
Programming legal contracts
– a beginners guide to Stipula –

Silvia Crafa1 and Cosimo Laneve2

1 University of Padova
2 University of Bologna

Abstract. We discuss the design principles of Stipula, a domain spe-
cific language that can assists lawyers in programming legal contracts
through specific software patterns. The language is based on a small set
of primitives, that precisely correspond to the distinctive elements of
legal contracts, and that are amenable to be prototyped on both cen-
tralized or distributed systems. We also outline two formal techniques
to reason about Stipula contracts: a type inference system that allows to
derive types for fields, assets and contract’s functions, and an analyzer
of liquidity that pinpoints those contracts that do not freeze any asset
forever.

1 Introduction

The legal field is one of the domains that are currently most influenced
by the so-called digital revolution. A large number of legal texts, ranging
from laws, regulations, administrative procedures, to contractual agree-
ments, court judgements and jurisprudence, might considerably benefit
from a sensible digitalisation. The advantages are not only in terms of effi-
ciency, like speed-up and automatic execution of fully defined procedures,
but also in terms of data organisation and transparency of processes. As
a cons, computationally dealing with laws is difficult because of the com-
plexity of the legal texts: human judgement is often required to interpret
the natural language since it is, at the same time, very expressive and
quite ambiguous.

In this article we focus on legal contracts, a specific subset of the legal
field that define “those agreements which are intended to give rise to a
binding legal relationship or to have some other legal effect” [12]. These
agreements are basically protocols that regulate the relationships between
parties in terms of permissions, obligations, prohibitions, escrows and
securities. In turn, according to the principle of freedom of form, which is
shared by the contractual law of modern legal systems, the agreements can
be expressed by the parties using the language and medium they prefer,

including a programming language. When a programming language is
chosen, it is mandatory that the language be high level enough so that
writing and inspecting a software contract do not require proficiency in
computer science. In fact, only if the parties (which, in this domain, are
usually lawyers, notaries, ordinary citizens, etc.) are fully aware of the
computational effects of their code there may be a genuine agreement
over the content of the contract, thus reducing or possibly eliminating
applications to courts for either misinterpretations or misunderstandings.

Therefore we decided to work in close connection with lawyers to select
few concise and intelligible primitives that have a precise correspondence
with the distinctive elements of legal contracts. The resulting language,
called Stipula, is a new domain-specific language with a formal operational
semantics, so that the behaviour is fully specified and amenable to auto-
matic verification. Its actual adoption by legal practitioners still requires
a human-readable interface, such as an IDE support or a visual language
interface, but we think that the design and the theory of this legal cal-
culus [3] provide interesting insights on the application of programming
languages to the legal field.

The complete definition of Stipula can be found in [7]; in this paper we
give a gentle introduction to Stipula, by motivating its distinctive features
with contractual elements taken from two paradigmatic legal contracts: a
rental contract and a bet contract. We also discuss two analysis techniques
that have been defined for Stipula and that can bee seen as useful tools
that support a safe programming of legal contracts. First, since Stipula is
untyped, we illustrate a type inference system that allows to automatically
derive types for fields, assets and contracts’ functions. This system is
useful to type check the correctness of operations, thus preventing basic
errors with contract’s data and assets. Then we overview an analyzer that
statically checks the presence of executions of the legal contract leaving
assets frozen into the contract without being redeemable by any party
(liquidity). We conclude the paper with a number of final remarks about
the implementation of Stipula and a discussion of related work.

2 Legal contracts’ elements as Stipula building blocks

Contractual agreements are generally written as combinations of distinc-
tive elements, such as permissions, prohibitions, obligations, fungible and
non fungible assets exchanges, and aleatory or real-world data retrieval.
These elements are combined into common legal patterns that either es-
tablish new obligations, rights, powers and liabilities between the parties,

2

or transfer rights (such as rights to property) from one party to another,
often subject to specific conditions and by taking advantage of escrows
and securities.

A first distinctive feature of a legal contract is the “meeting of the
minds”, i.e. the moment when, after the possible negotiation of the con-
tractual content, the parties express consent on the terms of the agree-
ment and the contract produces its legal effects. Stipula provides an ad-
hoc primitive, called agreement, which marks that contracts’ parties have
reached a consensus on the contractual arrangement they want to create.
As an example, consider a contract regulating a bike rental service: the
following Stipula code

agreement (Lender , Borrower){

Lender , Borrower: rentingTime , cost

} ñ @Inactive

is meeting a Lender and a Borrower to agree on both the rentingTime

and on its cost. After the agreement the contract starts and it goes
into a state @Inactive that expresses that no rent will occur until the
payment (some money has been transferred from Borrower to Lender). A
variant of the contract might also including an Authority that is charged
to monitor contextual constraints, such as obligations of diligent storage
and care, or the obligations of using goods only as intended, taking care
of litigations and dispute resolution. In this case, the agreement would be

agreement (Lender , Borrower , Authority){

Lender , Borrower: rentingTime , cost

} ñ @Inactive

expressing the fact that only the Lender and the Borrower agree on both
rentingTime and cost, while the Authority, which also engage in the
meeting of minds, is the pointer to a third party that will supervise Lender
and Borrower behaviours.

A second distinctive feature of legal contracts is that the set of norma-
tive elements, namely permissions, prohibitions and obligations, usually
changes over time according to the actions that have been done (or not).
To model these changes, Stipula commits to a state-machine programming
style, inspired by the state machine pattern that is supported by almost
every programming language (with ad-hoc libraries and/or modules). For
instance, in a bike rental, once the lender and the borrower have agreed
on the rental period and cost, the lender is prohibited from preventing
the borrower from paying for the service and (afterwards) using the bike.
Stipula expresses this feature by letting the contract play a proactive role:
assuming that the bike can be used if the borrower has a temporary access

3

code, the contract stores the temporary code in a field, thus disallowing
the lender to withdraw from the rental. The following code defines the
function offer that can be invoked by Lender when the contract is in
state @Inactive to send an access code to be used by the Borrower.

@Inactive Lender : offer(x) {

x Ñ code

} ñ @Payment

Of course, the value of “code” is not disclosed to the Borrower before
the payment for the service. In other terms, the above fragment is giving
permission to the Lender to invoke offer in the state @Inactive and,
if no further function is defined in @Inactive, the contract is prohibiting
other parties to do any action at this stage. Once code has been received,
the contract moves to a state @Payment where presumably the Borrower

will pay (actually, he is allowed to pay) for the rental.
It is worth to notice that the foregoing code also highligths that

Lender is trusting the contract to act as intermediary that can store rele-
vant informations (such as, as we will see below, assets). In fact, xÑ code

stores the value sent by the Lender into a contract’s field called code that
cannot be accessed outside the contract.

A further distinctive feature of legal contracts is the management of
assets: currency is required for payments and escrows, tokens, both fun-
gible and non-fungible, are useful to model securities and to provide a
digital handle on a physical good. For instance, in the case of the bike
rental, instead of a simple numeric code, a more innovatory IoT technique
would be to rely on a unique token that grants access to the bike’s smart
lock. Moreover, in the traditional setting, the Borrower pays the Lender

with a credit card before he can use the bike and the money transaction is
only specified by the contract through a normative clause. Its occurrence
is not guaranteed (in case of dispute, one party has to appeal to a court).
On the other hand, Stipula admits digital legal contracts that automat-
ically deal with assets transfers, so to remove intermediation even from
the payments. In Stipula assets can be also temporarily retained by legal
contracts, which may decide to redistribute them when particular condi-
tions occur. To this aim, the language promotes an explicit management
of assets by regarding them as first-class values with ad-hoc operations.
For example, the function

@Payment Borrower : pay[h]

(h == cost) {

h (wallet

code Ñ Borrower

} ñ @Using

4

is defining the payment of the rental by Borrower, which sends an asset h –
the argument is in square brackets – to the contract. The function call has
a precondition – operation h == cost – that checks whether the borrower
pays the correct fee or not. The semantics of the operation h (wallet,
which is an abbreviation for h (h, wallet, is that, after the execution,
h is not owned by Borrower anymore and is taken by the contract that
stores it in the asset field wallet. The design choice of explicitly marking
asset movements with the ad hoc operator “(” (thus separating it from
“Ñ”) promotes a safer, asset-aware, programming discipline that reduces
the risk of the so-called double spending, the accidental loss or the locked-
in assets. Notice that the contract does not immediately forward the
payment to the Lender, rather it is retained for some time until the
rental period is terminated (in this way, in case of disputes, neither the
Borrower nor the Lender can access/use the asset while the dispute is
in progress). Once the fee has been payed, the Borrower gets the access
code to the bike and the contract transits into a @Using state.

There is a fourth distinctive feature of legal contracts: the obligations,
namely operations that must be done, typically within a deadline, by some
party. In Stipula, obligations are recast into commitments that are checked
at a specific time limit and the corresponding programming abstraction
is the event primitive. For example, the foregoing pay function may be
refined by issuing an event that terminates the renting service when the
time limit is reached. The code becomes

@Payment Borrower : pay[v]

(v == cost) {

v (wallet

code Ñ Borrower

now + rentingTime " //end -of -time usage

@Using {

"End_Reached" Ñ Borrower

wallet (Lender

} ñ @End

} ñ @Using

asserting that the bike can be used until the renting period terminates.
The time limit is expressed by now + rentingTime and, at that moment,
if the bike has not been already returned (the state of the contract is
still @Using), a message of returning the bike is sent to the Borrower

("End Reached" Ñ Borrower) and the fee that was stored in wallet is
delivered to the Lender (wallet (Lender). We remark that events are
not triggered by any party: they are automatically executed when the
time condition is met. Since the statements in the body of events will be

5

executed in the future, we assume for simplicity that the event’s body
is outside of the scope of functions’s parameters, both assets and non
assets. A more complex alternative would be to save for future execution
the closure of the event statements, that captures the local values of
functions’ parameters.

The foregoing codes do not address disputes, e.g. contentions because
the bike is returned, or initially was, broken or damaged. These are com-
mon elements of legal contracts, that are usually assessed by means of
third party enforcements, typically by a court. Disputes have a simple
modelling in Stipula that does not require any new ad-hoc feature, and
somehow mimic the behaviour of a court. In fact, when contract’s vio-
lations cannot be fully checked by the software, such as the damage or
misuse of the bike, or the renting of a broken bike, then a trusted third
party, the Authority, is necessary to supervise the dispute and to pro-
vide a resolution mechanism. The code below illustrates the encoding
of the off-chain monitoring and enforcement mechanism by means of an
Authority (which must have been included in the agreement) in Stipula.

@Using Lender ,Borrower : dispute(x) {

x Ñ _

} ñ @Dispute

@Dispute Authority : verdict(x,y)

(y >= 0 NN y <= 1) {

x Ñ Lender , Borrower

y*wallet (wallet , Lender

wallet (Borrower

} ñ @End

The function dispute may be invoked either by the Lender or by the
Borrower and carries the reasons for kicking the dispute off (x is intended
to be a string). Once the reasons are communicated to every party (we use
the abbreviation “--” instead of writing three times the sending operation)
the contract transits into a state @Dispute where the Authority will
analyze the issue and emit a verdict. This is performed by permitting in
the state @Dispute only the invocation of the verdict function, that has
two arguments: a string of motivations x, and a coefficient y that denotes
the part of the wallet that will be delivered to Lender as reimbursement;
the Borrower will get the remaining part. It is worth to spot this point:
the statement y*wallet (wallet, Lender takes the y part of wallet
(y is in [0..1]) and sends it to Lender; at the same time the wallet is
reduced correspondingly. The remaining part is sent to Borrower with

6

legal contracts Stipula contracts

meeting of the minds agreement primitive

permissions, prohibitions state-aware programming

currency and tokens asset-aware (linear) programming

obligations event primitive

judicial enforcement explicit Authority and ad-hoc pattern

exceptional behaviors explicit Authority and ad-hoc pattern

Fig. 1. Correspondence between legal elements and Stipula features

the statement wallet (Borrower (which is actually a shortening for
1*wallet (wallet, Borrower) and the wallet is emptied.

There is a last distinctive element in legal contracts that deserves a
comment: the management of exceptional behaviours, i.e. all those be-
haviours that cannot be anticipated due to the occurrence of unforesee-
able and extraordinary events. As in the above case, Stipula does not use
any new ad-hoc feature, rather a simple pattern is provided that defines
a template:

~@End _ : block(x) {

x Ñ _

} ñ @Exception

@Exception Authority : handle(x,y) // similar to verdict(x,y)

According to the above pattern, the function block may be invoked by
any party (notation “--”) provided the lifetime of the contract is not ter-
minated (the contract is not in the state End). The management of the
exception is similar to that of disputes and therefore omitted.

Figure 1 recaps the normative elements of a legal contract and the
corresponding modellings in Stipula. Figure 2 uses coconnected boxes to
highlight the correspondence between the normative elements of a stan-
dard bike rental contract and the corresponding editing in Stipula. In this
case the Stipula code is a bit more complex than the one discussed above:
Borrower pays the double of the fee in order to safeguard Lender from
damages, late returns, etc. Accordingly, the termination of the rental re-
quires the Borrower to call the function end, after which the Lender

has to confirm the absence of damages by invoking rentalOK. Only this
sequence of actions, which is enforced by the additional state @Return,

7

allows the lender to be payed and the borrower to get back the money
deposited as security.

It is worth to notice that a Stipula contract begins with the keyword
stipula and define assets and fields that are used therein. We also ob-
serve that Stipula is untyped, to keep a simple syntax; however, a type
inference system that allows one to derive types is discussed in Section 4.
Finally, we notice that the code of Figure 2 is also liquid : at the end of
any contract execution, in the final state @End, the asset wallet is empty,
i.e. Bike Rental has no locked-in value (see the discussion in Section 5).

3 Example: the bet contract

Example 1 (Money + Events + States + Agreement). Consider the fol-
lowing simple contract for renting bikes:

8

BIKE RENTAL CONTRACT
1. Term.
This Agreement shall commence on the day the Borrower takes possession of the Bike and remain in full force and
effect until the Bike is returned to Lender at location _______. Borrower shall return the Bike _____ hours after the
rental date and will pay Euro _________ in advance where half of the amount is of surcharge for late return or loss or
damage of the Bike.

2. Payment.
Borrower shall pay on _________ the amount specified in Article 1. The Rental Date starts at the same time.

3. Return of the Bike.
Renter shall return the Bike on the Rental Date specified in Article 2 plus the hours specified in Article 1 at location
specified in Article 1. If the Bike is not returned at the agreed location or it is damaged or loss, Lender reserves the right
to take any action necessary to get reimbursed.

4. Termination.
This Agreement shall terminate on the date specified in Article 3

5. Disputes.
Every dispute arising from the relationship governed by the above general rental conditions will be managed by the
Court the Lender company is based, which will decide compensations for Lender and Borrower.

1 stipula Bike_Rental {

2 assets wallet

3 fields cost , rentingTime , code

4 agreement (Lender ,Borrower ,Authority)(rentingTime ,cost){

5 Lender , Borrower: rentingTime , cost

6 } ñ @Inactive

7 @Inactive Lender : offer(x) {

8 x Ñ code

9 } ñ @Payment

10 @Payment Borrower : pay[h]

11 (h == cost) {

12 h (wallet

13 code Ñ Borrower

14 now + rentingTime "
15 @Using {

16 "End_Reached" Ñ Borrower

17 } ñ @Return

18 } ñ @Using

19 @Using Borrower : end {

20 now Ñ Lender

21 } ñ @Return

22 @Return Lender : rentalOk {

23 0.5* wallet (wallet , Lender

24 wallet (Borrower

25 } ñ @End

26 @Using ,@Return Lender ,Borrower : dispute(x) {

27 x Ñ _

28 } ñ @Dispute

29 @Dispute Authority : verdict(x,y)

30 (y>=0 NN y<=1) {

31 x Ñ Lender , Borrower

32 y*wallet (wallet , Lender

33 wallet (Borrower

34 } ñ @End

35 }

Listing 1.1. The rent for free contract

10

{

Fig. 2. A standard Bike Rental contract and its modelling in Stipula

9

1 stipula Bike_Rental {

2 assets wallet , bike

3 fields cost , rentingTime

4 agreement (Lender , Borrower , Court)(rentingTime ,cost){

5 Lender , Borrower: rentingTime , cost

6 } ñ @Inactive

7 @Inactive Lender : offer[b] {

8 b (bike

9 } ñ @Payment

10 @Payment Borrower : pay[x]

11 (x == cost) {

12 x (wallet

13 bike (Borrower

14 now + rentingTime "
15 @Using {

16 "End_Reached" Ñ Borrower

17 } ñ @Return

18 } ñ @Using

19 @Using Borrower : end {

20 now Ñ Lender

21 } ñ @Return

22 @Return Lender : rentalOk {

23 0.5* wallet (Lender

24 wallet (Borrower

25 } ñ @End

26 @Using ,@Return Lender ,Borrower : dispute(x) {

27 x Ñ _

28 } ñ @Dispute

29

30 @Dispute Court : verdict(x,y)

31 (y>=0 NN y<=1) {

32 x Ñ Lender , Borrower

33 y*wallet (Lender

34 wallet (Borrower

35 } ñ @End

36 }

Listing 1.1. The rent for free contract

10

An example for testing the expressivity of Stipula is a contract ruling
a bet. This is a legal contract that contains an element of randomness
(alea, such as a future, aleatory event, such as the winner of a football
match, the delay of a flight, the future value of a company’s stock) that
is entirely independent of the will of the parties.

A digital encoding of a bet contract requires that the parties explic-
itly agree on the source of data that will determine the final value of the
aleatory event – the DataProvider –, which is usually a specific online
service, an accredited institution, or any trusted third party. It is also im-
portant that the digital contract defines precise time limits for accepting
payments and for providing the actual value of the aleatory event. Indeed
there can be a number of issues: the aleatory event does not happen,
e.g. the football match has been cancelled, or the data provider fails to
deliver the required value, e.g. the online service is down.

The Stipula code in Listing 1.2 corresponds to the case where Better1
and Better2 respectively place in val1 and val2 their bets, while the
agreed amount of currency is stored in the contract’s assets wallet1 and
wallet2 3. Observe that both bets must be placed within an (agreed) time
limit t before (line 15), to ensure that the legal bond is established before
the occurrence of the aleatory event. The second timeout, scheduled in line
22, is used to ensure the contract termination even if the DataProvider

fails to provide the expected data, through the call of the function data.
When the function data is called and the first argument x is the alea of
the bet, the betters are rewarded according to the result y. For simplicity
we assume that the data-provider service gets the two bets when they
lose.

Compared to the Bike Rental in Section 2, the role of the DataProvider
here is less pivotal than that of the Authority. While it is expected that
Authority will play its part, DataProvider is much less than a peer of
the contract. It is sufficient that it is an independent party that is enti-
tled to call the contract’s function to supply the expected external data
that will extract from source. In case DataProvider behaves incorrectly,
e.g. it supplies an incorrect value through the function data, the betters
can appeal against the data provider since they agreed upon the data
emitted by the source. As usual, any dispute that might render the con-
tract voidable or invalid, e.g. one better knew the result of the match
in advance, can be handled by including an Authority, according to the
pattern illustrated in the Bike Rental example.

3 For simplicity, this code requires Better1 to place its bet before Better2. It is easy
to extend the code to let the two bets be placed in any order.

11

1 stipula Bet {

2 assets wallet1 , wallet2

3 fields val1 , val2 , source , alea , amount , t_before , t_after

4

5 agreement (Better1 , Better2 , DataProvider){

6 DataProvider , Better1 , Better2 : source , alea , t_after

7 Better1 , Better2 : amount , t_before

8 } ñ @Init

9

10 @Init Better1 : place_bet(x)[h]

11 (h == amount){

12 h (wallet1

13 x Ñ val1

14 t_before " @First { wallet1 (Better1 } ñ @Fail

15 } ñ @First

16

17 @First Better2: place_bet(x)[h]

18 (h == amount){

19 h (wallet2

20 x Ñ val2

21 t_after " @Run {

22 wallet1 (Better1

23 wallet2 (Better2 } ñ @Fail

24 } ñ @Run

25

26 @Run DataProvider : data(x,y)[]

27 (x==alea){

28 if (y==val1 NN y==val2){ // Better1 and Better2 win

29 wallet1 (Better1

30 wallet2 (Better2

31 } else if (y==val1 NN y!=val2){ // The winner is Better1

32 wallet2 (Better1

33 wallet1 (Better1

34 } else if (y!=val1 NN y==val2){ // The winner is Better2

35 wallet1 (Better2

36 wallet2 (Better2

37 } else { // No winner

38 wallet1 (DataProvider

39 wallet2 (DataProvider

40 }

41 } ñ @End

42 }

Listing 1.2. The contract for a bet

12

4 Type inference in Stipula

Stipula is type-free: types have been dropped because there is no type
annotation in standard legal contracts and therefore they may be ini-
tially obscure to unskilled users, such as lawyers. On the other hand, a
lightweight and well designed typed syntax is acknowledged as an effective
support to produce quality software and to enhance code comprehension.
Therefore, we postpone the choice of a suitable typed syntax to the study
of an appropriate programming interface that help legal practitioners to
program in Stipula. Nevertheless the language comes with a type inference
system that allows one to derive types of assets, fields and functions’ argu-
ments, so to statically prevent basic programming errors. In this section
we discuss the main design principles of the system.

Stipula has the following primitive types

T ::“ real | bool | string | time | asset

that mirror the set of values of the language: real numbers, booleans,
strings, time values, and assets. What is exactly a time value will be speci-
fied by the concrete implementation (either over a centralized system or a
distributed platform such a s a blockchain), but in general Stipula admits
both absolute time values (as the date "2022/1/1:00:15"T) and relative
time expressions, like now + 3, standing for 3 days from now or after
that at least 3 blocks have been appended to the underlying blockchain.
Values of type asset can be divisible resources (e.g. (crypto)currencies)
or indivisible assets (e.g. smart keys, or NFT tokens). In particular, di-
visible assets correspond to positive real numbers (therefore we admit
a subsumption rule from assets to real numbers), while indivisible ones
must be considered as a whole and can be either empty asset (0) or a full
asset (e.g. the constants key1234 and nft123).

The inference system of Stipula is almost standard: it associates pair-
wise different type variables to the names of a program and parses the
code by collecting constraints. At the end of the parsing process, the
constraints are solved by means of a unification technique and the type
variables are replaced by the resulting values (see [10] for details of the
technique). Here we just discuss the most relevant rules, that are based
on the following notation

– type terms α, α1, ¨ ¨ ¨ , which are either type variables X, Y , Z, ¨ ¨ ¨ , or
primitive types;

– environments Γ that maps fields and non-asset functions’ arguments
to type variables, and ∆ maps assets and assets functions’ arguments

13

to type variables. The notation Γ rx ÞÑ Xs, resp. ∆rh ÞÑ V s, stands
for either the update or the extension of the environment, depending
on whether x, resp. h, belongs to the domain of the environment.

– constraints Υ , Υ 1, ¨ ¨ ¨ , which are conjunctions of equations α “ α1;
– judgments Γ,∆ $ E : α, Υ for expressions E and Γ,∆ $ S : Υ for

statements S.

The simplest rule of the inference system is the typing of a value κ:

κ P T
Γ,∆ $ κ : T, true

That is, assuming that the constant κ belongs to T we derive that κ has
type T without any constraint (the term true) in every environments Γ
and ∆. A simple rule that generates constraints is the assignment of a
value to a field:

Γ,∆ $ E : α, Υ Υ 1 “ pΓ pxq “ αq ^ Υ
Γ,∆ $ E Ñ x : Υ 1

As usual, statements E Ñ x have no type: the typing system returns a
constraint imposing that the typing of E is equal to the type of x, i.e.,
Γ pxq “ α. For example, the typing of the assignment "hello"Ñ x in the
environments Γ,∆ returns the constraint Γ pxq “ string.

The following rule is the typing of the asset transfer:

Γ,∆ $ E : α, Υ Υ 1 “ pα “ realq ^ p∆phq,∆ph1q “ assetq ^ Υ
Γ,∆ $ E (h, h1 : Υ 1

The rule defines the type of the withdraw of the value of E from the as-
set h and the corresponding addition to h1. Therefore, the expression E
must have type real, since it corresponds to a quantity to be withdrawn
form the asset h and added to the asset h1. An additional Subsumption
rule is introduced to promote assets to be real, so that assets, when used
within expressions (e.g. h (h, wallet), are considered as reals. We also
remark that the type system does not check the amount of assets that
are withdrawn, but the operational semantics of Stipula prevents the (un-
safe) execution of the transfer operation whenever h does not own enough
assets, e.g. 2 ˚ h (h, wallet.

Given a contract’s function Fi, the judgment Γ,∆ $ Fi : Γi, ∆i, Υi
collects the constraints Υi generated from the typing of the function body,
and the type environments Γi, ∆i that associate fresh type variables to
the parameters names:

14

@Init

@First

@Fail

@Run @End

Better1.place_bet

ev_14

Better2.place_bet

ev_21

DataProvider.data

Fig. 3. The finite-state automata of the Bet contract

Y , V fresh Γ 1 “ Γ ry ÞÑ Y s ∆1 “ ∆rk ÞÑ V s
Γ 1,∆1 $ E : α, Υ Γ 1,∆1 $ S : Υ 1 Γ,∆ $W : Υ 2

Υ3 “ pα “ boolq ^ Υ ^ Υ 1 ^ Υ 2

Γ,∆ $ @Q A : fpyqrkspEq tSW u ñ @Q1 : ry ÞÑ Y s, rk ÞÑ V s, Υ3

Finally, the typing of a Stipula contract is given in the following rule,
where $ G stands for the syntactic check that the agreement G is well
formed, and Υ , σ means that the type variable substitution σ satisfies
the constraints Υ :

X,Z fresh $ G Γ “ rx ÞÑ Xs ∆ “ rh ÞÑ Zs
´

Γ,∆ $ Fi : Γi,∆i, Υi

¯iP1..n
Ź

iP1..n Υi , σ

$ stipula C t assets h fields x G F1 ¨ ¨ ¨ Fn u : rσpΓ, Γ1 ¨ ¨ ¨Γnq, σp∆∆1 ¨ ¨ ¨∆nq s

In the rule fresh type variables are associated to contracts fields and
functions parameters, both assets and non assets. These associations are
recorded in the type environments Γ, Γ1 ¨ ¨ ¨Γn and ∆∆1 ¨ ¨ ¨∆n (all con-
tracts names are assumed to be different). Then the type of the contract
is obtained by applying the substitution σ to these environments. When-
ever the inference system is not able to derive a ground type for a contract
name, that is σpXq is a type variable, it means that there are no type
constraints for that name. In particular, as regards assets, the type sys-
tem only collects assets type identities and the type variable can be safely
instantiated to the ground type asset.

15

5 An analyzer of liquidity

Liquidity is a major security property of every program managing as-
sets because it guarantees that assets are never frozen forever inside con-
tracts [2]. In particular,

liquidity : a Stipula contract is liquid if, whenever an asset becomes not-
0, then there is a continuation that has a state where every asset is
0.

According to the definition, liquidity reduces to the analysis that a
state is reachable, which is not trivial in Solidity because functions have
guards that may disable invocations and events that may prevent invoca-
tions. What we discuss in this paper is a technique for pruning the space
of analysis of reachability: our technique returns witnesses to be checked
by an off-the-shelf reachability tool. For simplicity sake, in this section,
we consider the sublanguage where statements E (h, A and E (h, h1

have the shape c˚h (h, A and c˚h (h, h1, respectively (every exam-
ple in this paper matches this constraint). We also restrict our analysis
to contracts such that computations do not pass through the same state
twice. That is, consider the underlying finite state automaton of the con-
tract where states are those specified by the contract and transitions are
either functions or events – Figure 3 reports the finite state automaton of
the Bet contract in Section 3. We are restricting to contracts where the
underlying finite state automata have no cycle (the technique where this
limitation is drop requires technicalities that are out of the scope of this
paper).

The liquidity analyzer of a Stipula contract has three phases:

1. the liquidity effects of each transition of the automaton is statically
computed by calculating (an over-approximation of) the assets and
the asset parameters of every function and event. More precisely,
using a type system, we define the liquidity label of every function
Q A.f Q1 : Ξ Ñ Ξ 1 and every event Q ev i Q1 : Ξ Ñ Ξ 1, where the ini-
tial environment Ξ associates contract’s assets with symbolic names,
while the final environments Ξ 1 records the effect of the execution of
the corresponding bodies;

2. then we compute the liquidity effects of computations (i.e. sequences
of transitions) of the automaton, by suitably merging the final en-
vironment of a transition with the initial environment of the next
transition;

16

3. finally, we consider all the functions and events that either updates
the assets or carry asset parameters and check whether (i) all asset
parameters are emptied by functions’ executions, and (ii) for every
function/event modifying an asset, there is a continuation that emp-
ties all the assets of the contract. We remark the role of asset param-
eters: if a contract function is called by passing an asset parameter,
like an amount of currency (as in the function pay of the Bike Rental

contract), that amount is no more available to the caller because of the
linear semantics of assets. Therefore it is essential that the parameter
is drained by the function and the currency is moved into a contract
asset (cif. the instruction h (wallet in line 12 of the Bike Rental

contract in Table 2) or sent to a party, otherwise that currency is
frozen and the program is not liquid. The condition (ii) above re-
quires to trace the asset movements performed by computations and
to verify that contract assets (cif. wallet) have been emptied.

Below we detail few critical aspects of the analysis. The liquidity
type system returns, for every transition of the automaton, an over-
approximation of the balances of the assets that expresses whether an
asset is empty – notation 0 – or not empty – notation 8. The values 0
and 8 are called liquidity values. We use the following notation:

– liquidity expressions e, are defined as follows, where ξ, ξ1, ¨ ¨ ¨ range
over (symbolic) liquidity names:

e ::“ 0 | 8 | ξ | e\ e | e[e .

They are ordered as 0 ă 8 and 0 ď ξ and ξ ď 8; the operations \
and [respectively return the maximum and the minimum value of
the two arguments.

– environments Ξ, which map contract’s assets and asset parameters to
liquidity expressions.

– liquidity labels t : Ξ Ñ Ξ 1 where t is either Q A.f Q1 (a function) or
Q ev i Q1 (an event) and Ξ Ñ Ξ 1 records the liquidity effects of fully
executing the body of the transition t.

– judgments Ξ $ E : e for expressions, Ξ $ S : Ξ 1 for statements and
Ξ $ @Q A:fp x qr h1 s pEqtSW u ñ @Q1 : L for function definitions,
where L is a set of liquidity labels.

As regards expressions, we consider only constants (because of the
restriction on the shape of asset expressions). In particular, the two rules

Ξ $ 0 : 0
κ ‰ 0

Ξ $ κ : 8

17

assert that every constant has liquidity value 8 but for the constant 0.
As regard statements, we have two rules for asset movements:

e “ Ξphq \ Ξph1q
Ξ $ h (h1 : Ξrh ÞÑ 0, h1 ÞÑ es

c ‰ 1 Ξ $ c : e
e1 “ pe[Ξphqq \ Ξph1q

Ξ $ c ˚ h (h, h1 : Ξrh1 ÞÑ e1s

According to the rule on the left, the final asset environment of h (h1

(which is an abbreviation for h (h, h1) has h that is emptied and h1 that
gathers the value of h, henceforth the liquidity expression Ξphq \ Ξph1q.
Notice that, when both h and h1 are 0, the overall result is 0. In the rule
on the right, the asset h is decreased by an amount that is moved to h1.
Since c is not 1, the static analysis can only safely assume that the asset
h is not emptied by this operation (if it was not empty before). Therefore,
after the withdraw, the liquidity value of h has not changed. On the other
hand, the asset h1 is increased of some amount if h has a non zero liquidity
value, henceforth the expression pe[Ξphqq \ Ξph1q. In particular, when
both Ξphq and Ξph1q are 0, the overall result is 0.

The rule for conditionals is

Ξ $ S : Ξ 1 Ξ $ S1 : Ξ2

Ξ $ if pEq t S u else t S1 u : Ξ 1 \ Ξ2

where the operation\ on environments is defined pointwise: pΞ 1\Ξ2qphq “
Ξ 1phq\Ξ2phq. That is, the liquidity analyzer over-approximates the final
environments of if pEq t S u else t S1 u by taking the maximum values
between the results of parsing S (that corresponds to a true value of E)
and those of S1 (that corresponds to a false value of E). The expression
E is overlooked by the analyzer.

The rule for Stipula contracts collects the liquidity labels that describe
the liquidity effects of each contract’s function; each function assumes
injective environments that just associate contracts’ assets with symbolic
names:

χ, ξ fresh
´

rh ÞÑ ξs $ Fi : Li

¯iP1..n

$ stipula C t assets h fields x G F1 ¨ ¨ ¨ Fn u :
Ť

iP1..n Li

In turn, the rule for function definitions is:

18

W “ `

Ei " @QitSi u ñ @Q1
i

˘iPI

Ξrh1 ÞÑ 8s $ S : Ξ 1
`

Ξ $ Si : Ξ 1
i

˘iPI

Ξ $ @Q A : fp x1 qr h1 spEqtS W u ñ @Q1 :
Q A.f Q1 : Ξrh1 ÞÑ 8s Ñ Ξ 1

`

Qi ev i Q
1
i : Ξ Ñ Ξ 1

i

˘iPI

This rule produces a set L of liquidity labels associated to transitions of
the finite state automaton. The main label is that of the function, saying
that the transition named Q A.f Q1 has liquidity effects Ξrh1 ÞÑ 8s Ñ Ξ 1.
As explained above, Ξ just associates contract’s assets, with symbolic
names. The analysis of the function’s body S additionally assumes that
the function parameters h1 are bound to 8, because they may be any
value. The liquidity effects of S are recorded by the environment Ξ 1.
In particular, if Ξ 1ph1q “ 8, where h1 is an asset parameter, i.e. h1 R

dompΞq, then the asset h1 has not been emptied by S. Therefore the
asset is frozen into the parameter and the contract is not liquid. The
premises also verifies the liquidity effects of events’ bodies Si, but in this
case the initial environments are not extended with function parameters
because the syntax of Stipula imposes that events are out of their scope.
The set I in the rule is intended to be the set of (the initial) code lines
of the events scheduled by the function. For example, the liquidity types
of the Bet contract are (Ξ “ r wallet1 ÞÑ ξ1, wallet2 ÞÑ ξ2 s):

Init Better1.place bet First : Ξrh ÞÑ 8s Ñ Ξrwallet1 ÞÑ ξ1 \8, h ÞÑ 0s
First Better2.place bet Run : Ξrh ÞÑ 8s Ñ Ξrwallet2 ÞÑ ξ2 \8, h ÞÑ 0s
Run DataProvider.data End : Ξ Ñ Ξrwallet1 ÞÑ 0, wallet2 ÞÑ 0s
First ev 14 Fail : Ξ Ñ Ξrwallet1 ÞÑ 0s
Run ev 21 Fail : Ξ Ñ Ξrwallet1 ÞÑ 0, wallet2 ÞÑ 0s

To calculate the effects that a computation has on the assets’ bal-
ances we use abstract computations. An abstract computation is a finite
sequences of labelled transitions ϕ “ tti : Ξi Ñ Ξ 1iu

iP1..n. We define the
liquidity type of an abstract computation ϕ, noted Lϕ, by merging the
final environments of a transition with the initial environments of the
next one. In particular, let h be the assets of the contract and Ξ|h be the
environment Ξ restricted to the domain h. Then

Lϕ “ Ξ
pbq
1 |h Ñ Ξpeqn |h

19

where Ξ
pbq
1 and Ξ

peq
n (“b” stays for begin, “e” stays for end) are defined

as follows

Ξ
pbq
1 “ Ξ1 Ξ

pbq
i`1 “ Ξi`1t

Ξ
peq

i phq{ξu Ξ
peq
i “ Ξ 1it

Ξ
pbq

i phq{ξu .

For example, consider the Bet contract computation

ϕ “ Init Better1.place bet First ; First Better2.place bet Run ;
Run DataProvider.data End

Then Lϕ “ Ξ
pbq
1 |twallet1,wallet2u Ñ Ξ

peq
3 |twallet1,wallet2u where

Ξ
pbq

1 “ Ξrh ÞÑ 8s
Ξ

peq

1 “ Ξrwallet1 ÞÑ ξ1 \8, h ÞÑ 0s
Ξ

pbq

2 “ Ξrwallet1 ÞÑ ξ1 \8, h ÞÑ 0s
Ξ

peq

2 “ Ξrwallet1 ÞÑ ξ1 \8, wallet2 ÞÑ ξ2 \8, h ÞÑ 0s
Ξ

pbq

3 “ Ξrwallet1 ÞÑ ξ1 \8, wallet2 ÞÑ ξ2 \8, h ÞÑ 0s
Ξ

peq

3 “ Ξrwallet1 ÞÑ 0, wallet2 ÞÑ 0, h ÞÑ 0s

The last phase of the liquidity analysis amounts to checking that (i)
the execution of every function empties every asset parameter, and (ii)
for every function or event modifying an asset field, there is a contin-
uation (which is a computation) that empties all the assets. We notice
that, as regards (ii), we cannot restrict to a local analysis (as in (i))
but we have to consider computations because assets may become 0 in
several steps. For example, for the Bet contract, there are two problem-
atic functions: Init Better1.place bet First (that updates wallet1)
and First Better2.place bet Run (that updates wallet2). Our tech-
nique, by using liquidity types of computations, returns all the computa-
tions that start at First and at Run that empty the assets wallet1 and
wallet2. In particular, for First, it returns

First Better2.place bet Run ; Run DataProvider.data End

First ev 14 Fail

First Better2.place bet Run ; Run Ev 21 Fail

(the reader is invited to verify that, in the final environments are rwallet1 ÞÑ
0, wallet2 ÞÑ 0s). For Run we have

Run DataProvider.data End

Run ev 21 Fail .

Provided that, at least one of the computations starting at First and
of those starting at Run can be actually executed (as we anticipated, our

20

analysis needs to be complemented by a reachability analysis), the Bet
contract is liquid. Actually, it turns out that this is the case because every
foregoing computation can be performed.

6 Conclusions

We have presented Stipula, a simple domain-specific language featuring a
distilled number of operations that enable the formalisation of the main el-
ements of juridical acts, such as permissions, prohibitions, and obligations.
A number of related projects [13, 11, 8] have put forward legal markup lan-
guages, to wrap logic and other contextual information around traditional
legal prose, and providing templates for common contracts that can be
customized by setting template’s parameters with appropriate values. In
Stipula, rather than software templates, it is possible to define specific
programming patterns that can be used to encode the building blocks
that can be used to describe, analyse and execute (thus enforce) legal
agreements (see the Table 1).

This is similar to what has been done in [9] where the authors have
defined a set of combinators expressing financial and insurance contracts,
together with a denotational semantics and algebraic properties that says
what such contracts are worth. These ideas have been implemented by
the Marlowe and Findel languages [1, 4], which are (small) domain spe-
cific languages featuring constructs like participants, tokens, currency
and timeouts to wait until a certain condition becomes true (similarly
to Stipula).

We remark that legal contracts are more general and expressive than
financial contracts. Accordingly, languages like Marlowe and Findel are
built around a fixed set of contract’s combinators, and they can be im-
plemented using an interpreter, that is a single program that handles any
financial contract by evaluating its (most external) combinator. The case
of Stipula is more complex: agreement, assets, events, named states and
named functions are programming primitives rather than combinators.
Therefore each Stipula contract must be implemented, actually compiled,
into a suitable running software, and the parties must collaborate by in-
voking the contract’s functions to make the contract progress.

Being a principled high-level language, Stipula is implementation-agnostic,
and does not commit to any architecture. In [7] we provided a detailed
discussion about the implementation of the main elements of Stipula on
top of either a centralized Java application or a distributed system such
as a blockchain. In particular, Stipula might actually be implemented in

21

terms of smart contracts written in Solidity or Obsidian [6, 5], which is
based on state-oriented programming and explicit management of typed
linear assets. This would bring in the advantages of a public and de-
centralized blockchain platform. However, we think that Stipula’s soft-
ware/digital contracts are more general and encompass smart contracts:
they provide benefits in terms of automatic execution and enforcement
of contractual conditions, traceability, and outcome certainty even with-
out using a blockchain. Their implementation might be more flexible,
allowing a suitable level of privacy, reversibility and intermediation. Ad-
ditionally, the intrinsic open nature of legal contracts is another challenge
for blockchain-based smart contracts, that can hardly deal with the off-
chain world: external data can enter the blockchain only through oracles,
which are problematic in many senses, and the dynamic change of be-
haviour conflicts with the rigidity of smart contracts definition. On the
other hand, we have shown that Stipula contracts may take advantage of
an explicit Authority party and suitable programming patterns to flexibly
deal with the exceptional behaviors occurring in the external context.

Overall, we think that Stipula provides a programming model that is
simple and rigorous, which are, in our opinion, fundamental criteria for
reasoning about legal contracts and for understanding their basic princi-
ples. In our mind Stipula, and its toolset of formal methods, is the back-
bone of a framework where addressing and studying other, more complex
features that are drawn from juridical acts.

References

1. Cardano Documentation. https://docs.cardano.org/, 2020.

2. Massimo Bartoletti and Roberto Zunino. Verifying liquidity of bitcoin contracts.
In Principles of Security and Trust - 8th International Conference, POST 2019,
volume 11426 of Lecture Notes in Computer Science, pages 222–247. Springer,
2019.

3. Shrutarshi Basu, Anshuman Mohan, James Grimmelmann, and Nate Foster. Legal
calculi. Technical report, ProLaLa 2022 ProLaLa Programming Languages and the
Law, 2022. At https://popl22.sigplan.org/details/prolala-2022-papers/6/
Legal-Calculi.

4. Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. Findel: Secure
derivative contracts for ethereum. In Financial Cryptography and Data Security
- FC 2017, volume 10323 of Lecture Notes in Computer Science, pages 453–467.
Springer, 2017.

5. Michael J. Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine. Can
advanced type systems be usable? an empirical study of ownership, assets, and
typestate in obsidian. Proc. ACM Program. Lang., 4(OOPSLA):132:1–132:28,
2020.

22

6. Michael J. Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles Baker,
Yannick Bloem, Brad A. Myers, Joshua Sunshine, and Jonathan Aldrich. Obsidian:
Typestate and assets for safer blockchain programming. ACM Trans. Program.
Lang. Syst., 42(3):14:1–14:82, 2020.

7. Silvia Crafa, Cosimo Laneve, and Giovanni Sartor. Pacta sunt servanda: legal
contracts in Stipula. Technical report, arXiv:2110.11069, 10 2021.

8. Lexon Foundation. Lexon Home Page. http://www.lexon.tech, 2019.
9. Simon L. Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing con-

tracts: an adventure in financial engineering, functional pearl. In Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’00), Montreal, Canada, September 18-21, 2000, pages 280–292. ACM, 2000.

10. Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.
11. Open Source Contributors. The Accord Project. https://accordproject.org,

2018.
12. Research Group on EC Private Law (Acquis Group) Study Group on a European

Civil Code. Principles, Definitions and Model Rules of European Private Law:
Draft Common Frame of Reference (DCFR), Outline Edition. Sellier, 2009.

13. Aaron Wright, David Roon, and ConsenSys AG. OpenLaw Web Site. https:

//www.openlaw.io, 2019.

23

