
Citation: Tonan, M.; Doria, A.;

Bottin, M.; Rosati, G. Influence of

Joint Stiffness and Motion Time on

the Trajectories of Underactuated

Robots. Appl. Sci. 2023, 13, 6939.

https://doi.org/10.3390/

app13126939

Academic Editors: Lorenzo Scalera,

Andrea Giusti and Renato Vidoni

Received: 13 April 2023

Revised: 5 June 2023

Accepted: 7 June 2023

Published: 8 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Influence of Joint Stiffness and Motion Time on the Trajectories
of Underactuated Robots
Michele Tonan , Alberto Doria * , Matteo Bottin and Giulio Rosati

Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; michele.tonan@phd.unipd.it
* Correspondence: alberto.doria@unipd.it; Tel.: +39-049-827-6803

Abstract: Underactuated robots have fewer actuators than degrees of freedom (DOF). Nonactuated
joints can be equipped with torsional springs. Underactuated robots can be controlled in a point-
to-point motion if they have a particular mass distribution that makes them differentially flat. The
trajectory described by the robot moving from the start point to the end point largely depends on the
torsional stiffness of the nonactuated joints and on motion time. Thus, the same point-to-point motion
can be obtained by sweeping different parts of the workspace. This property increases the dexterity of
the robot. This paper focuses on the trajectories of a 3-DOF robot moving in the horizontal plane with
two actuators and a torsional spring. Parametric analyses showing the effect of torsional stiffness and
motion time are presented. The existence of combinations of torsional stiffness and motion time that
minimize the motion torques or the swept area is discussed. The area swept by the underactuated
robot is compared with the one swept by an equivalent actuated robot performing the same task.
Reductions in the swept area of up to 36% are obtained. Finally, numerical results are validated by
means of experimental tests on a simplified prototype.
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1. Introduction
1.1. State of the Art

Underactuated systems are mechanical systems in which the number of degrees of
freedom is larger than the number of actuators [1]. Among the underactuated systems,
in the last few decades, underactuated robots have gained popularity due to their ability to
gain dexterity with low-cost and low-weight structures, which are of great importance in
industrial applications. In fact, underactuated robots are manipulators with one or more
nonactuated joints, and often, the actuators are substituted by torsional springs [2], even
if interesting exceptions exist [3,4]. Possible applications of underactuated robots include
industrial robots, legged locomotion, and surgical robots [5,6]. There are some studies
on underactuated grasping tools [7–9]. Moreover, the interest in underactuated robots is
increasing, since a fully actuated robot in case of actuator failure becomes an underactuated
robot [1].

The dynamics of a robot are typically nonlinear, and if the degrees of freedom (DOF)
are more than the actuators, the system is usually hard to control due to the presence of
nonholonomic second-order constraints [5]. Different approaches have been proposed by
researchers to tackle this problem. Some researchers have proposed strategies to control
nonlinear underactuated robots, such as:

• Smooth second-order sliding mode control [1,10];
• Dynamic feedback linearization [5,11];
• Fuzzy control [1,12,13];
• Optimal control [1,14–16].
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As a result, researchers have been able to control many underactuated systems [17], such
as Planar RR robots [18], the Furuta pendulum [19], the flywheel inverted pendulum [20],
the wheeled inverted Pendulum [21], and the inertia wheel inverted Pendulum [22].

Other researchers have exploited the concept of differential flatness. Differentially
flat systems have a set of outputs, so-called flat outputs, such that all states and inputs can
be retrieved from flat outputs without integration [23]. The relationship connecting flat
outputs with system states and inputs is referred to as a diffeomorphism. The number of
flat outputs is equal to the number of inputs, i.e., the actuator torques. A differentially flat
system gains controllability [24].

A planar robot must satisfy some conditions to be differentially flat [25–28]. Con-
sidering a n-DOF manipulator, the center of mass of the last link n has to be placed on
joint axis n, and the center of mass of links n and n − 1 has to be located on joint axis
n − 1. These conditions sequentially repeat until the center of mass of the last j links
(i.e., n, n− 1, . . . , n− j + 1) is on the n− j + 1 joint axis, as described in [28]. The actuators
of the system are placed on joints n− j + 1, whereas the j− 1 joints are equipped with
torsional springs.

The control of a differentially flat robot is simpler than the control of a generic under-
actuated robot. Moreover, if the robot moves in the horizontal plane, the dynamics become
linear, with further simplifications.

It is worth noting that differentially flat systems are not controllable along an entire
trajectory. Only point-to-point motions are attainable, and the joint movement between the
points is not a priori known, but can be calculated after the torques are retrieved from the
flat outputs [29,30]. Differentially flat systems are controlled by choosing appropriate flat
output functions, based on the boundary conditions on the robot states; such functions are
used to calculate the motor torques, which are the input of the dynamic system to calculate
joint variables. In [5], a comparison between the approach based on differential flatness
and the approach based on dynamic feedback linearization was made.

1.2. Contributions of This Work

Previous works chiefly focused either on the definition of suitable control systems [31–35]
or on the mechanical design (e.g., [36,37]). The considered movements were generally slow
(e.g., more than a couple of seconds), so sometimes, they were not suitable for industrial
uses, in which fast movements are required. Typical problems that arise in the industrial
environment were scarcely addressed:
• The effect of motion time on the trajectories and on the swept area of the robot;
• The need of via-points to generate specific trajectories and avoid collisions with obstacles;
• The effect of friction in the nonactuated joint;
• The effect of spring stiffness on the generated trajectories and on the swept area;
• The energy consumed by the robot to perform the task.

This research deals with the mechanical modeling and simulation of a differentially flat
3-DOF robot. This robot moves in the horizontal plane and is equipped with two actuators
and one nonactuated joint with a torsional spring. The focus is on industrial applications in
work cells with obstacles. The main contributions of this work are:

• The introduction of friction in the mechanical model of the nonactuated joint;
• The analysis of the influence of torsional stiffness on trajectories;
• The analysis of the influence of motion time on trajectories;
• The development of an algorithm for the calculation of the area swept by the robot;
• The calculation of motor torques as functions of torsional stiffness and motion time.

These analyses are useful, because different trajectories of the end-effector and of the
robot lead to different areas being swept in the workspace, which make possible the avoidance
of obstacles in the work cell. The study was carried out in a MATLAB-SIMULINK environment.
Calculated results were validated by means of experimental tests on a subsystem of the
simulated robot, including only one actuated joint and one nonactuated joint.
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The paper is structured as follows: Section 2 presents the mathematical model of a
3-DOF robot; Sections 3 and 4 analyze the effect of joint stiffness and motion time on the
motion of the robot; Section 5 shows how joint stiffness and motion time can be combined
to optimize the dynamic behavior of the system; Section 6 presents the experimental
validation; finally, conclusions are drawn in Section 7.

2. Mathematical Model

The mathematical model presented in this section was developed according to the
theory of differentially flat systems [24] for a robot moving in the horizontal plane. Figure 1
shows the scheme of the planar robot with 3-DOF with 2 actuated joints and 1 passive joint.
In this paper, the actuated joints are considered infinitely rigid. In order to consider the
friction in the nonactuated joint, a viscous damper (with viscous coefficient c3) was placed
in parallel with the torsional spring (with stiffness k3). q1 and q2 are the angular positions
of the actuated joints, whereas q3 is the angular position of the nonactuated joint. The mass
of the i-th link prior to balancing is denoted by mi, while the counterbalancing mass of the
i-th link is denoted by mci. The barycentric moment of inertia of the i-th element prior to
balancing is represented by IGi; aGi is the distance from the center of mass of the i-th link
to the i-th joint prior to balancing, and ai is the total length of the i-th link. The distance
of the counterbalancing mass from the axis of the i-th joint is denoted by aCi. The robot is
designed to work in the horizontal plane; hence, the counterbalancing mass of the first joint
is not needed [25].

𝑞2

𝐼𝐺2, 𝑚2

𝑘3, 𝑐3

𝑚𝑐2

𝑥

𝑦

𝐼𝐺1, 𝑚1

𝑚𝑐3

𝑞1

𝑞3

𝐼𝐺3, 𝑚3

Figure 1. Scheme of the 3-DOF robot.

The mathematical model describing the dynamics of the system can be derived with
the Lagrangian approach. The equations of motion in matrix form are:
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I∗1 I∗2 I∗3
I∗2 I∗2 I∗3
I∗3 I∗3 I∗3

q̈1
q̈2
q̈3

+

0 0 0
0 0 0
0 0 c3

q̇1
q̇2
q̇3

+

0 0 0
0 0 0
0 0 k3

q1
q2
q3

 =

τ1
τ2
0

 (1)

where I∗i is the moment of inertia of the system regarding joint i due to the following
links (i.e., i, . . . , 3), and τ1 and τ2 are the motor torques applied on the first and second
joint, respectively.

It is worth noting that if the conditions for differential flatness reported in Section 1 are
met, the mass matrix is constant (thus, it is independent from the configuration), and the
typical nonlinear terms of robot dynamics (Coriolis and centrifugal terms) disappear, as dis-
cussed by Agrawal in [25]. Since the robot considered in this work moves in the horizontal
plane, the nonlinear gravitational torque on joint 1, which is present in [25], disappears
as well.

The natural frequencies of the robot can be calculated by setting the motor torques
and the damping coefficient to zero and solving the equations of free undamped vibrations
assuming a harmonic solution q = q0eiωt:−I∗1 ω2 −I∗2 ω2 −I∗3 ω2

−I∗2 ω2 −I∗2 ω2 −I∗3 ω2

−I∗3 ω2 −I∗3 ω2 −I∗3 ω2 + k3

q01
q02
q03

 =

0
0
0

 (2)

The natural frequencies are the zeros of the determinant of the matrix at the left hand side
of Equation (2). The following equation holds:

ω4[I∗3 (I∗2 − I∗3 )(I∗2 − I∗1 )ω
2 + k3 I∗2 (I∗1 − I∗2 )] = 0 (3)

Equation (3) clearly highlights the presence of two null frequencies, corresponding to rigid
body motions; and one natural frequency, which is given by the following equation:

fn3 =
1

2π

√
k3 I∗2

I∗3 (I∗2 − I∗3 )
(4)

This natural frequency corresponds to a mode of vibration that chiefly involves the nonac-
tuated link. It is noteworthy that the natural frequency of the robot depends only on the
inertia of the second and the third link. It is worth noticing that fn3 is always finite, since
I∗2 > I∗3 , independently from the sizes of the two links.

From the equations of motion, the motor torques τ1 and τ2 can be calculated as
functions of the desired trajectory. First, by multiplying the second row by I∗3 and the third
row by I∗2 and subtracting the latter to the former, it is possible to obtain motor torque τ2:

τ2 = (I∗3 − I∗2 )q̈3 −
I∗2
I∗3
(c3q̇3 + k3q3) (5)

It is worth noting that motor torque τ2 depends only on the joint variable q3.
Then, the motor torque τ1 can be expressed as a function of motor torque τ2 and of

angular acceleration of the first joint q̈1. By subtracting the second row of Equations (1)
from the first, this expression of the first motor torque (τ1) holds:

τ1 = τ2 + q̈1(I∗1 − I∗2 ) (6)

The Laplace transform method is used to define the flat variables, since the equations
are linear [38]. The equations of motion in the Laplace domain can be written as follows:I∗1 I∗2 I∗3

I∗2 I∗2 I∗3
I∗3 I∗3 I∗3

s2Q1(s)
s2Q2(s)
s2Q3(s)

+

0 0 0
0 0 0
0 0 c3

sQ1(s)
sQ2(s)
sQ3(s)

+

0 0 0
0 0 0
0 0 k3

Q1(s)
Q2(s)
Q3(s)

 =

T1(s)
T2(s)

0

 (7)
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where Q1(s),Q2(s) and Q3(s) are the Laplace transforms of joint variables, whereas T1(s)
and T2(s) are the Laplace transform of motor torques. From the last row, the first flat
variable in the Laplace domain Y1(s) can be defined:

Q3(s) = −
I∗3 s2(Q1(s) + Q2(s) + Q3(s))

k3 + c3s
(8)

The term Y1(s) = Q1(s) + Q2(s) + Q3(s) is the first flat variable in the Laplace domain,
and Q3(s) can be expressed as a function of only flat variable Y1(s) as follows:

Q3(s) = −
I∗3

k3 + c3s
s2Y1(s) (9)

The second flat variable coincides with the joint variable Q1(s):

Y2(s) = Q1(s) (10)

The Equation (5) of the motor torque τ2 in the Laplace domain becomes

T2(s) = (I∗3 − I∗2 )s
2Q3(s)−

I∗2
I∗3
(c3s + k3q3)Q3(s) (11)

and introducing Equation (9) into Equation (11), it is possible to obtain the torque T2(s) as
a function of only flat variable Y1(s). The following equation holds:

T2(s) = I∗2 s2Y1(s) +
I∗3 (I∗2 − I∗3 )

k3 + c3s
s4Y1(s) (12)

Collecting k3 from the denominator of the second term of Equation (12), the expression becomes

T2(s) = I∗2 s2Y1(s) +
I∗3 (I∗2 − I∗3 )

k3

(
1 +

c3

k3
s
)−1

s4Y1(s) (13)

In underactuated robots equipped with steel springs and low-friction ball bearings,
the equivalent damping coefficient c3 is rather small with respect to joint stiffness k3; hence,
the second term of Equation (13) can be approximated. The factor (1 + (c3/k3)s)−1 has the
form (1 + x)p with p = −1 and x = (c3/k3)s, and can be approximated by means of the
Taylor expansion arrested at the second term:

(1 + x)p ≈ 1 + px (14)

Hence, Equation (13) can be written as

T2(s) = I∗2 s2Y1(s) +
I∗3 (I∗2 − I∗3 )

k3

(
1− c3

k3
s
)

s4Y1(s) (15)

T2(s) = I∗2 s2Y1(s) +
I∗3 (I∗2 − I∗3 )

k3
s4Y1(s)−

c3 I∗3 (I∗2 − I∗3 )
k2

3
s5Y1(s) (16)

Motor torque τ2 in the time domain can be obtained by calculating the inverse Laplace
transform of Equation (16):

τ2(t) = I∗2 ÿ1 +
I∗3 (I∗2 − I∗3 )

k3
y(4)1 −

c3 I∗3 (I∗2 − I∗3 )
k2

3
y(5)1 (17)
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The motor torque of joint 1 in the Laplace domain is

T1(s) = T2(s) + (I∗1 − I∗2 )s
2Y2(s) (18)

and in the time domain, it becomes

τ1(t) = τ2(t) + (I∗1 − I∗2 )ÿ2 (19)

In the next sections, the robot is simulated considering a point-to-point motion, and the
initial and final configurations of the robot for these simulations are

qi =
[
q1i, q2i, q3i

]T
=
[
0,−π/3, 0

]T, q f =
[
q1i, q2i, q3i

]T
=
[
π, π/4, 0

]T (20)

In a point-to-point motion, the robot moves from one configuration to another, starting
and stopping with null velocity. Hence, the derivatives of q1 and q2 are null. Coming to q3,
the torsional spring on the passive joint tries to push q3 towards the rest position, hence at
starting and end positions, the passive joint has both null angle and derivatives.

Since Equation (17) requires the continuity of the fifth derivative of y1, this flat variable
is calculated by means of an 11-degree polynomial, whereas since Equation (19) requires
only the continuity of the second derivative of y2, this flat variable is calculated by means
of a 5-degree polynomial. Hence, the initial and final conditions for the flat variables are

y(ti) =
[
y1, ẏ1, ÿ1, y(3)1 , y(4)1 , y(5)1 , y2, ẏ2, ÿ2

]T
=
[
q1i + q2i + q3i, 0, 0, 0, 0, q1i, 0, 0

]T (21)

y(t f ) =
[
y1, ẏ1, ÿ1, y(3)1 , y(4)1 , y(5)1 , y2, ẏ2, ÿ2

]T
=
[
q1 f + q2 f + q3 f , 0, 0, 0, 0, q1 f , 0, 0

]T (22)

It is worth noting that the robot will not fall into singular configurations, since the
robot is controlled in the joint space rather than in Cartesian space.

In the framework of this research, a small prototype robot is simulated. The inertial
parameters of the robot are summarized in Table 1, and will be used for the simulations.

Table 1. Inertial parameters of the simulated 3-DOF robot depicted in Figure 1.

Link (i) mi (kg) mci (kg) IGi (kgm2) ai (m) aGi (m) aci (m)

1 2.55× 10−2 0 4.5× 10−5 1.3× 10−1 7.1× 10−2 0
2 2.55× 10−2 1.8× 10−1 4.5× 10−5 1.3× 10−1 7.1× 10−2 1× 10−2

3 8.7× 10−3 8.7× 10−3 3.5× 10−5 0.8× 10−1 0 0.8× 10−1

The operational scheme utilized to carry out the analysis is illustrated in Figure 2.
Initially, the start point and the end point were selected, and subsequently, the joint variables
were determined using inverse kinematics. Following that, the flat variables were computed.
Motor torques τ1 and τ2 were calculated using the flat variables and their derivatives. All
these calculations were performed analytically.

On the one hand, the torques were employed to simulate the system in MATLAB-
SIMULINK solving the equations of motion using standard integration routines. On the
other hand, the same torques were used as inputs for the motors in the experimental tests.
Finally, the Cartesian trajectories were obtained.

Since neither optimization processes nor stochastic methods were used, time and space
complexity are not a concern. The analytical-numerical model is predictable and consistent.
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q1i, q2i, q1f , q2f

Motor torques

calculation τ (y)

Dynamic model

q, q̇, q̈

Numerical simulation

Electrical motor

2 DOF arm

x1i, y1i, x2f , y2f

Inverse kinematics

Flat variables (y) planning

Direct dynamics Vision system

Experimental test

Cartesian trajectories

Figure 2. Outline of the proposed approach.

3. Effect of Joint Stiffness on Trajectories

In order to evaluate the effect of joint stiffness of the last nonactuated joint, different
simulations were carried out, considering the same motion time (t f = 0.6 s) and varying
the stiffness of the nonactuated joint k3 in the range (1.5÷ 5.0)× 10−3 Nm/rad.

The considered stiffness values are rather small but are compatible with the inertial
parameters of the small robot, which are summarized in Table 1.

The values of the natural frequency of the robot corroborate this statement. They can be
calculated by means of Equation (4) and are reported in Table 2. With the smallest value of
stiffness considered in the present parametric analysis, the natural frequency of the robot is
1.1 Hz, whereas with the largest value of torsional stiffness, the natural frequency increases
to 2.0 Hz. These values are compatible with a small prototype made of light materials.

Since the model includes a viscous damper in parallel with the torsional spring to take
into account friction losses, the value of the damping coefficient c3 has to be defined as well.
In this parametric analysis, a constant damping ratio ζ3 is assumed [38]; hence, c3 is given
by the following equation:

c3 =
ζ3k3

π fn3
(23)

The value ζ3 = 0.03 is adopted, which is compatible with a joint equipped with a ball
bearing and a steel spring.
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Table 2. Natural frequency of system considering two values of stiffness k3.

k3 (Nm/rad) I∗1 (kgm2) I∗2 (kgm2) I∗3 (kgm2) fn3 (Hz)

1.5 9.8× 10−3 5.3× 10−4 3.5× 10−5 1.1
5 9.8× 10−3 5.3× 10−4 3.5× 10−5 2.0

Figure 3 shows the end-effector trajectories obtained considering different stiffness values.

Figure 3. End-effector trajectories obtaining considering different stiffness values and the same
motion time (0.6 s).

It is worth noting that the end-effector reaches the final position with a negligible
positioning error. This result is achieved because the friction of the nonactuated joint is
taken into account in the model.

The end-effector trajectories obtained considering large values of stiffness are close
to an arc of circumference, which is the trajectory of an equivalent robot with 2-DOF
without the nonactuated joint and with the last link length a′2 = a2 + a3. When torsional
stiffness decreases, there is a modification in the central part of the trajectory with a
reduction in the swept area and the formation of a protuberance. For larger values of
stiffness, the protuberance tends to a cusp. Finally, for very low values of torsional stiffness,
the protuberance degenerates into a loop, which is connected with the initial and final part
of the trajectory by means of two small loops.

Joint variables corresponding to the trajectories of Figure 3 are shown in Figure 4. Joint
variable q1 does not depend on joint stiffness k3 because q1 coincides with flat variable y2,
and the interpolation of the flat variable depends only on the initial and final conditions
of the robot and the motion time. Thus, if the motion time is constant, the trajectory is
constant as well. Joint variables q2 and q3 depend on torsional stiffness k3, and their ranges
of variation increase as torsional stiffness k3 decreases.

Motor torques corresponding to the trajectories of Figure 3 are depicted in Figure 5.
Equations (17) and (19) show that both motor torque τ1 and motor torque τ2 depend on
the stiffness and damping of the nonactuated joint. Figure 5 shows that variations in k3
(with the corresponding variation in c3) have small effects on the maximum and minimum
values of motor torque τ1 but chiefly shift the peaks, modifying the shape of the curves.
Conversely, the variation of k3 causes large variations in the maximum and minimum
values of motor torque τ2.
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Figure 4. Joint variables calculated considering different stiffness values and the same motion
time (0.6 s).

Figure 5. Motor torques calculated considering different stiffness values and the same motion
time (0.6 s).

The trajectories of the end-effector depicted in Figure 3 are interesting, but the area of
the workplace swept by the links of the robot is a more useful parameter, if the robot has
to be implemented in a work cell. In fact, the swept area makes it possible to evaluate the
capability of the robot to move in the presence of obstacles in the work cell.

To calculate the area swept by the robot during the motion, a specific algorithm was
developed. This algorithm operates as follows: every point of a link in configuration i
is connected to the adjacent points in the same configuration and to the same points in
configuration i + 1; some quadrilaterals are defined, which are represented in Figure 6a
using different colors. Such quadrilaterals are joined to define a more complex polygon
that describes the area swept by the robot during the motion from configuration i to config-
uration i + 1, which is represented in Figure 6b. The overlapping areas are counted once in
the united area. This process is iterated between the initial and the final configuration. This
algorithm is suitable both for links represented as segments, which is the case depicted in
Figure 6, and for links described by more complex geometries (e.g., CAD files).
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(a) (b)

Figure 6. Area swept by the robot between two configurations: area swept by each link (a); total
swept area (b).

Figure 7 shows the total area swept by the robot considering four different values of
torsional stiffness k3 and the same motion time. The red trajectory is the trajectory of the
tip of the end-effector, whereas the blue trajectory is the trajectory of the back-end of the
third link (with the counterbalance).

(a) (b)

(c) (d)

Figure 7. Areas swept by the robot considering four different stiffness values with the same motion
time (t f = 0.6 s): (a) k = 1.5 · 10−3 Nm/rad, (b) k = 2.5 · 10−3 Nm/rad, (c) k = 4.0 · 10−3 Nm/rad,
(d) k = 5.0 · 10−3 Nm/rad. The white dots identify the tip and the back-end of the last link.
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At the beginning and at the end of the motion, the robot moves in the third and in the
fourth quadrant, respectively. The areas swept by the robot in the third and fourth quadrants
are scarcely influenced by torsional stiffness. However, the reduction in torsional stiffness
causes a reduction in the swept area in the first and second quadrants, since the area changes
from a semicircle (corresponding to the largest values) to a figure with three lobes. This effect
can be exploited to move the robot when obstacles are present in these areas.

It is worth noting that in Figure 7a, the area swept in the first and second quadrants is
largely influenced by the motion of the back-end of the third link that describes a trajectory
that is outside the trajectory of the end-effector. In Figure 7b, almost all of the area swept
by the back-end of the third link is inside the trajectory of the end-effector, whereas in
Figure 7c,d, all of the area swept by the back-end of the third link is inside the trajectory of
the end-effector.

To quantitatively evaluate the importance of the reduction in the swept area, the areas
swept by the underactuated robot are compared with the one swept by an equivalent fully
actuated 2-DOF robot having its last link as long as the sum of links 2 and 3: a

′
2 = a2 + a3.

Calculated results are summarized in Table 3. It is important to highlight that when the
underactuated robot is equipped with a low stiffness spring, the reduction in the swept
area reaches approximately 36%.

Table 3. Area reduction using the 3-DOF underactuated robot considering the same motion time
(t f = 0.6 s).

Stiffness Value (Nm/rad) 2-DOF Area (m2) 3-DOF Area (m2) Reduction (%)

1.5 · 10−3 0.2065 0.1320 36.08
2.5 · 10−3 0.2065 0.1468 28.91
4.0 · 10−3 0.2065 0.1884 8.77
5.0 · 10−3 0.2065 0.1989 3.68

4. Effect of Motion Time on Trajectories

Motion time is a typical parameter of robot motion planning. To perform a parametric
analysis, eight different motion times were considered, ranging from 0.45 s to 0.8 s, and
considering stiffness and damping ratio values equal to k3 = 2.6 · 10−3 Nm/rad and
ζ3 = 0.03, respectively. The corresponding trajectories of the end-effector are represented
in Figure 8.

Figure 8. End-effector trajectories calculated considering different motion times and the same stiffness
value of last nonactuated joint (2.6 · 10−3 Nm/rad).
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It is worth noting that the trajectories obtained with varying motion times are similar to
the ones obtained in Section 3. This result suggests that the same end-effector trajectory can
be obtained either by selecting the torsional stiffness of the nonactuated joint or by setting
the motion time. This is an advantage, because it is possible to operate on two different
parameters to achieve the same result.

The joint variables of the robot are depicted in Figure 9. In this case, the joint variable
q1 depends on motion time, like the other joint variables. It is interesting to notice that
the maximum values of q3 obtained in these simulations are similar to the ones obtained
considering different values of joint stiffness k3.

Figure 9. Joint variables of the robot calculated considering different motion times and the same
stiffness value of last nonactuated joint (2.6 · 10−3 Nm/rad).

Figure 10 depicts motor torques calculated considering different motion times and the
same torsional stiffness of the nonactuated joint. In this case, both motor torques change
their amplitude and shape when the motion time changes. Finally, Figure 11 shows the
swept areas corresponding to four different motion times. The motion time has a scarce
effect on the behavior of the system in the third and fourth quadrants, but the decrease
in motion time causes a significant decrease in the swept areas in the first and second
quadrants (in the central part of the motion).

Figure 10. Motor torques calculated considering different motion times and the same stiffness value
of the last nonactuated joint (2.6 · 10−3 Nm/rad).
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(a) (b)

(c) (d)

Figure 11. Areas swept by the robots considering four different motion times: (a) t f = 0.45 s,
(b) t f = 0.55 s, (c) t f = 0.70 s, (d) t f = 0.80 s with the same stiffness value (k3 = 2.6 · 10−3 Nm/rad).

Figure 11a,b depict a behavior similar to the one described in the case of stiffness
variations. If motion time is short, large accelerations of the last link are required to meet
the imposed end conditions; the result is a swept area in which the outermost point is not
the tip of the end-effector, but the back-end of the third link (with the counterbalance).
In Figure 11c,d the motion time is longer, and the motion of the third link does not cause
the abovementioned phenomenon.

Finally, the swept areas of the underactuated system are compared to those of a fully
actuated system with two degrees of freedom (DOF), having a

′
2 = a2 + a3. The calculated

results are reported in Table 4. When the underactuated robot is quickly moved, there is a
reduction in swept area of about 35% .

Table 4. Area reduction using the 3-DOF underactuated robot considering the same stiffness value
(k3 = 2.6 · 10−3 Nm/rad).

Motion Time (s) 2-DOF Area (m2) 3-DOF Area (m2) Reduction (%)

0.45 0.2065 0.1329 35.64
0.55 0.2065 0.1379 33.22
0.7 0.2065 0.1801 12.78
0.8 0.2065 0.1958 5.18

5. Optimal Combination of Stiffness and Motion Time

In this section, the combined effect of joint stiffness and motion time is considered.
Since the moments of inertia are constants, Equation (4) shows that the variation in joint
stiffness corresponds to a variation in the natural period T defined as:
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T =
1

fn3
= 2π

√
I∗3 (I∗2 − I∗3 )

k3 I∗2
(24)

The main advantage of using T instead of k3 is that T includes the ratio between the
moments of inertia and joint stiffness; thus, it can be used with underactuated systems of
any size. Moreover, the behavior of the robot is described by means of two time variables,
the first related to the natural oscillation of the system, and the second related to the
imposed motion.

It is worth noticing that a decrease in k3 leads an increase in the natural period T.
Two figures of merit are considered. The first one is the sum of the motor torques. To take

into account that the motor torques change sign during the motion, each motor torque
is squared and the integral over motion time is calculated, then the two integrals are
added. This figure of merit is related to the energy consumed by the robot to perform the
assigned task.

The second figure of merit is the area swept by the links of the robot.
Results are depicted in Figure 12 as contour plots; lighter colors represent the larger

values. The first graph (Figure 12a) shows the sum of the squared actuator torques, while
the second graph (Figure 12b) shows the area swept by the 3-DOF robot.

Motor torques increase with the decrease in joint stiffness k3, which corresponds to
the increase in the natural period. This effect happens since torsional stiffness is at the
denominator of the terms of Equations (17) and (19). For large values of stiffness (short
natural periods), motion time has a small effect on torques. Conversely, when the torsional
stiffness is small, the motion time has a large effect on the torques and a decrease in the
motion time leads to an increase in the torques. This effect is physically intuitive, since
shorter motion times require higher accelerations, which in turn produce higher inertia
torques. The contour plot of Figure 12a shows neither minima nor valleys.

Coming to the second figure of merit, variations in the area swept by the robot are
mainly related to the rotation of the passive link q3. If q3 is small, links 2 and 3 are nearly
collinear; thus, they behave like a single rigid link of length a′2 = a2 + a3. In this case,
the swept area is close to a section of circle like the one depicted in Figures 7d and 11d,
and reaches the maximum value. This behavior takes place when the motion time is long,
since the acceleration of the passive joint is small, and when the natural period is short,
since a large stiffness prevents the rotation of the passive link. These conditions correspond
to the right lower corner of Figure 12b. When q3 is very large, the area swept by the robot is
very different from a circle, but it tends to increase again because the back-end of the third
link (with the counterbalance) has a large motion that increases the swept area. q3 is large
both when the motion time is short (i.e., the inertia torques are large) and when the torsional
stiffness is small (and the natural period is large). This behavior corresponds to the upper
left corner of Figure 12b. Hence, the contour plot representing the swept area as a function
of motion time and natural period shows a valley of minima between the abovementioned
corners (red dots of Figure 12b). In other words, for every value of the natural period, a
motion time that minimizes the swept area can be found, and vice versa. This property
can be exploited to optimize the motion of the robot in the presence of obstacles. The local
minima may change their positions by varying both the motion time and natural period;
however, the area swept by the robot remains nearly identical along the entire valley of
minima. This result holds true until the motion time reaches low values, which, however,
are difficult to obtain in practice. Hence, if there are no constraints on motion time and
natural period, the minima can be chosen by introducing other decision factors, such as
motor torques (e.g., from Figure 12a).
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(a)

(b)

Figure 12. Sum of motor torques as a function of motion time and oscillation period T (a); area swept
by the robot as a function of motion time and oscillation period T, with local minima identified by
red dots (b).

6. Experimental Validation
6.1. Mathematical Model of a Simplified 2-DOF Robot

In order to validate the numerical calculations, a prototype robot equipped with only
one motor and one torsional spring was built and tested. The mathematical model is similar
to the one presented in Section 2, except for the fact that the first motor is kept still (i.e.,
q1,i = q1, f = 0). Hence, if the first actuated joint is removed, the other motor torques do not
change. In other words, the acceleration and velocity of the first joint are null; thus, the
inertial terms of link 1 are neglected. In this case, only one flat output has to be defined:
ỹ1 = q1 + q2. Motor torque 1 is calculated as follows:
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τ2 = I∗2 ¨̃y1 +
I∗3 (I∗2 − I∗3 )

k3
ỹ(4)1 − c3

I∗3 (I∗2 − I∗3 )
k2

3
ỹ(5)1 (25)

6.2. Experimental Setup

The experimental setup is depicted in Figure 13. The geometric dimensions and the
mass properties of the 2-DOF robots coincide with the geometric and mass properties of the
last two links of the 3-DOF robot, which are reported in Table 1. The first link was actuated
by a motor and the second one was connected to the first link using a ball bearing and a
torsional spring. The DC Portescap 35NT2R 82 426SP motor was adopted. It is driven by
an Advanced Motion Control 25A8 and its rotation is measured by an incremental optical
encoder LIKA Electronic I58-L-5000ZCU16R with a resolution of 0.072◦. The nonactuated
joint was equipped with a stainless steel helical torsional spring with three elastic coils.
Torsional stiffness was k3 = 2.6 · 10−3 Nm/rad.

(a) (b)

Figure 13. Experimental setup: (a) the Portescap 35NT2R 82 426SP motor equipped with an incre-
mental optical encoder LIKA Electronic I58-L-5000ZCU16R; (b) the 2-DOF robot.

The position and the orientation of the second link during the motion were measured
by means of a vision system since there was not enough room to fit an encoder to the
nonactuated joint. An industrial camera Dalsa Genie Nano GM30-M2050 which uses a
sensor Sony IMX252 with resolution 2064× 1544 pixels, was used. Three white markers
were placed on the second link and were detected by the vision system, see Figure 13b.

After the camera calibration, the resolution of the measurement was about ±0.30 mm/pixel.

6.3. Experimental Results

Three different tests were performed with varying motion time: the first one was
carried with motion time t f = 0.55 s, the second one with t f = 0.6 s, and the last one with
t f = 0.7 s. These experimental tests aimed to calculate the error between the simulated
and experimental trajectories of the robot and the swept areas. Figures 14–16 show the
trajectories of the end-effector (solid trajectories), of the back-end (counterbalancing mass)
of the second link (dashed trajectories), and of the swept areas, and make comparisons
between simulated and experimental results. There is a good agreement between the
numerical and experimental trajectories in every test. The largest differences between
calculated and measured values take place in the zone of the protuberance, especially when
the motion time is short.
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Figure 14. Numerical and experimental trajectories with t f = 0.55 s. Blue and orange lines show the
numerical and experimental trajectories, respectively. Solid and dashed lines show the tip and the
back-end of the end-effector, respectively.

Figure 15. Numerical and experimental trajectories with t f = 0.6 s. Blue and orange lines show the
numerical and experimental trajectories, respectively. Solid and dashed lines show the tip and the
back-end of the end-effector, respectively.
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Figure 16. Numerical and experimental trajectories with t f = 0.7 s. Blue and orange lines show the
numerical and experimental trajectories, respectively. Solid and dashed lines show the tip and the
back-end of the end-effector, respectively.

The swept areas calculated from numerical simulations and estimated from the ex-
perimental data are compared in Table 5. There is always a good agreement between the
numerical and the experimental values, with a maximum error of 1.28%.

Table 5. Results of area estimation.

Motion Time (s) Numerical Area (m2) Experimental Area (m2) Error (%)

0.55 0.0537 0.0544 1.28
0.6 0.0564 0.0558 1.07
0.7 0.0605 0.0611 0.95

In addition, a comparison between the area swept by a 1-DOF robot (with link length
a′2 = a2 + a3) and the one swept by the prototype 2-DOF underactuated robot is made.
The results are summarized in Table 6. The area swept by the underactuated robot is smaller
than the one swept by the 1-DOF robot to perform the same test. The reduction increases
when the motion time decreases. This is an advantage in many robotic applications, partic-
ularly in environments where space is limited or where the robot must interact with other
objects or people.

Table 6. Area reduction using the 2-DOF underactuated robot.

Motion Time (s) 1-DOF Area (m2) 2-DOF Area (m2) Reduction (%)

0.55 0.0693 0.0544 21.50
0.6 0.0693 0.0558 19.48
0.7 0.0693 0.0611 11.83

All the experimental results presented in this section were retrieved with the torsional
spring working in the linear range, as assumed in the mathematical model. For very short
motion times, the torques applied by the actuators may result in very large rotations of the
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nonactuated joint, which, in turn, may lead to the nonlinear behavior of the torsional spring.
Therefore, the choice of the torsional spring has to take into account the compatibility of
the range of torsion with linear elastic behavior.

7. Conclusions

This paper presents a study of a planar 3-DOF differentially flat underactuated robot,
in which the last joint is equipped with a torsional spring in parallel with a torsional damper
that accounts for friction losses. A specific mathematical model for the calculation of motor
torques that exploits differential flatness properties in the Laplace domain was developed.
Parametric calculations were performed to investigate the effects of the torsional spring
stiffness and motion time on robot trajectories. The possibility of achieving the same
trajectory by varying either parameter was highlighted. Additionally, experimental tests
were carried out on a subsystem of the robot, and corroborated numerical results.

The advantages of utilizing a partially actuated system, as opposed to a fully actuated
one, were demonstrated, including the use of fewer motors and the resulting reduction
in the area swept by the links to perform the task. Large reductions in the swept area can
be achieved both by decreasing the stiffness of the nonactuated joint and shortening the
motion time, but these solutions lead to an increase in motor torques (especially τ2), which
have to be carefully evaluated in terms of energy consumption and motor encumbrance.
These findings suggest that underactuated robotic systems have many potentialities and
could be used in many applications, ranging from industrial automation to medical robotics
and to walking robots.

Further research will focus on the development of more complex underactuated
systems (e.g., with a complex link geometry or with more DOFs) and on the application of
these concepts in real-world scenarios. One interesting scenario is represented by planar
robots operating in the vertical plane, where the nonlinear gravitational term is present,
but the diffeomorphism can be defined [25]. Another interesting scenario is the planning of
point-to-point motions with via points, which are useful to avoid collisions with obstacles.
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