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1. Introduction

We consider the Cauchy problem for the Burgers equation:

⎧⎨
⎩ ut +

(
u2

2

)
x

= 0, (t, x) ∈ [0, T ] ×R

u(0, ·) = u0,
(1)

E-mail address: elio.marconi@unibas.ch.
1 The author acknowledges ERC Starting Grant 676675 FLIRT and Xavier Lamy for several discussions 

on this topic.
https://doi.org/10.1016/j.jfa.2022.109568
0022-1236/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jfa.2022.109568
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2022.109568&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:elio.marconi@unibas.ch
https://doi.org/10.1016/j.jfa.2022.109568
http://creativecommons.org/licenses/by/4.0/


2 E. Marconi / Journal of Functional Analysis 283 (2022) 109568
with T > 0 and u0 ∈ L∞(R). It is known since the early stages [20] of the theory of scalar 
conservation laws that the Cauchy problem (1) is well-posed in the setting of bounded 
entropy solutions, namely weak solutions with the following additional constraint: for 
every smooth convex entropy η : R → R and relative flux q : R → R defined up to a 
constant by q′(v) = η′(v)v, it holds

μη := ∂tη(u) + ∂xq(u) ≤ 0

in the sense of distributions. The celebrated Oleinik one-sided Lipschitz estimate [29] im-
plies that bounded entropy solutions to (1) belong to BVloc((0, T ] ×R) and the structure 
of the solution is well described by means of the theory of BV functions.

In this paper we investigate the structure of more general weak solutions introduced 
in the following definition:

Definition 1.1. We say that u is a bounded weak solutions to (1) with finite entropy 
production if u ∈ C0([0, T ]; L1(R)) ∩L∞([0, T ] ×R) and for every convex entropy η and 
corresponding flux q

μη := ∂tη(u) + ∂xq(u) ∈ M ([0, T ] ×R),

where M denotes the set of finite Radon measures.

This class of solutions arises in several situations; we report here the main motivations 
and we refer to [24] for a more detailed presentation. Weak solutions arise in the study of 
large deviations for stochastic approximations of entropy solutions (see [35] for the case of 
the totally asymmetric simple exclusion process). In [6,26] such large deviations estimates 
are related to a Γ-limit problem for a family of energy functionals, whose asymptotic 
domain is the class of weak solutions with finite entropy production. Moreover there is 
a strong analogy between the solutions introduced above and the weak solutions of the 
eikonal equation

|∇φ| = 1 (2)

in the plane arising as domain of the Γ-limit as ε → 0 of the Aviles-Giga functionals:

AGε(φ) :=
∫ (

ε

2 |∇
2φ|2 + 1

2ε (|∇φ|2 − 1)2
)
.

The same analogy holds for a very related model about thin ferro-magnetic films studied 
in [32,33], see also [31]. At a formal level the link between conservation laws and the 
eikonal equation is the following (see for example [10]): setting m = ∇⊥φ it holds div m =
0. Moreover we can impose the constraint |m| = 1 introducing a phase θ ∈ S1 so that 
m = (cos θ, sin θ) and the eikonal equation reduces to the S1-valued scalar conservation 
law
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∂x1 cos θ + ∂x2 sin θ = 0.

This analogy has been pushed much further when the notion of entropy has been trans-
ferred from the theory of conservation laws to the eikonal equation [18,2,15] and this 
allowed to provide a kinetic formulation for (2), see for example [19]. The kinetic formu-
lation for scalar conservation laws has been introduced in [25] in the context of entropy 
solutions; in our setting it reads as follows (see for example [11]): given a bounded 
weak solution to (1) with finite entropy production u there exists a Radon measure 
μ ∈ M ([0, T ] ×R ×R) such that

∂tχ + v∂xχ = −∂vμ, where χ(t, x, v) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 < v ≤ u(t, x),
−1 if u(t, x) ≤ v < 0,
0 otherwise.

(3)

The kinetic measure μ encodes all the entropy production measures μη by means of the 
following formula:

〈μη, φ〉 =
∫

[0,T ]×R×R

η′′(v)φ(t, x)dμ. (4)

In particular we will consider the measure

ν := (pt,x)�|μ| =
∨

‖η′′‖L∞≤1

μη, (5)

where pt,x : [0, T ] ×R2 → [0, T ] ×R is the standard projection on the first two components 
and we denoted by ∨ the supremum operator in the set of measures. The equality in (5)
follows from (4) (see for example [24]).

In contrast with the case of entropy solutions, bounded weak solutions with finite 
entropy production are not locally BV: they belong to B1/3,3

∞,loc [17] and this regularity 
is optimal [14]. The same result has been established recently in the case of the eikonal 
equation [16]. Nevertheless these solutions share several fine properties with functions of 
bounded variation: in [22,11] it has been proved that the set

J :=
{

(t, x) ∈ [0, T ] ×R : lim sup
r→0

ν(Br(x))
r

> 0
}

(6)

is H 1-rectifiable and it admits strong traces on both sides. In particular for every entropy 
η it holds

μη�J =
(
(η(u+) − η(u−))nt + (q(u+) − q(u−))nx)

)
H 1�J, (7)
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where n = (nt, nx) is the normal to J and u± are the traces. Moreover every point in 
Jc is a point of vanishing mean oscillation of u. Weak solutions with bounded variation 
enjoy the following additional properties:

(a) H 1-a.e. point in Jc is a Lebesgue point;
(b) μη is concentrated on J for every convex η.

It is conjectured that properties (a) and (b) hold for any bounded weak solution with 
finite entropy production. The same results and open questions about the fine properties 
of solutions of scalar conservation laws appear in the context of the eikonal equation 
(see [4,10]). In all the mentioned contributions the rectifiability of the jump set and the 
vanishing mean oscillation property are obtained through the analysis of the blow-ups 
of the solutions. This analysis does not detect the a priori non trivial measure μη�Jc, 
which is more diffuse than H 1 by definition of J , and it does not distinguish between 
points with vanishing mean oscillation and Lebesgue points.

Only recently, it has been proved in [24] that the set of non-Lebesgue points of u
has Hausdorff dimension at most 1, obtaining a partial result towards (a) (see also [28]
for the same result for more general conservation laws and [34] for the case of entropy 
solutions, where every point in Jc is actually a continuity point of u).

Property (b) has been proved for entropy solutions of general conservation laws in 
one space dimensions [13,7], for continuous entropy solutions in several space dimensions 
[34,5] and for continuous weak solutions to general conservation laws in one space di-
mension [9]. In both settings of conservation laws and of the eikonal equation, the proof 
of this concentration property in the class of bounded weak solutions with finite entropy 
production is considered a fundamental step to prove the Γ-convergence of the families 
of functionals discussed above, see [6,23].

The main result of this work establishes that this property holds in the case of Burgers 
equation:

Theorem 1. Let u be a bounded weak solution to (1) with finite entropy production. Then 
there exist countably many Lipschitz curves γi : [0, T ] → R such that ν (and therefore 
every entropy dissipation measure μη) is concentrated on

J ′ :=
⋃
i∈N

{(t, x) ∈ [0, T ] ×R : x = γi(t)}.

We observe that by definition of J it follows that ν�Jc does not charge any set with 
finite H 1-measure, and therefore any 1-rectifiable set; in particular, in the statement 
of Theorem 1, we can replace the set J ′ with the set J defined in (6) and recover the 
representation (7) for μη = μη�J .

The fine properties of solutions to (1) and (2) that we discussed and the regularizing 
effect for conservation laws rely on the characteristics structure that these equations 
own. The main tool to get Theorem 1 is the Lagrangian representation, which is an 
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extension of the method of characteristics to deal with nonsmooth solutions. It has been 
introduced first for entropy solutions to general scalar conservation laws in [5], relying 
on the transport-collapse scheme by Brenier [8]. Then this notion has been extended 
to cover the case of bounded weak solutions with finite entropy production in [28], 
building on the kinetic formulation introduced in [11]: in the particular case of the 
Burgers equation it takes the form provided in Definition 2.1. We would like to point out 
that the notion of Lagrangian representation is inspired by the superposition principle for 
nonnegative measure-valued solutions to the continuity equation (see [1]). In particular 
it shares with it the main feature that the evolution of the solution u is described as 
the result of the evolutions of the single particles along the characteristics. Finally we 
mention that the notion of Lagrangian representation is available for solutions with finite 
entropy production to the eikonal equation too. In the forthcoming paper [27] the general 
strategy introduced here is exploited to obtain the analogous of Property (b) in the model 
introduced by Rivière and Serfaty in [32].

As a consequence of Theorem 1 and (7) we obtain the following result:

Theorem 2. Let u be a bounded weak solution to the Burgers equation with finite entropy 
production. Then it holds

|(pt,x)�μ| = (pt,x)�|μ|.

In particular, denoting by η̄(u) = u2/2, if μη̄ ≤ 0 then μ ≤ 0, namely if u dissipates the 
quadratic entropy η̄, then u is the entropy solution to (1).

The second part of this statement is known even under milder assumptions: in [30]
the result has been proved for all bounded weak solutions to (1) and in [12] it has been 
extended to weak solutions in L4

loc. Both proofs rely on the link between entropy solutions 
to (1) and viscosity solutions to the Hamilton-Jacobi equation

vt + v2
x

2 = 0.

The interest in looking for alternative proofs is motivated by the problem of extending 
this result to systems of conservation laws, where the link with the Hamilton-Jacobi 
equation is not available: see [21] for a recent result in this direction.

We finally observe that both Theorem 1 and Theorem 2 can be proved with the 
same strategy and minor modifications in the case of bounded weak solutions with finite 
entropy production to conservation laws with uniformly convex fluxes.

2. Lagrangian representation

In this section we present the notion of Lagrangian representation introduced in [28]
and we discuss some of its properties. Since we consider bounded solutions, we can 
assume without loss of generality that u takes values in [0, 1].
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For every function f : R → [0, 1] we denote its hypograph and its epigraph by

Ef := {(x, v) ∈ R× [0, 1] : v ≤ f(x)} and Ec
f := {(x, v) ∈ R× [0, 1] : v ≥ f(x)}

respectively. Moreover we denote by

Γ := {γ = (γx, γv) ∈ BV ([0, T ];R× [0, 1]) : γx is Lipschitz} .

It will be useful to consider the standard decomposition of the measure Df ∈ M (R), 
where f ∈ BV(R, R) (see for example [3]). We will adopt the following notation:

Df = Dacf + Dcf + Djf = D̃f + Djf, (8)

where Dacf , Dcf and Djf denote the absolutely continuous part, the Cantor part and 
the atomic part of Df respectively; we refer to D̃f as the diffuse part of Df .

Definition 2.1. Let u be a weak solution to (1) with finite entropy production. We say 
that the Radon measure ωh ∈ M (Γ) is a Lagrangian representation of the hypograph of 
u if the following conditions hold:

(1) for every t ∈ [0, T ) it holds

(et)�ωh = L 2�Eu(t), (9)

where et denotes the evaluation map defined by

et : Γ → R.

γ �→ γ(t)
(10)

(2) the measure ωh is concentrated on the set of curves γ ∈ Γ such that

γ̇x(t) = γv(t) for a.e. t ∈ [0, T ); (11)

(3) it holds the integral bound

∫
Γ

TotVar[0,T )γvdωh(γ) < ∞. (12)

Similarly we say that ωe ∈ M (Γ) is a Lagrangian representation of the epigraph of u if 
Conditions (2) and (3) hold and (1) is replaced by

(et)�ωe = L 2�Ec
u(t) for every t ∈ [0, T ]. (13)
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A useful property of these representations is that the kinetic measure μ defined in 
(3) (and therefore any entropy dissipation measure μη) can be decomposed along the 
characteristics.

Given γ ∈ Γ we consider

μγ = (I, γ)�D̃tγv + H 1�E+
γ − H 1�E−

γ ∈ M ([0, T ] ×R× [0, 1]),

where

E+
γ :={(t, x, v) : γx(t) = x, γv(t−) < γv(t+), v ∈ (γv(t−), γv(t+))},

E−
γ :={(t, x, v) : γx(t) = x, γv(t+) < γv(t−), v ∈ (γv(t+), γv(t−))},

I : [0, T ] → [0, T ] denotes the identity and D̃tγv denotes the diffuse part of the measure 
Dtγv.

Proposition 3. Let u be a weak solution to (1) with finite entropy production. Then there 
exist ωh, ωe Lagrangian representations of the hypograph and of the epigraph of u respec-
tively enjoying the additional properties:

∫
Γ

μγdωh(γ) = μ = −
∫
Γ

μγdωe(γ), (14)

∫
Γ

|μγ |dωh(γ) = |μ| =
∫
Γ

|μγ |dωe(γ). (15)

Eq. (14) asserts that μ can be decomposed along characteristics and Eq. (15) says 
that it can be done minimizing

∫
Γ

TotVar[0,T )γ
2dωh(γ) and

∫
Γ

TotVar[0,T )γ
2dωe(γ).

Moreover it follows from (14) and (15) that we can separately represent the negative and 
the positive parts of μ:

∫
Γ

μ−
γ dωh(γ) = μ− =

∫
Γ

μ+
γ dωe(γ) and

∫
Γ

μ+
γ dωh(γ) = μ+ =

∫
Γ

μ−
γ dωe(γ).

(16)
The assertion of Proposition 3 regarding ωh is proved in [28] for more general conser-

vation laws and it is straightforward to adapt the same argument to get the existence of 
an ωe as in the statement. Alternatively, in order to prove the part concerning ωe, we 
can consider a Lagrangian representation ω̃h of the hypograph of ũ = 1 − u, which is a 
weak solution with finite entropy production to
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ũt + g(ũ)x = 0, with g(z) = − (z − 1)2

2 .

Let T : Γ → Γ be defined by

T (γ)(t) = (γx(t), 1 − γv(t)).

Then it is straightforward to check that the measure ωe := T�ω̃h satisfies the requirements 
in Proposition 3.

The following lemma is an application of Tonelli theorem:

Lemma 4. For ωh-a.e. γ ∈ Γ it holds that for L 1-a.e. t ∈ [0, T ]

(1) (t, γx(t)) is a Lebesgue point of u;
(2) γv(t) < u(t, γx(t)).

We denote by Γh the set of curves γ ∈ Γ such that the two properties above hold. Similarly 
for ωe-a.e. γ ∈ Γ it holds that for L 1-a.e. t ∈ [0, T ]

(1) (t, γx(t)) is a Lebesgue point of u;
(2) γv(t) > u(t, γx(t))

and we denote the set of these curves by Γe.

Proof. Let us prove the properties about Γh. We denote by S ⊂ [0, T ] × R the set of 
non-Lebesgue points of u and for every t ∈ [0, T ] we set

ext : Γ → R.

γ �→ γx(t)

By (9) it follows that for every t ∈ [0, T ] it holds (ext )�ωh ≤ L 1. Since L 2(S) = 0 it 
holds

0 =
(
L 1 ⊗ (ext )�ωh

)
(S)

=
T∫

0

ωh({γ ∈ Γ : (t, γx(t)) ∈ S})dt

=
∫
Γ

L 1({t ∈ [0, T ] : (t, γx(t)) ∈ S})dωh(γ),

(17)

where the last equality follows by Tonelli theorem. Similarly by (9) it follows that for 
every t ∈ [0, T ]
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ωh({γ ∈ Γ : γv(t) ≥ u(t, γx(t))}) = (et)�ωh({(x, v) ∈ R× [0, 1] : v ≥ u(t, x)}) = 0, (18)

where et is defined in (10). Therefore by Tonelli theorem it holds

0 =
T∫

0

ωh({γ ∈ Γ : γv(t) ≥ u(t, γx(t))})dt

=
∫
Γ

L 1({t ∈ [0, T ] : γv(t) ≥ u(t, γx(t))})dωh(γ).

(19)

By (17) and (19) it follows that ωh is concentrated on Γh. The case of Γe is analogous. �
The following result is a well-known property of traces on Lipschitz curves:

Lemma 5. Assume that γ̄x : (t−, t+) ⊂ [0, T ] → R is a Lipschitz curve and that for 
L 1-a.e. t ∈ (t−, t+) the point (t, ̄γx(t)) is a Lebesgue point of u ∈ L∞([0, T ] ×R). Then

lim
δ→0

t+∫
t−

1
δ

γx(t)+δ∫
γx(t)

|u(t, x) − u(t, γ̄x(t))|dxdt = 0. (20)

Proof. For t ∈ (t−, t+) we set

vδ(t) := 1
δ

δ∫
0

|u(t, γ̄x(t) + y) − u(t, γ̄x(t))|dy,

so that (20) is equivalent to vδ to converge to 0 in L1(t−, t+). For every t ∈ [t−+δ, t+−δ]
we have

|u(t, γ̄x(t) + y) − u(t, γ̄(t))|

≤ 1
2δ

t+δ∫
t−δ

(|u(t, γ̄x(t) + y) − u(t′, γ̄x(t′))| + |u(t′, γ̄x(t′)) − u(t, γ̄x(t))|) dt′.
(21)

Since |vδ| ≤ 1, integrating (21) with respect to t we get

t+∫
t−

vδ(t)dt ≤ 2δ +
t+−δ∫

t−+δ

1
2δ2

δ∫
0

t+δ∫
t−δ

|u(t, γ̄x(t) + y) − u(t′, γ̄x(t′))|dt′dydt

+
t+−δ∫
−

1
2δ

t+δ∫
|u(t′, γ̄x(t′)) − u(t, γ̄x(t))|dt′dt.

(22)
t +δ t−δ
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By Lebesgue differentiation theorem, 1
2δ

∫ t+δ

t−δ
|u(t′, ̄γx(t′)) − u(t, ̄γ(t))|dt′ → 0 as δ → 0

for L 1-a.e. t ∈ (t−, t+) therefore the last term in (22) converges to zero by dominated 
convergence theorem. By applying Tonelli theorem to the second term in the right-hand 
side of (22) we get

t+−δ∫
t−+δ

1
2δ2

δ∫
0

t′+δ∫
t′−δ

|u(t, γ̄x(t) + y) − u(t′, γ̄x(t′))|dtdydt′ ≤

t+−δ∫
t−+δ

1
2δ2

∫
B(2+L)δ(t′,γ̄x(t′))

|u(z) − u(t′, γ̄x(t′))|dzdt′,

(23)

where L is the Lipschitz constant of γ̄x and B(2+L)δ(t′, ̄γx(t′)) denotes the ball in R2

of radius (2 + L)δ and center (t′, ̄γx(t′)). Since by assumption L 1-a.e. t ∈ (t−, t+) is 
a Lebesgue point of u, the right-hand side of (23) converges to 0 by the dominated 
convergence theorem and this concludes the proof. �

The following proposition formalizes the intuition that a curve lying in the hypograph 
of a function cannot cross from above a curve lying in the epigraph of the same function.

Proposition 6. Let γ̄ ∈ Γh, G ⊂ Γe and t̄ > 0 be such that for every γ ∈ G it holds 
γ̄x(t̄) < γx(t̄). Then for every t ∈ [t̄, T ] it holds

ωe({γ ∈ G : γx(t) < γ̄x(t)}) = 0.

Proof. Given δ > 0 we define φδ : R → R by

φδ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x ≤ 0,
1
δ (δ − x) if x ∈ (0, δ),
0 if x ≥ δ,

and for every t ∈ [t̄, T ] we consider

Ψδ(t) =
∫
G

φδ(γx(t) − γ̄x(t))dωe(γ).

Clearly for every δ > 0 and every t ∈ [t̄, T ] it holds

ωe({γ2 ∈ G : γ2
x(t) < γ1

x(t)}) ≤ Ψδ(t) (24)

and by assumption
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Ψδ(t̄) ≤ ωe(γ ∈ G : γx(t̄) ∈ [γ̄x(t̄), γ̄x(t̄) + δ]) ≤ δ.

Since ωe is concentrated on curves satisfying (11), for every t ∈ [t̄, T ]

Ψδ(t) = Ψδ(t̄) +
t∫

t̄

1
δ

∫
G(δ,t′)

(γ̄v(t′) − γv(t′))dωe(γ)dt′

≤ δ +
t∫

t̄

1
δ

∫
G(δ,t′)

(γ̄v(t′) − γv(t′))+dωe(γ)dt′,

where G(δ, t′) := {γ ∈ G : γx(t′) ∈ [γ̄x(t′), ̄γx(t′) + δ]}. Since γ̄ ∈ Γh for L 1-a.e. 
t′ ∈ (t−, t+) it holds γ̄v(t′) < u(t′, ̄γx(t′)). Moreover for ωe-a.e. γ ∈ Γ and every t ∈ [0, T ]
it holds γv(t) ∈ [0, 1], therefore

Ψδ(t) ≤ δ +
t∫

t̄

1
δ

∫
G(δ,t′)

(u(t′, γ̄x(t′)) − γv(t′))+dωe(γ)dt′

≤ δ +
t∫

t̄

1
δ

(ωe({γ ∈ G(δ, t′) : γv(t′) < u(t′, γ̄x(t′))})) dt′

≤ δ +
t∫

t̄

1
δ

δ∫
0

|u(t′, γx(t′)) − u(t′, γx(t′) + y)|dydt′,

where the last inequality follows by (13). The claim follows by Lemma 5 and (24) by 
letting δ → 0. �

For every (t̄, ̄x) ∈ [0, T ] ×R we denote by

Gl
t̄,x̄ := {γ ∈ Γh : γx(t̄) < x̄}, Gr

t̄,x̄ := {γ ∈ Γe : γx(t̄) > x̄}. (25)

Corollary 7. Let (t̄, ̄x) ∈ [0, T ) ×R and consider Gl
t̄,x̄

, Gr
t̄,x̄

as above. Then there exists a 
Lipschitz function ft̄,x̄ : [t̄, T ] → R such that for every t ∈ [t̄, T ] it holds

ωh({γ ∈ Gl
t̄,x̄ : γx(t) > ft̄,x̄(t)}) = 0 and ωe({γ ∈ Gr

t̄,x̄ : γx(t) < ft̄,x̄(t)}) = 0.
(26)

Proof. If Gl
t̄,x̄

= ∅ we set ft̄,x̄(t) = x̄ and (26) follows by (11) since for ωe-a.e. γ ∈ Γ, it 
holds γ̇x(t) ≥ 0 for L 1-a.e. t ∈ (0, T ). If Gl

t̄,x̄
�= ∅, then we set

ft̄,x̄ = sup
γ∈Gl

γx. (27)

t̄,x̄
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The first condition in (26) is trivially satisfied and by Proposition 6 for every γ̄ ∈ Gl
t̄,x̄

it holds

ωe({γ ∈ Gr
t̄,x̄ : γx(t) < γ̄x(t)}) = 0. (28)

Let {ti}i∈N be an enumeration of Q ∩ (t̄, T ) and for every i, n ∈ N let γi,n ∈ Gl
t̄,x̄

be 
such that γi,n

x (tj) ≥ ft̄,x̄(ti) − 1
n . For every γ ∈ Gl

t̄,x̄
the x-component γx is 1-Lipschitz, 

hence ft̄,x̄ = supi,n∈N γi,n
x . Therefore it follows by (28) that for every t ∈ [t̄, T ] it holds

ωe({γ ∈ Gr
t̄,x̄ : γx(t) < ft̄,x̄(t)}) = ωe

⎛
⎝ ⋃

i,n∈N

{
γ ∈ Gr

t̄,x̄ : γx(t) < γi,n
x (t)

}⎞⎠ = 0. (29)

�
Thanks to Corollary 7 we can identify the candidate rectifiable set J− on which 

(pt,x)�μ− is concentrated: let (t̄i)i∈N be an enumeration of [0, T ] ∩Q and (x̄j)j∈N be an 
enumeration of Q. Then we set

J− :=
⋃

i,j∈N
Cft̄i,x̄j

, where Cft̄,x̄ := {(t, x) ∈ [t̄, T ] ×R : x = ft̄,x̄(t)}. (30)

3. Concentration of the entropy dissipation

In this section we prove Theorem 1 and Theorem 2. In the next lemma we couple the 
two representations ωh, ωe taking into account that they represent the same measure μ−

as in (16). We denote by X = [0, T ] ×R × [0, 1] and consider the measures ωh ⊗ μ−
γ and 

ωe ⊗ μ+
γ defined on the set Γ ×X by

ωh ⊗ μ−
γ (G× E) =

∫
G

μ−
γ (E)dωh(γ) and ωe ⊗ μ+

γ (G× E) =
∫
G

μ+
γ (E)dωe(γ),

for every measurable E ⊂ X, G ⊂ Γ.

Lemma 8. Denote by p1, p2 : (Γ × X)2 → Γ × X the standard projections. Then there 
exists a plan π− ∈ M ((Γ ×X)2) with marginals

(p1)�π− = ωh ⊗ μ−
γ ,

(p2)�π− = ωe ⊗ μ+
γ ,

(31)

concentrated on the set

G :=
{
((γ, t, x, v), (γ′, t′, x′, v′)) ∈ (Γ ×X)2 : t = t′, γx(t) = x = x′ = γ′

x(t′), v = v′,

′ ′ }

v ∈ [γv(t+), γv(t−)] ∩ [γv(t−), γv(t+)] .
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Proof. First we observe that by definition, ωh ⊗ μ−
γ is concentrated on the set

G−
h := {(γ, t, x, v) ∈ Γ ×X : γx(t) = x, v ∈ [γv(t+), γv(t−)]}

and ωe ⊗ μ+
γ is concentrated on the set

G+
e := {(γ, t, x, v) ∈ Γ ×X : γx(t) = x, v ∈ [γv(t−), γv(t+]}.

Denoting by pX : Γ ×X → X the standard projection it follows from (16) that

(pX)�(ωh ⊗ μ−
γ ) = μ− = (pX)�(ωe ⊗ μ+

γ ).

By the disintegration theorem (see for example [3]) there exist two measurable families 
of probability measures (μ−,h

t,x,v)(t,x,v)∈X , (μ+,e
t,x,v)(t,x,v)∈X ∈ P(Γ ×X) such that

ωh ⊗ μ−
γ =

∫
X

μ−,h
t,x,vdμ

− and ωe ⊗ μ+
γ =

∫
X

μ+,e
t,x,vdμ

− (32)

and for μ−-a.e. (t, x, v) the measures μ−,h
t,x,v and μ+,e

t,x,v are concentrated on the set

p−1
X ({t, x, v}) = {(γ, t′, x′, v′) ∈ Γ ×X : t′ = t, x′ = x, v′ = v}.

Moreover, since ωh ⊗ μ−
γ is concentrated on the set G−

h and ωe ⊗ μ+
γ is concentrated 

on the set G+
e , we have that for μ−-a.e. (t, x, v) the measure μ−,h

t,x,v is concentrated on 
p−1
X ({t, x, v}) ∩ G−

h and μ+,e
t,x,v is concentrated on p−1

X ({t, x, v}) ∩ G+
e . We eventually set

π− :=
∫
X

(
μ−,h
t,x,v ⊗ μ+,e

t,x,v

)
dμ−.

From (32) it directly follows (31) and by the above discussion for μ−-a.e. (t, x, v) ∈ X

the measure μ−,h
t,x,v⊗μ+,e

t,x,v is concentrated on (p−1
X ({t, x, v}) ∩G−

h ) ×(p−1
X ({t, x, v}) ∩G+

e ), 
therefore π− is concentrated on⋃

(t,x,v)∈X

(p−1
X ({t, x, v}) ∩ G−

h ) × (p−1
X ({t, x, v}) ∩ G+

e ) = G

and this concludes the proof. �
The following elementary lemma is about functions of bounded variation of one vari-

able: we refer to [3] for the theory of BV functions.

Lemma 9. Let v : (a, b) → R be a BV function and denote by D−v the negative part of 
the measure Dv. Then for D̃−v-a.e. x̄ ∈ (a, b) there exists δ > 0 such that

v̄(x) > v̄(x̄) ∀x ∈ (x̄− δ, x̄) and v̄(x) < v̄(x̄) ∀x ∈ (x̄, x̄ + δ).
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The proof of Theorem 1 is obtained considering separately the positive and the neg-
ative parts of μ; in the following theorem we deal with μ−.

Theorem 10. The measure (pt,x)�μ− is concentrated on the set J−, defined in (30).

Proof. Step 1. For every (t̄, ̄x) ∈ [0, T ) ×R we consider the measure

π−
t̄,x̄

:= π−�
(
Gl

t̄,x̄ × [t̄, T ] ×R× [0, 1]) × (Gr
t̄,x̄ × [t̄, T ] ×R× [0, 1])

)
,

where Gl
t̄,x̄

, Gr
t̄,x̄

are defined in (25) and we set

p1
t,x : (Γ × [0, T ] ×R× [0, 1])2 → [0, T ] ×R.

(γ, t, x, v, γ′, t′, x′, v′) �→ (t, x)

We prove that the measure (p1
t,x)�π−

t̄,x̄
is concentrated on the graph of ft̄,x̄, namely Cft̄,x̄ .

First we observe that

(p1
t,x)�π−

t̄,x̄
≤ (p1

t,x)�
[
π−�

(
(Gl

t̄,x̄ × [t̄, T ] ×R× [0, 1]) × (Γ ×X)
)]

= ωh�Gl
t̄,x̄ ⊗ μ−

γ �([t̄, T ] ×R× [0, 1]).
(33)

Since for ωh-a.e. γ ∈ Gl
t̄,x̄

it holds (t, γx(t)) /∈ Ω+
t̄,x̄

for every t ∈ [t̄, T ], then for ωh-a.e. 
γ ∈ Gl

t̄,x̄
it holds μ−

γ (Ω+
t̄,x̄

× [0, 1]) = 0 and therefore it follows by (33) that

(p1
t,x)�π−

t̄,x̄
(Ω+

t̄,x̄
) = 0. (34)

In the same way we get

(p2
t,x)�π−

t̄,x̄
(Ω−

t̄,x̄
) = 0, (35)

where

p2
t,x : (Γ × [0, T ] ×R× [0, 1])2 → [0, T ] ×R

(γ, t, x, v, γ′, t′, x′, v′) �→ (t′, x′).

Finally, since π− is concentrated on G, then

(p1
t,x ⊗ p2

t,x)�π− ∈ M (([0, T ] ×R)2)

is concentrated on the graph of the identity on [0, T ] ×R and in particular (p1
t,x)�π−

t̄,x̄
=

(p2
t,x)�π−

t̄,x̄
. Therefore it follows from (34) and (35) that (p1

t,x)�π−
t̄,x̄

is concentrated on

([0, T ] ×R) \ (Ω+
¯ ∪ Ω−

¯ ) = Cft̄,x̄ .
t,x̄ t,x̄
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Step 2. We prove that for π−-a.e. pair (γ, t, x, v, γ′, t′, x′, v′) ∈ (γ×X)2 there exists δ > 0
such that for every s ∈ [t − δ, t) it holds γx(s) < γ′

x(s).
By applying Lemma 9 to the BV function γv : (t̄, T ) → [0, 1] we get that for (D̃γv)−-

a.e. t ∈ (t̄, T ) there exists δ > 0 such that for every s ∈ (t − δ, t) it holds γv(s) < γv(t). 
Moreover for every t such that γv has a negative jump and for every v ∈ [γv(t+), γv(t−))
there exists δ > 0 such that for every s ∈ (t − δ, t) it holds γv(s) < v. Since for every 
γ ∈ Γ the measure μ−

γ has no atoms and the set

Eγ := {(t, x, v) ∈ X : γv(t−) = v > γv(t+)}

is countable, then μ−
γ (Eγ) = 0 and in particular

ωh ⊗ μ−
γ

(
{(γ, t, x, v) ∈ Γ ×X : γv(t−) = v > γv(t+)}

)
= 0.

Therefore it follows by the argument above that for ωh ⊗ μ−
γ -a.e. (γ, t, x, v) there exists 

δh > 0 such that for every s ∈ (t − δh, t) it holds

γv(s) > v and hence γx(s) < γx(t) − v(t− s)

by (11). In the same way we obtain that for ωe⊗μ+
γ -a.e. (γ′, t′, x′, v′) there exists δe > 0

such that for every s ∈ (t′ − δe, t′) it holds

γx(s) > γx(t′) − v′(t′ − s).

Finally, since π− is concentrated on G, then for π−-a.e. (γ, t, x, v, γ′, t, x′, v′) we set 
δ = min(δh, δe) > 0, so that for every s ∈ (t − δ, t) it holds

γx(s) < γx(t) − v(t− s) = x− v(t− s) = x′ − v′(t′ − s)γ′
x(t′) − v′(t′ − s) < γ′

x(s)

and this concludes Step 2.
By Step 2 it follows that for π−-a.e. (γ, t, x, v, γ′, t, x′, v′) there exists (t̄i, ̄xj) ∈ ([0, T ] ∩

Q) ×Q such that

(γ, t, x, v, γ′, t, x′, v′) ∈ (Gl
t̄i,x̄j

× [t̄i, T ] ×R× [0, 1]) × (Gr
t̄i,x̄j

× [t̄i, T ] ×R× [0, 1])

so that π− is concentrated on
⋃

i,j∈N
(Gl

t̄i,x̄j
× [t̄i, T ] ×R× [0, 1]) × (Gr

t̄i,x̄j
× [t̄i, T ] ×R× [0, 1]).

Therefore by Step 1 it follows that (p1
t,x)�π− is concentrated on

⋃
Cft̄i,x̄j

= J−.

i,j∈N
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We finally observe that from (31) and (16) it follows that

(p1
t,x)�π− = (pt,x)�((p1)�π−) = (pt,x)�(ωh ⊗ μ−

γ ) = (pt,x)�μ−

and therefore the proof is completed. �
The analogous statement for the positive part of μ follows from the observation that 

reversing the direction of time turns entropy solutions into anti-entropic solutions.

Proposition 11. The measure (pt,x)�μ+ is concentrated on a 1-rectifiable set J+.

Proof. We consider the two reflections R : [0, T ] × R → [0, T ] × R and R̄ : X → X

defined by

R(t, x) = (T − t,−x) and R̄(t, x, v) = (T − t,−x, v).

Observe that R−1 = R and R̄−1 = R̄. From the kinetic formulation for u:

χ(t, x, v) :=
{

1 if u(t, x) > v

0 otherwise
, ∂tχ + v∂xχ = −∂vμ

we deduce that χ̃ := χ ◦ R̄ satisfies

∂tχ̃ + v∂xχ̃ = −∂vμ̃, with μ̃ = −R̄�μ (36)

and it is the kinetic formulation of

ũ(t, x) =
1∫

0

χ̃(t, x, v)dv = (u ◦R)(t, x).

In particular ũ is a weak solution with finite entropy production to the Burgers equation 
(1) and by Theorem 10 the measure (πt,x)�μ̃− is concentrated on a 1-rectifiable set J̃−. 
From (36) it follows that μ+ = R̄�μ̃

− and therefore that (pt,x)�μ+ is concentrated on 
J+ := R(J̃−), which is obviously 1-rectifiable. �

Theorem 1 immediately follows from Theorem 10 and Proposition 11 setting

J ′ = J− ∪ J+.

We conclude by proving Theorem 2, which essentially follows from the observation 
that every negative shock of u is entropic and every positive shock is anti-entropic.
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Proof. By (4) it follows that

|(pt,x)�μ| = μη̄ ∨ μ−η̄,

where η̄(v) = v2/2. Therefore in order to prove the theorem, it is sufficient to check that 
for ν-a.e. (t, x) ∈ [0, T ] ×R the supremum in (5) is attained at η̄ or at −η̄. Let us denote 
by J̃+ ⊂ J the set of points for which u− < u+ and by J̃− ⊂ J the set of points for 
which u+ < u−. In view of Theorem 1 and (7) it holds ν(([0, T ] ×R) \ (J̃+ ∪ J̃−)) = 0. 
We claim that

ν�J̃+ = μη̄ and ν�J̃− = μ−η̄. (37)

We consider the second equality: by the Rankine-Hugoniot conditions the normal to J
in (7) is determined for H 1-a.e. (t, x) ∈ J by

n = (nt,nx) = 1√
1 + λ2

(λ,−1), where λ = u− + u+

2 .

In particular the density in (7) takes the form

1√
1 + λ2

(
q(u−) − q(u+) − λ(η(u−) − η(u+))

)

= 1√
1 + λ2

u−∫
u+

(q′(v) − λη′(v))dv

= 1√
1 + λ2

u−∫
u+

(v − λ)η′(v)dv

= (v − λ)2

2
√

1 + λ2

∣∣∣∣
u−

u+
− 1√

1 + λ2

u−∫
u+

(v − λ)2

2 η′′(v)dv,

which is maximized by η = −η̄ in the set {η ∈ C2(R) : ‖η′′‖C0 ≤ 1}. Being the first 
inequality of (37) completely analogous, this concludes the proof. �
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