, linear) part, using the first order Taylor expansion, namely,
by J̃(xxx) = pppTxxx+

∑
i∈M qqqTi xxx/(1+ qqqTi xxx1/

√ρ), where we used the newly introduced (and compact)
notation, and where we dropped the constant terms since they do not play any role in the mini-
mization. With this approach in mind, the local problems are quadratic at every iteration and a
QP solver can be used also in this case.

2.5.6 Final distributed algorithm

Algorithm 2.2 is expressed in compact form thanks to the reflected proximity operators defined
in (2.35). The final algorithm is written from a server perspective in Algorithm 2.3. Lines 7-8 of
Algorithm 2.3 represent the only local exchange of information that is required at each iteration,
while the remaining operations are performed locally. Specifically, line 9 corresponds to using
operator Q2(σij) = 2P2(σij)− σij = σ̃ij, with P2(σji) = (σij + σ̃ij)/2, and, analogously, Q2(σ̃ji) = σji.
This means that the projected offloading variables of node i, σij (from i→ j), must take the value
of σ̃ij (indicating, at neighbor j, what is taken from i). Lines 10-11 correspond to using Q1, as
well as extracting xxx+1 according to (2.36). On line 14, the Anderson acceleration (A2DR in [70])
is applied, considering all the values of zzzi from a circular buffer Z, of fixed length.

2.6 Numerical results

2.6.1 Simulation scenario and parameters

Scenario

As a reference scenario, we consider the three-tier network of Fig. 2.3, with tiers T0, T1, and T2. At
tierT0, IoT nodes and other end devices generateworkload according to theMarkovian generation
process described in Section 2.3.4. For job arrivals, we consider bursts of length b = max(3, ε/(1−
ε)), with ε being the generation rate. Energy arrives in bursts of a fixed average length of 50 slots,
following a correlated generation process with εe = 0.6. Data that needs processing is sent to
the closest access server in tier T1, where the actual optimization takes place. The results that
follow, have been obtained averaging over 10 randomly generated networks, each with M = 16
servers. Network connectivity graphs are obtained by independently generating two undirected
and connected graphs with a low average degree, one for T1 servers, with 12 nodes, and the other
one for T2 servers, with 4 nodes. Moreover, T1 servers have either a directed connection to one
(and only one) server of layer T2, with probability p = 0.5, or no connections to T2 servers (prob.
1−p). Accordingly, the workload can be only sent from T1 to T2 servers, but it cannot be sent back

32



Algorithm 2.3 MPC based allocation of processing tasks

1: Input: convergence parameters ρ and q, stopping threshold fobj and zobj, cost function J (or J̃),
buffer Z of fixed length

2: Output: workload allocation for the current step
3: initialize: zzz = 000, xxx = 000, fcur =∞, zcur =∞
4: while fcur > fobj or zcur > zobj do
5: for all nodes i in N do
6: zzzoldi ← zzzi
7: transmit entries σij and σ̃ji to neighbors j ∈ Ni
8: receive entries σji and σ̃ij from neighbors j ∈ Ni
9: σij ← σ̃ij and σ̃ji ← σji ▷ apply Q2
10: xxxi ← P1(zzzi/

√ρ) ▷ solve problem (2.33)
11: zzzi ← 2√ρ xxxi − zzzi ▷ complete Q1
12: zzzi ← (1− q)zzzoldi + qzzzi ▷ combine with zzzoldi
13: add zzzi to buffer Z
14: zzzi ← A2DR(Z) ▷ Anderson acceleration [70]
15: end for
16: fcur ← J(xxx)
17: zcur ← ∥zzz− zzzold∥
18: end while
19: locally allocate workload at slot k = 1 using xxxi

to tier T1. Any computation resource can redirect data and workload to the cloud if the required
processing cannot be performed on time by the edge server infrastructure.

The simulation parameters, listed in Tab. 2.2, are typical of image processing tasks. We consider
T2 servers twice as powerful as T1 servers, and with a double transmission rate as well. The har-
vested energy covers on average 30% of the maximum computation power of each server. Nodes
are also equipped with a small energy buffer, that is kept above 25% of the maximum capacity,
i.e., ei,k ≥ bi = 0.25× b̄i, ∀ k, purchasing energy from the power grid if necessary, and selling it if
the residual harvested energy exceeds b̄i.

The simulation environment is entirely realized in Python 3 and built from scratch for this
work.

Evaluation metrics

Jain’s fairness index. To assess the load balancing capability of job scheduling solutions, we use
Jain’s fairness index,

F(φ) =
(∑

i∈M φi
)2

|M|
∑

i∈M φ2
i
, (2.37)

where φ = {φi}i∈M collects the servers load factors, see (2.15), averaged across the whole simu-
lation horizon.
System efficiency. We respectively define Eh and Ep as the total amount of energy harvested and
the total energy purchased by the power grid. The ratio ηe = Eh/(Eh + Ep) is a measure of energy
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T0

T1

T2

Cloud

Figure 2.3: Three-tier network. The three tiers T0, T1 and T2 comprise devices generating workload (e.g.,
IoT nodes and mobile terminals), edge servers, and more powerful edge servers, respectively. Besides,

edge servers can also fall back to the cloud computing facility.

efficiency. In fact, ηe = 1 if Ep = 0, i.e., if the system is operated by solely exploiting the energy
harvested, whereas ηe < 1 if Ep > 0. WithWedge, wemean the total amount of workload processed
by the edge servers in tiers T1 and T2, and with Wcloud we indicate the total amount of workload
that is sent to the cloud computing facility. The ratio ηw = μ1Wedge/(μ1Wedge + μ2Wcloud)weights
the capability of the computing infrastructure of handling all processes at the network edge and
ηw = 1 only if Wcloud = 0. The scaling factors μ1 and μ2 translate the amount of workload into
the associated energy consumption. As we also want to assess the allocation fairness, the total
efficiency metric is defined as

η = ηe × ηw × F(φ) . (2.38)

For our results, we used μ2 = 5μ1, as the carbon footprint of cloud computing is usually higher
than that of edge servers, mainly due to the energy-hungry cooling systems that are used at the
cloud [37]. Note that 0 ≤ η ≤ 1 and η = 1 only when the system solely uses harvested energy,
executes all the tasks inside the edge network, and the workload is perfectly balanced across the
edge servers.
Duty cycle. It is the fraction of time during which a server is switched on. It is defined, for every
server i ∈ M as the number of time slots τi in which the server is active, divided by the total
number of slots T, namely,

Di =
τi
T . (2.39)

Low complexity heuristic

for benchmark purposes, we consider a simple and yet reasonable heuristic, as follows: i) edge
servers execute workload locally in ascending order of their deadlines, without offloading data
until the maximum computing capacity is reached. ii) If the amount of workload allocated to
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Table 2.2: Summary of simulation parameters

General parameters
simulations length 1050 slots
transient discarded 50 slots
number of workload buffers D 6
state-control weight tradeoff γ 0.5
energy required per operation c 10 J/Gflop
energy required per transmitted Mbit to close servers mij 0.67 J/Mbit
energy required per transmitted Mbit to the cloud mic 2mij
operations required per Mbit of data op 0.33 Gflop/Mbit
Parameters for TTT111 servers
average harvested energy (when burst is active) h1 530 J/slot
harvested energy std σh1 150 J/slot
maximum computational power w̄1 100 Gflop/slot
maximum transmission rate ō1 10 Gbit/slot
maximum amount of data processed per slot d̄1 300 Mbit/slot
maximum battery capacity b̄1 2× 104 J
average incoming workload per buffer (when burst is active) μd 120 Mbit/slot
incoming workload std per buffer σμd

22 Mbit/slot
Parameters for TTT222 servers
average harvested energy (when burst is active) h2 1000 J/slot
harvested energy std σh2 190 J/slot
maximum computational power w̄2 2w̄1
maximum transmission rate ō2 2ō1
maximum amount of data processed per slot d̄2 2d̄1
maximum battery capacity b̄2 2b̄1

server i exceeds its computing capacity, it offloads part of such workload to the freest of its neigh-
bors j ∈ Ni, by offloading data to j until the workload difference at i and j is smallest (ideally
zero). If, however, i itself is the freest server inNi ∪{i}, it will not offload anything. iii) Workload
is sent from an edge server to the cloud facility only from buffer d = 1, and only if it is impossible
to execute it on time at the edge server. iv) At each time slot, edge server i computes the local
energy expenditure and trades energy with the power grid in such a way that its battery level is
at least 25% of its battery capacity.

2.6.2 Performance analysis: optimal vs heuristic policies

The same evolution of job and energy arrivals (same models and parameters) was used to obtain
the following plots, for all algorithms. Moreover, 95% confidence bands are shown as shaded
areas surrounding the curves.

A preliminary performance analysis is presented in Fig. 2.4: the proposed distributed optimiza-
tion framework of Algorithm 2.3 is indicated by “MPC (N = x)”, where x ∈ {3, 8} and N repre-
sents the length of the prediction window, “myopic” refers to the MPC framework with N = 1
and “heuristic” to the algorithm of Section 2.6.1. The maximum job deadline is set to D = 6, and
thus, with N = 3, MPC cannot predict the temporal evolution of those jobs with deadline greater
than 3 time slots, while it can do so with N = 8 and, in general, with any N ≥ D.
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The average load ofT2 servers is shown in Fig. 2.4a. Although in our network scenario it ismore
difficult to fully exploit these servers because of the sparsity of the links, MPC correctly brings
their utilization factor to 100% for an increasing load (ε ≥ 0.7). This is not attainable with myopic
and heuristic schemes. With the heuristic, the workload is executed as much as possible locally
and, in turn, when ε is small only T1 servers process jobs. Notably, the load factor at T2 servers
for the heuristic is lower than that of the myopic scheme even when T1 servers are full. This fact
is connected with the results of Fig. 2.4d, which shows the amount of workload sent to the cloud
computing facility. In particular, optimizing in a myopic way or employing a heuristic workload
allocation policy leads to much more intensive use of cloud computing resources starting from
ε = 0.5, when T2 servers are only 40% full. This corresponds to poor scheduling of the jobs, which
should be ideally sent to the cloud facility only when all the edge servers are fully exploited.

On the other hand, optimizing in a predictive way, even with a small lookahead window, i.e.,
MPC with N = 3, brings the advantage of only using the cloud facility when the edge system
operates at full capacity, i.e., beyond ε = 0.7. As a consequence, since the carbon footprint of the
cloud facility is higher than that of the edge network, the energy that is drained globally (edge
and cloud), shown in Fig. 2.4e, is smaller for the proposed algorithm (see the range ε ∈ [0.5, 0.8]).
FromFig. 2.4b, we further see that the amount of energy harvested suffices to keep the battery level
to 100% until ε = 0.4, irrespective of the used method. In this region, thus, not only the system
is fully self-sufficient, but can also inject excess energy into the power grid. Beyond this load, the
heuristic andMPC behave differently. At low values of ε (i.e., ε ≤ 0.5), MPC and the heuristic lead
to high battery levels, as the energy harvested is sufficient to fully satisfy the computing demand.
As ε increases beyond 0.5, MPC exploits the available computing resources in T2, leading to a
smaller energy reserve for these servers. Instead, the heuristic sends more workload to the cloud
computing facility, under allocating T2 servers.

The Jain’s fairness index (2.37) is plotted in Fig. 2.4c. As it can be seen, a prediction horizon of
N = 8 leads to a good balancing of computing resources, maintaining the fairness index above 0.85
even at a very low load. With the myopic scheme, the performance slightly degrades, dropping
considerably in the range ε ∈ (0, 0.3]. A further substantial drop is observed with the heuristic.

These facts directly reflect on the global system efficiency η (see Fig. 2.4f), which is very low
for the proposed heuristic, across all values of ε. MPC’s efficiency is highest at low values of ε, as
it more effectively balances the load across the edge servers (Fig. 2.4c), and it remains highest as
ε increases, as MPC sends less workload to the cloud facility (Fig. 2.4d).

Figs. 2.5a and 2.5b show the energy traded with the power grid (respectively, sold and pur-
chased). MPC significantly reduces the amount of energy injected into the power grid concerning
myopic and heuristic strategies. At low ε, e.g., around ε = 0.3, the amount of energy sold goes
from about 1.6 kJ/slot of the heuristic policy to about 0.8 kJ/slot of MPC, see Fig. 2.5a. Also, MPC
buys less energy from the power grid, going from 1 kJ/slot (heuristic) to 0.6 kJ/slot (MPC), see
Fig. 2.5b. This reflects more efficient management of harvested energy resources by MPC, result-
ing in a reduction of 50% in the energy traded with the grid. Beyond ε ≈ 0.6, MPC acquires more
energy, as that coming from renewables is no longer sufficient to fully cope with the increased
processing demand at the edge. Instead, myopic and heuristic schemes purchase less energy due
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Figure 2.4: Main system features as a function of the job generation rate. In these plots, the quadratic cost
function is used for comparison with the benchmark heuristic.

37



0.2 0.3 0.4 0.5 0.6
0

0.5

1.0

1.5

2.0

Job generation rate ε

To
ta
le

ne
rg
y
so
ld

[k
J/
slo

t]

Heuristic
Myopic
MPC (N = 3)
MPC (N = 8)

(a) Sold

0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

Job generation rate ε

To
ta
le

ne
rg
y
pu

rc
ha

se
d
[k
J/
slo

t] Heuristic
Myopic
MPC (N = 3)
MPC (N = 8)

(b) Purchased

Figure 2.5: Average energy traded with the power grid.

to their poorer allocation of computing resources and send more workload to the cloud facility
(see Fig. 2.4d). When the amount of energy harvested is insufficient, e.g., due to the intermit-
tent energy generation from renewables, MPC automatically resorts to using the energy available
from the power grid. As long as the computational capabilities at the edge are sufficient to man-
age the computing demand, no degradation in the computing performance is observed. On the
other hand, the amount of energy drained from the power grid will correspondingly increase.

In Fig. 2.6, we analyze the impact of the predictor used forMPC. Specifically, the genie predictor
is compared with that based on Markov chains, with known transition probabilities, and with
an i.i.d. predictor, which uses the average intensity of the arrivals, see Section 2.3.4. Fig. 2.6a
shows the dependency between the amount of data sent to the cloud facility and the prediction
horizonN. As expected, the genie predictor performs best, completely preventing the system from
sending workload to the cloud starting from N = 3, whereas a higher N is required for the other
(less accurate) predictors to achieve the same goal. This is motivated by the fact that the random
samples used to obtain a predicted trajectory more accurately reveal the average (intensity) of
the process as their number increases (higher N). Therefore, with a sufficiently long prediction
window, even very simple predictors such as the i.i.d. one can be used profitably, as long as the
average arrival rate is accurately estimated. In Fig. 2.6b, the Jain’s fairness index is shown as a
function of ε: both the Markov and the i.i.d. predictors lead to very similar performance, which is
close to that of the genie, for any ε. The very good quality of these predictors is also confirmed by
the system efficiency η (Fig. 2.6c): although the difference is negligible, there is a slight advantage
in using Markov chains at low generation rates.
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Figure 2.6: Comparison between two simple predictors, namely a Markov chain and an i.i.d. predictor,
with respect to the genie policy. They are used by the MPC based optimization scheme with the quadratic

objective function.

2.6.3 Load balancing vs consolidation

We now assess the role of the two cost functions of Section 2.4.4. The results are obtained setting
D = 6, with job arrivals prevented in the two queues that are closest to the deadline, but increasing
the average workload arrival rate to μd = 140 Mbit/slot per queue, when the MC is in the ON state.
This is motivated by the fact that jobs close to the deadline cannot be migrated, and therefore
it would be difficult to highlight the consolidation aspect in their presence. From Fig. 2.7, we
see that the quadratic cost promotes load balancing, while the logarithmic one and the heuristic
scheme both induce server consolidation. Specifically, in Fig. 2.7a the fraction of active servers is
plotted as a function of ε. At low generation rates, the non-convex (logarithmic) cost reduces the
number of active servers with respect to the convex one by up to 40%. For ε < 0.3, the proposed
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Figure 2.7: Comparison of the proposed optimization schemes as per the consolidation metrics.

heuristic achieves the best results in terms of server consolidation. This holds because, unlike
optimal policies, it executes all the incoming workload at the edge server that receives it in the
first place, without migrating it. Moreover, MPC may also send computing tasks to energy-rich
servers, going against the consolidation objective, and in the interest of exploiting as much as
possible the available energy resources. In addition, as soon as the arrival rate increases a bit, the
heuristic produces an oscillatory behavior in the server activity status, by continuously switching
on and off the edge servers. Instead, MPC avoids this undesirable ping-ponging between activity
statuses. Moreover, with MPC, the servers that are kept off are consistently the same ones and
are selected based on their energy availability. Fig. 2.7b (ε = 0.25) shows that the heuristic leads
to an imbalance in the way the servers are exploited across the two tiers, whereas MPC achieves
a more balanced allocation, setting similar duty cycles for the active servers in T1 and T2.

2.7 Conclusion

In this chapter, the problem of decreasing the energy drainage associatedwith processing tasks in
MECnetworks is tackled, considering edge servers equippedwith batteries and energy harvesting
devices. An online, predictive, and fully decentralized optimization framework for the allocation
of computing tasks is developed, exploiting MPC in conjunction with a customized version of
the DRS algorithm. Two contrasting objectives, namely, load-balancing and consolidation, are
sought. The results show that the proposed algorithm is beneficial concerning a heuristic strat-
egy, and an approach based onmyopic optimization. The resulting job scheduling algorithm uses
the harvested energy much more effectively, by exploiting energy-rich edge servers and reducing
the amount of energy acquired from the power grid. When the consolidation objective is pur-
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sued, the fraction of active servers is reduced by up to 40%. Open research avenues are the study
of workload allocation strategies by accounting for user mobility, and new energy consumption
models for modern GPU-based architectures.
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3
Energy-efficient and mobility-aware container

migration in urban environment

3.1 Introduction

The future ofmobile networks is not only concernedwith faster andmore reliablewireless connec-
tions. The rapid digitalization of society [3] comes with a need to expedite the service provision-
ing time, demanding support for computation-intensive and delay-sensitive users’ applications. Of-
ten, these applications cannot be executed on the end devices due to memory and energy scarcity,
nor on the network cloud due to a consequent surge in the Internet traffic and excessive delays.
These facts lead to the introduction of the MEC paradigm, entailing the de-location of computa-
tion services at the mobile network edge, by empowering the evolved Node B (eNB) sites with
adequate computing facilities, referred to as MEHs. With MEC, a user can offload intensive com-
puting jobs to aMEH, thus considerably reducing the communication delayswith respect to cloud
services. Spurred by the high potential of such innovation, the European Telecommunications
Standards Institute (ETSI) is extensively working on the standardization of interoperable MEC
architectures [71], along with their integration with fifth-generation (5G) – and beyond – mobile
networks [72].

In this chapter, we consider an Internet of Vehicles (IoV) scenario, where the network users
are 5G – or beyond 5G – enabled vehicles requiring communication and computing support [73],
[74]. According to [3], among M2M communications, connected cars is the vertical with the
highest expected compound annual growth rate (30%) until at least 2023. Moreover, one of the
key challenges in an IoV context is ensuring computing service continuity as the vehicles move
away from their servingMEH [75]. This requires implementing online policies to decide whether
to move the entity executing the service on a MEH that is closer to the user or to complete the
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computation where it started. In the former case, the user spends less energy to communicate
with the MEH, but resources are spent by the network due to the migration process, both in
terms of energy and time. As for the latter, standard network procedures [76] ensure that the
user remains connected to the serving MEH, thus guaranteeing the delivery of the computation
result, at the cost of higher latency.

Chapter contribution. We propose Energy-Aware job Scheduling at the Edge (EASE), a proactive
approach to select the most suitable allocation of computing resources considering energy, mem-
ory, and computation constraints. In the envisioned scenario, eNBs (MEHs) are connected to the
power grid and empowered with PVs, which provide green energy that can be exploited without
additional costs. Vehicle mobility predictions are leveraged to estimate the best sites where the
users’ computing jobs can be allocated, accounting for network and users’ requirements. To the
best of our knowledge, this is the first attempt to design a complete framework for the energy effi-
cient scheduling of computing jobs over MEHs networks, by exploiting mobility aware procedures.
The devised system provides job schedules that minimize the carbon footprint on the network
side – for the computation and communication services – subject to job latency and mobility con-
straints. The job scheduling policy consists of two phases, the former is independently and locally
executed at the eNBs (MEHs), while the latter is implemented as a decentralized consensus pro-
cess. In the first phase, each MEH leverages estimates of the renewable (cost-free) energy, the
computational power, and the memory available within a prediction window to decide upon the
optimal local amount of workload to be executed, subject to users’ mobility and delay constraints.
Each MEH also identifies the jobs that should be migrated to neighboring MEHs, as belonging
to vehicles that are approaching the border of their current serving cell. The mobility predictor
developed in [18] is used to determine the desiredworkload to transfer to each neighboringMEH.
Then, in the second phase, the MEHs collectively reach an agreement on the amount of workload
to exchange to reduce the overall energy expenditure, while guaranteeing adequate QoS to the
end-users: an approximated integer solution for jobs migration is derived through a consensus al-
gorithm followed by a rounding step, using mobility predictions to make job migration decisions.

EASE is evaluated in a real-world scenario emulated through the “simulation of urban mo-
bility” (SUMO) software, considering the vehicular mobility traces for the city of Cologne, and
dense city-wide deployment of 5G eNBs with MEC functionalities. Numerical results reveal that
the developed allocation strategy significantly reduces the carbon footprint of the edge network,
with an increasing gain over heuristic strategies when the available green energy is scarce. At the
same time, it properly allocates workload to the processing units according to their specific com-
puting power, by delivering better QoS to the userswith respect to heuristic solutions andmeeting
delay constraints. When possible, service migrations also follow the UE during handovers, i.e.,
services are migrated to the MEH that is closest to the UE after the handover event.

The present work brings the following innovations.

• The problem of computation service continuity is solved in a holistic way, designing EASE,
a complete framework for users’ job scheduling andmigration within theMEHs of a mobile
edge network with distributed renewable energy resources. The main objective is to reduce
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the carbon footprint of the computing network by using renewable energy resources to the
maximum extent.

• A two-step approach for job location management and migration is devised, splitting the
problem into local and distributed phases. With it, MEHs take advantage of user mobility
information (and forecasting) to reduce the energy expenditure of the edge network.

• For the distributed phase, a consensus strategy is designed tomakemigration decisions and
solved in closed form by exploiting a dual ascent algorithm. Upon reaching a consensus,
an original strategy is put forward to obtain an approximated solution for workload and
memory management at the MEHs.

Concerning what presented in Chapter 2, this work i) employs similar techniques of MPC to
schedule the local processing ofworkload at each eNB and ii) takes advantage of the study regard-
ing different statistical predictors. Nonetheless, the working pipeline proposed here splits the lo-
cal execution scheduling and the distributed offloading decision, resulting in a more lightweight
decentralized phase.

The relatedwork is analyzed in the next Section 3.2, whereas the solutionworkflow is presented
in Section 3.3, where we also detail the remaining sections of the chapter.

3.2 Related Work

The resource allocation problem in a MEC scenario with static users is extensively addressed in
the literature. Among the most recent works, in [77] the authors present a job scheduler for con-
tainers management at the MEHs, to reduce the network carbon footprint. In [78], [79], the task
offloading is optimized from a user perspective, minimizing the task completion time and the
related energy expenditure. However, as these approaches consider static users, they are not suit-
able for IoV scenarios. Specifically, for IoV, mobilitymanagement is a key aspect towards effective
implementation of MEC assisted networks [80]. In this chapter, we devise EASE, a scheduling
algorithm to guarantee service continuity in MEC assisted IoV networks, by properly allocating
computation services based on the network energy distribution and the mobility of the users.
Moreover, EASE is specifically designed to reduce the carbon footprint of MEC assisted networks,
by considering facilities empowered with renewable energy sources in addition to the supply
from the power grid. Note that the user’s computation task allocation requires both i) to decide
the MEHwhere to place the job together with the workload to be executed based on the available
resources and ii) to trigger service handovers based on the user mobility and energy availability
predictions. In fact, computation service handovers entail not only the exchange of control mes-
sages but also the migration of the data associated with the specific job under execution. The
users’ requests are served at a so-called serving MEH through the instantiation of a virtual entity
– either a VM or a container – empowered with adequate memory and computing resources to
satisfy the service requirements [81]. Therefore, when a computing service handover is triggered,
the virtual entity must be transferred to the target MEH, and computation must be restored from
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Objective
Network energy

Network computing resources
Users mobility

Migration cost Computing cost Carbon footprint Paths planning Users distribution Previously visited cells Velocity or trajectory

[88] energy ✓ ✓ ✓
[89] latency ✓
[90] energy ✓ ✓
[91] latency ✓ ✓
[92] latency ✓ ✓
[93] energy ✓ ✓
[18] energy ✓ ✓ ✓ ✓
[94] latency ✓ ✓
EASE energy ✓ ✓ ✓ ✓ ✓ ✓

Table 3.1: Summary of the minimization objective quantities and the MEH system aspects considered by
EASE and the proactive computing service migration approaches in the literature.

the point where the previous serving MEH stopped. This poses several issues associated with
the job latency constraints and the network energy migration costs. A paper addressing the la-
tency challenge, and proposing strategies to reduce the migration time is [82]. The main focus
is on how to migrate the virtual entity, by defining protocols to transfer the container/VM from
the current location to the target one. Machen et al. [83] propose a layered framework to migrate
applications encapsulated either in VMs or containers, showing a reduction in service downtime.
The authors of [84] leverage the layered nature of the storage system to reduce the overhead in
the container file system synchronization between the serving and the target MEHs. However,
these approaches are reactive, i.e., the service migration is performed after the user has moved to
the new MEH site. This results in an unavoidable processing delay due to the time required for
the virtual entity re-instantiation at the new MEH [80]. EASE is instead proactive, as the virtual
entity is migrated before the handover event occurs, thus reducing the service interruption time.
A quantitative evaluation of the difference in the service downtime between the two approaches
can be found in, e.g., [85]–[87], where the authors show that proactive approaches are desirable
for time-sensitive applications.

Proactive methods require the MEC orchestrator to know the user’s next point of attachment
to trigger the migration process in advance. Some recent works in the literature show the effec-
tiveness of this strategy, but i) they fail to provide a complete framework to properly allocate the
computing jobs within the network entities while jointly considering the users’ mobility and the
energy, memory, and computing power constraints, and ii) they rely on a centralized orchestrator
that computes the best policy to adopt knowing the state of all the network entities. Among them,
in [88], the MEC service migration process and the physical route for the user to get to the des-
tination are jointly optimized. The problem is solved through a multi-agent deep reinforcement
learning approach to meet the job delay requirements with minimum migration cost and travel
time. While the work presented in this chapter forces the vehicle to follow a specific physical path,
EASE leaves the decision on the physical route to the user and leverages mobility predictions to
place the jobs. In [89], Campolo et al. exploit pre-planned vehicle routes to proactively migrate
the MEH container so as to follow the user’s movements. In [90], the authors leverage the vehi-
cle velocity and its direction to decide if and where, i.e., to which target MEH the virtual entity
should be migrated to reduce the cost of multiple successive service migrations while meeting
the jobs’ delay constraints. This is obtained through a tradeoff between the energy consumed for
migrations and the energy needed to eventually transmit the information through the backhaul
links that connect the MEHs for service continuity. However, the strategies in [89], [90] do not
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consider the constraints on the MEHs computing power, making the solutions not directly appli-
cable in real-world scenarios. In [91], the authors design a policy to decidewhether tomigrate the
virtual entity to a target MEH – estimated through a mobility predictor based on Markov chains
– or to keep the job execution on the serving MEH where it was initiated, reallocating the service
in case the MEH capacity is exceeded. In [92], the authors use mobility estimates, obtained using
a convolutional neural network, to migrate the computation services through a recursive proce-
dure based on genetic algorithms. However, the mobility predictor developed in [91], [92] only
considers the sequence of the user’s previously visited cells without leveraging the mobility pat-
tern followed by the user within the current radio cell: this fails to precisely capture real-world
mobility patterns, as shown in [18]. Moreover, these articles are concerned with minimizing the
computing service latency, i.e., energy aspects are not considered. A different approach is pre-
sented in [93], where the user’s virtual entity is replicated to multiple neighboring MEHs before
the handover event occurs, considering the MEHs capacity. The authors suggest using mobility
estimates to place the replicas, but leave this for future study. Again, the energy aspect is not
considered. These issues are addressed in [18], where the authors integrate accurate predictions
– based on the actual trajectory of the user within the eNB coverage area – into a VM replication
strategy, to reduce the network energy consumption. However, while the authors show the im-
pact of the MEH computing power on the risk of service discontinuity, they do not introduce a
strategy to address this problem.

The above-referencedmethods are not concernedwith finding the proper allocation of comput-
ing jobs when they are offloaded from the user to the network (the service is first placed on the
closest MEH). In this respect, Rago et al. [94] use predictions on the distribution of the number
of users attached to the different eNBs and estimates of the task requests to proactively allocate
jobs on the available MEHs considering computing power constraints. The proposed strategy
does not address service migrations and is mainly concerned with minimizing the latency while
energy consumption is not considered.

We emphasize that [18], [88]–[94] assume that all MEHs are attached to the power grid for
continuous energy provisioning. This makes these approaches not suitable for the scenario con-
sidered in this chapter, where we target the reduction of the network carbon footprint in the
presence of renewable energy. This aspect was considered in [9], where the authors study the
problem of managing the energy coming from renewable sources to minimize the energy drained
from the power grid. In [9], MPC is used to jointly allocate the local resources and to obtain of-
floading decisions toward other servers. Instead, EASE uses MPC to control the local processing
only and to obtain an average estimate of future resource availability. In this way, EASE allows re-
ducing the complexity of the solution with respect to the distributed approach in [9] as discussed
in Section 3.6.4. Moreover, unlike what we do with EASE, user mobility was not considered [9].
Table 3.1 summarizes the key aspects considered in the previous literature.

In the present work, we propose EASE, an energy- and mobility-aware, distributed, and proac-
tive scheduling framework for computing jobs allocation and virtual entity migration, with the
objective of minimizing the carbon footprint of the MEH network. EASE is the first approach
that jointly considers all these aspects in addressing the complex problem of efficiently managing
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MEC empowered IoV networks. This is achieved by combining local policies with a decentralized
consensus algorithm, thus obviating the need for an orchestrator. To show the impact of EASE
on the network carbon footprint, we compare the obtained results with the service migration ap-
proach in [18] as, using the same mobility predictor, allows revealing the advantages of EASE.
Moreover, we implemented three heuristic schemes to approach service migration as presented
in [95], i.e., i) never migrate the service (“keep”), ii) always migrate the service when a handover
occurs (“migrate”), and iii) define a threshold on a performance metric to decide whether to
migrate or not the service (“threshold”).

3.3 EASE overview

The network setup consists of an urban environment covered by a setN of eNBs, each co-located
with a MEH. V represents the set of vehicles moving within the city, which are constantly con-
nected to the nearest eNB node (providing communication support). Vehicle v ∈ V sends com-
puting job requests to the closestMEH,which can locally execute the requiredworkload or offload
it, either partially or in full, to neighboring MEHs. Also, each vehicle can have a single outstand-
ing job instance (being processed) and can generate a single job request at any time slot only if
the previous request has been either fully processed or dropped by the serving MEH. For this
reason, in the following analysis, we will interchangeably identify a vehicle with the associated
outstanding job to be computed. The set of neighboring eNBs to eNB i is denoted by Ni. Jobs
are executed through the instantiation of containers, which reserve the required computing and
memory resources. Here, containers are favored over VMs due to their lower memory footprint,
which permits a faster migration process – a desirable feature in the considered scenario [82].
Jobs that are being executed on one MEH but associated with vehicles that are about to leave the
eNB/MEH coverage area are assessed by the migration controller. The latter decides whether
to migrate their execution to another (target) MEH or to finish it locally and send the process-
ing result to the vehicle in a multi-hop fashion (from the old to the new serving eNB). eNBs are
equipped with energy harvesting PV devices, whose collected energy is managed by the system.
We assume that eNBs are also connected to the power grid as relying only upon harvested energy
would be risky due to its intermittent nature; so energy can be drained from the grid when the
incoming green energy is scarce or surplus energy can be injected into the grid. MEHs are bat-
teryless, as batteries are often expensive and need periodic replacement – EASE aims at reducing
the carbon footprint of such batteryless eNB/MEH system while meeting memory, processing
constraints and accounting for the user mobility.

A high-level diagram of EASE is presented in Figure 3.1, while the diagram of an eNB/MEH
node is shown in Fig. 3.2. The scheduler operates according to two optimization phases: 1. a lo-
cal phase (left of the diagram): a predictive control phase, performed locally at each MEH node,
and 2. a distributed phase (right): a collaborative optimization based on distributed consensus
(solved via message passing). In phase 1, the MEHs locally control the ongoing computations,
estimating the local processing capacity and energy availability within a given prediction horizon.
At the same time, the local algorithm assesses the amount of workload that should be migrated
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Figure 3.1: High-level diagram of EASE. The local steps (left) provide the resource and the desired
workload migration estimates for each MEH in isolation. The distributed algorithm (right) allows MEHs to

reach a consensus on the jobs allocation and trigger their migration.

(“desired workloadmigration estimation”) to the neighboringMEH nodes, predicts the availabil-
ity of local resources (“MEH resource estimation”), and accounts for mobility estimates (“next
MEH prediction”), i.e., the vehicle that generated the job request is about to hand over to a neigh-
boring radio cell.

With phase 2, taking the desired workload to be migrated from phase 1 as input (“neighbors’
resource information”), the MEHs collectively reach an agreement (“workload migration agree-
ment”) about how many and which jobs are to be migrated, as well as about the target MEH for
their migration (“job selection and migration”).

After phase 2), each node updates its local state equations with the new jobs generated by the
vehicles under coverage and those received from the neighbors, and goes back to phase 1).

In the remainder, the system model is presented in Section 3.4. The problem formulation for
the optimal scheduling is detailed in Section 3.5. The final scheduling solution, composed of the
two phases (local and distributed) is presented in Section 3.6. The performance assessment is
reported in Section 3.7 and final remarks are provided in Section 3.8.

3.4 System model

Next, we detail the mathematical models for computing and communication services, along with
the statistical processes involved in the envisioned scenario and the system constraints. Time t is
discrete and evolves according to slots of fixed duration τ, i.e., t = 0,τ, 2τ, . . . . The mathematical
notation is summarized in Table 3.2.

3.4.1 Computation and communication models

Computing job parameters. At time t, each job k served by MEH i is characterized by the triplet
(Ii,k(t),Di,k(t),Si,k(t)), where i) Ii,k(t) is the residual job intensity, expressed in CPU cycles, ii)Di,k(t)
is the residual (hard) execution deadline, in seconds, i.e., the time still available to execute the job,
and iii) Si,k(t) is the remaining data to be processed, in bits. As the job is processed by the server,
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Symbol Meaning Unit

v ∈ V vehicle Identifier (ID) and set of vehicles -
i ∈ N eNB/MEH ID and set of eNBs/MEHs -
Ni and Ni set of neighboring nodes of node i and its cardinality |Ni| -

k ∈ Ki(t) and Ki(t) job ID, set of jobs in execution at MEH i at slot t, -and its cardinality |Ki(t)|

K̂ij and K̂ij
set of jobs running on MEH iwith probable next MEH j -and its cardinality

T no. of slots in the prediction horizon -
t = [0, . . . ,T] scheduling time slot index -
τ length of a scheduling slot s

Vi(t) and Ci(t) no. of results to be sent in the coverage area of eNB i at -slot t and to be routed through the backhaul network
Ik intensity of job k cyc.
Dk deadline of job k s
Sk size of job k bit
pv and pℓ job generation probability and probability that it is of type ℓ -
pppi,k(t) handover prob vector for vehicle v (job k) at slot t
wi,k(t) workload of job k processed by MEH i in slot t cyc.
L (fixed) size of a container instantiated on a MEH bit
ERAN
b energy per bit for eNB-vehicle wireless transmissions J/bit

Ewired
b energy per bit for eNB-eNB wired transmission J/bit

σs and σd energy per bit for migration at the source (destination) MEH J/bit
Es and Ed (fixed) energy for migration at the source (destination) MEH J
EH
i (t) harvested energy available at slot t J

PPV
i (t) power supplied by the PV at node i, instant t W

PRAN and Pwired (fixed) power to keep the wireless (wired) unit switched on W
Pidle
i (fixed) power to keep the server switched on W

Ninc
i (t) and Nout

i (t) no. of MEH incoming (outgoing) jobs at slot t -
Fi maximum computational power of server i W
Mi maximum amount of RAM available at server i bit
w̄ij desired intensity requested by MEH i to neighbor j cyc./s
m̄ji memory space requested by MEH i to neighbor j bit
P̂H
i residual green power at node i after the local scheduling W

F̂i residual computing power at node i after local scheduling W
M̂i residual RAMmemory at node i after the local scheduling bit
oij optimal amount of MEH i processing load to offload to j cyc./s
õji optimal processing load to be received at MEH i from j cyc./s

Table 3.2: Summary of the symbols used throughout the chapter. “cyc.” stands for “CPU cycles”.
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Figure 3.2: eNB/MEH node. Job requests arrive from connected vehicles v moving within the eNB
coverage area. Containers handling the execution of the jobs are created at the serving MEH, and possibly

migrated to other MEHs in case the associated vehicles exit the eNB coverage area.

the intensity, deadline, and data size decrease according to

Ii,k(t+ τ) = Ii,k(t)− wi,k(t) , (3.1)
Di,k(t+ τ) = Di,k(t)− τ , (3.2)

Si,k(t+ τ) = Si,k(t)−
Si,k(0)
Ii,k(0)

wi,k(t) , (3.3)

where wi,k(t) is the amount of workload (CPU cycles) belonging to job k and processed by MEH
i in slot t, Si,k(0) represents the initial job size (bits), whereas Ii,k(0) is the total number of CPU
cycles required to fully process the job. Eq. (3.3) means that the amount of data that is still to be
processed decreases linearly with the amount of workload allotted to a job, irrespective of how
the workload is distributed in time. Note that (3.1) makes it possible to rewrite (3.3) as

Si,k(t) =
Si,k(0)
Ii,k(0)

Ii,k(t). (3.4)

Communication models. For the 5G wireless links between the eNBs and the vehicles we adopt
i) the massive-MIMO energy consumption model of [96], and ii) the mm-wave – 28 GHz – urban
NLoS channelmodel of [97]. Specifically, from [96] the following systemparameters are obtained:
i) the power needed to keep the wireless unit switched on (fixed circuit power consumption),
PRAN, ii) the energy requiredper transmitted bit viawireless links, ERAN

b , iii) the fixedwired circuit
power consumption, Pwired, iv) the energy expenditure for the wired backhaul links connecting
the eNBs, Ewired

b . Note that the vehicles’ energy utilization is not involved in the scheduling and,
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in turn, only the energy consumption at the eNB side is considered. The model in [97] is used for
the vehicle-eNB association.
Container migration model. The migration of a container requires the hosting MEH to spend
energy to freeze the status of the virtual entity and prepare the data to be sent to the target MEH
for the correct re-instantiation. Hence, the target MEH has to spend energy to create the new
virtual entity using the received information. The energy expenditure on the two sides consists
of [98]: i) a contribution proportional to the size of the migration data, through the parameters
σs and σd respectively, plus ii) a fixed energy contribution, equal to Es for the source MEH and Ed
for the target one, respectively. Additionally, the source spends some energy to transmit the data
over the wired channel Ewired

b . Overall, it holds

Emigr
source(t) = σsL+ Ewired

b Sk(t) + Es, and (3.5)
Emigr
dest (t) = σdL+ Ed, (3.6)

where Sk(t) is the (variable) data size associated with job k, and L is the (fixed) container size.
According to [89], we account for a service downtime of Tmigr

k when migrating the entities. In
turn, Tmigr

k seconds are additionally removed from the job’s deadline Dk(t) at every migration
occurrence. Note that the delay associated with wired transmissions is negligible as compared to
the service downtime.

3.4.2 Statistical processes

Energy harvesting model. We refer to PPV
i (t) as the power supplied by the PV co-located with

eNB/MEH i at instant t and that varies fromaminimumofPPV
min to amaximumofPPV

max. Accounting
for the power required to keep the server (Pidle

i ) and the communication channels (PRAN and
Pwired) switched on, and the fixed amount of energy required for the container migration, the
harvested energy available at eNB/MEH i for computations and data transmissions at time slot t
is

EH
i (t) =

(
PPV
i (t)− PRAN − Pwired − Pidle

i

)
τ+

−Ninc
i (t) (σd L+ Ed)−Nout

i (t)
[(

σs + Ewired
b

)
L+ Es

] (3.7)

where Ninc
i (t) and Nout

i (t) are the known number of MEH incoming and outgoing jobs at MEH
i and time t, which are scheduled at the previous step t − τ. The terms in Eqs. (3.5)-(3.6) that
depend on the data size Si,k(t) are not considered in EH

i (t) as they will be integrated into the
optimization function (see Eq. (3.17)). Note that being EH

i (t) a difference between the harvested
energy and that required to deliver the services, its value can be negative. EH

i (t) is known for
the current slot t only. However, the developed MPC framework also needs estimates for [EH

i (t+
τ), . . . ,EH

i (t+τ(T− 1))], within the time window t+τ, . . . , t+τ(T− 1), where T is the prediction
horizon. These estimates are computed by forecasting the time-dependent quantities in (3.7):
future values of PPV

i (t + ·) are estimated using a Gaussian r.v. with average PPV and standard
deviation σPV, estimates for the number of incoming Ninc

i (t+ ·) and outgoing Nout
i (t + ·) jobs at
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eNB i in slot t are obtained considering the vehicles in the external annulus of the eNB’s coverage
area. Finally, Pidle

i depends on the specific MEH characteristics at eNB i, as specified in Section 3.7.
Jobs types and arrival model. Three job types are considered for the numerical results of Sec-
tion 3.7, having different intensities, deadlines, and data sizes and identified through the index
ℓ = {1, 2, 3}. Every job type is associated with a generation triplet (Iℓ,Dℓ,Sℓ), and a generation
probability pℓ. Each vehicle v ∈ V can submit at most one computing job at a time to the network
facilities so that a bijective mapping vehicle-job ID can be derived. Once a job is finished or ex-
pired, the vehicle submits a new job to theMEHwith probability pv at each slot. This parameter is
tuned in the simulations. Also in this case, for predictive optimization, an estimate for the future
incoming jobs is needed. For this purpose, a circular buffer containing the values of Ii,k/Di,k of
the newly generated jobs is kept. A fixed estimate of the average of the last W seconds is used
to predict the incoming traffic. In [9], the authors verified that even simple predictors are still
effective with MPC if T is large enough.
Handover probabilities. Each job k is associated with a probability vector that depends on the
position of the vehicle v requesting the service. Being i the serving eNB for vehicle v, we define
pppi,k(t) as theNi-dimensional vector containing the probabilities that vehicle vwill hand over to any
of the |Ni| = Ni neighboring radio cells, i.e., pppi,k(t) = [pi1,k(t), pi1,k(t), . . . , piNi,k(t)], with

∑
j pij,k = 1.

Vector pppi,k(t) is updated every time a new trajectory sample is available for the associated vehicle
v, either inside the same cell or in a new cell after performing the handover.

3.4.3 System constraints

The setKi(t), with cardinalityKi(t) = |Ki(t)|, collects the jobs being executed at time slot t at MEH
i. The following systems constraints apply
Processing capacity. Indicating with Fi the maximum computing power of server i – expressed in
CPU cycles per second – the following inequality on the sum of the workloads holds

1
τ

Ki(t)∑
k=1

wi,k(t) ≤ Fi . (3.8)

Storage capacity. Being Mi [bits] the maximum amount of RAM available at server i, the sum of
the data sizes Si,k(t) of all the active jobs at MEH imust obey

Ki(t)∑
k=1

Si,k(t) ≤Mi . (3.9)

Job execution time. In case the deadline of job k, Di,k(t), expires in the current time slot t, the job
must be processed entirely and immediately at server i and cannot be further migrated, i.e.,

wi,k(t) = Ii,k(t) if Di,k(t) ≤ τ . (3.10)
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This guarantees the timely delivery of the computation result to the requesting vehicle, avoiding
the outcome becoming useless. As Eqs. (3.8)-(3.10) may not be jointly satisfied, in the following
we will relax Eq. (3.8).
Workload conservation. Finally, note that, in general, the inequalities

0 ≤ wi,k(t) ≤ Ii,k(t), ∀ i ∈ N , ∀ k ∈ Ki(t), ∀ t (3.11)

must always hold, because of the workload conservation principle.

3.5 Problem formulation

Here we formulate the optimization problems concerning the 1) local and 2) distributed schedul-
ing phases introduced in Section 3.3. As shown in Figure 3.1, the local and distributed schedulings
are run in parallel as distinct tasks that exchange information.

3.5.1 Local phase: Local controller and resources estimation

Each MEH i ∈ N estimates wi,k(t) for every job k ∈ Ki(t) to be executed at time t: in the analysis,
wi,k(t) stands for the optimal fraction of computing intensity Ii,k(t) to be locally executed at time
slot t for the hosted job k. We define vectors wwwi(t), IIIi(t) and DDDi(t) respectively collecting wi,k(t),
Ii,k(t) and Di,k(t) for all k ∈ Ki(t). As for the energy spent to transmit the processing results back
to the vehicles, Vi(t)ERAN

b is the (per bit) energy cost of sending the results to the Vi(t) vehicles
in the wireless coverage area, while Ci(t)Ewired

b is the energy cost entailed in routing the Ci(t)
jobs that are completed at node i and that have to be routed via the backhaul links to reach the
corresponding user (vehicle). Rk is the size of the processing result of job k, and qproci is the energy
cost of processing a unit of workload.

Given these quantities, we define two local (at node i) functions fi(·) and gi(·), as follows.

fi(wwwi;Vi,Ci,EH
i ) = qproci 111Twwwi(t) + Vi(t)ERAN

b Rk + Ci(t)Ewired
b Rk − EH

i (t) , (3.12)

gi(IIIi(t);DDDi(t)) =
Ki(t)∑
k=1

( Ii,k(t)
Di,k(t)

)2
. (3.13)

fi(·) quantifies the difference between the total energy expenditure at node i in slot t (due to pro-
cessing and communications processes) and the energy that is locally harvested at this node.
Hence, −f(wwwi; ·) represents the residual cost-free energy available for the migration process in
the distributed phase. Minimizing fi(·) corresponds to maximizing the local energy available at
the node. gi(·) represents the residual processing cost, which is proportional to (Ii,k/Di,k)

2. Min-
imizing gi(·) forces the node to execute the jobs, especially prioritizing those with high intensity
and whose deadline is about to expire. Note also that, due to Eq. (3.1), Ii,k(t) depends on the
optimization variable wi,k at previous time slots.
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Considering a forecast optimization window of T slots into the future, and letting t = 0 be the
current time slot, the local cost function at node i over the whole time horizon is formulated by
combining fi(·) and gi(·), as

Ji
(
Wi, Ii;Di,VVVi,CCCi,EEEH

i

)
=γ

T−1∑
t=0

gi(IIIi(t);DDDi(t)) +
T−1∑
t=0

max{fi(wwwi; ·), 0}2, (3.14)

where Wi, Ii and Di represent the stacks of vectors wwwi(t), IIIi(t) and DDDi(t) over the considered
horizon T, respectively, while VVVi, CCCi and EEEH

i are the vectors collecting Vi(t), Ci(t) and EH
i (t) for

t ∈ {0,τ, . . . ,τ(T − 1)}. The coefficient γ > 0 is used to balance the processing state cost term
(gi(·)) with respect to the energy cost (fi(·)).

Remark 1. From a physical perspective, the processing energy consumption is not necessarily a quadratic
function, but it varies based on the specific computing architecture [99]. A quadratic function for fi(·) was
chosen, as it promotes smoothness of the controller in the transitions from one slot to the next one, and has
the same curvature order of the processing state cost gi(·). Also, the max{·} function is used to make the
cost positive only when fi(·) > 0, i.e., the renewable energy is fully used and the node has to resort to the
power grid.

Next, the cost function in Eq. (3.14) is modified through the addition of a penalty term pro-
portional to two non-negative auxiliary variables δi(t) = [δFi(t), δMi(t)], to ensure that the problem
does not become infeasible when resources are scarce. Therefore, rewriting the constraints (3.8)
and (3.9), we define for each MEH the following local problem at node i,

Ploc
i : min

Wi,δi
Ji (Wi, δi; ·) +

T−1∑
t=0

cccTi δi(t)

s.t. (3.1) - (3.3), (3.10), (3.11),
1
τ
∑
k∈Ki

wi,k(t) ≤ Fi + δFi(t),∑
k∈Ki

Si,k(t) ≤Mi + δMi(t),

δFi(t) ≥ 0, δMi(t) ≥ 0,

(3.15)

where ccci = [cFi , cMi ] is the vector collecting the coefficients weighting the penalty variables, with
cFi , cMi > 0. By solving (3.15), each MEH obtains the optimal control wwwi(0)which is implemented
in the current time step.

3.5.2 Distributed phase: Workload migration agreement

From (3.15), each server estimates its future energy and processing resources. Specifically, let
P̂H
i be the residual available green power, possibly negative if the grid support is sought, F̂i, and

M̂i be the residual computational power, and RAM memory at node i, respectively. Note that,
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since constraints (3.8) and (3.9) are relaxed in (3.15), F̂i and M̂i can be negative. These estimates
are obtained by averaging the values over the prediction horizon, excluding the current instant
t = 0. Due to this averaging operation, while in (3.15) we deal with energy expenditures, in the
following we refer to power quantities.

The migration task presents itself as a combinatorial Mixed Integer Programming (MIP) prob-
lem, which is non-convex and is generally difficult to solve in a distributed fashion. Thus, we use
heuristics to derive approximated solutions. In this chapter, the popular relax and round method
is used, which consists in solving the convex counterpart of the original problem and rounding
the result to a feasible solution afterward. The reason for this choice is that it allows tackling the
problem in a distributed fashion viamessage passing, solving the continuous form problem exactly
to the optimum. Other approaches would have required a centralized solution or the design of a
heuristic inspired by the optimization objective.

Based on the handover probability vector pppi,k presented in Section 3.4.2, each MEH determines
the average resource demand requested from its neighbors in the migration process. Specifically,
the CPU cycles per second and memory space that are requested from neighbor j are

w̄ij =
∑
k∈K̂ij

Ii,k
Di,k

, and m̄ij =
∑
k∈K̂ij

Si,k , (3.16)

respectively, where K̂ij contains the set of jobs that are currently running at server i, associated
with vehicles that are about to leave the coverage area of the co-located eNB i and whose most
probable next eNB is co-located with MEH j. With www̄i = [w̄i1, . . . , w̄iNi ] we denote the vector col-
lecting the desired processing intensity per second to be sent to each of the Ni neighbors of MEH
i, computed via (3.16). We also introduce the new optimization variables oooi = [oi1, . . . , oiNi ] and
ooõi = [õ1i, . . . , õNii] representing the optimal total amount of processing load to be sent to and to be
received from each neighbor, respectively. The deviation from the desired www̄i to be migrated is
penalized with the l2-norm ∥www̄i − oooi∥2, and the migration cost is defined as

Γi
(
oooi, ooõi;www̄i, P̂

H
i

)
= max

{ (
qtxi − qproci

)
111Toooi +

(
qrxi + qproci

)
111Tooõi − P̂H

i , 0
}
+ ρ∥oooi − www̄i∥2 , (3.17)

where qproci , qtxi and qrxi are the processing, transmission and reception costs of server i (expressed
as powers), respectively. The max{·} term accounts for the power that would be drained from
the power grid to migrate the jobs, whereas the quadratic term encodes the fact that the optimal
oooi should be as close as possible to the desired www̄i – this corresponds to moving the jobs to the
next serving eNB. Finally, ρ > 0 is a weight balancing the importance of the two cost terms. Note
that minimizing Eq. (3.17) returns a solution oooi that matches vector www̄i if the residual harvested
power is sufficient and the constraints are satisfied. Specifically, as system constraint we consider
the following variation of (3.8) and (3.9), introducing a variable δ̂i ≥ 0, as follows,∑

j∈Ni

(
õji − oij

)
≤ min{F̂i, ξMi

M̂i}+ δ̂i, ∀ i ∈ N . (3.18)
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Remark 2. The meaning of (3.18) is that the workload surplus that server i has during the following time
steps, i.e., the incoming workload minus the outgoing one, should satisfy the average (long-term) power
(F̂i) and memory (M̂i) availability at node i. The coefficient ξMi

relates the memory availability to the
residual computational power. This follows from the assumption of direct proportionality between the data
size Sk and the processed workload wk.

Since the general goal is to minimize the energy drained network-wide from the power grid,
a cost function that represents the global welfare and at that at the same time is amenable to a
distributed solution is the sum

Γ
(
ooo, ooõ, δ̂;www̄,PPP̂

H)
=
∑
i∈N

[
Γi
(
oooi, ooõi;www̄i, P̂

H
i

)
+ ĉiδ̂

2
i

]
, (3.19)

where ĉi > 0 is the cost coefficient associated with the penalty term δ̂2i . This leads to the con-
strained optimization problem

Pglob : min
ooo,ooõ,δ̂

Γ
(
ooo, ooõ, δ̂;www̄,PPP̂

H)
s.t. ooo, ooõ, δ̂ ≥ 0, (3.18),

oij = õij ∀ i, j,

(3.20)

with ooo, ooõ, δ̂,www̄ and PPP̂
H
are vectors collecting oooi, ooõi, δ̂i,www̄i and P̂H

i respectively, for all theMEHs i ∈ N .
The equality oij = õij is called consensus constraint and ensures that the amount of workload exiting
node i and directed to j equals the one that j expects to receive from i.

3.5.3 On the interaction between local and distributed phases

The local problem (3.15) is used to schedule the amount of workload wi (CPU cycles) that is to
be executed locally at each MEH in the current time slot t. Since the solution is predictive, it
uses future memory availability (M̂i) and residual computational power (F̂i) estimates to set the
global problem constraints (3.18). Thanks to the global problem (3.20) an agreement is reached
on which jobs are to be migrated and where. The solution oooi of the global problem is utilized to
move workload across the MEHs: this entails an update of sets Ki(t+ 1) containing the jobs that
are assigned to MEH i at the next time slot t+ 1. The optimization keeps iterating between local
and distributed phases.

3.6 Problem solution

3.6.1 Phase 1: local MPC solution

At each MEH, the local MPC problem of (3.15) is solved over the whole horizon T [43]. MPC
uses the receding horizon technique, which consists of solving the given problem within a predic-
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tion window of size T, applying the optimal computed control only for the current time step t = 0,
moving forward the optimization window by one time slot (τ seconds) and repeating the proce-
dure. In this way, the controller progressively adapts to new observations and estimates of the
exogenous processes. Also, at any given instant, MEH i computes the optimal policy through-
out the whole horizon of T slots, but only wwwi(0) is applied as the control action. The exogenous
processes are the future jobs and the harvested energy availability, see Section 3.4.2.

3.6.2 Phase 2a: distributed workload migration

In the following, the scheduling slot index t is omitted in the interest of readability. Eq. (3.20) is
a consensus problem, i.e., it entails reaching an agreement on the value of some variables among
multiple agents in a distributed system. In our context, the MEHs must agree on the amount of
processing load to exchange among each other. A way to solve this problem – written as the sum
of separable convex cost functions – is via the dual ascent algorithm [100]. Given a generic cost
function ψ(xxx), its Lagrangian is defined as

L(xxx, zzz) = ψ(xxx) + zzzT(Axxx− ddd) , (3.21)

where zzz are the Lagrange multipliers associated with the constraints Axxx = ddd. The dual ascent
solves the problem by iteratively i) minimizing L(xxx, zzz)with respect to xxx (primal step), and ii) up-
dating the value of zzz (dual step). To formalize the solution of problem (3.20) via dual ascent, we
split the local cost functions (3.17) as

Γ̃i
(
oooi, ooõi, δ̂

)
=max

{ (
qtxi − qproci

)
111Toooi +

(
qrxi + qproci

)
111Tooõi − P̂H

i , 0
}
+

+
ρ
2∥oooi − www̄i∥2 +

ρ
2∥ooõi − www̃i∥2 + ĉiδ̂

2
i ,

(3.22)

exploiting the fact that oij = õij, and defining www̃i = {w̄ji | j ∈ Ni}. Intuitively, node i is responsible
for half of the quadratic cost from its neighbors and for half of its own local cost. For compactness,
let xxx = {xxxi = [oooi, ooõi, δ̂i], ∀ i ∈ N} be the global optimization variable, bbbi = [www̄i,www̃i, 0] the tracking
target vector, and qqqi = [qqqtxi − qqqproci , qqqrxi + qqqproci , 0] the linear costs vector. Moreover, we definematrix
Qi = I2Ni+1mmmi, with mmmi = [

ρ
2 , . . .

ρ
2 , ĉi], and the global block diagonal matrix Q, collecting each Qi

on the diagonal. With these definitions, problem (3.20) can be expressed in the following form

min
xxx

∑
i∈N

(
∥xxxi − bbbi∥2Qi +max

{
qqqTi xxxi − P̂H

i , 0
})

(3.23)

s.t. A1 xxx ≤ ddd, (3.24)
A2 xxx = 000, (3.25)

where ∥xxx∥2Q = xxxTQxxx. The inequalities (3.24) collect (3.18) and the non-negativity constraints ooo, ooõ,
δ̂ ≥ 0, while the equalities (3.25) correspond to the consensus constraints oij = õij, ∀i ∈ N , j ∈ Ni.
Here, matrices A1 and A2 are used to select the concerned variables, whereas ddd = {dddi = [min{F̂i,
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Algorithm 3.1 Dual ascent algorithm solving problem (3.20)
1: xxx+ = argminxxx L (xxx; yyy, zzz) ▷ primal
2: yyy+ = max

{
yyy+ αyyy (A1 xxx+ − ddd) , 0

}
▷ dual (ineq.)

3: zzz+ = zzz+ αzzzA2 xxx+ ▷ dual (eq.)

ξMi
M̂i}, 000] | i ∈ N}. We can now write the Lagrangian as

L (xxx, yyy, zzz) =
∑
i∈N

Γ̃i
(
xxxi; bbbi, P̂

H
i

)
+ yyyT (A1xxx− ddd) + zzzTA2xxx , (3.26)

where yyy = {yyyi = [λi,γi, γ̃i, ϕ̂i] | i ∈ N} are the Lagrange multipliers associated with the inequality
constraints (3.24), and zzz = {zzzi = μi | i ∈ N} are the multipliers associated with equalities (3.25).
Specifically, the Lagrange multipliers λi refer to constraints (3.18), γi = {γij}, γ̃i = {γ̃ji} and ϕ̂i to
oooi ≥ 0, ooõi ≥ 0, and δ̂i ≥ 0, respectively, and μi = {μij} to oij = õij, for every server i ∈ N , and j ∈ Ni.
Using the + sign to denote the update at the following iteration, we detail in Algorithm 3.1 the
dual ascent procedure that solves the problem

inf
xxx

sup
yyy≥0,zzz

L (xxx, yyy, zzz) . (3.27)

The dual update requires in this case two different forms, depending onwhether the constraint
is an equality or an inequality one. Inequality constraints may actually be inactive, and the asso-
ciated Lagrange multipliers would be null in this case. The parameters αyyy and αzzz in the algo-
rithm tune the stability and the convergence speed. The presented compact version of the dual
ascent translates into the following local procedure, from a server perspective. Defining vectors
μ̃i = {μji} and ooōi = {õij} to collect those variables that are kept in memory by the neighborhoods
of i, the local Lagrangian at node i is

Li
(
xxxi;www̄i,www̃i, P̂

H
i , νi

)
= Γ̃i

(
oooi, ooõi;www̄i,www̃i, P̂

H
i

)
+ λi

[
111T(ooõi − oooi)− δ̂i

]
+

− γT
i oooi − γ̃T

i ooõi + μT
i oooi − μ̃T

i ooõi − ϕ̂iδ̂i,
(3.28)

with xxxi = [ooo+i , ooõ
+
i , δ̂i] and νi = [λi111,ϕi,γi, γ̃i,μi, μ̃i] to collect the Lagrange multipliers. The local

procedure is presented in Algorithm 3.2, where a fixed step size α is assumed.
Note that, to minimize the Lagrangian in the primal step at line 2, server i not only needs its

own Lagrange multipliers, but also the introduced μ̃i, which collects the μji of neighbors j ∈ Ni.
Therefore, node imust first receive thesemultipliers from the neighborhood. Also, while updating
μi in the dual step at line 9, ooō+i is needed, which collects the õ+ij variables kept by the neighborhood
of i, and which are to be received after the computation of j’s primal step (∀j ∈ Ni). Hence, this
amounts to two communication rounds among neighbors per dual ascent iteration. The dual
updates are computationally inexpensive, whereas the primal step requires solving a local convex
subproblem, which is complicated by the max{·} operator in the cost function (3.22). Eventually,
note that additional communication is required at the beginning of the procedure, to inform the
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Algorithm 3.2 Dual ascent from a server perspective
1: receive μ̃i = {μji} from the neighbors
2: [ooo+i , ooõ

+
i , δ̂i] = argminxxxi Li

(
xxxi;www̄i,www̃i, P̂

H
i , νi

)
3: send õ+ji to the corresponding neighbor j
4: λ+

i = max
{
λi + α

(∑
j∈Ni

(
õ+ji − o+ij

)
− F̂i

)
, 0
}

5: ϕ̂+

i = max
{
ϕ̂i − α δ̂+i , 0

}
6: γ+

i = max
{
γi − α ooo+i , 0

}
7: γ̃+

i = max
{
γ̃i − α ooõ+i , 0

}
8: receive ooō+i = {õ+ij } from the neighbors
9: μ+

i = μi + α
(
ooo+i − ooō+i

)
10: send μ+

ij to the corresponding neighbor j

neighborhood about the values of www̃i.
Solution to the primal step (line 2). The solution of the local primal subproblems is computed
in closed form, distinguishing three cases. We consider the local primal subproblems in compact
form with variables xxxi, and collect the Lagrange multipliers of (3.28) in νi = [λi111,ϕi,γi, γ̃i,μi, μ̃i],
with associated variables selection matrix Ai. We split Li (xxxi; ·) = ui (xxxi) + hi (xxxi), so that

ui (xxxi) = ∥xxxi − bbbi∥2Qi + νTi Aixxxi, (3.29)

hi (xxxi) = qqqTi xxxi − P̂H
i . (3.30)

Proposition 1. The solution of the primal step of problem (3.20) is computed as one of themutually exclusive
cases

i) xxx+i = argminxxxi ui (xxxi), if hi
(
xxx+i
)
≤ 0, or

ii) xxx+i = argminxxxi ui (xxxi) + hi (xxxi), if hi
(
xxx+i
)
> 0, or

iii) xxx+i = argminxxxi ui (xxxi), s.t. hi (xxxi) = 0.

Proof. i) and ii) correspond to the cases where the max{·} operator in (3.22) is replaced by 0 or
hi(xxxi), respectively. Once the optimum is computed, the feasibility check must be done: if the
minimum lies in the feasible region, the solution is accepted. However, it can also be that these
two optima are both infeasible: in this case, the optimal solution must lie on the plane hi(xxxi) = 0,
and a constrained problem has to be solved (case iii)).

Remark 3. It is impossible that both solutions i) and ii) are feasible, otherwise the convex function (3.22)
would have two minima, which is absurd due to its convexity.

The solutions for each of the cases of Proposition 1 are now given in the following result.
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Proposition 2. Consider the three cases of Proposition 1. Their closed-form optimal solutions are expressed
as

i) xxx+i = bbbi − 1
2 Q

−1
i AT

i νi

ii) xxx+i = bbbi − 1
2 Q

−1
i
(
AT

i νi + qqqi
)

iii) xxx+i = bbbi − 1
2 Q

−1
i

AT
i νi + qqqT

i

2Qi

(
bbbi−

P̂Hi
∥qqqi∥2

qqqi
)
−AT

i νi
∥qqqi∥2 qqqi


Proof. The proof is straightforward for cases i) and ii): it is sufficient to set the gradient of the
function to zero. In the third case, it is necessary to solve the constrained minimization of u(xxxi)
subject to h(xxxi) = 0. The Lagrange multipliers method can be used, where the Lagrangian of
case iii) is L′(xxxi, ηi) = u(xxxi) + ηi h(xxxi), and its primal solution is

inf
xxxi

sup
ηi
∥xxxi − bbbi∥2Qi + νT

iAixxxi + ηi
(
qqqT
i xxxi − P̂H

i

)
. (3.31)

The partial derivatives with respect to xxxi, and ηi are

∂L′(xxxi, ηi)
∂xxxi

= 2Qi (xxxi − bbbi) + AT
i νi + ηi qqqi,

∂L′(xxxi, ηi)
∂ηi

= qqqT
i xxxi − P̂H

i .

(3.32)

Setting them to zero, we obtain

xxxi = bbbi −
1
2
[
Q−1

i
(
AT

i νi + ηi qqqi
)]

=
P̂H
i

∥qqqi∥2
qqqi, (3.33)

from which it is possible to derive the optimal value for the Lagrange multiplier

η∗i =

qqqT
i

[
2Qi

(
bbbi − P̂H

i
∥qqqi∥2 qqqi

)
− AT

i νi
]

∥qqqi∥2
. (3.34)

Now, plugging (3.34) into (3.33) returns the optimal value xxx+i for case iii).

Remark 4. For quadratic programs, it is possible to find a condition on the step size α for which the algorithm
is ensured to converge. This only depends on the constraint matrices A1 and A2, and on the quadratic
cost matrix Q defining the curvature. Since these values do not change among the three different primal
optimization cases, a common condition can be obtained, i.e.,

α ≤ 2∥∥∥∥∥
[
A1

A2

]
Q−1

[
A1

A2

]T∥∥∥∥∥
. (3.35)
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Proof. This result can be derived using proposition 2.3.2 of [100].

3.6.3 Phase 2b: rounding to a feasible discrete solution

In this section, we show how to compute the actual discrete allocation of jobs by obtaining new
variables ooori , which are the rounded versions of the oooi that were previously computed through con-
sensus (see Section 3.6.2). In particular, oooi contains the optimal continuous amount of workload
that each MEH would like to send to its neighbors. Instead, its rounded version ooori contains a fea-
sible allocation accounting for the fact that the number of jobs and the possible ways of allocating
them are discrete.

To compute the new ooori , as an initial solution, we select the jobs from set K̂ij, whose associated
vehicle is about to migrate from eNB site i to j. The rounded ooori is thus initially set to www̄i, assuming
that the minimizer of the objective function (3.17) is the vector that minimizes the quadratic term.
Then, the difference between this guess and the actual optimum obtained from the proposed dual
ascent algorithm is computed, ooodiffi . For every neighbor j it is now clear whether more workload
is to be added to (in case odiffij < 0) or removed from (odiffij > 0) the initial guess orij. The jobs that
were initially scheduled for migration to node j but that are eventually retained for computation
at node i are those minimizing ∥ooodiffi ∥1 . Instead, new jobs are added to the migration list using
the prediction vectors pppij. In detail, the added jobs are those for which the handover probabilities
towards j are maximized. A threshold εP is used to approximate the rounded solution, as the
continuous optimum oooi will likely not coincide with any possible discrete approximation. The
procedure is detailed in Algorithm 3.3.

3.6.4 Additional considerations

Handling pathological cases: Since system constraints are made soft to avoid primal infeasibility,
three pathological cases may arise, namely, 1. the optimal processed workload at the current in-
stant exceeds the computational capacity; or 2. the data size for the currently running jobs do not
fit the RAMmemory; or 3. the deadline expires during the current slot, but the residual intensity
is greater than zero. A greedy algorithm is developed to handle all of them. For the first two, the
MEH ranks the active jobs through a double ordering criterion, considering as the first ranking
criterion the time slot when they expire, and as the second their intensity (or data size). Next,
it momentarily pauses the execution of the services starting from the last one in the ordered list,
until the resources suffice to proceed. In case 1, when pausing a job m, the amount of processed
workload becomes

∑
k∈Ki

wi,k − wi,m, while in case 2, the data relative to suspended jobs is deleted
from the RAM. The number of suspended jobs is the minimum such that the requirements are
satisfied. Moreover, in case 1, it is likely that, when a job is suspended, additional computational
power becomes available. In such a case, the new computational resources are assigned to the jobs
that are closest to their deadline. Case 3 is managed considering the amount of residual intensity
Ii,k. If Ii,k is smaller than a threshold ε, then the deadline is extended by a small amount, so that
the controller will privilege the execution of the corresponding job in the next slot. In this way,
jobs are allowed to finish with a little additional delay (within one slot). If, however, the amount
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Algorithm 3.3 Job-neighbor association
1: Input: mobility pattern predictions matrix Pi; optimal outgoing workload amount oooi; set of

the jobs Ji in execution at MEH i; tolerance threshold εP.
2: Output: job-neighbor association sets Zij ∀ j ∈ Ni; rounded ooori .
3: remove jobs {k | Ii,k < ε ∨Di,k < 2} from Ji
4: ooori ← www̄i
5: Zij ← K̂ij
6: Ji ← Ji \

⋃
j∈Ni
K̂ij

7: ooodiffi ← ooori − oooi ▷ workload to be adjusted
8: for all neighbors j in Ni do
9: while odiffij > εP do
10: k← job of Zij minimizing

∣∣∣ odiffij

∣∣∣
11: remove job k from Zij
12: orij ← orij − Ii,k/Di,k
13: odiffij ← odiffij − Ii,k/Di,k
14: add job k to Ji ▷ make it available for neighbors
15: end while
16: while odiffij < −εP do
17: take k ∈ Ji | k ∈ argmax pppij ▷ most prob. i→ j
18: add job k to Zij
19: orij ← orij + Ii,k/Di,k
20: odiffij ← odiffij + Ii,k/Di,k
21: mask entry pij,k ▷ s.t. k is not selected again
22: end while
23: end for

of residual intensity is larger than ε, the job is dropped, i.e., in this case, the algorithm failed to
provide an acceptable solution.
Predictions inaccuracies: With the adopted approach, a residual migration suboptimality is still
possible also due to prediction errors on the mobility of the users, the service request, and the
available local resources. Concerning the mobility prediction, the performance is extensively
studied in [18], where the authors compare the mobility predictor also used by EASE with a
simpler and less accurate approach based on Markov chains, showing the improvement brought
by considering the information on the actual trajectory followed by the users. However, we recall
that the main objective of EASE is to reduce the carbon footprint and, in turn, even in the case
of precise mobility predictions, the scheduler can decide to place the service in a MEH that is
far away from the vehicle, it this leads to better use of the energy resources. For this reason, the
eNBs/MEHs are connected via backhaul links that always ensure that the result is sent back to
the user. Regarding instead the statistical processes that control the energy availability and the
job requests, with EASE we only assume to know the average income over a prediction horizon
of some seconds (e.g., with T = 5, 15 s). In the previous Chapter 2 the impact of average versus
estimated (via Markov chains) or exact knowledge into the future (i.e., a “genie predictor”) was
assessed, showing that MPC is highly effective even when simple predictors are used.
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HP ProLiant DL 110 Nettrix R620 G40

idle power Pidle
i 94 W 110 W

max load power Pmax
i 299 W 468 W

computational power Fi 3.3 Gflops 7.6 Gflops
RAMmemory Mi 64 GB 256 GB

Table 3.3: Servers specifications [99].

Iℓ [Gflop] Dℓ [s] Sℓ [GB] pℓ
type 1 10 20 2 0.4
type 2 16 30 10 0.2
type 3 12 40 0.1 0.4

Table 3.4: Jobs parameters for the simulations.

3.7 Numerical results

EASE is assessed in an emulated environment featuring 5G-enabled vehiclesmovingwithin an ur-
ban scenario. Mobility traces are obtained with SUMO [101], an open-source traffic simulator to
obtain mobility traces around a predefined city road map. For this, we use the “TAPAS Cologne”
scenario, which mimics the vehicular traffic within the city of Cologne for a whole day based on
the traveling habits of the city dwellers [102]. The scheduling simulator was instead built from
scratch using Python 3. Themobile network is composed of 8 eNBs endowedwithMEH function-
alities, wired connected through optical links. The mobility area is covered with hexagonal cells
with an eNB in the center, and with an inter-distance among nodes of 400 m. We generated and
collected 24h long SUMO mobility traces with 25 ms granularity, for each of the 8 eNBs in the
deployment. The first 15 hours were used to train and validate the mobility prediction algorithm,
which is taken from [18], whereas the remaining ones to assess the performance of EASE. For
the evaluation, we considered vehicles approaching the edge of the serving eNB coverage area,
i.e., that are about to hand over to a new eNB/MEH. With the considered setup, this occurs, on
average, when a user is less than 40 meters apart from the radio cell’s border. The energy con-
sumption of the MEHs is computed based on the SPECpower benchmark [99]. We selected two
different edge computing platforms, namely, an HP ProLiant DL 110 Gen 10 Plus and a Nettrix
R620 G40, obtaining two clusters of edge servers with different energy consumption, processing
speed, andmemory, see Table 3.3. In Table 3.4, we report the jobs intensities, deadlines, data sizes,
and generation probabilities, according to the system model of Section 3.4.2. They were chosen
to be of interest for a tasks migration purpose (i.e., long enough so that vehicles perform at least
one handover) and heterogeneous from both a computational and memory perspective. In this
way, it is important also to choose which tasks to migrate, e.g., because they have a different size.
The other system parameters are listed in Table 3.5.

In the following analysis, the edge energy consumption is evaluated through i) the process-
ing and migration power, averaged across all the MEHs, ii) the energy efficiency, defined as
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Parameter Value

number of nodes |N | 8
fixed wireless circuit power consumption PRAN 50.2 W
fixed wired circuit power consumption Pwired 20 W
energy per transmitted bit via wireless link ERAN

b 1 nJ/bit
energy per transmitted bit via wired link Ewired

b 250 pJ/bit
PV panel minimum power PPV

min 250 W
PV panel maximum power PPV

max 400 W
PV panel average power PPV 370 W
PV panel power std σPV 10 W
containers’ size L 50 MB
weight parameters for L in (3.6) σs, σd 500 nJ/bit
fixed container migration energy expenditure Es, Ed 250 mJ
delay associated with wired transmissions Tmigr

k 2 s
window size to predict incoming trafficW 5 minutes
scheduler time slot τ 3 s
MPC horizon T {2, 5, 20}
job generation probability p 0.25
weight of the soft constraint penalty ci of (3.15) 500
weight of the soft constraint penalty ĉi of (3.20) 10
state cost γ for Eq. (3.14) 100
weight of the quadratic term of (3.20) ρ 2.5

Table 3.5: Summary of simulation parameters.

η = Eh/Etot, i.e., the fraction of harvested (green) energy used over the total energy drained (green
plus grid energy), iii) the fraction of executed and finished jobs, and iv) the fraction of jobs fin-
ishing in the MEH that is co-located with the eNB serving the vehicle. First, we assess the impact
of the prediction window size T on the performance of EASE, then we compare it with the three
heuristic migration strategies proposed in [95] (i.e., “keep”, “migrate” and “threshold”) and the
solution of [18], based on Lyapunov optimization and termed thus “lyapunov” (see Section 3.2
for details). The migrations in the “threshold” strategy are triggered whenever the current serv-
ing MEH starts to have a positive carbon footprint, according to equation (3.12). Note that, for a
fair comparison, the approaches we compare our strategy with are all based on the local resource
allocation algorithm we devise in this chapter. Hence, their differing performance only depends
on the adopted migration policy.

3.7.1 EASE performance varying the resources prediction window

EASE is evaluated by varying the local optimization window size T of MPC. By increasing it
the controller is likely to find a better solution for the local management of resources and better
estimates, which can be used in the migration process of phase 2. Fig. 3.3 shows the results of
the aforementioned metrics for T ∈ {2, 5, 20} time slots. Specifically, in Fig. 3.3a the processing
power is shown as a function of the job generation probability p. While the curves for T = 5 and
T = 20 substantially overlap, there is a slight increase in the energy consumption using T = 2
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Figure 3.3: Results of using EASE with different prediction windows for the local phase. Average
processing (3.3a) and migration (3.3b) power dissipation of the edge servers. Energy efficiency with

respect to the generation probability (3.3c) and the power generated by the PV cells (3.3d).

(of about 5%). For the migration power (Fig. 3.3b), the configuration that drains more energy is
still T = 2, due to a poor prediction of future resources. However, setting T = 5 leads to a better
migration efficiency than T = 20, but in the latter case the algorithm better captures the future
system evolution, thus migrating the jobs to the next serving eNB at a slightly higher rate (see
Table 3.6). The overall energy efficiency is depicted in Figs. 3.3c and 3.3d, showing that EASE is
resilient to the prediction window size, as T = 2 loses at most 0.5% in efficiency when compared
to the other two policies. In what follows, we select T = 5 to be compared with other existing
strategies, as it provides the best tradeoff between performance and complexity.
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Figure 3.4: Comparison between EASE (T = 5) and other approaches of the literature. Average
processing (3.4a) and migration (3.4b) power dissipation of the edge servers. Energy efficiency with

respect to the generation probability (3.4c) and the power generated by the PV cells (3.4d).

3.7.2 EASE vs other migration methods from the literature

Fig. 3.4a shows the processing power, which has an increasing concave trend for all the strategies.
As it can be seen, EASE allows substantial savings, e.g., as much as 70 W at p = 0.5 (a gain of
33%) with respect to the benchmarks. The “threshold” policy provides a slight improvement over
the other heuristics, due to a better organization of the computational resources, as its migration
decisions depend on energy considerations. The average power used to migrate the jobs is shown
in Fig. 3.4b. Since the “keep” strategy never migrates tasks, its job migration power is always zero.
On the other hand, the strategy with the highest migration power is “lyapunov”, as it potentially
migrates multiple replicas of the service to increase the probability of correctly following the user.
The “migrate” and “threshold” strategies consume consistentlymore than the optimized EASE, as
they blindly migrate services, even when the target MEH processes them inefficiently. In Fig. 3.4c,
the energy efficiency η is shown as a function of the job generation probability. All the strategies
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EASE (T = 2) EASE (T = 5) EASE (T = 20) keep migrate threshold lyapunov

minimum latency jobs 33% 28% 30% – 75% 58% 78%
drop rate – – – 1.5% 0.5% 0.5% 1.5%

Table 3.6: Minimum latency executions and drop rates for p = 0.3 and PPV = 370 W.

show an almost linear decrease for increasing p. However, the absolute slope of such a decrease
is larger for the benchmark strategies with respect to EASE. At p = 0.5, EASE allows gaining
about 7% in efficiency: the harvested energy can fully support the edge network for at least 97%
of the total energy requirement. The energy efficiency is also evaluated by varying the amount
of harvested energy (Fig. 3.3d), with the PV panel generating power in [PPV

min,PPV
max] W. EASE can

entirely sustain the edge at least 87.5% of the time when the harvested energy is at its minimum,
i.e., PPV = 250 W, leading to a gain of 10% concerning the other strategies, thus resulting in a
significantly reduced carbon footprint. At PPV = 400 W the gain is lower, but EASE performs
very close to complete carbon neutrality (efficiency ≈ 99%). Note that 400 W are just sufficient
to self-sustain (on average) the less powerful HP ProLiant server, but not the Nettrix computing
unit at full load. As a final consideration, from Figs. 3.4c and 3.4d, it can be seen that the largest
gain is achieved when either the computing demand is high (large p) or the harvested energy is
scarce. These are the cases where it is important to use the available resources wisely, and EASE
succeeds to do so.

The results about the jobs drop rate and the fraction of jobs finishing in the MEH co-located
with the serving eNB (dubbed “minimum latency”) are summarized in Tab. 3.6. In addition to
being consistently more energy efficient, EASE never discards jobs, while the benchmark strate-
gies drop a significant percentage of the tasks. The “migrate” and “lyapunov” strategies are the
best in following the vehicles’ trajectories, i.e., they seek to minimize the latency by transferring
the jobs to the closest MEH. EASE takes a different approach, by considering latency deadlines,
and seeking to migrate the jobs in a way that minimizes the overall energy that is drained from
the power grid, subject to such deadlines. This leads to migration paths where jobs do not nec-
essarily (strictly) follow the users. As a second-order optimization criterion, and only if feasible,
EASE migrates jobs to the next predicted user location (eNB).

3.7.3 Rounding algorithm performance

To test the performance of the rounding Algorithm 3.3, the cost function (3.19) is evaluated with
the obtained rounded solution ooor = {ooori | i ∈ N}. The comparison is performed with the solution
given by each server i simply following the desired www̄i, i.e., the solution corresponding to the
“migrate” strategy. Specifically, the ratio between the cost values of the “migrate” strategy and
the rounded solution is computed, considering the cases where it is energetically inefficient to
follow the desired migrations. Indeed, in the other case oooi = ooori = www̄i, for all servers, i.e., www̄i is the
optimal solution and it is a feasible one in the discrete domain, thus the costs are equal. As an
example, with prediction horizon T = 5, job generation probability p = 0.3, and PPV = 300 W, the
gain of using the proposed relax and round optimization procedure of EASE over the “migrate”
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strategy is on average 10 folds. More in the detail, the gain has a median of 3.8, the 10th percentile
is 1.3, meaning that rarely a gain lower than 30% is observed, and the 90th percentile is 17. Hence,
often, the rounding step of EASE induces a high gain over the blind “migrate” strategy from an
energy perspective.

3.8 Conclusion

In this paper, we proposed EASE, a novel strategy for online job scheduling in a MEC-enabled
network co-powered by the grid and renewable energy resources, considering an IoV scenario.
EASE tackles the problem of ensuring computing service continuity as the users move within the
resources-constrained network area. It allows deciding whether to migrate the jobs following the
UE, or to continue the execution on theMEC server where it started. This is achieved through the
alternation of a local control optimization phase, to estimate future resources, and a distributed
consensus step, to reach the migration agreement. The primary objective is the minimization of
the carbon footprint at the network side, guaranteeing adequate QoS to the moving users. Using
EASE leads to energy efficiency improvements of up to 10% over heuristic strategies, getting close
to carbon neutrality in a wide range of contexts.
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4
Communication and computation overhead

This chapter is a comparison of the communication and computation efficiency of the approaches
detailed in the previous two chapters. The reader might refer back to those chapters to recover
the meaning of the parameters.

4.1 Convergence of the fully decentralized scheme of Chapter 2

In Fig. 4.1, numerical insights on the convergence time of the distributed MPC solution (Algo-
rithm 2.3) are given, for a network with M = 16 servers, N = 8, and ε = 0.5. We observe that,
while the optimization value does depend on the prediction error, i.e., larger errors lead to worse
performance, the ADMM convergence speed is unaffected by this. Also, the term “iterations” is
used as a proxy for the number of messages that are exchanged among the nodes, as a single local
message is sent by each node at each ADMM iteration. The numerical solver uses CVXPY [103]
and OSQP [104] to process each local iteration of the DRS algorithm.

The quadratic cost leads to a very fast convergence: the distance from the optimumgets smaller
than 10−4 just after 15 iterations. For the logarithmic cost, since an optimal solver is not available,
the optimal objective f(x∗) is approximated as the value of f(·) obtained by the iterative solver after
1, 000 iterations. In this case, a linear convergence is no longer achieved, the behavior of |f(x)/f(x∗)|
shown in Fig. 4.1 is non-monotonic, and convergence is slower.

This is also confirmed by Fig. 4.2, where the median number of iterations needed for conver-
gence is shown as a function of ε (the shaded regions indicate the interquartile ranges). As a
stopping criterion, we require that zobj = fobj = 0.01. For the quadratic cost, the convergence time
remains about constant and with a small variance until ε ≈ 0.6, increasing at higher loads. The
samemedian holds for the non-convex formulation, but in this case, the interquartile range covers
a wider area, denoting that the solution is highly sensitive to initial conditions, and may require
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Figure 4.1: DRS convergence to the optimal value for ε = 0.5.

a higher number of iterations to converge. At very high loads (beyond ε = 0.8), the convergence
time of the logarithmic cost increases abruptly. However, note that, in the main working region
of the system, where all the workload can be processed by the edge servers, both methods require
fewer than 50 iterations to converge. Furthermore, we observe that a consolidation approach (log-
arithmic cost) makes little sense at high load, say ε ≥ 0.5, where nearly all the servers are to be
used anyway and, in turn, the convex cost represents a better choice. Using the logarithmic cost
makes sense at a low load, where the associated formulation converges quickly.

From these findings, we recommend using a convex (quadratic) cost at all ε if the objective is
to promote load balancing across the servers, whereas if the aim is to promote consolidation, it
makes sense to use a non-convex (logarithmic) cost until, e.g., ε ≈ 0.5, and use the convex one
at higher loads. This is because, as the load increases, server consolidation becomes an ill-posed
objective, and the use of a logarithmic cost only leads to slower convergence, leading to the same
solution attained by the quadratic cost formulation.

4.2 Convergence of the two steps dual ascent approach of Chapter 3

In Fig. 4.3, the convergence speed of the proposed decentralized solution is evaluated. Specifically,
the cost value reached at the current iteration is compared with the optimal solution obtained
with CVXPY [103], considering the absolute value of their ratio |Γ(xxx+)/Γ(xxx∗)|. In the plot, the
90th percentile is shown, discarding hence 10% of outliers. Thus, whenever the ratio settles down
to approximately 1, the nodes have reached the global minimum of the cost function. The results
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show that the power availability impacts the convergence speed: the more harvested energy PPV

is available, the quicker the algorithm reaches the minimum. This descends from the fact that a
high energy availability leads to a rare activation of the max term in function (3.17). When the
max term returns 0 and the constraint (3.18) is not active, the optimum is simply given by oooi = www̄i,
i.e., the selected action is to follow the vehiclemovements. The nodeswill be very fast in retrieving
this particular solution, as the Lagrangemultipliers associatedwith all the constraints remain null
after the first two iterations, leading to accepting the solution. Similar reasoning holds for the
job generation probability that determines the load of the servers. Specifically, the convergence
requires more iterations as p increases. In fact, an increase in the average load experienced by
the servers activates the constraint (3.18), modifying the optimal solution or even activating the
penalties δ̂i. As it is known, the dual ascent is slow when being close to constraint boundaries.
However, as a general result, the number of iterations required to converge even with complex
initializations is between 200 and 500. The communication overhead can be evaluated considering
that two communication rounds (of a few bytes) are required per iteration (see Algorithm 3.2).
Although this may actually appear to be a high number of exchanged messages, we remark that:
i) the subsequent step of the proposedpipeline rounds the solution, and, in turn, it is not necessary
to retrieve the exact optimum, but it is sufficient to obtain a decent cost value in the continuous
domain; ii) we considered slots of τ = 3 s, which is the amount of time available to make a
migration decision. Longer time slots can be used, leaving more time for the decision process.
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4.3 Complexity comparison

The decomposition approach adopted in EASE (Chapter 3) makes the overall algorithm feasible
and lightweight to be run even in a complex and highly variable scenario such as the vehicular
one considered. First, the nodes control the local processing and estimate the resource availability,
then they agree on the offloading variables only. The work presented in Chapter 2, instead, uses
MPC to jointly obtain an optimal decision on both the amount of workload to process locally and
to offload to other MEHs in a fully decentralized fashion and considering the whole prediction
window. This amounts to having a number of shared variables to be optimized via message pass-
ingO(VT), where V is the number of edges in the network graph and T is the prediction window.
EASE, instead, by performing the preliminary local optimization phase, estimates the future on
average, having thus a number of shared variables O(V). The local phase amounts to solving a
constrained convex problem numerically every τ seconds, while the distributed phase requires
broadcasting to the neighborhood (a part of) the primal and dual information of problem (3.20).
In both cases, communication requires broadcasting a few bits only, which can be easily piggy-
backed on control packets that the MEHs normally exchange for other reasons. Although the
amount of data exchanged within the single iteration is reduced by a factor 1/T in the case of
EASE, the use of an accelerated version of the ADMM (the DRS with Anderson-II acceleration)
of the solution proposed in Chapter 2 makes the number of iteration be an order of magnitude
less than EASE: a few tens are required for the DRS approach while a few hundreds for the dual
ascent. This is due to the better spectral properties of the ADMM algorithm compared to the dual
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communication rounds messages per round variables local subproblems

DRS (Chapter 2) ∼ 101 1 O (VT) constrained convex
EASE (Chapter 3) ∼ 102 2 O (V) closed-form

Table 4.1: Summary of the communication and computation performance of the proposed distributed
algorithms.

ascent. On the other hand, the solution proposedwith EASE allows for a nice closed-form solution
at every communication round even if the problem is non-differentiable. The solution proposed
in Chapter 2 requires instead a QP solver at each communication round to solve a constrained
convex subproblem, resulting in a higher computational burden.

4.4 Conclusion

A study on the communication and computation efficiency of the two pipelines proposed in the
former chapters was presented here. In Table 4.1 a summary of the comparison is reported. In
extreme synthesis, EASE requires more communication rounds (and two messages per round)
to retrieve the optimal solution of the offloading problem but it is significantly more lightweight
from a computational perspective, as it needs only inexpensive local closed-form updates. On
the other hand, the approach based on the DRS, despite having better spectral and convergence
properties, requires solving numerically a constrained convex subproblem at every iteration.

Overall, it is not clear yet which approach is the best one: it might likely depend on themedium
access control protocols used for the messages exchange and on the computational power allo-
cated for solving the subproblems at each iteration.
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5
Concluding remarks

In this thesis, the problem of the management and operation of the MEC platform has been ana-
lyzed. A special focus was given to the integration in the infrastructure of RERs coming from PV
panels, which can be easily equipped to eNBs. The general goal of the model-based optimization
problems formulated was the minimization of the carbon footprint of the heterogeneous network
infrastructure, considering both transmissions among edge servers and the execution of general-
purpose jobs. In Chapter 2 the management of a hierarchical MEC network withMEHs equipped
with EH devices and batteries is studied. Notably, the electricity trade with the power grid was
also studied, as well as the use of different and simple resources and workload predictors. In
Chapter 3 a vehicular scenario was considered, making the problem more complex with the ad-
ditional requirement of following (if possible) the vehicles’ trajectories when performing jobs
migrations.

Given the decentralized nature of the edge infrastructure, algorithms based on message pass-
ing that only need to exchange information with the immediate neighborhood have been devised.
Thus, an omniscient central orchestrator (network controller), which is often required in the
works found in the literature, is not needed in what is presented here. Chapter 4 provides a
study on the communication and computational burden of the distributed algorithms devised in
this thesis.

The results compare the proposed solutions with simpler heuristics and other approaches
found in the literature. They show that the predictive model-based algorithms devised outper-
form the benchmark in terms of the main optimization goal, i.e., the energy efficiency of the net-
work edge, while also meeting the QoS requirements, formulated in terms of latency constraints.
Notably, thanks to MPC, this is true even when the incoming availability of energy resources and
computational load is not known with certainty but only on average if the optimization window
is sufficiently large. Finally, there is a wide number of cases where the proposed solutions make
the system almost completely carbon neutral, i.e., they use only the RERs.
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5.1 Open challenges and future research directions

In light of the studies carried out during this doctorate, future research directions have also been
identified. They are reported in the following list.

• Application oriented algorithms: scientific literature often either focuses on the latency or
energy optimization of the MEC platform, as they are contrasting objectives. Nonetheless,
an efficient infrastructuremust respond both to the environmental challenges that theworld
is today facing and to the QoS requirements of the use cases of the future. Extreme low
latency is fundamental for AR, healthcare monitoring, the tactile Internet, connected cars
and remotely controlled unmanned vehicles, but also more playful applications such as
online gaming. It is thus important to design solutions targeted for specific verticals to fully
consider all the related requirements.

• Energy profiling of edge devices: models used to predict the energy consumption of CPUs
and GPUs are outdated. The recent advances in the energy efficiency of the edge hardware
produced by leading companies (AMD, Intel, and Nvidia to name a few) make it necessary
to characterize the energy consumption of modern architectures concerning the computa-
tional load and the frequency, which is usually adaptive.

• Testbed implementations: too often in academia researchers resort to simulations. This is
a required step but only the first one. On-field experimentation makes practical problems
that engineers should consider arise. Proofs-of-concept should be thus realized with small
testbeds to validate the operation of the designed algorithms for specific verticals.

• Distributed learning: the increasing use ofmachine and deep learning togetherwith themas-
sive availability of data coming from sensors (and users)make the edge computing facilities
a suitable platform to train models. Federated learning (also known as local SGD) has de-
veloped recently as the candidate algorithm to train ML models distributedly. However,
the high system heterogeneity of edge devices, i.e., from a computational and communi-
cation capacities perspective, makes this task challenging. Specific algorithms to tune the
computation-communication tradeoff in heterogeneous systems need to be devised, taking
into account i) the model accuracy, ii) the convergence time, and iii) the energy spent to
train the model, as backpropagation operations are extremely expensive.

• Neuromorphic computing: recently introduced brain-inspired neural networks have the pos-
sibility of distributed and asynchronous firing [105]. Research in the field of microelectron-
ics shows how this paradigm can reduce significantly both the time and energy used for
processing information on standard hardware. It is thought that dedicated hardware will
improve this result by orders of magnitude. Neuromorphic edge computing might be the
solution in terms of both latency and energy for the network infrastructure of the future.
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