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Abstract: During the last few years, clinical laboratories
have faced a sea change, from facilities producing a high
volume of low-cost test results, toward a more integrated
and patient-centered service. Parallel to this paradigm
change, the digitalization of healthcare data has made an
enormous quantity of patients’ data easily accessible, thus
opening new scenarios for the utilization of artificial in-
telligence (AI) tools. Every day, clinical laboratories
produce a huge amount of information, of which patients’
results are only a part. The laboratory information system
(LIS) may include other “relevant” compounding data,
such as internal quality control or external quality assess-
ment (EQA) results, as well as, for example, timing of test
requests and of blood collection and exams transmission,
these data having peculiar characteristics typical of big
data, as volume, velocity, variety, and veracity, potentially
being used to generate value in patients’ care. Despite the
increasing interest expressed in AI and big data in labo-
ratory medicine, these topics are approaching the disci-
pline slowly for several reasons, attributable to lack of
knowledge and skills but also to poor or absent standard-
ization, harmonization and problematic regulatory and
ethical issues. Finally, it is important to bear in mind that
the mathematical postulation of algorithms is not suffi-
cient for obtaining useful clinical tools, especially when
biological parameters are not evaluated in the appropriate
context. It is therefore necessary to enhance cooperation
between laboratory and AI experts, and to coordinate and

govern processes, thus favoring the development of valu-
able clinical tools.
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Clinical laboratories are facing a
new transformation

In the last few years, medical laboratories have undergone
a substantial change, moving toward the consolidation of
clinical testing in megastructures in order to enhance
volumes and reduce costs [1]. This paradigm of a business
model based on laboratory tests outsourcing has fallen
short of expectations; indeed, it has not been proven to
significantly reduce overall costs [2]. It has been demon-
strated that, up to a threshold of one million test per year,
high costs correlate with volumes. However, over this
threshold, the association between volumes and costs is
not linear, as laboratory organization, rather than test vol-
ume, has a more significant effect on final costs [2]. Impor-
tantly, it was postulated that the correlation between costs
and test volumes was mainly sustained by the “traditional
laboratory test”, widely requested in the last few decades,
and well known by physicians, who were capable of
correctly interpreting their values [3]. Fortunately, with the
technological and organizational advancements, which
progressed parallel with improved knowledge of the
pathophysiology of human diseases, different reasons
have led to a change to the vision of clinical laboratory
as commodities. Yet, laboratories have undergone a pro-
gressive transition from the so-called “silos” model to a
more integrated and patient-centered vision [3]. Different
drivers underpin this change, positive drivers being diag-
nostic stewardship, advances in molecular/genotypic
testing, and innovative technology, which pave theway for
more personalized laboratory results [1, 3]. On the other
hand, theminiaturization of laboratory-based point of care
(POC) testing devices and their implementation in tele-
medicine, pinpoints the pivotal role of the laboratory in
“near patient” testing, and points to a new future role for
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clinical laboratories. Another change revolutionizing clin-
ical laboratories depends on the digitalization of processes,
which are changing all healthcare sectors, including medi-
cal laboratories. This force is fueled by several drivers, such
as the easy management of enormous volumes of data, the
support of new technological systems to data integration
and, last but not least, thewide, efficient utilization artificial
intelligence (AI). Since AI is not new to computer science, in
recent years its application has increased, mainly thanks to
the computational power needed to harvest the potential of
these methods [4]. However, within hospitals and health-
care services in general, every day clinical laboratories
produce a huge amount of mainly high-quality information
(e.g. patients’ results), that is a “gold mine” for teaching
computer-based algorithms, such as AI tools.

Clinical laboratories’ roles in the
explosion of big healthcare data

Traditionally, clinical studies have always included medical
laboratory results, in addition to demographical information.
Despite being conducted following rigorous criteria, these
studies were often limited by, for example, difficulty in
accruing patients or the scarce resources among the medical
staff. In the last years, with the widespread diffusion of lab-
oratory information systems (LIS) allowing the rapid retrieval
of patients’ results, enormous quantities of retrospective data
were made readily available without incurring additional
costs to Researchers. Thus, some types of clinical studies are
changing their face, and several models are rapidly evolving
using data obtained from LIS, especially when the research
objective is the association between results and positive or
negative biochemical phenotypes [5]. Furthermore, the digi-
tal transformation of healthcare, currently allows integrated
information of data to be obtained from different disciplines
and different patients. The creation of integrated data ware-
houses in healthcare facilities, recognized sources of “big
data”, have paved the way for the use of AI tools for data
analyses and other computational tools, such as natural
language processing (NLP), which could, in-turn, generate
further new resources for the care of patients.

Uncovering the flow of information
in modern clinical laboratories

The delivery of laboratory testing postulated 50 years
ago by G. D. Lundberg [6], who coined the term “brain
to brain turnaround time loop” was revisited in 2011 by

Plebani et al. [7]. The years since Lundberg first expressed
this concept have seen a constant increase in the type and
quantity of information generated for each patient during
laboratory testing. In addition to clinical results and
demographical parameters, LIS may include other “rele-
vant” compounding data, such as internal quality control
(instrumental) or external quality assessment (EQA) re-
sults, as well as timing of test requests and of blood
collection or exam results transmission. However, a more
detailed search reveals a greater volume of information
generated daily by the clinical laboratory, even if most of
the information is only partially recorded in LIS. The
information might include pre-analytical features (e.g.
retesting intervals, additional dietary information, life-
style, sample storage conditions or handling, presence of
hemolysis), analytical features (e.g. technical and medical
validations, automatic check for sample quality or sample
mismatch, instrumental self-diagnosis or complex check
on data elaboration) and post-analytical features (e.g.
suggestions from clinical decision support systems based
on patients’ test results, physicians visualization of results,
time for communicating critical test results (Figure 1).

These data type has peculiar characteristics, such as
volume, velocity, variety, and veracity but interestingly
can finally generate value for patients’ care, for laboratory
personnel andmanufacturers’ technicians. Since all these
features are attributed to big data, it is reasonable to
state that every laboratory, produces big data daily [8].
Furthermore, laboratories regularly maintain the lab test
catalog, which is available for laboratory staff, hospital
physicians and personnel (Figure 1).

Currently, several tools (some based on simple “if-
then” algorithms, others sophisticated and based on AI)

have been successfully realized and, in some cases, inte-

grated in the pre-analytical, analytical or post-analytical

phases of the brain-to-brain loop. For example, different

informatic demand management tools that have been

produced and applied, ensure the appropriate test request

in specific context [9, 10]. In COVID-19 rapid testing, AI was

found to be useful for the interpretation of test results [11].

Another example of AI application in laboratory medicine

is the detection of sample mix-up with delta check by ML

tools, which outperform the use of a single hematological

parameter, such as the MCV [12]. In a different study, AI

based rules for auto-validation of laboratory results have

shown to reach an high agreement with laboratory pro-

fessionals [13], while other ML approaches have been used

for predicting thromboembolism in cancer patients, thus

facilitating the collaborative efforts between clinicians and

2 Padoan and Plebani: Flowing through laboratory data



laboratories in the identification of patients to be moni-
tored for risk of disease [14].

Advances in the capability of laboratories in detecting
molecular genotypic abnormalities, detecting metabolomic
alterations and conducting proteomic tests (e.g. MALDI-TOF/
MS analyses for detecting amyloidosis) have opened the
possibility of achieving greater personalization of laboratory
results, but call for the implementation of new workflows.
First, the enormous amount of information obtained calls for
adequate infrastructures for storing data for as long as
required in national regulations. Second, since results are not
always immediately intelligible, they call for software that
may include AI tools and that is often cloud based, thus
incurring further issues regarding data ownership and cloud-
storage time. Third, other web-based resources (e.g. tools for
checking and describing rare point mutations in genetics or
tools for detecting proteins from fragmentation patterns in
proteomics) are often used by specialists in laboratory med-
icine using these technologies.

AI meet big-laboratory data

AI have been suggested as a proponent of a compelling
pitch, moving from a traditional approach focused on

comparing effectiveness in the average person, to strate-
gies tailored to the individual. This revolution has been
fueled by the availability of accessible longitudinal data,
combined with the application of flexible ML approaches
[15]. Therefore, the main driver of recently increased ex-
pectations in the AI field is the ready availability of big
volumes of healthcare data [16].

In the laboratory, advancements in LIS have allowed
large numbers of results to be collected in a limited time-
span, using relatively few resources [17]. However, in most
cases, for ML applications it is necessary to integrate lab-
oratory data with additional clinical data from patients’
(e.g. diagnosis, disease recurrence, and comorbidities).
Laboratory and clinical data should be integrated both
horizontally and vertically, the first dimension being
involved in the longitudinal view of data, obtained from
different testing and examinations conducted on patients
over time. Vertical integration includes medical records
from the laboratory, clinical records from different medical
specialties (e.g. cardiology, and radiology) and from pa-
tients themselves (e.g. using wearables devices or con-
nected diagnostic lab-on-skin tests) [18, 19]. The potential
utility of integrating patients’ records’, which are currently
fragmented, being held in different parts of the healthcare
data warehouse, is compromised due to the existence of

Figure 1: A modified brain to brain loop diagram, showing the flow of information within a clinical laboratory.
Arrows represent the flow of information toward (green) the laboratory information system (LIS) and, oppositely (red), from LIS to other
external informatic tools, which might include artificial intelligence (AI) algorithms.
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different data structures. Structured data sources (e.g.
laboratory tests, patients’ admission and discharge dates)
can often be easily combined by appropriate software,
while unstructured sources of data (e.g. clinical notes and
observations collected during hospitalization) [20] tend to
be heterogeneous, comprising multiple types of data
without any inherent structure. Regarding unstructured
data, tools such as NLP techniques, which are often cloud-
based, can be helpful in extracting information from free-
form text of healthcare records, but these systems have not
yet been evaluated in a setting that simulates clinical
workflow [21]. Finally, commercially established classes of
wearable medical devices are achieving technological
levels enabling them to be used as lab-on-a-chip [22], not
only for the continuous follow-up of hospitalized patients
[e.g. portable point-of-care (POC) systems], but also for
outpatients requiring close monitoring and a prompt clin-
ical decision in the presence of vital parameter modifica-
tions [19]. In particular settings, already availablewearable
systems (e.g. consumerwearable device) that continuously
monitor heart rate, body temperature, electrodermal ac-
tivity and movements, can be used to evaluate vital signs.
As demonstrated, these data are used for teaching AI al-
gorithms in the prediction of variations in clinical labora-
tory test results, thus enabling the detection of
deterioration in a patient’s vital status [23].

Challenges and pitfalls of AI
implementation in laboratory
medicine

Two recent studies showed how methods and models
combining data analytics and AI have been progressively
applied to laboratory medicine and other medical spe-
cialties [5, 24]. The results obtained revealed a growing
increase in interest in AI, documented by an increased
number of publications between 2017 and 2021, but only
8/44 (18.2%) of the articles considered were from labora-
tory medicine groups, the others being produced by
researchers of other disciplines. Indeed, several limitations
have been described by many authors [18, 25–27]. From a
“local” point-of-view, the first pitfall might regard specific
knowledge of AI in the laboratory community, which is
pivotal for motivating new researches and for addressing
implementation challenges [28]. Indeed, in a recent web-
based survey among stakeholders in laboratory medicine
in the United States, it was underlined that most of the
participants believed AI would be valuable to them in the
near future, although vital prerequisites still need to be

forthcoming, and specific knowledge of AI in the medical
community at large is poor [28]. This point could be
ascribed to a wider concept embracing the digital revolu-
tion of the laboratory, a theme that also includes new
specialties such as clinical bioinformatics, communication
enhancement and interactive skills, and informatics skills
[3, 29, 30]. Training aiming to support this cohort of labo-
ratory medicine specialists by providing digital skills will
call for the acknowledgment, and bridging, of the gap in a
partnership between teachers and students, an important
role in this approach also being played by Scientific Soci-
eties [29]. The second limitation could be the provision of
easy access to patients’ clinical records (e.g. diagnosis,
comorbidities, clinical parameters and therapeutic drugs)
[16]. To be of clinical utility, algorithms for AI and ML
should benefit from the multiple reusability of data and
clinical results for rapid learning [20]. This differs from
what usually happens in practice when, in a clinical study,
laboratory results are matched once with patients’ clinical
data (e.g. disease), after which ML is applied. This para-
digm must be overcome, in order to facilitate the applica-
tion of ML, and also because ML algorithms might benefit
from a continuous refinement using further data, evolving
over time [20].

From a “global view-point”, relevant limitations to AI
implementation are data quality and results standardiza-
tion, legal and privacy issues and IT security. Currently, AI
tools call for huge datasets and often results cannot be
obtained by a single laboratory. It might be difficult
to exchange electronic patient records or other IT in-
frastructures (e.g. laboratory test results): even when data
have been mapped according to common data structures,
records it is not necessarily possible tomerged and analyze
data together [18]. On considering different labs, only a
limited set of analytes is found to be sufficiently stan-
dardized to ensure compatibility [18, 31]. To this end,
universal coding of laboratory test names, achievable by
the logical observation of identifiers’ names and codes
(LOINC), is of utmost importance [25]. Besides the labora-
tory analysis, the result unit must be machine-readable for
interconnection and the exchange of laboratory results
[25]. Furthermore, despite the efforts made to standardize
and harmonize, the measuring devices used considerably
influence some results, and the use of device-specific target
values derived by EQA schemes can only be efficient if
shared in a predisposed database, such as the EUDAMED
[25]. Interpretative comments, which are a crucial part of
laboratory reports, should be structured and grouped into
different categories for their efficient summarization and
sharing [25]. Ethical and normative issues are of prime
importance. For example, patients’ consent for the use of
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their personal health data for receiving certain treatments
are not valid in case if used for AI application [32].
Furthermore, norms must be consistent with existing reg-
ulations (e.g. national regulations), with the existing reg-
ulations on data protection, including the General Data
Protection Regulation (GDPR) act 2018, with the European
Union charter of fundamental rights and other relevant
clauses [32].

Finally, is should be emphasized that even if data
scientists are can certainly design and produce excellent AI
algorithms, the active contribution of laboratory pro-
fessionals is the key to providing accurate data analysis
and interpretation across the entire process. Indeed, the
theoretical mathematical postulation of algorithms is not
sufficient for obtaining clinical useful algorithms, espe-
cially when the biological parameters are not evaluated in
the appropriate context, with the consideration of relevant
laboratory medicine concepts (e.g. biological variability,
analytical goals and analytical variability).

Conclusions

Laboratory professionals play a major role in all the med-
ical specialties, not only in assisting clinicians, but also in
selecting the right test for the right patient at the right time.
This concept, identified in “clinical laboratory steward-
ship”, encompasses all phases of the total testing process
and is one of the most important drivers of the forthcoming
changes in laboratory medicine: the shift toward a patient
centered model [3]. In parallel, the technological advance-
ments and the digital revolution are providing increasing
support to precision medicine, which accurately associates
patients with their specific profiles, based on personal
exams and laboratory tests, to their clinical endpoints. This
change in the paradigm of laboratory medicine, from
“standalone factories”, which are distant from diagnostic
and therapeutic pathways, to key assets for making an
early diagnosis, establishing a prognosis and providing
personalized treatment could be well supported by AI and
their tools, such as ML [1], technologies fueled by the vast
availability of big data in healthcare, including laboratory
data, but now requiring new professionals in data science
who are able to transform raw information into improve-
ment in patients’ care. Although competences and skills of
laboratorymedicine experts probablywill never fully cover
the sophisticated mathematical theoretical application of
ML, there is an urgent need to enhance cooperation be-
tween laboratory and AI experts, to coordinate and govern
the processes, and to favor the implementation of appro-
priate technologies. Otherwise, there is a risk of obtaining a

barren scenario, riddled with sophisticated technologies
that are of little use to either the laboratory or the patient.
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