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Summary 

Seasonal forecasts provide information on climate conditions several months ahead and therefore 

they could represent a valuable support for water resources decision making, warning systems as 

well as for the optimization of industry and energy sectors. However, seasonal forecasts can be 

affected by systematic biases and have horizontal resolutions which are typically coarser than the 

spatial scales of the practical hydrological applications. For these reasons, the reliability of forecasts 

needs to be carefully assessed before applying and interpreting them for specific applications. 

Reanalysis data such ERA5 represent a very interesting dataset for correcting seasonal forecasts. 

Building on these premises, this research aims to i) evaluate the use of ERA5 reanalysis data for 

snow and runoff prediction in small and medium-size Alpine basins, and ii) assess the use of System-

5 ECMWF seasonal forecasts for runoff prediction in the same basins. The research is focused on 

the upper Adige river basin, where 16 basins ranging from 49to 6924 km2 are considered, and on 

the use of the ICHYMOD hydrological model, which includes a snow accumulation and melt module. 

 

A first study aims to assess to impact of ERA5 errors on snow water equivalent (SWE) by considering 

different catchment spatial scales. Reference SWE is obtained by using ICHYMOD fed with station 

precipitation and temperature data. It is found that ERA5 precipitation is characterized by an overall 

overestimation (around 36%), due to the well know drizzle problem which inflates lower 

precipitation amounts. ERA5 temperatures, on the other side, display a colder bias (around -0.65°C). 

These biases propagate to produce positive biases in SWE. The ERA5 precipitation and temperature 

biases are removed by using the Quantile Mapping (QM) technique. The QM technique is able to 

remove effectively the bias associated to the ERA5 precipitation, whereas improvements measured 

by the KGE statistic are only slight.  On the other hand, the temperature bias removal is effective, 

and the SWE simulations after the ERA5 precipitation and temperature correction show comparable 

performances with the reference.  

 

A second study aims to analyze the effectiveness of using ERA5 precipitation and temperature data 

for runoff and flood simulations in small to medium size alpine basins. It is found that the ERA5 

precipitation bias is composed by an overestimation of small and very small precipitation events 

(the drizzle effect) and an underestimation of high intensity precipitation events. Whereas the 

precipitation bias translates in general poor runoff simulation, which are effectively corrected by 

the application of the QM technique, the analysis of the flood events makes a more complex, and 

interesting, case. Indeed, the ‘drizzle’ effect generates an overestimation of the soil moisture 

conditions, including those preceding flood events. This compensates in an effective way the 

negative bias in intense precipitation, in a way that makes the ERA5-simulated flood almost 

unbiased, event though with relatively poor simulation efficiency. It is not surprising that the 

application of the QM technique is not able to improve the simulation quality for flood events.  

 

The third and last study focused on the examination of System-5 ECMWF seasonal forecasts for 

runoff prediction over the Upper Adige River basin.  It is found that System-5 also displayed a 
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positive bias irrespective of the lead time. After the correction with quantile mapping considering 

the stations, the system-5 showed comparable precipitation values. Moreover, this correction 

assisted in a better runoff forecast as compared to the traditional Extended Streamflow Prediction 

(ESP) for lead time concerning up to 2 months. For a longer lead times, ESP and System 5 show 

comparable statistics. In the case of baseflow forecasting, there was a gain of one-week lead time 

irrespective of the forecasting method. Lastly, since the performance of the forecasting 

methodology depended on the initialization month, the role of the initial watershed wetness state 

was found to be crucial for both the forecasting scheme.  

 

 

Riassunto  

Le previsioni stagionali forniscono informazioni sulle condizioni climatiche a distanza di diversi mesi 

e pertanto possono rappresentare un valido supporto per il processo decisionale nell’ambito delle 

risorse idriche, i sistemi di allerta nonché per l'ottimizzazione dei settori industriali ed energetici. 

Tuttavia, le previsioni stagionali possono essere influenzate da distorsioni sistematiche e avere 

risoluzioni orizzontali che sono tipicamente più grossolane delle scale spaziali delle applicazioni 

idrologiche pratiche. Per questi motivi, l'affidabilità delle previsioni deve essere attentamente 

valutata prima di applicarle e interpretarle per applicazioni specifiche. I dati di rianalisi come ERA5 

rappresentano un set di dati molto interessante per la correzione delle previsioni stagionali. 

Partendo da queste premesse, questa ricerca mira a i) valutare l'uso dei dati di rianalisi ERA5 per la 

previsione di neve e deflusso nei bacini alpini di piccole e medie dimensioni e ii) valutare l'uso delle 

previsioni stagionali ECMWF System-5 per la previsione del deflusso negli stessi bacini. La ricerca è 

focalizzata sull’alto bacino del fiume Adige, dove si considerano 16 bacini compresi tra 40 e 6900 

km2, e sull'utilizzo del modello idrologico ICHYMOD, che include un modulo di accumulo e 

scioglimento della neve. 

 

Un primo studio mira a valutare l'impatto degli errori ERA5 sulla equivalente in acqua della neve 

(SWE) considerando diverse scale spaziali di bacino. Il valore SWE di riferimento è ottenuto 

utilizzando ICHYMOD alimentato con i dati di precipitazione e temperatura della stazione. Si  è 

riscontrato che le precipitazioni di ERA5 sono caratterizzate da una sovrastima complessiva (circa il 

40%), a causa del ben noto ‘drizzle effect’ che porta a sovrastime delle precipitazioni più deboli. Le 

temperature ERA5, d'altra parte, mostrano bias freddo  (circa – 0.5 °C). Questi errori si propagano 

per produrre distorsioni positive nella predizione di SWE. Le distorsioni di precipitazione e 

temperatura ERA5 vengono rimosse utilizzando la tecnica Quantile Mapping (QM). La tecnica QM è 

in grado di rimuovere efficacemente il bias associato alla precipitazione ERA5, mentre i 

miglioramenti misurati dalla statistica KGE sono solo lievi. D'altra parte, la rimozione del bias di 

temperatura è efficace e le simulazioni SWE dopo la precipitazione ERA5 e la correzione della 

temperatura mostrano prestazioni comparabili con il riferimento. 

 

Un secondo studio mira ad analizzare l'efficacia dell'utilizzo dei dati di precipitazione e temperatura 

ERA5 per simulazioni di deflusso e di piena in bacini alpini di piccole e medie dimensioni. Si è 
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riscontrato che il bias di precipitazione ERA5 è composto da una sovrastima di eventi di 

precipitazione piccoli e molto piccoli (‘drizzle effect’) e una sottostima di eventi di precipitazione ad 

alta intensità. Mentre la distorsione delle precipitazioni si traduce in una simulazione generale del 

deflusso scadente, che viene corretta efficacemente tramite l'applicazione della tecnica QM, l'analisi 

degli eventi alluvionali costituisce un caso più complesso e interessante. Il ”drizzle effect’, infatti, 

genera una sovrastima delle condizioni di umidità del suolo, comprese quelle precedenti gli eventi 

alluvionali. Ciò compensa in modo efficace la distorsione negativa nelle precipitazioni intense, in un 

modo che rende l'inondazione simulata da ERA5 quasi indistorta, anche se con un'efficienza di 

simulazione relativamente scarsa. Non sorprende che l'applicazione della tecnica QM non sia, in 

questo caso, in grado di migliorare la qualità della simulazione per gli eventi di piena. 

 

Il terzo e ultimo studio è concentrato sull'esame delle previsioni stagionali dell'ECMWF System-5 

per la previsione dei deflussi nell’alto bacino dell’Adige. Si è riscontrato che anche i dati da System-

5 sono caratterizzati da una distorsione positiva indipendentemente dal lead time. Dopo la 

correzione con QM considerando i dati da stazione, System-5 ha mostrato valori di precipitazione 

comparabili. Inoltre, questa correzione ha contribuito ad una migliore previsione del deflusso 

rispetto alla tradizionale Extended Streamflow Prediction (ESP) per orizzonti temporali di previsione 

fino a 2 mesi. Per orizzonti temporali più lunghi, ESP e System 5 mostrano statistiche comparabili. 

Nel caso della previsione del flusso di base, i risultati mostrano un guadagno di una settimana di 

anticipo indipendentemente dal metodo di previsione. Infine, la forte dipendenza della qualità delle 

previsioni dal mese di inizializzazione indica il ruolo cruciale delle condizioni iniziali per lo schema di 

previsione. 
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1.  Introduction 

There has been a remarkable shift in the temperature variability (Gourdji et al., 2013; Rahmstorf & 

Coumou, 2011) and extremes and patterns of precipitation (C. Liu & Allan, 2013) due to recent global 

warming. The human-induced global warming is increasing at 0.2°C per decade accordingly to the 

intergovernmental Panel on Climate Change (IPCC, 2018). The change in mean and the trend of 

extreme temperatures are primarily attributed to greenhouse gases (Christidis et al., 2012) and are 

expected to continue in the coming decades. These trends as compared to climatological averages 

place a threat both to the society and the environment (Rummukainen, 2012). The European 

continent also remains vulnerable to the effect of changing climate in the coming decades (Kreibich 

et al., 2014), in which, the southern countries will be exposed to drought and wildfires due to the 

increasing frequency of heatwaves (Guerreiro et al., 2018; Jacob et al., 2014). On the other hand, 

extreme precipitations will be frequented especially in central (Zeder & Fischer, 2020) and northern 

(Casanueva et al., 2014) regions of Europe, which may increase flood hazard.  

There are various branches of the economy that face repercussions due to weather and climate 

variability, with the energy industry recognized as one of the most vulnerable sectors (Wieczorek-

Kosmala, 2020). Both short and long-term climatic variability has an impact on demand, supply, 

transport, distribution of energy (Dubus et al., 2018).  Most notably, the effect of meteorological 

events is distinct for renewable energy sources such as wind, solar, and hydropower. Given the 

nature of climate changes, it is no longer sufficient to rely on the historical observation as 

traditionally done (Costa-Saura et al., 2022). Rather a robust climatic prediction is required to 

facilitate the users, managers and decision-makers (Bruno Soares et al., 2018).  

Climate reanalyses combine past observations with models to generate consistent time series of 

multiple climate variables (Caroletti et al., 2019). Reanalyses are among the most-used datasets in 

the geophysical sciences. They provide a comprehensive description of the observed climate as it 

has evolved during recent decades, on 3D grids at sub-daily intervals (Yang et al., 2022). However, 

reanalyses data are still characterized by errors, which require ground-based observations as a 

reference for validation puroposes However, the downside of ground-based observations is its’ 

sparse density; especially in complex orography, which hinders the assessment of reanalyses data 

(Kidd et al., 2017).   

A reanalysis is a systematic approach that combines observation and climate model results, to 

provide a dynamically consistent gridded dataset spanning decades (Stocker et al., 2013).  

Reanalysis products are considered to assess the impact of changes in observation data, evaluate 

the progress in modeling and assimilation capabilities, and acquire state-of-the-art climatologies to 

quantity forecast error anomalies (Hersbach et al., 2020). Reanalysis also supports a wide range of 

applications ranging from inter-governmental assessments of climate change to understanding 

specific local weather (Bell et al., 2021) as well as applications in business such as energy and 

agriculture (Gelaro et al., 2017).  Some of the examples of the latest reanalysis products are MERRA-
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2 reanalysis (Gelaro et al., 2017) from the NASA GMAO, JRA-55 ((Kobayashi et al., 2015)) developed 

by the JMA and CFSR (version 2) produced by NCEP (Saha et al.,2014), ERA5 produced by ECMWF. 

ECMWF has ample experience in production of reanalysis dataset and ERA5 is the fifth state-of-art 

iteration of their product. The latest product prior to ERA5 was ERA-Interim which was operational 

from 2006 until 2019. ERA5 as compared to its’ predecessor and its’ counterparts has a better 

horizontal and vertical resolution. It also benefits from the 10 years of model and data assimilation 

(DA) developments, it has enhanced number of output (like 100m wind) and has hourly high-

resolution outputs.  It is also timely available within 5 days of real time, while, due to the presence 

of the 10 ensemble component available at half the resolution and 3 hourly output, ERA5 allows for 

the uncertainty estimates as well (Bell et al., 2021). The data assimilation of the different variables 

involves satellite observations, in-situ dataset and ground based radar for rainfall since 2009. Overall 

ERA5 provides the land and oceanic climate variables with data availability spanning from 1979 to 

the present, having a spatial resolution of 0.25 degrees and temporal resolution of 1 hour at the 

global scale (Hersbach et al., 2020). 

Each of the reanalysis products provide only the climatic information about the present and past 

but not of the future. Hence, forecast information is required to understand how the climate is going 

to evolve in the future based on observations as initial condition. Seasonal climate forecast lies 

between the short-term weather forecast and longer timescale (like climate change prediction and 

inter-annual prediction) (Kirtman et al., 2013). The seasonal forecast provides a probabilistic spread 

(ensemble prediction) of the average conditions (like temperature and rainfall) and its’ evolution in 

the future, which can range from 1-month lead time upto a year (Rickards et al., 2014). There has 

been burgeoning interest in the application of seasonal forecast primarily due to development of 

enhanced numerical computing (Capa-Morocho et al., 2016). Some of the climate prediction centers 

around the world, which generate climate seasonal forecasts at global, regional and national scale, 

are International Research Institute for Climate and Society (IRI), ClimatePrediction Center (CPC), 

UK Met office, SEAS5 ECMWF.  

Seasonal forecasts provide information on climate conditions several months ahead and therefore 

they could represent a valuable support for water resources decision making, warning systems as 

well as for the optimization of industry and energy sectors. However, seasonal forecast systems can 

be affected by systematic biases and have horizontal resolutions which are typically coarser than 

the spatial scales of the practical applications. For this reason, the reliability of forecasts needs to 

be carefully assessed before applying and interpreting them for specific applications. In addition, 

the use of post-processing approaches is recommended in order to improve the representativeness 

of the large-scale predictions of regional and local climate conditions. The development and 

evaluation downscaling and bias-correction procedures aiming at improving the skills of the 

forecasts and the quality of derived climate services is currently an open research field.  

Extended streamflow prediction (ESP) (Day, 1985) method pioneered by the United States National 

Weather Service (NWS) in the 1970s has found extensive use in seasonal forecasting in the recent 

years as well due to its’ simple and cost-effective approach (Harrigan, et al., 2018). ESP forecast 

ensembles are obtained by forcing a hydrological model - initialized with the initial hydrological 

condition (IHC) - with ensembles of historical observation (Day, 1985). Even though ESP forecast 

suffers from absence of information about the future climatic condition, nevertheless, it should be 
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considered along with the other state-of-art forecasting method as a benchmark to quantify the 

added skills coming from available forecasting products (Crochemore et al., 2017, Arnal et al., 2018). 

On the other hand, the seasonal forecasting products suffer from important bias when compared 

with the observations regardless of their data assimilation technique  (Randall et al., 2007). These 

biases could originate from the imperfect conceptualization, discretization, and spatial averaging 

within grid cells (Soriano et al., 2019). As a result, the raw forecast has a certain amount of risk for 

industrial applications (e.g., energy, hydrology, agriculture), and post-processing is required to get 

finer resolution output for impact assessment and statistical features that are comparable to the 

observations (Torralba et al., 2017). In order to remove the systematic model errors, the available 

technique ranges from simpler approaches like bias correction (BC), working directly on interest 

variable, to more complex statistical downscaling, building on large –scale predictors (Maraun et al., 

2010). To make the raw model output consistent with the local climatology, the BC method maps it 

to the analogous long historical observational reference. These strategies, which do not take into 

account the temporal correlation between model outputs and observations, ranging from basic 

adjustments in the mean and/or variance to more advanced quantile mapping (QM) alternatives, 

that can accommodate higher-order moments or even the entire distribution (Manzanas et al., 

2019). Since the QM can be applied for the dataset that does not require a standard (e.g. Gaussian) 

distribution - regular criteria for the operational agencies - its’ application has gained recent interest 

(Bedia et al., 2018).   

There have been multiple runoff forecasting studies done in the context of Europe, for instance, the 

UK (Harrigan et al., 2018), France (Crochemore et al., 2016), Austria (Santos et al., 2021), Switzerland 

(Bogner et al., 2018). However, the latest iteration of the forecast products ECMWF system-5, 

except for a few studies (Sutanto & Van Lanen, 2021, Sánchez-García et al., 2022), has found limited 

implications in the context of European alpine basins. Most crucially, their application for baseflow 

forecasting has not been fully realized.  Baseflow is termed as the contribution of groundwater that 

sustains the river discharge between precipitation events (Brutsaert, 2008). Since the baseflow 

remains substantial for the ecohydrological sustainability, farming, and hydropower production 

during the seasons with no rain, its’ skillful forecast could help to mitigate (Ayers et al., 2021) the 

repercussion related to the low flow in the European alpines.  

To address the gap in the research, the prime objective of this work is to exploit the meteorological 

information of ECMWF system-5 for the total and baseflow forecast for the Upper Adige river basin, 

situated in the northern Italian Alps. The application of ICHYMOD hydrological model for the ECMWF 

hindcast period of 1993-2016 with up to 6 months of the forecast horizon will be extensively 

reviewed in the context of baseflow. Prior to its’ application, the bias associated with the ECWMF 

dataset is corrected with quantile mapping (QM) with the help of an observational dataset (STAT-

ECMWF) and ERA5 dataset (ERA5-ECMWF). The performance of ERA5 for snow and runoff 

simulation will also be evaluated initially in order to understand how the ERA5 meteorological error 

propagates to the hydrological variables. To remove the error associated with the ICHYMOD 

hydrological model and to have seamless runoff dataset in case of missing runoff observation, the 

runoff simulation with observation as input will be used as a reference for error metrics.  Further, 

the catchment initial states are based on the reference simulation for driving 25-ensemble members 

of the ECMWF variables for forecasting. The possible improvement in the baseflow forecasting for 
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the STAT-ECMWF datasets against the traditional ESP method will be quantified using metrics like 

bias, NSE, CRPSS, and Spread error with climatology as reference. 

 
 

1.1 Research questions and objectives 

Given the premise reported in the introduction, the main objective of this thesis is to forecast the 

seasonal runoff in the alpine watershed of the Northern Italy with the integration of the bias 

corrected ECMWF system-5 seasonal meteorological forecast dataset to the ICHYMOD hydrological 

model.  

The specific objective are as follows: 

  Scale dependence of errors in snow water equivalent simulations using ERA5 reanalysis over 

alpine basins 

  Assessing ERA5 forcing data for flood modelling in alpine basins: impact of bias correction 

  Sub-seasonal streamflow predictions in alpine catchments by combining numerical weather 

models and reanalysis data. 

 

2.  Scale dependence of errors in snow water equivalent simulations using ERA5 

reanalysis over alpine basins 

Shrestha, S., 1, Zaramella, M. 1, Callegari, M. 2, Greifeneder, F. 2, Borga, M. 1 

1Department of Land, Environment, Agriculture, and Forestry, University of Padova, Italy 

2EURAC, Institute for Earth Observation, Bolzano, Italy 

 

2.1 Abstract 

This paper evaluated ERA5 reanalysis as a potential reference dataset for snow water equivalent 

(SWE) modelling in the Alpine basins with respect to increasing basin size. This is achieved by 

considering the ERA5 precipitation and temperatures as proxies for observations to simulate the 

semi-distributed TOPMELT model over basins ranging from 49 km2 to 6924 km2 for the Upper Adige 

river basin situated in the Eastern Italian Alps. This study focused, firstly, to compute the errors in 

the ERA5 meteorological variables and, secondly, to assess its’ effect on SWE computation for the 

period of 1992 to 2019. We observed that ERA5 precipitation products generally overestimated the 

observation with over prediction of low-intensity rainfall (‘drizzle problem’) and underprediction of 

the high rainfall intensity, while the ERA5 temperature underestimated the observation. To 

overcome the data unavailability of SWE in the region and to remove the error associated with the 

https://scholar.google.com/citations?view_op=view_org&hl=it&org=2144826244043371075
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TOPMELT snow model, a model simulation of station precipitation and temperature is taken as a 

reference. The ERA5 drizzle led to producing fictitious low-intensity snowfall events, and when, 

these events were coupled with the colder ERA5 temperature, there was delayed snowmelt in the 

study basin. As a result, the SWE and consequently, the number of snow cover days factitiously 

increased over the study area. The precipitation bias linked with ERA5 was removed using the 

Quantile Mapping (QM) technique. For the QM, the period from 1992-to 2005 was considered as 

the calibration period and a monthly quantile mapping function was obtained using the station data. 

The same mapping function was applied for the validation period from 2005 to 2019.  Even though 

there was an insignificant improvement in the KGE value, the QM technique was able to remove the 

bias associated with ERA5 precipitation. On the other hand, the use of the Pettitt test assisted in 

detecting the change in temperature bias for calibration and validation period.  The temperature 

error was removed by applying unique additive constant for the two periods. The SWE model 

simulated after the ERA5 precipitation and temperature correction showed comparable 

performance with the reference and the number of fictitious snow cover days decreased 

considerably. The use of monthly moving mean was also considered to remove the seasonality 

associated with the SWE, which showed the important role of temperature, rather than 

precipitation, correction to simulate the SWE for the range of basin size. However, the temperature 

correction shows comparatively better performance for the SWE simulation concerning smaller 

basins as opposed to the larger basins.  

 

2.2 Introduction 

Mountain snowpack and its melt dominate the surface hydrology of many regions, with implications 

for water supply, hydropower, ecological processes, weather, and regional and global climate (Bales 

et al., 2006; Gao et al., 2010). Reliable snow cover (SC) delineation and snow water equivalent (SWE) 

assessment remains crucial for snowmelt-runoff prediction, operational flood control, water supply 

planning, and water resource management in snowmelt-dominated watersheds (Dressler, et al., 

2006). However, the proper assessment of SC and SWE in mountain watersheds still remains a 

challenge. In data scarce basins, the use of reanalysis data, such as ERA5 (Hersbach et al., 2020) as 

an input to snow pack models, has been shown to provide reasonable simulations of SWE for 

mountain basins (Baba et al., 2021, Alonso-González et al., 2021). 

(Baba et al., 2021) compared the performance of MErRA-2 and ERA-5 reanalysis meteorological 

forcing with the distributed SnowModel in the high Atlas region. Both the reanalysis product showed 

comparable performance for snow simulation. Nonetheless, the ERA5 simulation, due to its finer 

spatial resolution as compared to MErRA-2, showed better performance. Whereas, (Alonso-

González et al., 2021) considered ERA5 as the boundary and initial condition to force the weather 

and forecasting (WRF) model for two mountain ranges in Lebanon. The Intermediate Complexity 

Atmospheric Research Model (ICAR) was nested inside the WRF to develop a 1km regional-scale 

snow reanalysis. The results showed a good temporal and spatial correlation of the snow variables 

with the MODIS fractional snow-covered area and the ground observations of SWE.   

 



16 
 

Reanalysis data combine a wide array of measured and remotely sensed information within a 

dynamical–physical coupled numerical model. They use the analysis part of a weather forecasting 

model, in which data assimilation forces the model toward the closest possible current state of the 

atmosphere (Tarek et al., 2020). Of particular interest to the hydrological community are the largely 

improved (with respect to earlier reanalysis products) spatial (30 km) and temporal (1 h) resolutions 

of ERA5. The spatial resolution is now similar to or better than that of most observational networks 

in the world, with the exception of some parts of Europe and the United States. However, the ERA5 

spatial resolution has been shown to be still too coarse to represent correctly the influence of 

topography on meteorological variables, which is crucial for snow modeling in mountainous regions 

(Alonso-González et al., 2021; Raimonet et al., 2017; Terzago et al., 2020). 

 

Whereas a number of studies proposed downscaling techniques to approach this problem, the scale 

dependent structure of errors in SWE simulations using ERA5 reanalysis over alpine basins remains 

largely unexplored.  This is in spite of the need to better understand at which spatial scales the ERA5 

spatial resolution affects mostly the SWE simulations, and then under which circumstances the 

implementation of downscaling techniques is required.  

 

Against this background, the aim of this study is to evaluate the quality of hourly temperature and 

precipitation data from ERA5 reanalysis to simulate SWE dynamics in a mountainous, snow-

controlled river system, with respect to corresponding SWE simulations obtained from a relatively 

high-density and quality-controlled data set obtained from ground station, used as a reference. 

More specifically, this study aims i) to isolate the impact of the input spatial aggregation on the 

accuracy of SWE simulations, by quantifying the effects of aggregating the reference precipitation 

and temperature data at the ERA5 grid scale, and ii) to evaluate the scale-dependence of ERA5-

based simulation errors when SWE is aggregated over a range of spatial scales. The study is carried 

out in the Upper Adige river basin, a 6924 km2-wide basin located in the Eastern Italian Alps, over 

the 1992-2019 period. The study area is selected due to the dense network of meteorological 

stations used to provide input to a snowpack model and to validate the ERA-5 performance. The 

TOPMELT model (Zaramella et al., 2019) is used for snowpack dynamics and SWE simulation. 

TOPMELT is a semi-distributed snowpack model based on an extended temperature index approach 

capable to estimate the full spatial distribution of the SWE at each time step. TOPMELT exploits a 

statistical representation of the distribution of clear sky potential solar radiation to drive the 

snowpack model which drastically reduces the computational costs associated to the fully spatially 

distributed simulation of SWE over vast areas and extended period of time while preserving 

simulation accuracy (Zaramella et al., 2019). The good accuracy of TOPMELT SWE and SC simulations 

over the study area has been tested with respect to available in situ data and MODIS observations 

by (Di Marco et al., 2021, 2020). 
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2.3  Materials and methods 

2.3.1  Study area and data 

 

Figure 2.1 The upper Adige River basin closed at Bronzolo 

The study basins are located in the upper Adige river basin closed at Bronzolo, in the Eastern Italian 

Alps (Figure 2.1). This is an alpine catchment with a drainage area of approximately 6924 km2. The 

elevation ranges from about 200 m a.s.l. at the southern valley bottoms, to around 3900 m a.s.l. in 

the western upper ranges, with a mean elevation of 1800 m a.s.l. The steep terrain and the high 

elevation gradients govern the spatial precipitation distribution (Formetta et al., 2022) with the 

precipitation ranging from 500mm in the northwest region to 1600mm in the southern region 

(Galletti et al., 2019). During the winter season, the precipitation is stored as snow and the 

streamflow is minimum. The streamflow shows two maxima: first due to snowmelt in the early 

summer and the second due to intense storms in autumn (Laiti et al., 2018). The main agricultural 

areas in the northern part of the catchment are located in the Venosta valleys, and the cultivation 

comprise mainly fruit trees and grapes. Land use at high elevations is dominated by grass, grazing 

and forest. The study area is characterized by a rather dense network of meteorological stations, 

with 88 rain gauges (1 per 72 km2) and 124 temperature gauges (1 per 55 km2) covering the study 

region. The hourly temperature, precipitation, and runoff data from 1991 till 2019 is made available 

from the Hydrographic Office of Bozen, Bolzano. To assess the performance of the model at varying 

basin size areas, sixteen watersheds with drainage area ranging from 49 km2 to 6924 km2 were 

selected (Figure 2.1, Table 2.1). These watersheds were selected for the analysis because the 
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relative minor impact of operations from artificial reservoirs allowed in these cases the use of a 

hydrological model and the ensuing comparison of simulated versus observed discharges. 

 

SN Name Elevation range(m) Mean elevation(m) Area (Km²) 

1 Rio Plan 1561-3445 2387 49 

2 Rio Riva at Seghe 1523-3421 2386 76 

3 Rio Anterselva at Bagni 1092-3421 2026 82 

4 Rio Braies at Braies 1124-3074 1911 93 

5 Rio Riva at Caminata 855-3421 2278 115 

6 Rio Casies at Colle 1196-2815 1961 117 

7 Rio Gadera at Pedraces 1318-3111 2027 125 

8 Aurino at Cadipietra 811-3111 2162 150 

9 Rio Ridanna at Vipiteno 1046-3417 1933 210 

10 Gadera at Mantana 944-3441 1855 397 

11 Rio Passirio at Merano 336-3445 1851 414 

12 Aurino at Caminata 844-3421 2117 420 

13 Aurino at S.Giorgio 817-3421 2036 608 

14 Rienza at Vandoies 732-3421 1859 1919 

15 Adige at Ponte Adige 236-3889 1895 2732 

16 Adige at Bronzolo 236-3889 1805 6924 

Table 2.1 Drainage area and elevation of the study basins 

2.3.2  ERA-5 reanalysis 

ERA5 reanalysis is a state-of-the-art fifth-generation ECMWF (European Centre for Medium-Range 

Weather Forecasts) atmospheric reanalysis of the global climate (Hersbach et al., 2020). It is one of 

the fundamental elements of the Copernicus Climate Change Service (C3S), which is funded by the 

European Union.  ERA5 provides multiple atmospheric, land, and oceanic climate variables with data 

availability spanning from 1979 to the present, at spatial resolution of 0.25 degrees and temporal 

resolution of 1 hour at the global scale. For this research, only temperature and precipitation will be 

considered from ERA5. Further information on ERA5 is reported on the online data documentation 

(https://confluence.ecmwf.int/display/CKB). It provides a detailed description of the various 

products and a list of all available geophysical parameters, which can be freely downloaded.  

Twenty-seven ERA5 cells that lie within and around the Upper Adige River Basin at Bronzolo were 

considered for this study. Based on geometrical analysis, the ERA5 precipitation was partitioned 

over the 16 study basins. ERA5 air temperature is scaled to the center of mass of each study basin 

based on the climatological monthly lapse rate valid for the region. 

2.3.3  Ground data 

The study basin has a dense network of meteorological stations. There are 88 rain gauges (1 per 72 

km2) and 124 temperature gauges (1 per 55 km2) within the study basin. The hourly temperature, 

https://confluence.ecmwf.int/display/CKB
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precipitation, and runoff data from 1991 till 2019 is collected from the Hydrographic Office of Bozen, 

Bolzano. If there is a missing hourly dataset, the model only considers only the stations for both 

precipitation and temperature lapse rate calculation. All the analysis focus the period of 1992-2019, 

however in case of runoff data, there was missing continuous dataset for some basins hence the 

calibration and validation of the runoff result was limited to the year available in the table 3.2.  

S.N. Basins Year 

1 Rio Plan 1994-2019 

2 Rio Riva a Seghe 2001-2008 

3 Braies 2013-2019 

4 Rio Riva a Caminata 2003-2019 

5 Gadera a Pedraces 2011-2011 

6 Gadera Mantana 1992-2018 

7 Passirio 2013-2019 

Table 2.2: List of basins with limited data 

2.3.4  The snowpack model: TOPMELT 

The snowpack model used in this work is TOPMELT (Zaramella et al., 2019). TOPMELT is a semi-

distributed snowpack model, which takes advantage of the extended temperature index approach 

to simulate SWE at full spatial distribution for each hourly time step (Di Marco et al., 2021; Zaramella 

et al., 2019). The TOPMELT is integrated with the ICHYMOD semi-distributed basin-scale conceptual 

rainfall-runoff hydrological model. The ICHYMOD model consists of a snow routine, a soil moisture 

routine, and a flow routine. For the computation of losses due to evapotranspiration, the 

Hargreaves method (Hargreaves & Samani, 1982) is used. The detail of the TOPMELT and ICHYMOD 

model is outlined in annex A and annex B respectively. The parameters of TOPMELT has been 

calibrated and validated using the observed runoff which has been described in annex C.  

In this study the model has not been calibrated or validated with the ground based snow stations 

but relies on the work done by (Di Marco et al., 2020). In the study the author used the TOPMELT 

model to simulate the snow depth in the western part of the upper Adige river basin and made the 

comparison with the twenty-eight ground-based snow depth stations. The analysis showed a 

median NSE value equal to 0.91 across the stations. This signifies that TOPMELT is a robust tool to 

simulate snowpack distribution and its related complex spatial variability over the UARB study basin. 

The analysis carried out by (Di Marco et al., 2020) should be taken as a reference for the validation 

of TOPMELT performance as in this paper, the TOPMELT is directly applied for the SWE simulation 

without validating with any observed snow variables.    

2.3.5  Bias adjustment method 

To simulate realistically the regional snow dynamics, ERA5 precipitation and temperature should be 

corrected. Different bias correction techniques may be used. The simplest methods consist of 

adding the climatological difference between ERA5 input and the reference data (the ‘delta’ 

method). This method is straightforward, but implicitly assume that the variability in ERA5 is 

unchanged. A quantile–quantile mapping (QM, hereinafter) transformation (the empirical 
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transformation of (Panofsky & Brier, 1968) may be used to overcome these limitations. For a given 

variable, the cumulative density function (cdf) of ERA5 is first matched with the cdf of the 

references, generating a correction function depending on the quantile. Then, this correction 

function is used to unbias the ERA5 variable quantile by quantile.  

More specifically, ERA5 and reference distributions are matched by establishing a quantile-

dependent correction function that translates simulated quantiles into their reference 

counterparts. This function is then used to translate the modeled time series into bias-adjusted 

values with a distribution representative of the reference data. QM was applied separately for each 

month. The transfer functions were obtained for each ERA5 grid cell from a calibration period (1992-

2005) and then applied to the ERA5 variables (precipitation and temperature). In order to avoid 

overfitting due to the small sample size of monthly values included in the calibration, the quantile 

adjustment was computed by considering deciles instead of centiles and applied by linearly 

interpolating the empirical distribution. A wet-day correction equalizing the fraction of days with 

precipitation between the observed and the modelled data was applied. A validation period (2005-

2019) was used to examine the quality of the correction scheme. The simulation for the year 1991-

1992 is only considered as a TOPMELT model setup period. The implemented QM scheme was based 

on the R package qmap  (Gudmundsson et al., 2012). The use of the monthly quantile was 

considered to provide an opportunity for the replicability of this work in data scare area as well.   

2.3.6  Reference precipitation at ERA5 spatial resolution 

In order to examine the scale dependence of ERA5 errors, the station precipitation data were used 

to generate estimates of mean areal precipitation at the ERA5 spatial resolution. This input data was 

termed Station Input at ERA5 Resolution (SIER). To achieve this, the Thiessen polygon method was 

used to redistribute the observed hourly station precipitation data over each ERA5 grid footprint.  

2.3.7  Removing seasonality for SWE statistical analysis 

Seasonality provides a strong signal to SWE simulations which may obscure the impact of ERA5 scale 

and errors on SWE simulations. SWE seasonality was identified by calculating a time-averaged daily 

cycle of SWE simulations based on a moving window of 30 days across the whole period of analysis. 

Then, the seasonality was removed by subtracting the SWE seasonality to each SWE data. 

2.4 Results 

Figure 2.2 a,b shows the annual mean values of temperature and precipitation, respectively, 

reporting both the reference and the ERA5 values. Whereas an almost constant overall relative bias 

of 1.40 is affecting annual ERA5 precipitation totals, generated by over-prediction of small totals 

and under-prediction of large totals, a non-stationary behavior is affecting ERA5 temperature data, 

with the temperature showing two different biases for the first and for the second half of the data. 

The application of the Pettitt test (Pettitt, 1979) to detect changes in ERA5 temperature bias led to 

rejecting the null hypothesis of stationarity, showing change point on 2005, with a bias of -0.9098 

°C for the 1991-2005 period and a bias of -0.2841 °C for the period 2005-2019. Out of mere 
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coincidence, the division of ERA5 temperature into two periods coincides with the calibration and 

validation period, which was selected prior to the application of the Pettitt test. Based on this 

evidence, the QM procedure was applied separately for the two periods. In the following, two QM-

corrected ERA5 input are considered: one where only the precipitation is corrected (termed 

Precipitation-corrected ERA5, PC-ERA5) and another one where both precipitation and temperature 

are corrected (termed Precipitation Temperature Corrected ERA5, PTC-ERA5).  

 

Figure 2.2 Adige at Bronzolo: mean annual (a) temperature and (b) precipitation 

Figure 2.3 a,b shows a comparison between reference and ERA5 precipitation, both uncorrected 

and QM-corrected, respectively, for the calibration period. The comparison is carried out by 

considering the hourly mean areal precipitation of the 16 different study basin by using the Kling-

Gupta Efficiency (KGE) (Gupta et al., 2009) applied to all data points but the intervals where both 

the data sources are zero.  The Kling-Gupta Efficiency (KGE) is as follows:  

           𝐾𝐺𝐸 = 1 − √(𝛾 − 1)2 + (𝛽 − 1)2 + (𝛼 − 1)2                         Equation 2.1 

where γ is the correlation component represented by Pearson’s correlation coefficient, β is the bias 

ratio represented by the ratio of estimated and reference means, and α is the variability component 

represented by the ratio of the estimated and reference coefficients of variation. KGE ranges from 

negative infinity to one. If two series exactly match, the KGE is one. γ, β or α value smaller/larger 

than one indicates that the mean value or variability of observations is 

underestimated/overestimated. Please note the use of log coordinates for the drainage area on the 

x axis of the figures. Figure 2.3 c,d reports the same comparison for the validation period.  
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Figure 2.3: KGE of Precipitation (a) ERA5-calibration (b) PC-ERA5-calibration (c) ERA5- validation (d) 

PC-ERA5-validation 

The KGE of ERA5 precipitation for both periods shows similar performances, which points to the 

robustness of the QM procedure applied here.  There is a clear trend of KGE increasing with the 

basin size in all the cases, with KGE around or less than 0.2 for the smallest basin (Plan at Plan) and 

around or over 0.5 for the largest basin (Adige at Bronzolo). The PC-ERA5 shows a slight 

improvement in the KGE performance for both periods. All basins show an increase in performance, 

with the smallest ones showing a larger gain, as expected. The QM technique applied to ERA5 

precipitation helps to decrease the bias of the ERA5 precipitation while keeping the correlation 

intact. Nevertheless, the overestimation of the variability of the observations causes the KGE of PC-

ERA5 to improve only slightly.   
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Figure 2.4 KGE of SIER precipitation with station (a) calibration (b) validation 

Figure 2.4 a, b report the KGE for SIER precipitation for the calibration and validation period, 

respectively. As expected, the figure shows a clear scale dependence in the errors generated by 

aggregating the reference precipitation at the ERA5 resolution. For basins larger than 600 km2 KGE 

is close to one, whereas it decreases in a marked way for basin smaller than 600 km2 and even more 

remarkably for basin less than 100 km2, with values around or less than 0.6 for the smallest basin. 

Since it was evident that ERA5 precipitation was marred with bias, it was important to understand 

where this bias was arising from. The Quantile-Quantile (QQ) plot of ERA5 hourly precipitation as 

shown in Figure 2.5 was able to highlights this inherent ERA5 drizzle problem. Here only the study 

basin of Braies and Adige a Bronzolo is plotted but the error is consistent in all the other basins as 

well. As shown in QQ plot, the lower intensity rainfall less than 1mm is always overpredicted by 

ERA5 while the larger precipitation events is under-represented by ERA5. This figure sufficiently 

proves that the ERA5 precipitation bias was originating from lower precipitation events even though 

the event precipitation was under-represented. 
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Figure 2.5 Quantile-Quantile plot for ERA5 hourly precipitation for (a) Braies (b) Adige a Bronzolo 

 

 

 

Figure 2.6 SWE and observed runoff time-series for different inputs for (a) Braies (b) Adige at 

Bronzolo 

Figure 2.6 a,b shows observed runoff and the SWE simulations for Braies and Adige at Bronzolo, 

respectively, using three different input: reference, ERA5, and PTC-ERA5. The figure helps to 

visualize the timing of water availability in the study basin as either water stored in form of snow 

water equivalent or as the river discharge output. It is clear that during the period of high SWE, 

there is minimum runoff while runoff increases with decrease in SWE. Even though the effect of 

precipitation is not available here, the influence of SWE as a short-term storage to replenish the 

alpine river system is distinctively visible here. Braies is selected here because it shows the worst 

performance (KGE=-0.351) for the ERA5 SWE simulation for the whole study period. The Adige at 

Bronzolo even though does not have the best performance (KGE= 0.471), is selected as it represents 

the whole study basins. For both the basins, it is evident that the ERA5 is overpredicting the SWE.  

This is expected as the ERA5 has a positive precipitation bias, which is characterized by the 

overestimation of lower intensity precipitation (drizzle problem) and underestimation of higher 

intensity precipitation. The ERA5 drizzle precipitation produces smaller false snowfall events and 

when it is coupled with lower temperature from ERA5, the SWE is sustained in the catchment for a 

longer period. The QM correction for ERA5  precipitation helps to reduce the wet bias For the PTC-

ERA5, the results are comparable with the reference for both the basins. The SWE peak in some 

cases is underestimated compared to the reference due to the underprediction of the larger 

precipitation events and correction of the temperature errors in ERA5. 
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Figure 2.7  SWE after removing seasonality for the validation period: Mean bias ratio for (a) ERA5 
(b) PC-ERA5 (c) PTC-ERA5. KGE for (d) ERA5 (e) PC-ERA5 (f) PTC-ERA5 

Figure 2.7 reports the mean bias ratio and KGE performance of SWE for different inputs and for the 

validation period after removing seasonality. There is only a slight improvement for both the mean 

bias ratio and KGE when only the precipitation correction is applied. On the other hand, the 

application of the temperature correction, leads to a significant improvement in both the 

performances.  

Figure 2.8 represents the mean bias ratio and KGE SWE simulation with SIER-input for the validation 

period.  The results agree almost perfectly with the SIER precipitation performances reported in 

Figure 2.4. The SWE simulation for the smaller basins performs poorly while the larger basins remain 

unaffected.   
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Figure 2.8 SIER input SWE with station (a) Mean bias ratio (b) KGE 

Figure 2.9 reports the FSCA simulation for the Adige at Bronzolo for the different inputs considered.  

FSCA is the percentage of the overall study area covered by snow and it helps to understand the 

impact of the various input on the spatial snow distribution. The FSCA for ERA5 input simulation is 

exaggerated, which is primarily due to the drizzle problem of ERA5 precipitation. As there is a 

significant number of false precipitation in ERA5, it helps to artificially increase the snowfall in the 

basin. The lower temperature of ERA5 also helps to delay the melting process and as a result the 

number of snow cover days falsely increases. For the PTC-ERA5, the FSCA resembles the reference, 

and the number of days with 100% FSCA is also comparable with the reference. 

 
Figure 2.9 FSCA of Adige at Bronzolo for different inputs 

2.5 Discussion 

This study provides an evaluation of ERA5 meteorological forcing to simulate SWE using TOPMELT 

snow pack model in the Alpine catchment of Northern Italy from 1992 to 2019. The initial study 

shows a positive bias in ERA5 precipitation originating from the lower precipitation events and a 

negative ERA5 temperature bias as compared to the observation. The SIER is considered a reference 

to understand the role of the ERA5 spatial scale on both precipitation and SWE simulation. The SIER 

results (precipitation and SWE) show the spatial scale of ERA5 affecting only the smaller basins while 

for the larger basins the effect of spatial scale is negligible. The precipitation bias in ERA5 helps to 
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overestimate the snow and the lower temperature further delays the melt in the study area. The 

effect of ERA5 temperature bias is seen in the SWE concerning calibration and validation period, 

since the precipitation bias remains relatively similar for different years, the comparative warmer 

period in validation shows comparable SWE peaks while for calibration periods the peaks are largely 

overestimated due to colder ERA5 temperature. The use of QM is considered to correct the ERA5 

precipitation while an additive constant, unique to the calibration and validation period, is used to 

correct the ERA5 temperature error. The correction of precipitation and temperature largely 

reduces the bias in SWE simulation but it is only after removing the seasonality, that the distinct role 

of the temperature correction is seen. The correction of precipitation for a few smaller basins shows 

little improvement in KGE value but the larger basins do not benefit from this correction. However 

in the case of temperature correction, there is an improvement in the KGE performance for the 

range of basin size, notably, the increase in performance for the smaller basins is comparatively 

higher than the larger basins. Even though the role temperature for the SWE is evident irrespective 

of the basin size, it must be duly noted that it is much more crucial for SWE simulation concerning 

smaller basins. As a small variation in temperature could largely alter the snow process in the high 

altitude smaller catchment, a proper correction is recommended not only for the precipitation but 

most importantly, also for the temperature of the ERA5 dataset.  

2.6 Conclusion  

To conclude, this research work identified the shortcoming and application of ERA-5 meteorological 

variables for snow simulation. It also shed light on the difficulty in removing the ERA5 drizzle 

problem by using monthly quantile mapping and also highlighted the importance of temperature 

correction for the simulation of snow processes. Nonetheless, the ERA5 reanalysis has the potential 

to be used as a substitute dataset in places where there is sparse data availability. However, it is of 

utmost importance to correct the precipitation and temperature data prior to its application to solve 

real-world hydrological problems.  

Finally, this work could be easily reproduced to other similar watersheds with few adjustments in 

the TOPMELT model. This work also opens door to ample opportunities to consider the ERA5 dataset 

along with the modelling approach to simulate other hydrological processes. As the continuation of 

this work, we look forward to applying the ERA5 dataset along with ICHYMOD hydrological model 

to access its performance during the flood events in the Adige river basin.  
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3.1 Abstract 

The European Center for Medium-Range Weather Forecasts (ECMWF) has recently released its most 

advanced reanalysis product, the ERA5 dataset. It was designed and generated with methods giving 

it multiple advantages over the previous release, the ERA-Interim reanalysis product. Notably, it has 

a finer spatial resolution, is archived at the hourly time step, uses a more advanced assimilation 

system and includes more sources of data. This paper aims to evaluate the ERA5 reanalysis as a 

potential reference dataset for hydrological modelling by considering the ERA5 precipitation and 

temperatures as proxies for observations using a semi-distributed hydrological model. The study 

further investigates the usefulness of the ERA5 products for the flood modelling based on the 

increasing size ranging from 40km2 to 6900 km2 over the Upper Adige river basin in the Eastern 

Italian Alps. This study shows that ERA5-based precipitation product is affected by a significant bias 

which translates to biased runoff at all spatial scales considered in the study. We observed that ERA5 

precipitation product generally overestimate low-intensity rainfall and underestimate high rainfall 

intensity in the region. We analysed how this affects simulation of annual max floods over the study 

area. The results show that flood simulations are in general surprisingly good for the basin size larger 

than 600 km2, as they result from the combination of two cascading errors: i) overestimation of the 

soil moisture conditions at the start of the event and ii) the underestimation of the event forcing 

rainfall. However, the better flood results concerning larger basins are immediately lost when a 

unitary basin size is considered for the analysis. Even though the analysis of the bias corrected ERA5 

variables show improved hourly runoff performance, the correction leads to further decrease in the 

flood simulation capabilities of ERA5 irrespective of the basin size. Differences between ERA5 and 

observation datasets are mostly linked to precipitation, as temperature only marginally influences 

the hydrological simulation outcomes. 

 

3.2 Introduction 

River flooding is a natural process but poses a significant socioeconomic hazard, causing human 

distress and damage to properties and infrastructure. In Europe, floods caused approximately EUR 

147 billion in economic damage between 1980 and 2019 (EEA, 2021). Moreover, the economic 

https://scholar.google.com/citations?view_op=view_org&hl=it&org=2144826244043371075
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losses associated with flood events have been on the increase in the past decades (since 1970), 

partly due to changing weather patterns  (IPCC, 2014) but mainly driven by socioeconomic 

developments such as population growth, increasing wealth and ongoing urbanization in flood-

prone areas (Barredo, 2009, Bouwer, 2011, Koks et al., 2014). Flood prediction is therefore needed 

for a range of societal purposes. Both continuous and flood-event hydrological models are often 

used for flood estimation and for real-time flood forecasting. The specific issue in this case is 

whether the models and the input data are able to faithfully reproduce the processes associated 

with changing runoff generation mechanisms.   

Over the last decades, the emergence of near-global and high-resolution gridded products has 

introduced new possibilities for hydrologic modelling and for flood simulation in data-scarce 

regions, in particular with the availability of the ERA-5 global weather reanalysis dataset (Baez-

Villanueva et al., 2021; Faghih et al., 2022, Probst & Mauser, 2022; Tarek, et al., 2021, 2020). Despite 

these products still being affected by systematic, random, and detection errors (Sevruk et al., 2009; 

Zambrano-Bigiarini et al., 2017,  Baez-Villanueva et al., 2018), which are more pronounced over 

mountainous regions(Beck et al., 2019), these studies have shown that ERA5 reanalysis has as a 

good potential to represent a reference dataset for hydrological modelling. Tarek et al., (2020) used 

data from 3138 North American catchments by considering the ERA5 precipitation and 

temperatures as proxies for observations in the hydrological modelling process, using two lumped 

hydrological models, and showed that ERA5-based hydrological modelling performance is 

equivalent to using observations over most of the basins. (Sun et al., 2021) examined results from 

application of ERA5 for hydrological modelling of 11 basins in the complex High Mountain Asia 

region, reporting rather large biases in the case the reanalysis data were used without bias 

correction. Probst and Mauser, (2022) exploited ERA5 for driving an uncalibrated setup of the 

hydrological model PROMET for the period 1980–2016 over the Danube river basin. They showed 

that bias correction was essential for ERA5 to provide good results in this hydrologically complex 

region. These studies have shown that ERA5 precipitation products generally overestimate low-

intensity rainfall and underestimate high rainfall intensity. These precipitation biases are 

transmitted to the runoff simulations by generating errors which depend on the runoff model used, 

on the basin hydro-climatology and on the specific segment of the runoff hydrograph considered 

(Baez-Villanueva et al., 2021). Bias correction procedures are essential, but they are not a panacea. 

Given the complex structure of ERA5 bias, correction procedures typically weigh more certain types 

of bias than others, and therefore have a limited correction power. 

Overall, a literature review shows that more efforts were focused so far on analyzing the 

performances of ERA5 for continuous runoff modelling, rather than for flood modelling more 

specifically. It is expected that the examination of ERA5 performance for flood modelling could be 

particularly revealing, because of the typical ERA5 precipitation bias which over-estimates the low-

intensity precipitation while under-predicts the high-intensity precipitation.. Indeed, in the case of 

rainfall-induced floods, the positive bias of low intensity precipitation could affect the prediction of 

the antecedent soil moisture conditions, where the negative bias could affect more the flood 

volume and peak. The overall errors in flood modelling are therefore expected to be determined by 

the balance between the two biases.  
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Given this background, this work aims to quantify how the errors in hourly ERA5 precipitation and 

temperature input data propagates to the runoff and flood performances in a set of alpine 

watersheds located in the Eastern Italian Alps. Analysis of flood modelling is carried out by 

considering in a separate way antecedent soil moisture conditions (as surrogated by the runoff 

prediction at the start of the event) and flood peak. More specifically, the following objectives are 

considered: i) how ERA5 input errors affect the modelling of antecedent soil moisture conditions 

and flood peak individually, and their combined final impact; ii) the effects of bias error correction 

procedures. We expect that results from this study may help to better understand the impact of 

ERA5 input errors on flood modelling and prediction and on devise better error model correction.  

3.3 Materials and methods 

3.3.1  Study area and data 

The study basins are located in the upper Adige river basin closed at Bronzolo, in the Eastern Italian 

Alps (Figure 3.1). This is an alpine catchment with a drainage area of approximately 6924 km2. The 

elevation ranges from about 200 m a.s.l. at the southern valley bottoms, to around 3900 m a.s.l. in 

the western upper ranges, with a mean elevation of 1800 m a.s.l. The steep terrain and the high  

 

Figure 3.1: The upper Adige River basin closed at Bronzolo 

 

 

elevation gradients govern the spatial precipitation distribution (Formetta et al., 2022) with the 

precipitation ranging from 500mm in the northwest region to 1600mm in the southern region 
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(Galletti et al., 2019). During the winter season, the precipitation is stored as snow and the 

streamflow is minimum. The streamflow shows two maxima: first due to snowmelt in the early 

summer and the second due to intense storms in autumn (Laiti et al., 2018). The same sixteen 

basins as the SWE works has been considered for the runoff and flood analysis in this work as well. 

 

3.3.2  ERA-5 reanalysis 

ERA5 reanalysis is a state-of-the-art fifth-generation ECMWF (European Centre for Medium-Range 

Weather Forecasts) atmospheric reanalysis of the global climate (Hersbach et al., 2020). It is one of 

the fundamental elements of the Copernicus Climate Change Service (C3S), which is funded by the 

European Union.  ERA5 provides multiple atmospheric, land, and oceanic climate variables with data 

availability spanning from 1979 to the present, at spatial resolution of 0.25 degrees and temporal 

resolution of 1 hour at the global scale. For this research, only temperature and precipitation will be 

considered from ERA5. Further information on ERA5 cis reported on the online data documentation 

(https://confluence.ecmwf.int/display/CKB). It provides a detailed description of the various 

products and a list of all available geophysical parameters, which can be freely downloaded.  

Twenty-seven ERA5 cells that lie within and around the Upper Adige River Basin at Bronzolo were 

considered for this study. Based on geometrical analysis, the ERA5 precipitation was partitioned 

over the 16 study basins. ERA5 air temperature is scaled to the mean elevation of each study basin 

based on the climatological monthly lapse rate valid for the region. 

3.3.3  Ground data 

The study basin has a dense network of meteorological stations. There are 88 rain gauges (1 per 72 

km2) and 124 temperature gauges (1 per 55 km2) within the study basin. The hourly temperature, 

precipitation, and runoff data from 1991 till 2019 is collected from the Hydrographic Office of Bozen, 

Bolzano. If there is a missing hourly dataset, the model only considers only the stations for both 

precipitation and temperature lapse rate calculation. All the analysis focus the period of 1992-2019, 

however in case of runoff data, there was missing continuous dataset for some basins hence the 

calibration and validation of the runoff result was limited to the years as described in the previous 

section. 

 

3.3.4  Hydrological model  

The conceptual, semi-distributed hydrological model ICHYMOD (Norbiato et al., 2008; 

2009,Zaramella et al., 2019)was used for runoff simulation at hourly time resolution. For a 

comprehensive explanation of the model, the reader is directed to the annex A. Briefly, ICHYMOD 

is a continuous, conceptual, semi-distributed rainfall-runoff model that operates on an hourly or 

daily time step. It includes modules that describe snow buildup and melting, glacier melting, soil 

moisture, groundwater, and flow generation. Snow and glacier melt are considered using 

distribution function approach with combined radiation degree day concept (Cazorzi & Dalla 

https://confluence.ecmwf.int/display/CKB
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Fontana, 1996). The potential evapotranspiration via the Hargreaves formula (Hargreaves & Samani, 

1982) while the simulation of surface and subsurface flows is carried out by means of the Probability 

Distribution Model (PDM) from Moore (2007). The detail of the model is provided in Annex B with 

further detail regarding model parameters, calibration and validation in Annex C. 

The ICHYMOD hydrological model has been successful applied to the Adige river basin by different 

authors. For instance, (Puspitarin et al., 2020) used to model for the Adige basin at Ponte Adige to 

explore the impact of glacier shrinkage and climate change on the streamflow pattern and its’ effect 

on power generation. Likewise, (Stergiadi et al., 2020) considered the ICHYMOD model to assess the 

impact of geology on the seasonal hydrological predictability in the similar alpine setting. Other 

authors ((Avesani et al., 2022; François et al., 2017; Mei et al., 2016) have successfully applied the 

ICHYMOD for the different purpose in the alpine basins. Hence these previous works provide a 

robust background to consider the ICHYMOD model for this study as well.   

 
3.3.5  Bias adjustment method 

Corollary to previous work on SWE, the ERA5 precipitation and temperature were corrected for the 

runoff simulation as well. Different bias correction techniques may be used. The simplest methods 

consist of adding the climatological difference between ERA5 input and the reference data (the 

‘delta’ method). This method is straightforward, but implicitly assume that the variability in ERA5 is 

unchanged. A quantile–quantile mapping (QM, hereinafter) transformation (the empirical 

transformation of (Panofsky & Brier, 1968) may be used to overcome these limitations. For a given 

variable, the cumulative density function (cdf) of ERA5 is first matched with the cdf of the 

references, generating a correction function depending on the quantile. Then, this correction 

function is used to unbias the ERA5 variable quantile by quantile.  

More specifically, ERA5 and reference distributions are matched by establishing a quantile-

dependent correction function that translates simulated quantiles into their reference 

counterparts. This function is then used to translate the modeled time series into bias-adjusted 

values with a distribution representative of the reference data. QM was applied separately for each 

month. The transfer functions were obtained for each ERA5 grid cell from a calibration period (1992-

2005) and then applied to the ERA5 variables (precipitation and temperature). In order to avoid 

overfitting due to the small sample size of monthly values included in the calibration, the quantile 

adjustment was computed by considering deciles instead of centiles and applied by linearly 

interpolating the empirical distribution. A wet-day correction equalizing the fraction of days with 

precipitation between the observed and the modelled data was applied. A validation period (2005-

2019) was used to examine the quality of the correction scheme. The simulation for the year 1991-

1992 is only considered as a TOPMELT model setup period. The implemented QM scheme was based 

on the R package qmap (Gudmundsson et al., 2012).  

3.3.6  Reference precipitation at ERA5 spatial resolution 

In order to examine the scale dependence of ERA5 errors, the station precipitation data were used 

to generate estimates of mean areal precipitation at the ERA5 spatial resolution. This input data was 
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termed Station Input at ERA5 Resolution (SIER). To achieve this, the Thiessen polygon method was 

used to redistribute the observed hourly station precipitation data over each ERA5 grid footprint.  

 

3.4 Results 

Figure 3.2 a, b shows the annual mean values of temperature and precipitation, respectively, 

reporting both the reference and the ERA5 values. Whereas an almost constant overall bias of 1.36 

is affecting annual ERA5 precipitation totals, generated by over-prediction of small totals and under-

prediction of large totals, a non-stationary behavior is affecting ERA5 temperature data, with the 

temperature showing two different biases for the first and for the second half of the data. The 

application of the Pettitt test (Pettitt, 1979) to detect changes in ERA5 temperature bias led to 

rejecting the null hypothesis of stationarity, showing change point on 2005, with a bias of -0.9098 

°C for the 1991-2005 period and a bias of -0.2841 °C for the period 2005-2019. Out of mere 

coincidence, the division of ERA5 temperature into two periods coincides with the calibration and 

validation period, which was selected prior to the application of the Pettitt test. Based on this 

evidence, the QM procedure was applied separately for the two periods. In the following, two QM-

corrected ERA5 input are considered: one where only the precipitation is corrected (termed 

Precipitation-corrected ERA5, PC-ERA5) and another one where both precipitation and temperature 

are corrected (termed Precipitation Temperature Corrected ERA5, PTC-ERA5).  

 
Figure 3.2: Adige at Bronzolo yearly (a) Temperature (b) Precipitation  

Figure 3.3 a, b shows a comparison between reference and ERA5 precipitation, both uncorrected 

and QM-corrected, respectively, for the calibration period. The comparison is carried out by 

considering the hourly mean areal precipitation of the 16 different study basin by using the Kling-

Gupta Efficiency (KGE) (Gupta et al, 2009) applied to all data points but the intervals where both the 

data sources are zero.  The Kling-Gupta Efficiency (KGE) is as follows:  

𝐾𝐺𝐸 = 1 − √(𝛾 − 1)2 + (𝛽 − 1)2 + (𝛼 − 1)2          Equation 3.1                

where γ is the correlation component represented by Pearson’s correlation coefficient, β is the bias 

ratio represented by the ratio of estimated and reference means, and α is the variability component 

represented by the ratio of the estimated and reference coefficients of variation. KGE ranges from 

negative infinity to one. If two series exactly match, the KGE is one. A β or α value smaller/larger 
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than one indicates that the mean value or variability of observations is 

underestimated/overestimated. Please note the use of log coordinates for the drainage area on the 

x axis of the figures. Figure 3.3 c, d reports the same comparison for the validation period. 

The KGE of ERA5 precipitation for both periods shows similar performances, which points to the 

robustness of the QM procedure applied here.  There is a clear trend of KGE increasing with the 

basin size in all the cases, with KGE around or less than 0.2 for the smallest basin (Plan at Plan) and 

around or over 0.5 for the largest basin (Adige at Bronzolo). The PC-ERA5 shows a slight 

improvement in the KGE performance for both periods. All basins show an increase in performance, 

with the smallest ones showing a larger gain, as expected. The QM technique applied to ERA5 

precipitation helps to decrease the bias of the ERA5 precipitation while keeping the correlation 

intact. Nevertheless, the overestimation of the variability of the observations causes the KGE of PC-

ERA5 to improve only slightly.   

 

 
Figure 3.3: KGE of Precipitation (a) ERA5-calibration (b)PC-ERA5-calibration (c) ERA5- validation (d) 
PC-ERA5-validation  
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Figure 3.4: KGE of SIER precipitation with station (a) Calibration (b) validation  

Figure 3.4 a, b report the KGE for SIER precipitation for the calibration and validation period, 

respectively. As expected, the figure shows a clear scale dependence in the errors generated by 

aggregating the reference precipitation at the ERA5 resolution. For basins larger than 600 km2 KGE 

is close to one, whereas it decreases in a marked way for basin smaller than 600 km2 and even more 

remarkably for basin less than 100 km2, with values around or less than 0.6 for the smallest basin.  

 

 
Figure 3.5: KGE of hourly runoff of (a) SIER, (b) ERA5, (c) PC-ERA5 (d) PTC-ERA5 

Figure 3.5 shows the hourly runoff KGE performance of SIER and different ERA5 inputs with the 

station input for the period of 1992-2019. The SIER runoff performance is depended on the basin 

size; the KGE value is increasing from less than 0.6 for the smallest basin to KGE value greater than 

0.8 concerning the basins larger than 100 km2.  As similar to the performance of SIER precipitation 

performance, the SIER spatial scale influences the runoff performance of smaller basins (<100 km2) 
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as compared to the larger ones. While in case of ERA5 input runoff, the KGE is decreasing with the 

increase in the basin size, with KGE value equaling 0.8 for smaller and medium basins but for larger 

one, the value dips to less than zero in the worst case. 

  

This result is counterintuitive to the precipitation performance of ERA5 but this should be attributed 

to the effect of ERA5 precipitation on runoff. The drizzle in ERA5 is overpredicting the overall 

precipitation and considerably increasing the soil moisture content. This ERA5 initial catchment 

state mimics the hydrological condition of the basin lying in the higher elevation, which in reality 

receive higher rainfall and wets the ground due to snow accumulation.   Hence the runoff shows 

good KGE performance for smaller basins due to the exaggerated ERA5 precipitation. On the other 

hand, since the larger basins consist of the combination of multiple smaller basins, the error due to 

the soil moisture content also gets accumulated with increase in basin size. This leads to low KGE 

performance of the larger basins.  After the precipitation correction of ERA-5(PC-ERA5), there is an 

improvement in KGE for all the basins with value ranging between 0.4 and 0.8 for all the basins 

(except for RioPlan KGE ~0.2), whereas, the gain in skill for the larger basin is comparatively better 

than or smaller basins.  The PC-ERA5 reduces the runoff bias and variability ratio while keeping the 

correlation intact and thus increasing the KGE value.  Since the temperature (PTC-ERA5) correction 

has visually no change in the performance of PC-ERA5, it could be deducted that temperature 

correction has no role in runoff simulations.    

 
Figure 3.6: Relative bias of maximum precipitation for (a) SIER, (b) ERA5, (c) PC-ERA5  

The Figure 3.6 reports the maximum precipitation bias within the 4-day flood study. Similar to 

previous analysis, the all the inputs considered is compared with the station precipitation. Corollary 

to previous results, in this case also the spatial scale of ERA5 only affects the event precipitation of 
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smaller basins, producing negative bias of almost 0.6 while for the larger basins the affect is none 

existing. It is also interesting to note that the ERA5 always under-predicting the reference station 

with bias close to -0.7 for the smallest group of basins while the bias decreases with increase in 

basin size with value of around -0.3 for  basins larger than 600 km2. After the precipitation 

correction, the bias of PC-ERA5 is further decreased as compared to ERA5.  

 

The first day runoff relative bias is plotted in Figure 3.7. The SIER input as compare to the station 

input runoff showed similar bias for the varying basin size, however for basin <100 km2 displays 

larger negative bias. In case of ERA5 input, the first day runoff is always overpredicted by ERA5, 

which is interesting and also an expected finding. As ERA5 is characterized by the drizzle problem, 

the false ERA5 precipitation wets the ground and resulting into higher initial moisture condition 

than the reference station with resulting average bias of 0.42. Since, PC-ERA5 diminishes the overall 

ERA5 precipitation, which also decreases the initial moisture condition and has reduced first day 

runoff bias of -0.09. While the temperature correction doesnot play any role in alteration of initial 

soil moisture condition. 

  

 
 

Figure 3.7: First day runoff bias for (a) SIER, (b) ERA5, (c) PC-ERA5 (d) PTC-ERA5  
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Figure 3.8: Flood peak bias for (a) SIER, (b) ERA5, (c) PC-ERA5 (d) PTC-ERA5  

The Figure 3.8 shows the maximum runoff bias within the 4 day window for different input 

considered. The SIER results with the reference shows the smallest basin suffering the most with 

value close to -0.4, while the bias decreases with the increase in basin size, it never goes past 0. In 

case of ERA5 input, the bias is comparable with the reference station-input simulation and in some 

cases overpredicts the reference, which is always true for basins >600km2. This nature of maximum 

runoff performance of ERA5 can be attributed to two cascading effects; first due to the ERA5 drizzle, 

which increases the soil moisture content prior to the flood event and it is also explained in the first 

day runoff comparison. Second, due to the underprediction of the event precipitation. Even though 

the maximum precipitation is under predicted by ERA5, the over prediction of the initial soil 

moisture compensate for the event precipitation which helps for the comparable flood 

performance. The PC-ERA5 underpredicts the flood event due to the underprediction of both the 

initial soil moisture and the event precipitation. The PTC-ERA5 performance doesnot change much 

as compare to PC-ERA5, showing limited impact of the temperature on the flood event. 
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Figure 3.9 maximum runoff scatter plot for (a) SIER, (b) ERA5, (c) PC-ERA5 (d) PTC-ERA5  

Figure 3.9 shows the scatter plot considering the flood peak simulation. The SIER performs similarly 

with the reference simulation, however as seen in the previous analysis the smaller basins under 

predict the flood with slope of 0.68, while there is gradual improvement in the value for medium 

and large basins with slope of 0.88 and 0.97 respectively.   In case of ERA-5 simulation, the slope of 

regression line for the larger basin overpredicts the reference with value of 1.14, while the small 

and medium basins have similar slope value of 0.30 and 0.40 respectively, displaying limited flood 

capabilities of ERA5 for these basins. These slope values further deplete when the precipitation 

correction (PTC-ERA5) is applied with value of 0.22 and 0.28 for small and medium basins whereas 

for large basin, it remains 0.61. The temperature correction renders no again in information for the 

flood peaks as the slope value for the different basin size does not change in comparison to PC-

ERA5.  
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Figure 3.10 Log scale maximum runoff scatter plot for (a) SIER, (b) ERA5, (c) PC-ERA5 (d) PTC-ERA5 

Since it was not possible to plot the line intercept and visualize the flood peaks in the same normal 

plot, Figure 3.10 uses the same information as in Figure 3.9 but plots in log scale for better 

representation. This figure comprehensively shows what was already explained in the paragraph 

above. The ability of SIER to predict the flood events for larger basin is better however, this skill 

degrades with decrease in basin size. It also shows the capability of ERA5 to predict flood especially 

for the larger basins but the performance decreases with decrease in basin size. After the 

precipitation correction of ERA5, the flood detection property of ERA5 is further lost while the 

temperature correction does not have a significant effect on the flood simulation.   

The Figure 3.11 shows the unitary max runoff scatter plots for the varying inputs. For SIER, the large 

and medium basins show comparable performance with slope of 0.84 and 0.81 while for the smaller 

basin size, the SIER input largely underpredicts the reference with slope of 0.65. As oppose to the 

maximum runoff results as reported in Figure 3.9, it is interesting to see the inability of ERA5 to 

properly capture the unitary maximum flood. Where the large and medium basins both show 

comparable slope value of 0.26, while in case of the small basin, the slope is found to be 0.31.It 

could be argued that the overeprediction of ERA5 flood for larger basin was solely based on the 

basin size and if it was taken out of the equation, ERA5 would lose its’ ability to predict the flood 

event. PC-ERA5 and PTC-ERA5 shows similar performance and does not hold much information to 

report any useful narrative regarding the unitary maximum runoff.  Both the correction report the 

similar slope value of 0.20, 0.20, 0.16 for small, medium and large basins.   
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Figure 3.11: Unitary maximum runoff scatter plot for (a) SIER, (b) ERA5, (c) PC-ERA5 (d) PTC-ERA5  

 

In Figure 3.12, the flood error is computed for different return periods. The SIER performs 

comparable with the station input for different flood return period, in case of shorter return periods, 

the error is close to zero. ERA5 flood performance for varying return periods has mixed results, 

where ERA5 overpredicts/ underpredicts the reference station irrespective of the return period. 

However on closer look there is some cases in shorter return period (<30 years), where ERA5 

outperforms the reference flood. PC-ERA5 and PTC-ERA5 as similar with all the previous results, 

shows comparable performance with each other and mostly, both underpredict the flood for the 

given return periods. 
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Figure 3.12: Different return period flood error for (a) SIER, (b) ERA5, (c) PC-ERA5 (d) PTC-ERA5 

 

In Figure 3.12, the flood error is computed for different return periods. The SIER performs 

comparable with the station input for different flood return period, in case of shorter return periods, 

the error is close to zero. ERA5 flood performance for varying return periods has mixed results, 

where ERA5 overpredicts/ underpredicts the reference station irrespective of the return period. 

However on closer look there is some cases in shorter return period (<30 years), where ERA5 

outperforms the reference flood. PC-ERA5 and PTC-ERA5 as similar with all the previous results, 

shows comparable performance with each other and mostly, both underpredict the flood for the 

given return periods. 

3.5 Discussion 

This research work outlines the usage of ERA5 dataset for the runoff modelling in the alpine 

catchment of northern Italy using ICHYMOD hydrological model. Furthermore, the suitability of the 

flood simulation using ERA5 dataset in its’ original state and after bias correction with respect to 

basin size has been extensively reviewed.  The spatial scale of ERA5 seem to affect only the basin 

with smaller area for results concerning precipitation and runoff. The ERA5 helps to provide a 

comparable runoff results for smaller basins, however for the larger basins, the runoff performance 

decreases invariably. This behavior should be linked with the ‘drizzle’ problem in ERA5 since, the 

smaller precipitation events creates comparable initial moisture content for the high altitude snow 

dominate catchment, which leads to better results. However for the larger basins, these errors gets 

accumulated and hence affects the runoff results. Interestingly, this error helps to show comparable 

results of flood for basin with larger size due to overestimation of the initial moisture state and 
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under prediction of the event precipitation. Sadly, the ERA5 flood detection capability for larger 

basin is lost when the unitary basin size is considered, which highlights the effectiveness of the ERA5 

for flood simulation was only relating to its’ basin size. The QM correction of precipitation helps 

considerably to improve the runoff performance across different basin size but the gain in 

performance for larger basin is comparatively higher as compared to the smaller basins. However 

the temperature correction doesn’t play any role in improving the runoff performance. Further, the 

bias correction of precipitation decrease the ERA5 ability to detect floods; even though the 

performance was substantial for a niche larger basins.  

 

3.6 Conclusion 

To conclude, this work provides a procedure to integrate the ERA5 dataset to model the hourly 

runoff in the alpine basins. On one hand, the ERA5 drizzle error proves useful for runoff simulation 

concerning smaller basins, while on the other hand, the same error provides detrimental results for 

the larger basins. Surprisingly, this error when coupled with under prediction of event precipitation, 

provides a comparable flood values for the basins with larger area. However, the flood capabilities 

is lost when the flood value is reduced to unit basin size. The correction of precipitation provides 

comparable results of hourly runoff simulation but the temperature correction doesn’t affect the 

runoff simulation at all. Irrespective of the basin size, the bias correction further reduces any flood 

detection property the raw ERA5 initially displayed.   

 

3.7 References 

Baez-Villanueva, Oscar M, Zambrano-Bigiarini, M., Mendoza, P. A., McNamara, I., Beck, H. E., Thurner, J., … 

Thinh, N. X. (2021). On the selection of precipitation products for the regionalisation of hydrological model 

parameters. Hydrology and Earth System Sciences, 25(11), 5805–5837. 

Baez-Villanueva, Oscar Manuel, Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J. D., & Thinh, 

N. X. (2018). Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-

America. Atmospheric Research, 213, 34–50. 

Barredo, J. I. (2009). Normalised flood losses in Europe: 1970–2006. Natural Hazards and Earth System 

Sciences, 9(1), 97–104. 

Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk, A. I. J. M., … Adler, R. F. (2019). 

MSWEP V2 global 3-hourly 0.1 precipitation: methodology and quantitative assessment. Bulletin of the 

American Meteorological Society, 100(3), 473–500. 

Bouwer, L. M. (2011). Have disaster losses increased due to anthropogenic climate change? Bulletin of the 

American Meteorological Society, 92(1), 39–46. 

Da Ros, D., & Borga, M. (1997). Use of digital elevation model data for the derivation of the 

geomorphological instantaneous unit hydrograph. Hydrological Processes, 11(1), 13–33. 



46 
 

Di Marco, N., Avesani, D., Righetti, M., Zaramella, M., Majone, B., & Borga, M. (2021). Reducing 

hydrological modelling uncertainty by using MODIS snow cover data and a topography-based distribution 

function snowmelt model. Journal of Hydrology, 126020. 

EEA. (2021). Economic losses from climate-related extremes in Europe. Retrieved from 

https://www.eea.europa.eu/ims/economic-losses-from-climate-related  

Faghih, M., Brissette, F., & Sabeti, P. (2022). Impact of correcting sub-daily climate model biases for 

hydrological studies. Hydrology and Earth System Sciences, 26(6), 1545–1563. 

Formetta, G., Marra, F., Dallan, E., Zaramella, M., & Borga, M. (2022). Differential orographic impact on sub-

hourly, hourly, and daily extreme precipitation. Advances in Water Resources, 159, 104085. 

Galletti, A., Avesani, D., Bellin, A., & Majone, B. (2019). Detailed simulation of storage hydropower systems 

in a large Alpine watershed. Geophysical Research Abstracts, 21. 

Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen-Skaugen, T. (2012). Downscaling RCM precipitation 

to the station scale using statistical transformations–a comparison of methods. Hydrology and Earth System 

Sciences, 16(9), 3383–3390. 

Hargreaves, G. H., & Allen, R. G. (2003). History and evaluation of Hargreaves evapotranspiration equation. 

Journal of Irrigation and Drainage Engineering, 129(1), 53–63. 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., … Schepers, D. (2020). The 

ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. 

Koks, E. E., de Moel, H., Aerts, J. C. J. H., & Bouwer, L. M. (2014). Effect of spatial adaptation measures on 

flood risk: study of coastal floods in Belgium. Regional Environmental Change, 14(1), 413–425. 

Laiti, L., Mallucci, S., Piccolroaz, S., Bellin, A., Zardi, D., Fiori, A., … Majone, B. (2018). Testing the 

hydrological coherence of high-resolution gridded precipitation and temperature data sets. Water 

Resources Research, 54(3), 1999–2016. 

Moore, R. J. (2007). The PDM rainfall-runoff model. Hydrology and Earth System Sciences Discussions, 

11(1), 483–499. 

Norbiato, D., Borga, M., Degli Esposti, S., Gaume, E., & Anquetin, S. (2008). Flash flood warning based on 

rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins. Journal of 

Hydrology, 362(3–4), 274–290. 

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., … Dasgupta, P. (2014). Climate 

change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of 

the Intergovernmental Panel on Climate Change. Ipcc. 

Panofsky, H. A., & Brier, G. W. (1968). Some applications of statistics to meteorology. Earth and Mineral 

Sciences Continuing Education, College of Earth and …. 

Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Journal of the Royal 

Statistical Society: Series C (Applied Statistics), 28(2), 126–135. 

Probst, E., & Mauser, W. (2022). Evaluation of ERA5 and WFDE5 forcing data for hydrological modelling and 

the impact of bias correction with regional climatologies: A case study in the Danube River Basin. Journal of 

Hydrology: Regional Studies, 40, 101023. 



47 
 

Sevruk, B., Ondrás, M., & Chvíla, B. (2009). The WMO precipitation measurement intercomparisons. 

Atmospheric Research, 92(3), 376–380. 

Sun, H., Su, F., Yao, T., He, Z., Tang, G., Huang, J., … Chen, D. (2021). General overestimation of ERA5 

precipitation in flow simulations for High Mountain Asia basins. Environmental Research Communications, 

3(12), 121003. 

Tarek, M., Brissette, F., & Arsenault, R. (2021). Uncertainty of gridded precipitation and temperature 

reference datasets in climate change impact studies. Hydrology and Earth System Sciences, 25(6), 3331–

3350. 

Tarek, M., Brissette, F. P., & Arsenault, R. (2020). Evaluation of the ERA5 reanalysis as a potential reference 

dataset for hydrological modelling over North America. Hydrology and Earth System Sciences, 24(5), 2527–

2544. 

Xie, A., Ren, J., Qin, X., & Kang, S. (2007). Reliability of NCEP/NCAR reanalysis data in the Himalayas/Tibetan 

Plateau. Journal of Geographical Sciences, 17(4), 421–430. 

Zambrano-Bigiarini, M., Nauditt, A., Birkel, C., Verbist, K., & Ribbe, L. (2017). Temporal and spatial 

evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of 

Chile. Hydrology and Earth System Sciences, 21(2), 1295–1320. 

Zaramella, M., Borga, M., Zoccatelli, D., & Carturan, L. (2019). TOPMELT 1.0: a topography-based 

distribution function approach to snowmelt simulation for hydrological modelling at basin scale. 

Geoscientific Model Development, 12(12), 5251–5265. 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

4.  Article 3: Subseasonal streamflow predictions in alpine catchments by 

combining numerical weather models and reanalysis data. 

Shrestha, S.1, Zaramella, M 1, Crespi, A. 2, Bogner, K.3, Zappa, M.3, Callegari, M.2, Greifeneder, F.2, 

Borga, M.1 

1Department of Land, Environment, Agriculture, and Forestry, University of Padova, Italy 

2EURAC, Institute for Earth Observation, Bolzano, Italy 

3Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland 

 

4.1 Abstract 

The is an increasing interest in the application of hydrological forecast for the management of water 

resources (e.g. hydropower and agricultural) at a seasonal scale. The goal of this paper is to make a 

preliminary assessment of the skill of post-processed Numerical Weather Predictions (NWPs) in 

contrast to traditional ESP. Their performance are assessed with the forecasts based on climatology 

with daily resolutions. The total runoff and particularly the base flow runoff will be extensively 

analyzed for the northern Italian Alps. The results of spatially aggregated predictions of the variables 

are compared to daily simulations and long-term daily averages of simulations driven by the 

meteorological observations (i.e. climatology). The performance of the forecast skill will be 

quantified based on the statistics like bias, Nash-Sutcliff efficiency (NSE), Continous Rank Probability 

Score (CRPSS), and Spread error ratio (SPRerr). The results of post-processed NWP show better total 

runoff skill in the first few weeks as compared to the ESP, which loses its’ skill after the first week. 

However, for the longer timescale of months, even though both the forecast does not have credible 

skill values, the ESP shows a comparatively better performance. The baseflow also shows a similar 

pattern of performance with skills scores that are comparatively better than total flow However 

skillful forecasting of the sub-surface runoff process beyond two weeks remains challenging. This 

could be attributed to the difficulty in modeling thin and highly variable soil variables characteristics 

of the alpine head basins and also to the limited ability of the NWP to predict the chaotic nature for 

a longer timescale.  

4.2 Introduction 

The recent advancement in computing capacity has allowed Numerical Weather prediction (NWP) 

models to incorporate the inherently chaotic nature of climatic forecasts (Bogner et al., 2018). For 

seasonal timescale, to integrate the error associated with the initial conditions, probabilistic 

prediction is needed, which is possible through ensemble forecasts (Van Schaeybroeck & 

Vannitsem, 2018). These forecasts when combined with the hydrological model serve as a robust 

https://scholar.google.com/citations?view_op=view_org&hl=it&org=2144826244043371075
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tool for streamflow and groundwater forecasting studies (J. Liu et al., 2022), which are useful for 

water resource management, energy production, and early warning system (Monhart et al., 2019).  

Extended streamflow prediction (ESP) (Day, 1985) method pioneered by the United States National 

Weather Service (NWS) in the 1970s has found extensive use in seasonal forecasting in the recent 

years as well due to its’ simplistic and cost-effective approach (Harrigan, et al., 2018). ESP forecast 

ensembles are obtained by forcing a hydrological model - initialized with the initial hydrological 

condition (IHC) - with ensembles of historical observation (Day, 1985). Even though ESP forecast 

suffers from inadequate information about the future climatic condition, nevertheless, it should be 

considered along with the other state-of-art forecasting method as a “best” (Yuan et al., 2015) 

forecast methodology has not been established yet. ESP also serves as the benchmark to quantify 

the added skills coming from available forecasting products (Crochemore et al., 2017, Arnal et al., 

2018). 

On the other hand, the forecasting products suffer from important bias when compared with the 

observations regardless of their data assimilation technique  (Randall et al., 2007). These biases 

could originate from the imperfect conceptualization, discretization, and spatial averaging within 

grid cells (Soriano et al., 2019). As a result, the raw forecast has a certain amount of risk for industrial 

applications (e.g., energy, hydrology, agriculture), and post-processing is required to get finer 

resolution output for impact assessment and statistical features that are comparable to the 

observations (Torralba et al., 2017). In order to remove the systematic model errors, the available 

technique ranges from simpler approaches like bias correction (BC), working directly on interest 

variable, to more complex statistical downscaling, building on large –scale predictors (Maraun et al., 

2010). To make the raw model output consistent with the local climatology, the BC method maps it 

to the analogous long historical observational reference. These strategies, which do not take into 

account the temporal correlation between model outputs and observations, ranging from basic 

adjustments in the mean and/or variance to more advanced quantile mapping (QM) alternatives, 

that can accommodate higher-order moments or even the entire distribution (Manzanas et al., 

2019). Since the QM can be applied for the dataset that does not require a standard (e.g. Gaussian) 

distribution - regular criteria for the operational agencies - its’ application has gained recent interest 

(Bedia et al., 2018).   

There have been multiple runoff forecasting studies done in the context of Europe, for instance, the 

UK (Harrigan et al., 2018), France (Crochemore et al., 2016), Austria (Santos et al., 2021), Switzerland 

(Bogner et al., 2018). However, the latest iteration of the forecast products ECMWF system-5, 

except for a few studies (Sutanto & Van Lanen, 2021, Sánchez-García et al., 2022), has found limited 

implications in the context of European alpine basins. Most crucially, their application for baseflow 

forecasting has not been fully realized.  Baseflow is termed as the contribution of groundwater that 

sustains the river discharge between precipitation events (Brutsaert, 2008). Since the baseflow 

remains substantial for the ecohydrological sustainability, farming, and hydropower production 

during the seasons with no rain, its’ skillful forecast could help to mitigate (Ayers et al., 2021) the 

repercussion related to the low flow in the European alpines.  
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To address the gap in the research, the prime objective of this work is to exploit the meteorological 

information of ECMWF system-5 for the total and baseflow forecast for the Upper Adige river basin, 

situated in the northern Italian Alps. The application of ICHYMOD hydrological model for the ECMWF 

hindcast period of 1993-2016 with up to 6 months of the forecast horizon will be extensively 

reviewed in the context of baseflow. Prior to its’ application, the bias associated with the ECWMF 

dataset is corrected with quantile mapping (QM) with the help of an observational dataset (STAT-

ECMWF). To remove the error associated with the ICHYMOD hydrological model and to have 

seamless runoff dataset in case of missing runoff observation, the runoff simulation with 

observation as input will be used as a reference for error metrics.  Further, the catchment initial 

states are based on the reference simulation for driving 25-ensemble members of the ECMWF 

variables for forecasting. The possible improvement in the baseflow forecasting for the STAT-

ECMWF datasets against the traditional ESP method will be quantified using metrics like bias, NSE, 

CRPSS, and Spread error with climatology as reference.  

4.3 Study area and data 

The study basins are located in the upper Adige river basin closed at Bronzolo, in the Eastern Italian 

Alps (Figure 4.1). This is an alpine catchment with a drainage area of approximately 6924 km2. The 

elevation ranges from about 200 m a.s.l. at the southern valley bottoms, to around 3900 m a.s.l. in 

the western upper ranges, with a mean elevation of 1800 m a.s.l. The steep terrain and the high 

elevation gradients govern the spatial precipitation distribution (Formetta et al., 2022) with the 

precipitation ranging from 500mm in the northwest region to 1600mm in the southern region 

(Galletti et al., 2019). During the winter season, the precipitation is stored as snow and the 

streamflow is minimum. The streamflow shows two maxima: first due to snowmelt in the early 

summer and the second due to intense storms in autumn (Laiti et al., 2018).  

 

Figure 4.1: The upper Adige River basin closed at Bronzolo 
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4.3.1  ECMWF forecast 

Each of the reanalysis products provide only the climatic information about the present and past 

but not of the future. Hence, forecast information is required to understand how the climate is going 

to evolve in the future based on reanalysis as initial condition. Seasonal climate forecast lies 

between the short-term weather forecast and longer timescale (like climate change prediction and 

inter-annual prediction) (Kirtman et al., 2013). The seasonal forecast provides a probabilistic spread 

(ensemble prediction) of the average conditions (like temperature and rainfall) and its’ evolution in 

the future, which can range from 1-month lead time upto a year (Rickards et al., 2014).  

Even though short term weather and seasonal forecasts try to quantify the future climatic states, 

they are part of a different paradigm which requires treating them in a different way. Seasonal 

predictions begin with an observable condition of the climate system which evolves over the course 

of a few months. Errors that exist at the beginning of the prediction (due to inaccurate measurement 

of the initial circumstances and assumptions assumed in the model formulation) remain or, more 

frequently, expand through the model integration, reaching magnitudes equal to those of the 

predictable signals. Some of these errors are random, and the impact they have on the result is 

assessed by using ensembles. Rather than talking specifically about the weather in a particular 

location in a particular day, seasonal forecasts will provide us with information on the likelihood 

that the upcoming season will be wetter, drier, warmer or colder than "usual" for that time of year. 

This type of long-term forecasting is possible because some parts of the Earth's system behave 

predictably and with slower rates of evolution than the atmosphere (such as the ocean and 

cryosphere), which allows their effect on the atmosphere to provide an audible signal (“ECMWF,” 

n.d.). 

 

The ECMWF provides the forecast information of meteorological variables named SEAS5 (System-

5), which is the latest iteration following the previous System 4. SEAS5 compared to its’ predecessor 

has improved atmosphere and ocean models with higher resolution with upgraded atmosphere and 

ocean models. The ERA5 meteorological variables provide the boundary conditions for the SEAS5 

(Wang et al., 2019). The SEAS5 is initialized on the first day of each month and the forecast horizon 

leads up to 7 months. The re-forecast period is from 1981-to 2016 which has an ensemble size of 25 

while, the real-time forecasts started from 2017 till 2019 with 51 members ensemble size. In Figure 

4.2, an example of the 25 member daily ensemble runoff forecast with the median value is plotted 

with the station input model simulated daily runoff as reference runoff. The figure is plotted for 

Adige at Bronzolo for the initialization day of October 1, 1993 with leadtime of 180 days. 
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Figure 4.2: ECMWF forecast for October 1, 1993 initialisation with Leadtime upto 180 days 

 For our study, the daily temperature and precipitation forecast issued by ECMWF system5 will be 

used which has a global spatial resolution of 1° × 1°. In which, the forecast issued for day 1 (24 hours) 

until day 186 (4464 hours) starting from the first day of each month is used. The data were 

downloaded at the following link: 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=form.  

4.3.2  Ground data 

4.3.3  Ground data 

The study basin has a dense network of meteorological stations. There are 88 rain gauges (1 per 72 

km2) and 124 temperature gauges (1 per 55 km2) within the study basin. The hourly temperature, 

precipitation, and runoff data from 1991 till 2019 is collected from the Hydrographic Office of Bozen, 

Bolzano. If there is a missing hourly dataset, the model only considers only the stations for both 

precipitation and temperature lapse rate calculation. All the analysis focus the period of 1992-2019, 

however in case of runoff data, there was missing continuous dataset for some basins hence the 

calibration and validation of the runoff result was limited to the years as reported in previous article.  

 

4.4 Methodology 

4.4.1  Hydrological model 

The conceptual, semi-distributed hydrological model ICHYMOD (Norbiato et al., 2008; 2009, 

Zaramella et al., 2019)was used for runoff simulation at hourly time resolution. For a comprehensive 

explanation of the model, the reader is directed to the annex A. Briefly, ICHYMOD is a continuous, 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=form
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conceptual, semi-distributed rainfall-runoff model that operates on an hourly or daily time step. It 

includes modules that describe snow buildup and melting, glacier melting, soil moisture, 

groundwater, and flow generation. Snow and glacier melt are considered using distribution function 

approach with combined radiation degree day concept (Cazorzi & Dalla Fontana, 1996). The 

potential evapotranspiration via the Hargreaves formula (Hargreaves & Samani, 1982) while the 

simulation of surface and subsurface flows is carried out by means of the Probability Distribution 

Model (PDM) from Moore (2007). The detail of the model is provided in Annex B with further detail 

regarding model parameters, calibration and validation in Annex C. The performance of the 

ICHYMOD model has been well replicated by other work that has been done in the alpine basin 

(Avesani et al., 2022; François et al., 2017; Mei et al., 2016; Puspitarini et al., 2020; Stergiadi et al., 

2020). Hence these work provide a strong background to apply the ICHYMOD model for the purpose 

of this work.  

 

4.4.2  Daily model simulation and reference datasets 

The ICHYMOD hydrological model performs at hourly timestep, however, to integrate the daily 

ECMWF forecast dataset, the model was modified to the ‘daily’ resolution. To achieve this, the 

hourly observed precipitation was summed to obtain the daily value and again, the precipitation 

was equally divided into 24 values representing the hours of the day. In the case of temperature, 

the daily average temperature was considered for the 24 hours of the day. Based on the updated 

variables, the model was run at hourly timestep and the values were averaged to obtain the daily  

Sn 
Name 

KGE 

Hourly Daily 

1 Rio Plan 0.832 0.831 

2 Rio Riva a Seghe 0.824 0.795 

3 Rio Anterselva Bagni 0.807 0.825 

4 Braies 0.686 0.705 

5 Rio Riva a Caminata 0.783 0.772 

6 Rio Casies Colle 0.866 0.859 

7 Gadera a Pedraces 0.825 0.804 

8 Aurino a Cadipietra 0.879 0.878 

9 Ridanna a Vipiteno 0.899 0.870 

10 Gadera Mantana 0.810 0.802 

11 Passirio 0.842 0.814 

12 Aurino a Caminata 0.892 0.881 

13 Aurino a S.Giorgio 0.900 0.899 

14 Rienza Vandoies 0.875 0.885 

15 Ponte Adige 0.849 0.840 

16 Adige a Bronzolo 0.873 0.870 

 

Table 4.1: KGE performance of hourly and daily model  
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runoff values. Even though in essence the daily model is run at an hourly timescale, this slight 

modification is required to assimilate the ECMWF dataset. Since there was a minimum change in 

the KGE performance between the ‘daily model’ and the ‘hourly model’, as shown in table 4.1 the 

daily model was deemed suitable for all the analyses considered hereafter. The comparison was 

done taking timeperiod of 1992 till 2019. While for the purpose of  runoff forecasting , the daily 

model was simulated from October 1993 to October 2016, to include only the hindcast period of 

the ECMWF. 

To remove the error associated with the hydrological model and also to have a seamless runoff 

value in case of a missing gauge dataset, a surrogate dataset of daily runoff simulation was required. 

The reference is considered as the station data input daily runoff simulation, as mentioned in the 

previous paragraph. The model parameter errors can be reduced with proper calibration, which 

allows simulated results to be close to the observations (Moradkhani & Sorooshian, 2009).  

ICHYMOD remains the core of the forecast system, which will be run in reference mode taking 

meteorological observations as input for predicting past and initial conditions and in forecast mode 

taking the meteorological forecast as driving forces for predicting future hydrological states.  All the 

error metrics will consider this reference as a benchmark simulation.  

4.4.3  Bias-Correction of ECMWF (STAT-ECMWF) 

The temperature and precipitation variables from ECMWF were bias-corrected by quantile mapping 

considering the station (STAT-ECMWF) and ERA5 renalysis (ERA-ECMWF) dataset before its’ 

application for runoff forecasting. 

Figure 4.3 (a and b) show the bias present in the ECMWF precipitation (RAW-ECMWF) forecast for 

lead time (1 and 6 months). To put into perspective the concept of leadtime (LT) horizon, for LT of 

1 month the January plot represents all the values initialized on January 1st, while for LT of 6 months, 

it represents the value initialized on August 1st. This figure visualizes the monthly precipitation 

boxplot based on the daily values for the respective inputs. 

The hindcast seasonal forecasts (SF) of temperature, and precipitation from ECMWF System5 over 

the period 1993 – 2016 were collected and the monthly aggregates were computed. The original SF 

covers the study basin with a spatial resolution of 1°x1°, composed of 25 members and 6 months 

LT.  Since there are two reference dataset used to bias correct the SF dataset, two quantile mapping 

computation taking ERA and station dataset as calibration of adjustments is considered. In case of 

the STAT-ECMWF, it is upscaled to 0.25 degrees spatial resolution. To achieve this, the Thiessen 

polygon method was used to redistribute the observed hourly station precipitation data to each 

0.25 degrees cell center.The Snow Correction Factor (SCF) is set equal to 1.4, in agreement with 

those reported in previous works for the Alps (Carturan et al.,2012). SCF is used to consider the rain 

gauges' inability to catch snow during the snowfall period. There are 23 stations grid covering the 

study area as shown in Figure 4.4. In the case of the temperature, it remains the same as the daily 

stations' lapse rate. While in case of reference as ERA, the precipitation from the same sets of ERA 

grids as STAT is used in its’ original form to correct the SF. Since the previous analysis shows ERA5 

also has overall bias as compared to the stations, i.e. around 1.36 for the basin at Bronzolo, the bias 
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correction from ERA is further divided by this constant. The resulting precipitation is termed ERA-

ECMWF. 

 

Figure 4.3: Precipitation for RAW-ECMWF, STAT-ECMWF, and CLIM for lead time (a) one month (b) 

six months  

Five spatial ECMWF grids as shown in Figure 4.4 cover the study area. Firstly, all forecast dataset for 

each lead time and member were spatially disaggregated from their original 1°x1° grid onto the 

same grid of ERA5 data at 0.25°x0.25° spatial resolution in order to match with ERA5 grid. The spatial 

disaggregation was performed by applying a bilinear interpolation of the original SF fields. Bilinear 

interpolation estimates the value at each point of the target grid by means of a weighted average 

of the values at the four nearest points in the original 1°x1° grid. The weights of the four nearest 

cells are determined by their distance from the target point. 

The bias correction of resampled SF fields was based on the quantile-mapping (QM) procedure. This 

method aims to define a quantile-specific transfer function determined by the mismatch between 

modeled and reference empirical cumulative distribution functions over a common calibration 

period. The transfer function is determined at a set of physical values corresponding to a span of 

discrete quantiles and then interpolated to correct all physical values. 
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Figure 4.4:  The ECMWF and Station grid cell covering the study basin  

Firstly, all monthly SF for each lead time and member were spatially disaggregated from their 

original 1°x1° grid onto the same grid of ERA5 data at 0.25°x0.25° spatial resolution. The spatial 

disaggregation was performed by applying a bilinear interpolation of the original SF fields. Bilinear 

interpolation estimates the value at each point of the target grid by means of a weighted average 

of the values at the four nearest points in the original 1°x1° grid. The weights of the four nearest 

cells are determined by their distance from the target point. 

Secondly, the bias correction of resampled SF fields was based on the quantile-mapping (QM) 

procedure. This method aims to define a quantile-specific transfer function determined by the 

mismatch between modeled and reference empirical cumulative distribution functions over a 

common calibration period. The transfer function is determined at a set of physical values 

corresponding to a span of discrete quantiles and then interpolated to correct all physical values. 

For each LT and month, the transfer function was calibrated for each point of the 0.25°x0.25° grid 

by comparing all monthly station values from 1993– to 2016 (23 values) with the SF monthly values 

of all members over the same interval (23 x 25 values). The correction was applied to the monthly 

values of all members, for the LT and month under consideration, over the whole period 1993– 

2016. Both ERA (ERA-ECMWF) and station (SIER-ECMWF) were considered to bias corrected the 

forecast dataset. 

The bias correction made for the Raw-ECMWF precipitation by stations and ERA is also shown in 

Figure 4.3 concerning both the LT of one month and six months. SEAS5 re-forecasts, before January 

1, 2017, have the atmosphere initialized by ERA-interim (Johnson et al., 2019). Even though ERA5 

has a better data assimilation technique, in both time and space, compared with ERA-interim, the 

two reanalyses are expected to perform similarly (Calì et al., 2022). The behavior of ERA re-analysis 

is also portrayed in the ECMWF forecast dataset as well, in which there is a positive precipitation 



57 
 

bias regardless of the months and the forecast horizon. The application of quantile-mapping (QM) 

considering the station data, substantially reduces the bias present in the raw forecast.  

 

4.4.4  Seasonal forecast STAT-ECMWF 

To forecast the runoff based on the STAT-ECMWF, for a given forecast day, the initial state of the 

model is provided by the reference simulation. For each forecast day, to simulate the daily model, 

the daily STAT-ECMWF precipitation is equally divided into 24 hourly values, the STAT-ECMWF daily 

temperature is provided as hourly values, and thus obtained hourly runoff is average to obtain the 

daily runoff. Starting from the forecast day, the ICHYMOD model is forced with the 25 ensembles of 

meteorological variables with a lead time of 1 day to 6 months, resulting in 25 ensemble members 

of runoff values for each forecast horizon. 

 

4.4.5  Seasonal forecast ERA-ECMWF 

The ERA-ECMWF runs on the same model setup as the STAT-ECMWF, however in case of ERA-

ECMWF, the model is simulated with the bias corrected meteorological variables of SF with ERA. For 

each LT, there remains 25 ensemble members of runoff forecast as similar with STAT-ECMWF.  

 

4.4.6  ESP (Extended Streamflow prediction) 

Similar to the ECMWF input, the reference simulation provides the initial catchment state. The 

model is then forced with the past/future observed dataset until the 6-month forecast horizon. 

However, it should be noted that the data concerning the forecast horizon is excluded from the 

analysis. For instance, to forecast the 5th day (5 January 1994), starting from January 1, 1994, all the 

5th January data from 1991 till 2016 is considered however the forecasted day (5 January 1994) data 

itself is excluded. In this study the ESP considers data set from 1991 till 2016, hence excluding the 

forecasted day variables, there will be 24 ensemble runoff forecasts. 

 

4.4.7  Error Metrics 

To quantify the goodness of the agreement between the forecasted runoff ensembles and the 

observed states, there are few error metrics considered in this study. We have considered both the 

deterministic and probabilistic measures of skill to assess the forecast performance as done by 

(Monhart et al., 2019). 

The raw forecast precipitation product due to its’ coarse spatial representation distorts the vital 

local features like heterogeneous topography, which leads to notable bias (Anghileri et al., 2019). 

The forecast also suffers from a lead-time-dependent bias termed drift (Manzanas, 2020). Even 

though the bias in the ECMWF meteorological  variable is corrected prior to its’ application for runoff 

forecasting, there will be always a certain amount of error associated with it. Since the precipitation 

bias translates to the runoff values as well, the bias of the runoff forecast needs to be evaluated. 
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The runoff bias for a given LT as shown in equation 4.1 is computed by averaging all the ensemble 

members of the forecast and compared with the reference (model simulated runoff).  

Bias(LT) =
1

Y
∑

Qmean−m,y
FOR (LT)−Qy

REF(LT) 

Qy
REF(LT)

Y
y=1                         equation 4.1 

Where, 

LT: Lead time (days) 

Qmean−m,y
FOR : Mean runoff over the m ensemble members for month y. m=24 for ESP, m=25 for 

ECMWF 

Qy
REF: Reference simulation 

Y: Number of years (1993-2016)   

Here, the bias value of one suggest no error in the forecast whereas, value largerthan one suggests 

overestimation of the reference and vice-versa. Nash–Sutcliff efficiency (NSE) is generally applied to 

assess the performance of the hydrological model with the observations (Nash & Sutcliffe, 1970). 

Whereas, in this study, NSE is used to quantify the forecast runoff error based on its’ ensemble 

mean. NSE is defined as the normalized value, which calculates the relative strength of the residual 

variance (“noise”) against the variance of the reference (“information”) as given in Equation 4.2. 

The value of the NSE ranges from -∞ until 1. For the perfect forecast, there is no “noise” in the 

forecast and the NSE equals 1. Conversely, if the forecast produces the residual variance equal to 

the reference variance, it results in an NSE of 0, which indicates the mean forecast has the same 

predictive skill as the mean of climatology. An efficiency of less than zero (NSE < 0) occurs when the 

climatology is a better predictor than the forecast.  

NSE(LT) = 1 −
∑ (Qy

REF(LT)−Qmean−m,y 
FOR (LT))Y

y=1

2

∑ (Qy
REF(LT)−Qmean 

REF (LT))Y
y=1

2                  equation 4.2 

Where,  

LT: Lead time (days) 

Qmean−m,y
FOR : Mean runoff over the m ensemble members for month y. m=24 for ESP, m=25 for 

ECMWF 

Qy
REF: Reference simulation 

Qmean 
REF : Mean of reference simulation 

Y: number of years (1993-2016)   

Moriasi et al., 2015 provided a range of NSE values as given in table 4.2, for hydrological analysis 

considering daily, monthly and, annual timescale.  
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NSE 

Criteria 

Unsatisfactory Satisfactory Good Very good 

 NSE=< 0.50 0.50 < NSE =< 0.70 0.70 < NSE =< 0.80 NSE > 0.80 

Table 4.2:Range of NSE values   

Even though the bias and NSE can describe the average behavior of the ensemble values, these 

deterministic error metric fails to address the substantial skill coming from the spread of the 

forecast. Hence better metrics of comparison are required to quantify the added value from the 

spread; especially at the seasonal scale (Kumar et al., 2014). To benefit from the probabilistic nature 

of the forecast, two other statistics are used i.e. continuous Ranked Probability Skill Score (CRPSS) 

and spread to error ratio (SprERR). 

The continuous Ranked Probability Score (CRPS) is a probabilistic verification score that considers 

the full ensemble i.e. forecast error and forecast spread, to understand how much the forecasts 

agree with the reference (Hersbach, 2000). CRPS calculates the area between the cumulative 

distribution function (CDF) of the forecasted ensembles and the reference. The calculation of CRPS 

is given in equation 4.3 and visually represented in Figure 4.5.  

𝐶𝑅𝑃𝑆(𝐹𝑡 −  𝑦𝑡) = ∫ (𝐹𝑡(𝑦)
+∞

−∞
− 𝐻(𝑦 − 𝐹𝑡))²𝑑𝑦   Equation 4.3 

 

Figure 4.5: CRPS calculation representation 

The CRPS value ranges from zero until ∞, where the null value corresponds to a perfect forecast 

while any increase in the value represents the forecast degradation.  

Whereas the CRPSS (Continuous Ranked Probability skill score), as given in equation 4.4, quantifies 

the usefulness of a given forecast with respect to the benchmark (climatology). In this study, only 

the calculation of CRPSS is done. CRPSS is a dimensionless value, which ranges from −∞ to 1 (perfect 

forecast). The CRPSS equal to 0 indicates the forecast to be as good as the benchmark and the 

negative value indicates the forecast to be worse than the benchmark (Anghileri et al., 2019). 

CRPSS(LT) = 1 −
∑ CRPSy

FOR(LT)Y
y=1

∑ CRPSy
BEN(LT)Y

y=1
          equation 4.4 

Where for a given leadtime, CRPSy
FOR(LT) represents the CRPS of a given forecast scheme. 
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CRPSy
BEN(LT) represents the benchmark CRPS value based on climatology. 

Harrigan et al., 2018 provided the range of CRPSS values as given in table 4.3 to evaluate any skills 

coming from the forecast. Additionally, the CRPSS value near zero i.e. within ± 0.05 is termed as 

neutrally skillful (Bennett et al., 2017). 

 CRPSS <0 0 0 to 0.25 0.25:0.5 0.5 to 0.75 0.75 to1 

Skill Negative No Low Moderate High Very high 

Table 4.3: CRPSS based skill 

SprErr represents the reliability of forecast (Hopson, 2014), in which the ratio between the forecast 

ensemble i.e. forecast spread, and the mean squared error of the ensemble forecast i.e. forecast 

error is calculated as given in equation 4.5. SprErr value of 1 corresponds to a reliable forecast, in 

which the forecast spread and error are equal.  For cases when the SprErr value is less than 1, it 

signifies overconfidence (larger errors compared to spread) and when the SprErr value is greater 

than 1 indicates overdispersion (larger spread compared to error) (Monhart et al., 2019).  

SprER(LT) =
1

Y
∑

∑ (Qy,m
FOR(LT)−Qmean−m,y

FOR (LT))
2

M
m=1

∑ (Qy,m
FOR(LT)−Qy

REF(LT))
2

M
m=1

Y
y=1        equation 4.5 

LT: Lead time (days) 

Qy,m
FOR: Forecast for given month and ensemble. 

Qmean−m,y
FOR : Mean runoff over the m ensemble members for month y. m=24 for ESP, m=25 for 

ECMWF 

Qy
REF: Reference simulation 

Qmean 
REF : Mean of reference simulation 

Y: number of years (1993-2016)   

 

4.5 Results 

The results include the hydrologically relevant variables of total runoff and baseflow concerning 

STAT-ECMWF, ERA-ECMWF and ESP forecast compared to the climatology. It should be noted that 

the results of the sixteen basins are consolidated based on the specific lead days as represented in 

table 4.4. In the case of days (D), the result specifies the given target day, while for weeks (W) and 

months (M), the results are averaged for a given range of days, for instance, M2 represents the 

second target month in which the error metrics are averaged from day 29 until 56 th day.   

Title D2 D4 D6 W2 W3 W4 M2 M4 M6 

Day 2nd 4th 6th 8 to 14 15 to 21 22 to 28 29 to 56 85 to 112 141 to 168 

Table 4.4: Benchmark leadtime 
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Figure 4.6:Total flow performance of (a) Bias (b) NSE (c) CRPSS (d) SPRerr  

Figure 4.6 shows the performance of different error metrics concerning total flow with the 

benchmark LT.  The bias (Figure 4.6a) for the ESP remains close to the one suggesting it to be closer 

to climatology. In case of ERA-ECMWF and STAT-ECMWF, the bias shows similar performance until 

1st week (D6) with value remaining slightly greater than 1, while from W2 onwards, the nature of 

bias starts differentiating. From W2 till M6, STAT-ECMWF remains relatively closer to one as 

compare to ERA-ECMWF.  However, the nature of bias shows similar behavior with a gradual 

decrease in value below one until W4, and after, there is an increase in bias until M6. This increase 

is comparatively sharper for STAT-ECMWF and for M6 the bias is greater than 1, while for ERA-

ECMWF, the bias is always less than zero from W2 onwards. Interesting, ESP also follows the similar 

routine as both ECMWF correction but the spread for ESP is considerably small irrespective of the 

LT and the value is always much closer to 1. 

Figure 4.6b shows the apparent decay of NSE with an LT for the traditional ESP and for both the 

ECMWF corrections. The NSE value is within the accepted range (~0.5) until the second week for the 

ECMWF (STAT and ERA) while for ESP, the NSE falls below 0.5 after the first week itself. The ESP 

underperforms ECMWF until the first month but from LT 2 months onwards, the NSE performs 

slightly better as compared to ECMWF (STAT and ERA).  It should be noted that NSE value shows no 

credible skills for all the forecast considered from LT M2. Even though the difference in STAT and 

ERA corrections is negligible, ERA-ECMWF shows a better performance until W2 and for further time 

horizon, STAT-ECMWF is better.  

The CRPSS value follows the same routine as the NSE value. The skills remain moderate (~0.5) until 

the first week for ECMWF (STAT and ERA) but for ESP the value goes below 0.5 within the first few 

days (D4). Corollary to the NSE values, the ECMWF (STAT and ERA) shows better performance 
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against the ESP method until one month (W4), while ESP has comparatively better performance 

after the 2nd month (M2). While comparing STAT and ERA, until W2, both behave similarly with ERA 

performing slightly better whereas from W2, the STAT leads the performance until M6. It is key to 

note, the median value of ERA-ECMWF goes below zero from M4 onwards but for STAT-ECMWF, it 

is always positive. Likewise, the CRPSS value of ESP the value never goes below 0. 

The SPRerr shows distinctly different characteristics for the ESP and the ECMWF variables. For ESP, 

the value remains within 0.6 and 0.7 for all the LT, and also the interquartile range (IQR) diminishes 

with LT. On the other hand, for both the ECMWF, the initial days are characterized by smaller values 

with an increase in value until the first month (W4) and after that, the values remain constant (~0.6) 

for STAT-ECMWF and (~0.5) for ERA-ECMWF. While the SPRerr value of ESP remains higher than the 

ECMWF in all cases, STAT-ECMWF has comparatively higher SPRerr value than ERA-ECMWF.  For 

both the forecasts (ESP and ECMWF) as the SPRerr value is less than 1, it indicates overconfidence. 

As for ESP, since the forecast is based on the past meteorological data, it can be expected that the 

ensemble forecast always remains within the certain range. This results in the similar forecast 

spread leading to similar SPRerr values. While in case of ECMWF, in the initial days the low value of 

SPRerr can be associated to the small forecast error since the forecast spread is small. However with 

increasing LT, the uncertainty keeps increasing including range of forecast. The correction made by 

station and ERA helps to keep the SPRerr close to ESP after 1 month LT of forecast.  

In general, the added benefit of using ECMWF (STAT and ERA) as compared to ESP is seen in the first 

month but after that, the ESP seems to be the better method for the total flow forecast. The forecast 

skill in terms of statistics shows useful information for both ECMWF until the second week while for 

ESP, there is an immediate loss of skill after the first week (D6). While comparing ERA-ECMWF with 

STAT-ECMWF, even though their performance looks similar, ERA correction perform marginally 

better in terms of NSE and CRPSS until W2, whereas after W3, STAT-ECMWF perform better to some 

extent.  

Figure 4.7 shows the performance considering only the baseflow. As similar to total flow, the 

baseflow bias (Figure 4.7a) for ESP remains close to one regardless of the LT with a small IQR.  For 

the ECMWF (STAT and ERA), the bias is close to one until W2 and the value disperses from one until 

the end of forecast horizon. The IQR for both ECMWF corrections is increasing with the LT and is 

much higher as compared to ESP. For STAT-ECMWF, the bias is > 1 (W2), and after, it decreases 

further until (M4), and for M6, the value slightly improves with value > 1. For ERA-ECMWF, the 

nature of graph is similar to STAT-ECMWF until D6 and the value dips below one for M2 and even 

though there is a slight improvement for M4 and M6, the value never exceeds 1.  

The NSE (Figure 4.7b) for the 2nd day looks comparable for all the forecasts with a median NSE 

ranging above 0.8. As seen with the result of total flow, there is a sharp decrease in NSE for ESP 

which can be considered skillful (~0.5) until the second week while for the ECMWF, the NSE remains 

valuable (~0.5) until the 3rd week. After M2, the ESP outweighs ECMWF performance until the end 

end of six month forecast. As similar to total flow, ERA-ECMWF performs slightly better than STAT-

ECMWF until W4 and after, STAT-ECMWF leads the NSE value. 
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For CRPSS (Figure 4.7c) as well the performance is gradually decreasing until the end of six months 

for all the forecast. The ESP is deemed acceptable (~0.5) until W1 whereas for the ECMWF, the 

permissible CRPSS skill is seen until the 2nd week (W2). After performing similarly to ECMWF for W4, 

ESP outperforms both ECMWF correction for LT of 2 and 6 months. While comparing ERA and STAT 

correction, STAT-ECMWF slightly leads the ERA-ECMWF until W2, but after, STAT-ECMWF has 

relatively higher CRPSS value. The CRPSS value never becomes negative for ESP and for STAT-

ECMWF, the median value is always positive however for ERA-ECMWF, the median value is negative 

after M4.  

The SPRerr (Figure 4.7d) for the ESP is higher as compared to the ECMWF for all the LTs, where the 

value for ESP gradually increases from ~0.5 (D2) to ~0.65 (D6) and remains similar until M6. While 

for STAT-ECMWF, the SPRerr gradually increases from <0.2(D2) and reaches a stable value (~0.6) 

after W4. For ERA-ECMWF, the value is similar to STAT-ECMWF until W2 and after, the value 

diverges with a similar value (~0.5) from W4 onwards.  

 

Figure 4.7:Baseflow performance of (a) Bias (b) NSE (c) CRPSS (d) SPRerr 

The baseflow was computed subtracting the surface runoff with the total runoff. Briefly, the 

baseflow performances are better as compared to the total flow concerning all the inputs. 

Especially, there is an extension of the one-week time window as compared to total flow, in which 

the forecast could be deemed skillful. The ESP and ECMWF (STAT and ERA) remain skillful in terms 

of NSE until the end of 2nd and 3rd week respectively.  When the CRPSS value is taken as reference, 

the ESP and ECMWF (STAT and ERA) remain skillful until the end of 1st and 2ndweek respectively. 

While comparing ERA-ECMWF with STAT-ECMWF, the baseflow results look similar to the result of 

totalflow. Even though the performance of ERA-ECMWF and STAT-ECMWF looks similar, ERA 
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correction perform slightly better in terms of NSE and CRPSS, until W2, whereas after W3, STAT-

ECMWF shows slightly better results amongst the two corrections.  

Figure 4.8 shows the NSE, CRPSS, SPRerr, bias for the total and baseflow comparison for the STAT-

ECMWF values. Even though, both the bias (Figure 4.8a) shows similar value, for baseflow the bias 

is slightly higher. The bias always remains within the limit of ±5%, which remains positive until the 

W2 for both the forecast. The bias gradually increases from a negative value in W3 to a positive 

value for M4 (BF) and M6 (TF). The range of bias remains similar for both forecast in which the 

spread in bias gradually increases from W4 onwards. 

 

 Figure 4.8:Total and baseflow performance of STAT-ECMWF of (a) Bias (b) NSE (c) CRPSS (d) SPRerr 

For both the flows, there is a gradual decrease of NSE (Figure 4.8b) from D2 until M6 in which the 

baseflow is performing better than total flow until M2. After M4, both the forecast perform similarly 

with values below 0. As reported previously, the NSE value remains acceptable (~0.5) until W2 and 

W3 for total flow and baseflow respectively. The CRPSS (Figure 4.8c) also follows a similar pattern 

as NSE where the baseflow performs slightly better considering all the LT. The acceptable CRPSS 

value (~0.5) is W2 for baseflow while for total flow it is D6. For both the flows, the IQR of CRPSS is 

largest for the W3 which constantly diminishes until M6 and becomes negative for M4 and M6.The 

SPRerr (Figure 4.8d) of the total flow is slightly higher than baseflow for all the LT. For both the 

variables, the SPRerr is gradually increasing until W4 and it remains constant (~0.6) until M6.  

To summarize, until the second month the baseflow runoff performs (NSE, CRPSS) better than the 

total flow while for longer LT (M4, M6) their performance remains similar. The nature of the graph 

(IQR) also remains similar for all the statistics considered. 
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Figure 4.9:Total and baseflow performance of ERA-ECMWF of (a) Bias (b) NSE (c) CRPSS (d) SPRerr 

 

Figure 4.9 shows the NSE, CRPSS, SPRerr, bias for the total and baseflow comparison for the ERA-

ECMWF values. Even though, both the bias (Figure 4.9a) shows similar value, for baseflow the bias 

is only slightly higher. Both the bias has similar value close to one until D6 and the value decreases 

close to 0.9 (M2) and there is a slight improvement for M4 and M6.  With the increase in LT, the 

range of the bias also increases for both the flows. 

For both the flows, there is a gradual decrease of NSE (Figure 4.9b) from D2 until M6 in which the 

baseflow is performing better than total flow until M2. From M4, both the forecast perform similarly 

with negative values. As reported previously, the median NSE remains acceptable (~0.5) until W2 

and W3 for total flow and baseflow respectively. The CRPSS (Figure 4.9c) also follows a similar 

pattern as NSE where the baseflow performs better than total flow until M2 and after, TF is only 

slightly better. The median acceptable CRPSS value (~0.5) is W2 for baseflow and D6 for total flow. 

The IQR of CRPSS is largest for the W3 which constantly diminishes until M6. The CRPSS value for 

both the flows becomes negative for M4 and M6. The SPRerr (Figure 4.9d) of the total flow is slightly 

higher than baseflow for all the LT. For both the variables, the SPRerr is gradually increasing until 

W4 and it remains constant (~0.5) until M6.  

To summarize, until the second month the baseflow runoff performs (NSE, CRPSS) better than the 

total flow while for longer LT (M4, M6) their performance remains similar. The nature of the graph 

(IQR) also remains similar for all the statistics considered. 
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Figure 4.10: Baseflow performance of STAT-ECMWF, ERA-ECMWF, ESP for March initialization (a) 
Bias (b) NSE (c) CRPSS (d) SPRerr 

Since the forecast is highly dependent on initial hydrological state of a given watershed, two 

experiment were considered with March and August as the initialization month.  Normally for the 

study area, February/March signifies the termination of the snow accumulation and with increasing 

temperature from March onwards induces runoff owing to snow melt. The temperature starts 

dipping after August and rain is expected which leads to snow storage. Hence given the two varying 

nature of the initialization month, the two experimental setup were considered for their effect in 

baseflow simulation.  

Figure 4.10 shows the baseflow comparison considering the initialization month of March. For D2 

all the forecast show similar bias (Figure 4.10a), however for all the other LTs, the nature of bias is 

contrasting. In case of ESP, the bias remains always close to one for all the LT, however, the IQR is 

large for the initial days which diminishes with the LT. The nature of the graph for the ECMWF (ERA 

and STAT) is similar for all LTs, with bias > 1 until W2 which decreases to ~0.9 for M2 and after that, 

the value starts increasing close to 1. However, the STAT-ECMWF has higher bias than ERA-ECMWF 

from D4 onwards upto W4 and after performing similarly for M2, STAT-ECMWF displays lower bias 

as compared to ERA-ECMWF for M4 and M6. Another feature that is distinctive is the higher spread 

of ERA-ECMWF bias as compared to STAT-ECMWF. With the exception for W2, the ERA-ECMWF 

always has higher range in bias as compared to STAT-ECMWF and especially for M4 and M6, the 

bias variability of ERA-ECMWF is exceptionally high. 

The NSE (Figure 4.10b) value shows a comparable value for the D2 for all the forecast considered. 

The NSE value shows ESP having useful information (NSE~0.5) until W2 and there is a gradual 

decrease until the W3. After W3, the NSE hovers within 0.1 and 0.3 until the end of M4 and the 

value becomes negative for M6.  In comparison, the ECMWF (STAT and ERA) shows robust NSE value 
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(>0.6) until the W3, while for W4 and M2, the NSE remains ~0.4. The NSE shows gradual degradation 

with value ~0.2 (M4) and ~0 (M6). In case of ERA-ECMWF, for M6 the range of NSE is quite large in 

comparison to STAT-ECMWF. For LT of M4 and M6, ESP and STAT-ECMWF show comparable 

performance with ERA-ECMWF slightly underperforming as compared to the other two. ERA-

ECMWF also displays a large IQR for NSE for M6 which is quite distinctive as compared to the other 

two forecasts.  

The CRPSS (Figure 4.10c) have similar values for the D2 concerning all the forecast, in the case of 

ESP the value decreases until the W3 and it remains similar until M4 (~0.2) while CRPSS is closer to 

zero for the 6th month. For ECMWF (ERA and STAT), the CRPSS value is acceptable (~0.5) until the 

3rd week while this value is D6 for ESP. For W4 and M2, the value remains similar (0.2) concerning 

all forecasts. For M4 and M6, the ESP performs slightly better than the other two forecasts. As seen 

in bias and NSE, the CRPSS of M6 of ERA-ECMWF shows the value reaching -0.40 which is extremely 

low and differentiating characteristics as compared to the other two forecasts.  

The SPRerr (Figure 4.10d) for ESP is always higher than the STAT-ECMWF for all the LT. ESP SPRerr 

value jumps from ~0.25 (D2) to ~0.6 (D4) and this value is sustained until M6.  This nature is different 

for the ECMWF (STAT and ERA), where the value is ~0.1 (D2), which gradually increases to ~0.5 (W3) 

and it remains similar till M6, except for M2 (~0.6).  

In a contrast to the March initialization, the August initialization (Figure 4.11) shows a comparable 

performance for ESP and ECMWF (STAT and ERA). The bias (Figure 4.11a) is close to one for ESP with 

relatively small IQR as seen in previous analyses. For ECMWF (STAT and ERA), the value remains 

similar until M2, while for M4 and M6, the values are widely differing. For STAT-ECMWF, the bias is 

close to one for M4 and ~1.15 for M6, whereas, for ERA-ECMWF the value is close to 0.85 for both 

M4 and M6. Comparatively, for all the LT, the ERA-ECMWF has higher spread of the bias 

nonetheless, for M4 and M6, the STAT-ECMWF also shows higher bias spread.  

In case of NSE (Figure 4.11b), all the forecast shows decay with time however the ECMWF (STAT and 

ERA) performs better than ESP until W4. From M2, the value turns negative for all the forecast, with 

ESP showing comparatively better performance. For ECMWF (STAT and ERA), the acceptable NSE 

(~0.5) is there until W2 but for ESP it is D6. The ERA and STAT show comparable performance until 

D6, but the STAT-ECMWF perform slightly better from W2 till M4 while for M6, ERA-ECMWF 

performs better than STAT-ECMWF. The spread of the NSE of STAT-ECMWF for M6 is quite large.  
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Figure 4.11: Baseflow performance of STAT-ECMWF, ERA-ECMWF, ESP for August initialization (a) 
Bias (b) NSE (c) CRPSS (d) SPRerr 

 
 
A similar result is followed in CRPSS (Figure 4.11c) as well in which, until W4 the ECMWF(STAT and 

ERA) is performing better than ESP however after M2, ESP outperforms STAT-ECMWF. The value 

concerning ERA-ECMWF becomes negative for M2, while the STAT-ECMWF has negative value only 

for M6. For ESP, the value never goes below zero. The acceptable CRPSS (~0.5) is D6 for ECMWF 

(STAT and ERA) while it is D2 for ESP. 

The spread error (Figure 4.11d) of ESP always remains within 0.6 to 0.7 and it is always higher than 

the ECMWF (STAT and ERA) for all the LT. For both ECMWF, the value is gradually increasing from 

D2 (~0.4) until W2 (~0.5) but differs hereafter till M6. For STAT-ECMWF, the value increases to ~0.6 

and remains similar until M6, while for ERA-ECMWF, the SPRerr value of ~0.5 remains similar from 

W2 till M6. The value of ESP and STAT-ECMWF remain similar after M2.   

 

4.6 Discussion 

This study quantifies the skills in runoff forecast from NWP (ECMWF system-5 dataset) and ESP 

methodology against the climatology for the Northern Italian Alps concerning the period of 1993 

until 2016.  The bias correction of the ECMWF dataset with the station and ERA is considered prior 

to its’ application. The quantile mapping technique applied to the raw dataset provides acceptable 

results with reference until the six-month LT horizon. Here the results of total flow, but most 

importantly, the baseflow are thoroughly analyzed with the help of ICHYMOD hydrological model. 
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The total runoff result shows an immediate loss in performance for ESP while the NWP provides 

reliable value until the end of the second week. This performance is validated by the deterministic 

NSE value and with the CRPSS, which takes the probabilistic approach for forecast verification.  

Considering the median value of 0.5 as a reference for acceptable skill in NSE and CRPSS. The NSE 

value illustrates the skill of ESP until the end of 1st week, while the CRPSS value hints at the loss of 

skill immediately after the 2nd day. Similarly, the NWP provides reliable results until the 2nd week 

based on NSE and until the end of the 1st week for CRPSS. While in comparison, for both the 

methodology, the baseflow results show an extension of the one-week time horizon, in which the 

error metrics shows comparable results, for instance: The W3 of baseflow results look similar to the 

W1 of the total flow of river. Consequently, the acceptable skill (NSE, CRPSS) for baseflow extends 

one week further as compared to total flow.  The gain in the skill of one week window for sub-

surface flow as compared with the total flow was also shown by (Bogner et al., 2018), which also 

studied the runoff forecasting of Alpine basins situated in Switzerland. For both the flows, the decay 

of the performance continues with ESP showing better values from LT of 2nd month onwards. This 

also highlights the inefficiency of the NWP to model the chaotic climate for longer lead times. The 

median bias shows similar results to climatology for both the input with NWP displaying increasing 

IQR with the lead times. However, the spread error shows completely different nature, for ESP 

remains within certain range but for NWP, there is a gradual increase in the value with a consistent 

value after the month. This nature could be attributed to the ensemble spread of NWP forecast 

which remains pretty small at the beginning but with LT, the spread becomes larger when it tries to 

incorporate varying climate scenarios. Whereas for ESP, the ensemble spread since is based on past 

values, there is not much room to include the chaotic climate nature, which limits itself to a certain 

range of values. It is clear that there are some problems of forecasting the sub-surface process at 

longer leadtime (beyond two week), which could be attributed to the alpine head basin 

characteristics of thin and highly variable soil variables.   

In general these temporal analysis highlight the dependency of the information gain on the reaction 

time of the investigated model variable. The slower the hydrological variable is reacting (i.e. the 

more persistent the water stays in the system), the longer the skill of the NWP forecast will be 

superior to climatology. This similarity between memory and predictability has also been found by 

(Orth & Seneviratne, 2013). It should be however noted that the type of catchment type and the 

forecast initialization month dictates the forecast skill. This study is limited by the skill dependency 

of the forecast based on the geology, none the less, the result based on the initialization month 

does reveal some of the forecast capabilities. Ideally, the ESP should perform better when initialized 

for the low flow season (December-March) and melting season (April-June), where the initial 

catchment states dictate the seasonal flow. Whereas, when the precipitation controls the 

hydrological regime like late summer (August), and autumn (September-November), the future 

meteorological information controls the forecast skill.  

Here results of two representative initialization months (March and August) are considered to argue 

the claim made in the previous paragraph. When the CRPSS values are considered, the March 

initialization does show a better performance for ESP until D6, and for longer LT (M2-M6) the 
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performance is similar to STAT-ECMWF. Generally, IC predictability in March is low compared to the 

rest of the spring months as a result of the depleted subsurface water levels encountered during 

this month as well as because of the negative temperatures that prohibit snow from melting. While 

in case of August initialization, it is evident that the skill of forecast (NSE and CRPSS) is better for 

STAT-ECMWF than for ESP until one month and after, both forecast perform similarly.  

4.7 Limitation and Conclusion 

The above results are in agreement with the analysis done by (Stergiadi et al., 2020), which consider 

two geological varying catchments property that is also included in this study i.e. Passirio and 

Gadera. These study basins characterized by dependency on the future meteorological variables 

(Passirio) and initial catchment states (Gadera) show contrasting results based on the initialization 

month and forecast procedure considered. Which highlights the importance of catchment property 

to understand the effectiveness of the forecast scheme considered. This study fails to acknowledge 

the geological information of the 16 basins and most importantly, since the results of the 16 basins 

are consolidated, it is impossible to analyze each basin.  

Nonetheless, this study successfully carried out the assimilation of the 25 members NWP (ECMWF 

system-5) forecast information for the runoff prediction over the northern Italian Alpine basins. The 

QM bias correction of the forecast dataset for the runoff forecast proves critical as compared to 

traditional ESP forecast methodology specially for low flow initialization months. The NWP provides 

added skill as compared to ESP for lead time up to 2 months and after both forecast shows similar 

performance. There is also an added skill arising for baseflow as compared to the total flow, 

however, the thin and highly variable soil variables alpine characterstics of the study area makes it 

difficult to forecast sub-surface runoff beyond two weeks with acceptable skill scores. Nonetheless, 

it should be stressed that any slight improvement in the forecast skill could manifest in significant 

economical gains, especially in the case of flood forecasting or decisions concerning management 

of hydro-power.  

In general both verification measures (deterministic and probabilistic) outline the profit of NWPs for 

water management purposes especially in the field of agriculture, where sub-surface water flows 

and storage are highly relevant. These processes show improved forecast skills in comparison to 

climatology for the whole forecast period because of the persistence and memory effects of the 

water in the soil. But also the management of hydro-power plants could gain from extended-range 

stream-flow forecasts allowing a greater flexibility in decisions regarding the regulation of reservoir 

in- and out-flows and residual flows.  

5.  General conclusion 

This thesis aims to understand the seasonal runoff forecasting for the Alpine basin using traditional 

ESP method and the state-of-the-art C3S ECMWF forecast information. Since ECMWF uses the ERA5 

as the boundary condition, this study exploits the ERA-5 information for primarily snow simulation 

and secondarily for flood modelling. The semi-distributed TOPMELT snow model is considered for 
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the snow simulation while ICHYMOD hydrological model, which integrates the TOPMELT snow 

routine, is considered for the hydrological analysis. This study considers the range of basin size from 

10s of Kms to 1000s to understand how the performance changes with change in spatial scale. 

 

The first objective of snow simulation showed ERA-5 precipitation having positive bias originating 

from the low-intensity rainfall (termed drizzle) while the temperature showed a colder bias. These 

errors resulted in overprediction of SWE primarily due to the drizzle and secondarily due to the ERA5 

lower temperature which helped to sustain the snow in the ground. The spatial scale of ERA5 

affected the smaller basins while the larger basins remain unaffected. Eventhough the application 

of QM is applied to the meterological variables, it was impossible to get rid of the drizzle in ERA5. 

The QM of ERA5 precipitation does help to reduce the SWE bias but the important role of 

temperature for SWE simulation was seen after removing seasonality using monthly moving mean.  

The role of temperature correction for SWE for the smaller basins was highly evident as compare to 

the larger basins.  

 

The second objective follows the same framework as the first objective with runoff and flood as the 

desired result. Primarily same as with the SWE simulation, the spatial scale of ERA5 only affected 

the runoff performance of the smaller basins. The drizzle error in ERA5 actually helped to produce 

comparable runoff result for the smaller basins due to increase in soil moisture as it makes 

comparable initial states as the high altitude snow watershed. In case of larger basins, since the 

drizzle errors get accumulated with increase in basin size, the ERA5 induced runoff didn’t perform 

comparatively well for the larger basins. It is however interesting to note that the flood results 

concerning ERA5 showed comparable results for larger basins due to over estimation of initial soil 

moisture states and underprediction of the event precipitation. These encouraging results were 

sadly no more fruitful when considering unit watershed area, hence revealing the effectiness of 

ERA5 only pertaining to the basin size. The QM of ERA5 precipitation help improve the hourly runoff 

performance but the flood capabilities further decreased and there was no role of temperature in 

runoff and flood simulation. 

 

The third objective looks into the skills gained in using the bias corrected ECMWF and ESP for the 

total and baseflow against the climatology for the same study area as for the prior two objectives. 

The QM bias correction is used considered both stations and ERA5 dataset. Comparitively, the 

ECMWF shows better performance and gain in skill of 1 week for baseflow and few days for total 

flow. However for longer time scale of more than 2 months, the ECMWF underperforms the ESP 

hinting towards the chaotic climatic nature for longer LT. During March initialization when the initial 

catchment states plays a major, there is comparable performance of ESP with the ECMWF but for 

August initialization, when the skill comes from the information of forecast, the ECMWF performs 

better than ESP until the second month.  

 

Overall, this thesis was successful in integrating the large ERA5 and ECMWF dataset for the 

hydrological process simulation in the Adige basin. The dense meteorological network makes the 

upper Adige basin suitable to quantify the error in ERA5 and ECMWF dataset and its’ affect on snow 
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and runoff simulation. The study highlights the need of correction of these dataset before its’ 

application which is performed by rather simpler monthly quantile mapping. This method was 

considered since the study aspires to be the benchmark in this field of work and replicate the results 

in other data-scarce mountainous catchments as well.    

 

6.  Software and output data 

Primarily MATLAB computer programming was used to run the TOPMELT and ICHYMOD model. All 

the data analysis and figure representation was also done in the same platform. The use of ArcMAP 

was considered to prepare the map of the study area. In some cases, the excel spreadsheet was 

used to construct tables and visualize dataset. Python language was considered in the initial phase 

of data download of ERA5 and ECMWF. All of the data and the script relating to this work are saved 

in a personal computer of the author and can be provided immediately upon request. 

Annex A 

The snowpack model: TOPMELT 
The snowpack model used in this work is TOPMELT (Zaramella et al., 2019). TOPMELT is a semi-

distributed snowpack model, which takes advantage of the extended temperature index approach 

to simulate SWE at full spatial distribution for each hourly time step (Di Marco et al., 2021; Zaramella 

et al., 2019).The clear sky shortwave solar radiation is computed at each element of the digital 

terrain model (DTM) by taking into account shadow and complex topography, calculating the 

apparent sun motion, and the intersection of radiation with topography. Diffuse radiation is 

computed by accounting for self-shading (by slope and aspect) and occlusions produced by the 

visible horizon. For model simulation, each basin is divided into elevation bands and the full spatial 

distribution of clear sky potential solar radiation is discretized into a number of radiation classes for 

each elevation band. This is achieved by dividing each elevation band into a number nc of equally 

distributed radiation classes, where the ith class contains the band sub-area corresponding to the ith 

percentile of the incident radiation energy. For each elevation band, the spatial extent of the model 

is represented by nb elevation bands and by nc radiation classes. TOPMELT accounts separately for 

snow and glacier melt and to consider the glacier area associated to and energy class, the model 

cells within nb×nc is provided with corresponding glacier area fraction. 

Hence the calculation of the full spatial distribution of SWE reduces to each radiation class, rather 

than each element of the given elevation band, which significantly improves the computational 

efficiency. Zaramella et al. (2019) showed that the division of the elevation bands into ten radiation 

classes provides results comparable to a full spatially distributed model. Therefore, in this work the 

elevation bands are subdivided into ten radiation classes based on the spatial distribution of the 

clear sky solar radiation on the pixels included in each elevation band.  

The model uses Thiessen polygon method to estimate the mean precipitation over the basin while 

the air temperature data was used to calculate the unique hourly vertical lapse rate for the whole 

basin. The precipitation data are corrected with the snow correction factor (SCF) to account the 

inefficiency of the gauge during snow periods. SCF is a multiplier applied to precipitation data when 
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the station temperature goes below the threshold temperature Tc. Lastly, the basin precipitation 

pbasin is obtained by applying a precipitation correction factor (PCF), which is a non-dimensional 

constant used to take into account poor spatial coverage of the rain-gauge stations. For a given ith 

elevation band, the model computes the precipitation p i (mm h-1) by applying vertical precipitation 

gradient, which considers increased precipitation over elevation. This is obtained by considering 

precipitation gradient G (km-1) as given in equation 4.1. 

pi = pbasin. (1 + G.
hi−href

1000
)   Equation 0.1 

Where ℎ𝑖 , ℎ𝑟𝑒𝑓(m a.s.l) are the mean altitude of the ith elevation band and of the basin respectively.  

For the temperature, Ti(°C) is provided as input for each time step and elevation band. The use of 

vertical temperature lapse rate help to obtain the mean air temperature over the i th elevation. With 

the help of the threshold temperature Tc, the estimation of precipitation phase(solid or liquid) is 

performed. 

Please refer to (Zaramella et al., 2019) for details about the methodology of precipitation 

estimation, which accounts also for the variability with elevation. The snowmelt algorithm is applied 

to each radiation class of a given elevation band. For a given i-th elevation band and j-th radiation 

class, the snowmelt rate Fi,j (t)[mm h−1] at time t is calculated as follows: 

𝐹𝑖,𝑗 =𝐶𝑀𝐹. 𝑅𝐼𝑖,𝑗 (𝑡). (1 − 𝑎𝑙𝑏𝑠𝑠(𝑡)). 𝑚𝑎𝑥{0; 𝑇𝑖(𝑡) − 𝑇𝑏}   Equation 0.2 

where CMF is the combined melting factor[mm. m2. °C−1. MJ−1], RI(t) is the clear sky solar radiation 

[MJ. m−2. h−1] at time t, albs(t) is the snow albedo [-] at time t (Brock et al., 2000), Ti(t) is the air 

temperature at the i-th elevation band at time t while Tb =0°C is the temperature threshold above 

which snowmelt is assumed to occur, both in [°C].  The snow albedo at each elevation band is 

computed from (Brock et al., 2000) as  

𝑎𝑙𝑏i(𝑡) = 𝐴𝐿𝐵𝑆 − 𝛽2[𝑙𝑜𝑔10 ∑ 𝑇𝑖 (𝑡𝑘)𝑘 ]    Equation 0.3 

Where, ALBS(-) is albedo of fresh snow, 𝛽2(-) is a dimensionless parameter and ∑ 𝑇𝑖 (𝑡𝑘)𝑘  is the 

summation of the positive hourly temperatures which are above the threshold base temperature Tb 

from the last snowfall until the current time t. The model accounts for rain on- snow and melt during 

the night employing a temperature index approach, through two additional parameters, the rain 

melt factor (RMF) and the night melt factor (NMF) respectively.  

The SWE (wei,j; mm) for each model cell is updated considering snow accumulation, rain-on-snow, 

melt and freezing water. After snowmelt or rainfall, the water is retained in the snowpack as 

interstitial water as liquid water liqwi,j (mm). When liqwi,j exceeds the water-holding capacity of the 

snowpack (LWT), it flows through the snowpack at the rate of DYTIME (m h -1), to form net water 

flow at the snowpack base. When air temperature goes below the base temperature, some of the 

liquid refreezes and liqwi,j is reduced and gets added to the snowpack through a freezing rate, 

termed ice (mm h-1). This is computed as in equation 2.3. 

𝑖𝑐𝑒𝑖(𝑡) = 𝑅𝐸𝐹𝑅𝑍. 𝑚𝑖𝑛[0, (𝑇𝑏 − 𝑇𝑖(𝑡))] Equation 0.4 
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Where, 𝑇𝑏 is the threshold base temperature as given in equation 2.1 and 𝑅𝐸𝐹𝑅𝑍(mm°C-1h-1) is 

considered as the freezing factor. When wei,j is less than a threshold (WETH), ice melt begins. The 

glacier melt is also computed  as given in equation 2.1 but the snow albedo is replaced with the 

constant glacier albedo (ALBG).TOPMELT can simulate the full spatial distribution of the SWE, hence 

the output from the TOPMELT can be compared against the point ground observations and also 

with snow cover products like MODIS.  

 

Annex B 

ICHYMOD hydrological model 

ICHYMOD hydrological model (Norbiato, 2008) integrates the TOPMELT snowpack model (Zaramella 

et al., 2019) with the semi-distributed basin-scale conceptual rainfall-runoff hydrological model. The 

hydrological model transforms melt from snow and excess precipitation into runoff at the outlet of 

the basin. The ICHYMOD model consists of a snow routine, a soil moisture routine, and a flow 

routine.  

The soil moisture routine exploits the Probability Distributed Model (PDM) (Moore, 2007) to 

describe the spatial variation of water storage capacity across a basin. While with the help of the 

cubic law storage model, the base discharge is routed from groundwater to the catchment outlet. 

While the direct runoff from the proportion of the basin, where storage capacity has been exceeded 

is routed by a geomorphology-based distributed unit hydrograph (Da Ros & Borga, 1997), consisting 

of a cascade of two linear reservoirs in series. Ice melt runoff is routed to the outlet in two ways, 

depending on glacial till imperviousness. Some part of meltwater from ice influences the soil 

moisture storage, while the rest flows directly to the outlet as a cascade of two linear reservoirs. 

 For the computation of losses due to evapotranspiration, the Hargreaves method (Hargreaves & 

Allen, 2003) is used for potential evapotranspiration while the status of soil moisture stored in the 

PDM is considered as well. Storage-based representations of the fast and slow response pathways 

yield a spatially lumped representation of fast and slow response at the basin outlet which, when 

summed, gives the total basin flow. 

Drainage to the slow flow path is represented by a function of basin moisture storage. The slow or 

base flow component of the total runoff is assumed to be routed through an exponential store. 

Direct runoff from the proportion of the basin where storage capacity has been exceeded is routed 

by means of a geomorphology-based distributed unit hydrograph. With this procedure, a 

geomorphologic filter based on a threshold drainage area is used to distinguish hillslopes and 

channel network starting from the space-filling representation of the drainage system directly 

obtainable from DEMs (Da Ros and Borga, 1997a). The routing time of each site in the basin is 

evaluated assigning different typical velocity values in each pixel pertaining to the basin and 

classified as hillslope or channel. The two velocities used to describe the flow routing. 

Annex C 

Model Calibration and validation 
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In order to have the best model parameter sets for both the TOPMELT and ICHYMOD hydrological 

model, the simulated runoff was compared with the observed runoff stations at each of the sixteens 

river outlet.  The study was divided into two periods of calibration (October 2003 - September 2019) 

and validation (October 1992 – September 2003). For the calibration period, 5000 Monte Carlo 

simulation of the station input hourly runoff was compared with the observed runoff, to obtain the 

best parameter sets corresponding to highest NSE value with the lowest bias. Further, these same 

parameter sets were considered for the validation period as well. It should be noted that due to lack 

of continuous runoff data for some basins there was a need to consider different sets of calibration 

and validation period. The information of the different calibration and validation period along with 

the corresponding runoff NSE and bias are also listed in the table a. The NSE performance ranges 

from 0.617 till 0.86 for all the basins and periods, in most cases the NSE exceeds over 0.7. In the 

same setup, the relative bias ranges from -0.164 till 0.075, with bias mostly within ±0.1 and largely 

around ±0.05. These sound performance of the model make it suitable to perform all the runoff 

analysis here after.  

The list of basin parameters which have different value for the basins are given in Table B. While the 

general parameters that are same for all the basins are listed in Table C. All the parameters remain 

same for the simulation concerning stations, ERA5 and ECMWF dataset except for PCF which 

remains 1 for ERA5 and ECMWF dataset. 

 

Sn Name 

Calibration Period Validation Period 

Period NSE Bias Period NSE Bias 

1 Rio Plan 2003 - 2019 0.759 0.009  1994 - 2003 0.752 -0.106 

2 Rio Riva a Seghe 2003 - 2008 0.736 -0.044  2001 - 2003 0.771 -0.164 

3 Rio Anterselva Bagni 2003 -  2019 0.729 0.038  1992 - 2003 0.719 -0.061 

4 Braies 2013 - 2016 0.666 -0.016  2016 - 2019 0.617 -0.084 

5 Rio Riva a Caminata 2003 - 2011 0.786 0.075  2011 - 2019 0.743 0.029 

6 Rio Casies Colle 2003 - 2019 0.694 0.003  1992 - 2003 0.82 -0.047 

7 Gadera a Pedraces 2003 - 2011 0.699 0.025  2011 - 2018 0.702 0.009 

8 Aurino a Cadipietra 2003 - 2019 0.776 0  1992 - 2003 0.79 0.004 

9 Ridanna a Vipiteno 2003 - 2019 0.805 0.015  1992 - 2003 0.82 -0.029 

10 Gadera Mantana 2003 - 2018 0.679 -0.077  1992 - 2003 0.682 -0.098 

11 Passirio 2013 - 2016 0.832 -0.05  2016 - 2019 0.812 0.042 

12 Aurino a Caminata 2003 - 2019 0.786 -0.003  1992 - 2003 0.86 -0.039 

13 Aurino a S.Giorgio 2003 - 2019 0.804 0.007  1992 - 2003 0.814 0.056 

14 Rienza Vandoies 2003 - 2019 0.738 0.032  1992 - 2003 0.767 -0.006 

15 Ponte Adige 2003 - 2019 0.694 -0.046  1992 - 2003 0.73 -0.065 

16 Adige a Bronzolo 2003 - 2019 0.818 -0.011  1992 - 2003 0.808 -0.054 

Table A: NSE and bias performance for calibration and validation period.  
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SN Parameters Description Range 

1 𝑅𝑀𝐹  Rain Melt Factor  0.3-0.58 

2 𝐶𝑀𝐹  Combined Melt Factor  0.0041-0.0184 

3 𝑃𝐶𝐹  Precipitation correction factor  0.92-1.14 

4 𝐸𝑅𝐹  Evaporation reduction factor  1 

5 𝑁𝑀𝐹  Night Melt factor  0.16-0.16 

6 𝑃𝑅𝐸𝐶𝐺𝑅𝐴𝐷  Precipitation Gradient  0-0.49 

7 ALBSNOW  Snow albedo  0.73-0.94 

8 ALBGLAC  Glacier albedo  0.3-0.3 

9 𝐵𝐸𝑇𝐴2  Dimensionless parameter for albedo computation  0.092 

10 CMIN  Minimum surface storage capacity  0-0.5 

11 CMAX   Maximum surface storage  150-900 

12 𝐵  Pareto exponent  0.01-0.5 

13 𝐾𝐺  Groundwater recharge constant  2219-58000 

14 𝑆𝑇𝑀𝐼𝑁  Minimum storage  10-191 

15 𝐾1  Mean residence time of the first surface runoff reservoir  3.4:4.5 

16 𝐾2  Mean residence time of the second surface runoff reservoir  3.4:4.5 

17 𝐾𝑆  Groundwater discharge constant  0.0001:0.087 

18 𝐵𝐺  Groundwater recharge exponent  1:1.8 

19 𝐵𝐸  Exponent of the evaporation function  1:2 

20 𝑄0  Background flow constant  0:4 

21 𝑀  Backgound flow exponent  0:100 

22 𝐾𝐺𝐿𝐴𝐶  Mean residence time of the 2 glacial surface flow reservoirs  3.4:4.5 

23 𝐶𝐸𝐿  Muskingum-Cunge kinetic wave celerity  3.3 

24 𝐷𝐼𝑆𝑃  Muskingum-Cunge hydrodynamic dispersion  20000:60000 

Table B: List of basin parameters. 
 
 
 

SN Parameters Description  Value 

1 SCF Snow correction factor 1.4 

2 Tsnow Snow rain threshold 1.5°C 

3 Tmelt Base temperature of snow 0°C 

4 Liquid water Water holding capacity of water equivalent 0.1 

5 Delaytime Speed of water propagation through snow pack 3mh-1 

6 Refreezing Liquid water refreezing factor 0.03 mm-dC-1h-1 

7 ECF Evaporation correction factor  0.7 

Table C: List of general parameters  
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