
 Sede Amministrativa: Università degli Studi di Padova 

 Dipartimento di Fisica e Astronomia “Galileo Galilei” 

 ______________________________________________________________________________________ 

 CORSO DI DOTTORATO DI RICERCA IN PHYSICS 

 CICLO  XXXIV 

 Scattering amplitudes calculation and 
 intersection theory 

 Tesi redatta con il contributo finanziario dell’Istituto Nazionale di Fisica Nucleare (INFN) 

 Coordinatore:  Ch.mo Prof. Franco Simonetto 

 Supervisore  : Ch.mo Prof. Pierpaolo Mastrolia 

 Dottorand  o : Luca Mattiazzi 



2



Abstract

In this thesis, we present new developments for the analytic calculation of multi-loop level
amplitudes. Similarly, we study the underlying mathematical structure of such key objects for
modern high energy physics research.
In this thesis we elaborate on the new and powerful tools provided by intersection theory. This
mathematical tool sheds new light on the algebraic structure of Feynman integrals, paving a new
way to perform multi-loop precision computation. Specifically, multi-loop scattering amplitudes
for state of the art calculations are built upon a large number of scalar multi-loop integrals,
whose reduction in terms of a smaller set of Master Integrals (MIs) can be a bottleneck in
amplitudes computation. Such reduction is possible thanks to the Integration By Parts Identities
(IBPs), which consist in linear relations among Feynman integrals generated by the vanishing
of a total derivative under the integral sign. The reduction is usually achieved thanks to the
Laporta algorithm by solving a huge system of such relations which, depending on the number
of scales involved, can require very demanding algebraic manipulations. In a different approach,
intersection theory allows us to embed Feynman integrals in a vector space, defining a scalar
product between them: the intersection number. In this way, obtaining the coefficients that
multiplies a MI in the reduction of a Feynman integral is equivalent to finding the decomposition
of a vector in terms of its basis vector in a vector space. It consists of using simple linear
algebra methods to project the multi-loop integrals directly on the MIs basis, bypassing the
system-solving procedure otherwise required in the standard approach to multi-loop calculations.
In the first part of the thesis, we describe the main features of the multi-loop calculations. We
briefly overview the adaptive integrand decomposition (AID), a variant of the standard integrand
reduction algorithm. AID exploits the decomposition of the space-time dimension in parallel
and orthogonal subspaces. We then proceed to introduce IBPs and the Differential Equation
method for the computation of master integrals, finally outlining the key steps that allowed
the computation of the two-loop four-fermion scattering amplitude in QED, with one massive
fermion.
We then elaborate on the properties of intersection theory and how to apply it in relation with
Feynman Integrals.
After showing its successful application to a wide variety of Feynman integrals admitting a
univariate integral representation, we present the implementation of a recursive algorithm for
multivariate intersection number to extend this method to generic Feynman integrals. We also
present alternative algorithms for the application of multivariate intersection number to Feynman
integrals decomposition, showing the flexibility of this powerful tool, combining the advantages
of the decomposition by intersection numbers with the subtraction algorithm traditionally used
in methods of integrand decomposition. Aside from the reduction to MIs, we apply intersection
theory for the derivation of contiguity relations and of differential equations for MIs, as first
steps towards potential applications to generic multi-loop integrals.
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Chapter 1

Introduction

Scattering amplitudes are a key instrument in testing our understanding of the laws of nature,
being one of the expressions of our theoretical model which is closest to the experimental
measurements.
They represent the scattering among particles described within the Quantum Field Theory (QFT)
framework, which embodies the principles of Quantum Mechanics and those of Special Relativity.
Currently, the best model to describe the interactions among these quantum mechanical objects,
or fields, is the Standard Model (SM). It details three out of the four fundamental forces of nature:
the strong interaction described by the Quantum Chromodynamics (QCD) through the SU(3)c
symmetry group, and the weak and electromagnetic interaction of Quantum Electro-Dynamics
(QED) based on the symmetry group U(1)Y ×SU(2)W . The latter electro-weak symmetry group
is expected to be broken spontaneously via the Brout-Englert-Higgs mechanism that predicts
the existence of the Higgs particle.
Its detection at CMS and ATLAS at the Large Hadron Collider (LHC) [9, 10], marked the final
validation of the SM of particles as the model that describes the fundamental interactions, aside
gravity.
Although its great successes, the SM fails to explain many known phenomenon, as the dark
matter, the dark energy, or the mass of neutrinos. For this reasons, it is believed that there should
be a bigger theory that contains the SM and accommodates a description for said effects. Hence
new directions to investigate physics beyond the Standard Model (BSM) have been considered.
Evidences for this new physics may arise from the production of a new heavy particle, or a slight
deviation of the measures from the expected SM parameters. Thus increasing the precision with
which the physical observables are measured, together with the precision of their theoretical
expectation values, is an interesting path to follow in order to achieve a better understanding of
nature.
Among the quantities that could be measured at modern colliders, the anomalous magnetic
dipole moment of the muon (aµ), exhibits a tension between its theoretical expectation value [11]
and its measured one [12] which could signal the presence of yet to be discovered BSM effects.
This possibility is further motivated by the fact that aµ appear to be more sensible to beyond
the standard model effects than the electric anomalous magnetic dipole moment ae, due to the
higher mass of the muon.
The existence of such tension thus requires deeper investigation for this physical observable,
both experimentally and theoretically. The uncertainties for the latter are dominated by the
contribution involving hadronic interactions (aHADµ ), due to the nature of the strong force for
which perturbative theory alone is not enough to obtain sensible estimates in this case.
The MUonE proposal [13, 14] aims to lower the uncertainty of the leading contribution to aHADµ

by extracting it from the measurements of the cross section of the µ e → µ e scattering. In
this thesis we discuss the precise evaluation of the QED next to next to leading order (NNLO)
scattering amplitude required in order to achieve the precision expected from MUonE, which is

9
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the first fully analytic evaluation of the two-loop amplitude for the scattering of a mass-less into
a massive pair of fermions in Quantum Electrodynamics.

Scattering amplitudes can be expressed in terms of Feynman integrals. Furthermore, when
the theory grants it, they can be arranged in a perturbative expansions in the coupling constant,
allowing us to compute it up to the desired accuracy. On the other hand this implies that in
order to enhance the precision of a known theoretical estimate, we need to compute terms further
down in the expansion, which are characterised by exponentially more Feynman integrals that
become harder to compute the further the term is in the expansion. Integrals appearing at
higher order, are characterized by Feynman graphs with higher number of loops.
These difficulties that arise from seeking higher accuracy in the value of the scattering amplitudes
require to systematize the computation of such quantities. This is achieved in three steps: first
the amplitudes is reduced to a combination of scalar (Lorentz invariant) integrals, then it is
expressed in terms of a minimal basis of independent functions which finally are evaluated.
The decomposition of a one-loop amplitude in terms of a basis of scalar integrals was first
demonstrated by Passarino and Veltman [15]. This, together with generalized unitarity tech-
niques that allowed to directly obtain the coefficients in front of the basis integral, triggered the
development of the integrand decomposition method, firstly defined in four dimensions [16,17]
and later extended to accomodate the effects of dimensional regularization [18–21]. Its efficient
numerical implementation [22–24] and its insertion in automated frameworks for one-loop com-
putations [25–34] was of fundamental importance for the so called NLO revolution, that brought
a great number of next to leading order predictions for a series of processes of phenomenological
interest for LHC. Within this method, the integrand in consideration was reduced to a combi-
nation of integrand that contains at denominator, a subset of the denominators of the initial
set of propagators, and as numerators the remainders of the corresponding divisions. After the
integrand decomposition, the integral sign is recovered, introducing spurious terms which vanish
upon integration. At one loop these terms were taken care of by the lorentz invariance, without
representing any real issue.
This approach was later studied beyond one loop [35,36] and formalized by means of algebraic
geometry methods as a multivariate polynomial division modulo Gröbner bases [37,38].
The jump in difficulty of the computation going from one to two loop due to the introduction of
irreducible scalar products which cannot be expressed in terms of denominators, the fact that it
was non trivial to detect spurious terms, and additionally that the results from the integrand
reduction were not independent but needed further integral-level reduction to get to a minimal
basis, prevented the integrand decomposition method to be as effective as it was in the one loop
case.
Nonetheless these techniques were embedded in the adaptive integrand decomposition method
[39–42]. Here the loop momenta are split between their component parallel to the external
momenta, and orthogonal to them, so this method systematically adapts to the integrand in
consideration. This makes apparent the polynomial dependence of the integral with respect to
the transverse components which can then be integrated out by expressing them in terms of
Gegenbauer polynomials allowing us to take care of the integration by applying iteratively the
orthogonality conditions proper of these polynomials. This integration has also the advantage of
removing eventual spurious term that could arise after the integrand decomposition.
The polynomial division, together with the systematic integration over the transverse variables,
yields a new reduction procedure called the divide-integrate-divide algorithm, which has an
outcome free of spourious terms and contains integrals whose integrand is expressed in terms
of scalar products between loop and external momenta. Hence, through this powerful tool is
possible to express the Feynman integrals appearing in the multi-loop amplitude in consideration
as a combination of scalar integral, achieving the first step in our framework for multi-loop
scattering amplitude evaluation.
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The second step requires an integral-level reduction, where our amplitude is expressed in term
of a minimal basis of Master Integrals (MIs). This is achieved by the integration-by-parts (IBP)
decomposition described in the Laporta’s algorithm [43]. Exploiting the fact that the total
derivative of a Feynman integral in dimensional regularization vanishes, it is possible to draw a
system of equation among them, which can then be solved in order to express our scattering
amplitude in terms of a set of independent functions called MI.
The last step left is the evaluation of the MI. Considering them as analytical function of the
external kinematics, it is possible to build a coupled differential equation system by means of
IBPs. The integral is then evaluated by solving the differential equations (DeQ) rather than
integrating it. This procedure was firstly proposed by Kotikov [44] for internal masses and later
extended by Remiddi [45] and Gehrmann and Remiddi [46] to external invariants (see [47] for a
review on the topic).
Nevertheless, in physical cases we are interested in the value of Feynman integrals around 4 di-
mension, hence Laurent expanded in the parameter ε = (d−4)/2. When possible, it is convenient
then to pick a MI basis in such a way that the ε dependence in the system of differential equation
is factorised from the kinematical ones, and the latter can be expressed as the differential of
a logarithm. This approach was firstly proposed by [48], allowing to easily solve the system
order by order in ε expressing the Feynman integrals as generalised polylogarithm [49] making
the evaluation of the integral completely algorithmic. Alternatively, it is possible to choose a
basis of master integrals such that the system of differential equations is at most linear in ε. In
this case, by means of the Magnus method [50] one can evaluate the similarity transformation
that puts the system into canonical form.
In this thesis, we apply this complete framework for multiloop scattering amplitude computation
to the case of the 2−loops QED amplitude for the process µ e→ µ e [4], which is crucial for the
MUonE experiment. In this specific case, although analytical expressions of the MI are already
available [51, 52], the generation of the amplitude, its reduction to a minimal basis and their use
within the structure previously mentioned were still missing. In this thesis, we discuss these
steps carried out via an in house code, together with the mixed renormalization scheme required
by this multi-loop amplitudes (partly on-shell, partly MS). We also outline the numerical checks
needed for a computation of this complexity.
The results of this endeavor, other than beeing useful for the evaluation of observables directly
related to the process considered, are helpful also in processes characterized by initial and
final particles kinematically similar to the one considered here, such as the heavy-quark pair
production through light-quark annihilation process in QCD [53].

Even in light of the general framework aforementioned, state of the art computations repre-
sent a formidable challenge to complete. In particular, the solution to the system of IBPs in
multi-loop multi-particles case turns out to be quite challenging. This has motivated multiple
refinements of the system solving strategies [54–67].
Recently, the problem of the reduction of Feynman integrals to a minimal basis has been
studied under a new perspective firstly proposed in [68]. Considering Feynman integrals in
parametric representations such as the Baikov representation, which exposes their nature as
Aomoto-Gel’fand integrals, enables a novel approach to the investigation of their algebraic
structure by means of intersection theory of twisted de Rham (co)homology for general hyper-
geometric functions [69–80]. This allows us to define the twisted intersection number between
forms (which represent Feynman integrals), that acts as a scalar product in a vector space
characterized by multivalued integrals. We can then project multiloop integrals into MI basis in
the same way in which vectors are decomposed into a basis of the vector space, providing an
alternative to the system solution required by the standard IBP approach. While integrals were
connected by identities derived from the vanishing of a total derivative within the standard IBP
method, in this new approach we exploit the quotient group structure proper of the cohomology
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group which identifies integrals that differ by a vanishing piece that could be written as a total
derivative.
This connection between mathematics and physics, entails a deeper study of this topic in relation
to Feynman integrals, never before considered together, as well as the the development of an
efficient algorithm for the computation of intersection numbers relevant for multi-loop amplitudes
and its implementation in an automatic software.
As a first result, this novel point of view reveals a correspondence between the number of MI and
the topological properties of the integration domain, giving us the ability to know the number of
independent functions that characterize our problem a priori.
The application of this method, together with generalized unitarity, allows to study firstly
multi-loop integral decomposition by means of twisted intersection theory in the univariate
case [1,68], addressing the decomposition of integrals on the maximal cut. In this thesis, we apply
this framework in multiple relevant cases, providing example of differential equation computation
on top of regular multi-loop integral reduction on the MI basis for high number of loop and high
multiplicity cases. We also studied multiple basis choice and how these affects the computation.
In order to achieve the complete decomposition of a multivalued integral into its integral basis,
we extended this approach to the multivariate case [2, 3], exploiting the iterative application of
univariate intersection, performing computation in the general case with an arbitrary number of
variables [81]. In particular, in this work, by the joint use of integrand decompostion, generalized
unitarity and twisted intersection theory, multiple algorithms for Feynman integrals reduction
are proposed: the top-down, bottom-up and straight decomposition. We also provide examples
in which these methods are applied successfully by means of an in-house code we developed,
paving the way to a new strategy for integral reduction and differential equations computation
for Feynman integrals.

This thesis is organised as follows. In chapter 2 we will review modern method for the
computation of multi-loop Feynman amplitudes. Firstly we introduce parametric representation
of Feynman integrals such as the Baikov representation, discussing its main properties, from
its derivation to the expression of its boundary. We will also address integrals in parallel and
orthogonal space d = d⊥ + d‖. Then we will present the main tool for multiloop integral compu-
tation: from IBPs, to possible techniques for the evaluation of Feynman integrals, discussing
the properties of difference and differential equations, the canonical basis and the generalised
polylogarithm. Lastly, we will address the adaptive integrand decomposition, describing the
polynomial division, the integration of the transverse component and the divide-integrate-divide
algorithm, briefly showcasing the outcome of its application to a one loop case.
In chapter 3 we discuss the application of the framework outlined in chapter 2 to the case of
the two-loop QED amplitude for the process µ e → µ e. After introducing the motivation
behind this computation, briefly discussing the muon anomalous dipol magnetic moment and the
MUonE proposal, we will outline the key step of the computation. From the evaluation of the
bare amplitude by means of adaptive integrand decomposition, IBPs and differential equations,
to the renormalization procedure. Finally, we present the result of the computation in a specific
phase space point.
In chapter 4 we discuss the application of intersection theory to Feynman integrals. Firstly, we
will motivate its introduction and the basic objects that characterizes it. Then, after introducing
a novel algorithm for Feynman integral decomposition by means of intersection number, we
will proceed to outline the algorithm behind the computation of such objects. Firstly we
will address the univariate case, starting from simple special function cases such as the Beta
function and the Hypergeometric function, arriving to apply this powerful tool to multi loop
and multi particles Feynman integrals. Afterwards, we discuss the extension of the algorithm
for the computation of intersection number to the multivariate case, presenting different ways
of performing the decomposition and applying them to Feynman integrals. Finally, chapter 5
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Chapter 2

Multiloop Feynman Integrals

Feynman integrals are ubiquitous in precision computation for high-energy physics. Given their
crucial role, let us outline their definition and properties.

2.1 Definition

Let us start by introducing them in dimensional regularization, hence writing them in their
d-dimensional generalization. We will discuss their properties in finite dimensions later on in
this work.
We define a l-loop Feynman integral with n external legs and t internal propagators as integrals
over the momentum space

I [d](l,n)
x1,...,xt [N ] =

∫ l∏
i=1

ddqi
(2π)d

N (qj)

Dx1
1 · · ·D

xt
t

(2.1)

with N (qj) a generic tensor numerator that may depend on the loop momenta, while the
denominators Di are

Di = l2i +m2
i (2.2)

where

lαi =
∑
j

αijq
α
j +

∑
j

βijp
α
j (2.3)

with pαj being the external momenta that satisfies momentum conservation

p1 + p2 + · · ·+ pn−1 + pn = 0 (2.4)

while α and β are matrices which entries take values in (0,±1). From now on, the normalization
factor of (2π)D will be omitted.
It is possible to further simplify the integrand of our Feynman integral, writing it as a Lorentz-
invariant function of the scalar products between the momenta appearing in the integral. This
is achieved through tensor reduction or integrand decomposition by breaking up the numerator
into fundamental objects called Irreducible Scalar Products (ISP). In this way, we can express
the integral in eq. (2.1) in the form

I [d]
x1,...,xs =

∫ l∏
i=1

ddqi
1

Dx1
1 · · ·D

xs
s

(2.5)

where we treated the ISPs as denominators with negative power xi, making s the total number
of internal lines plus the number of Irreducible Scalar Products.
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2.1.1 Baikov representation

In equation (2.5) we have presented Feynman integrals in momentum space representation.
Through suitable change of variables, it is possible to alter their appearance in order to take
advantages of properties made apparent by the new choice of variables. We will be particularly
interested in the so called Baikov representation [82,83], which allows to study the topological
structure of Feynman integrals as Aomoto Gel’Fand integrals [68]. In this representation, rather
than integrating over the loop momenta, the integration spans over the scalar products containing
qi. Defining l as the number of loops and n as the number of external legs, with n−1 independent
momenta, we label m = l + n − 1 as the total number of independent momenta. Then, it is
possible to cast the integration measure in the following form:

ddq1 · · · ddql = dm−1q1||d
d−m+1q1⊥ · · · dm−lql||dd−m+lql⊥ , (2.6)

where qi|| lies in the space spanned by {qi+1 . . . ql, p1 . . . pn−1}, while qi⊥ lies in the orthogonal
space. To better explain this factorization of the integration measure, it is represented in the
figure below.

span(q1, · · · , pn−1)

qi
q⊥i

q
‖
i

Introducing k = (q1 . . . ql, p1 . . . pn−1), where for i ≤ l we have ki = qi, while for i > l, we have
ki = pi−l we can define

G(q1, . . . , ql, p1, . . . , pn−1) = det(ki · kj) = det(sij) , (2.7)

which is the determinant of the Gram matrix G(q1, . . . , ql, p1, . . . , pn−1), the matrix that takes
as entries the scalar product between all the momenta appearing in the amplitude:

G =

 s11 · · · s1m
...

. . .
...

sm1 · · · smm

 . (2.8)

The Gram determinant could be interpreted as a volume in the momentum space, since G1/2

corresponds to the volume of the parallelotope spanned by the vectors q1, . . . , ql, p1, . . . , pn−1.
Then, by geometric considerations, the volume elements dm−iqi|| are

dm−iqi|| =
dsi,i+1dsi,i+2 · · · dsi,m

G1/2(qi, qi+1, . . . , ql, p1, . . . , pn − 1)
, (2.9)

in which Gram determinants appear at the denominator; hence, they correspond to the volumes
of the parallelogram formed by the momenta (qi, qi+1, . . . , ql, p1, . . . , pn−1).
In the case of the orthogonal components of the measure, we have

dd−m+iqi⊥ = Ωd−m+i−1|qi⊥|d−m+i−1d|qi⊥| =
1

2
Ωd−r+i−1(|qi⊥|)d−m+i−2dq2

i⊥ , (2.10)
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where |qi⊥| is the height of the parallelogram with the base formed by qi, qi+1, . . . , ql, p1, . . . , pn−1,
while Ωd is the d−dimensional solid angle. If we reinterpret |qi⊥| as the volume of the whole
parallelogram divided by the area of its base, and we replace dq2

i⊥ with dsii, we arrive at

dd−m+iqi⊥ =
1

2
Ωd−m+i−1

(
G(qi + 1, qi+2, . . . , ql, p1, . . . , pn−1)

G(qi+1, qi+2, . . . , ql, p1, . . . , pn−1)

) d−m+i−2
2

dsii . (2.11)

After all these considerations, putting everything back together yields

∫
C

l∏
1

ddqi
(2π)d

1

Dx1
1 · · ·D

xr
r

=
1

(2π)d
πdl/2−l(l−1)/4−l(n−1)/2∏l

i=1 Γ(d−m+i
2 )

G(p1, . . . , pn−1)
−d+n

2

∫
C

l∏
i=1

r∏
j≥i

dsij B
d−m−1

2
1

Dx1
1 · · ·D

xr
r
,

(2.12)

with C being the region of integration, while B = G(q1, q2, . . . , ql, p1, . . . , pn−1). C can be rather
complicate, nevertheless as proven in [84] its boundaries are determined by the brunch cat of
the integrand. Considering that the integrand contains the Gram determinant raised to a non
integer power, this condition can be translated to the vanishing of the Gram determinant on ∂C.

Integration Boundaries

Let us analyze how to derive the explicit boundaries of integration for this representation of
Feynman integrals. We will start by fixing all the boundaries of sii by their positivity condition,
and then we fix the boundaries of sij with i 6= j by G(q, · · · , pn−1) ≥ 0. Considering the
remaining scalar products, we can set greater and greater minors of the Gram determinant to 0
until we impose this condition on the Gram determinant built with all the momenta appearing
in the amplitude, in order to determine the boundaries for the last scalar product. In this way,
one can determine the whole integration domain. This idea leads to the following expression,
with the integration domain written explicitly:

∫
C

l∏
1

ddqi
(2π)d

1

Dx1
1 · · ·D

xr
r

=

K

∫ +∞

0
ds11 · · ·

∫ +∞

0
dsll

∫
G(q1,p1)≥0

ds1,l+1 · · ·
∫
G(q1,p1,...,pn−1)≥0

ds1m

· · ·
∫
G(ql,p1,...,pn−1)≥0

dslm

∫
G(q1,q2,p1,...,pn−1)≥0

ds12 · · ·
∫
G(q1,ql,p1,...,pn−1)≥0

ds1l∫
G(q1,q2,q3,...,pn−1)≥0

ds23 · · ·
∫
G(q1,...,ql,p1,...,pn−1)≥0

dsl−1,l
B

d−m−1
2

Dx1
1 · · ·D

xr
r
. (2.13)

where we have labelled the prefactor appearing in eq. (2.12) K.
Alternatively we can write it as a multiplication of productoria,

∫
C

l∏
1

ddqi
(2π)d

1

Dx1
1 · · ·D

xr
r

= K
l∏

i=1

[∫ +∞

0
dsii

] l∏
i=1

n−1∏
j=1

[∫
G(qi,p1,...,pj)≥0

dsi,l+j

]
l−1∏
i=1

l∏
j=i+1

[∫
G(q1,...,qi,qj ,p1,...,pn−1)≥0

dsij

]
B

d−m−1
2

Dx1
1 · · ·D

xr
r
. (2.14)
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The advantage of using this formula is that the 0 of a generic Gram determinant is known. In
fact, using Laplace’s formula to expand the determinant, one finds

G(q1, q2, . . . , qL, p1, . . . , pE) = (sij)
2a+ sijbij + cij , (2.15)

with

aij =
1

2

∂2G

∂s2
ij

,

bij =
∂G

∂sij

∣∣∣∣
sij=0

, (2.16)

cij = G|sij=0 .

Hence to evaluate explicitly the integration boundaries, one needs to solve a second-order
equation, obtaining

G = 0 ⇒ sij =
bij ±

√
GiiG

j
j

Gijij
, (2.17)

with

Gji = det



s11 · · · s1,j−1 s1,j+1 · · · s1M
...

. . .
...

...
...

si−1,1 · · · si−1,j−1 si−1,j+1 · · · si−1,M

si+1,1 · · · si+1,j−1 si+1,j+1 · · · si+1,M
...

...
...

. . .
...

sM1 · · · sM,j−1 sM,j+1 · · · sMM


, (2.18)

the determinant of the Gram matrix without the i-th row and j-th column, while

bij = (−1)i+j 2 det
[
Gji

]∣∣∣
sij=0

. (2.19)

Further details on the derivation of this result can be found in [85]

Denominators as variables

Thanks to the auxiliary numerators defined in (2.5), multi-loop integrals have the same number
of denominators and of scalar products. Moreover, naming the formers as za, there exists a
linear transformation Aija such that we can write

za =
l∑

i=1

m∑
j=i

Aija sij +m2
a , (2.20)

where the mass has a positive sign in front of it due to the Euclidean prescription, otherwise
the sign would be the opposite. At one-loop, Aija is always invertible, since the number of
scalar products and denominators are equal, while at higher loop this is not granted because
we can have irreducible scalar products. In that case, we introduce new variables za, or new
denominators that depend on ISPs, and write them with a positive exponent.
This allows to define an Aija which is always invertible (considering ij as a single index spanning
from 1 to r, as does the index a). Hence, we can write:

sij =

r∑
a=1

Aaij(za −m2
a) . (2.21)
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Given the above relation, we can perform a change of variables integrating now over the
denominators za instead of the scalar products.
Applying this change of variables to eq. (2.12) yields

I =
πDl/2−l(l−1)/4−l(n−1)/2

(2π)d
∏l
i=1 Γ(D−m+i

2 )
G(p1, . . . , pn−1)

−D+n
2 detAaij

∫ ∏N
a=1 dza

zα1
1 · · · z

αr
r
B(z)

D−m−1
2 , (2.22)

where the couple (ij) in detAaij is considered as a single index and B(z1−m2
1, . . . , zr −m2

r) is the
Gram determinant written as a function of the denominators, also labeled Baikov Polynomial.
In general, we will refer to integrals in parametric representation as [1–3,68]

I = K

∫
u ϕ (2.23)

where

u = Bγ , γ ≡ d−m− 1

2
(2.24)

and

ϕ ≡ ϕ̂drz , ϕ̂ ≡ f(z

za11 za22 · · · z
ar
r
, drz ≡ dz1 ∧ dz2 ∧ · · · ∧ dzr , (2.25)

in order to ease the notation. In this form, u represents the multivalued component of the
integrands encoded in Bγ , ϕ contains the measure of integration and the denominators raised
to their respective powers, f is a rational function of the zi, and K is a constant pre-factor
(independent of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d, as one can observe from eq. (2.22). Let us stress that we
will omit the prefactor K when it doesn’t play any role in the computation considered.

Loop-by-Loop Baikov representation

An alternative version of this representation considers a more efficient approach in order to
minimize the number of integration variables that we are left with in the final integral. Indeed
there could be integration variables that appear only in B(z) and not in our integral. In
such cases we would like to find an automatic way to have the least possible amount of them,
integrating out as many as possible of such variables.
To achieve this, the loop-by-loop Baikov representation [86] applies the variable changes outlined
in eq. (2.6) one-loop momentum at a time, instead of changing the integration variables all
together. This leads to an integral characterized by multiple Baikov polynomial

I = K

∫ ∏
i

Bγi
i ϕ , (2.26)

where the prefactor K, the Baikov polynomial and its exponents γi heavily depends on the order
with which the loop-by-loop parametrization has been applied. In this way we are left with
an integral which in most cases has a smaller (and never larger) number of variables than the
parametrization in eq. (2.22).

Cuts in Baikov representation

Within the Baikov representation, the generalized cut conditions in which propagators are set
on-shell (Di = 0) are most naturally expressed as a contour integration. Any multiple n-cut
integral, with D1 = D2 = · · · = Dn = 0, becomes

Ia1,a2,...,aN

∣∣∣
n-cut

≡ K

∫
Cn-cut
uϕ (2.27)
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where the deformed contour is defined as

Cn-cut = 	1 ∧ 	2 ∧ . . .∧ 	n ∧ C′ (2.28)

with the 	i-contours denoting a small loop in the complex plane around the pole at zi = 0. The
integration domain of the cut-integral is given accordingly by the geometric intersection of C
with the planes zi = 0, (i = 1, 2, . . . , n) defining the on-shell conditions,

C′ ≡
n⋂
i=1

{zi = 0} ∩ C. (2.29)

After integrating over the cut variables, the remaining integral becomes

Ia1,a2,...,ar

∣∣∣
n-cut

= K ′
∫
C′
u′ ϕ′ , (2.30)

with

K ′u′ = (Ku)
∣∣∣
z1=...=zm=0

, ϕ′ ≡ ϕ̂′ dr−nz′ , (2.31)

ϕ̂′ ≡ f(zn+1, . . . , zr)

z
an+1

n+1 · · · z
ar
r

(
Dn(u)

u

) ∣∣∣∣∣
z1=...=zn=0

, (2.32)

Dn ≡
n∏
i=1

∂
(ai−1)
zi

(ai − 1)!
, (2.33)

dr−nz′ ≡ dzn+1 ∧ · · · ∧ dzr , (2.34)

with u′ that vanishes on the boundary C′, and f is a rational function (see eqs. (2.25)).

Notation. In the following thesis, for ease of notation, when considering integral on the cut
we drop the prime symbol ′, in favor of using directly K, u, ϕ and z to express the various
quantities on the cut. Moreover, when integrals on the maximal cut are characterized by a
single ISP, we use the notation Ia1,a2,...,ar

∣∣
n-cut

≡ Ia1,...,ar;an+1 , where an+1 is the power of the
remaining irreducible scalar product.

2.1.2 Parallel and orthogonal space

As outlined in Section 2.1.1, the Baikov representation is very versatile and allows for a simple
implementation of the generalized cut approach. Let us consider it in the case in which the loop
momenta is split in two components, one parallel to physical four dimensions, and the other
orthogonal to it.
The loop momenta in this case becomes

qαi = qα[4]i + µαi qi · qj = q[4]i · q[4]j + µij (µij = µi · µj) . (2.35)

Substituting such decomposition into the expression of multiloop denominators (2.2), one obtains

Di = l2 +m2
i = l2[4]i +

∑
j,k

αijαikµjk +m2
i , (2.36)

where
lα[4]i =

∑
j

αijq
α
[4]j +

∑
j

βijp
α
j . (2.37)

With this choice of parameterization for the loop momenta, both the numerator and the
denominators will depend on the scalar products µij and the components of q[4]i with respect to
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a four-dimensional basis of vectors {eαi }, such that qα[4]i =
∑

j xije
α
j . It is then possible to apply

the Baikov parameterization seen in Section 2.1.1 to the extra dimensional component of the
integration measure, writing a generic multiloop integral as

I [d](l,n)[N ] = Ω
(l)
d

∫ l∏
i=1

d4q[4]i

∫ ∏
1≤i≤j≤l

dµijG(µij)
d−5−l

2
N (q[4]i, µij)∏
j Dj(q[4]i, µij)

, (2.38)

with G(µij) the Gram determinant as defined in (2.7), hence G(µij) = det(µi ·µj). The prefactor

Ω
(l)
d is the result of the angular integration over the angular directions.

In the same sense, it is always possible to split the loop momenta into orthogonal components,
choosing the directions that one prefers to perform the splitting. Let us discuss a more convenient
choice of directions for this procedure. Consider splitting the loop variables along the space
parallel to the external momenta and the space orthogonal to them. This parameterization in
the case of n ≥ 5 external leg coincides with the previous case, while in the other cases it is
different, but nonetheless ease the calculation of the integral.
Defining d‖ as the dimension of the space spanned by the external momenta, one finds that it is
possible to choose 4− d‖ of the vectors that belong to the basis {eαi } to lie into the subspace
orthogonal to the external kinematics, i.e., such that

ei · pj = 0 for i > d‖, ∀j (2.39)

and
ei · ej = δij . (2.40)

In this way, the loop momenta can be written in its d = d‖ + d⊥ component as

qαi = qα‖ + λαi , (2.41)

where

qα‖ =

d‖∑
j=1

xije
α
j λαi =

4∑
j=d‖+1

xije
α
j + µαi , (2.42)

with q‖ that lies in the d‖ space, while λi belongs to the orthogonal d⊥ dimensional one. In
this parameterization all the denominators become independent from the single orthogonal
component of the transverse loop momenta and they depend only on the scalar products between
them. In fact, the denominators appear as

Di = l2‖i +
∑
j,k

αijαikλjk +m2
i , (2.43)

with
lα‖i =

∑
j

αijq
α
‖j +

∑
j

βijp
α
j (2.44)

and

λjk =
4∑

l=d‖+1

xjlxlk + µjk . (2.45)

In light of these manipulations, the integral becomes

Id(`,n)[N ] = Ω
(`)
d

∫ ∏̀
i=1

dn−1q‖i

∫ ∏̀
1≤i≤j

dλijG(λij)
d⊥−1−`

2

∫
d(4−d‖)`Θ⊥

N (q‖i, λij ,Θ⊥)∏
j Dj(q‖i, λij)

, (2.46)

where Θ⊥ parameterizes the integral over the single orthogonal component λi that lies in the
four dimensional space.
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2.2 Properties

2.2.1 IBPs

Feynman integrals enjoy many properties which can be exploited in order to ease the computation
of scattering amplitudes. One of which comes from the symmetry of the integrals Id(x1, . . . , xs)
with respect to the linear shift of loop momenta

qαi → qαi + δbijk
α
j , (2.47)

where kj ∈ {q1, · · · , ql, p1, · · · , pn} and δbij is an infinitesimal parameter. Exploiting this
symmetry, it is possible to derive a large set of identities as shown in [83], linking complex
Feynman integrals to a set of building blocks, effectively breaking them down into a basis of
integrals. Such identities are called Integration-by-Part-Identities or IBPs.
Alternatively, one can study these relations by means of Gauss theorem in d dimensions.
Considering Feynman integrals in dimensional regularization, d is considered as a continuous
parameter and hence we can assume that the integral (2.5) is well defined and convergent. This
means that the integrand must vanish rapidly enough at the boundary of the integration domain.
This implies that when applying the Gauss theorem to the total derivative of any Feynman
integral, no boundary terms are generated, implying the vanishing of such integral

∫ l∏
i=1

dDqi
∂

∂qαj

(
vα

Dx1
1 · · ·D

xr
r

)
= 0 , (2.48)

where vα is a vector such that v ∈ {q1, · · · , ql, p1, · · · , pn}. Choosing to differentiate over any
loop momenta and by changing the vector vα over all its possible values, it is possible to produce
many independent IBPs for each integral.

Example

Let us briefly discuss the application of this method to the simplest example possible: the
one-loop integral without any external leg:

∫
dDq

(2π)D
1

q2 +m2
=

∫
dDq

(2π)D
1

D0
=

q

(2.49)

As a convention, the integral will be portrayed as a graph which has momentum conservation
applied at each vertex, and its internal lines will correspond to its denominators. If an internal
line has dots over it, it means that the denominator corresponding to that line is raised to the
power a− 1, with a being the number of dots appearing over it.

Applying the total derivative with respect to the loop momenta in this case, one obtains
∂µD0 = 2qµ. Therefore, choosing vµ = qµ, in the IBP equation (2.48) we have:

0 =

∫
dDq

(2π)D
∂µ

(
qµ

D0

)
=

∫
dDq

(2π)D

(
D

D0
− 2

q2

D2
0

)
=

∫
dDq

(2π)D

(
D − 2

D0
+

2m2

D2
0

)
. (2.50)

This yields ∫
dDq

(2π)D
1

D2
0

= −D − 2

2m2

∫
dDq

(2π)D
1

D0
(2.51)
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and can be portrayed as

= −D − 2

2m2
. (2.52)

Let us stress that this can be derived recursively for integrals of this kind with arbitrary power
of the denominator, linking many different objects to a common element.

The systematic application of this method to general multiloop integrals, allows to build
a system of identities of this kind, which, upon solution, allows to express Feynman integrals
in terms of a common basis of independent functions labeled master integrals by means of the
Laporta’s algorithm [87] and represent a crucial component of multi-loop amplitude computation.
Automatic software for generating and solving IBPs are publicly available, such as Reduze [61],
LiteRed [88], Kira [89].

2.2.2 Differential and Difference Equations for Feynman Integrals

Linear relations as the IBPs discussed above are useful to express the scattering amplitude in
terms of MIs. In order to complete such computation the missing piece is the evaluation of
the latter. For this goal IBPs play a key role, because they can be used to build differential
equations as well as finite difference equations obeyed by the MIs.
Such functional relations for the MIs can be generated from the action of special differential
operators and polynomials, say Q acting on the integrand of the MIs, say I. Generically, one
obtaines an equation of the type:

Q.I = A.I , (2.53)

where the right hand side is obtained after applying the IBPs to the result of the l.h.s, namely
after applying Q to the vector of MIs I. The matrix A = A(d,~s,m2) has rational entries
depending on the external kinematic invariants ~s, m2 and the dimensional parameter d.

2.2.3 Differential Equations

Let us consider the case in which Q is a differential operator. Starting from a Feynman integral
where the i-th internal line has a non-degenerate mass mi (hence this parameter appears only in
the i-th propagator), we have

∂m2
i
I

[d]
x1,···xi,··· ,xs = I

[d]
x1,··· ,xi+1,··· ,xs (2.54)

as follows from the definition of the denominators Di = l2i +m2
i , notice that in Minkowsky there

would be a different sign. In the case where the mass is degenerate, the only difference is that
on the right hand side more terms would appear.
As we can notice, the integral on the right hand side is the starting integral, plus a dot. As
we have shown, such integral can be reduced by means of IBPs to a linear combination of the
starting integral, plus some simpler one having

∂m2
i
I

[d]
x1,···xi,··· ,xs = Am2

i
I

[d]
x1,··· ,xi+1,··· ,xs + non homogeneus terms , (2.55)

where Am2
i

is a rational coefficient in the space-time dimension and the kinematic invariants due
to the properties of IBPs. The same goes for the coefficient multiplying integrals with lower
number of denominators.
This approach can be systematized, applying the derivative to a vector of suitably chosen Master
Integrals I(d,~s,m2

j ), yielding

∂m2
i
I(d,~s,m2

j ) = Am2
i
(d,~s,m2

j )I(d,~s,m2
j ) . (2.56)
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Similar systems of differential equation are obtained by deriving w.r.t. the external kinematical
parameter. Although Feynman integrals in momentum space retain a dependence on single pi
rather than the ~s parameters, it is possible to link the differential operators corresponding to
this two different set of variables. Knowing that

∂

∂pαi
=
∑
j

∂sj
∂pαi

∂

∂sj
. (2.57)

It is possible to build a set of independent scalar relation by contracting the above identity with
external momenta

pαk
∂

∂pαi
=
∑
j

∂sj
∂pαi

∂

∂sj
, (2.58)

which allows us to express the derivative w.r.t. the si in to a combination of derivative w.r.t.
the external momenta.
Applying such operators to Feynman integrals yields a result analogous to what is shown in
(2.56), therefore including m2

i in the vector ~s we can write the system of DEQs satisfied by MIs
in any kinematical variables si ∈ ~s

∂siI(d,~s) = Asi(d,~s)I(d,~s) , (2.59)

where Asi is a block triangular matrix with rational coefficients in xi and d.
It is often convenient to express our system of differential equations in terms of dimensionless
variables by choosing one of the variables ~s, say s1 (which is usually picked to be the mass) and
by building the ratios

ŝ =
si
s1

fori 6= 1 . (2.60)

The system of DEQ then is equivalent to consider the system w.r.t. ~̂s and the DEQ in s1. In
this way, after solving the DEQ in the single dimensionful parameter s1, the dependence of the
MIs on it can be removed by a suitable rescaling of the MIs to deal with a basis of dimensionless
integrals I.
The resulting system can be solved one variable at a time, by adding to the solution an integration
constant that depends on the remaining variables. The convergence of the integration procedure
is granted by the Schwartz integrability condition

∂ŝi∂ŝjI(d,~s) = ∂ŝj∂ŝiI(d,~s) , (2.61)

which applyed to (2.59), gives

∂ŝiAx̂j − ∂ŝjAx̂i +
[
Ax̂i ,Ax̂j

]
= 0 . (2.62)

After these passages, we are left with a residual integration constant which is independent
from the kinematics and must be fixed with suitable boundary conditions. This can be achieved
by the analytic evaluation of the MIs at some specific kinematic points, although it may be
quite a demanding task. A possible alternative is to impose regularity or finiteness of the MIs at
kinematic pseudo-thresholds.

Canonical system of differential equations

In the case of Feynman integrals, according to the physical problem, which, in general, can
be characterized by a critical number of dimensions, say d0, one might be interested in the
evaluation of the scattering amplitudes, hence of Feynman integrals in d→ d0 limit. Therefore,
we introduce the dimensional parameter, ε defined as

d = d0 − 2ε . (2.63)
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Singular behaviors, arising from loop integrations, are parameterized as poles in ε. For the same
reason, knowing the full dependence of the integral under consideration w.r.t. the dimensional
parameter may be unnecessary when not prohibitive. Therefore, we are interested in the Laurent
series expansions of Feynman integrals around ε = 0,

I(ε, ~x) =
∞∑

j=jmin

εjI(j)(~x) , (2.64)

which can be obtained by solving the system of DEQs,

dI(ε, ~x) = dA(ε, ~x).I(ε, ~x) , with dA ≡
∑
i

Axidxi , Axi ≡
∂A
∂xi

. (2.65)

Let us stress that in general the value kmin from which the Laurent expansion starts can be
negative and depends on the convergence properties of I(j)(~x). However, it might be convenient
to identify an alternative basis of MIs, say J = R.I, related to the original basis I through a
rotation matrix R, obeying a DEQ system, of the form [90],

dJ(ε, x) = ε dÂ(~x).J(ε, ~x) , (2.66)

with

dÂ = R−1(~x).dA(ε, ~x).R(~x)− R−1(~x).dR(~x) , (2.67)

where the ε dependence of the matrix is factorized from the kinematic dependence.

In this case, the solution J admits a Taylor series expansion in ε,

J(ε, ~x) =
∞∑
j=0

εjJ(j)(~x) . (2.68)

In particular, the coefficient of the series J(j), can be determined by repeated integration as

J(ε, ~x) = P exp

{
ε

∫
γ

dÂ
}
.J(ε, ~x0) (2.69)

like a Dyson series, or equivalently Magnus series [50], where the integration path is defined
as

γ(t) = γ(~x(t)) , t ∈ [0, 1] : γ(0) = ~x0 , γ(1) = ~x . (2.70)

When dÂ is a differential logarithmic (dlog) form, i.e.

dÂ(x) =
∑
i

Mi d log(ηi) , (2.71)

with rational ηi = ηi(x), the basis J is called canonical bases, and the coefficients of the Dyson
series have the property of uniform weight,

J(ε, ~x) =

(
1 + ε

∫
γ

dÂ(t1) +
1

2
ε2
∫
γ

∫
γ

dÂ(t1) dÂ(t2) + · · ·
)

J(ε, ~x0) . (2.72)
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Generalized Polylogarithms

The repeated integration appearing in the Dyson series of MIs, can be conveniently carried out
in terms of Generalized Polylogarithms (GPLs) [49, 91, 92] In particular they become useful,
when the entries of the matrix differential dÂ are rational functions of the variables of our SDE.
After introducing a linear parameterization of the letters ηi, in terms of the integration variable
t and the weight ωi as,

ηi = t− ωi , (2.73)

GPLs can be defined through the recursive formula,

G (~ωn, xi) =

∫ xi

0
dt

1

t− ω1
G (~ωn−1, t) n > 0 , (2.74)

G
(
~0n, xi

)
=

1

n!
logn (xi) . (2.75)

The following properties can be derived directly from the definition:
• Derivative:

∂

∂xi
G (~ωn, xi) =

1

xi − ω1
G (~ωn−1, xi) ; (2.76)

• Identical weights:

G (~ωn, xi) =
1

n!
logn

(
1− xi

ω

)
, ~ωn = {ω, · · · , ω}︸ ︷︷ ︸

n times

; (2.77)

• Rescaling:

G (~ωn, xi) = G (z ~ωn, z xi) , ωn 6= 0 . (2.78)

• Conversion formula:∫
γ

dlog (xi − ωn) · · · dlog (xi − ω1) = G

(
x0,i − ωn
x0,i − xi

, · · · , x0,i − ω1

x0,i − xi
, 1

)
, (2.79)

• Shuffle algebra:

G (~m, xi) G (~n, xi) = G (~m, xi)�G (~n, xi)
∑

~r=~m�~n

G (~r, xi) , (2.80)

where � denotes the shuffle products and ~ωr=m�n represents all possible merges between the
two vectors ~ωn and ~ωm which preserves their internal ordering.

2.2.4 Difference Equations

Let us consider now eq.(2.53), and mention how it can be used to build finite difference equations
for (FDE) MIs. We can distinguish two paradigmatic cases of FDE, namely when the recursion
is built on the space-time dimensions [93, 94] and when it is built in the power of a single
denominator.
• Dimensional Recurrence Relations.

Let us consider the i-th MI in d-dimensions I
[d]
i ∈ I[d], generically defined as

I
[d]
i ≡

∫ L∏
`=1

ddq`

(2π)d
1∏n

j=1D
ai,j
j

, with ai,j ∈ Z , (2.81)
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where the vector of exponents ~ai ≡ {ai,1, . . . , ai,n} stands for a list of integer powers, which
is characteristic of the integral itself. The integrals in d + 2-dimensions [93, 95] are defined
by inserting (powers of) Q, which is proportional to G(pi, qi), that is, the Gram determinant
introduced in eq. (2.7), in the numerator of any integral. In particular, if one power of Q is
inserted in the integrand of a MI, originally defined in d-dimensions, one gets the same MIs in
(d+ 2)-dimensions, as

I
[d+2]
i ≡

∫ L∏
`=1

ddq`

(2π)d
Q∏n

j=1D
ai,j
j

, (2.82)

The new born integral can be interpreted as an integral in d-dimensions, and decomposed in
terms of MIs in d-dimensions. Therefore, by applying it to all MIs, one derives a system of
equations like

I[d+2] = M(d, ~x).I[d] (2.83)

that relate the MIs in shifted dimensions, where the entries of the matrix M arise from IBPs.
Like any system of the 1st ODE for n MIs is equivalent to a single n-th ODE just for one MI,
this system is equivalent to single finite difference equations in d just for one of the MIs.

Using a different operator Q (built out of differential operators, rather than as a polynomial
in the scalar products) [93,95], it is also possible to generate an alternative, yet equivalent system

I[d−2] = N(d, ~x).I[d] , (2.84)

where MIs in (d− 2)-dimension are expressed in terms of MIs in d-dimensions. From this system
one can also build a single finite difference equation in d.

• Recurrence Relations in the denominator powers.
An alternative type of finite difference equation can be built by considering the definition in

eq.(2.81) for a given MIs, in d-dimension, and keeping one of the exponents in the denominator,
say ai,k as arbitrary, while all the other powers, ai,j ≡ z (j 6= k) are set to explicit integer
values [96],

I
[d]
i [z] ≡

∫ L∏
`=1

ddq`

(2π)d
1∏n

j=1D
ai,j
j

, with ∀j 6= k, ai,j ∈ Z , (2.85)

In this case, IBP identities can be used to write a recurrence relation for integrals of the I
[d]
i -type,

having shifted values of the exponent z, as∑
h

pi,h(z) I
[d]
i [z + h] = known term , (2.86)

where pi,h(z) are polynomials in z and the ”known term” is a non-homogeneous contribution
coming from integrals belonging to sub-diagrams, which can be considered known in a bottom-up
approach (namely, evaluating integrals starting from the simpler diagrams).

2.2.5 Initial Conditions

To solve differential and difference equations obeyed by the MIs, boundary values are needed
too, and they have to be provided as independent information, independent input. These initial
conditions correspond to the knowledge of the MIs at special values of the parameters: a given
point in the space of kinematic variables ~x = ~x0, for the case of the differential equation; a given
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value d = d∗ of the space-time dimension, or a given denominator power z = z0, for the case of
the difference equation. In general, the initial conditions are simpler integrals, related to the
subdiagrams/subsectors, generally integrals with fewer denominators, or with a reduced number
of scales, which are considered as easier to determine.

2.2.6 Numerical Integration

However, the analytic determination of the MIs may become prohibitive as the number of
loops and of scales increases. Numerical methods become of fundamental importance in these
cases: direct integration techniques, applied to Feynman parametrized integrals (or similar
parametrisations); Sector Decomposition Methods [97], implemented in public software like
SecDec [98] and Fiesta [99]; numerical solution of differential equations, of which [100,101]
are an example; numerical solutions of difference equation, see, for instance, [96,102].

In many cases, the combination of analytic and numerical evaluation methods are employed.
Often, boundary conditions for functional equations are provided numerically. Alternatively, the
use of functional equations can be exploited to identify bases of MIs which are more suitable (free
of singularities) for the numerical integration. Therefore, in the case of cutting edge calculation,
these techniques are used in tandem, allowing for a semi-analytic determination of MIs.

2.3 Adaptive integrand decomposition

In general, scattering amplitudes are expressed in terms of a sum of tensor integrals, whereas
the joint use of IBPs and Differential equation give a clear framework that helps in computing
it, once this is expressed in terms of scalar integrals. This demands for a procedure to simplify
the numerator and write it either as an object which is independent from the loop momenta
or as a combination of Irreducible Scalar Products. On top of that, one can be interested in
simplifying the Feynman integrals appearing in the amplitude before applying IBPs. Both this
goals are achievable thanks to the Adaptive integrand decomposition method [39,41,42]. In this
framework, one exploits the advantages of splitting the loop momenta between the space parallel
to the external momenta that characterizes the integral in consideration and its orthogonal space.
This technique adapts to the diagram to which it is applayed, reducing at minimum the number
of variables appearing at the denominator, enabling the direct integration of the variables that
appear only at the numerator and simplifying the use of integrand reduction techniques such as
the polynomial division.

2.3.1 Polynomial division

The integrand of a general Feynman integral is a rational function of the momenta and the
masses of the particles flowing in it, as shown in 2.1. It is therefore possible to apply polynomial
division until we are left with irreducible polynomials in order to simplify it. Defining

I
d(`,n)
i1,...,ia

[N ] =

∫
dDq1

(2π)D
· · · d

Dq`
(2π)D

Ii1,...,ia , Ii1,...,ia ≡
Ni1,...,ia

Di1 · · ·Dia

, (2.87)

through such technique it is possible to write the numerator as a quotient Qi1,...,ia , that depends
on the denominators, plus a remainder ∆i1,...,ia that is :

Ni1,...,ia = Qi1,...,ia + ∆i1,...,ia

=
a∑
k=1

Ni1,...,ik−1,ik+1,...,iaDk + ∆i1,...,ia . (2.88)
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In this way it is possible to reduce the integrand, in fact substituting (2.88) back into Ii1,...,ia
one finds that

Ii1,...,ia =
a∑
k=1

Ii1,...,ik−1,ik+1,...,ia +
∆i1,...,ia

Di1 · · ·Dia

. (2.89)

Iterating such procedure on the resulting Ii1,...,ik−1,ik+1,...,ia it is possible to write the integrand
as a combination of irreducible remainder, arriving to the final form

Ii1,...,ia ≡
Ni1,...,ia

Di1 · · ·Dia

=
a∑
k=1

∑
{j1···jk}

∆j1···jk
Dj1 · · ·Djk

. (2.90)

This procedure finds a natural description in mathematics through the use of ideals. Let us
label the integration variables to be zi. Defining P [zi] as the ring of all polynomials in the zi
variables, every set of indices i1, . . . , ia defines the ideal

Ii1...ia ≡ 〈Di1 , . . . , Dia〉 =

{
a∑
k=1

hk(zi)Dik(zi) : hk(zi) ∈ P [zi]

}
. (2.91)

With that definition in mind, the goal of the integrand reduction can be expressed as to write
the integrand as a contribution of irreducible polynomials ∆j1···jk , i.e. polynomials which contain
no contribution belonging in the corresponding ideal Ij1···jk .

2.3.2 The Divide, Integrate, Divide algorithm

In order to apply this machinery to our integrals, let us consider the parallel and perpendicular
parametrization of the integration variables seen in Section 2.1.2, namely integrating over the
set of variables

z = {x‖i, x⊥i, λij}, i, j = 1, . . . l , (2.92)

where x‖i describes the components of the loop momenta parallel to the external momenta

x‖i = {xji} wherej ≤ d‖ , (2.93)

whereas x⊥i parametrize the four dimension orthogonal components

x⊥i = {xji} where d‖ < j ≤ 4 . (2.94)

In this parametrization we have

Ii1,...,ia ≡
Ni1,...,ia

(
x‖i, x⊥i, λij

)∏
kDik

(
x‖i, λij

) (2.95)

and as we can see it is possible to perform the polynomial division with respect to the smaller set
of variables {x‖i, λij} rather than applying it with respect to the full set of integration variables.
Moreover, in this parametrization, it is possible to perform the polynomial division bypassing
the computation of the Groebner basis. As proved in [41], it is possible to build a linear system
in order to replace a subset of the x‖i integration variables which we will call xRSP‖i since they
corresponds to the Reducible Scalar Products, with a combination of denominator. The same
can be done with the λij variables using the same definition of a subset of denominators:x

RSP
‖i → P

[
Dik , x

ISP
‖i

]
λij → P

[
Dik , x

ISP
‖i

] . (2.96)
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Thanks to this substitution, we can express the numerator as follows

Ni1...ir
(
x‖i, x⊥i, λij

)
) =

r∑
k=1

Ni1...ik−1ik+1...ir

(
xISP‖i , x⊥i

)
Dik + ∆i1...ir

(
xISP‖i , x⊥i

)
, (2.97)

where xISP‖i are the parallel components which are connected to the ISPs.
From a mathematical standpoint, performing the polynomial division requires to select a
monomial ordering to obtain a unique result. In this case, this would correspond to perform it
in terms of the lexicographical order λij ≺ x‖i.
The integral can then be further parametrized, mapping the orthogonal components x⊥i into
the angles characterizing our problem and the length of the loop momenta:

x⊥i → P
[√

λii, sin Θ⊥, cos Θ⊥

]
. (2.98)

In this way, the polynomial dependence on x⊥i of any integrand is converted in to a polynomial
dependence on sin [Θ⊥,Λ] and cos [Θ⊥,Λ], enabling us to systematically perform the left over
angular integration through the properties of the Gegenbauer polynomial. Indeed, after mapping
our numerator in to such objects, one can carry out the integration using the orhtogonality
condition proper of such objects:∫ 1

−1
d cos θ (sin θ)2α−1C(α)

n (cos θ)C(α)
m (cos θ) = δmn

21−2απΓ (n+ 2α)

n!(n+ α)Γ2 (α)
, (2.99)

where the C
(α)
n (cos θ) are the Gegenbauer polynomial.In this way we obtain

∆int
i1...ir

(
xISP‖ , λij

)
=

∫ l∏
i=1

dx⊥i∆i1...ir

(
xISP‖ , x⊥i

)
(2.100)

∝
∫

d(4−d‖)lΘ⊥∆n−sp
i1...ir

(
xISP , λij ,Θ⊥

)
. (2.101)

The residues ∆int
i1...ir

(
xISP‖ , λij

)
can be still reduced by rewriting again the λij through eq. (2.96):

∆int
i1...ir

(
xISP‖ , λij

)
=

r∑
k=1

Ni1...ik−1ik+1...ir

(
xISP‖

)
+ ∆′i1...ir

(
xISP‖

)
. (2.102)

In this way, we were able to simplfy the Feynman integral and to rewrite it as a combination of
scalar integral with a numerator that contains components of the loop momenta only through
ISPs, writing it as

I
[d]`
i1,...,ia

=

r∑
k=0

∑
{j1...jk}

∫ ∏̀
j=1

ddqj
(2π)d

∆′j1...jk
Dj1 . . . Djk

, (2.103)

ready to undergo the IBP reduction.
This approach has been applyed in many cases. In particular the variables remaining after each
step of the algorithm in few two-loop cases are shown in Figures 2.1, 2.2, 2.3, 2.4.
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Figure 2.1: Universal irreducible numerators for two-loop four-point topologies. For each of the
residues, ∆i1···in ,∆

int
i1···in and ∆′i1···in we indicate the number of monomials and the list of their

variables.

Figure 2.2: Universal irreducible numerators for two-loop three-point topologies. For each of the
residues, ∆i1···in ,∆

int
i1···in and ∆′i1···in we indicate the number of monomials and the list of their

variables.

2.3.3 Example: muon-electron scattering

The amplitude of the muon electron scattering at one-loop is described by the 6 diagram
presented in Figure 2.5.

In particular, we will take a look at the virtual contribution to the σNLO which can be written as

2ReA(0)∗
b A(1)

b =

∫
ddq

(2π)d

6∑
j=1

Ij . (2.104)

The integrand that will be used as an imput for the Adaptive Integrand Decomposition
Algorithm (AIDA) can be organized organized in to three groups

G1 = {I1, I6} , G1 = {I3, I2, I5} , G2 = {I4} , (2.105)
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Figure 2.3: Universal irreducible numerators for two-loop two-point topologies. For each of the
residues, ∆i1···in ,∆

int
i1···in and ∆′i1···in we indicate the number of monomials and the list of their

variables.

Figure 2.4: Universal irreducible numerators for two-loop one-point topologies. For each of the
residues, ∆i1···in ,∆

int
i1···in and ∆′i1···in we indicate the number of monomials and the list of their

variables.

Figure 2.5: Feynman diagrams fo the µe scattering at one-loop.

characterized by the following set of denominators

G1 : D1 = q2 −m2,

D2 = (q + p1)2,

D3 = (q + p1 − p4)2 −m2,

G2 : D1 = q2,

D2 = (q + p1)2 −m2,

D3 = (q + p1 − p4)2,

D4 = (q + p1 − p4 − p3)2,

G3 : D1 = q2,

D2 = (q + p2)2,

D3 = (q + p2 − p4)2 −m2,

D4 = (q + p1 + p2 − p4)2

Through the use of AIDA, we can then express this contribution as

2ReA(0)
b ∗ A

(1)
b =

∫
ddq

(2π)d

[
c1

D1D3
+

c2

D1D2D3

]
G1

+

[
c3

D2
+

c4

D1D2
+

c5

D2D4
+
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+
c6

D1D3
+

c7

D1D3D4
+

c8

D2D3D4
+

c9

D1D2D3
+

c10

D1D2D3D4

]
G2

+

+

[
c11

D2D4
+

c12

D1D3D4
+

c13

D1D2D3D4

]
G3

(2.106)
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Chapter 3

Muon Electron scattering

3.1 Introduction

Magnetic moments

The magnetic dipole momentum is an observable enjoyed by particles , together with the charge,
spin and mass, which is currently under investigation in the case of the muon due to a tension
between its expected value in the Standard Model and the measured one. Defining as ~l = m~r×~v
the angular momentum of a particle spinning around an axis, we can define the magnetic dipole
momentum as

~µl =
q

2m
~l . (3.1)

Indeed, particles also enjoy an intrinsic quantized angular momentum, the spin, represented
by the spin-1

2 operator ~Σ (built on the Puali matrices σi, i = 1, 2, 3). Replacing the angular
momentum with the spin, we can define the magnetic dipole momentum of a particle as

~µs =
q

2m
g~Σ , (3.2)

where g is a proportionality constant.
The anomalous magnetic dipole moment is computed considering the interaction of a particle, a
lepton in the case we are treating, with an external electromagnetic field. In the framework of
quantum field theory, this interaction is described by a graph with 3 external lines, computed in
a perturbative series:

The tree-level diagram corresponds to the ”classical” limit, the result obtained by taking the
non-relativistic limit of the interaction between the particle described by the Dirac equation
and the external 4-potential. At the first order in the perturbative expansion in QFT, the
computation of µs yields g = 2, whereas the loop correction amounts to smaller deviation from
this value as one goes further in the perturbative expansion. Therefore, it is more convinient to
work with

al =
(gl − 2)

2
, (3.3)

35
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where l is the lepton we are considering (l = e, µ, τ). This quantity that encodes the discrepancy
from the ”classical” limit is known as anomaly. Radiative corrections contain richer interactions
than the tree-level counterpart, involving also processes proper of the Electro-Weak and Strong
interaction. Thus, the match between measurements and prediction is either a verification of
the validity of the Standard Model (SM) or an evidence for new physics still unexplored.
Hystorically, the first anomaly factor observed was ae. Its accurate measurement was performed
in 1948 by Kusch and Foley [103], producing ge = 2, 00238(6). Its theoretical prediction at the
lowest order in the radiative correction was first calculated by Schwinger [104] in QED

ge = 2
(

1 +
α

2π

)
≈ 2.00232 (3.4)

→ ae =
α

2π
≈ 0.00116 , (3.5)

yielding the first compelling evidence of the validity of the QFT framework. Since then, ae has
been evaluated up to 5 loop order of precision [105] and is in agreement with the state of the art
measurement [106].

In this work, we will address the anomalous magnetic moment of another lepton, the muon.
Given the difference in mass with its lighter counterpart, aµ appears to be more sensitive beyond
the standard-model effects. This is because the sensitivity of some leptonic g-factor to unknown
short-range interaction ought to scale as

δal
al
∼
m2
l

Λ2
(3.6)

taking into account that (mµ/me)
2 ∼ 104, aµ is expected to be 40000 times more sensible than

ae to beyond the standard model physics, making it a very good ”monitor for new physics”.
Completing the overview of all the leptonic anomalous momentum, aτ would be even more
sensible to this new short range interaction if we could measure it with comparable precision.
However, this is beyond our experimental possibilities due to the very short lifetime of τ .
The up to date experimental value for aµ, obtained after the run-1 of Fermilab g − 2 experiment
[107], is

aexpµ = 116592061(41) × 10−11 , (3.7)

whereas the best Standard Model prediction for this observable adds up to [11]

aSMµ = 116591810(43) × 10−11 , (3.8)

displaying a discrepancy of ∼ 4.2σ with its experimental measurement.
This tension demands a deeper investigation for this physical observable, both theoretically and
experimentally.

From the theoretical point of view, the anomalous magnetic dipole moment receives contri-
bution from different sectors of the standard model, in particular, we can write

aSMµ = aQEDµ + aEWµ + aHADµ . (3.9)

The QED and the EW contribution [11] are, respectively,

aQEDµ = 116584718.931(0.104) × 10−11 (3.10)

aEWµ = 153.6(1.0) × 10−11 (3.11)

and, as we can see, are known with good precision compared to the final theoretical estimate of
eq. 3.8. In fact, the major contribution to the uncertainty of the total estimate comes from the
strong sector, and thus aHADµ requires an enhancement of the precision of its estimated value.
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Hadrons appear in the anomalous magnetic moment only at higher loop order, mainly
through a Vacuum Polarization insertion or as a Light by Light (LbL) scattering as depicted
below.

The up-to-date estimates for these components of aµ are

aHLbLµ = 92(18) × 10−11 (3.12)

aHV Pµ = 6845(40) × 10−11, (3.13)

showcasing how their uncertainties are dominant with respect to aQEDµ and aEWµ .
Given the nature of strong interactions, perturbative quantum mechanics alone is not enough to
obtain sensible estimates of aHADµ , therefore many techniques such as lattice calculation and
data-driven method are used.
A comparison of published result reguarding HVP and HLbL is shown in Figure 3.1

Figure 3.1: Left: Comparison of HLbL evaluations to earlier estimates (orange)[CITAZIONI da
aggiungere] and more recent lattice calculation (open blue). Right: Comparison of theoretical
predictions of aµ with experiment (orange band). Each data point represents a different evaluation
of leading-order HVP, to which the remaining SM contributions have been added. Red squares
show data driven results; filled blue circles indicate lattice-QCD calculations that where taken
into account in the WP20 lattice average, while the open ones show results published after the
deadline for conclusion in the average; the purple triangle give a hybrid of the two. The SM
prediction is shown as the black square and gray band.

We will focus on aHV Pµ , the leading hadronic contribution to aHADµ , and a more precise
estimate of its value will be the subject of the following chapter.

MUonE experiment

Starting from the corresponding Feynman diagram, after due manipulation and rewriting the
Vacuum Polarization ΠHAD through a dispersion relation, the integral describing aHV Pµ is written
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as

aHV Pµ =
α

π

∫ ∞
4m2

π

ds

s

∫ 1

0
dx

x2(1− x)

x2 + s
m2
µ

(1− x)

1

π
Im [Πh(s)] . (3.14)

In the range of energies where QCD becomes non-perturbative, we can evaluate the hadronic
VP through the experimental measure of the electron annihilation cross section thanks to the
optical theorem, since they are related by the following identity:

σ(s)[e+e−→Hadrons] =
4π2α

s

1

π
Im [Πh(s)] . (3.15)

However, this measure presents a series of challenges, such as the selection of the desired hadronic
states that need to be measured separately, the systematic uncertainty and the use of different
experimental techniques, which prevent us from reaching the desired precision in determining
aHV Pµ .

An alternative to this data-driven method is proposed in [13], in which one observes that by
exchanging the integration order between the variables x and t the integration over dt can be
carried out as a dispersion relation, yielding

aHV Pµ =
α

π

∫ 1

0
dx(1− x)

∫ ∞
4m2

π

ds

s

x2

1−xm
2
µ

s+ x2

1−xm
2
µ

1

π
Im [Πh(s)] (3.16)

= −α
π

∫ 1

0
dx(1− x)Πh [t(x)] , (3.17)

where t(x) =
x2m2

µ

1−x < 0, thus the VP is evaluated in the space-like region.
Given that ∆αh(t) is related to the running of the QED coupling by Πh(t) = −∆αh(t), it is
possible to formulate a procedure to measure the Hadronic VP correction to aµ by actually
measuring the hadronic contribution to the running of α. One first measure ∆α in the space-like
region, subtract the known QED contribution and the result is then substituted into

aHV Pµ =
α

π

∫ 1

0
dx (1− x) ∆αh[t(x)] . (3.18)

This would provide an independent cross-check to the previous, more standard approach.
Moreover, this procedure avoids measures of processes with hadronic final states, keeping them
completely virtual, and working in the space-like region prevents us from encountering spikes
and throts in the VP function, which appear in the time-like region due to phenomena such as
pair-production of particles and threshold behavior.

In conclusion, the estimate of aHV Pµ involves the evaluation of the running of α from the
cross section of a physical process. The MUonE proposal [14] aims to obtain ∆αh(t) from the
measure of the scattering µ±(p1) e−(p2)→ µ±(p3) e−(p4), with the focus on the precise estimate
of the leading order contribution to aHV Pµ :
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As a final remark, let us stress that, in this measure, hadronic next to leading order
contributions need to be considered since they alter the final result by a relevant amount [108].
This is achieved by evaluating them in an analogous way to what has been done in eq. 3.14,
using-time like measurement of σ(s)[e+e−→Hadrons]. Then these quantities have to be subtracted
from the data together with the QED contribution to the running of alpha, as portrayed in the
following equation:

NLO-hadronic

=

data

−

QED-Leptonic
[analytic]

− −

NNLO-hadronic
[semi-numerical]

−

− −

NNLO-hadronic
[semi-numerical]

+ higher order terms . (3.19)

3.1.1 The QED cross section

The precise estimate of aHV Pµ is intertwined with the accurate determination of all the compo-
nents of eq. (3.19). For what concerns the quantities coming from a purely theoretical scope, the
evaluation of the QED cross section up to the required accuracy is still a problem under investi-
gation. In this case, given the properties of the electromagnetic interaction, the computation for
this quantity can be arranged in a perturbative expansion

dσ = dσ(0) + dσ(1) + dσ(2) +O
(
α2+n

)
, (3.20)

in which the apex n of dσ(n) represents the power of α2+n to which the said cross-section
component is proportional to. These elements are computed through the squared amplitude
integrated over the phase space Φn of the n particles appearing in it, in this case n = 2. The
Leading Order (LO) contribution dσ(0) is

dσ(0) =

∫
dΦnM(0)

n =

∫
dΦn

∣∣∣A(0)
n

∣∣∣2 . (3.21)

In the Next to Leading Order (NLO) case represented by dσ(1) other than the amplitude

M(1)
n =M(1)(e− µ± → e− µ±), denominated as the virtual contribution, we have to consider

an additional squared amplitude, the real component of the cross section dσ(r):

dσ(1) = dσ(v) + dσ(r) =

∫
dΦnM(1)

n +

∫
dΦn+1 M(0)

n+1 , (3.22)

where

M(0)
n+1 =

∣∣∣A(0)
n+1

∣∣∣2 (3.23)

M(1)
n = 2 Re

[
A(1)
n ×

(
A(0)
n

)∗]
. (3.24)

The real cross section is integrated over the n + 1’s particle phase space, and describes the
scattering of the same particles, but has an additional photon between the final states of the

reaction: M(0)
n+1 =M(0)(e− µ± → e− µ±γ).

Although the LO and NLO contribution to the cross section are known [109,110], the evaluation
of dσ(2) represents a crucial, yet challenging, computation that has yet to be completed.
At Next to Next to Leading Order (NNLO) the complexity of the calculation grows even further:

dσ(2) =dσ(vv) + dσ(vr) + dσ(rr) (3.25)
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=

∫
dΦnM(2)

n +

∫
dΦn+1 M(1)

n+1 +

∫
dΦn+2 M(0)

n+2 , (3.26)

where

M(0)
n+2 =

∣∣∣A(0)
n+2

∣∣∣2 (3.27)

M(1)
n+1 = 2 Re

[
A(1)
n+1 ×

(
A(0)
n+1

)∗]
(3.28)

M(2)
n = 2 Re

[
A(2)
n ×

(
A(0)
n

)∗]
, (3.29)

involving real and double real (hence, with two additional photons in the final states) contribu-
tions.
Among all the components of the NNLO cross section required for the MUonE experiment, we

will discuss the calculation of the two-loop amplitude M(2)
n [4], essential for the evaluation of

dσ(vv).

3.2 The Amplitude analytical evaluation

Let us consider the annihilation reaction between a massless fermion f (mf = 0) and its
antiparticle, producing a particle-antiparticle couple of heavier fermions F that have a non-zero
mass (mF = M):

f−(p1) + f+(p2)→ F−(p3) + F+(p4) . (3.30)

This scattering is parameterized by the mandelstam invariants

s = (p1 + p2)2, t = (p1 − p3)2, and u = (p2 − p3)2 , (3.31)

satisfying the condition s+ t+ u = 2M2. This amplitude is linked to the scattering required
for the MUonE experiment through a crossing relation, a substitution rule for the mandelstam
invariant, with the advantage of easing the cross-check of the result.
The four-point unrenormalized or bare amplitude Ab for this process admits a perturbative
expansion in the bare coupling constant αb ≡ e2

b/4π, which up to the inclusion of second-order
corrections reads as

Ab (αb) = 4παb Sε µ
−2ε

×
[
A(0)

b +
(αb

π

)
A(1)

b +
(αb

π

)2
A(2)

b

]
, (3.32)

where A(n)
b indicates the n-loop bare amplitude, Sε ≡ (4πe−γE )ε and µ is the ’t Hooft mass scale.

The leading order (LO) term A(0)
b , referred to as Born term, receives contribution from a single

tree-level Feynman diagram,

and its squared LO amplitude, summed over the final spins and averaged over the initial states,
reads

M(0)
b =

1

4

∑
spins

|A(0)
b |

2
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=
1

s2

[
2(1− ε)s2 + 4

(
t−M2

)2
+ 4st

]
, (3.33)

for external states treated in d = 4− 2ε space-time dimensions according to the conventional
dimensional regularization (CDR) scheme [111], which we use throughout the whole computation.

The analytic evaluation of M(1)
b and M(2)

b has been completely automated, within an in-house
software, which can be applied to generic one- and two-loop amplitudes. As a first step, the
Feynman diagrams contributing to the NLO and NNLO corrections to the scattering amplitudes
are generated through the Mathematica package FeynArts [112], and they are depicted in
Fig. 3.2 and Fig. 3.3 respectively. The algebraic manipulation to simplify the Dirac-γ algebra

Figure 3.2: One-loop diagrams for the e+ e− → µ+µ− scattering

Figure 3.3: Diagrams appearing in the two loop amplitude for e+ e− → µ+µ− scattering

and the spin sum are carried out by means of the FeynCalc [113–115] package. Each n-loop
graph G (interfered with the Born amplitude) corresponds to an integrand written in terms of
scalar products between external, pνi , and internal, kνi , momenta. Therefore, the ` loop bare
amplitude can be written in general as [can be generically written as,

M(`)
b = (Sε)

`

∫ ∏̀
i=1

ddqi
(2π)d

∑
G

NG∏
σ∈GDσ

, (3.34)
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where: NG = NG(pi, ki) indicates the numerator, and Dσ = Dσ(pi, ki,M) are the denominators
corresponding to the internal lines of the integral family G.

Integrands are simplified by employing the adaptive integrand decomposition method, imple-
mented in the Aida framework [116] to

M(`)
b = (Sε)

`
∫ ∏̀

i=1

ddqi
(2π)d

∑
G

r∑
k=0

∑
{i1...ik}

∆′i1...ik;G

Di1 . . . Dik

. (3.35)

At this point, the intermediate results emerging from the integrand decomposition can be further
simplified by means of IBP identities [87, 117]. Our software is interfaced with the publicly
available codes Reduze [61] and Kira [64], and, for each diagram, it produces the files for the
automatic generation of the IBP relations.

After the decomposition phase, the interference terms M(`)
b become linear combinations of a set

of Master Integrals I(`),

M(`)
b = C(`) · I(`) , (3.36)

where C(`) is a vector of coefficients that are rational functions of ε and the kinematic variables,

s, t,M2. In particular, M(1)
b and M(2)

b are conveniently expressed in terms of 12 and 264 MIs
respectively, which have been already analytically computed. Two- and three-point functions
have been known since long [46,118,119], while planar and non-planar four-point integrals were
computed in [51, 52], using the differential equation method by the Magnus exponential, and
independently in [120–122] and are depicted in Fig 3.4.

Lastly, the analytic expressions of M(n)
b can be written as a Laurent series around d = 4

space-time dimensions (ε = 0)

M(n)
b =

∑
i

biε
i, (3.37)

with the coefficients bi that contain Generalized Polylogarithms (GPLs) [49], iterated integrals
defined in eq. (2.74).
Specifically, in our case the two-loop interference term contains 4063 GPLs with up to weight
four, whose arguments are written in terms of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations,

− s

M2
= x, − t

M2
=

(1− y)2

y
, −u−M

2

s−M2
=
z2

y
. (3.38)

(see [51,52] for more details). For the numerical evaluation of GPLs, we use public libraries as
GiNaC [92] and HandyG [123]. The flow chart of the entire algorithm is shown in Fig. 3.5.

3.2.1 Renormalization

The one- and two-loop diagrams contributing to M(1)
b and M(2)

b contain infrared (IR) and
ultraviolet (UV) divergences, the latter of which needs to be removed to compute the cross
section. To do so, the bare lepton fields (ψl, with l = f, F , for massless and massive leptons,
respectively) and the photon field (Aµ), as well as the bare mass of the massive lepton are
renormalized as follows,

ψb =
√
Z2 ψ, Aµb =

√
Z3A

µ, Mb = ZMM , (3.39)

where, to simplify the notation, the label l in the lepton fields is understood and restored when
required. The renormalization of the QED interaction vertex,

Lint = eb ψ̄b /Ab ψb = eZ1 ψ̄ /Aψ , (3.40)
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Figure 3.4: Two-loop 4-particles MI required for the computation of the two-loop Amplitude.
The thicker lines indicate massive particles.
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Process specification
and number of loops

Amplitude generation

M(`)
b =

∑
G

IG , IG =

∫
NG∏
σDσ

Integrand reduction

M(`)
b =

∑
G

∫ ] of den∑
k=i

∑
{j1,··· ,jk}

∆′j1,··· ,jk;G

Dj1 · · ·Djk

IBP reduction

M(`)
b = C(`) · I(`) ,

M.I. evaluation

M(`)
b =

∑
i

biε
i

Figure 3.5: Flow chart of the algorithm for the evaluation of scattering amplitude
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can then be entirely fixed using the QED Ward identity, which implies Z1 = Z2. This leads to
a simple relation between the renormalized charge and the bare charge (obtained by applying
Eq. (3.39) to the bare interaction term and comparing the two renormalized expressions)
eZ1 = eb Z2

√
Z3, yielding e = eb

√
Z3. The lepton wave functions and the mass of the massive

lepton are renormalized in the on-shell scheme, namely, Z2,f = ZOS
2,f , Z2,F = ZOS

2,F , ZM = ZOS
M .

The coupling constant is renormalized in the MS scheme at the scale µ2,

αb Sε = α(µ2)µ2ε ZMS
α , (3.41)

with ZMS
α = 1/ZMS

3 . In this way, the renormalized amplitude is obtained by multiplying the bare
amplitude by a factor

√
Z2,l for any external lepton l, hence,

A = Z2,f Z2,F Âb , (3.42)

where Âb = Ab (αb = αb(α),Mb = Mb(M)), namely expressing the bare coupling and mass in
terms of their renormalized counterparts.
Let us observe that A depends on four renormalization constants, namely ZMS

α , ZOS
2,f , Z

OS
2,F , Z

OS
M .

They are simply indicated as Zj , with j = {α, f, F,M} respectively, and admit a perturbative
expansions in α,

Zj = 1 +
(α
π

)
δZ

(1)
j +

(α
π

)2
δZ

(2)
j +O(α3) . (3.43)

They are computed from a subset of one- and two-loop integrals appearing in the amplitude
and their derivation can be summarized as follows:

• ZF receives contribution both at one- and two-loops in the form of δZ
(1)
F and δZ

(2)
F respectively.

In the first case, the counterterm is evaluated from the one-loop diagram

in the s = 0 limit, yielding

δZ
(1)
F = − 3

4ε
− 3Lµ

4
− 1

+ ε

(
−

3L2
µ

8
− Lµ −

π2

16
− 2

)
(3.44)

+ ε2

(
−
L3
µ

8
−
L2
µ

2
− π2Lµ

16
− 2Lµ +

ζ3

4
− π2

12
− 4

)
,

with Lµ ≡ ln
(
µ2/M2

)
. In the second case, instead, the following two-loop diagrams need to

be considered

Combining them with the one-loop counterterm diagrams
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and taking the s = 0 limit yields the second-order component of the counterterm:

δZ
(2)
F = nh

(
1

ε

(
Lµ
4

+
1

16

)
+

3L2
µ

8
+

11Lµ
24
− 5π2

16
+

947

288

)

+ nl

(
− 1

8ε2
+

11

48ε
+
L2
µ

8
+

19Lµ
24

+
π2

12
+

113

96

)
;

• Zf receives a contribution only at two-loop. This is because the Feynman integral that should

contribute to δZ
(1)
f results in a scaleless integral once we evaluate it in the kinematical limit

needed for the on shell counterterm. For the same reason, at two-loop the only integral

contributing to δZ
(2)
f is

which, combined with its one-loop counterterm

gives

δZ
(2)
f = nh

(
Lµ
8

+
1

16ε
− 5

96

)
, (3.45)

in the s = 0 limit.

• ZM iscompletelydeterminedfromthecountertermforthemassivefermionF with

δZ
(1)
M = δZ

(1)
F ; (3.46)

• Zα receives contribution both at the one- and two-loop level. At one-loop the diagram
contributing to it are

Since this counterterm is computed in MS scheme, its value is obtained from the epsilon
divergent part of such diagrams, yielding

δZ(1)
α =

(nh + nl)

3ε
. (3.47)

At two-loop, the diagram involved are:

that combined with the one-loop counterterm diagrams
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together with their electronic counterparts (identical diagrams where the fermionic loop has
an electron flowing into it) that yields

δZ(2)
α =

(nh + nl)
2

9ε2
+

(nh + nl)

8ε
. (3.48)

After substituting the expansions of the bare amplitude given in eq. (3.32) and the renormalization
constants likewise expandend in in Eq. (3.43) inside of eq. (3.42), the UV renormalized two-loop
amplitude reads

A (α) = 4πα

[
A(0) +

(α
π

)
A(1) +

(α
π

)2
A(2)

]
, (3.49)

up to second-order corrections in α. Expressing n-loop coefficients A(n) in terms of those
appearing in the bare amplitude, yields

A(0) = A(0)
b , (3.50a)

A(1) = A(1)
b +

(
δZ(1)

α + δZ
(1)
F

)
A(0)

b , (3.50b)

A(2) = A(2)
b +

(
2δZ(1)

α + δZ
(1)
F

)
A(1)

b

+
(
δZ(2)

α + δZ
(2)
F + δZ

(2)
f + δZ

(1)
F δZ(1)

α

)
A(0)

b

+ δZ
(1)
M A

(1,mass CT)
b . (3.50c)

Let us stress that the last term in eq. (3.50c) contains the extra one-loop contribution of
diagrams that have an insertion of the mass counterterm in the massive propagators in all
possible ways, as depicted in Fig. 3.6.

Figure 3.6: Counterterm diagrams for mass renormalization.

3.2.2 Results

The renormalized amplitudes amplitudes A(n) (n = 0, 1, 2) and the renormalized coupling αb

obtained in this way allow us to compute the Born term,M(0), and the renormalized interference
terms, at one-loop, M(1), and at two-loop, M(2).

The latter two quantities are the main results of this thesis. They are expressed in a Laurent
series in ε

M(1) =
M(1)
−2

ε2
+
M(1)
−1

ε
+M(1)

0 +M(1)
1 ε+O(ε2) , (3.51a)

M(2) =
M(2)
−4

ε4
+ . . .+

M(2)
−1

ε
+M(2)

0 +O(ε) . (3.51b)

M(1) is computed analytically both in the pair-production region, s > 4M2, t < 0, and the non-
physical region. The former can be used to predict the IR poles ofM(2) directly in the production
region, as discussed in Appendix A M(2) is computed analytically in the non-physical region,
s < 0, t < 0, and its analytic continuation is performed numerically. The renormalized one- and
the two-loop interference terms are conveniently decomposed in gauge-invariant components,
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characterized by the numbers of closed fermion loops, indicated by nl and nh, separating the
contribution coming from diagrams containing massless and massive lepton loops, as

M(1) = A(1) + nlB
(1)
l + nhC

(1)
h , (3.52a)

M(2) = A(2) + nlB
(2)
l + nhC

(2)
h + n2

lD
(2)
l

+nh nlE
(2)
hl + n2

h F
(2)
h . (3.52b)

In Table 3.1, we show the numerical values of the coefficients A,B,C,D,E, F , at a particular
phase-space point, in the massive fermion pair-production region.

3.2.3 Additional tests

In order to check the validity of our expression, several checks have been performed. In particular,
the master integral for the diagrams in QED can be used to build the analytic expressions
for some of the gauge-invariant components of the two-loop amplitude of the process qq̄ → tt̄
in QCD [120, 121, 124, 125]: specifically, our results (after properly accounting for the color
factor and evaluating it in the region of heavy lepton pair-production) agree with the numerical
coefficients Eql , E

q
h, F

q
l , F

q
lh, F

q
h provided in the Table 1 of Ref. [120, 124, 125], which receive

contributions only from Abelian diagrams; moreover, the agreement on the coefficients of the
poles at other phase-space points of the color coefficients mentioned above has been compared
against the formula for the IR poles of amplitudes at two-loop in QCD, given in Ref. [126], and
are in perfect agreement with it.
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Chapter 4

Intersection theory and Feynman
integrals

4.1 Introduction

The evaluation of the theoretical expectation values for the observables measured at modern
colliders through the calculation of scattering amplitude is indeed a very challenging task. As
we have seen in previous chapters, many mathematical tools have been developed and exploited
to simplify and automatize the demanding step required to complete such an endeavor. Among
all of them, indeed IBPs play a key role in multiple parts of the computation, both reducing the
number of integrals that need to be evaluated in order to obtain the scattering amplitude, and
computing the differential equation required for the MIs computation. Although integration by
parts identities have been studied since a couple of decades now and a lot of effort has been put
in improving and refining such powerful instrument, for multi-loop and multiscale scattering
amplitudes solving the system of IBP relation may still represent a formidable task. On top of
that, IBP decomposition is a very simple instrument from the mathematical point of view, but
suggests the existence of a deeper and more complex mathematical structure behind Feynman
integrals, which is not fully exploited in such framework.
Recently, a new perspective on the problem of the reduction of Feynman integrals to a minimal
basis has been proposed in [68]. Using a novel mathematical tool borrowed from intersection
theory [69–81] it was suggested that Feynman integrals actually belonged to a vector space, and
it was possible to define an operation to directly project any integral on the MI basis, effectively
bypassing the system solution required by the more standard approach given by IBPs. We
elaborated on this very promising proposal consolidating its applicability to Feynman integrals
and extending it to a much wider set of cases, effectively obtaining the complete decomposition
of Feynman integrals in terms of MIs by means of intersection theory [1–3], as well as developing
and automating a general algorithm for the evaluation of such decomposition which has been
implemented in an in-house code. As a result, several relevant contributions have been triggered
by these novel results [127–135] paving the way for a bright future for this newly discovered
approach.
This new approach is better understood by looking at Feynnman integrals in parametric
representation rather than in the usual momentum space one. Therefore, we will focus on Baikov
representation from here on, which was presented in section 2.1.1. Let us briefly recall the shape
taken by Feynman integrals under this reparametrization, as defined in eq. (2.23)

I =

∫
C
u(z)ϕ(z) , (4.1)

where u(z) is a multivalued function of z = {z1, z2, . . . , zn} described by the Baikov polynomial

u(z) = B(z)γ (4.2)

51
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(u(z) =
∏
iBi(z)γi in more general cases) with γ /∈ Z which depends on the dimensions and

the number of loops. Intuitively, this function holds the information regarding the Feynman
graph we are considering: the number of external legs, loops and the denominators decribing
the process under study.
On the other hand, ϕ(z) is an n−form with poles at the zeros of B that retains information
regarding the specific integral in consideration, such as the powers to which the denominators
are risen and what the numerator is.

ϕ(z) = ϕ̂(z)dz ϕ̂(z) =
f(z)

zx11 zx12 · · · z
xn
n

, (4.3)

with ϕ̂(z) its differential stripped version, while f(z) is a rational function and xi are integer
exponents, xi /∈ Z.
These objects are considered in the affine variety X, defined by

X = CPn \D with D = {z ∈ Cn |B(z) = 0} , (4.4)

with D =
⋃
Di with Di = {z ∈ Cn | Bi(z) = 0} in the case of Baikov loop-by-loop.

Lastly C is the path of integration which in Baikov representation satisfies

B(∂C) = 0 , (4.5)

hence the baikov polynomial vanishes on its boundaries.
IBPs as we know are identities linking integral with different powers of denominators, and are
derived by the vanishing of a total derivative. With this parameterization, it translates to

I =

∫
C
d (u ξ) = 0 . (4.6)

Let us stress that this identity holds in absence of boundary terms which is granted by the
property outlined in eq. (4.2), a characteristic feature of Baikov representation.
As said, these relation links integrals with different integrands, which would amount to different
ξ̂(z). Let us manipulate eq. 4.5 in order to highlight the effect of the total derivative on this
term of our expression:

0 =

∫
C

d (u ξ) =

∫
C

(du ∧ ξ + u dξ) =

∫
C
u

(
du

u
∧+ d

)
ξ ≡

∫
C
u∇ωξ , (4.7)

where

∇ω = d + ω ∧ ω =
du

u
∧ . (4.8)

Since the expression above integrates to zero, we can state that∫
C
u(z)ϕ(z) =

∫
C
u(z) (ϕ(z) +∇ωξ(z)) , (4.9)

hence, the forms ϕ and ϕ+∇ωξ describe Feynman integrals which are equal upon integration and
which are equivalent through IBPs decomposition. This suggests the definition of an equivalence
class.

4.1.1 Twisted Cohomology group

Let us consider a natural equivalence class between forms: the de Rham Cohomology. This
mathematical object is characterized by an operator, the full differential operator d, which acts
on the group of n−forms defined on an m−dimensional manifold X: Ωn(X). Its action sends an
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n−form to an (n+ 1)−form, linking their respective groups. In fact, it defines a cochain complex
through its reiterated application

0
d−→ Ω0 (X)

d−→ Ω1 (X)
d−→ · · · d−→ Ωn (X)

d−→ 0 . (4.10)

The second key property that allows us to define a Cohomology group is the property of d to be
nihil potent:

d2 = 0 , (4.11)

which follows from Schwartz Lemma. Recalling that an exact form is an n−form generated by
the action of a total derivative on a (n− 1)−form (ϕ = dξ), whereas a closed one is a form that
satisfies dϕ = 0, from eq. 4.11 it follows that the group of exact form is contained in to the
group of closed one. Hence, we can define the quotient group

Hn
dR (X) =

{ ϕ ∈ Ωn (X) | dϕ = 0 }
{ ϕ ∈ Ωn−1 (X) | ϕ = dξ }

, (4.12)

in which the forms ϕ and ϕ+ dξ are identified and considered equivalent.
Therefore, the structure given by Cohomology seems appropriate to describe the equivalence
shown in eq. 4.9, though it slightly differs from Hn

dR in the operator characterizing it: instead of
solely the total differential, we need to consider ∇ω in order to describe IBP identities, taking
into account also ω. Therefore, we can define the twisted Cohomology group [69]

Hn
ω =

{ ϕ ∈ Ωn (X) | ∇ωϕ = 0 }
{ ϕ ∈ Ωn (X) | ϕ = ∇ωξ }

, (4.13)

which elements will be represented as 〈ϕ|.

4.1.2 Twisted Homology group

The definition of a twisted cohomology group of forms relies on the identity portrayed in eq. (4.5)
which allows us to define an equivalence class between integrals that differ by a total derivative.
After fixing a specific branch uC of the multivalued function u on the path C, it is possible to
use Stokes theorem to trade the total differential appearing in the integral with a boundary
operator acting on the integration region

0 =

∫
C
d (uC ξ) =

∫
∂C
uC ξ . (4.14)

This highlights the possibility of constructing an equivalence class between contour of integration,
and consequentially allowing us to define a structure analogous to the one presented in eq. (4.13)
but for cycles C: the twisted Homology group [69].
Let us first address single-valued integrals. In this case, we consider integration regions that are
defined as linear combination of singular n−simplices. While n−simplices are n−dimensional
generalizations of triangles and tetrahedrons defined as

∆n =

{
n∑
i=0

tivi | 0 ≤ ti ≤ 1,

n∑
i=0

ti = 1

}
, (4.15)

where {v0, . . . , vn} are n+1 affinely independent points in Rn, singular simplices are their images
through the action of a continuous map σ : ∆n → X. Thus, we can define the path of integration
γ of a single-valued integral as a singular chain

γ =
∑
i

ciσi , ci ∈ Z . (4.16)
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We will call Cn(X) the group generated by singular chains of degree n.
It is possible to define a boundary operator ∂n that acts on the elements of such a group by
decomposing singular simplices in a combination of their (n− 1) dimensional faces

∂nσ =

n∑
i=0

(−1)iσ[v0,v1,...,vi−1,vi+1,...vn] , (4.17)

with σ[v0,v1,...,vi−1,vi+1,...vn] the restriction of σ to its boundary face with vertices {v0, v1, . . . , vi−1

, vi+1, . . . vn}, mapping Cn(X) into Cn−1, where for any ∂m with m > n or m < 0 the boundary
operator is defined as the zero map.
As it follows from its definition, this operator is nihil potent and satisfies the identity

∂n−1(∂n(σ)) = 0 . (4.18)

This implies that Im ∂n+1 ⊂ Ker ∂n thus allowing us to define the singular Homology group as
the quotient space

Hsing
n (X) =

{ γ ∈ Cn (X) | ∂nγ = 0 }
{ γ ∈ Cn (X) | γ = ∂n+1δ }

. (4.19)

In order to determine an integral of a multivalued function such as uϕ on γ, we have to fix a
branch of u on γ. This is achieved using twisted chains as integration regions that, given singular
simplices γ and a multivalued function u, are defined as

γ′ = γ ⊗ u . (4.20)

They are integration paths loaded with the multivalued function appearing in the integral,
keeping track of the phase factor that could arise in the integrand from crossing a branch cut of
u when moving along the path γ. Formally, they are chains with coefficients in the local system
Lω of which u(z) is a section (for more details, see [69,81, 136]) and forms the group of twisted
chains Cn(X,Lω).
We introduce a twisted boundary operator ∂ω that acts on γ′ by substituting γ with its boundary
evaluated as shown in eq. (4.17), and u with its value at the boundary. Through the twisted
version of the Stokes theorem, one can show that two integrals differing by a boundary term in
the integration region are equal∫

C
u(z)ϕ(z) =

∫
C+∂ωγ

u(z)ϕ(z) . (4.21)

similarly to eq. (4.9), making apparent the existence of an equivalence class among cycles.
Analogously to the single-valued case, one can show that the twisted boundary operator satisfies
∂ω ◦ ∂ω = 0, allowing us to define the quotient space

Hω
n (X,Lω) =

{ γ ∈ Cn (X,Lω) | ∂ωγ = 0 }
{ γ ∈ Cn (X,Lω) | γ = ∂ωδ }

. (4.22)

which is linked to its cohomological counterpart Hn
ω through the Poincarée duality and have the

same dimensions as the latter. An equivalence class of the Homology group with representative
the cycle C will be written as |C]. Lastly, let us remark that Hn

ω and Hω
n are linked through

Poincarée duality and have the same dimensions.

An example: the regularized beta function

Let us briefly give an example of what the twisted cycle is and how the twisted boundary
operator ∂ω acts on it. We will consider the analytic continuation of the Beta function defined
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as 1

Bε(p, q) =
1

e2πip − 1

∫
S1
ε (0)

u(z)ϕ+

∫ 1−ε

ε
u(z)ϕ− 1

e2πiq − 1

∫
S1
ε (1)

u(z)ϕ , (4.23)

where u(z) = zp(1 − z)q and is defined for p, q /∈ Z, instead of the classic definition valid for
p, q > 0.
This version of the beta function has the path that has been manipulated, instead of terminating
at 0 and 1 it takes the form depicted in the following figure:

0 1
ε 1− ε

S1
ε (0) S1

ε (1)

with S1
ε (z0) is a circle of radius ε centered in z0 and ε is a sufficiently small positive number.

This is a proper analytic continuation of the beta function given that limε→0Bε(p, q) = B(p, q)
for p, q > 0, since the integration along the circles S1

ε (0) and S1
ε (1) vanishes while the integration

along the central path becomes the classic beta function, and it does not depend on the value of
ε.
The latter statement can be proven by considering

Bε(p, q)−Bδ(p, q) (4.24)

and observing that, assuming without loss of generality that δ < ε, we have

Bε(p, q)−Bδ(p, q) =
S1
ε (0) S1

ε (1)

−
S1
δ (0) S1

δ (1)

= = 0 , (4.25)

by Cauchy’s integral theorem.

Twisted chain The twisted chain in consideration, which will be labeled γ, is defined as

γ =
1

e2πip − 1
S1
ε (0)⊗ u(t) + [ ε, 1− ε ]⊗ u(t)− 1

e2πiq − 1
S1
ε (1)⊗ u(t) . (4.26)

As we can see, the definition of a twisted cycle requires to specify the multivalued function
appearing in the integral. This allows us to keep track of the phase factor arising from encircling
the branch points 0 or 1: indeed the effect of moving along the path S1

ε (0), is taken into account
by multiplying u(z) by the phase e2πip every time a revolution is completed.

Twisted boundary operator The action of the twisted boundary operator ∂ω associates to
a given path of integration its boundary taking into account the effects of the multivaluedness of
u(z) as in the following example:

∂ωS
1
ε (0) = [z]z=ε ⊗ e2πipu(ε)− [z]z=ε ⊗ u(ε) . (4.27)

1We wish to aknowledge professor K.Matsumoto and Y.Goto for the lectures they held in Padova, from which
this example is based on.
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Applying it to the twisted chain γ in eq. eq:twistedchain one obtains

∂ωγ =
1

e2πip − 1

(
[z]z=ε ⊗ e2πipu(ε)− [z]z=ε ⊗ u(ε)

)
+

+ ([z]z=1−ε ⊗ u(1− ε)− [z]z=ε ⊗ u(ε))−

− 1

e2πiq − 1

(
[z]z=ε ⊗ e2πiqu(ε)− [z]z=ε ⊗ u(ε)

)
= 0 ,

proving that, indeed, γ is a twisted cycle.

4.1.3 Feynman Integrals and their duals

The natural way to pair a form (which consists of an integrand and its measure) and a cycle
is indeed through integration. In this way, as originally proposed in [68], we can look at the
Feynman integral in eq. (4.1) as a pairing between an equivalence class of cycles and one of
cocycles:

I =

∫
C
u(z)ϕ(z) = 〈ϕ|C] . (4.28)

Let us also consider an integral containing u−1 instead of u. We will refer to it as dual integral:

I∨ =

∫
C
u−1 ϕ . (4.29)

In this case, the covariant derivative is

∇−ω = d− ω∧, ω = d log u =
n∑
i=1

ω̂i dzi (4.30)

and an equivalence relation similar to the one inferred from eq. (4.9) is drawn between dual
forms:

ϕ ∼ ϕ+∇−ωξ (4.31)

Applying the same argument presented in Section 4.1.1 one formalizes this equivalence class
through the definition of the dual twisted Cohomology group Hn

−ω. The equivalence class will be
denoted as |ϕ〉 in order to differentiate it from the one defined by ordinary Feynman integrals.
Analogously, an equivalence class of dual twisted cycles characterized by the operator ∂−ω is
defined, and will be represented as [C|. This equivalence class defines a dual twisted Homology
group H−ωn , completing the picture of dual Feynman integrals that now can be represented as a
pairing between dual twisted cocycles and the corresponding cycle indicated as

I∨ = [C|ϕ〉 . (4.32)

4.1.4 Dimension of twisted cohomology groups

Rephrasing Feynman integrals in terms of a pairing between elements of the twisted cohomology
and homology groups links the number of MIs to the dimension of the cohomology and homology
groups

ν = dimHn
±ω = dimH±ωn . (4.33)
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Using the fact that the Euler characteristic χ of X is related to the twisted Betti numbers
through

χ(X) =
2n∑
k=0

(−1)kdimHk
ω(X) , (4.34)

where n = dimCX, together with the fact that under the assumptions given in [69] the only
non-trivial twisted cohomology group is the one of dimensions n,

dimHk
ω = 0 for k 6= n , (4.35)

we can compute the number of MIs by means of algebraic topology, since

χ(X) = (−1)ndimHn
±ω . (4.36)

In ref. [2], we recall that ν can be computed using one of the many ways of evaluating the
topological invariant Euler characteristics χ(X): X = CPn−Pω, where Pω ≡ {set of poles of ω}
in projective space, the above relation can be written as

ν = (−1)nχ(X) = (−1)n (n+1− χ(Pω)) , (4.37)

where we used χ(CPn) = n+1 together with the inclusion-exclusion principle for the Euler
characteristics. In other words, to compute ν, it is sufficient to evaluate χ(Pω) of the projective
variety Pω (see also refs. [137–139]).
Alternatively, in ref. [140], the number of MIs within the IBP decomposition was related to the
number of independent “contours” of integration, generating no surface terms. In particular, by
means of the complex Morse (Picard-Lefschetz) theory, it is possible to relate the basis of cycles
and the critical points of the graph-polynomial of the considered integral parameterization, the
number of MIs was related to the rank of the homology groups H±ωn .
Let us consider log(u) as a Morse function (a function with non-degenerate critical points). We
define the Morse index of a critical point p as the number of independent directions in which
the Morse function decreases in a neighborhood of p. Through the strong Morse inequality we
can then express χ in function of the number of critical points of log(u)

χ(X) =

2n∑
k=0

(−1)kMk , (4.38)

with Mk the number of critical points of the Morse index k. Moreover, in our case, the Morse
index for the critical points of the Morse function considered is n [81], implying that Mk = 0 for
k 6= n. This leads to

χ(X) = (−1)nMn , (4.39)

allowing us to compute the number of independent master integrals from the number of critical
points of log(u).
This is given by the number of solutions of the (zero-dimensional) system.

ω̂i ≡ ∂zi log u(z) = 0 , i = 1, . . . , n (4.40)

and can be determined without explicitly computing its zeros [140]. In our applications, the
function u(z) always takes the form u(z) =

∏
j B

γj
j (z), which gives the equations:

ω̂i =
∑
j

γj
∂ziBj
Bj

, i = 1, . . . , n . (4.41)
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In the absence of critical points at infinity, the number of solutions of (4.40) is equal to the
dimension of the quotient space for the ideal2

I =
〈
β1, . . . , βn, z0

∏
j

Bj − 1
〉

with βk ≡
∑

i γi (∂zkBi)
∏
j 6=i Bj . (4.42)

In the special case where u(z) = Bγ(z), it becomes simply [140]

I = 〈∂z1B, . . . , ∂znB, z0 B − 1〉 . (4.43)

Considering a Gröbner basis G generating I, the Shape Lemma (see, e.g. [141], and [38] for
an application to physics) ensures that the number ν of zeros of I, and hence the number of
solutions of the system (4.40), is the dimension of the quotient ring,

ν = dim(C[z]/〈G〉) , (4.44)

where C[z] is the set of all polynomials that vanish on the zeros of I (they identify a discrete
variety, V ⊂ Cν). In particular, the lemma ensures that the degree of the remainder of the
polynomial division modulo G is ν + 1.
In the following, we will compute the dimension of the cohomology groups to determine the
size of the basis of differential forms for different choices of Hn

±ω, each characterized by ω, or
correspondingly by u.

4.2 Intersection Numbers and IBPs

The vectorial structure of the twisted cohomology group allows us to reinterpret IBPs decom-
position in this new language. IBPs let us reduce an integral in terms of a basis of ν MIs

I =

ν∑
i=1

ci Ji , (4.45)

or, in terms of equivalence classes

I = 〈ϕ|C] =
ν∑
i=1

ci 〈ei|C] . (4.46)

Since all paths of integration are the same, this corresponds to a decomposition of an element of
the twisted Cohomology group in terms of a basis of such vector space

〈ϕ| =
ν∑
i=1

ci 〈ei| . (4.47)

The same remains valid for the decomposition of a dual integral I∨ = [C|ϕ〉 in terms of ν dual
MIs:

I∨ =

ν∑
i=1

c∨i J
∨
i , (4.48)

becomes

|ϕ〉 =

ν∑
i=1

c∨i |ei〉 . (4.49)

2We introduce an extra variable z0 in order to prevent the case when Bj = 0 for either j.
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The final goal is to determine the reduction coefficient ci. This is achieved by means of the
intersection number between cocycles. This new object is a pairing different from the kind
already presented between cycles and cocycles relative to the same integral: it is built as a
pairing between cocycles 〈ϕL| and dual cocycles |ϕR〉. Taking into account the twisted cocycle
basis {〈ei|} ∈ Hn

ω and its dual counterpart {|ei〉} ∈ Hn
−ω it is possible to define the corresponding

identity operator in both spaces

I =
ν∑
i=1

|ei〉〈ei| , I∨ =
ν∑
j=1

|hj〉〈hj | , (4.50)

which combined together lead to

Ic =
ν∑

i,j=1

|hj〉 (C)−1
ji 〈ei| , (4.51)

where C is the matrix built out of all the possible intersection number between the basis {〈ei|}
and its dual

Cij = 〈ei|hj〉 . (4.52)

Inserting this operator on the right hand side of eq. 4.47, leads to

〈ϕ| = 〈ϕ|Ic =

ν∑
i,j=1

〈ϕ|hj〉 (C)−1
ji 〈ei| . (4.53)

We have thus obtained a new way of obtaining the coefficient of the reduction, bypassing the
system solution procedure required by classic IBPs through the master decomposition formula:

ci ≡
ν∑
j=1

〈ϕ|hj〉
(
C−1

)
ji
. (4.54)

Analogously for dual integral we have

c∨i ≡
ν∑
j=1

(
C−1

)
ij
〈ej |ϕ〉 . (4.55)

4.2.1 Differential equation for forms and dual forms

Differentiating a loop integral by an external kinematical variable gives us an object that can
still be reduced in terms of master integrals. Thus, we can exploit the same algorithm to write
down the system of differential equations, using the univariate intersection number. Let us
discuss this procedure more in details.
Taking into account the system of differential equations in an external variable x for the basis
〈ei| and the dual basis |hi〉,

∂x〈ei| = Ωij 〈ej | , (4.56)

∂x|hi〉 = −|hj〉Ω∨ji , (4.57)

where the matrices Ω and Ω∨ generally depend on the space-time dimension d and external
variables including x. Let us consider the l.h.s. of eqs. (4.56) and (4.57), after taking the
derivative in x,

∂x〈ei| = 〈(∂x + σ)ei| ≡ 〈Φi| , (4.58)
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∂x|hi〉 = |(∂x − σ)hi〉 ≡ |Φ∨i 〉 , (4.59)

where σ = ∂x log u. Here 〈Φi| and |Φ∨i 〉 can be decomposed in terms of 〈ej |, and |hj〉 respectively,
by means of intersection numbers using eq. (4.53),

〈Φi| = 〈Φi|hk〉
(
C−1

)
kj︸ ︷︷ ︸

Ωij

〈ej | (4.60)

and similarly
|Φ∨i 〉 = |hj〉

(
C−1

)
jk
〈ek|Φ∨i 〉︸ ︷︷ ︸

−Ω∨ji

(4.61)

where summation over indices j, k is implied. Using the above ingredients, one can relate the
matrices Ω and Ω∨ through the identity

∂x〈ei|hj〉 =
(
∂x〈ei|

)
|hj〉+ 〈ei|

(
∂x|hj〉

)
= Ωik 〈ek|hj〉 − 〈ei|hk〉Ω∨kj , (4.62)

or in the matrix notation

∂xC = Ω C−C Ω∨ . (4.63)

In particular, if the bases were orthonormal such that C = I then Ω = Ω∨.

4.2.2 Dimensional Recurrence Relation

In the standard Baikov representation, the d dependence of Feynman integrals is carried only by
the prefactor K and by the exponent γ of the Baikov polynomial B. Let us write the MIs in
d+ 2n dimensions as,

J
(d+2n)
i ≡ K(d+ 2n)E

(d+2n)
i , (4.64)

with K(d+2n) the kinematical prefactor appearing in front of the integral as defined in eq. (2.22),
while

E
(d+2n)
i ≡ 〈Bnei|C] =

∫
C
u (Bn ei) , i = 1, 2, . . . , ν , (4.65)

and consider the decomposition of 〈Bnei| in terms of the basis 〈ej |,

〈Bnei| = (Rn)ij 〈ej | , n = 0, 1, . . . , ν − 1 . (4.66)

This equation can be interpreted as a basis change, from 〈ei| with (i = 1, 2, . . . , ν) to 〈Bnei| with
(n = 0, 1, . . . , ν − 1). Therefore, we can decompose 〈Bνei| in terms of the new basis 〈Bnei|, as

〈Bνei| =
ν−1∑
n=0

cn 〈Bnei| , (4.67)

which can be written as

ν∑
n=0

cn 〈Bnei| = 0 , (4.68)

with cν ≡ −1. Upon the pairing with |C], it yields the recursion formula for the integral Ei,

ν∑
n=0

cnE
(d+2n)
i = 0 , (4.69)
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where the coefficients cn, calculated by means of the master decomposition formula eq. (4.53),
may depend on d and on the kinematics. Finally, by redefining the coefficients, the dimensional
recurrence relation for the MIs Ji arises,

ν∑
n=0

αn J
(d+2n)
i = 0 , (4.70)

with αn ≡ cn/K(d+ 2n) .

4.2.3 Intersection number definition and its properties

Definition

The pairing between twisted cocycles and their dual counterpart plays a pivotal role in the
derivation of the master decomposition formula and thus in translating the IBP decomposition
in this novel language.
Similarly to the pairing between cycles and cocycles defined in eq. (4.28), one could consider
defining it as the integration among the two forms∫

X
ϕL ∧ ϕR , (4.71)

however, this integral is not well defined because of two major reasons.
Firstly, ϕL and ϕR are both holomorphic n− forms, which means that they depend on the same
variables z. This gives an integrand which is identically 0, while when wedging two forms only
the mixed term dz ∧ dz̄ containing both the holomorphic and anti-holomorphic components
survives.
Secondly, this forms are integrated over the space X, which is Cn without hyperplanes where
ω is singular. This is a non-compact space. For these reasons, we introduce the function ιω,
which maps a form ϕ ∈ Hn

ω into a form with compact support ιω (ϕL) ∈ Hn
ω,c while introducing

non-holomorphicities in the integrand, effectively solving both the issues that the definition in
eq. 4.71 has.
Thus, we define the intersection number between twisted forms as

〈ϕL|ϕR〉ω =
1

(2πi)n

∫
X
ιω (ϕL) ∧ ϕR . (4.72)

Properties

From the definition in eq. (4.72), one can prove that the intersection number between cocycles
and their duals satisfies the symmetry relation

〈ϕL|ϕR〉ω = (−1)n〈ϕR|ϕL〉−ω , (4.73)

where on the right hand side the intersection number is evaluated using −ω instead of ω. As a
final remark, let us stress that the twisted intersection number is not affected by total derivative
terms by definition

〈ϕL +∇ωξ|ϕR〉ω = 〈ϕL|ϕR +∇−ωξ〉ω = 〈ϕL|ϕR〉ω , (4.74)

thus naturally embodying IBP identities.
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4.3 Univariate intersection number

In order to gain intuition in to the action of ιω and to explicitly compute the intersection number,
let us consider it in the univariate case. Let also be zi ∈ C the poles of the 1−form ϕL(z). In
order to build its counterpart with compact support, we need to define two discs Ui and Vi
centered in zi, such that Vi ⊂ Ui and Ui ∩ Uj and a step function for each zi, hi such that:

hi(z) =


1 on Vi

0 ≤ hi ≤ 1 smooth interpolation on Ui \ Vi
0 out of Ui

(4.75)

We then define the action of ιω as

ιω (ϕL) = ϕL −
∑
i

∇ω (hiψi) , (4.76)

where

∇ωψi = ϕL on Ui \ zi . (4.77)

In this way, replacing ϕL with ιωϕL does not alter the value of the intersection number as shown
in eq. (4.74). Another relevant fact to note is that this manipulation of ϕL leaves the form
unaltered outside of Ui while ιω (ϕL) = 0 inside Vi, since hi = 1 and ϕL gets fully subtracted,
making ιω (ϕL) a form with compact support. Lastly, the term dhi ϕL that comes from the action
of the covariant derivative on the additional term introduced by ιω gives a non-holomorphic
contribution to the form in consideration. ιω thus satisfies all the required properties needed to
define a proper intersection number.
Substituting the explicit definition of eq. (4.76) inside eq. (4.72) we have

〈ϕL|ϕR〉ω =
1

(2πi)n

∫
X

[
ϕL −

∑
i

(dhi ψi − hiψiω − hi∇ωψi)

]
∧ ϕR (4.78)

=
1

(2πi)n

∑
i

∫
Ui\Vi

dhi ψi ∧ ϕR , (4.79)

where the last equality is a consequence of the fact that all the other contribution except dhi ψi
contains the wedge product of two holomorphic forms which is zero (dz ∧ dz = 0), and that
dhi 6= 0 only in Ui \ Vi.
Considering that both dψi ∧ ϕR and dϕR vanish, we can rewrite

dhiψi ∧ ϕR = d (hiψiϕR) . (4.80)

Using Stokes theorem we can rewrite

〈ϕL|ϕR〉ω =
1

(2πi)n

∑
i

∫
Ui\Vi

d (hi ψiϕR) =
1

(2πi)n

∑
i

∫
∂(Ui\Vi)

hi ψiϕR (4.81)

=
1

(2πi)n

∑
i

∫
∂(Ui\Vi)

ψiϕR . (4.82)

(4.83)

Using the fact that ∂Vi is a closed path we can rewrite the integrals as residues, yielding

〈ϕL|ϕR〉ω =
k∑
i=1

Resz=zi (ψiϕR) . (4.84)
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Univariate algorithm Define P as the set of poles of ω ,

P ≡ { z | z is a pole of ω } . (4.85)

Note that, if Resz=∞(ω) 6= 0, P also includes the pole at infinity.
Given two (univariate) 1-forms ϕL and ϕR, we define the intersection number as [72,142]

〈ϕL|ϕR〉ω =
∑
p∈P

Resz=p

(
ψp ϕR

)
, (4.86)

where, ψp is a function (0-form), solution to the differential equation ∇ωψ = ϕL, around p, i.e.,

∇ωpψp = ϕL,p , (4.87)

(the notation fp indicates the Laurent expansion of f around z = p). The above equation can be
also solved globally, however only a handful of terms in the Laurent expansion around z = p are
needed to evaluate the residue in (4.86). In particular, after defining τ ≡ z − p, and the ansatz,

ψp =

max∑
j=min

ψ(j)
p τ j +O

(
τmax+1

)
, (4.88)

min = ordp(ϕL) + 1 , max = −ordp(ϕR)− 1 , (4.89)

the differential equation in eq. (4.87) freezes all unknown coefficients ψ
(j)
p . In other words, the

Laurent expansion of ψp around each p, is determined by the Laurent expansion of ϕL,R and
of ω. A given point p contributes only if the condition min ≤ max is satisfied, and the above
expansion exists only if Resz=p(ω) is not a non-positive integer.

Logarithmic Forms. When both ϕL and ϕR are logarithmic, meaning that ordp(ϕL/R) ≥ −1
for all points p ∈ P, then the formula (4.86) simplifies to

〈ϕL|ϕR〉ω =
∑
p∈P

Resz=p(ϕL) Resz=p(ϕR)

Resz=p(ω)
. (4.90)

Note that in this case the intersection number becomes symmetric in ϕL and ϕR, i.e.,

〈ϕL|ϕR〉ω = 〈ϕR|ϕL〉ω , (4.91)

while (4.73) still holds.

Choices of Bases. The bases |hi〉 and |ei〉 can be different from each other, but |hi〉 = |ei〉 is
a possible choice too. We decompose 1-form employing either a monomial basis

〈ei| = 〈φi| ≡ zi−1dz , (4.92)

or a dlog-basis, of the type,

〈ei| = 〈ϕi| ≡
dz

z − zi
, (4.93)

where zi are poles of ω.
Alternatively, orthonormal bases for twisted cocycles can be chosen as follows. Out of the set

of poles P = {z1, z2, . . . , zν+1, zν+2} pick two special ones, say zν+1 and zν+2. Then construct
bases of ν one-forms using:

〈ei| ≡ d log
z − zi
z − zν+1

, |hi〉 ≡ Resz=zi(ω) d log
z − zi
z − zν+2

(4.94)
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for i = 1, 2, . . . , ν. With this choice, the intersection matrix C becomes the identity matrix,

Cij = δij (4.95)

as can be shown directly using the residue prescription (4.86), and therefore the basis decompo-
sition formula simplifies to

〈ϕ| =
ν∑
i=1

〈ϕ|hi〉〈ei| . (4.96)

4.4 Univariate application of twisted intersection theory

4.4.1 Euler Beta Integrals

Let us start by discussing integral relations for a simple class of integrals such as the Euler beta
function, defined as

β(a, b) ≡
∫ 1

0
dz za−1 (1− z)b−1 =

Γ(a)Γ(b)

Γ(a+ b)
. (4.97)

Direct Integration

We will consider integrals of the type

In ≡
∫
C
u zndz , u ≡ Bγ , B ≡ z(1− z) , C ≡ [0, 1] . (4.98)

These integrals admit a closed-form expression in terms of Γ functions,

In =
Γ(1 + γ)Γ(1 + γ + n)

Γ(2 + 2γ + n)
, (4.99)

from which it is possible to derive a relation between In and I0,

In =
Γ(1 + γ + n)Γ(2 + 2γ)

Γ(1 + γ)Γ(2 + 2γ + n)
I0 . (4.100)

For instance, when n = 1, it reads

I1 =
1

2
I0 . (4.101)

Integration-by-Parts Identities

Let us recover the same relation from integration by parts identities. With the choice of C as
above, the following integration-by-parts identity holds∫

C
d(Bγ+1zn−1) = 0 . (4.102)

The action of the differential operator under the integral sign yields the following equation,

(γ + n)In−1 − (1 + 2γ + n)In = 0 . (4.103)

Therefore we obtain the recurrence relation

In =
(γ + n)

(1 + 2γ + n)
In−1 , (4.104)

which, for n = 1, gives

I1 =
1

2
I0 . (4.105)
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Intersections

We are going to (re)derive, once more, the relations between Euler beta integrals using intersection
numbers. We consider integrals defined as,

In ≡
∫
C
uφn+1 ≡ ω〈φn+1|C] , φn+1 ≡ zndz , (4.106)

with

u = Bγ B = z(1− z) , ω = d log u = γ

(
1

z
+

1

z − 1

)
dz , (4.107)

ν = 1 , P = {0, 1,∞}. (4.108)

Monomial Basis. ν = 1 implies the existence of 1 master integral, which we choose as
I0 = ω〈φ1|C]. The goal of this calculation is to derive the relation between I1 and I0,

I1 = c1 I0 ⇐⇒ ω〈φ2|C] = c1 ω〈φ1|C] (4.109)

which can be derived by decomposing 〈φ2| in terms of 〈φ1|,

〈φ2| = c1〈φ1| , c1 = 〈φ2|φ1〉〈φ1|φ1〉−1 (4.110)

Notice that since ν = 1, the intersection matrix Cij has just one element C11 = 〈φ1|φ1〉.
We need to evaluate the intersection numbers 〈φ1|φ1〉, and 〈φ2|φ1〉.
For each pole p ∈ P , we identify φi,p (the series expansion of φi around z = p), and determine

the associated function ψi,p (the series expansion of ψi around z = p), by solving the following
differential equation,

∇ω ψi,p = φi,p . (4.111)

After inserting the series expansion of φi,p and an ansatz for ψi,p in the above equation, we
get an equation at each order on p, which together determines the coefficients in the ansatz for
ψi,p. In practice, we introduce a local coordinate τ , defined as τ = z − p, for finite poles, or
τ = 1/z for the pole at infinity, and consider the Laurent expansions around τ → 0 of,

φi,p =
∑

k=min−1

φ
(k)
i,p τ

k , ωp =
∑
k=−1

ω(k)
p τk , (known) (4.112)

and the ansatz,

ψp =
max∑
k=min

αk τ
k , (αk unknown) (4.113)

to solve the following differential equation,

d

dτ
ψp + ωp ψp − φi,p = 0 . (4.114)

In our case we have,

• For ϕL = φ1 = dz, ϕR = φ1 = dz:

p min max ϕL,p ψp

0 1 −1 dτ −
1 1 −1 dτ −
∞ −1 1 −dτ/τ2

∑1
i=−1 αi τ

i
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with

α−1 =
1

2γ + 1
, α0 = − 1

2(2γ + 1)
, α1 = − γ

2(2γ − 1)(2γ + 1)
. (4.115)

Around p = 0, 1, the solution ψp does not exist (owing to the values of min and max), therefore

〈φ1|φ1〉 = Resz=∞(ψ∞φ1) =
γ

2(2γ − 1)(2γ + 1)
. (4.116)

• For ϕL = φ2 = z dz, ϕR = φ1 = dz:

p min max ϕL,p ψp

0 2 −1 τ dτ −
1 1 −1 dτ −
∞ −2 1 −dτ/τ3

∑1
i=−2 αi τ

i

with

α−2 =
1

2(γ + 1)
, α−1 = − γ

2(γ + 1)(2γ + 1)
, (4.117)

α0 = − 1

4(2γ + 1)
, α1 = − γ

4(2γ − 1)(2γ + 1)
. (4.118)

Around p = 0, 1, the solution ψp does not exist, therefore

〈φ2|φ1〉 = Resz=∞(ψ∞φ1) =
γ

4(2γ − 1)(2γ + 1)
. (4.119)

Notice that in the above formulas only the p =∞ gave a non-trivial contribution. In general,
the situation depends on the form of the integrands, and in particular on on the values of min
and max, which are dictated by the Laurent series expansions around p of ϕL and ϕR paired in
the intersection number 〈ϕL|ϕR〉 .
Finally, we get the decomposition of I1 in terms of I0,

I1 = c1 I0 , (4.120)

c1 = 〈φ2|φ1〉〈φ1|φ1〉−1 =
1

2
, (4.121)

in agreement with eq. (4.101).

dlog-basis. Consider the master integral associated to the form

ϕ1 = d log
z

z − 1
=

(
1

z
− 1

z − 1

)
dz , (4.122)

and let us decompose both 〈φ1| and 〈φ2| in the basis of 〈ϕ1|,

〈φ1| = 〈φ1|ϕ1〉〈ϕ1|ϕ1〉−1〈ϕ1|, (4.123)

〈φ2| = 〈φ2|ϕ1〉〈ϕ1|ϕ1〉−1〈ϕ1|. (4.124)

We need the intersection numbers,

〈ϕ1|ϕ1〉 =
2

γ
, 〈φ1|ϕ1〉 =

1

2γ + 1
, 〈φ2|ϕ1〉 =

1

2(2γ + 1)
. (4.125)
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Therefore

〈φ1| =
γ

2(2γ + 1)
〈ϕ1|, 〈φ2| =

γ

4(2γ + 1)
〈ϕ1| (4.126)

from which one can also deduce 〈φ2| = 1/2〈φ1|.
Please note, that in this basis the metric term 〈ϕ1|ϕ1〉 is very simple, and that 〈ϕ1|ϕ1〉−1 =

γ/2, has γ factorizing out.

This simple example contains all the relevant ingredients for the decomposition of Feynman
integrals in terms of master integrals. It corresponds to a case with 1 master integral. We
now consider two other cases, with respectively 2 and 3 master integrals, in order to show the
algorithmic procedure of the decomposition by intersection numbers.

4.4.2 Gauss 2F1 Hypergeometric Function

Gauss 2F1 Hypergeomeric function is defined as

β(b, c−b) 2F1(a, b, c;x) =

∫ 1

0
zb−1(1− z)c−b−1(1−xz)−a dz (4.127)

The integration contour C is [0, 1], which is the twisted cycle. β(b, c−b) is the Euler beta function
defined in eq. (4.97). In order to use intersection theory, we re-express this integral in terms of
the pairing of the twisted cycle and the twisted cocycle:

β(b, c−b) 2F1(a, b, c;x) =

∫
C
uϕ = ω〈ϕ|C] , (4.128)

where

u = zb−1(1− xz)−a(1− z)−b+c−1 , (4.129)

ω = d log u =
xz2(c− a− 2) + z(ax− c+ x+ 2)− bxz + b− 1

(z − 1)z(xz − 1)
dz , (4.130)

ϕ = dz . (4.131)

In this case, we have

ν = 2 , P = {0, 1, 1
x , ∞} (4.132)

indicating the existence of 2 independent integrals. Contiguity relations for Gauss Hypergeometric
functions can be obtained through intersection theory, via the master decomposition formula in
eq. (4.53), requiring the knowledge of the (inverse of the) matrix C. We build this matrix for
various different choices of the integral basis.

Monomial Basis. We choose the basis as {〈φi|}i=1,2, we build the metric matrix C,

C =

(
〈φ1|φ1〉 〈φ1|φ2〉
〈φ2|φ1〉 〈φ1|φ2〉

)
(4.133)

whose entries are

〈φ1|φ1〉 =
(
x2(−(a− b+ 1))(b− c+ 1)− 2ax(−b+ c− 1) + a(c− 2)

)
/
(
x2(a

− c+ 1)(a− c+ 2)(a− c+ 3)
)
, (4.134)

〈φ1|φ2〉 =
(
x3(−(a− b+ 1))(a− b+ 2)(b− c+ 1)− ax2(−b+ c− 1)(2a− 3b
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+ c+ 2) + ax(a+ 2c− 5)(−b+ c− 1)− a(c− 3)(c− 2)
)
/
(
x3(a− c+ 1)

(a− c+ 2)(a− c+ 3)(a− c+ 4)
)
, (4.135)

〈φ2|φ1〉 =
(
x3(−(a− b))(a− b+ 1)(b− c+ 1)− ax2(−b+ c− 1)(2a− 3b+ c)

+ ax(a+ 2c− 3)(−b+ c− 1)− a(c− 2)(c− 1)
)
/
(
x3(a− c)(a− c+ 1)

(a− c+ 2)(a− c+ 3)
)
, (4.136)

〈φ2|φ2〉 =
(
− ax2(a2b− a2c+ a2 − 3ab2 + 7abc− 8ab− 4ac2 + 9ac− 5a− 3b2c

+ 6b2 + 4bc2 − 10bc+ 6b− c3 + 2c2 − c) + x4(−(a3 − 3a2b+ 3a2 + 3ab2

− 6ab+ 2a− b3 + 3b2 − 2b))(b− c+ 1) + 2ax3(a− b+ 1)(ab− ac+ a

− 2b2 + 3bc− 2b− c2 + c) + 2a(c− 2)x(a+ c− 2)(b− c+ 1) + a(c3 − 6c2

+ 11c− 6)
)
/
(
x4(a− c)(a− c+ 1)(a− c+ 2)(a− c+ 3)(a− c+ 4)

)
. (4.137)

Now, we can derive any functional relation using the following decomposition.

〈φn| =
2∑

i,j=1

〈φn|φj〉
(
C−1

)
ji
〈φi|. (4.138)

Let us consider the decomposition of β(b+ 2, c− b)2F1(a, b+ 2, c+ 2;x) ≡ 〈φ3|C] in terms of
β(b, c− b)2F1(a, b, c;x) and β(b+ 1, c− b)2F1(a, b+ 1, c+ 1;x). Using the eq. (4.138) we obtain

β(b+ 2, c− b)2F1(a, b+ 2, c+ 2;x) =

(
b

x(a− c− 1)

)
β(b, c− b)2F1(a, b, c;x)

+

(
(b− a+ 1)x+ c

x(c− a+ 1)

)
β(b+ 1, c− b)2F1(a, b+ 1, c+ 1;x) (4.139)

or correspondingly

2F1(a, b+ 2, c+ 2;x) =
(c+ 1)

x(b+ 1)(c− a+ 1)
×((

(b− a+ 1)x+ c
)

2F1(a, b+ 1, c+ 1;x)− c 2F1(a, b, c;x)
)
, (4.140)

as verified using Mathematica.

dlog-basis. Let us consider the following dlog-basis.

ϕ1 =

(
1

z
− 1

z − 1

)
dz (4.141)

ϕ2 =

(
1

z − 1
− x

xz − 1

)
dz. (4.142)

The C matrix with entries Cij = 〈ϕi|ϕj〉 for this case is as follows

C =
1

c− b− 1

( c−2
b−1 −1

−1 a+b−c+1
a

)
. (4.143)

The above relations between hypergeometric functions can be obtained using the dlog-basis as
well. The C matrix in this case takes a very simple form and it is factorized. If we consider
the powers of all the factors to be equal, for example a = −γ, b = γ+1, c = 2(γ+1), then γ
factorizes out, and as a result the system of differential equations for ϕi is canonical.
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In particular, let us introduce the prefactor

K =
(c− b− 1) (b− 1)

(c− 1) (c− 2)β(b, c− b)
, (4.144)

and consider the two integrals,

I1 = 〈ϕ1|C] = 2F1(a, b− 1, c− 2;x) , (4.145)

I2 = 〈ϕ2|C] =
(b− 1)(x− 1)

c− 2
2F1(a+ 1, b, c− 1;x) , (4.146)

which, for a = −γ, b = γ+1, c = 2(γ+1), read,

I1 = 2F1(−γ, γ, 2γ;x) , I2 =
x− 1

2
2F1(1− γ, 1 + γ, 1 + 2γ;x) . (4.147)

Following the method of Sec. 4.2.1, we derive the system of differential equations with respect
to x,

∂xIi = AijIj , with A = γ

(
0 −1

x−1
−1
x

2
x−1 −

2
x

)
, (4.148)

which is canonical, namely it is fuchsian and γ-factorised. It is easily seen that the system can
be integrated up order-by-order in γ, yielding a result where the coefficient at order γn can
be expressed in terms of harmonic polylogarithms (HPLs) [91] of weight n, therefore making
explicit the relation between HPLs and the series expansion of 2F1 around γ = 0.

Mixed bases. By using mixed bases, namely a monomial-basis 〈ei| = 〈φi|, and a dlog-basis
|hj〉 = |ϕj〉 , we can decompose our integrals in terms of a monomial basis, which can be directly
mapped onto eq. (4.140), without loosing the advantages of simpler expressions due to the
dlog-basis algebra. In this case, the intersection matrix becomes

C = 〈φi|ϕj〉 =

(
1

c−a−1
x−1

(1+a−c)x
a−ax+bx

(a−c)(1+a−c)x
(x−1)(1−c+ax−bx)

(a−c)(1+a−c)x2

)
(4.149)

whose entries look slightly more involved than in the dlog case, but much simpler than in the
monomial case. To reproduce eq. (4.140), we also need the intersections

〈φ3|ϕ1〉 =
a(x− 1)(c+ (2b− a+ 1)x)− b(1 + b)x2

(a− c− 1)(a− c)(1 + a− c)x2
(4.150)

〈φ3|ϕ2〉 =
(x− 1)

(
bx(a+ c+ (b− 2a+ 1)x− 1) + (c− ax− 1)(c+ x− ax)

)
(a− c− 1)(a− c)(1 + a− c)x3

(4.151)

both of which are much simpler than in the monomial basis. As expected, using them in eq. (4.53)
yields eq. (4.140).

4.4.3 Two-Loop Pentabox

In general, the prefactor K ′ appearing in eq. (2.30) can be factorized in a component proportional
to the kinematic variables, and another which depends only on the dimensional parameter:

K ′ = κ(d)K ′′(d, vij) (4.152)

with vij ≡ pi · pj .
The factor κ(d) do not affect neither IBPs nor differential equations, and therefore we disregard
it in the following.
From here on we refer to K ′′ as K to ease our notation.
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Planar Diagram

Figure 4.1: Massless planar pentabox.

Let us consider the massless five-point planar topology at two-loop [143,144] in Fig. 4.1 with
the following list of denominators:

D1 = k2
1 , D2 = (k1 + p1) 2 , D3 = (k1 + p1 + p2) 2 , D4 = (k1 − k2) 2 ,

D5 = (k2 + p1 + p2) 2 , D6 = (k2 + p1 + p2 + p3) 2 ,

D7 = (k2 + p1 + p2 + p3 + p4) 2 , D8 = k2
2 .

(4.153)

The ISP considered in the Loop-by-Loop procedure is:

z = D9 = (k2 + p1) 2 . (4.154)

We find:

u = zα(a+ z)β
(
b+ ez + fz2

)α
,

K = v
d−6
2

34 v
d−6
2

45 v
d−6
2

12

(
(v15 − v23) 2v2

12 + 2
(

(v15 − v23) v23v34 +
(
v15 (v23 − v15)

+ (v15 + v23) v34

)
v45

)
v12 + (v23v34 + (v15 − v34) v45) 2

)
5−d
2 ,

(4.155)

where:

α =
d

2
− 3 , β = 2− d

2
, a = 2 v12 , b = 4 v12 v15 v23 , (4.156)

e = −2 (v12 v15 − v45 v15 + v12 v23 − v23 v34 + v34 v45) , f = v12−v34−v45, (4.157)

Thus:

ω =

(
β

a+ z
+
α(b+ z(2e+ 3fz))

z(b+ z(e+ fz))

)
dz , (4.158)

ν = 3 , P = {0 ,−a , −
√
e2 − 4bf − e

2f
,

√
e2 − 4bf − e

2f
,∞}. (4.159)

We observe that the combination e2− 4bf is proportional to the Gram determinant ∆ = |2pi · pj |
with 1 ≤ i, j,≤ 4. Similar relations hold for the cases studied in the other multileg cases (see
also [145,146]) .

Monomial Basis. Let us consider the decomposition of I1,1,1,1,1,1,1,1;−3 = 〈φ4|C] in terms of
J1 = I1,1,1,1,1,1,1,1;0 = 〈φ1|C], J2 = I1,1,1,1,1,1,1,1;−1 = 〈φ2|C], and J3 = I1,1,1,1,1,1,1,1;−2 = 〈φ3|C].
We can compute the C matrix:

Cij = 〈φi|φj〉 , i, j = 1, 2, 3, (4.160)
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and the intersection numbers:
〈φ4|φi〉 , i = 1, 2, 3 : (4.161)

Then, eq. (4.53) yields:

I1,1,1,1,1,1,1,1;−3 = c1 J1 + c2 J2 + c3 J3, (4.162)

with the coefficients:

c1 = − a(α+ 1)b

f(3α+ β + 4)
,

c2 = −2a(α+ 1)e+ b(α+ β + 2)

f(3α+ β + 4)
,

c3 = −3a(α+ 1)f + e(2α+ β + 3)

f(3α+ β + 4)
.

(4.163)

In agreement with Reduze.

Differential Equations in Monomial Basis. We define the variable x = v12 with respect
to which we build the system of differential equations. In order to do it, one also needs

σ(x) = ∂x log(u) (4.164)

=
(z−2v23) ((z−2v15) ((d−6)z−4x) + 2(d−4)v34z) + 2(d−4)v45z (−2v15+2v34+z)

2(2x+ z) ((z − 2v23) (x (z − 2v15)− v34z)− v45z (−2v15 + 2v34 + z))

and 〈Φi(x)| = 〈(∂x + σ(x))φi|, which are:

〈Φ1(x)| = σdz, (4.165)

〈Φ2(x)| = z σdz, (4.166)

〈Φ3(x)| = z2 σdz. (4.167)

Then, according to the procedure described in Sec. 4.2.1, we can compute the analytic expression
of A.
For readability we present the result in a single phase space point:

v23 =
1

2
, v34 =

1

3
, v45 =

1

5
, v15 =

1

7
, (4.168)

The entries of A read:

A11 =
d− 6

x
+

2(d− 4)

10x+ 3
− 735(d− 4)

134(21x− 4)
+

22556d+ 375(2263− 482d)x− 96589

67(5x(375x− 38) + 243)
,

A12 =
4(x(45x(11830x+21893)−268886)−459)−d(x(45x(8890x+19219)−272918)+5589)

4x(10x+ 3)(21x− 4)(5x(375x− 38) + 243)
,

A13 =
7(d− 4)(15x− 8)(615x− 1103)

2x(10x+ 3)(21x− 4)(5x(375x− 38) + 243)
,

A21 = − 15(d− 4)x(615x− 1103)

(10x+ 3)(21x− 4)(5x(375x− 38) + 243)
,

A22 =
d− 5

x
− 16(d− 4)

10x+ 3
− 609(d− 4)

134(21x− 4)
+

2(d− 4)(19875x− 21104)

67(5x(375x− 38) + 243)
, (4.169)

A23 = − 7(d− 4)(25x(9x(125x− 19) + 376)− 864)

x(10x+ 3)(21x− 4)(5x(375x− 38) + 243)
,

A31 =
30(d− 4)x(25x(9x(125x− 19) + 376)− 864)

(10x+ 3)(15x− 8)(21x− 4)(5x(375x− 38) + 243)
,



72 CHAPTER 4. INTERSECTION THEORY AND FEYNMAN INTEGRALS

A32 =
1

1005

(
− 9648(d− 4)

10x+ 3
+

1740(d− 4)

21x− 4
+

+
−5633500x+ 9d(137875x− 9963) + 250128

5x(375x− 38) + 243
− 5360(3d− 13)

15x− 8

)
,

A33 =
d−6

2x
+

15(d−2)

16−30x
+

14(d−4)

10x+3
+

672(d−4)

67(21x−4)
+

126d(257−875x)+566625x−135893

67(5x(375x− 38) + 243)
,

in agreement with Reduze.

Non-Planar Diagram

Figure 4.2: Massless non-planar pentabox.

We consider the massless non-planar five-point topology at two-loop [147], shown in Fig. 4.2.
We denote the scalar products as: vij = pi · pj . We consider the following list of denominators:

D1 = k2
1 , D2 = (k1 + p1) 2 , D3 = (k1 − k2 − p2) 2 , D4 = (k1 − k2) 2 ,

D5 = (k2 + p1 + p2) 2 , D6 = (k2 + p1 + p2 + p3) 2 ,

D7 = (k2 + p1 + p2 + p3 + p4) 2 , D8 = k2
2 .

(4.170)

The ISP considered in the Loop-by-Loop approach is:

z = D9 = (k2 + p1)2 . (4.171)

Performing a maximal cut we find:

u =
(
z (a+ z)

(
b+ ez + fz2

))α
,

K = v
2− d

2
12 v

d−6
2

34 v
d−6
2

45

(
v2

12 (v15 − v23) 2 + (v23v34 + (v15 − v34) v45) 2 + 2v12 ((v15 − v23) v23v34

+ (v15 (v23 − v15) + (v15 + v23) v34) v45))
5−d
2 .

(4.172)

where

α =
d

2
− 3 , a = 2 v12 , b = 4 v12 v15 v23 , (4.173)

e = −2 (v12 v15 − v45 v15 + v12 v23 − v23 v34 + v34 v45) , f = v12−v34−v45

Then:

ω =
α
(
2z(ae+ b) + ab+ 3z2(af + e) + 4fz3

)
z(a+ z)(b+ z(e+ fz))

dz , (4.174)

and so:

ν = 3 , P = {0,−a, −
√
e2 − 4bf − e

2f
,

√
e2 − 4bf − e

2f
,∞}. (4.175)
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Monomial Basis. The MIs can be chosen as: J1 = I1,1,1,1,1,1,1,1;0 = 〈φ1|C], J2 = I1,1,1,1,1,1,1,1;−1 =
〈φ2|C], and J3 = I1,1,1,1,1,1,1,1;−2 = 〈φ3|C].
Let us consider the decomposition of I1,1,1,1,1,1,1,1;−3 = 〈φ4|C] in this basis. We can compute the
C matrix,

Cij = 〈φi|φj〉 , i, j = 1, 2, 3 , (4.176)

and the additional intersection numbers:

〈φ4|φi〉 , i = 1, 2, 3 , (4.177)

and then, eq. (4.53) yields:

I1,1,1,1,1,1,1,1,−3 = c1 J1 + c2 J2 + c3 J3 , (4.178)

with:

c1 = − ab
4f

, c2 = −ae+ b

2f
, c3 = −3(af + e)

4f
(4.179)

in agreement with Reduze.

Differential Equations in Monomial Basis. Let us define the variable x = v12 with respect
to which we build the system of differential equations. Then we consider:

σ(x) = ∂x log(u)

=
(d− 6) ((z − 2v23) ((4v12 + z) (z − 2v15)− 2v34z)− 2v45z (−2v15 + 2v34 + z))

2 (2v12 + z) ((z − 2v23) (v12 (z − 2v15)− v34z)− v45z (−2v15 + 2v34 + z))

(4.180)

and {〈Φi(x)|}i=1,2,3 are given by:

〈Φ1(x)| = σdz , (4.181)

〈Φ2(x)| = z σdz , (4.182)

〈Φ3(x)| = z2 σdz . (4.183)

Then, according to the procedure described in Sec. 4.2.1, we can compute the analytic expression
of A.
For readability we present the result in a single phase space point:

v23 =
1

2
, v34 =

1

3
, v45 =

1

5
, v15 =

1

7
. (4.184)

The entries of A become:

A11 =
d− 6

x
+

2(d− 4)

10x+ 3
− 735(d− 4)

134(21x− 4)
+

22556d+ 375(2263− 482d)x− 96589

67(5x(375x− 38) + 243)
,

A12 =
42(x(15x(9630x+6623)−33682)+4167)−d(x(45x(26390x+20249)−340738)+40959)

4x(10x+3)(21x−4)(5x(375x−38)+243)
,

A13 =
7(2d− 9)(15x− 8)(615x− 1103)

2x(10x+ 3)(21x− 4)(5x(375x− 38) + 243)
,

A21 = − 15(d− 4)x(615x− 1103)

(10x+ 3)(21x− 4)(5x(375x− 38) + 243)
,

A22 =
4914− 861d

536− 2814x
+
d− 5

x
+

84− 20d

10x+ 3
+
−68225d+ 375(65d− 219)x+ 298917

67(5x(375x− 38) + 243)
,

A23 = −7(2d− 9)(25x(9x(125x− 19) + 376)− 864)

x(10x+ 3)(21x− 4)(5x(375x− 38) + 243)
, (4.185)
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A31 =
30(d− 4)x(25x(9x(125x− 19) + 376)− 864)

(10x+ 3)(15x− 8)(21x− 4)(5x(375x− 38) + 243)
,

A32 =
450x(3x(45x(500x− 227) + 8107)− 8504)

67(5x(375x− 38) + 243)

+
−3d(5x(225x(x(2250x− 1001) + 763)− 59368) + 24192) + 290304

(10x+ 3)(15x− 8)(21x− 4)(5x(375x− 38) + 243)
,

A33 =
45(d−4)

16−30x
− d−4

2x
+

14(2d−9)

10x+3
+

672(2d−9)

67(21x−4)
+
d(58399−94875x)+489750x−265978

67(5x(375x− 38) + 243)
.

in agreement with Reduze.

4.4.4 Multileg and Massive Cases

(1) (2)

(3) (4)

Figure 4.3: Planar and non-planar pentabox with two external masses (1,2), as well as planar
and non-planar hexagon-box (3,4).

Let us now study how the polynomial u changes when we compute Feynman integrals such as
those in Sec. 4.4.3, but with massive external legs, or with more massless external legs3 as shown
in Fig. 4.3.

• Case (1), planar massive pentabox: the external kinematic is defined by p2
3 = p2

5 = m2

and p2
i = 0 for i = 1, 2, 4, with the denominators

D1 = k2
1 , D2 = (k1 + p1) 2 , D3 = (k1 + p1 + p2) 2 , D4 = (k1 − k2) 2 ,

D5 = (k2 + p1 + p2) 2 , D6 = (k2 + p1 + p2 + p3) 2 ,

D7 = (k2 + p1 + p2 + p3 + p4) 2 , D8 = k2
2 .

(4.186)

3We assume the number of space-time dimensions d to not be smaller than the number of independent external
momenta.
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• Case (2), non-planar massive pentabox: the external kinematic is defined by p2
3 = p2

5 =
m2 and p2

i = 0 for i = 1, 2, 4, with the denominators

D1 = k2
1 , D2 = (k1 + p1) 2 , D3 = (k1 − k2 − p2) 2 , D4 = (k1 − k2) 2 ,

D5 = (k2 + p1 + p2) 2 , D6 = (k2 + p1 + p2 + p3) 2 ,

D7 = (k2 + p1 + p2 + p3 + p4) 2 , D8 = k2
2 .

(4.187)

• Case (3), planar massless hexagon-box: the external kinematic is defined by p2
i = 0 for

i = 1, . . . , 5, with the denominators

D1 = k2
1 , D2 = (k1 + p1) 2 , D3 = (k1 + p1 + p2) 2 , D4 = (k1 − k2) 2 ,

D5 = (k2 + p1 + p2) 2 , D6 = (k2 + p1 + p2 + p3) 2 ,

D7 = (k2 + p1 + p2 + p3 + p4) 2 , D8 = k2
2 ,

D9 = (k2 + p1 + p2 + p3 + p4 + p5) 2 .

(4.188)

• Case (4), non-planar massless hexagon-box: the external kinematic is defined by p2
i = 0

for i = 1, . . . , 5, with the denominators

D1 = k2
1 , D2 = (k1 + p1) 2 , D3 = (k1 − p1 − p2) 2 , D4 = (k1 − k2) 2 ,

D5 = (k2 + p1 + p2) 2 , D6 = (k2 + p1 + p2 + p3) 2 ,

D7 = (k2 + p1 + p2 + p3 + p4) 2 , D8 = k2
2 ,

D9 = (k2 + p1 + p2 + p3 + p4 + p5) 2 .

(4.189)

The only ISP appearing using the Loop-by-Loop procedure in these four cases is:

z = (k2 + p1)2. (4.190)

In all the 4 cases show in Fig. 4.3, the Loop-by-Loop Baikov polynomials on the maximal cut
give the common expression,

u = zαi (ai + z)βi
(
bi + ei z + fi z

2
)γi ; (4.191)

• Case (1), planar massive pentabox:

α1 =γ1 =
d

2
− 3 , β1 = 2− d

2
, a1 = 2 v12 ,

b1 =2v12

(
m2 (v15 − v23)− v34

(
m2 + 2v23

)) (
m2 (v45 − v23) + v15

(
m2 + 2v45

))
,

e1 = 2v12

(
m2 (v15 − v23) v34 + v45

(
m2 (v23 − v15) + 2v34

(
m2 + v15 + v23

)))
− 2 (v23v34 + (v15 − v34) v45)

(
m2v45 + v34

(
m2 + 2v45

))
,

f1 = v2
34

(
m2 + 2v45

)
+ 2v45v34

(
m2 − v12 + v45

)
+m2v2

45 ,

• Case (2), non-planar massive pentabox:

α2 =β2 = γ2 =
d

2
− 3 , a2 = 2 v12 ,

b2 =2v12

(
m2 (v15 − v23)− v34

(
m2 + 2v23

)) (
m2 (v45 − v23) + v15

(
m2 + 2v45

))
,

e2 =2v12

(
m2 (v15 − v23) v34 + v45

(
m2 (v23 − v15) + 2v34

(
m2 + v15 + v23

)))
− 2 (v23v34 + (v15 − v34) v45)

(
m2v45 + v34

(
m2 + 2v45

))
,

f2 = v2
34

(
m2 + 2v45

)
+ 2v45v34

(
m2 − v12 + v45

)
+m2v2

45 .
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In the cases concerning 6 external legs, the number of independent kinematic variables grows a
lot and the expressions for the constants become rather heavy.
We present them evaluated at the phase space point:

v12 =1 , v13 =
1

2
, v14 =

1

3
, v15 =

1

5
, v23 =

1

7
,

v24 =
1

11
, v25 =

1

13
, v34 =

1

17
, v35 =

1

19
. (4.192)

• Case (3), planar massless hexagon-box:

α3 =
d− 6

2
, β3 = 2− d

2
, γ3 =

d− 7

2
, a3 = 2 ,

b3 =
619142135915328239231

1450900103219383716900
, e3 = −7218174020286869797

2586274693795692900
, (4.193)

f3 = −47636820419356249

18440461274835600
.

• Case (4), non-planar massless hexagon-box:

α4 = β4 =
d

2
− 3 , γ4 =

d− 7

2
, a4 = 2 ,

b4 =
619142135915328239231

1450900103219383716900
, e4 = −7218174020286869797

2586274693795692900
, (4.194)

f4 =
47636820419356249

18440461274835600
.

We define:

ωi =

(
βi

ai + z
+

γi (ei + 2 fi z)

bi + z (ei + fi z)
+
αi
z

)
dz. (4.195)

So we get:

ν = 3 , P = {0 ,−ai ,
−
√
e2
i − 4bifi − ei

2fi
,

√
e2
i − 4bifi − ei

2fi
,∞} . (4.196)

Monomial Basis. The MIs are chosen to be: J1 = I1,1,1,1,1,1,1,1;0 = 〈φ1|C], J2 = I1,1,1,1,1,1,1,1;−1 =
〈φ2|C] and J3 = I1,1,1,1,1,1,1,1;−2 = 〈φ3|C].
Let us consider the decomposition of I1,1,1,1,1,1,1,1;−3 = 〈φ4|C] in terms of this basis.
We compute the the C matrix:

Cij = 〈φi|φj〉 , i, j = 1, 2, 3, (4.197)

and the intersection numbers:
〈φ4|φi〉 , i = 1, 2, 3, (4.198)

and the eq. (4.53) gives:

I1,1,1,1,1,1,1,1;−3 = c1J1 + c2J2 + c3J3, (4.199)

with:

c1 = − ai (αi + 1) bi
fi (αi + βi + 2γi + 4)

,

c2 = −ai ei (αi + γi + 2) + bi (αi + βi + 2)

fi (αi + βi + 2γi + 4)
,

c3 = −ai fi (αi + 2γi + 3) + ei (αi + βi + γi + 3)

fi (αi + βi + 2γi + 4)
,

(4.200)

in agreement with Reduze, for all four cases.
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Arbitrary Number of External Legs Case

Figure 4.4: Multileg generalization of the topologies portrayed in Fig. 4.3.

The direct generalization of the cases discussed above is portrayed in Fig. 4.4 .
Here, choosing the following list of denominators:

D1 = k2
1 , D2 = (k1 + p1) 2 , D3 = (k1 + p1 + p2) 2 , D4 = (k1 − k2) 2 ,

D5 = (k2 + p1 + p2) 2 , D5+j =
(
k2 + p1 + p2 +

j∑
r=1

p2+r

)2 (4.201)

for a diagram with a number of external legs E equal to E = 4 + j with j > 1, and choosing as
ISP

z = D8+j = (k2 + p1)2. (4.202)

the Loop-by-Loop Baikov polynomials on the maximal cut have the same structure as the
previous 5 and 6 point cases, where at least one of p1 and p2 is massless:

u = zαi (ai + z)βi
(
bi + ei z + fi z

2
)γi ; (4.203)

Therefore the reduction derived in eq. (4.199) remains valid for any number of external legs.
This result has been checked numerically with Reduze up to 8 external legs.

4.4.5 Arbitrary Loop Examples

Planar Rocket Diagram for H+j: (3+2n)-Loop Case

In this Section we consider certain higher-loop topologies that contribute to the Higgs+jet
production. As done in Sec. 4.4.3, we define K as described in and around eq. (4.152).

Figure 4.5: Planar three-loop diagram contributing to H+j production.
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Let us consider a specific planar integral sector for Higgs+jet production from gluon fusion
at three loops, depicted in Fig. 4.5. The kinematics is such that: p2

1 = m2
H , p2

i = 0 with i = 2, 3,
s = (p1 + p2)2, t = (p2 + p3)2 and (p1 + p2 + p3)2 = 0.
The denominators are chosen as:

D1 = k2
1 −m2

t , D2 = (k1 − p1) 2 −m2
t , D3 = (k1 − k2) 2 −m2

t ,

D4 = (k2 − p1) 2, D5 = (k2 − p1 − p2)2 , D6 = k2
2, D7 = (k2 − k3) 2, (4.204)

D8 = (k3 − p1 − p2) 2, D9 = (k3 − p1 − p2 − p3) 2, D10 = k2
3,

while the ISP is:
z = D11 = (k3 + p1)2. (4.205)

The Loop-by-Loop Baikov representation on the maximal cut, gives:

u =
(
z − 2m2

H

) d
2
−3
(
m2
H + s− z

)
2− d

2
(
−2m2

H + t+ z
)
d−5, (4.206)

K =
sd−6t2−

d
2md−4

t

(
−m2

H + s+ t
)

2− d
2

m2
H

. (4.207)

On the other hand let us consider the five-loop topology in Fig 4.6,

Figure 4.6: Planar five-loop diagram contributing to H+j production.

Given the set of denominators:

D1 = k2
1 −m2

t , D2 = (k1 − p1) 2 −m2
t , D3 = (k1 − k2) 2 −m2

t ,

D4 = (k2 − p1) 2 , D5 = (k2 − k3) 2 −m2
t , D6 = k2

2 ,

D7 = (k3 − p1) 2 −m2
t , D8 = (k3 − k4) 2 −m2

t , D9 = k2
3 −m2

t , (4.208)

D10 = (k4 − p1)2 , D11 = (k4 − p1 − p2)2 , D12 = k2
4 , D13 = (k4 − k5) 2 ,

D14 = (k5 − p1 − p2) 2 , D15 = (k5 − p1 − p2 − p3) 2 , D16 = k2
5 .

and choosing the ISP as:
z = D17 = (k5 + p1)2 , (4.209)

the Loop-by-Loop Baikov representation on the maximal cut gives:

u =
(
z − 2m2

H

) d
2
−3
(
m2
H + s− z

)
2− d

2
(
−2m2

H + t+ z
)
d−5, (4.210)

K = sd−6t2−
d
2md−9

H m
3(d−4)
t

(
4m2

t −m2
H

) 3−d
2
(
−m2

H + s+ t
)

2− d
2 . (4.211)

We notice that u is exactly the same as eq. (4.206), while K slightly changes from eq. (4.207).

Iterating the Loop-by-Loop procedure to topologies with higher number of loops, we observe
that the structure remains the same; thus, we can generalize that formula to the (3+2n)-loop
case (n ≥ 0) shown in Fig. 4.7
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Figure 4.7: Planar box-rocket diagram contributing to H+j production.

In fact choosing the ISP as:

z = D11+6n = (k3+2n + p1) 2, (4.212)

the Loop-by-Loop Baikov representation on the maximal cut gives:

u =
(
z − 2m2

H

) d
2
−3
(
m2
H + s− z

)
2− d

2
(
−2m2

H + t+ z
)
d−5, (4.213)

K = sd−6t2−
d
2m

(d−7)n−2
H m

(d−4)(2n+1)
t

(
4m2

t −m2
H

)− 1
2

(d−3)n
(
−m2

H + s+ t
)

2− d
2 . (4.214)

And so:

ω =
1

2

(
d− 4

m2
H + s− z

+
2(d− 5)

−2m2
H + t+ z

+
d− 6

z − 2m2
H

)
dz, (4.215)

ν = 2, P = {2m2
H , 2m2

H − t, m2
H + s, ∞}, (4.216)

which are valid for all the (3+2n)-loop diagrams.

Monomial Basis. Let us consider the decomposition of I1,1,...,1;−3 = 〈φ4|C] in terms of the
MIs: J1 = I1,1,...,1;0 = 〈φ1|C] and J2 = I1,1,...,1;−1 = 〈φ2|C]. We compute the C matrix:

Cij = 〈φi|φj〉 , i, j = 1, 2 , (4.217)

and the intersection numbers:
〈φ4|φi〉 , i = 1, 2 , (4.218)

Then, we obtain the final decomposition by means of eq. (4.53):

I1,1,...,1;−3 = c1J1 + c2J2, (4.219)

with:

c1 =−
m2
H

(
9d2s2 − d2st− 66ds2 − 14dst− 2dt2 + 120s2 + 72st+ 16t2

)
2(d− 3)(d− 2)

−
m4
H

(
36d2s+ 5d2t− 168ds− 42dt+ 96s− 8t

)
4(d− 3)(d− 2)

(4.220)

−
(
5d2 − 10d+ 24

)
m6
H

2(d− 3)(d− 2)
+

(d− 4)st(3ds− 10s− 4t)

4(d− 3)(d− 2)
,
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c2 =
m2
H

(
9d2s− d2t− 42ds+ 2dt+ 24s− 16t

)
2(d− 3)(d− 2)

+
3
(
7d2 − 30d+ 40

)
m4
H

4(d− 3)(d− 2)
(4.221)

+
9d2s2 + 2d2st− 66ds2 − 28dst+ 120s2 + 80st+ 8t2

4(d− 3)(d− 2)
,

in (numerical) agreement with Reduze in the three loop case.

Differential Equation in Monomial Basis. We build the system of differential equations
with respect to the variable s.
We consider:

σ(s) = ∂s log(u) = − d− 4

2
(
m2
H + s− z

) . (4.222)

Then, {〈Φi|}i=1,2 are given by:

〈Φ1| = σdz, (4.223)

〈Φ2| = σzdz. (4.224)

Following the discussion presented in Sec. (4.2.1) we determine the A matrix; the entries read:

A11 =
(d− 4)(2s+ t)

t
(
−m2

H + s+ t
) +

2(d− 4)s

t
(
m2
H − s

) +
d− 6

s
, (4.225)

A12 =
d− 4(

s−m2
H

) (
−m2

H + s+ t
) , (4.226)

A21 =
(d− 4)

(
st−m2

H

(
2m2

H + 6s+ t
))

2
(
s−m2

H

) (
−m2

H + s+ t
) , (4.227)

A22 = − 3(d− 4)

2
(
−m2

H + s+ t
) +

2(d− 4)s(
s−m2

H

) (
−m2

H + s+ t
) +

d− 6

s
, (4.228)

in (numerical) agreement with Reduze in the three loop case.

Non-Planar Rocket Diagram for H+j: (3+2n)-Loop Case

Figure 4.8: Non-planar three-loop diagram contributing to the H+j production.

Let us consider the non-planar topology for the H + j production at three loop portrayed in
Fig. 4.8. The kinematics is such that: p2

1 = m2
H , p2

i = 0 with i = 2, 3, s = (p1+p2)2, t = (p2+p3)2

and (p1 + p2 + p3)2 = 0.
The denominators are given by:

D1 = k2
1 −m2

t , D2 = (k1 − p1) 2 −m2
t , D3 = (k1 − k2) 2 −m2

t , (4.229)
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D4 = (k2 − p1) 2 D5 = (k2 − k3 + p2) 2, D6 = k2
2, D7 = (k2 − k3) 2, (4.230)

D8 = (k3 − p1 − p2) 2, D9 = (k3 − p1 − p2 − p3) 2, D10 = k2
3, (4.231)

while the ISP is:
z = D11 = (k3 + p1) 2. (4.232)

Using the Loop-by-Loop Baikov representation, on the maximal cut we obtain:

u =
(
z − 2m2

H

) d
2
−3
(
m2
H + s− z

) d
2
−3
(
−2m2

H + t+ z
)
d−5, (4.233)

K =
t2−

d
2md−4

t

(
−m2

H + s+ t
)

2− d
2

sm2
H

. (4.234)

As done for the planar diagram, we can infer the general structure for the corresponding
3 + 2n-loop integral (n ≥ 0) shown in Fig. 4.9:

Figure 4.9: Non-planar box-rocket diagram contributing to H+j production.

In fact choosing the ISP as:

z = D11+6n = (k3+2n + p1) 2, (4.235)

after the maximal cut, we find:

u =
(
z − 2m2

H

) d
2
−3
(
m2
H + s− z

) d
2
−3
(
−2m2

H + t+ z
)
d−5, (4.236)

K =
t2−

d
2m

(d−7)n−2
H m

(d−4)(2n+1)
t

(
4m2

t −m2
H

)− 1
2

(d−3)n
(
−m2

H + s+ t
)

2− d
2

s
, (4.237)

thus:

ω =
1

2

(
6− d

m2
H + s− z

+
2(d− 5)

−2m2
H + t+ z

+
d− 6

z − 2m2
H

)
dz, (4.238)

ν = 2, P = {2m2
H , −t+2m2

H , (m2
H+s), ∞}, (4.239)

which are valid for all the (3+2n)-loop diagrams.

Monomial Basis. Let us consider the decomposition of I1,1,...,1;−3 = 〈φ4|C] in terms of
J1 = I1,1,...,1;0 = 〈φ1|C] and J2 = I1,1,...,1;−1 = 〈φ2|C].
We can compute the C matrix:

Cij = 〈φi|φj〉 , i, j = 1, 2 , (4.240)

and the additional intersection numbers:

〈φ4|φi〉 , i = 1, 2 , (4.241)
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and finally eq. (4.53) gives:

I1,1,...,1;−3 = c1J1 + c2J2, (4.242)

with:

c1 =−
m2
H

(
9ds2 − 17dst+ 3dt2 − 30s2 + 62st− 9t2

)
4(2d− 7)

−
m4
H(108ds− 59dt− 384s+ 202t)

8(2d− 7)

−
(65d− 226)m6

H

4(2d− 7)
+
st(3ds− 2dt− 10s+ 6t)

8(2d− 7)
, (4.243)

c2 =
m2
H(27ds− 20dt− 96s+ 69t)

4(2d− 7)
+

3(43d− 150)m4
H

8(2d− 7)

+
9ds2 − 8dst+ 4dt2 − 30s2 + 30st− 12t2

8(2d− 7)
, (4.244)

in (numerical) agreement with Reduze in the three loop case.

Differential Equations in Monomial Basis. We build the system of differential equation
with respect to the variable s.
We consider:

σ(s) = ∂s log(u) =
d− 6

2
(
m2
H + s− z

) , (4.245)

which gives {〈Φi|}i=1,2 :

〈Φ1| = σdz, (4.246)

〈Φ2| = σzdz. (4.247)

Then, following the discussion in Sec. 4.2.1, we build the A matrix, with:

A11 =
m2
H((21− 4d)s+ t) + s((d− 6)t− 2s)−m4

H

s
(
s−m2

H

) (
−m2

H + s+ t
) , (4.248)

A12 =
2d− 9(

s−m2
H

) (
−m2

H + s+ t
) , (4.249)

A21 =
m2
H((3d− 16)t− 6(d− 4)s) + (48− 10d)m4

H + (d− 4)st

2
(
s−m2

H

) (
−m2

H + s+ t
) , (4.250)

A22 =
m2
H((5d− 18)s+ 2t) + s((3d− 16)s− 2t)− 2m4

H

2s
(
s−m2

H

) (
−m2

H + s+ t
) . (4.251)

in (numerical) agreement with Reduze in the three loop case.
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Planar Rocket Diagram for H+j: (2+2n)-Loop Case

Figure 4.10: Planar four-loop diagram contributing to H+j production.

Let us consider the four loop planar topology in Fig. 4.10 which contributes to the H+j
production. The kinematics is such that: p2

1 = m2
H , p2

i = 0 with i = 2, 3, s = (p1 + p2)2,
t = (p2 + p3)2 and (p1 + p2 + p3)2 = 0.
The denominators are:

D1 = k2
1 −m2

t , D2 = (k1 − p1) 2 −m2
t , D3 = (k1 − k2) 2 −m2

t ,

D4 = (k2 − p1) 2 , D5 = (k2 − k3) 2 −m2
t , D6 = k2

2 , (4.252)

D7 = (k3 − p1) 2 −m2
t , D8 = (k3 − p1 − p2) 2 −m2

t , D9 = (k3 − k4) 2 −m2
t ,

D10 = k2
3 −m2

t , D11 = (k4 − p1 − p2) 2 , D12 = (k4 − p1 − p2 − p3) 2 , D13 = k2
4.

While the ISP is:
z = D14 = (k4 + p1) 2. (4.253)

The Loop-by-Loop Baikov representation, on the maximal cut gives: with

u =

(
m2
H+s−z

)
2− d

2

(
−2m2

H+t+z
)
d−5

(
2sm2

H−4m2
Hm

2
t−4sm2

t+z
(
4m2

t−s
)) d−5

2√
z − 2m2

H

, (4.254)

K = s
d−7
2 t2−

d
2m

(d−7)
H m

2(d−4)
t

(
4m2

t −m2
H

)− 1
2

(d−3)
(
−m2

H + s+ t
)

2− d
2 . (4.255)

We can generalize such a construction in order to describe the (2+2n)-loop diagram (n ≥ 0),
shown in Fig. 4.11:

Figure 4.11: Planar All-loop diagram contributing to H+j production.
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In fact choosing as ISP:
D8+6n = (k2+2n + p1) 2, (4.256)

we obtain:

u =

(
m2
H+s−z

)
2− d

2

(
−2m2

H+t+z
)
d−5

(
2sm2

H−4m2
Hm

2
t−4sm2

t+z
(
4m2

t−s
)) d−5

2√
z − 2m2

H

, (4.257)

K = s
d−7
2 t2−

d
2m

(d−7)n
H m

2(d−4)n
t

(
4m2

t −m2
H

)− 1
2

(d−3)n
(
−m2

H + s+ t
)

2− d
2 , (4.258)

from which we can evaluate:

ω =
1

2

(
(d− 5)

(
s− 4m2

t

)
m2
H

(
4m2

t − 2s
)

+ 4m2
t (s− z) + sz

+
d− 4

m2
H + s− z

+
2(d− 5)

−2m2
H + t+ z

+
1

2m2
H − z

)
dz,

ν = 3 , P = {2m2
H ,m

2
H+s , 2m2

H−t ,−
2
(
−sm2

H+2m2
Hm

2
t+2sm2

t

)
s− 4m2

t

,∞} . (4.259)

which are valid for all the (2+2n)-loop diagrams.

Monomial Basis. Let us consider the reduction of I1,1,...,1;−3 = 〈φ4|C] in terms of: J1 =
I1,1,...,1;0 = 〈φ1|C] and J2 = I1,1,...,1;−1 = 〈φ2|C] and J3 = I1,1,...,1;−2 = 〈φ3|C].
We can compute the C matrix:

C = 〈φi|φj〉 , i = 1, 2, 3 , (4.260)

and the intersection numbers:
〈φ4|φi〉 , i = 1, 2, 3 , (4.261)

thus, eq. (4.53) leads to:
I1,1,...,1;−3 = c1J1 + c2J2 + c3J3, (4.262)

with:

c1 =
(
sm2

H

(
m2
H((6d− 20)s+ (d− 10)t) + 2(d+ 2)m4

H + (2− d)st
)

+

2m2
t

(
m2
H+s

) (
m2
H((14−4d)s+7t) + (2−4d)m4

H+st
) )
/
(

(d−2)
(
s−4m2

t

) )
, (4.263)

c2 =
(

4m2
t

(
m2
H(6(2d− 5)s− 11t) + (10d− 11)m4

H + s((2d− 7)s− 5t)
)

+

s
(
m2
H((40−12d)s−(d−18)t)+(8−12d)m4

H+(d−2)st
) )
/
(

2(d−2)
(
s−4m2

t

))
, (4.264)

c3 =
(

4m2
t

(
(13− 8d)m2

H + (11− 4d)s+ 4t
)

+

s
(
(9d− 14)m2

H + (3d− 10)s− 4t
) )
/
(

2(d− 2)
(
s− 4m2

t

) )
. (4.265)

in agreement with Reduze in the two loop case.

Differential Equations in Monomial Basis. We derive:

σ(s) = −
(
z − 2m2

H

) (
−(d− 5)m2

H + (d− 5)z + s
)

+ 4m2
t

(
m2
H + s− z

)
2
(
m2
H + s− z

) (
4m2

t

(
m2
H + s− z

)
+ s

(
z − 2m2

H

)) . (4.266)

The {〈Φi|}i=1,2,3 are given by:

〈Φ1| = σdz, (4.267)
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〈Φ2| = σzdz, (4.268)

〈Φ3| = σz2dz. (4.269)

Then, the A matrix can be computed following Sec. (4.2.1); the entries are presented evaluated
at the phase space point:

m2
t = 1 , m2

H = 3 , t = 5 . (4.270)

We find:

A11 =
d
(
13s2 + 7s− 120

)
− 2

(
s3 + 19s2 + 10s− 186

)
s (s3 − 9s2 + 2s+ 48)

, (4.271)

A12 =
d
(
−2s2 − 15s+ 72

)
+ 8s2 + 50s− 244

(s− 8)(s− 3)s(s+ 2)
, (4.272)

A13 =
2(d− 3)(s− 4)

(s− 8)(s− 3)s(s+ 2)
, (4.273)

A21 =
2
(
3d
(
5s2 − 15s− 72

)
− 59s2 + 168s+ 810

)
(s− 8)(s− 3)s(s+ 2)

, (4.274)

A22 =
d
(
−10s2 + 28s+ 240

)
− 2s3 + 51s2 − 84s− 900

s (s3 − 9s2 + 2s+ 48)
, (4.275)

A23 =
(d− 3)

(
s2 − 4s− 24

)
(s− 8)(s− 3)s(s+ 2)

, (4.276)

A31 =
3d
(
5s4−35s3−132s2+648s+1728

)
−2
(
28s4−193s3−753s2+3636s+9720

)
(s− 8)(s− 4)(s− 3)s(s+ 2)

, (4.277)

A32 =
d
(
−23s4+173s3+408s2−2088s−5184

)
+2
(
41s4−307s3−712s2+3588s+8784

)
2(s− 8)(s− 4)(s− 3)s(s+ 2)

, (4.278)

A33 =
d
(
3s4−21s3−76s2+376s+384

)
−2
(
7s4−59s3−70s2+740s+192

)
2(s− 8)(s− 4)(s− 3)s(s+ 2)

. (4.279)

in agreement with Reduze in the two loop case.

Non-Planar Rocket Diagram for H+j: (2+2n)-Loop Case

Figure 4.12: Non-planar four loop contribution to H+j production.

Let us consider the non-planar four loop contribution to H+j production in Fig. 4.12. The
kinematics is such that: p2

1 = m2
H , p2

i = 0 with i = 2, 3, s = (p1 + p2)2, t = (p2 + p3)2 and
(p1 + p2 + p3)2 = 0.
In this case the denominators are:

D1 = k2
1 −m2

t , D2 = (k1 − p1) 2 −m2
t , D3 = (k1 − k2) 2 −m2

t ,
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D4 = (k2 − p1) 2 , D5 = (k2 − k3) 2 −m2
t , D6 = k2

2 , (4.280)

D7 = (k3 − p1) 2 −m2
t , D8 = (k3 − k4 + p2) 2 −m2

t , D9 = (k3 − k4) 2 −m2
t ,

D10 = k2
3 −m2

t , D11 = (k4 − p1 − p2) 2 , D12 = (k4 − p1 − p2 − p3) 2 , D13 = k2
4.

We choose the ISP as:

z = D14 = (k4 + p1) 2, (4.281)

The Loop-by-Loop Baikov representation, after the maximal cut gives:

u =

(
−2m2

H + t+ z
)
d−5

((
2m2

H − z
) (
m2
H + s− z

)
− 4sm2

t

) d−5
2√

z − 2m2
H

√
m2
H + s− z

, (4.282)

K =
t2−

d
2md−7

H m
2(d−4)
t

(
4m2

t −m2
H

) 3−d
2

(
−m2

H + s+ t
)

2− d
2

s
. (4.283)

As stated above, we can generalize such Baikov polynomial in order to describe the (2+2n)-loop
diagram (n ≥ 0) shown in Fig. 4.13.

Figure 4.13: Non-planar (2+2n)-loop contribution to H+j production.

In fact choosing the ISP as:

D8+6n = (k2+2n + p1) 2, (4.284)

we obtain:

u =

(
−2m2

H + t+ z
)
d−5

((
2m2

H − z
) (
m2
H + s− z

)
− 4sm2

t

) d−5
2√

z − 2m2
H

√
m2
H + s− z

, (4.285)

K =
t2−

d
2m

(d−7)n
H m

2(d−4)n
t

(
4m2

t −m2
H

)− 1
2

(d−3)n
(
−m2

H + s+ t
)

2− d
2

s
, (4.286)

from which we evaluate:

ω =
1

2

(
(d− 5)

(
3m2

H + s− 2z
)(

z − 2m2
H

) (
m2
H + s− z

)
+ 4sm2

t

+
2(d− 5)

−2m2
H + t+ z

+
1

m2
H + s− z

+
1

2m2
H − z

)
dz,

(4.287)

ν = 4 , P = {2m2
H ,m

2
H+s , 2m2

H−t , ρ1 , ρ2 ,∞} . (4.288)

which are valid for all the (2+2n)-loop diagrams.
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Monomial Basis. Let us consider the reduction of I1,1,...,1;−4 = 〈φ5|C] in terms of: J1 =
I1,1,...,1;0 = 〈φ1|C], J2 = I1,1,...,1;−1 = 〈φ2|C], J3 = I1,1,...,1;−2 = 〈φ3|C] and J4 = I1,1,...,1;−3 =
〈φ4|C].
We compute the C matrix:

C = 〈φi|φj〉 , 1 ≤ i, j ≤ 4, (4.289)

and the intersection numbers:
〈φ5|φi〉 , 1 ≤ i ≤ 4, (4.290)

then eq. (4.53) gives:
I1,1,...,1;−4 = c1J1 + c2J2 + c3J3 + c4J4, (4.291)

with:

c1 =
m2
H

(
m2
H + s

) (
m2
H((20− 6d)s+ 3(d− 2)t) + (28− 10d)m4

H + (d− 2)st
)

2(d− 3)

+
−2sm2

t

(
m2
H((14− 4d)s+ 3t) + (10− 4d)m4

H + st
)

2(d− 3)
, (4.292)

c2 =
m4
H(4(15d− 46)s− 13(d− 2)t) + 2sm2

H((6d− 20)s− 5(d− 2)t)

4(d− 3)

+
4sm2

t

(
(17− 6d)m2

H + (7− 2d)s+ 2t
)

+ 8(7d− 20)m6
H + (2− d)s2t

4(d− 3)
, (4.293)

c3 =
m2
H(4(28− 9d)s+ 9(d− 2)t) + (166− 57d)m4

H + s
(
8(d− 3)m2

t

4(d− 3)

+
(10− 3d)s+ 3(d− 2)t)

4(d− 3)
, (4.294)

c4 =
(25d− 74)m2

H + (7d− 22)s− 2(d− 2)t

4(d− 3)
. (4.295)

in agreement with Reduze in the two loop case.

Differential Equations in Monomial Basis. In the two loop case (n = 0) we derive:

σ(s) =
4m2

t

(
(d− 5)m2

H + (d− 6)s− (d− 5)z
)

+ (d− 6)
(
z − 2m2

H

) (
m2
H + s− z

)
2
(
m2
H + s− z

) ((
z − 2m2

H

) (
m2
H + s− z

)
+ 4sm2

t

) . (4.296)

The {〈Φi|}i=1,2,3,4 are given by:

〈Φ1| = σ dz, (4.297)

〈Φ2| = σ z dz, (4.298)

〈Φ3| = σ z2 dz, (4.299)

〈Φ4| = σ z3 dz. (4.300)

Then, the A matrix can be computed following Sec. (4.2.1); the entries are presented evaluated
at the phase space point:

m2
t = 1 , m2

H = 3 , t = 5 . (4.301)

We find:

A11 =
−2s5 + 13s4 + 92s3 − 3751s2 − 19284s+ d

(
−11s4 − 43s3 + 1063s2 + 5235s+ 4860

)
(s− 3)s(s+ 2)(s+ 10) (s2 + 10s+ 9)

+
−18144

(s− 3)s(s+ 2)(s+ 10) (s2 + 10s+ 9)
,
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A12 =
3
(
−3s4 + 2s3 + 851s2 + 4976s+ 5058

)
+ d

(
2s4 − 8s3 − 703s2 − 4002s− 4077

)
(s− 3)s(s+ 2)(s+ 10) (s2 + 10s+ 9)

,

A13 =
d
(
3s3 + 113s2 + 899s+ 1041

)
− 2

(
5s3 + 200s2 + 1617s+ 1872

)
(s− 3)s(s+ 2)(s+ 10) (s2 + 10s+ 9)

,

A14 =−
2(2d− 7)

(
s2 + 16s+ 21

)
(s− 3)s(s+ 2)(s+ 10) (s2 + 10s+ 9)

,

A21 =
30d

(
s3 + 19s2 + 69s+ 63

)
− 2

(
53s3 + 1079s2 + 3972s+ 3618

)
(s− 3)s(s+ 1)(s+ 2)(s+ 10)

,

A22 =
−2s4 + 106s3 + 1560s2 + 6126s− d

(
34s3 + 423s2 + 1628s+ 1623

)
+ 6066

(s− 3)s(s+ 1)(s+ 2)(s+ 10)
,

A23 =
d
(
5s3 + 80s2 + 378s+ 429

)
− 2

(
9s3 + 143s2 + 677s+ 768

)
(s− 3)s(s+ 1)(s+ 2)(s+ 10)

,

A24 =−
2(2d− 7)

(
s2 + 7s+ 9

)
(s− 3)s(s+ 1)(s+ 2)(s+ 10)

,

A31 =
30d

(
s4 + 19s3 + 120s2 + 297s+ 243

)
− 4

(
28s4 + 535s3 + 3426s2 + 8514s+ 6939

)
(s− 3)s(s+ 1)(s+ 2)(s+ 10)

,

A32 =
2
(
41s4 + 813s3 + 5128s2 + 13425s+ 11853

)
− d

(
23s4 + 449s3 + 2790s2

(s− 3)s(s+ 1)(s+ 2)(s+ 10)

+
7281s+ 6453)

(s− 3)s(s+ 1)(s+ 2)(s+ 10)
,

A33 =−
12s4 + 271s3 + 2061s2 + 6278s− d

(
3s4 + 72s3 + 577s2 + 1783s+ 1779

)
+ 6276

(s− 3)s(s+ 1)(s+ 2)(s+ 10)
,

A34 =−
(2d− 7)

(
s3 + 17s2 + 70s+ 78

)
(s− 3)s(s+ 1)(s+ 2)(s+ 10)

,

A41 =
(s+ 9)

(
15d

(
s4 + 20s3 + 121s2 + 288s+ 234

)
− 2

(
28s4 + 569s3 + 3457s2

(s− 3)s(s+ 1)(s+ 2)(s+ 10)

+
8214s+ 6642))

(s− 3)s(s+ 1)(s+ 2)(s+ 10)
,

A42 =
82s5 + 2362s4 + 25034s3 + 119834s2 + 263028s− d

(
23s5 + 649s4 + 6803s3

2(s− 3)s(s+ 1)(s+ 2)(s+ 10)

+32613s2 + 71874s+ 57726
)

+ 210492

2(s− 3)s(s+ 1)(s+ 2)(s+ 10)
,

A43 =
d
(
3s5 + 90s4 + 1135s3 + 7030s2 + 18528s+ 16578

)
− 2

(
5s5 + 162s4 + 2081s3

2(s− 3)s(s+ 1)(s+ 2)(s+ 10)

+
12586s2 + 32838s+ 29376

)
2(s− 3)s(s+ 1)(s+ 2)(s+ 10)

,

A44 =
2
(
s4 + 62s3 + 773s2 + 2746s+ 2706

)
− d

(
s4 + 40s3 + 441s2 + 1530s+ 1512

)
2(s− 3)s(s+ 1)(s+ 2)(s+ 10)

.

in agreement with Reduze in the two loop case.

4.5 Multivariate intersection number

In this Section we discuss the details of the recursive algorithm employed for the evaluation
of intersection numbers of multivariate differential forms introduced in [81]; the algorithm was
successfully applied in the context of Feynman integrals as well as hypergeometric functions
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in [2, 3]. The recursive algorithm expresses the n-variable intersection number in terms of
(n − 1)-variable intersection numbers and so on, where the last term of this sequence is the
univariate intersection number discussed in refs. [1, 68].

In particular, we consider integrals with n integration variables {zi1 , . . . , zin}, which can
be seen as iterative integrals, with a nested structure that follows from the chosen ordering
{i1, . . . , ik} of the integers {1, . . . , n}. In order to compute multivariate intersection number
for n-differential forms, we need to calculate the dimension of the cohomology groups for all
k-differential forms, from k = 1 to k = n. They can be obtained, for instance, by counting the
number νk of solutions to the equation system given by eq. (4.40),

ω̂j ≡ ∂zj log u(z) = 0 , j = i1, . . . , ik , (4.302)

where k = {i1, . . . , ik} is a subset of {1, . . . , n} with k distinct elements. In this way, one obtains
a list of dimensions ν1, ν2, . . ., νn, respectively corresponding to the iterative integration in
{zi1}, in {zi1 , zi2}, . . . , in {zi1 , . . . , zin} variables, and where we used the vector notation,

1 = {i1} , 2 = {i1, i2} , . . . , n = {i1, i2, . . . , in} , (4.303)

to indicate the integration variables.
It is interesting to observe that, while νn is trivially independent of the ordering of the

integration variables, the dimensions of the subspaces νk may indeed depend on which specific
subsets k of {1, 2, . . . , n} are chosen and in which order. As a working principle, we choose the
ordering that minimizes the sizes of νk for all k-forms (k = 1, . . . , n).

Before delving into the n-variable intersection number, we start with the example of 2-
variable intersection numbers, written recursively in terms of univariate intersection numbers;
an approach which will later be generalized to the n-variate case.

4.5.1 2-variable intersection number

We start by considering an integral with two integration variables {z1, z2}, written as follows,

I =

∫
C(2)R

ϕ
(2)
L (z1, z2) u(z1, z2) = 〈ϕ(2)

L |C
(2)
R ] , (4.304)

where 2 = {1, 2}, ϕ(2)
L is a differential 2-form in variables z1 and z2, while C(2)

R is a two-
dimensional integration domain embedded in some ambient space X with complex dimension 2.
We assume that X admits a fibration into one-dimensional spaces X2 3 z2 and X1 3 z1

4, and

correspondingly ϕ
(2)
L , C(2)

R can be decomposed in a similar manner. Similarly, we can consider a
dual integral, given by

Ĩ =

∫
C(2)L

ϕ
(2)
R (z1, z2) u−1(z1, z2) = [C(2)

L |ϕ
(2)
R 〉 , (4.305)

with all the variables defined analogously to the ones above.
As before, we have

ω = d log u(z) =
2∑
i=1

ω̂i dzi (4.306)

and employing eq. (4.40), we can count the number of MIs in the X1 space, which we label as

ν1 with 1 = {1}. Then the goal is to determine the 2-variable intersection number 〈ϕ(2)
L |ϕ

(2)
R 〉

in terms of the univariate intersection numbers on the X1 space, which are calculable with the
univariate methods discussed in [1, 68] and assumed to be already computed.

4This does not necessarily mean that X = X2 ×X1, since X1 = X1(z2) can depend on z2 (but X2 does not
depend on z1).



90 CHAPTER 4. INTERSECTION THEORY AND FEYNMAN INTEGRALS

We start by decomposing the differential forms as

〈ϕ(2)
L | =

ν1∑
i=1

〈e(1)
i | ∧ 〈ϕ

(2)
L,i| , (4.307)

|ϕ(2)
R 〉 =

ν1∑
i=1

|h(1)
i 〉 ∧ |ϕ

(2)
R,i〉 , (4.308)

into an arbitrary basis forms 〈e(1)
i | and their duals |h(1)

i 〉 on X1. In the above expressions 〈ϕ(2)
L,i|

and |ϕ(2)
R,j〉 are one-forms in the variables z2, and they are treated as coefficients of the basis

expansion. They can be obtained by a projection similar to eq. (4.53), using only univariate
intersection, namely (sum over repeated indices is understood)

〈ϕ(2)
L,i| = 〈ϕ

(2)
L |h

(1)
j 〉

(
C−1

(1)

)
ji
, (4.309)

|ϕ(2)
R,i〉 =

(
C−1

(1)

)
ij
〈e(1)
j |ϕ

(2)
R 〉 , (4.310)

with the metric matrix, which is also a univariate intersection matrix(
C(1)

)
ij
≡ 〈e(1)

i |h
(1)
j 〉 . (4.311)

From refs. [1, 68] we know that the univariate intersection number is given as

〈e(1)
i |h

(1)
j 〉 =

∑
p∈Pω1

Resz1=p

[
ψ

(p)
i h

(1)
j

]
, (4.312)

where ψ
(p)
i is the local solution of the differential equation

∇ω1ψ
(p)
i = e

(1)
i , (4.313)

around every pole p of ω1, denoted by the set Pω1 . Here the connection ω1 is just the dz1

component of ω, and ∇ω1 = (d+ ω1∧). In [81] it was shown that putting these ingredients
together one can write the 2-variable intersection number as

〈ϕ(2)
L |ϕ

(2)
R 〉 =

ν1∑
i,j=1

∑
q∈P

Ω(2)

Resz2=q

[
ψ

(q)
i

(
C(1)

)
ij
ϕ

(2)
R,j

]
, (4.314)

where ψ
(q)
i is the local solution of the differential equation

∇Ω(2)ψ
(q)
i = dψ

(q)
i + ψ

(q)
j ∧Ω

(2)
ji = ϕ

(2)
L,i (4.315)

around each point q from the set of poles of Ω(2) denoted by P(2)
Ω . In eq. (4.314), the 2-variable

intersection number 〈ϕ(2)
L |ϕ

(2)
R 〉 has been expressed in terms of the known univariate intersection

numbers and a new connection matrix Ω(2). To determine Ω(2), we will follow the same trick
as adopted in the case of single variable, namely starting from the integral and defining the
equivalence class of the single valued differential form. We want to find an analogue of the fact
that

0 =

∫
CR
d(ξLu) =

∫
CR

(dξL + d log u ∧ ξL)u ≡
∫
CR
∇ωξL u, (4.316)

with du = ωu, but for two-fold integrals.
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Let us consider the original integral I from eq. (4.304) and apply the decomposition we used
in eq. (4.307):∫

C(2)R

ϕ
(2)
L (z1, z2)u(z1, z2) =

ν1∑
i=1

∫
C(2)R

ϕ
(2)
L,i(z2)

∫
C(1)R

e
(1)
i (z1, z2)u(z1, z2)

=

ν1∑
i=1

∫
C(2)R

ϕ
(2)
L,i(z2)ui(z2) , (4.317)

where we defined

ui(z2) =

∫
C(1)R

e
(1)
i (z1, z2)u(z1, z2) . (4.318)

Now, there could exist many forms ϕ
(2)
L,i that integrate to give the same result. Let us consider a

total derivative of ui times any function (0-form) ξi(z2) with poles correctly regulated,

0 =

∫
C(1)R

dz2(ξi(z2)ui(z2)) =

∫
C(1)R

(dz2ξi(z2)ui(z2) + ξi(z2)dz2ui(z2)) , (4.319)

where dz2 denotes the differential acting only on z2, i.e. dz2 = dz2 ∂z2 . Let us notice that ui(z2)
satisfies the following differential equation in z2 following Sec. 4.2.1:

dz2ui(z2) = Ω
(2)
ij uj(z2) , (4.320)

where Ω(2) is a ν1 × ν1 matrix. Inserting this into eq. (4.319), we obtain:

0 =

∫
C(2)R

(
dz2ξi(z2)ui(z2) + ξi(z2)(Ω(2))ijuj(z2)

)
=

∫
C(2)R

(
dz2ξI + ξΩ(2)

)
· u (4.321)

=

∫
C(2)R

(∇Ω(2)ξ) · u ,

where the final equation defines our new connection ∇Ω(2) .
The Ω(2) can be obtained directly from computing the z2-differential of ui(z2),

dz2ui(z2) = dz2

∫
C(1)R

e
(1)
i (z1, z2)u(z1, z2)

=

∫
C(1)R

(
dz2e

(1)
i (z1, z2) + dz2 log u(z1, z2) ∧ e(1)

i (z1, z2)
)
u(z1, z2)

=

∫
C(1)R

(dz2 + ω2∧) e
(1)
i (z1, z2) u(z1, z2) (4.322)

= 〈(dz2 + ω2∧)e
(1)
i |C

(1)
R ] .

The final line can be further simplified by using the master decomposition formula in eq. (4.53)
in the z1-variable, such that

〈(dz2 + ω2∧)e
(1)
i | = 〈(dz2 + ω2∧)e

(1)
i |h

(1)
k 〉(C

−1
(1))kj 〈e

(1)
j | . (4.323)

Using eq. (4.320), we can identify Ω(2) through

Ω
(2)
ij = 〈(dz2 + ω2∧)e

(1)
i |h

(1)
k 〉(C

−1
(1))kj . (4.324)
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A dual formula

Let us discuss an alternative recursive formula for intersection numbers, which uses the dual
connection matrix Ω̃(2) instead of Ω(2). This amounts to repeating the same steps, but now
using the decomposition of the differential forms as described in eq. (4.307). Following [81] the
2-variable intersection number can be written as

〈ϕ(2)
L |ϕ

(2)
R 〉 = −

ν1∑
i,j=1

∑
q∈P

Ω̃(2)

Resz2=q

[
ϕ

(2)
L,i

(
C(1)

)
ij
ψ

(q)
j

]
, (4.325)

where ψ
(q)
j is the solution of

∇Ω∨(2)ψ
(q)
j = dψ

(q)
j −Ω

∨(2)
ji ∧ ψ(q)

i = ϕ
(2)
R,j . (4.326)

In the above equation, the 2-variable intersection number 〈ϕ(2)
L |ϕ

(2)
R 〉 has been expressed in terms

of the known univariate intersection numbers and a new connection Ω∨(2). To determine Ω∨(2)

one follows steps similar to those described above.
Let us consider the dual integral with two variables as follows:∫

C(2)L

ϕ
(2)
R (z1, z2)u−1(z1, z2) =

ν1∑
i=1

∫
C(2)L

ϕ
(2)
R,i(z2)

∫
C(1)L

h
(1)
i (z1, z2)u−1(z1, z2)

=

ν1∑
i=1

∫
C(2)L

ϕ
(2)
R,i(z2)u∨i (z2) , (4.327)

where we use the decomposition of ϕ
(2)
R from eq. (4.307) in the first step and defined

u∨i (z2) =

∫
C(1)L

h
(1)
i (z1, z2)u−1(z1, z2) . (4.328)

We then consider a total derivative of u∨i times a function ξi(z2)

0 =

∫
C(2)L

dz2(ξi(z2)u∨i (z2)) =

∫
C(2)L

(
dz2ξi(z2)u∨i (z2) + ξi(z2) dz2u

∨
i (z2)

)
. (4.329)

Using the results from Sec. 4.2.1, the vector u∨i (z2) satisfies the following differential equation in
z2:

dz2u
∨
i (z2) = −u∨j (z2) Ω

∨(2)
ji , (4.330)

where Ω∨(2) is a ν1 × ν1 matrix. Inserting this into eq. (4.329), we obtain:

0 =

∫
C(2)L

(
dz2ξi(z2)u∨i (z2)− ξi(z2)u∨j (z2) Ω

∨(2)
ji

)
=

∫
C(2)L

u∨ ·
(
dz2ξ I− Ω∨(2)ξ

)
(4.331)

=

∫
C(2)L

u∨ ·
(
∇−Ω∨(2)ξ

)
,

Finally, the matrix Ω∨(2) can be obtained directly by computing the z2-differential of u∨i (z2),
which shows that its components are given by

Ω
∨(2)
ij =− (C−1

(1))ik〈e
(1)
k |(dz2 − ω2∧)h

(1)
j 〉 . (4.332)
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4.5.2 n-variable intersection number

Following the above discussion, we can generalize the 2-variable intersection number to the n-
variable case, where we start by considering an integral with n integration variables (z1, z2, . . . , zn),
written as

I (z1, z2, . . . , zn) =

∫
C(n)
R

ϕ
(n)
L (z1, z2, . . . , zn) u(z1, z2, . . . , zn) = 〈ϕ(n)

L |C
(n)
R ] (4.333)

with the notation n = {1, . . . , n}. The ϕ
(n)
L is an n-variable differential form on some space X.

Similarly, one can define a dual form ϕ
(n)
R . We assume that the n-complex-dimensional space with

coordinates (z1, . . . , zn) admits a fibration into a (n−1)-dimensional subspace parametrized by
(z1, . . . , zn−1), denoted by n−1, which we call the inner space, and a one-dimensional subspace
with zn, which we refer to as the outer space. We have

ω = d log u(z) =
n∑
i=1

ω̂i dzi (4.334)

and employing eq. (4.40), we can count the number of MIs on the inner space, which we define

as νn−1. The aim is to express the n-variables intersection number 〈ϕ(n)
L |ϕ

(n)
R 〉 in terms of

intersection numbers in (n−1)-variables on the inner space, which are assumed to be known at
this stage, following the recursive nature of the algorithm. The choice of the variables (and their
ordering) parametrizing the inner and outer spaces is arbitrary: as before, we use the generic
notation k ≡ {i1, i2, . . . , ik} to denote the variables taking part in a specific computation.

Thus, the original n-forms can be decomposed according to

〈ϕ(n)
L | =

νn−1∑
i=1

〈e(n−1)
i | ∧ 〈ϕ(n)

L,i | , (4.335)

|ϕ(n)
R 〉 =

νn−1∑
i=1

|h(n−1)
i 〉 ∧ |ϕ(n)

R,i〉 , (4.336)

where νn−1 is the number of master integrals on the inner space with arbitrary bases 〈e(n−1)
i |,

|h(n−1)
i 〉. In the above expressions 〈ϕ(n)

L,i | and |ϕ(n)
R,i〉 are one-forms in the variable zn, and they

are treated as coefficients of the basis expansion. They can be obtained by a projection similar
to eq. (4.53), giving

〈ϕ(n)
L,i | = 〈ϕ

(n)
L |h

(n−1)
j 〉

(
C−1

(n−1)

)
ji
, (4.337)

|ϕ(n)
R,i〉 =

(
C−1

(n−1)

)
ij
〈e(n−1)
j |ϕ(n)

R 〉 , (4.338)

with (
C(n−1)

)
ij

= 〈e(n−1)
i |h(n−1)

j 〉 . (4.339)

We stress again that the (n−1)-variable intersection numbers are assumed to be known at this
stage. The recursive formula for the intersection number reads [81]:

〈ϕ(n)
L |ϕ

(n)
R 〉 =

∑
p∈Pn

Reszn=p

(
ψ

(n)
i

(
C(n−1)

)
ij
ϕ

(n)
R,j

)
, (4.340)

where the functions ψ
(n)
i are the solution of the system of differential equations

∂znψ
(n)
i + ψ

(n)
j Ω̂

(n)
ji = ϕ̂

(n)
L,i , (4.341)
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and ϕ̂L,i are obtained through eq. (4.337). Here, Ω̂(n) is a νn−1 × νn−1 matrix, whose entries
are given by

Ω̂
(n)
ji = 〈(∂zn + ω̂n)e

(n−1)
j |h(n−1)

k 〉
(
C−1

(n−1)

)
ki

(4.342)

and finally Pn is the set of poles of Ω̂(n) defined as the union of the poles of its entries (including
a possible pole at infinity). We observe that the solution of eq. (4.341) around zn=p can be
formally written in terms of a path-ordered matrix exponential

~ψ(n)(zn) =

(
Pe−

∫ zn
p Ω(n)T (w)

)(∫ zn

p
Pe

∫ y
p Ω(n)T (w) ~ϕ

(n)
L (y)

)
(4.343)

for a vector ~ψ(n) with entries ψ
(n)
i . Nevertheless for its use in eq. (4.340), it is sufficient to know

only a few leading orders of ~ψ(n) around each p ∈ Pn. Therefore, it is easier to find the solution
of the system eq. (4.341) by a holomorphic Laurent series expansion, using an ansatz for each

component ψ
(n)
i , see [1, 68]. Such a solution exists if the matrix Reszn=p Ω(n) does not have any

non-negative integer eigenvalues, which we assume from now on (when this is not the case one
can employ a regularization discussed in Sec. 4.6.1). Moreover, the number of critical points of
the determinant of the Ω(n) provides the dimension of that cohomology group, i.e. the number
of the corresponding MIs, see also [129].

The recursion terminates when n=1, in which case the inner space is trivial: ν0 = 〈e(0)
1 | =

|h(0)
1 〉 = 1, and we impose the initial conditions

Ω̂
(1)
11 = ω̂1 , C0 = 1 , ϕ

(1)
L,1 = ϕ

(1)
L , ϕ

(1)
R,1 = ϕ

(1)
R . (4.344)

In this case eq. (4.340) reduces to a computation of an univariate intersection number [72,142]
previously studied in refs. [1, 68].

Let us notice also that combining eqs. (4.340) and (4.338) gives

〈ϕ(n)
L |ϕ

(n)
R 〉 =

∑
p∈Pn

Reszn=p

(
ψ

(n)
i 〈e

(n−1)
i |ϕ(n)

R 〉
)
, (4.345)

which is suitable for practical calculation purposes. Using the above identity recursively, the
intersection number can be expressed as

〈ϕ(n)
L |ϕ

(n)
R 〉 =

∑
pn∈Pn

· · ·
∑
p1∈P1

Reszn=pn · · ·Resz1=p1

(
ψ

(n)
in−1

ψ
(n−1)
in−1in−2

· · · ψ(2)
i2i1

ψ
(1)
i11 ϕ

(n)
R

)
, (4.346)

where the ranges of the summations are im = 1, . . . , νm and where the ψ
(m)
imim−1

are the solutions
of

∂zmψ
(m)
imim−1

+ ψ
(m)
imjm−1

Ω̂
(m)
jm−1im−1

= ê
(m)
imim−1

(4.347)

for all im with 〈e(m)
imim−1

| = ê
(m)
imim−1

dzm coming from the projection

〈e(m)
im
| = 〈e(m−1)

im−1
| ∧ 〈e(m)

imim−1
| , (4.348)

which may be computed initially, since the bases of all inner spaces are arbitrarily chosen. The
matrices Ω̂(m) needed in eq. (4.347) are computed analogously to eq. (4.342). Notice that all
ψ(m) entering eq. (4.346) need to be computed only once for a given family of integrals.
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4.5.3 An explicit example in two variables

Let us consider intersection numbers based on the following function:

u(z) =
(
z1z2(1−z1−z2)

)γ
, (4.349)

which gives

ω̂1 = γ

(
1

z1
− 1

1− z1 − z2

)
, ω̂2 = γ

(
1

z2
− 1

1− z1 − z2

)
. (4.350)

We will focus on the steps required for the computation of the intersection number given by

〈ϕ(2)
L |ϕ

(2)
R 〉 with ϕ̂

(2)
L = ϕ̂

(2)
R = 1 . (4.351)

These forms only have poles at infinities.
Letting 1 = {1} define the inner space, we find

ν1 = 1 , (4.352)

corresponding to the fact that ω̂1 = 0 has one solution. We choose the inner basis for the left
and right forms, denoted by 〈e(1)| and |h(1)〉 respectively, as

ê(1) = ĥ(1) = z1 . (4.353)

Given two arbitrary forms 〈ϕ(2)
L | and |ϕ(2)

R 〉 the following decompositions hold:

〈ϕ(2)
L | = 〈e

(1)| ∧ 〈ϕ(2)
L |,

|ϕ(2)
R 〉 = |h(1)〉 ∧ |ϕ(2)

R 〉,
(4.354)

where 〈ϕ(2)
L | and |ϕ(2)

R 〉, regarded as one forms in the variable z2, have to be determined. We
have from eqs. (4.309) and (4.310):

〈ϕ(2)
L | = 〈ϕ

(2)
L |h

(1)〉 C−1
(1), (4.355)

|ϕ(2)
R 〉 = C−1

(1) 〈e
(1)|ϕ(2)

R 〉, (4.356)

with
C(1) = 〈e(1)|h(1)〉. (4.357)

In the recursive approach we assume the one-variable intersection numbers w.r.t. z1, to be
computed in the previous step. They are given by:

C(1) = 〈z1|z1〉 =
γ(z2 − 1)4

8(2γ − 1)(2γ + 1)
, (4.358)

ϕ̂
(2)
L = 〈1|z1〉 C−1

(1) =
−2

z2 − 1
, (4.359)

ϕ̂
(2)
R = C−1

(1) 〈z1|1〉 =
−2

z2 − 1
, (4.360)

while the new 1× 1 connection matrix Ω̂(2) is given by:

Ω̂(2) = 〈(∂z2 + ω̂2) z1|z1〉C−1
(1) =

(3γ + 2)z2 − γ
(z2 − 1) z2

, (4.361)

and we see that the poles of Ω̂(2) are located at

P2 = {0, 1,∞}. (4.362)
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Next, we consider the differential equation:(
∂z2 + Ω̂(2)

)
ψ(2) = ϕ̂

(2)
L . (4.363)

The full analytic solution of (4.363) is not required, but rather a power series around each p ∈ P2

is sufficient. Denoting by y the local coordinate around the pole, the solutions of (4.363) to
leading orders in y read:

• Solution around p = 0 (y = z2):

ψ
(2)
0 (y) =

2y

γ + 1
+O

(
y2
)

; (4.364)

• Solution around p = 1 (y = z2 − 1):

ψ
(2)
1 (y) = − 1

γ + 1
+O

(
y1
)

; (4.365)

• Solution around p =∞ (y = 1/z2):

ψ(2)
∞ (y) = c0,∞ + c1,∞ y + c2,∞ y

2 + c3,∞ y
3 + c4,∞ y

4 +O
(
y5
)

(4.366)

with

c0,∞ =
−2

3γ + 2
, c1,∞ =

−2γ

(3γ + 1)(3γ + 2)
,

c2,∞ =
−2(γ − 1)

3(3γ + 1)(3γ + 2)
, c3,∞ =

−2(γ − 2)(γ − 1)

3(3γ − 1)(3γ + 1)(3γ + 2)
,

c4,∞ =
−2(γ − 3)(γ − 2)(γ − 1)

3(3γ − 2)(3γ − 1)(3γ + 1)(3γ + 2)
. (4.367)

Finally we may evaluate the bi-variate intersection number as a sum of univariate residues, as
given by eq. (4.314):

〈ϕ(2)
L |ϕ

(2)
R 〉 =

∑
p∈P2

Resz2=p

(
ψ(2) C(1) ϕ

(2)
R

)
(4.368)

giving the final result for the intersection number:

〈1|1〉 =
γ2

3(3γ − 2)(3γ − 1)(3γ + 1)(3γ + 2)
. (4.369)

We notice that, in the case at hand, only the residue at p =∞ gives a non-zero contribution to
the intersection number.

4.5.4 Intersection numbers of logarithmic forms

Intersection numbers for multivariate logarithmic forms were first considered in [142]. Alternative
formulas for more direct calculations were later presented in [75,81]. In particular, if ϕL and ϕR
are both dlog, we have

〈ϕL|ϕR〉 = (−1)n
∑

(z∗1 ,...,z
∗
n)

det−1

∂z1ω̂1 . . . ∂znω̂1
...

. . .
...

∂z1ω̂n . . . ∂znω̂n

 ϕ̂L ϕ̂R
∣∣∣∣∣
(z1,...,zn)=(z∗1 ,...z

∗
n)

(4.370)
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where the sum goes over all the ν critical points given by the solutions of the system of equations

ω̂i = 0, i = 1, . . . , n, (4.371)

as in eq. (4.40). When at least one of the forms is non-logarithmic, the formula (4.370) is only
valid asymptotically in the limit γ → ∞. In those cases one can still calculate intersection
numbers as a series expansion in 1/γ, which was successfully applied to the computation of
differential equations for certain Feynman integrals in [127].

The recursive algorithm for the computation of the multivariate intersection numbers pre-
sented in Sec. 4.5 is applicable for any rational form. However, at each step of the recursive

algorithm, the coefficients ϕ̂
(n)
L,R in eqs. (4.335), (4.336) are defined modulo the equivalence

relations

ϕ̂
(n)
L,i ∼ ϕ̂

′ (n)
L,i = ϕ̂

(n)
L,i +

(
∂znξL,i + ξL,j Ω̂

(n)
ji

)
, (4.372)

ϕ̂
(n)
R,i ∼ ϕ̂

′ (n)
R,i = ϕ̂

(n)
R,i +

(
∂znξR,i − Ω̂

∨(n)
ij ξR,j

)
. (4.373)

Thus, under the assumption that the connection matrices Ω(n) and Ω̃(n) contain only simple

poles, its possible to replace the coefficients ϕ̂
(n)
L,R containing higher-degree poles, with a suitably

chosen ϕ̂
′(n)
L,R belonging to the same equivalence class, but containing simple poles only. One may

exploit this fact to compute intersection numbers in one variable as a univariate global residue,
without introducing any algebraic extensions as observed in [129].

4.6 Feynman integrals decomposition

As proposed in refs. [1–3,68,127,129], the use of multivariate intersection numbers yields a direct
decomposition of a given Feynman integral I in terms of an a priori chosen set of MIs Ji, with
i = 1, . . . , ν.
The decomposition given by eq. (4.45) is on the form

I =

ν∑
i=1

ciJi, (4.374)

where the determination of the coefficients ci is the goal of this Section. We identify three possible
strategies which can be adopted in order to achieve this task. They all employ the master
projection formula from eq. (4.53), which is applied to differential forms constructed differently
in the three cases. We name them the straight decomposition, the bottom-up decomposition, and
the top-down decomposition.
All the approaches have the first step in common: finding the number of MIs which appear in
the decomposition and choosing them accordingly.
We introduce the following definitions:

• Σ denotes the set of integers used to label the full set of denominators;

• σ denotes a set of integers that label a subset of denominators, σ ⊆ Σ;

• sector is the set of integrals for which only the subset of propagators specified by σ appear
in the denominator (thus, a sector is unambiguously identified by σ).

There is a one-to-one correspondence between sectors and (generalized unitarity) cuts. On the
level of the function u, this correspondence is manifested by setting all zj ’s belonging to σ to
zero in the original u(z),

uσ = u(z)|zj∈σ→0, (4.375)
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where we work in Baikov representation. Given uσ, the number of MIs in the corresponding
sector, νσ, can be determined through the criteria given in Sec. 4.1.4. The total number of MIs
(without taking into account any symmetry relations) is then given by

ν =
∑
σ

νσ, (4.376)

where the sum is over all sectors. Finally we can choose the forms 〈ei| associated to the
(arbitrarily chosen) MIs Ji, through the identification

Ji = 〈ei|C]. (4.377)

4.6.1 Straight decomposition

We consider the following decomposition

I =

∫
C
uϕ = 〈ϕ|C] =

ν∑
i=1

ci 〈ei|C] =

ν∑
i=1

ci

∫
C
u ei =

ν∑
i=1

ci Ji (4.378)

with

ci =

ν∑
j=1

〈ϕ|hj〉
(
C−1

)
ji
, Cij = 〈ei|hj〉 . (4.379)

Here ϕ̂ and êi correspond simply to the integrands of the integral I to decompose and of
the chosen master integrals, Ji, respectively. In order to evaluate the intersection numbers,
all the poles present in the differential forms must be regulated in u. If this assumption is
violated, we can introduce a regulated u, denoted by uρ, which contains a monomial zρkk for each
(non-regulated) pole present in the differential forms, that is

uρ(z) =

(∏
k∈Σ

zρkk

)
u(z) (4.380)

and correspondingly

ωρ(z) = d log uρ(z) = d log u(z) +
∑
k∈Σ

ρk
dzk
zk

= ω(z) +
∑
k∈Σ

ρk
dzk
zk

, (4.381)

where we emphasized the action of regulators. By analogy, we also introduce a regularized
version of Ω̂(n), whenever Reszn=p Ω̂(n) has any non-negative integer eigenvalue. The regularized

Ω̂(n) reads:

Ω̂
(n)
Λ = Ω̂(n) +

Λ

zn − p
I . (4.382)

Thus, we obtain a new system of differential equations, analogous to eq. (4.341), which is, in this

case, controlled by Ω̂
(n)
Λ . We assume that the solution of the latter around a pole p, denoted by

ψ
(n)
Λ,p, reproduces in the limit Λ→ 0, a solution for the original system (around the pole p).

The intersection numbers are computed through ωρ, and lead to a set of coefficients, denoted by
cρ,i, which depend on the set of regulators, collectively indicated by ρ. The coefficients ci, which
appear in the original decomposition eq. (4.378), are recovered in the limit ρ→ 05

ci = lim
ρ→0

cρ,i = lim
ρ→0

ν∑
j=1

〈ϕ|hj〉ρ
(
Cρ
−1
)
ji
, (Cρ)ij = 〈ei|hj〉ρ . (4.383)

5Strictly speaking, we take it as an assumption that the limit ρ→ 0 is smooth, which turns out to be true in
all practical examples we studied.
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This approach requires the evaluation of intersection numbers, for which all the integration
variables are present simultaneously.
For ease of notation, whenever the regulated u is introduced, in the following we will omit the
subscript ρ from the individual intersection numbers 〈ϕ|hj〉ρ and 〈ei|hj〉ρ.

4.6.2 Bottom-up decomposition

In this approach, proposed in [2], the decomposition is applied to the spanning set of cuts,
defined as the minimal set of cuts such that each MIs appears at least once [2,148] (a cut behave
like a pass-high filter, therefore MIs with a number of internal lines smaller than the number of
cut variables do not contribute to the decomposition on the cut). We denote a given spanning
cut (i.e. an element in the spanning set of cuts) by τ ; moreover Sτ is the set of sectors which
survive on that spanning cut

Sτ = {σ |σ ⊇ τ} . (4.384)

Finally, the number of MIs which survive on the spanning cut τ , denoted by νSτ is

νSτ =
∑
σ∈Sτ

νσ . (4.385)

On the spanning cut τ , we define

uτ = u(z)|zj∈τ→0 (4.386)

and we consider the following decomposition

Iτ =

∫
Cτ
uτ ϕτ = 〈ϕτ |Cτ ] =

νSτ∑
i=1

ci 〈ei,τ |Cτ ]

=

νSτ∑
i=1

ci

∫
Cτ
uτ ei,τ =

νSτ∑
i=1

ci Ji,τ

(4.387)

with

ci =

νSτ∑
j=1

〈ϕτ |hj,τ 〉
(
C−1

)
ji
, Cij = 〈ei,τ |hj,τ 〉 . (4.388)

As expected, ϕ̂τ and êi,τ are inferred from the cut-integrals. As in any unitarity-based approach
[84, 86, 149], the coefficients ci determined from a cut decomposition are identical to those
appearing in the original decomposition - the coefficients are invariant under cuts. Therefore, the
complete decomposition for the (uncut) integral I can be obtained by combining the coefficients
determined from the individual spanning cuts.
As described in Subsec. 4.6.1, all the poles present in the differential forms must be regulated in
uτ . If this is not the case, we can introduce the regularized uτ , denoted by uρ,τ

uρ,τ =

 ∏
k∈Σ\τ

zρkk

uτ , (4.389)

which leads to

ωρ,τ = d log uρ,τ = d log u(z) +
∑
k∈Σ\τ

ρk
dzk
zk

= ω(z) +
∑
k∈Σ\τ

ρk
dzk
zk

, (4.390)

used in the evaluation of the intersection number. We also use a regularized version of Ω̂(n),
whenever Reszn=p Ω̂(n) has any non-negative integer eigenvalue, as explained above. Now, the
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coefficients of the decomposition, cρ,i depend on the set of regulators ρ. The coefficients of the
original decomposition (4.387) are recovered in the ρ→ 0 limit:

ci = lim
ρ→0

cρ,i = lim
ρ→0

νSτ∑
j=1

〈ϕτ |hj,τ 〉ρ
(
C−1
ρ

)
ji
, (Cρ)ij = 〈ei,τ |hj,τ 〉ρ . (4.391)

This procedure requires the evaluation of the intersection numbers only for the uncut variables,
therefore it can be significantly less demanding than the previous case.
As before, whenever the regulated u is introduced, we will omit the subscript ρ from the individual
intersection numbers.

4.6.3 Top-down decomposition

As proposed in [3], this approach combines the advantages of the decomposition by intersection
numbers with the top-down subtraction algorithm traditionally used in methods of integrand
decomposition [16,35,37,150]. In particular, as for the integrand decomposition, one can determine
the coefficients of the MIs systematically, beginning from the ones with the highest number of
internal lines (the top sector) and moving downward, ending with the sector with a minimal
number of lines equal to the number of the loops (built from product of tadpoles). At any step,
the determination of the coefficients of a given MI, say Ji, is obtained on the corresponding
cut, after subtracting off the known contributions coming from higher sectors, as the latter
are written as a linear combination of the MIs with a higher number of internal lines (whose
graph contain the one corresponding to Ji as subdiagram), coming from the earlier steps of the
decomposition. In particular, let us reconsider the complete decomposition,

I =

∫
C
uϕ = 〈ϕ|C] =

ν∑
i=1

ci〈ei|C] =

ν∑
i=1

ci

∫
C
u ei =

ν∑
i=1

ciJi , (4.392)

and assume that, within the top-down approach, after at most n-steps, the coefficients ci, with
i = 1, . . . , n have been determined, and can be considered as known. We can write,

I −
n∑
i=1

ciJi =
ν∑

i=n+1

ciJi , (4.393)

which, in terms of pairings, reads,

〈φn|C] =

n∑
i=1

ci〈ei|C] , (4.394)

where 〈φn|, defined as,

〈φn| ≡ 〈ϕ| −
n∑
i=1

ci〈ei| (4.395)

is a known differential form.
By applying a properly chosen maximal cut, identified by τ , we can then determine the

coefficients ci of a number ντ MIs Ji, whose graph contains exactly those lines that are cut. In
fact, on the maximal cut τ , we can define

uτ = u(z)|zj∈τ→0 (4.396)

and
ωτ = d log uτ (4.397)
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with

B = 2st
(
s(z2 + z4) + t(z1 + z3)− z1z2 − z2z3 − z3z4 − z4z1 + 2z1z3 + 2z2z4

)
− s2t2 − t2(z1 − z3)2 − s2(z2 − z4)2 (4.403)

and performing the sector-by-sector analysis described in the beginning of Sec. 4.6 yields νσ = 1
for the sectors

σ ∈
{
{1, 2, 3, 4} , {1, 3} , {2, 4}

}
(4.404)

and νσ = 0 for the remaining sectors, corresponding to the well-known set of master integrals:
the box and the s- and the t-channel bubble:

J1 = , J2 = , J3 = . (4.405)

The corresponding differential forms read

ê1 =
1

z1z2z3z4
, ê2 =

1

z1z3
, ê3 =

1

z2z4
. (4.406)

In the following we will decompose the example

=

∫
u

d4z

z3
1z

2
2z3z4

, (4.407)

which can be expressed in terms of the chosen master integrals as

= c1 + c2 + c3 . (4.408)

We will determine these coefficients with the three methods presented in Sec. 4.6.

Straight decomposition

As prescribed in Sec. 4.6.1 we may construct the regulated u as

uρ = u× zρ1z
ρ
2z
ρ
3z
ρ
4 , (4.409)

where in this case we pick the regulators to be all equal. From this definition we may construct
the corresponding ω as

ωρ =

4∑
i=1

ω̂i dzi with ω̂i = ∂zi loguρ. (4.410)

Choosing the variable ordering to be, from the innermost to the outermost, z4, z3, z2, z1, we can
compute the dimensions of the twisted cohomology groups corresponding to the individual layers
of the fibration. The result is

ν{4321} = 3 , ν{432} = 4 , ν{43} = 3 , ν{4} = 2 . (4.411)
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Corresponding to the order of variables given above, we pick the basis for each level to be

ê(4321) = ê =

{
1

z1z2z3z4
,

1

z1z3
,

1

z2z4

}
, ê(432) =

{
1

z2
,

1

z3
,

1

z2z3
,

1

z2z3z4

}
,

ê(43) =

{
1

z4
,

1

z3
,

1

z3z4

}
, ê(4) =

{
1

z4
, 1

}
. (4.412)

We choose the dual bases to be ĥi = êi. In the following, we will decompose

ϕ̂ =
1

z3
1z

2
2z3z4

. (4.413)

The required intersection numbers are

Cij = 〈ei|hj〉, 1 ≤ i, j ≤ 3, (4.414)

and
〈ϕ|hk〉, 1 ≤ k ≤ 3. (4.415)

The individual intersection numbers, up to the leading order in ρ, are presented in App. B.
Combining the intersection numbers as dictated by eq. (4.383), we obtain, after taking the limit
ρ→ 0, the coefficients

c1 =
−(d− 7)(d− 6)(d− 5)

2s2t
, c2 =

2(d− 7)(d− 5)(d− 3)

s4t
,

c3 =
2(d− 7)(d− 5)(d− 3)(2s+ (d− 8)t)

(d− 8)s2t4
. (4.416)

These results are in agreement with the values obtained with FIRE [151].

Bottom-up decomposition

The first step of a bottom-up decomposition is to identify a spanning set of cuts τ . That set is
easily seen to be the cuts corresponding the two bubbles

τ ∈
{
{1, 3} , {2, 4}

}
. (4.417)

• Cut τ = {1, 3}. Let us first consider the τ = {1, 3} cut.
On this cut, the decomposition reads:

= c1 + c2 . (4.418)

We have

uρ,τ = zρ2 z
ρ
4 B

(d−5)/2
τ , (4.419)

where

Bτ =
(
st2 + s(z2 − z4)2 − 2t

(
s(z2 + z4) + 2z2z4

))
, (4.420)

and ωρ,τ = ω̂2 dz2 + ω̂4 dz4 with

ω̂2 = ∂z2 log uρ,τ , ω̂4 = ∂z4 log uρ,τ . (4.421)
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The variable ordering, from the innermost to the outermost, is chosen as z2, z4. The dimensions
of the cohomology groups read:

ν{24} = 2 , ν{2} = 2 . (4.422)

The basis elements, on the cut, are:

ê(24)
τ = êτ =

{ 1

z2z4
, 1
}
, ê(2)

τ =
{

1,
1

z2

}
. (4.423)

The dual basis elements are chosen as ĥi,τ = êi,τ .
We will show the decomposition, on the cut, of:

ϕ̂τ =
1
2 ∂

2
z1u

u z2
2z4

∣∣
z1,z3=0

=
(d− 5)t2

(
(d− 6)s(z2 + z4 − t)2 − 4(s+ t)z2z4

)
2sz2

2z4 B2
τ

. (4.424)

This requires the intersection numbers

Cij = 〈ei,τ |hj,τ 〉 , 1 ≤ i, j ≤ 2 , (4.425)

and
〈ϕτ |hk,τ 〉 , 1 ≤ k ≤ 2 . (4.426)

Expressions for the individual intersection numbers are presented in Appendix B. Combining
them as prescribed by eq. (4.391), and considering the limit ρ→ 0, we obtain the coefficients c1

and c2 in agreement with eq. (4.416).

• Cut τ = {2, 4}. Performing instead the decomposition on the second of the spanning
cuts, τ = {2, 4} will allow us to reconstruct c1 and c3 in eq. (4.416), which means that in total
all of the master integral coefficients ci have been extracted.

Top-down decomposition

The first step in the top-down decomposition is the extraction of the box-coefficient.

= c1 . (4.427)

The coefficient c1 can be computed as ϕ/e1 on the maximal cut:

c1 =
1
2∂

2
z1∂z2u

u

∣∣∣
zi→0

=
−(d− 7)(d− 6)(d− 5)

2s2t
, (4.428)

in agreement with eqs. (4.416).
We then consider the s-channel bubble corresponding to the cut τ = {1, 3}.

− c1 = c2 . (4.429)

Here we have

uτ = B(d−5)/2
τ with Bτ =

(
st2 + s(z2−z4)2 − 2t

(
s(z2+z4) + 2z2z4

))
, (4.430)



4.7. MULTIVARIATE EXAMPLES 105

and

ϕ̂ =
1
2 ∂

2
z1u

u z2
2z4

∣∣
z1,z3=0

=
(d− 5)t2

(
(d− 6)s(z2 + z4 − t)2 − 4(s+ t)z2z4

)
2sz2

2z4 B2
τ

. (4.431)

We also get

ω =
−(d− 5)

((
t(z4−z2)+s(t+2z4)

)
dz2 +

(
s(t+2z2)+t(z2−z4)

)
dz4

)
Bτ

(4.432)

from which we can extract ντ = 1 corresponding to the s-channel bubble.

We know that

− c1 =

∫
uτ

(
ϕ̂− c1

z2z4

)
︸ ︷︷ ︸

≡ φ̂

dz2 ∧ dz4 (4.433)

has to be reducible to the s-channel bubble. This property is not apparent as φ̂ contains poles
in z2 and z4 that distinguishes the box and the bubble sectors. However, we know that φ is in
the same equivalence class as a φ′ without these poles. Writing

φ ∼ φ′ = φ−∇ωξ (4.434)

we may make the following ansatz for ξ,

ξ =

∑2,2
i=−1,j=−1κ1,i,jz

i
2z
j
4 dz4 +

∑2,2
i=−2,j=0κ2,i,jz

i
2z
j
4 dz2

Bτ
. (4.435)

Fitting the free coefficients κ with the requirement that all poles of φ′ in z2 or z4 vanish, gives a
solution

κ1,−1,−1 = −(d−6)(d−5)t2

2s , κ1,−1,0 = (d−6)(d−5)t
2s ,

κ1,−1,1 = 0 , κ1,−1,2 = 0 ,

κ1,0,−1 = (3d2−36d+107)t
2s , κ1,1,−1 = −(d−7)(3d−17)

2s ,

κ1,2,−1 = (d−7)(d−6)
2st , κ2,−2,0 = −(d−5)t2

2s ,

κ2,−2,1 = (d−5)t
2s , κ2,−2,2 = 0 , (4.436)

κ2,−1,0 = t(71s−24ds+2d2s+35t−12dt+d2t)
s2

, κ2,−1,1 = −(d−7)(3d−17)
2s ,

κ2,−1,2 = (d−7)(d−6)
2st , κremain. = 0 .

The corresponding φ is of the form

φ̂ =
P(z2, z4)

B2
τ

, (4.437)

where P is a polynomial, so we see explicitly that the z2 and z4 poles are gone, and that no poles
are present in φ that are not poles of ω. With this we may perform the bi-variate intersections,
and we get

c2 =
〈φ|1〉
〈1|1〉

=
2(d− 7)(d− 5)(d− 3)

s4t
(4.438)
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in agreement with eqs. (4.416). The expressions for the two intersection numbers are listed in
App. B, and please note that they are much simpler than for the other two approaches due to
the absence of the regulator.

For the t-channel cut one may proceed likewise, and extract the coefficient of the t-channel
bubble, again in agreement with eqs. (4.416).

Let us note that one could use the subtraction

φ̂ = ϕ̂− κ1

z2z4
, (4.439)

in eq. (4.433), where κ1 is a free coefficient. Then, the fitting of the unknown coefficients of eq.
(4.435) generates a system whose solution does require the value κ1 = c1. In other words, κ1,
which in this case corresponds to the coefficient of a master integral in the higher sector (the
box function) may be fixed together with the remaining κ-parameters6.

4.8 Further Examples

In the following, we present the key information useful to perform the reduction by means of
intersection theory, in a set of cases all corresponding to physically relevant Feynman integrals.
In particular, for each case, we provide a table containing: the definition of the integral family;
the spanning cuts (τ); the dimensions of the vector spaces at each step of the recursive algorithm
(ν) and the corresponding bases (e), for the evaluation of multivariate intersection numbers; a
pictorial decomposition of a generic integral, whose coefficients can be determined by means
of our master decomposition formula eq. (4.53). In all these cases, the reduction and/or the
differential equations were computed successfully, in agreement with the results of public IBP
codes [61,62,64,151].

6In principle such a procedure generalises beyond this example, to cases where more masters are present in the
higher sectors.
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Chapter 5

Conclusions

The ever growing precision of the measurement performed at modern colliders, entails an en-
hancement in our knowledge of the theoretical predictions of the observables studied in said
facilities.
In this thesis we considered the problem of the accurate evaluation of multiloop amplitudes,
fundamental for the search of BSM effects at present colliders. In particular, we presented
the first fully analytic evaluation of the 4 leptons scattering amplitude, with 2 different type
of leptons involved, one of which is considered massless, up to the second order corrections
in the electromagnetic coupling constant. This result was obtained by means of state of the
art techniques embedded in a general framework for multi-loop computation which has been
implemented in an in house code.
Moreover we have investigated novel techniques based on algebraic topology aiming at better
understanding the mathematical structure characterizing Feynman integrals and paving the way
to a new method for their reduction to a minimal basis, which is a key step in the anlytical
evaluation of multi-loop scattering amplitudes.

In the first part of this work, we have explored the capabilities of modern techniques for
multi-loop amplitude computation.
By means of a generalization of integrand decomposition at multi-loop level, the adaptive inte-
grand decomposition, which exploits a parametric representation of Feynman integrals where the
loop momenta are split between the directions parallel to the momenta of the external particles
and their transverse ones, together with algebraic geometry techniques, allow us to write our
scattering amplitudes in terms of scalar integrals. It is then possible to derive a system of
identities among them by means of integration by parts, which are based on the vanishing of the
total derivative of Feynman integrals in dimensional regularization, which upon solution greatly
simplifies the structure of our scattering amplitude writing it in terms of a basis of independent
integrals. Lastly, by choosing accordingly such basis, it is possible to exploit the advantages
given by canonical integrals, integrals that satisfy a system of differential equations in which the
dimensional parameter ε = (d − 4)/2 is factorized from the kinematical dependence, and the
latter can be cast in forms of d log. One could even derive a similarity transformation for the
differential equation system via Magnus exponential in order to bring a system at most linear in
epsilon in to canonical forms, when the said Magnus exponential converges. In this way, the
evaluation of the MI trivializes into iterated integrals of the type of generalized polylogarithm.
In this thesis we apply the framework outlined above in the evaluation of the NNLO scattering
amplitude for the µ± e− → µ± e− process, which is relevant for the recently proposed MUonE
experiment at CERN. This computation aims to give crucial contribution in clarifying the
existing tension between the theoretical expectation values and the measured one of the muon
anomalous dipole moment, and it represents a result that stands at the cutting edge of analytical
multi-loop scattering amplitudes computation.

113



114 CHAPTER 5. CONCLUSIONS

In the second part of this thesis, we have presented the application of twisted intersection
theory to Feynman integrals, exploring the new instruments provided by this branch of mathe-
matics in order to obtain novel method for scattering amplitudes computation.
By reinterpreting Feynman integrals as a pairing between elements of twisted cohomology (which
represents the integrand) and twisted homology (which characterizes the integration domain),
we studied the geometric nature of MI, relating the number of independent integrals to the
Euler characteristic and their number of critical points using Morse / Picard-Lefschez theory.
Furthermore, we discuss an alternative way to compute the reduction of a Feynman integral
on its basis by means of the master decomposition formula (4.53) which takes advantage of a
pairing between integrals (linking forms and dual forms in our case) called twisted intersection
number. This object, which boils down to the application of Stokes theorem for forms together
with Cauchy residue theorem, acts as a scalar product in the vector space of Feynman integrals,
allowing us to define an operation which extracts directly the coefficient of the reduction in the
chosen basis. This produces a novel, completely independent method for scattering amplitudes
computation, bypassing the standard system solving procedure required by IBPs which is quite
demanding in high-loop high-multiplicity cases.
We discuss in depth this new technique, providing multiple interesting choice of basis such as the
d log and the orthonormal basis in which the reduction greatly simplifies, other than showing
how this method also allows one to derive the differential equations and dimensional recurrence
relations.
We worked out several explicit examples in the case of univariate intersection numbers, applying
the twisted intersection theory to special functions as well as several Feynman integrals in
parametric representation. For these cases, we exploited generalized unitarity together with
Baikov representation, both standard and loop by loop, in order to extract IBPs on the maximal
cut, when Feynman integrals on the cut could be represented as a univariate integrals. This
provides clear evidence of the validity of the framework, fueling the extension of this technique
to more general cases for the reduction of integrals out of the cut.
To achieve this, we applied iteratively the intersection number presented in the univariate case,
highlighting an algorithm for the computation of the multivariate intersection number which has
been implemented in an in-house code. Exploiting the versatility of generalized unitarity, we
then used it together with twisted intersection theory, proposing several methods to perform the
reduction to a minimal basis: the straight decomposition, top-down, and bottom-up. Lastly, we
showed examples for the application of the three aforementioned algorithms, together with a
summary of the cases in which the method was applied.

To conclude, in this work we faced the computation of a scattering amplitude as a whole,
from the generation of the required Feynman integrals that constitute it up to its renormalization
and numerical evaluation. Our results and the machinery used in such a calculation will be
useful both in order to obtain the observables directly related to the process investigated and for
computation of amplitudes that display a similar structure to it.
Besides, we have developed techniques for the simplification of scattering amplitudes, expressing
them in terms of a minimal basis of integrals. This new approach provides many thrilling topics
which require further investigation, such as the research and definition of an orthonormal basis in
the multivariate case, the study of quadratic identities for Feynman integrals allowed by twisted
intersection theory, as well as novel algorithm for the evaluation of twisted intersection numbers
and the study of relative cohomology applied to Feynman integrals.
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conosca più nel profondo di lei, né persona che mi abbia saputo star vicino e sostenere con tale
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Appendix A

Infrared Structure

The IR poles appearing in the two-loop corrections after UV renormalization can independently
be obtained starting from the tree-level and the one-loop amplitudes, by following the same
procedure employed to study the infrared structure of QCD amplitudes [152,153].

In effect, the analytic expression of the two-loop amplitude M(2) for the process f−f+ →
F−F+ is obtained both in the non-physical region s < 0, t < 0 as well as directly in the
production region.

The structure of the IR poles is governed by an anomalous dimension Γ that has the following
structure,

Γ =γcusp (α) ln

(
− s

µ2

)
+ 2γcusp (α) ln

(
t−M2

u−M2

)
+ γcusp,M (α, s) + 2γh (α) + 2γψ (α) , (A.1)

where the γi (i ∈ {cusp; cusp,M;h;ψ}) coefficients up to O(α2) are extracted in analogy to the
QCD case [152–154]. In the physical region, the imaginary part of the anomalous dimension in
Eq. (A.1) is computed by adding an infinitesimal positive imaginary part to s. Interested readers
may find the expression of the quantities appearing in Eq. (A.1) in the Supplemental Material.

One can then introduce the IR renormalization factor ZIR,

Z =1 +
α

4π
Z1 +

( α
4π

)2
Z2 + · · · lnZIR =

α

4π

(
Γ′0
4ε2

+
Γ0

2ε

)
+
( α

4π

)2
(
−3β0Γ′0

16ε3

+
Γ′1 − 4β0Γ0

16ε2
+

Γ1

4ε

)
+O

(
α3
)
, (A.2)

where Γi,Γ
′
i and βi are the coefficients of the expansion of Γ, its derivative w.r.t. lnµ, and

the QED beta function, respectively. The IR poles of the nth-order termM(n) can be calculated
using ZIR and the lower order contributions, M(0), . . . ,M(n−1). In particular, the IR pole
structures at one and two loops are found to be,

M(1)
∣∣∣
poles

=
1

2
ZIR

1 M(0)
∣∣∣
poles

, (A.3a)

M(2)
∣∣∣
poles

=
1

8

[(
ZIR

2 −
(
ZIR

1

)2)M(0)

+2ZIR
1 M(1)

]∣∣∣
poles

. (A.3b)
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All functions M(n) in the r.h.s. of Eqs. (A.3) must be evaluated in d = 4− 2ε space-time
dimensions. The factors ZIR

i are the coefficients of the series expansion of ZIR in powers of
α/(4π). The agreement of the IR poles structure obtained by direct calculation of the two-loop
diagrams, in Eqs. (3.52), with the ones reconstructed starting from the tree-level and one-loop
amplitudes, in Eqs. (A.3), constitutes a non trivial test of the complete two-loop calculation.



Appendix B

Intersection numbers for the
multivariate example

In this appendix we provide the explicit form of intersection numbers needed for the Feynman
integral decompositions performed in Sec. 4.7. Since we work in analytic regularization with
a parameter ρ that is taken to zero at the end of the computation, it suffices to know only
the leading ρ-orders of intersection numbers. While our algorithm computes them exactly in
ρ, in order to save space in this appendix we list only the leading term for each intersection
number individually. One can check that the orders given here are sufficient for reconstructing
the coefficients ci to order O(ρ0) and that their limit as ρ→ 0 is in fact smooth.

The one-loop massless box

Straight decomposition

Here we provide the intersection numbers, up to the leading order in ρ required for the decom-
position presented in Subsec. 4.7.1:

Cij = 〈ei|hj〉, 1 ≤ i, j ≤ 3 (B.1)

with

〈e1|h1〉 =
1

ρ4
+O

(
ρ−3
)
, (B.2)

〈e1|h2〉 = − st

(d− 7)(d− 6)ρ2
+O

(
ρ−1
)
, (B.3)

〈e1|h3〉 = 〈e1|h2〉, (B.4)

〈e2|h1〉 = − st

(d− 4)(d− 3)ρ2
+O

(
ρ−1
)
, (B.5)

〈e2|h2〉 = − s2t(s+ t)

4(d− 7)(d− 3)ρ2
+O

(
ρ−1
)
, (B.6)

〈e2|h3〉 = −
st
(
(d− 4)2s2 + ((d− 10)d+ 28)st+ (d− 6)2t2

)
(d− 7)(d− 6)2(d− 4)2(d− 3)

+O (ρ) , (B.7)

〈e3|h1〉 = 〈e2|h1〉, (B.8)

〈e3|h2〉 = −
st
(
(d− 6)2s2 + ((d− 10)d+ 28)st+ (d− 4)2t2

)
(d− 7)(d− 6)2(d− 4)2(d− 3)

+O (ρ) , (B.9)

〈e3|h3〉 = − st2(s+ t)

4(d− 7)(d− 3)ρ2
+O

(
ρ−1
)
, (B.10)
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and
〈ϕ|hk〉, 1 ≤ k ≤ 3 (B.11)

with

〈ϕ|h1〉 =
(7− d)(d− 6)(d− 5)

2ρ4s2t
+O

(
ρ−3
)
, (B.12)

〈ϕ|h2〉 =
(5− d)t

2ρ2s2
+O

(
ρ−1
)
, (B.13)

〈ϕ|h3〉 = −(d− 5)((d− 6)t+ 2s)

2(d− 8)ρ2t2
+O

(
ρ−1
)
. (B.14)

Bottom-up decomposition

Here we provide the intersection numbers required for the decomposition presented in Sub-
sec. 4.7.1, on the τ = {1, 3} cut:

Cij = 〈ei,τ |hj,τ 〉, 1 ≤ i, j ≤ 2 (B.15)

with

〈e1,τ |h1,τ 〉 =
d− 5

ρ2(d− 5 + 2ρ)
, (B.16)

〈e1,τ |h2,τ 〉 =
−(d− 5)st

(d− 7 + 2ρ)(d− 6 + 2ρ)(d− 5 + 2ρ)
, (B.17)

〈e2,τ |h1,τ 〉 =
−(d− 5)st

(d− 5 + 2ρ)(d− 4 + 2ρ)(d− 3 + 2ρ)
, (B.18)

〈e2,τ |h2,τ 〉 =
(d− 5)s2t(4ρ2t− (d− 6 + 4ρ)(d− 4 + 4ρ)(s+ t))

4(d− 7 + 2ρ)(d− 6 + 2ρ)(d− 5 + 2ρ)(d− 4 + 2ρ)(d− 3 + 2ρ)
, (B.19)

and
〈ϕτ |hk,τ 〉, 1 ≤ k ≤ 2 (B.20)

with

〈ϕτ |h1,τ 〉 =
(d− 5)(d− 7 + 2ρ)((d− 6 + 4ρ)s+ 2ρt)

2(ρ− 1)ρ2s3t
, (B.21)

〈ϕτ |h2,τ 〉 =
(d− 5)t

2(ρ− 1)s2
. (B.22)

Top-down decomposition

For consistency with the straight decomposition and the bottom-up decomposition, we also
provide here the intersection numbers needed for the top-down decomposition of Subsec. 4.7.1,
on the τ = {1, 3} cut. They are

〈φ|1〉 =
−(d− 5)(s+ t)

2s2
, 〈1|1〉 =

−s2t(s+ t)

4(d− 7)(d− 3)
. (B.23)
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