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Recently, (β, γ)-Chebyshev functions, as well as the corresponding zeros, have been 
introduced as a generalization of classical Chebyshev polynomials of the first kind 
and related roots. They consist of a family of orthogonal functions on a subset of 
[−1, 1], which indeed satisfies a three-term recurrence formula. In this paper we 
present further properties, which are proven to comply with various results about 
classical orthogonal polynomials. In addition, we prove a conjecture concerning the 
Lebesgue constant’s behavior related to the roots of (β, γ)-Chebyshev functions in 
the corresponding orthogonality interval.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Let Ω = [−1, 1] and n ∈ N. The well-known Chebyshev polynomials of the first kind

Tn(x) = cos(n arccosx), n ≥ 0, x ∈ Ω ,

are a family of orthogonal polynomials on Ω with respect to the weight function w(x) = (1 − x2)−1/2. Tn is 
an algebraic polynomial of total degree n with roots

Tn =
{

cos
(

(2j − 1)π
n

)}
j=1,...,n

,

called the Chebyshev points (of the first kind). These points are pairwise distinct in Ω. Another related set 
of points in Ω, which includes the extrema of the interval, is the set of Chebyshev-Lobatto (CL) points
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Un+1 =
{

cos
(
jπ

n

)}
j=0,...,n

,

which consists of the zeros of the polynomial

Tn+1(x) = (1 − x2)
n

d
dxTn(x), x ∈ Ω.

Chebyshev polynomials and associated points are a classical topic in approximation theory (see, e.g., [23,27]
for a thorough overview). They represent a valuable choice for constructing stable and effective bases to 
approximate functions. Indeed, in these tasks Chebyshev and CL points guarantee well conditioning and fast 
convergence; we refer the interested reader to, e.g., [10,28] for a complete treatment. This interest from a 
theoretical viewpoint is also motivated by the fact that they have found application in different and various 
research fields, such as, e.g., numerical quadrature [22], solution of differential equations [29,32] and group 
theory [4].

Along with the classical setting, in less and more recent literature many efforts have been made in studying 
their properties and in expanding their setting by including further similar polynomials, generalizations and 
tools [8,9,21,25,33]. In particular, in [13] the new family of (β, γ)-Chebyshev functions (of the first kind) on 
Ω was introduced; we recall some important properties of this family in Section 2, while in later sections we 
investigate further interesting facts.

In fact, the contribution of this paper can be split in two parts. The first part is devoted to analyzing how 
the (β, γ) functions inherit some classical properties of orthogonal polynomials. Specifically, in Section 3 we 
provide the connection with the continued fractions, and in Section 4 we derive the corresponding generat-
ing function. Moreover, the Christoffel-Darboux formula and the Sturm-Liouville problem are investigated 
in Sections 5 and 6, respectively. In the second part we focus on the (β, γ) points. The conditioning of 
the polynomial interpolation process at such points was investigated in the seminal paper [13], where a 
linear growth with n of the corresponding Lebesgue constant was conjectured for certain configurations of 
parameters β and γ. In Section 7, we provide the proof of such a conjecture, which is crucial to distinguish 
between well and bad conditioned designs of (β, γ) nodes in Ω.

2. (β, γ)-Chebyshev functions and points

Letting β, γ ∈ [0, 2), β + γ < 2, the family of (β, γ)-Chebyshev functions (of the first kind) on Ω consists 
of functions

T β,γ
n (x) := cos

(
2n

2 − β − γ

(
arccosx− γπ

2

))
, x ∈ Ω, n ∈ N.

The classical Chebyshev polynomials of the first kind are obtained when β = γ = 0, that is T 0,0
n = Tn, 

while in general T β,γ
n is not a polynomial. Covering the same path of the classical framework, we define the 

(β, γ)-Chebyshev points as the zeros of T β,γ
n in Ωβ,γ := [− cos(βπ/2), cos(γπ/2)] ⊆ Ω, i.e.,

T β,γ
n :=

{
cos

(
(2 − β − γ)(2j − 1)π

4n + γπ

2

)}
j=1,...,n

.

We show two examples in Fig. 1.
Furthermore, the set of (β, γ)-Chebyshev Lobatto points, shortly (β, γ)-CL, are

Uβ,γ
n+1 :=

{
cos

(
(2 − β − γ)jπ

2n + γπ

2

)}
,

j=0,...,n



S. De Marchi et al. / J. Math. Anal. Appl. 528 (2023) 127603 3
Fig. 1. Left: n = 5, β = 1, γ = 0.1. Right: n = 6, β = 0.3, γ = 0.4. The points T β,γ
n are marked with red crosses.

corresponding to the zeros in Ωβ,γ of the function

T
β,γ

n+1(x) = 2 − β − γ

2n (1 − x2) d

dx
T β,γ
n (x), x ∈ Ω.

Since T β,γ
n = Uβ+ 2−β−γ

2n ,γ+ 2−β−γ
2n

n holds true, in the following we will refer directly to Uβ,γ
n as (β, γ)-Chebyshev 

points, with a slight abuse of notation.
In [13], the authors investigated further different aspects of the introduced (β, γ)-Chebyshev functions 

and points. First, Uβ,γ
n can be nicely characterized as a set of mapped points. Precisely, considering the 

Kosloff Tal-Ezer (KTE) map [1,20]

Mα(x) := sin(απx/2)
sin(απ/2) , α ∈]0, 1], x ∈ Ω,

and the equispaced points

Eβ,γ
n :=

{
1 − γ − (2 − β − γ)j

n− 1

}
j=0,...,n−1

,

then Uβ,γ
n = M1

(
Eβ,γ
n

)
. This consideration is crucial for the application of the (β, γ) setting in the so-called 

Fake Nodes Approach (FNA), which is a mapped bases scheme that provides well-conditioned reconstruc-
tion processes in function approximation with different basis functions [3,16–18] as well as in numerical 
quadrature [7,15]; we refer to [12] for a recent survey. In [14], the set Uβ,γ

n is relevant for the analysis of 
the effectiveness of the Gibbs-Runge-Avoiding Stable Polynomial Approximation (GRASPA) method in the 
treatment of both Gibbs and Runge’s phenomena in the univariate case.

Besides the representation as mapped points, we recall some more properties of the (β, γ) setting (cf. 
[13]).

• The functions {T β,γ
n }n=0,1,... are orthogonal on Ωβ,γ with respect to the weight function

wβ,γ(x) = 2
(2 − β − γ)

√
1 − x2

, x ∈ Ωβ,γ ,

precisely

∫
Ωβ,γ

T β,γ
r (x)T β,γ

s (x)wβ,γ(x) dx =

⎧⎪⎪⎨⎪⎪⎩
0 if r �= s,

π if r = s = 0,
π if r = s �= 0.
2
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• The roles played by β and γ are symmetric, meaning that T ν1,ν2
n shows analogous properties as T ν2,ν1

n

as long as ν1, ν2 are admissible values for β and γ.
• For certain values of β and γ the functions {T β,γ

n }n=0,1,... are polynomials, and new results related to 
the classical setting have been obtained from this analysis; we refer to [13, §2.2] for further details.

• Not only Chebyshev (β = γ = 1/n) and CL (β = γ = 0) points can be defined as (β, γ)-Chebyshev 
points, but many of their subsets. Indeed, letting Un+1 = {uj}j=0,...,n, κ1, κ2 ∈ N, κ := (κ1, κ2), and 
βκ = 2κ1

n+κ1+κ2
, γκ = 2κ2

n+κ1+κ2
, we obtain

Uβκ,γκ
n = Un+κ1+κ2 \ {u0, . . . , uκ2−1, un+κ2 , . . . , un+κ1+κ2−1}. (1)

3. (β, γ)-Chebyshev functions and continued fractions

It is well-known that any family of orthogonal polynomials p1, . . . , pn, . . . satisfies a three-term recurrence 
formula (see, e.g., [30, Th. 3.2.1, §3.2])

pn(x) = (anx + bn)pn−1(x) − cnpn−2(x), n = 2, 3, . . . ,

where an, bn, cn are constants, an, cn > 0. Furthermore, if kn is the coefficient of the n degree monomial in 
pn(x), then an = kn/kn−1 and cn = an/an−1. For example, Chebyshev polynomials of the first kind satisfy 
this formula for n ≥ 2 with an = 2 and bn = cn = 1 (recalling that T0(x) = 1 and T1(x) = x).

The functions {T β,γ
n }n=0,1,... satisfy a similar recurrence formula in Ωβ,γ

T β,γ
0 (x) = 1, T β,γ

1 (x) = cos
(

2
2 − β − γ

(
arccosx− γπ

2

))
,

T β,γ
n+1(x) = 2T β,γ

1 (x)T β,γ
n (x) − T β,γ

n−1(x)
(2)

Indeed, letting θ = arccosx − γπ
2 , the addition formulae for the cosine easily lead to

cos
(

2(n + 1)θ
2 − β − γ

)
+ cos

(
2(n− 1)θ
2 − β − γ

)
= 2 cos

(
2θ

2 − β − γ

)
cos

(
2nθ

2 − β − γ

)
.

We remark that the only difference with respect to the classical setting relies on the use of the function 
T β,γ

1 in place of the identity.
Starting from the three terms’ recurrence property, our purpose is to characterize the (β, γ)-Chebyshev 

functions as continued fractions, which are indeed known to be related to orthogonal polynomials.
In the following, we use the space-saving notation

b0 + a1|
|b1

+ a2|
|b2

+ a3|
|b3

+ . . .

to denote the continued fraction

b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . .

and

b0 + a1| + a2| + a3| + · · · + an|

|b1 |b2 |b3 |bn
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for the n-th partial fraction.
Firstly, to deal with the constant factor in the recurrence relation, we introduce the normalized (β, γ)-

Chebyshev functions T̂ β,γ
n := 21−nT β,γ

n that consequently satisfy the relation

T̂ β,γ
n (x) = T β,γ

1 (x)T̂ β,γ
n−1(x) − λnT̂

β,γ
n−2(x),

with λ2 = 1/2 and λn = 1/4, n ≥ 3, T̂ β,γ
0 (x) = 1 and T̂ β,γ

−1 (x) = 0.
Then, given λ1 �= 0, the continued fraction

λ1|
|T β,γ

1 (x)
− λ2|

|T β,γ
1 (x)

− λ3|
|T β,γ

1 (x)
− · · ·

is such that its n-th partial denominator, that is the number Bn such that

λ1|
|T β,γ

1 (x)
− λ2|

|T β,γ
1 (x)

− λ3|
|T β,γ

1 (x)
− · · · − λn|

|T β,γ
1 (x)

= An

Bn
,

satisfies Bn = T̂ β,γ
n . In fact, numerators and denominators of the partial fraction satisfy the recurrence 

relations (see, e.g., [11, p. 80])

Bn = T β,γ
1 (x)Bn−1 − λnBn−2, n ≥ 1 with B−1 = 0, B0 = 1, (3)

An = T β,γ
1 (x)An−1 − λnAn−2, n ≥ 2 with A−1 = 1, A0 = 0 and A1 = λ1.

Hence, we can define the function P̂ β,γ
n = λ−1

1 An+1 which is independent of λ1 and satisfies the relation

P̂ β,γ
n (x) = T β,γ

1 (x)P̂ β,γ
n−1 − λn+1P̂

β,γ
n−2

for n ≥ 1 and P β,γ
−1 = 0, P β,γ

0 = 1. We refer to these functions as the associated (β, γ)-Chebyshev functions. 
Multiplying the first equation of (3) by An−1 and the second by Bn−1 we derive the equality (cf. [11, p. 86])

T̂ β,γ
n+1P̂

β,γ
n−1 − T̂ β,γ

n P̂ β,γ
n =

⎧⎪⎨⎪⎩
−1

2 for n = 1

−1
2
( 1

4
)n−2 for n ≥ 2.

(4)

4. The generating function

Another classical topic is the construction of the generating function associated with a family of functions. 
Suppose that |u| < 1 and φ ∈ [0, 2π], then (see, e.g., [27, p. 36])

∞∑
n=0

eιnφun =
∞∑

n=0
(ueιφ)n = 1

1 − ueιφ

By equating the real parts, we get

∞∑
n=0

cos(nφ)un = 1 − u cosφ
1 + u2 − 2u cosφ.

Similarly to Chebyshev polynomials, we can consider the ordinary generating function related to the (β, γ)
family
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F β,γ(u, x) =
∞∑

n=0
T β,γ
n (x)un ,

and deriving a closed form for F β,γ . Indeed, we can write

T β,γ
n (x) = cos

(
2n

2 − β − γ

(
arccosx− γπ

2
))

= cos(nφβ,γ(x)),

with φβ,γ(x) := 2
2−β−γ (arccosx − γπ

2 ). Then,

F β,γ(u, x) =
∞∑

n=0
cos(nφβ,γ(x))un = 1 − u cosφβ,γ(x)

1 + u2 − 2u cosφβ,γ(x) .

Finally, since cosφβ,γ(x) = T β,γ
1 (x), we obtain

F β,γ(u, x) = 1 − uT β,γ
1 (x)

1 + u2 − 2uT β,γ
1 (x)

.

When β = γ = 0, then T β,γ
1 (x) = x and we recover the generating function of the Chebyshev polynomials 

of the first kind.

5. The Christoffel-Darboux formula

Classical orthogonal polynomials satisfy the Christoffel-Darboux formula. We prove that the same holds 
for the (β, γ) functions.

Theorem 1. The family of orthogonal functions T β,γ
0 , T β,γ

1 , . . . , T β,γ
n , . . . provides the following Christoffel-

Darboux formula

n∑′

j=0
T β,γ
j (x)T β,γ

j (y) = 1
2
T β,γ
n+1(x)T β,γ

n (y) − T β,γ
n (x)T β,γ

n+1(y)
T β,γ

1 (x) − T β,γ
1 (y)

,

with 
n∑′

j=0
zj := 1

2z0 + z1 + · · · + zn.

Proof. We proceed by induction on n ∈ N. When n = 1, we need to check the equality

1
2 + T β,γ

1 (x)T β,γ
1 (y) = 1

2
T β,γ

2 (x)T β,γ
1 (y) − T β,γ

1 (x)T β,γ
2 (y)

T β,γ
1 (x) − T β,γ

1 (y)
.

By exploiting the recurrence formula (2), we get

1
2
T β,γ

2 (x)T β,γ
1 (y) − T β,γ

1 (x)T β,γ
2 (y)

T β,γ
1 (x) − T β,γ

1 (y)
=

1
2

(2(T β,γ
1 (x))2 − 1/2)T β,γ

1 (y) − T β,γ
1 (x)(2(T β,γ

1 (y))2 − 1/2)
T β,γ

1 (x) − T β,γ
1 (y)

=

1
2

(1 + 2T β,γ
1 (x)T β,γ

1 (y))(T β,γ
1 (x) − T β,γ

1 (y))
β,γ β,γ

= 1
2 + T β,γ

1 (x)T β,γ
1 (y).
T1 (x) − T1 (y)
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Assuming the case n − 1 holds true, let us prove for n. On the left-hand side, we have

n∑′

j=0
T β,γ
j (x)T β,γ

j (y) =

n−1∑′

j=0
T β,γ
j (x)T β,γ

j (y) + T β,γ
n (x)T β,γ

n (y) =

1
2
T β,γ
n (x)T β,γ

n−1(y) − T β,γ
n−1(x)T β,γ

n (y)
T β,γ

1 (x) − T β,γ
1 (y)

+ T β,γ
n (x)T β,γ

n (y).

For the right-hand side, by using the recurrence relation we get

T β,γ
n+1(x)T β,γ

n (y) − T β,γ
n (x)T β,γ

n+1(y)
2(T β,γ

1 (x) − T β,γ
1 (y))

=

(2T β,γ
1 (x)T β,γ

n (x) − T β,γ
n−1(x))T β,γ

n (y) − T β,γ
n (x)(2T β,γ

1 (y)T β,γ
n (y) − T β,γ

n−1(y))
2(T β,γ

1 (x) − T β,γ
1 (y))

=

T β,γ
n (x)T β,γ

n−1(y) − T β,γ
n−1(x)T β,γ

n (y) + T β,γ
n (x)T β,γ

n (y)(T β,γ
1 (x) − T β,γ

1 (y))
2(T β,γ

1 (x) − T β,γ
1 (y))

=

T β,γ
n (x)T β,γ

n−1(y) − T β,γ
n−1(x)T β,γ

n (y)
2(T β,γ

1 (x) − T β,γ
1 (y))

+ T β,γ
n (x)T β,γ

n (y),

which is exactly the left-hand side. �
6. A Sturm-Liouville problem for (β, γ) functions

Classical orthogonal polynomials can be characterized as solutions of certain differential equations that 
can be framed into the Sturm-Liouville theory (refer to [2] for a detailed overview). In the specific case of 
Chebyshev polynomials of the first kind, Tn is a non-trivial solution of the following boundary-value problem 
on Ω = [−1, 1]

d
dx

(√
1 − x2 dy

dx

)
+ n2

√
1 − x2

y = 0

with separated boundary conditions {
a1y(−1) + a2y

′(−1) = 0
b1y(1) + b2y

′(1) = 0

such that a2
1 + a2

2 > 0 and b21 + b22 > 0. Note that T ′
n is singular at x = −1, 1, therefore the boundary 

equations are satisfied in the limit sense.
In our framework, we can prove the following

Theorem 2. The function T β,γ
n is a non-trivial solution of the Sturm-Liouville boundary problem on Ωβ,γ =

[− cos(βπ/2), cos(γπ/2)] ⊆ Ω

d (√
1 − x2 dy) + 4n2

2
1√

2
y = 0 (5)
dx dx (2 − β − γ) 1 − x
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with separated boundary conditions{
a1y(− cos(βπ/2)) + a2y

′(− cos(βπ/2)) = 0
b1y(cos(γπ/2)) + b2y

′(cos(γπ/2)) = 0

where a2
1 + a2

2 > 0 and b21 + b22 > 0.

Proof. We write

T β,γ
n (x) = cos

( 2n
2 − β − γ

(
arccos(x) − γπ

2

))
= cos

( 2n
2 − β − γ

θ
)
,

with θ := θ(x) = arccos(x) − γπ
2 . By observing that

dT β,γ
n

dx = dT β,γ
n

dθ
dθ
dx,

d2T β,γ
n

dx2 = d2T β,γ
n

dθ2

(
dθ
dx

)2

+ dT β,γ
n

dθ
d2θ

dx2 , (6)

we get

dT β,γ
n

dx =
( 2n

2 − β − γ

)
sin

( 2n
2 − β − γ

θ
) 1√

1 − x2
, (7)

d2T β,γ
n

dx2 = − 4n2

(2 − β − γ)2 cos
( 2n

2 − β − γ
θ
) 1

1 − x2

+
( 2n

2 − β − γ

)
sin

( 2n
2 − β − γ

θ
) x

(1 − x2)
√

1 − x2
. (8)

Hence, by substituting T β,γ
n into the left side of (5), we have

− x√
1 − x2

dT β,γ
n

dx +
√

1 − x2 d2T β,γ
n

dx2 + 4n2

2 − β − γ

1√
1 − x2

T β,γ
n ,

and from (7) and (8) we conclude. �
7. On the Lebesgue constant of (β, γ)-Chebyshev points for polynomial interpolation

Let Xn := {x0, . . . , xn} be a set of distinct points in Ω. The set of Lagrange polynomials L := {�0, . . . , �n}, 
where

�i(x) :=
n∏

j=0
j �=i

x− xj

xi − xj
, i = 0, . . . , n, x ∈ Ω,

allows to construct the Lebesgue function

λ(Xn;x) =
n∑

i=0
|�i(x)|, x ∈ Ω,

whose maximum over Ω is the Lebesgue constant

Λ(Xn,Ω) = max λ(Xn;x).

x∈Ω
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As well-known, the Lebesgue constant is an indicator of both the conditioning and the stability of the 
interpolation process, and it depends on the choice of the interpolation points set Xn. This is why it 
is important to look for optimal or nearly-optimal interpolation points, that are points whose Lebesgue 
constant grows logarithmically in the dimension n of the polynomial space (refer to, e.g., [10,28] for more 
details). Among other well-behaved sets [19], both Chebyshev and CL points retain the logarithmic growth 
of the Lebesgue constant [5,24].

Coming back to the (β, γ) framework, it is reasonable to hypothesize that (β, γ) points preserve a loga-
rithmic growth of their Lebesgue constant as long as β and γ are small enough, because in this case they 
can be considered perturbed CL points. In fact, this was proved in [13, Th. 3] by exploiting a result in [26]. 
However, as the value of β and/or γ becomes larger, the behavior of the Lebesgue constant evolves towards 
an increased rate of growth with n. In this sense, it is worthwhile to analyze under which circumstances the 
growth of the Lebesgue constant related to (β, γ) points shifts from being logarithmic to be linear. To do 
so, we consider the setting β = β̄n = 2/n and γ = 0, which is also interesting since (cf. (1))

U β̄n,0
n = Un+1 \ {−1},

that is, we are removing the left extremal point from the set of CL points. Now, we prove what was originally 
conjectured in [13, Conj. 1], i.e., we show that the Lebesgue constant associated to U β̄n,0

n has linear growth 
and assumes integer values only. Note that in [13, Th. 4] we proved the weaker result

λ
(
U β̄n,0
n ;−1

)
= 2n− 1.

Theorem 3. Let β̄n = 2/n, n ∈ N>0. Then,

Λ(U β̄n,0
n ,Ω) = 2n− 1

Proof. In light of [13, Th. 4], it is sufficient to prove that the Lebesgue function λ
(
U β̄n,0
n ; x

)
attains its 

maximum in x = −1. The plan of this technical proof is first to show that the Lebesgue function is 
monotonically decreasing in [−1, un−1], where un−1 is the smaller point of the set U β̄n,0

n . Then, we conclude 
by showing that the Lebesgue function is smaller than 2n − 1 in [un−1, 1].

To this aim, we remind that the Lagrange weight for the i-th CL node is (see, e.g., [31, p. 37])

λi =
n∏

j=0
j �=i

1
ui − uj

= 2n−1

n
(−1)iδi

where δi = 1 if i �= 0, n, and it is halved otherwise.
Let x, y ∈ [−1, un−1] such that x < y, then we have |x −ui| > |y−ui| for i = 0, . . . , n −1. As a consequence 

for the i-th Lagrange polynomial built upon the U β̄n,0
n nodes, we get

|�i(x)| =
n−1∏
j=0
j �=i

|x− uj |
|ui − uj |

>
n−1∏
j=0
j �=i

|y − uj |
|ui − uj |

= |�i(y)|.

Therefore, the Lebesgue function

λ(U β̄n,0
n ;x) =

n−1∑
i=0

|�i(x)| =
n−1∑
i=0

n−1∏
j=0

|x− uj |
|ui − uj |
j �=i
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=
n−1∑
i=0

n−1∏
j=0
j �=i

|x− uj ||ui − un| ·
n∏

j=0
j �=i

1
|ui − uj |

= 2n−1

n

n−1∑
i=0

(
n−1∏
j=0
j �=i

|x− uj |(1 + ui)δi

)
,

is strictly decreasing in the interval [−1, un−1]. Now, let us focus on the interval [un−1, 1]. First, we observe 
that

λ(Un+1;x) =
n∑

i=0

n∏
j=0
j �=i

|x− uj |
|ui − uj |

=
n−1∑
i=0

n∏
j=0
j �=i

|x− uj |
|ui − uj |

+
n−1∏
j=0

|x− uj |
|un − uj |

= 2n−1

n

(
n−1∑
i=0

n−1∏
j=0
j �=i

|x− uj |(x + 1)δi + 1
2

n−1∏
j=0

|x− uj |
)
.

Therefore, we get the following

λ(U β̄n,0
n ;x) = λ(U β̄n,0

n ;x) − λ(Un+1;x) + λ(Un+1;x)

= λ(Un+1;x) + 2n−1

n

(
n−1∑
i=0

n−1∏
j=0
j �=i

|x− uj |(ui − x)δi −
1
2

n−1∏
j=0

|x− uj |
)

≤ λ(Un+1;x) + 2n−1

n

(
n−1∑
i=0

n−1∏
j=0
j �=i

|x− uj ||x− ui|δi −
1
2

n−1∏
j=0

|x− uj |
)

Note that when i = 0 in the summation we get

n−1∏
j=0
j �=0

|x− uj ||x− u0| ·
1
2 − 1

2

n−1∏
j=0

|x− uj | = 0,

and we bound

n−1∑
i=0

n−1∏
j=0
j �=i

|x− uj ||x− ui|δi −
1
2

n−1∏
j=0

|x− uj | ≤
n−1∑
i=1

n−1∏
j=0

|x− uj |.

Therefore, by observing that the terms in the summation do not depend on i, we obtain

λ(U β̄n,0
n ;x) ≤ λ(Un+1;x) + (n− 2)

(
2n−1

n

n−1∏
j=0

|x− uj |
)
. (9)

We point out that the term in brackets in (9) is the double of the absolute value of the n + 1-th Lagrange 
polynomial �n constructed at n + 1 CL nodes. Now, we aim to prove that such value is less or equal than 
one. By substituting x = cos θ, and by setting ui = cos θi where θi are equidistant points in [0, π], we have 
the following (cf. [5])
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�i(cos θ) = (−1)i

2n δi sinnθ

(
cot

(
θ + θi

2

)
+ cot

(
θ − θi

2

))
. (10)

For i = n, and thus θi = π, we have

�n(cos θ) = (−1)n

4n sinnθ

(
cot

(
θ + π

2

)
+ cot

(
θ − π

2

))
,

= (−1)n+1

2n sinnθ tan θ

2 .

By taking the absolute value and by restricting to x ∈ [un−1, 1], i.e., θ ∈ [0, n−1
n π], we can write

2|�n(cos θ)| = | sinnθ|
n

tan
(
θ

2

)
≤

tan
(
θ
2
)

n
≤

tan
(
n−1
n π

)
n

≤ 1
n sin π

2n
,

since the tangent is strictly decreasing in that interval. Moreover, we observe that the function g(y) =
1

y sin
(

π
2y

) is decreasing for y ≥ 1, and therefore

2|�n(cos θ)| ≤ g(1) = 1. (11)

Due to (9) and (11) we then have

λ(U β̄n,0
n ;x) ≤ λ(Un+1;x) + n− 2. (12)

Finally, by noticing that the Lebesgue constant of the CL nodes has a logarithmic growth with n increasing, 
and that

λ(Un+1;x) ≤ n

for n ≥ 1, we conclude with

λ(U β̄n,0
n ;x) ≤ 2n− 2 < 2n− 1. �

We end this section by observing an interesting analogy with respect to another classical result in ap-
proximation theory. As presented, e.g., in [6], the Lebesgue constant related to the CL nodes deprived of 
the extrema of the interval behaves as

Λ
(
Un+2 \ {−1, 1},Ω

)
= n,

where Un+2 \{−1, 1} = U δ̄n,δ̄n
n with δ̄n = 2/(n +1). Also in this case, the Lebesgue constant assumes integer 

values only, and has linear growth with n. In Fig. 2, we show some examples of the discussed Lebesgue 
functions and constants.

8. Conclusions

In this work, we showed that (β, γ)-Chebyshev functions satisfy many relevant properties of Chebyshev 
polynomials of the first kind. After that, we proved a conjecture that concerned the behavior of the Lebesgue 
constant of (β, γ)-Chebyshev points for certain choices of parameters β and γ in the polynomial interpolation 
framework. The obtained results indicate that other classical orthogonal polynomials might be extended to 
a more general (β, γ) framework. Furthermore, future work will also focus on the usage of (β, γ)-Chebyshev 
functions as basis elements in univariate and multivariate approximation schemes.
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Fig. 2. The Lebesgue function associated to U β̄n,0
n (left) and U δ̄n,δ̄n

n (right). We displayed the cases n = 5 (black), n = 6 (red) and 
n = 7 (blue).. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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