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Abstract

One of the most frequently discussed aspects of research in Bayesian statistics is

the estimation of posterior distributions in the context of big data analysis. The main

problems practitioners face are the computational limitations of classical approaches and

the difficulty of selecting subsets of relevant variables from all possible ones. Markov

chain Monte Carlo algorithms (MCMC) have been for a long time the most adopted tool

to carry out Bayesian inference. However, when introducing ad hoc priors to regularize

estimates and perform authomatic variable selection, the models became more complex

and MCMC methods turn out to be computationally inefficient. Therefore, the interest

moved towards variational approximations increased in the last decades. The latter are

a family of deterministic approximations that allows for Bayesian inference in complex

models in a reasonable amount of time, while preserving good accuracy in the posterior

estimates.

This PhD thesis focuses on combining regularization and variable selection proce-

dures with variational approximation techniques leading to novel algorithms to effi-

ciently estimate high-dimensional models in the context of time series data. The first

Chapter provides an overview of the existing literature on variational approximations.

The second Chapter undertake the problem of estimation and prediction in multivariate

high-dimensional dynamic regressions in low signal to noise ratio scenarios. The third

Chapter shows an interesting use of parametric variational Bayes to introduce regular-

ization and smoothness in the posterior estimates of a univariate stochastic volatility

model. We emphasize the possible importance of this approach within an empirical

finance application to portfolio management. The fourth, and last, Chapter proposes a

novel semi-parametric variational Bayes algorithm to perform accurate dynamic variable

selection in time-varying parameter regressions. The combination between the proposed

variational approximation and the model specification yield remarkable theoretical prop-

erties, not achievable through classical MCMC methods.





Sommario

Uno degli aspetti più discussi negli ultimi anni dalla ricerca in statistica bayesiana

è la stima delle distribuzioni a posteriori nel contesto dell’analisi dei big data. I pro-

blemi principali che i ricercatori devono affrontare sono i limiti computazionali degli

approcci classici e la difficoltà di selezionare dei sottoinsiemi di variabili importanti tra

tutte quelle disponibili. Gli algoritmi Markov chain Monte Carlo (MCMC) sono stati

per lungo tempo lo strumento più adottato per l’inferenza bayesiana. Tuttavia, con

l’introduzione di distribuzioni a priori ad hoc per regolarizzare le stime ed eseguire la

selezione automatica delle variabili, i modelli sono diventati sempre più più complessi e i

metodi MCMC si sono rivelati computazionalmente inefficienti. Per questo motivo, ne-

gli ultimi decenni è aumentato l’interesse verso le approssimazioni variazionali. Quest’

ultime rappresentano una famiglia di approssimazioni deterministiche che consentono

l’inferenza bayesiana anche per modelli complessi in un tempo ragionevole, ma, allo

stesso tempo, preservando una buona accuratezza nelle stime a posteriori.

Questa tesi di dottorato si concentra sulla combinazione di procedure di regolariz-

zazione e selezione delle variabili con tecniche di approssimazione variazionale. L’ac-

costamento di queste procedure dà vita nuovi algoritmi per stimare in modo efficiente

modelli ad alta dimensionalità nel contesto delle serie temporali. Il primo Capitolo

fornisce una panoramica della letteratura esistente sulle approssimazioni variazionali.

Il secondo Capitolo affronta il problema della stima e della previsione nelle regressioni

dinamiche multivariate ad alta dimensionalità in scenari con basso rapporto segnale/ru-

more. Il terzo Capitolo si focalizza su un interessante utilizzo delle tecniche variazionali

parametriche per introdurre la regolarizzazione nelle stime a posteriori, ottenendo tra-

iettorie più lisce, in un modello univariata con volatilità stocastica. L’importanza di

questo approccio viene sottolineata nell’ambito di un’applicazione di finanza empirica

alla gestione del portafoglio. Il quarto, e ultimo, Capitolo propone un nuovo algoritmo

variazionale semi-parametrico per eseguire un’accurata selezione dinamica delle variabili

nelle regressioni con parametri variabili nel tempo. La combinazione tra l’approssima-

zione variazionale proposta e la specificazione del modello produce notevoli proprietà

teoriche, non ottenibili con l’utilizzo dei classici metodi MCMC.
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Introduction

Overview

Since the early 2000s, there has been an increasing interest in big data and complex data

analysis. The motivation can be found in the exponential increase in the amount of data

(Elezaj and Tole, 2018), both structured and unstructured, the advancement of tech-

nological infrastructure to store the databases, and the increasing computing power to

process them (see the recent AlphaTensor software of Fawzi et al., 2022). The complex-

ity of the analysis lies in the different nature and source of the information. For example,

data can be collected over time, space, or even more complex domains, and it can come

as a continuous stream. Each of the above scenarios brings with it complications. There-

fore, approaching the problem with appropriate statistical methods is essential in order

to obtain reliable and clear results that are useful in practice. In this thesis we will focus

on time series data, i.e., sequences of observations that are collected over a period of

interest and whose dynamic characterizes a temporal dependence structure. This type

of data is common to many areas of scientific interest since most phenomena develop

over time. Understanding the factors that drive their temporal evolution is crucial to

draw qualitative conclusions as well as provide predictions for future dynamics. Some

topical examples include the forecasting of macroeconomical indicators such as inflation

or unemployement (Fulton and Hubrich, 2021), climate change and environmental data

(Mudelsee, 2019), genomics and neuroscience (Aguayo-Orozco et al., 2018; Pourahmadi

and Noorbaloochi, 2016), and financial investments analysis (Sezer et al., 2020).

Although the most widely used methods for approaching the analysis, especially pre-

dictive analysis, of these phenomena of interest lie in the areas of machine learning, deep

learning, and artificial intelligence, simpler statistical models can be just as effective. In

particular, if the researcher’s interest goes beyond prediction, the latter are more easily

interpreted, while machine learning tools are often identified as black boxes. In fact,

one of the biggest challenges in recent years is to make machine learning and artificial

intelligence tools more interpretable. In this thesis, we focus on Bayesian estimation of

3
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univariate and multivariate regression models in the case of high-dimensional time series

data. Dimensionality grows in two directions: we can deal with many variables (fat data)

or we can collect a huge number of observations, i.e., long time series (tall data). In both

cases, two major issues arise. Firstly, the computational time to perform an accurate

inference increases a lot and could be prohibitive. Secondly, the over-parametrization of

the model leads to lack of interpretability and poor prediction performances, therefore

suitable model selection procedures are necessary to identify only the relevant variables

to include in the analysis.

Bayesian statistics also suffers from these problems. To tackle the over-parametrization

issue, Bayesian literature proposes to make use of ad hoc prior distributions. A first

class consists of the so called continuous shrinkage priors. The latter are continuous

distribution functions that concentrate a large part of the probability mass around zero,

while preserving large tails. The effect of such priors is to shrink towards zero the poste-

rior distribution of unimportant parameters, while providing accurate estimates for the

relevant ones. Well known and widely used continuous shrinkage priors are the Bayesian

lasso of Park and Casella (2008), the Normal-Gamma of Griffin and Brown (2010), and

the Horseshoe of Carvalho et al. (2010). Beside the latter category, discrete priors can

be defined to separate the true signal from the noise. The famous Spike-and-Slab prior

(George and McCulloch, 1993; Ročková and George, 2018) and its variants fall into this

family. Those approaches aim to specify a mixture of two components, namely spike and

slab distributions. The first can be either a Dirac at zero or a continuous distribution

centered at zero with small variance, while the second one is usually a vague continuous

distribution. More recent developments in Bayesian model selection are the L1–ball

prior of Xu and Duan (2020), and methods for dynamic shrinkage (see e.g., Kalli and

Griffin, 2014; Kowal et al., 2019) and dynamic variable selection (Ročková and McAlinn,

2021; Koop and Korobilis, 2020). The first contribution considers a widely used reg-

ularization in high-dimensional statistics, namely the L1, and it changes the problem

of choosing the subset of non-zero parameters, which is a large combinatorial problem,

into a simple continuous optimization. The second stream of research is proper of time

series data. In these works, the authors assume that the importance of a variable can

vary across time. This means that the set of relevant variables is not the same in all

the time series.

While an effective solution has been proposed for the over-parametrization problem,

traditional Bayesian estimation algorithms still suffer from reduced computational effi-

ciency. The latter usually rely on Markov chain Monte Carlo (MCMC) methods, which

provides a stochastic approximation of the posterior distribution (see Hastings, 1970;
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Gelfand and Smith, 1990; Robert and Casella, 2004, for an extensive discussion). This

means that its approximation can be made arbitrarily accurate by increasing the number

of draws from the target distribution. Although this is an appealing property, MCMC

methods are recognized to be computationally intensive and do not scale efficiently for

both fat and tall data. Moreover, its convergence should be carefully checked. These

main issues gave rise to the diffusion of deterministic approximations, that represent a

valid alternative to perform Bayesian inference. Among them, variational approximation

have attracted the attention of the statistical community so far.

Variational methods, owe the name to variational calculus, a mathematical discipline

which treats the optimization of functionals, and they consist of a set of algorithms which

aim to approximate probability distributions through deterministic optimization rather

than stochastic simulation. Two remarkable paradigms are variational Bayes (Ormerod

and Wand, 2010; Blei et al., 2017) and expectation propagation (Minka, 2001). On the

one hand, variational methods usually provide faster solutions than simulation based

methods, but, on the other hand, they have a bounded accuracy compared to MCMC,

which can be made more and more accurate by simply increasing the Monte Carlo sample

size. Variational approximations require to define a family of approximating densities

and to find the element that minimizes a divergence with the target distribution. The

most famous variational inference technique is probably variational Bayes (VB), which

consists of minimizing the Kullback–Leibler (KL) divergence (Kullback and Leibler,

1951). Alternative divergence measures have been proposed by (Dieng et al., 2017;

Minka et al., 2005) within the context of expectation propagation (EP).

Variational inference has been used in a wide range of applications, ranging from

statistics (Rustagi, 1976) to quantum mechanics (Sakurai, 1994), statistical mechanics

(Parisi, 1988), machine learning (Hinton and Van Camp, 1993) and then generalized

to many probabilistic models, taking advantage of the graphical models’ representa-

tion (Jordan et al., 1999). An up to date comprehensive introduction to the topic of

variational methods from a statistical perspective is provided by Ormerod and Wand

(2010), Blei et al. (2017), and more recently Zhang et al. (2019), which refers to all

the aforementioned works. Another interesting research field consists of investigating

the statistical properties of variational methods in order to make them theoretically

grounded. In this direction, recent papers by Wang and Blei (2018) and Zhang and Gao

(2020) provide a complete and interesting discussion on this topic.

In this thesis we focus on variational Bayes technique. Beside the specification of a

divergence, which in this case is the Kullback–Leibler, this paradigm require to define

a suitable family of approximating densities, namely Q. According to the specification
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of Q, we fall into different approaches. If the element q ∈ Q is assumed to be a pre-

specified parametric distribution, then parametric variational Bayes emerges (Ormerod

and Wand, 2012). A widely used parametric approximation requires that q belongs to

the family of multivariate Gaussian distributions. This gives rise to Gaussian variational

approximations (GVA) method (Wand, 2014). Conversely, suppose no parametric as-

sumption on the elements in Q is defined, but let Q be the set of probability density

functions which factorize according to a given partition of the parameter set; in that

case, a non-parametric approximation is assumed. The latter paradigm is called mean–

field variational Bayes (MFVB). Its name is inspired by the mean–field approximations

developed in statistical physics (Parisi, 1988). Note that one can also mix the two

different approaches presented above and derive a semi–parametric variational Bayes

algorithm (Rohde and Wand, 2016).

Although the literature on Bayesian variable selection and variational approximations

is already vast, the high level of research interest in this direction enlarges it day-by-day.

Main contributions of the thesis

This thesis focuses on two main stream of literature in Bayesian analysis: the problem

of regularization and variable selection, and the recent advances in variational approx-

imations, in particular within the variational Bayes paradigm. These arguments are

explored together in the context of high-dimensional time series data. The thesis is or-

ganized into four, self-contained, main Chapters, together with an extensive appendix.

Chapter 1 serves as an introduction to variational approximations within the context

of Bayesian inference, focusing in particular on mean–field approach and parametric

approximations.

In Chapter 2 we propose a new variational algorithm to estimate large-scale multivari-

ate linear regressions with continuous shrinkage priors. We develop both the theory and

the algorithms to estimate large multivariate regression models under the assumption

of several, and widely used in literature, continuous shrinkage priors, leveraging a varia-

tional Bayes approach to the inference. The motivation of this project is related to the

computational issues that state-of-the-art approaches face in high-dimensional settings.

In particular, when the dimension of the response vector (d) and the number of covari-

ates (p) increases, commonly used MCMC algorithms are computationally slow and the

inference may be prohibitive in a reasonable amount of time. To overcome the latter

issue, state-of-the-art approaches relies on simplifications of the model through suitable

re-parametrization of the matrix of regression coefficients (see Gefang et al. (2019) and
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Chan and Yu (2022) within the context of vector autoregressions). These assumptions

have the merit of simplifying the estimation, making feasible the implementation of stan-

dard MCMC algorithms. However, this procedure reduces the flexibility of the model,

leading to unreliable estimates and poor prediction performances. Unlike existing meth-

ods, our approach does not rely on a transformation of the original parameters space

to reduce the computational burden, but it exploits variational Bayes approximations.

This allows us to elicit continuous shrinkage priors directly on the parameters of interest

and perform more accurate inference. Our proposed algorithm is available for several

commonly used priors such as the Bayesian lasso of Park and Casella (2008) and its

adaptive extension (Leng et al., 2014), the normal-gamma of Griffin and Brown (2010)

and its recent improvements (Griffin and Brown, 2017; Bitto and Frühwirth-Schnatter,

2019), as well as the horseshoe prior of Carvalho et al. (2010). An extensive simula-

tion study provides evidence that our approach produces more accurate estimates of

the regression coefficients under different sparsity assumptions. This leads to higher

interpretability of the results and precise estimate of the conditional mean, which is

of key importance when making forecasts. To validate the proposed methodology we

consider an application in finance, where large datasets are available. Specifically, we

investigate both the statistical and economic significance of our estimation approach

within the context of a representative investor who faces the choice of investing in a

large set of different industry portfolios. Both the simulation and empirical results hold

across different prior specification and model dimensions.

Chapter 3 focuses on a flexible estimation of the latent process that governs the het-

eroschedasticity in univariate regressions. The latter is known as stochastic volatility

model. The common assumption in literature for the latent process is a random walk

dynamic or an autoregressive process of order one. This choice is justified by empirical

evidence. The novelty of this Chapter consists in the implementation of a paramet-

ric variational Bayes algorithm to provide accurate global approximation of the latent

volatility process. The latter has two main advantages. Firstly, it provides complete pos-

terior Bayesian inference in a reduced amount of time with respect to classical MCMC

approaches. Second, the proposed method generalizes the recent approximation scheme

of Chan and Yu (2022), thus providing higher accuracy in approximating the posterior

distribution. In addition, we propose a general formulation for the mean vector of the

variational distribution, so that it can be customised according to the research interest.

In particular, we are interested in obtaining arbitrary smooth estimates for the volatility

process. The motivation behind the need of smooth estimates comes from a practical

problem in empirical finance. Volatility managed portfolios (Moreira and Muir, 2017;
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Cederburg et al., 2020) is a recent studied topic in empirical finance and it aims to

reduce the losses an investor faces by re-scaling the expected return of a portfolio by

the volatily. This permits to avoid dangerous dropdowns. However, the estimate of the

volatility impacts the performance of the strategy. Although commonly used realized

volatility (RV) provides promising results in simple scenarios, in practice it represent

a non-viable solution. This is due to the fact that this estimate is highly sensible to

peaks. Therefore the scaling factor, which can be seen as the weight of the portfolio,

is too variable, leading to high turnover which implies unsustainable transaction costs.

Our contribution of providing an unified framework to estimate volatility measure with

arbitrary smoothness helps the investor to reduce transaction costs, while maintaining

benefits from a volatility managed portfolio investment strategy. One point we want

to stress is the following. Within our variational Bayes approach the smoothness is

introduced in the posterior estimates during the inference through a parametric approx-

imation. The latter is not the case in standard Bayesian inference: in this case one

should change the model, perhaps introducing a misspecification, or assume informative

prior distribution on the parameters of the latent process.

The last contribution is covered in Chapter 4. We propose a semi–parametric vari-

ational Bayes algorithm to deal with dynamic variable selection in time varying pa-

rameters regressions with many covariates. The Bernoulli-Gaussain model of Ormerod

et al. (2017) is a valid alternative to discrete Spike-and-Slab prior in Bayesian variable

selection. It has been proven to well separate the true signal from the noise compared

to both Bayesian and frequentist approaches, and, surprisingly, it does not require to

cross-validate fixed hyper-parameters. However, the framework considered in Ormerod

et al. (2017) is a static linear regression. Turning into a more complex dynamic regres-

sions with time varying parameters, the works of Kalli and Griffin (2014) and, more

recently, Kowal et al. (2019) consider shrinkage rather than sparsity, while en effective

variable selection has been proposed in Koop and Korobilis (2020) and Ročková and

McAlinn (2021). The latter rely on Spike-and-Slab type priors, whose main drawback

is the tuning of hyper-parameters controlling the variance of the spike and slab compo-

nent. This procedure is difficult in high-dimensional setting and it may strongly affect

the results. In this Chapter we extend the Bernoulli-Gaussian model to deal with time

varying coefficients in dynamic linear regressions. The name of the model arises from

the fact that the data generating process consists of two equations that control the

evolution of the regression parameters and the inclusion variable indicator, respectively.

The first one follows a Gaussian random walk, while the second is build on a sequence

of correlated Bernoulli distributions. The product of the two processes tells us the value
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of the coefficient at time t and whether it is included or not in the current model. We

study the theoretical properties of the algorithm and we show that this framework is

particularly suitable for regressions with many predictors. In fact, we recover two main

results: one concerns the achievement of sparse estimates, and the other one ensures

dimensionality reduction of the problem. A comparison with MCMC methods revealed

that the latter properties only hold under a variational Bayes paradigm. Therefore,

not only VB represents a computationally faster alternative to MCMC, it even provides

more accurate and efficient estimates in this scenario. We investigate the performance of

the model to separate the true signal from the noise, i.e., dynamically select the correct

subset of active variables, compared with established methods (Ročková and McAlinn,

2021; Koop and Korobilis, 2020), for different dimensions and signal-to-noise ratio. We

also show the empirical importance of our method through real-data applications.

Three appendices complete this PhD thesis and each one refers to a corresponding

Chapter. Appendices contains derivations of the optimal variational densities and ev-

idence lower bound (ELBO), and the proofs of propositions. Together with analytical

results, appendices show additional simulations and empirical analysis insights.





Chapter 1

An introduction to variational Bayes

The aim of this Chapter is to present the general concept of the variational approxima-

tion techniques that will be used in the continuation of the thesis. Starting from the

basics, we first spend few lines to recall the Bayesian paradigm. Let y be an observed

data vector of realizations from a random variable Y with probability density function

p(y|ϑ), where ϑ ∈ Θ is a p-dimensional parameter vector with values in Θ ⊆ Rp. More-

over, let p(ϑ) be the prior distribution summarizing all the a priori knowledge about

model parameters. The Bayes theorem allows to update the prior beliefs to account for

the evidence coming from the observed data into the posterior density function:

p(ϑ|y) = p(y|ϑ)p(ϑ)
p(y)

=
p(y,ϑ)

p(y)
, (1.1)

where p(y,ϑ) is a joint density function and p(y) is called marginal likelihood, or model

evidence, and it is defined as:

p(y) =

∫
Θ

p(y,ϑ) dϑ. (1.2)

The computation of p(y) requires the marginalization over the parameter space, whose

dimension makes the above integral intractable in many situations. As a consequence,

an analytical expression for the posterior p(ϑ|y) cannot be derived for most statistical

models. The rise of MCMC methods, and its variants, (Hastings, 1970; Duane et al.,

1987; Gelfand and Smith, 1990; Robert and Casella, 2004) provided a way to sample

from the posterior distributions regardless of the model complexity and parameter di-

mensions. Although these methods are appealing since they are able to approximate the

true posterior distribution, they face some relevant issues in practical implementations.

In fact, they are usually computationally intensive even for moderately complex mod-

els, with slow and not guaranteed convergence, therefore compromising the validity of

11
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inference. The latter issues are even more emphasized with large sample size datasets.

Gibbs sampling (Casella and George, 1992) represents a viable solution to make inference

faster, but its effective implementation is conditional on convenient prior specifications,

and therefore an efficient estimation is not always possible. Moreover, even in compat-

ible cases, it may require computationally expensive procedures such as sampling from

complicated distributions.

Variational approximations represent a family of deterministic methods for approx-

imating the posterior distribution. The latter rely on optimization rather than sam-

pling and are usually faster than MCMC algorithms, but on the other hand suffer from

bounded accuracy in approximating the true posterior distribution. Variational approxi-

mations do not aim to estimate the true posterior density, but a manageable distribution

which is close to the target one. The closeness is measured according to a divergence

measure D(p||q) : P ×Q → R+, where p and q are generic density functions belonging

to the sets P and Q, respectively. Note that D(·||·) is not necessarily symmetric, i.e.,

D(p||q) ̸= D(q||p). The variational approximations considered in the next Chapters of

this thesis have the common goal to find the distribution q(ϑ) ∈ Q such that it is close

to the posterior p(ϑ|y) according to a divergence measure:

q∗(ϑ) = arg min
q(ϑ)∈Q

D(p(ϑ|y)||q(ϑ)), (1.3)

where q∗(ϑ) is called optimal variational density and it represents the best approxima-

tion to the true posterior distribution among the possible, given the set of candidates

Q. The accuracy of the approximation can be quantified through the measure proposed

in Wand et al. (2011):

ACC(ϑ) = 100

{
1− 0.5

∫
|q(ϑ)− p(ϑ|y)| dϑ

}
%, (1.4)

where q(ϑ) is the proposed approximation and p(ϑ|y) is the true posterior distribution.
Notice that in practice p(ϑ|y) is determined as the sampled distribution via MCMC

with a large number of draws.

It is immediate to understand that changes in D and Q lead to different paradigms.

All the methodologies used in this thesis assumeD to be the well known Kullback-Leibler

divergence (Kullback and Leibler, 1951):

KL(p||q) =
∫
Θ

p(ϑ|y) log
{
p(ϑ|y)
q(ϑ)

}
dϑ. (1.5)

In what follows we present different approaches, namely mean–field and parametric
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variational Bayes. As regards notation, we denote with µq(ϑ) = Eq(ϑ) =
∫
Θ
ϑq(ϑ)dϑ

and Σq(ϑ) = Varq(ϑ) the expectation and variance of the optimal variational density,

while, more in general, µq(f(ϑ)) = Eq(f(ϑ)) =
∫
Θ
f(ϑ)q(ϑ)dϑ denotes the expected value

of the random variable f(ϑ) with respect to the variational density q.

Variational Bayes (VB) approach to inference requires to minimize the Kullback-

Leibler (KL) divergence between an approximating density q(ϑ) and the true posterior

density p(ϑ|y), (see, e.g., Ormerod and Wand, 2010; Blei et al., 2017). Note that the KL
divergence in (1.5) cannot be directly minimized with respect to ϑ because it involves

the expectation with respect to the unknown true posterior distribution. Ormerod and

Wand (2010) show that

KL(p||q) = log p(y)− log p (y; q(ϑ)) , p (y; q(ϑ)) = Eq [log p(y,ϑ)]− Eq [log q(ϑ)] ,

where p (y; q(ϑ)) is called variational (or evidence) lower bound (ELBO). Therefore,

the problem of minimizing KL can be equivalently stated as the maximization of the

ELBO.

Now, depending on the assumption on the space Q, we fall into different variational

paradigms.

Mean-field variational Bayes. The MFVB approach only assumes a non-parametric

restriction for the variational density

q(ϑ) =
m∏
i=1

qi(ϑi), (1.6)

for a partition {ϑ1, . . . ,ϑm} of the parameter vector ϑ. Under the MFVB restriction,

a closed form expression for the optimal variational density of each component q(ϑj) is

defined as:

q∗(ϑj) ∝ exp
{
Eq⋆(ϑ\ϑj)

[
log p(y,ϑ)

]}
, q⋆(ϑ \ ϑj) =

p∏
i=1
i̸=j

qi(ϑi), (1.7)

where the expectation is taken with respect to the joint approximating density with the

j-th element of the partition removed q⋆(ϑ\ϑj). This allows to implement an coordinate

ascent variational inference (CAVI) algorithm, an iterative procedure to estimate the

optimal density q∗(ϑ). A valid alternative to (1.7) is given by:

q(ϑj) ∝ exp
{
E−ϑj

[log p(ϑj|rest)]
}
, (1.8)
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where p(ϑj|rest) denotes the full conditional distribution of ϑj, i.e., the distribution of

ϑj given all the other parameters.

Parametric variational Bayes. An alternative to mean-field approach consists in

imposing a parametric family of distributions for the set Q. In this case, q(ϑ) =

q(ϑ|θq(ϑ)), where θq(ϑ) is called variational parameter. Under this parametric approach,

the aim is to find the best θq(ϑ), namely θ̂q(ϑ) such that q(ϑ) is close to the posterior

and belongs to the pre-specified parametric family. The complexity of the optimization

depends on the size of the vector θq(ϑ).

Among the all possible choices of the parametric family, the Gaussian distribution

is the mostly used, so that, under the variational approximation, ϑ ∼ Np(µq(ϑ),Σq(ϑ)).

This setting has been extensively studied in the literature. Wand (2014) derived a fixed-

point iteration update scheme, while more recently Rohde and Wand (2016) provide

an alternative iterative updating algorithm for the variational parameters when the

approximating density is a multivariate gaussian Np(µ,Σ):

Σnew =
[
∇2
µ,µS(µ

old,Σold)
]−1

(1.9)

µnew = µold +Σnew∇µS(µ
old,Σold), (1.10)

where ∇µS(µ
old,Σold) and ∇2

µ,µS(µ
old,Σold) denote the first and second derivative

of S(µ,Σ) with respect to µ and evaluated at (µold,Σold). The function S is called

non-entropy function which is computed as the expected value of the logarithm of the

joint distribution of the data and parameters with respect to the variational density q,

i.e., Eq(log p(y,ϑ)).

The two variational Bayes paradigms illustrated above are non strictly alternatives.

In fact, one can combine mean-field and parametric approximations to end up with a

semi-parametric approximation approach (see, e.g., Wand, 2014; Menictas and Wand,

2015; Luts and Wand, 2015).



Chapter 2

Large-scale multivariate regressions

with shrinkage priors

2.1 Introduction

Within a Bayesian linear regression context, parameters regularization is often based

on continuous shrinkage priors (see, for instance Park and Casella, 2008; Griffin and

Brown, 2010; Carvalho et al., 2010; Korobilis, 2013; Bhattacharya et al., 2015; Hahn and

Carvalho, 2015; Griffin and Brown, 2017, among others). In multivariate settings, the

use of these priors often relies on a Cholesky decomposition of the residuals covariance

matrix. This allows to break down a potentially large system of equations into a sequence

of linear univariate regressions. Linearity is preserved assuming a tight parametrization

of the regression coefficients based on the Cholesky factor. While this greatly simplifies

posterior inference, it potentially prevents to directly recover the structure of the original

regression parameters.

In this Chapter, we take a different approach towards the identification of the re-

gression coefficients in multivariate regressions. More specifically, we propose a novel

variational Bayes inference procedure which allows for fast and accurate posterior esti-

mates of the regression parameters under hierarchical shrinkage priors. Our approach

still leverages on the computational convenience of the Cholesky factorisation, but does

not build upon a linearized system of equations. This allows to elicit standard hierar-

chical shrinkage priors directly on the matrix of regression coefficients, unlike in existing

Bayesian inference schemes.

We first investigate the performance of our estimation procedure based on an ex-

tensive simulation study. We compare our variational Bayes approach (VB henceforth),

against two alternative methods which are representative of state-of-the-art Bayesian

estimation in the context of multivariate time series models. The first approach is a

15
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Markov Chain Monte Carlo (MCMC) algorithm as in Cross et al., 2020. The second

competing approach is based on a linearised variational Bayes (LVB henceforth) method

as originally proposed by Gefang et al. (2019); Chan and Yu (2022). Both approaches

rely on a Cholesky-based transformation of the original regression parameters.

In addition to a standard normal prior, we consider several hierarchical shrinkage

priors, such as the Bayesian adaptive lasso proposed by Leng et al. (2014), an adaptive

version of the normal-gamma prior of Griffin and Brown (2010), and the horseshoe prior

as originally proposed by Carvalho et al. (2009, 2010).

The simulation results show that our variational Bayes estimation procedure out-

performs competing approaches, both in a mean squared sense and when it comes to

identify the “true” signals: select those covariates which carry some significant pre-

dictive power. Perhaps more interestingly, our approach provides posterior estimates

for the regression coefficients which are invariant to permutation of variables. On the

other hand, the simulation results show that the performance of both MCMC and LVB

is not permutation-invariant. The latter is a consequence of the fact that hierarchical

shrinkage priors are elicited on a non-linear transformation of the regression parameters

rather than on the original parameters.

Intuitively, a more accurate estimate of the regression coefficients should be of first-

order importance for forecasting. We investigate both the statistical and economic

value of the forecasts from our variational Bayes approach within the context of a

representative investor who faces the choice of investing in a large set of different industry

portfolios. Although the model is general and can be applied to any type of asset

returns, as far as data are stationary, our focus on industry portfolios is motivated by

keen interests from researchers (see, e.g., Fama and French, 1997) and practitioners

alike.

Perhaps surprisingly, while there is a vast literature examining the out-of-sample

performance of the aggregate or individual stock excess returns, the question of whether

industry portfolios can be predicted has received relatively little attention so far. How-

ever, the implications of industry returns predictability are far from trivial. If all in-

dustries are unpredictable, then the market return, which is a weighted average of the

industry portfolios, should also be unpredictable. As a result, the abundant evidence

of aggregate market return predictability, implies that at least some industry portfolio

returns is predictable. This could have important implications for asset pricing models

and the efficient allocation of capital across sectors.

The empirical results show that more accurate estimates of the regression coefficients
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translate into better out-of-sample forecasts. This is reflected not only in higher out-of-

sample R2
ooss, calculated comparing against a naive rolling mean forecast as proposed

Campbell and Thompson (2007), but also in higher economic performances. The latter

is shown by larger certainty equivalent returns for the vast majority of industry port-

folios. This result supports our view that by a more accurate identification of weak

correlations in asset returns, one can significantly improve, both statistically and eco-

nomically, the out-of-sample performance of investment decisions based on large-scale

regression models.

This Chapter connects to two main streams of literature. The first relates to the use

of Bayesian methods to estimate large-scale linear regression models. A non-exhaustive

list of works on the topic contains Zou (2006); Park and Casella (2008); Carvalho, Pol-

son and Scott (2009, 2010); Griffin and Brown (2010); Polson and Scott (2011); Leng,

Tran and Nott (2014); Bhattacharya, Chakraborty and Mallick (2016); Tang, Ghosh,

Xu and Ghosh (2018); Bitto and Frühwirth-Schnatter (2019), among others. We extend

this literature and provide an accurate variational Bayes estimation method which al-

lows to elicit existing hierarchical shrinkage priors without relying on a Cholesky-based

transformation of the regression parameters.

A second strand of literature we contribute to is related to the predictability of

stock returns (see, e.g., Goyal and Welch, 2008; Rapach et al., 2010; Dangl and Halling,

2012; Johannes et al., 2014; Pettenuzzo et al., 2014; Smith and Timmermann, 2021,

among others). More specifically, we contribute to the ongoing struggle to understand

the dynamics of risk premiums by looking at industry-based portfolios. As highlighted

by Lewellen et al. (2010), the time series variation of industry portfolios is particularly

problematic to measure, since conventional risk factors do not seem to capture significant

comovements and cross-signals which might improve out-of-sample predictability (see,

e.g., Bianchi and McAlinn, 2020). Early exceptions are Ferson and Harvey (1991),

Ferson and Korajczyk (1995) and Ferson and Harvey (1999), which use a set of industry

portfolio as test assets to look at the in-sample explanatory power of macroeconomic risk

factors. Using a standard Bayesian approach, Avramov (2004) explores the predictive

content of standard Fama-French risk factors for a handful of industry portfolios and

investigate the implications for asset allocation decisions. We extend this literature by

investigating the out-of-sample predictability of industry portfolios through the lens of

a novel estimation method for large-scale multivariate predictive regressions.
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2.2 Choosing the model parametrization

Let yt = (y1,t, . . . , yd,t)
⊺ ∈ Rd be a multivariate Gaussian random variable and let

xt = (1, x1,t, . . . , xr,t)
⊺ ∈ R(r+1) be a vector of exogenous covariates observed at time t.

A multivariate predictive regression model with constant volatility is defined as follows:

yt = Θzt−1 + ut, ut ∼ Nd

(
0d,Ω

−1
)
, t = 2, 3, . . . , (2.1)

with Θ = (Γ,Φ) being a d × p matrix of regression coefficients where p = d + r + 1.

In particular, Γ ∈ Rd×(r+1) is the matrix of regression parameters for the exogenous

predictors and Φ ∈ Rd×d is the transition matrix containing the autoregressive parame-

ters, so that zt−1 = (x⊺
t−1,y

⊺
t−1)

⊺. Here, ut ∈ Rd is a sequence of uncorrelated stochastic

innovation terms such that ut−k ⊥ ut−j for k ̸= j and k, j = ±1,±2, . . . and covariance

matrix equal to Ω−1, with Ω ∈ Sd
++ being a symmetric and positive definite precision

matrix.

The modified Cholesky factorization of the precision matrix Ω can be conveniently

exploited to re-write the model in (2.1) with orthogonal innovations, (see, e.g., Rothman

et al., 2010). Let Ω = L⊺VL, where L ∈ Rd×d is uni-lower-triangual and V ∈ Sd
++ is

diagonal. Multiply both sides of (2.1) by L = Id − B. After some simple algebra one

can obtain two alternative parametrizations of the same model:

yt = B(yt −Θzt−1) +Θzt−1 + εt, εt ∼ Nd(0d,V
−1), (2.2a)

yt = Byt +Azt−1 + εt, εt ∼ Nd(0d,V
−1), (2.2b)

where A = LΘ and B has a strict-lower-triangular structure with elements βj,k = −lj,k
for j = 2, . . . , d and k = 1, . . . , j−1. The key difference is that (2.2a) shows non-linearity

in the parameters, while (2.2b) is linear. More importantly, (2.2b) is the parametrization

that is often used in state-of-the-art MCMC and variational Bayes estimations methods

(see, e.g., Gefang et al., 2019; Chan and Yu, 2022), whereas (2.2a) is the parametrization

at the core of our variational Bayes approach. From (2.2) one can obtain an equation-

by-equation representation in which the j-th component of yt becomes:

yj,t = βjrj,t + ϑjzt−1 + εj,t, εj,t ∼ N(0, 1/νj), (2.3a)

yj,t = βjy
j
t + ajzt−1 + εj,t, εj,t ∼ N(0, 1/νj), (2.3b)

for all j = 1, . . . , d and t = 2, 3, . . . , where βj ∈ Rj−1 is a row vector containing the

non-null elements in the j-th row of B, ϑj and aj denote the j-th row of Θ and A
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respectively. For any j = 1, . . . , d, let rj,t = yj
t − Θjzt−1 denotes the the vector of

residuals up to the (j − 1)-th regression, with yj
t = (y1,t, . . . , yj−1,t)

⊺ ∈ Rj−1 being the

sub-vector of yt collecting the variables up to the (j − 1)-th and Θj ∈ R(j−1)×d is the

sub-matrix containing the first j − 1 rows of Θ.

Notice that although it is not strictly needed for the development of the variational

approximation, we assume the data generating process to be weakly stationary and

ergodic. In addition, since we are primarily interested in the identification of the regres-

sion matrix Θ, we consider for simplicity that each of the elements in ν = (ν1, . . . , νd)

are time invariant (see, e.g., Smith and Timmermann, 2021). This assumption can be

relaxed by assuming each ν−1
j , j = 1, . . . , d as a latent process and leverage standard

stochastic volatility modeling (see, e.g., Clark, 2011; Chan and Eisenstat, 2018; Carriero,

Clark and Marcellino, 2019). We leave this development for future research.

Existing Bayesian inference approaches for high-dimensional models usually rely on

the linear parametrization in (2.2b), and therefore consider the elements in A as the

parameters of interest. This has the merit of simplifying the estimation procedure

making feasible the efficient implementation of standard MCMC (see, e.g., Chan and

Eisenstat, 2018) and linearized variational Bayes (LVB) algorithms (see, e.g., Chan and

Yu, 2022). Under the parametrization A = LΘ, each element ϑi,j, which denotes the

(i, j)-entry of Θ, is computed as a linear combination ϑi,j = ai,j +
∑i−1

k=1 ci,kak,j, where

ai,j and ci,j denote the (i, j)-entry of A and L−1, respectively.

However, this raises two main issues: i) ai,j = 0 does not imply ϑi,j = 0, i.e., a

shrinkage prior on A does not preserve the true structure of Θ; and ii) the estimate

Θ = L−1A is not permutation invariant, which is a direct consequence of the Cholesky

factorization. Figure 2.1 provides a numerical representation of this argument. We

compare the posterior estimates obtained from a LVB method based on (2.2a) versus our

VB approach based on (2.2b), for two different permutations of yt.

The evidence confirms that the estimates based on the transformation Θ = L−1A do

not match with the true Θ. In addition, the estimates are influenced by the variables

permutation. Instead, our VB approach provides a more accurate, permutation invariant,

identification of Θ. Before taking this intuition to task both in simulation and on real

stock returns, in the next Section we provide details of our estimation approach with

different hierarchical shrinkage priors.
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Figure 2.1: Comparison between the posterior inference for the linear representation
A = LΘ (first row) and the original parametrization Θ (second row), for two different
permutations of yt.

2.3 Variational Bayes inference

In this Chapter we adopt a mean–field variational Bayes approach to carry out ap-

proximate inference on the posterior distribution of the parameters. As described in

Chapter 1, the factorization of the joint variational density q should be specified and

it plays a central role in developing a MFVB algorithm. In the following, we present a

factorization of the variational density for a non-informative prior, as well as the three

alternative hierarchical shrinkage priors for Θ. In the main text we will summarize

the optimal approximating density q⋆, show how to perform approximate inference on

Ω, and illustrate how to make predictions within this framework. For the interested

reader, in Appendix A.2 we provide the full set of derivations of the optimal variational

densities together with the analytical form of the lower bound.

2.3.1 Shrinkage priors and optimal variational densities

To begin, we consider a non-informative normal prior for the regression coefficients. In

particular, for each entry of Θ, let ϑj,k ∼ N(0, υ), for j = 1, . . . , d and k = 1, . . . , p. In

addition, let νj ∼ Ga(aν , bν) for j = 1, . . . , d, and βj,k ∼ N(0, τ), for j = 2, . . . , d and

k = 1, . . . , j − 1. Here, Ga(·, ·) denotes the gamma distribution, and aν > 0, bν > 0,

τ ≫ 0 and υ ≫ 0 are the related hyper-parameters. Let ξ = (β⊺,ν⊺,ϑ⊺)⊺ be the

collection of the involved parameters, the variational density q(ξ) can be factorised as
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follows:

q(ξ) = q(ν)q(β)q(ϑ), q(ν) =
d∏

j=1

q(νj), q(β) =
d∏

j=2

q(βj), q(ϑ) =
d∏

j=1

q(ϑj). (2.4)

Propositions 2.1 and 2.2 provide the optimal variational density and variational lower

bound (ELBO) for this default normal prior specification, respectively.

Proposition 2.1. The optimal variational densities under this specification for νj and

βj are q
∗(νj) ≡ Ga(aq(νj), bq(νj)), where aq(νj) = aν+T/2 and bq(νj) = bν+

1
2

∑T
t=1 Eq

[
ε2j,t
]

such that:

Eq

[
ε2j,t
]
=
(
yj,t − µq(βj)

µq(rj,t)
− µq(ϑj)

zt−1

)2
+ tr

{
Σq(ϑj)zt−1z

⊺
t−1

}
+ tr

{(
Σq(βj) + µ⊺

q(βj)
µq(βj)

)
Kϑ,t

}
+ tr

{
Σq(βj)µq(rj,t)

µ⊺
q(rj,t)

}
,

where µq(rj,t)
= yj

t − µq(Θj)zt−1, and, for i = 1, . . . , j − 1 and k = 1, . . . , j − 1, the

elements in the matrix Kϑ,t are [Kϑ,t]i,k = tr
{
Cov(ϑi,ϑk)zt−1z

⊺
t−1

}
. Moreover, for the

rows of B, q∗(βj) ≡ Nj−1(µq(βj)
,Σq(βj)) where:

Σq(βj) =

(
µq(νj)

T∑
t=1

(
µq(rj,t)

µ⊺
q(rj,t)

+Kϑ,t

)
+ 1/τIj−1

)−1

,

µq(βj)
= Σq(βj)µq(νj)

T∑
t=1

µq(rj,t)
(yj,t − µq(ϑj)

zt−1)
⊺.

(2.5)

The optimal variational density for the j-th row of the parameter matrix Θ is a multi-

variate Gaussian q∗(ϑj) ≡ Np(µq(ϑj)
,Σq(ϑj)) with optimal parameters:

Σq(ϑj) =

(
µq(ωj,j)

T∑
t=1

zt−1z
⊺
t−1 + 1/υIp

)−1

,

µq(ϑj)
= Σq(ϑj)

(
T∑
t=1

(
µq(ωj)

⊗ zt−1

)
yt −

(
µq(ωj,−j)

⊗
T∑
t=1

zt−1z
⊺
t−1

)
µq(ϑ−j)

)
,

(2.6)

where we denote with ωj the j-th row of Ω and

ϑ =

(
ϑj

ϑ−j

)
, Ω =

(
ωj,j ωj,−j

ω−j,j Ω−j,−j

)
.

Proof. See Appendix A.2.1.
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Note from Proposition 2.1 that despite the multivariate model is reduced to a se-

quence of univariate regressions, the analytical form of the optimal mean µq(ϑj)
depends

on all the other rows through µq(ϑ−j)
. As a result, the posterior estimates of ϑj are

explicitly conditional on ϑ−j. This addresses the error in the MCMC algorithm of Car-

riero et al. (2019), which has been discussed by Bognanni (2022) and revised by Carriero

et al. (2022).

Proposition 2.2. The variational lower bound for the non-sparse multivariate regres-

sion model can be derived analytically and it is equal to:

log p(y; q) = const−
d∑

j=1

(
aq(νj) log bq(νj) − log Γ(aq(νj))

)
− 1

2

d∑
j=2

j−1∑
k=1

µq(β2
j,k)
/τ

+
1

2

d∑
j=2

log |Σq(βj)| −
1

2

d∑
j=1

p∑
k=1

υµq(ϑ2
j,k)

+
1

2

d∑
j=1

log |Σq(ϑj)|,

(2.7)

where const is a constant term depending on prior parameters.

Proof. See the proof A.5 in Appendix A.2.1.

Starting from the quantities derived in Propositions 2.1 and 2.2, we can implement

the following iterative Algorithm 2.1 to estimate the optimal variational densities.

Algorithm 2.1: Mean-field variational Bayes for multivariate predictive regressions
with non-informative prior.

Initialize: q∗(ξ), ∆ξ, ∆ELBO

while
(
∆̂ELBO > ∆ELBO

)
∨
(
∆̂ξ > ∆ξ

)
do

Update (aq(ν1), bq(ν1)) and get q∗(ν1);
Update (µq(ϑ1),Σq(ϑ1)) and get q∗(ϑ1);

for j = 2, . . . , d do
Update (aq(νj), bq(νj)) and get q∗(νj)
Update (µq(βj)

,Σq(βj)) and get q∗(βj);
Update (µq(ϑj)

,Σq(ϑj)) and get q∗(ϑj);

end
Compute log p (y; q) as in (2.7);

Compute ∆̂ELBO = log p (y; q)(iter) − log p (y; q)(iter−1);

Compute ∆̂ξ = q∗(ξ)(iter) − q∗(ξ)(iter−1) ;
end

In Appendix A.2 we present a more general case in which ϑ is approximated jointly

by q(ϑ). The latter is expected to provide better approximation, while increasing the

computational cost of the update from O(dp2) to O(p3).
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Bayesian adaptive lasso

The Bayesian adaptive lasso of Leng et al. (2014) extends the original Bayesian lasso of

Park and Casella (2008) by imposing a different shrinkage for each parameter. This prior

assumes a Laplace distribution with a different scaling parameter ϑj,k|λj,k ∼ Lap(λj,k).

The latter can be represented as a scale mixture of Gaussians with an exponential mixing

density, i.e., ϑj,k|υj,k ∼ N(0, υj,k), and υj,k|λ2j,k ∼ Exp(λ2j,k/2). The choice of the scaling

parameters λ2j,k is crucial to recover the underlying signal and it is certainly non trivial

in a high-dimensional setting. A common strategy is to infer their values from the data

by assuming a common prior distribution λ2j,k ∼ Ga(h1, h2), where h1, h2 > 0 are fixed

hyper-parameters. Let ξL = (ξ⊺,υ⊺, (λ2)⊺))⊺ be the vector of parameters ξ augmented

with the adaptive lasso prior, then:

q(ξL) = q(ξ)q(υ,λ2), q(υ,λ2) =
d∏

j=1

p∏
k=1

q(υj,k)q(λ
2
j,k), (2.8)

Propositions 2.3 and 2.4 provide the optimal variational densities and variational lower

bound for the Bayesian adaptive lasso prior.

Proposition 2.3. The optimal variational densities for νj and βj are the same as in

Proposition 2.1. The distribution q∗(ϑj) is a multivariate Gaussian as in Proposition

2.1, but with covariance matrix Σq(ϑj) = (µq(ωj,j)

∑T
t=1 zt−1z

⊺
t−1 + Diag(µq(1/υ)))

−1. For

the scaling parameters we have that q∗(λ2j,k) ≡ Ga(aq(λ2
j,k)
, bq(λ2

j,k)
) with aq(λ2

j,k)
= h1 + 1

and bq(λ2
j,k)

= µq(υj,k)/2+h2, while q
∗(1/υj,k) ≡ IG(aq(υj,k), bq(υj,k)) is an inverse-Gaussian

distribution where aq(1/υj,k) = µq(ϑ2
j,k)

and bq(1/υj,k) = µq(λ2
j,k)

.

Proof. See Appendix A.2.2.

Proposition 2.4. The variational lower bound for the multivariate regression model

with adaptive Bayesian lasso prior can be derived analytically and it is equal to:

log p(y; q) = const−
d∑

j=1

(
aq(νj) log bq(νj) − log Γ(aq(νj))

)
− 1

2

d∑
j=2

j−1∑
k=1

µq(β2
j,k)
/τ

+
1

2

d∑
j=2

log |Σq(βj)|+
1

2

d∑
j=1

log |Σq(ϑj)|+
d∑

j=1

p∑
k=1

1

2
µq(λ2

j,k)
µq(υj,k)

−
d∑

j=1

p∑
k=1

(1/4 log(bq(1/υj,k)/aq(1/υj,k))− logK1/2(
√
bq(1/υj,k)aq(1/υj,k)))

−
d∑

j=1

p∑
k=1

(
aq(λ2

j,k)
log bq(λ2

j,k)
− log Γ(aq(λ2

j,k)
)
)
,

(2.9)
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where const is a constant term depending on prior parameters.

Proof. See the proof A.9 in Appendix A.2.2.

An iterative Algorithm for posterior approximate inference can be set-up following

the pseudo-code in Algorithm 2.2.

Algorithm 2.2: Mean-field variational Bayes for multivariate predictive regressions
with Bayesian adaptive lasso prior.

Initialize: q∗(ξL), ∆ξL , ∆ELBO

while
(
∆̂ELBO > ∆ELBO

)
∨
(
∆̂ξL > ∆ξL

)
do

Update (aq(ν1), bq(ν1)) and get q∗(ν1);
Update (µq(ϑ1),Σq(ϑ1)) and get q∗(ϑ1);

for j = 2, . . . , d do
Update (aq(νj), bq(νj)) and get q∗(νj)
Update (µq(βj)

,Σq(βj)) and get q∗(βj);
Update (µq(ϑj)

,Σq(ϑj)) and get q∗(ϑj);

end
for j = 1, . . . , d do

for k = 1, . . . , p do
Update (aq(υj,k), bq(υj,k)) and get q∗(υj,k);
Update (aq(λ2

j,k)
, bq(λ2

j,k)
) and get q∗(λ2j,k);

end

end
Compute log p (y; q) as in (2.9);

Compute ∆̂ELBO = log p (y; q)(iter) − log p (y; q)(iter−1);

Compute ∆̂ξL = q∗(ξL)
(iter) − q∗(ξL)

(iter−1) ;
end

Adaptive normal-gamma

An extension of the Bayesian lasso prior is the normal-gamma prior proposed by Grif-

fin and Brown (2010). Similar to the adaptive lasso we assume different shrinkage

parameters in order to make the normal-gamma prior adaptive as well. The hier-

archical specification for the elements of Θ requires that ϑj,k|υj,k ∼ N(0, υj,k), and

υj,k|ηj, λj,k ∼ Ga (ηj, ηjλj,k/2) for j = 1, . . . , d and k = 1, . . . , p. Note that by restricting

ηj = 1 one could obtain the adaptive lasso prior. Marginalization over the variance υj,k

leads to p(ϑj,k|ηj, λj,k) which corresponds to the density of a variance-gamma distribu-

tion.

The hyper-parameters ηj and λj,k determine the amount of shrinkage and should

be carefully calibrated. Unfortunately, a careful calibration of these parameters is non

trivial in high-dimensional parameters spaces. In order to avoid this calibration we
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impose a further level of hierarchy in the prior structure by assuming λj,k ∼ Ga(h1, h2)

and ηj ∼ Exp(h3), where (h1, h2, h3) is a fixed vector of prior hyper-parameters with

hl > 0 for l = 1, 2, 3.

Let ξNG = (ξ⊺,υ⊺,λ⊺,η⊺)⊺ be the vector of parameters ξ augmented with the adap-

tive normal-gamma prior. The joint distribution q(ξNG) can be factorised as:

q(ξNG) = q(ξ)q(υ,λ,η), q(υ,λ,η) =
d∏

j=1

q(ηj)

p∏
k=1

q(υj,k)q(λj,k). (2.10)

Proposition 2.5 provides the optimal variational densities for the adaptive normal-

gamma prior, and Proposition 2.6 shows the analytical form of the variational lower

bound in this case.

Proposition 2.5. The optimal variational densities for νj and βj are the same as in

Proposition 2.1. The distribution of q∗(ϑj) is a multivariate Gaussian as in Proposition

2.1 with covariance matrix Σq(ϑj) = (µq(ωj,j)

∑T
t=1 zt−1z

⊺
t−1 + Diag(µq(1/υ)))

−1. For the

scaling parameters we have that q∗(λj,k) ≡ Ga(aq(λj,k), bq(λj,k)) with aq(λj,k) = µq(ηj) + h1

and bq(λj,k) = µq(ηj)µq(υj,k)/2 + h2, and q
∗(υj,k) ≡ GIG(ζq(υj,k), aq(υj,k), bq(υj,k)) is a gener-

alized inverse-Gaussian distribution with ζq(υj,k) = µq(ηj) − 1/2, aq(υj,k) = µq(ηj)µq(λj,k)

and bq(υj,k) = µq(ϑ2
j,k)

. The optimal density for the parameter ηj is not a known distribu-

tion function. An analytical approximation of its moments is calculated via numerical

integration as in (A.15) in Appendix A.2.3.

Proof. See Appendix A.2.3.

Proposition 2.6. The variational lower bound for the multivariate regression model

with adaptive normal-gamma prior can be derived analytically and it is equal to:

log p(y; q) = const−
d∑

j=1

(
aq(νj) log bq(νj) − log Γ(aq(νj))

)
− 1

2

d∑
j=2

j−1∑
k=1

µq(β2
j,k)
/τ

+
1

2

d∑
j=2

log |Σq(βj)|+
1

2

d∑
j=1

log |Σq(ϑj)| −
d∑

j=1

p∑
k=1

h(ζq(υj,k), aq(υj,k), bq(υj,k))

−
d∑

j=1

p∑
k=1

(
aq(λj,k) log bq(λj,k) − log Γ(aq(λj,k))

)
+

d∑
j=1

log cηj

+
d∑

j=1

µq(ηj)

p∑
k=1

(
µq(λj,k)µq(υj,k) − µq(log λj,k) − µq(log υj,k)

)
,

(2.11)

where cηj is the normalizing constant of q∗(ηj) and const is a constant term depending

on prior parameters.
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Proof. See the proof A.13 in Appendix A.2.3.

Once the variational updates are available, the implementation of Algorithm 2.3 is

straightforward.

Algorithm 2.3: Mean-field variational Bayes for multivariate predictive regressions
with adaptive normal-gamma prior.

Initialize: q∗(ξNG), ∆ξNG
, ∆ELBO

while
(
∆̂ELBO > ∆ELBO

)
∨
(
∆̂ξNG

> ∆ξNG

)
do

Update (aq(ν1), bq(ν1)) and get q∗(ν1);
Update (µq(ϑ1),Σq(ϑ1)) and get q∗(ϑ1);

for j = 2, . . . , d do
Update (aq(νj), bq(νj)) and get q∗(νj)
Update (µq(βj)

,Σq(βj)) and get q∗(βj);
Update (µq(ϑj)

,Σq(ϑj)) and get q∗(ϑj);

end
for j = 1, . . . , d do

for k = 1, . . . , p do
Update (aq(υj,k), bq(υj,k)) and get q∗(υj,k);
Update (aq(λ2

j,k)
, bq(λ2

j,k)
) and get q∗(λ2j,k);

end
Update q∗(ηj) via numerical integration methods;

end
Compute log p (y; q) as in (2.11);

Compute ∆̂ELBO = log p (y; q)(iter) − log p (y; q)(iter−1);

Compute ∆̂ξNG
= q∗(ξNG)

(iter) − q∗(ξNG)
(iter−1) ;

end

Horseshoe prior

Finally we consider an horseshoe prior originally as proposed by Carvalho et al. (2009,

2010). This is based on the hierarchical specification ϑj,k|υ2j,k, γ2 ∼ N(0, γ2υ2j,k), and

γ ∼ C+(0, 1) and υj,k ∼ C+(0, 1), where C+(0, 1) denotes the standard half-Cauchy dis-

tribution with probability density function equal to f(x) = 2/{π(1+x2)}I(0,∞)(x). The

horseshoe is a global-local shrinkage prior (Polson and Scott, 2011; Bhattacharya et al.,

2016; Tang et al., 2018) that retrieves aggressive shrinkage of unimportant coefficients

without affecting the largest ones. We follow Wand et al. (2011) and utilise a scale

mixture representation of the half-Cauchy distribution as follows:

ϑj,k|υ2j,k, γ2 ∼ N(0, γ2υ2j,k), γ2|η ∼ IGa(1/2, 1/η), υ2j,k|λj,k ∼ IGa(1/2, 1/λj,k),

η ∼ IGa(1/2, 1), λj,k ∼ IGa(1/2, 1),
(2.12)
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where IGa(·, ·) denotes the inverse-gamma distribution, and the local and global shrink-

age are determined by υ2j,k and γ2 respectively. Let ξHS = (ξ⊺, (υ2)⊺, γ2,λ⊺, η)⊺ be the

vector of parameters ξ augmented with the horseshoe prior. The joint distribution ξHS

can be factorized as:

q(ξHS) = q(ξ)q(υ2, γ2,λ, η), q(υ2, γ2,λ, η) = q(γ2)q(η)
d∏

j=1

p∏
k=1

q(υ2j,k)q(λj,k).

(2.13)

Proposition 2.7 provides the optimal variational densities for the horseshoe prior.

Proposition 2.7. The optimal variational densities for νj and βj are the same as in

Proposition 2.1. The distribution family of q∗(ϑj) is a multivariate Gaussian as in

Proposition 2.1. Within this setting the optimal variance-covariance matrix is equal

to Σq(ϑj) = (µq(ωj,j)

∑T
t=1 zt−1z

⊺
t−1 + µq(1/γ2)Diag(µq(1/υ2)))

−1. For the global shrink-

age parameters we have that q∗(γ2) ≡ IGa(aq(γ2), bq(γ2)) with aq(γ2) = (dp + 1)/2 and

bq(γ2) = µq(1/η) +
1
2

∑d
j=1

∑p
k=1 µq(1/υ2

j,k)
µq(ϑ2

j,k)
, and q∗(η) ≡ IGa(1, bq(η)) where the opti-

mal parameter is bq(η) = 1 + µq(1/γ2). For the local shrinkage parameters we have that

q∗(υ2j,k) ≡ IGa(1, bq(υ2
j,k)

) where bq(υ2
j,k)

= µq(1/λj,k) + µq(ϑ2
j,k)
µq(1/γ2)/2, while, for λj,k, we

have q∗(λj,k) ≡ IGa(1, bq(λj,k)) with bq(λj,k) = 1 + µq(1/υ2
j,k)

.

Proof. See Appendix A.2.4.

In the following Proposition we show the variational lower bound computed under

the horseshoe prior.

Proposition 2.8. The variational lower bound for the multivariate regression model

with horseshoe prior can be derived analytically and it is equal to:

log p(y; q) = const−
d∑

j=1

(
aq(νj) log bq(νj) − log Γ(aq(νj))

)
− 1

2

d∑
j=2

j−1∑
k=1

µq(β2
j,k)
/τ

+
1

2

d∑
j=2

log |Σq(βj)|+
1

2

d∑
j=1

log |Σq(ϑj)| − aq(γ2) log bq(γ2) − log bq(η)

+ µq(1/γ2)

(
µq(1/η) +

d∑
j=1

p∑
k=1

µq(ϑ2
j,k)
µq(1/υ2

j,k)

)

+
d∑

j=1

p∑
k=1

(
µq(1/υ2

j,k)
µq(1/λj,k) − log bq(υ2

j,k)
− log bq(λj,k)

)
,

(2.14)

where const is a constant term depending on prior parameters.

Proof. See the proof A.19 in Appendix A.2.4.
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Algorithm 2.4 shows how to perform in practice approximate posterior inference with

this prior specification.

Algorithm 2.4: Mean-field variational Bayes for multivariate predictive regressions
with horseshoe prior.

Initialize: q∗(ξHS), ∆ξHS
, ∆ELBO

while
(
∆̂ELBO > ∆ELBO

)
∨
(
∆̂ξHS

> ∆ξHS

)
do

Update (aq(ν1), bq(ν1)) and get q∗(ν1);
Update (µq(ϑ1),Σq(ϑ1)) and get q∗(ϑ1);

for j = 2, . . . , d do
Update (aq(νj), bq(νj)) and get q∗(νj)
Update (µq(βj)

,Σq(βj)) and get q∗(βj);
Update (µq(ϑj)

,Σq(ϑj)) and get q∗(ϑj);

end
for j = 1, . . . , d do

for k = 1, . . . , p do
Update (aq(υj,k), bq(υj,k)) and get q∗(υj,k);
Update (aq(λ2

j,k)
, bq(λ2

j,k)
) and get q∗(λ2j,k);

end

end
Update (aq(γ2), bq(γ2)) and get q∗(γ2);
Update (aq(η), bq(η)) and get q∗(η);
Compute log p (y; q) as in (2.14);

Compute ∆̂ELBO = log p (y; q)(iter) − log p (y; q)(iter−1);

Compute ∆̂ξHS
= q∗(ξHS)

(iter) − q∗(ξHS)
(iter−1) ;

end

2.3.2 Inference on the precision matrix

Variational inference allows to obtain an approximating density for the regression pa-

rameters in Θ, for the Cholesky factor B, and therefore for L, and for the elements on

the diagonal of V. However, to obtain a complete inference on the parameters of the

original model in (2.1) we still need an approximating density for the precision matrix

Ω = L⊺VL.

Proposition 2.9 shows that, conditional on L and V, the distribution of Ω can be

approximated by a d-dimensional whishart distribution Wishartd(δ,H), where δ and H

are the degrees of freedom and the scaling matrix, respectively. The proof is based on

the Expectation Propagation (EP) variational procedure of Minka (2001), which has the

goal of minimizing the KL divergence between the true and unknown distribution p(Ω)

and the approximating density q(Ω). Notice that the order of the density p and the

approximating q is reversed in the divergence with respect to variational Bayes approach
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presented in Chapter 1. This leads to a different paradigm since the KL divergence is

not symmetric, i.e., KL(q||p) ̸= KL(p||q).
Proposition 2.9. The optimal approximate distribution q∗ of Ω is Wishartd(δ̂, Ĥ),

where the scaling matrix is given by Ĥ = δ̂−1Ep [Ω] and δ̂ can be obtained numerically

as the solution of a convex optimization problem.

Proof. The Kullback-Leibler divergence between p(Ω) and the approximating distribu-

tion q(Ω) is KL(p(Ω)∥q(Ω)) ∝ −Ep(log q(Ω)), where the expectation is taken with re-

spect to the distribution p(Ω). The optimal parameters are (δ̂, Ĥ) = argminδ,H ψ(δ,H),

where ψ(δ,H) = −Ep(log q(Ω)):

ψ(δ,H) ∝ dδ

2
log 2 +

δ

2
log |H|+ log Γd(δ/2)−

δ

2
Ep [log |Ω|] + 1

2
tr
{
H−1Ep [Ω]

}
. (2.15)

Notice that Ep [log |Ω|] = Eq(V ) [log |V|] =
∑d

j=1 µq(log νj) and Ep [Ω] = Eq(L),q(V ) [L
⊺VL]

are available as byproduct of the mean-field Variational Bayes algorithm. Differenti-

ating (2.15) with respect to the scaling matrix H, solving ∂ψ(δ,H)/∂H = 0 provides

Ĥδ = δ−1Ep [Ω] that depends on the degrees of freedom δ. Plugging-in the latter in

the objective function ψ(δ, Ĥδ) and proceeding with the minimization of the resulting

functional with respect to δ provides δ̂, which completes the proof.

In order to assess the goodness of the proposed approximation, we sample from

q(L) and q(V) and then obtain values from q(Ω) exploiting the modified Cholesky

decomposition. Table 2.1 compares the sampled distributions with the marginals of the

Wishart with parameters (δ̂, Ĥ) in terms of the approximation accuracy ACC(ω) (1.4)
presented in Section 2.1, where ω is a generic element of Ω. The assessment is made for

different cross-sectional dimensions d = 15, 30, 50, 100 and separately for the diagonal

(ωjj) and off-diagonal (ωjk) elements of Ω.

d = 15 d = 30 d = 50 d = 100

ωjj ωjk ωjj ωjk ωjj ωjk ωjj ωjk

Median 98.41 98.46 98.56 98.35 98.43 98.28 97.42 98.14
Min 97.66 97.13 97.60 96.69 96.76 94.80 94.47 90.66
Max 99.02 99.03 99.34 99.18 99.21 99.24 99.35 99.24

Table 2.1: Accuracy of the Wishart approximation.

The simulation results confirm that our variational Bayes method provides an accurate

approximation of the posterior distribution of Ω, even in a large-dimensional regression

setting.
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2.3.3 From shrinkage to sparsity

Shrinking rather than selecting is a defining feature of the hierarchical priors outlined

in the previous section, in addition to their computational tractability. However, the

posterior estimates are non-sparse, meaning one still needs to provide a clear-cut iden-

tification of significant predictors. This is key in our simulation and empirical analysis

since we ultimately want to assess the accuracy of our variational Bayes approach, versus

existing MCMC and LVB algorithms.

In this Chapter, we build upon Ray and Bhattacharya (2018) and implement a

Signal Adaptive Variable Selector (SAVS) algorithm to induce sparsity in the posterior

estimates of the regression matrix Θ, based on different shrinkage priors. The SAVS is a

post-processing algorithm which divides signals and nulls on the basis of the magnitude

of the regression coefficients estimates (see, e.g., Hauzenberger, Huber and Onorante,

2021). In particular, consider a regression parameter ϑj and the associated vector of

covariates zj, then if |ϑ̂j| ||zj||2 ≤ |ϑ̂j|−2 we set ϑ̂j = 0, where || · || denotes the euclidean
norm.

The reason why the SAVS may be attractive for large-scale regression models is

threefold. First, it is an automatic procedure in which the amount of sparsity imposed

uniquely depends on the accuracy of the posterior estimates. Second, the SAVS can be

implemented regardless the type of shrinkage prior. Third, it is decision theoretically

motivated as it grounds on the idea of minimizing the posterior expected loss (see, e.g.,

Huber, Koop and Onorante, 2021). Thus, the SAVS represents a convenient alternative

compared to post-estimation heuristics based on posterior confidence intervals.

2.3.4 Prediction

Consider the posterior distribution of p(ξ|z1:t) given the information set up to time t,

z1:t = {y1:t,x1:t}, and p(yt+1|zt, ξ) the likelihood for the new observation yt+1. The

predictive density then takes the familiar form,

p(yt+1|z1:t) =
∫
p(yt+1|zt, ξ)p(ξ|z1:t)dξ. (2.16)

Given an optimal variational density q∗(ξ) that approximates p(ξ|z1:t), we follow Gu-

nawan et al. (2021) and obtain the variational predictive distribution

q(yt+1|z1:t) =
∫
p(yt+1|zt, ξ)q∗(ξ)dξ =

∫ ∫
p(yt+1|zt,ϑ,Ω)q(ϑ)q(Ω)dϑ dΩ. (2.17)
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An analytical expression for the above integral is not available. A simulation-based

estimator for the variational predictive distribution q(yt+1|z1:t) can be obtained through

Monte Carlo integration by averaging the likelihood of the new observations p(yt+1|zt, ξ(i))
over the draws ξ(i) ∼ q∗(ξ), such that q̂(yt+1|z1:t) = N−1

∑N
i=1 p(yt+1|zt, ξ(i)). Note that

we can further simplify (2.17) by integrating Ω such that:

q(yt+1|z1:t) =
∫
h(yt+1|zt,ϑ)q(ϑ)dϑ, (2.18)

where h(yt+1|zt,ϑ) denotes the density function of a multivariate Student-t distribution

tv(m,S) with mean m = Θzt, scaling matrix S = (vĤ)−1, and v = δ̂− d+ 1 degrees of

freedom.

As a result, the predictive distribution can be approximated by averaging the den-

sity of the multivariate Student-t h(yt+1|zt,ϑ(i)) over the draws ϑ(i) ∼ q∗(ϑ), for

i = 1, . . . , N , such that q̂(yt+1|z1:t) = N−1
∑N

i=1 h(yt+1|zt,ϑ(i)). This allows for a more

efficient sampling from the predictive density since we only need to sample values of ϑ

from a Gaussian distribution. A further simplification is available up to a second-level

variational approximation which minimizes the Kullback-Leibler divergence between the

multivariate Student-t and a multivariate Gaussian distribution. The latter is discussed

in detail in Appendix A.3.

2.4 Simulation study

We now perform an extensive simulation study to compare the properties of our VB

approach against standard MCMC and LVB approaches. Consistent with the empirical

application, we set the length of the time series T = 360 and the cross-sectional di-

mension of the data generating process d = 30, 49. Additional results with d = 15 are

reported in Appendix A.4. We further assume either moderate (50% of true zeros) and

high level of sparsity (90% of true zeros).

Without loss of generality, the true matrix Θ is generated in the following way: we

fix to zero sd2 entries at random, where s = 0.5, 0.9, while the remaining non zero

coefficients are sampled from a mixture of two Gaussian distributions with means equal

to ±0.08, and standard deviation 0.1. Appendix A.4 provides additional details on the

simulation setting.

We compare each estimation method across N = 100 replications and for all different

prior specifications outlined in Section 2.3.1. Recall that while our approach is based

on the parametrization in (2.2a), both the competing MCMC and linearized variational
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(a) d = 30, moderate sparsity (b) d = 49, moderate sparsity

(c) d = 30, high sparsity (d) d = 49, high sparsity

Figure 2.2: Frobenius norm of Θ− Θ̂ for different hierarchical shrinkage priors and
different inference approaches.

Bayes approach are built upon the linearized system of equations implied by (2.2b).

As a result, the hierarchical shrinkage priors in our setting can be directly elicited on

the matrix Θ, whereas is imposed on the elements of A for both the MCMC and LVB

approach (see, e.g., Gefang et al., 2019; Cross et al., 2020; Chan and Yu, 2022).

As a measure of point estimation accuracy of the regression matrix Θ, we first look

at the Frobenius norm, denoted by ∥ · ∥F . This measure the difference between the

true matrix Θ, which is observed at each simulation, and the corresponding estimate

Θ̂. Figure 2.2 shows the box charts for the N = 100 replications. Depending on the

prior specification, we add to the labeling of each estimation method the extension N

for the normal prior, L for the Bayesian adaptive lasso, NG for the normal-gamma, and

HS for the horseshoe. For instance, with BL, LVBL and VBL we indicate the MCMC, the

linearized variational Bayes, and our VB approach, respectively, under the adaptive lasso

prior.

Beginning with the moderate sparsity case (i.e., 50% of zeros in Θ), the simulated

results show that the MCMC and LVB approaches tend to perform equally, condition-

ally on the hierarchical shrinkage prior. This holds for both d = 30 and d = 49,
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(a) d = 30, moderate sparsity (b) d = 49, moderate sparsity

(c) d = 30, high sparsity (d) d = 49, high sparsity

Figure 2.3: F1 score computed looking at the true non-null parameters in Θ and
the non-null parameters in the estimated matrix Θ̂, for different hierarchical shrinkage
priors and different inference approaches.

and is reassuring, considering both approaches are built upon the same Cholesky-based

parametrization. When sparsity is more pervasive (90% of zeros in Θ), there is some

discrepancy between the competing approaches; the LVB approach that tends to per-

form on par with MCMC only under the Bayesian adaptive lasso prior. Perhaps more

importantly, the simulation results show that, by eliciting shrinkage priors directly on

Θ rather than on A, the accuracy of the estimates significantly improves. As a matter

of fact, the frobenius norm obtained from our VB approach is lower compared to both

MCMC and LVB irrespective of the shrinkage prior specification and the level of sparsity

in the true regression matrix.

Figure 2.3 reports the F1-score across different estimation methods and for different

simulation scenarios. The F1-score quantifies the type I and type II errors in the identifi-

cation of the significant predictors. For each different prior specification and estimation

strategy, the sparsification of the posterior estimates Θ̂ is implemented by using the

SAVS algorithm proposed by Ray and Bhattacharya (2018) (see Section 2.3 for more

details).
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(a) d = 15, moderate sparsity (b) d = 30, moderate sparsity (c) d = 49, moderate sparsity

(d) d = 15, high sparsity (e) d = 30, high sparsity (f) d = 49, high sparsity

Figure 2.4: Boxplots of the computational time required by the algorithms MCMC

against the variational methods (VBL and VB) for different hierarchical shrinkage priors.
The time is expressed on the logarithmic scale.

Interestingly, under moderate levels of sparsity in the regression coefficients, shrink-

age priors provide estimates similar to the non-sparse priors for both the MCMC and

the LVB approach. This is likely due to the fact that by recovering Θ = L−1A from

the estimated Â leads to a dense Θ̂, and therefore a lower identification accuracy. This

is not the case for our variational Bayes approach which directly shrinks the regression

matrix Θ, and therefore result in a much more accurate identification of the significant

predictors. This result holds across different hierarchical shrinkage priors and for differ-

ent dimensions, i.e., for both d = 30 and d = 49. A set of additional results in Appendix

A.4 show that the higher accuracy of our framework is preserved in smaller-dimensional

settings (i.e., d = 15).

Another advantage of the variational methods is the computational time (see Figure

2.4). For example, in dimension d = 49, the VB algorithms with non-sparse, the adap-

tive lasso and horseshoe priors are 3.31 times faster than the MCMC counterpart. The

algorithms with the normal-gamma prior are quite slower than the others and this is

due to the fact that we have to sample from a complex generalized inverse Gaussian

distribution and moreover we also have a metropolis-Hastings step in the MCMC approach

which translates in a numerical integration in the VB algorithm.
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Performance under variables permutation. Based on the same simulation setting

described above, we now investigate the performance of all estimation methods under

variables permutation. Panel A of Figure 2.5 shows the box charts of the Frobenius

norms for the N = 100 replications for both moderate and high sparsity in the true Θ.

For the ease of exposition we only report the case with d = 30 predictors. The case

with d = 49 allows to draw qualitatively similar conclusions. We put in each figure the

simulation results pertaining the original vector yt and its reversed order yrev
t next to

each other. Colors and labels are consistent with the initial simulation study.

The accuracy of the estimates from both the MCMC and the linearized variational

Bayes approach is affected by the variable order. This is perhaps more evident for the

normal-gamma (BNG, LVBNG) and the Horseshoe (BHS, LVBHS) priors. The accuracy of

the posterior estimates once the ordering of the variables is reversed (labelled with the

supscript “rev”) is substantially higher, on average for both methods. The impact of

the variable order on the posterior estimates from both MCMC and LVB is stronger for a

highly sparse Θ (top-right panel). On the other hand, our VB method generates consis-

tent posterior estimates across scenarios: its estimation accuracy does not deteriorates

or improves depending on an arbitrarily chosen ordering of the target variables.

The bottom panels of Figure 2.5 compares the F1-score under variables permutation

across different estimation methods and hierarchical shrinkage priors. Interestingly,

when the regression matrix Θ is moderately sparse, the ordering of the target variables

has almost a negligible effect on the ability of MCMC or LVB to single out significant

predictors. Instead, the effect of ordering on the F1-score increases with the sparsity

of the regression coefficient matrix. For instance, when 90% of entries in Θ are zeros,

the identification of significant predictors obtained from MCMC and LVB is substantially

more accurate under the variables permutation versus the original ordering. This is more

visible for the normal-gamma and horseshoe priors. The F1-score confirms the results

of the Frobenius norm, meaning that the performance of our VB estimation method

is permutation-invariant irrespective on how sparse may be the matrix of regression

coefficients.

2.5 Industry returns predictability

We now investigate the statistical and economic value of our variational Bayes framework

within the context of industry returns predictability in the US. At the end of June of year

t each NYSE, AMEX, and NASDAQ stock is assigned to an industry portfolio based

on its four-digit SIC code at that time. Thus, the returns on a given value-weighted
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(a) Frobenius norm d = 30, moderate sparsity (b) Frobenius norm d = 30, high sparsity

(c) F1-score d = 30, moderate sparsity (d) F1-score d = 30, high sparsity

Figure 2.5: Top panels report the Frobenius norm of Θ − Θ̂ under variables per-
mutation for different hierarchical shrinkage priors and inference approaches. Bottom
panels report the F1-score computed looking at the true non-null parameters in Θ
and the non-null parameters in the estimated matrix Θ̂. The box charts show the
results for N = 100 replications, d = 30 and different levels of sparsity.

portfolio are computed from July of t to June of t + 1. We consider two alternative

industry aggregations: d = 30 industry portfolios from July 1926 to May 2020, and a

larger cross section of d = 49 industry portfolios from July 1969 to May 2020. The

difference of sample length is due to data availability. The sample periods cover major

macroeconomic events, from the great depression to the Covid-19 outbreak.

Each stock industry portfolio returns is regressed on lagged cross-industry portfolio

returns. In addition, we consider a variety of additional equity risk factors and macroe-

conomic variables as predictors. For instance, we include in the set of predictors the

return on the market portfolio in excess of the risk-free rate (mkt), and four alternative

long-short investment strategies based on market capitalization (smb), book-to-market

ratios (hml), operating profitability (rmw) and investment (cma), as proposed by Fama

and French (2015). The set of additional macroeconomic predictors is from Goyal and

Welch (2008); this includes the log of the aggregate price-dividend ratio (pd), the term
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spread (term) (difference between the long term yield on government bonds and the

T-bill), the credit spread (credit) (the BAA-AAA bond yields difference), the monthly

change in inflation (infl) measured as the log change in the CPI, the aggregate mar-

ket book-to-market ratio (bm), the net-equity issuing activity (ntis) and the long-term

corporate bond returns (corpr).

Similar to the simulation study, we add to the labeling of each estimation method the

extension N for the normal prior, L for the Bayesian adaptive lasso, NG for the normal-

gamma, and HS for the horseshoe. For instance, with BL, LVBL and VBL we indicate the

MCMC, the LVB, and our variational Bayes approach, respectively, under the adaptive

lasso prior.

2.5.1 In-sample estimates

Before discussing the out-of-sample forecasting performance, we first report the in-

sample posterior estimates of the matrix of regression coefficients Θ. Figure 2.6 shows

the estimates. For the sake of brevity we report the results for the d = 30 industry

case. The posterior estimates highlight three main results. First, the Θ̂ obtained from

the MCMC and the linearised variational Bayes tend to coincide. For instance, the bm

predictor positive and significant for both methods and across different priors. This is

reassuring since, in principle, the LVB and the MCMC estimation setting should converge

to similar posterior estimates (see, e.g., Gefang et al., 2019; Chan and Yu, 2022).

The second main result from Figure 2.6 is that for both the MCMC and the LVB

method there are visible differences in the posterior estimates across shrinkage priors.

For instance, the Θ̂ from the BNG method is arguably more sparse than the one obtained

from the horseshoe prior (BHS). Similarly, the regression parameters estimates are more

sparse under the LVBHS compared to the Bayesian adaptive lasso (LVBL). Perhaps more

interesting, the third main fact that emerges from Figure 2.6 is that under our variational

inference method the estimates of Θ are (1) more sparse compared to both MCMC and

LVB, and (2) are remarkably similar across different shinkrage priors.

Section A.5 in the supplementary Appendix shows that the same pattern emerges for

the 49 industry portfolios (see Figure A.5). The difference in the posterior estimates for

different priors are more marked for the standard MCMC and LVB methods, with the

normal gamma (horseshoe) producing more sparse estimates within the MCMC (LVB)

estimation setting. Furthermore, our variational Bayes produces rather stable estimates

across priors, yet more sparse compared to both competing estimation methods.
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(a) Θ from BL (b) Θ from LVBL (c) Θ from VBL

(d) Θ from BNG (e) Θ from LVBNG (f) Θ from VBNG

(g) Θ from BHS (h) Θ from LVBHS (i) Θ from VBHS

Figure 2.6: Posterior estimates of the regression coefficients Θ for different estima-
tion methods. We report the estimates for the d = 30 industry case obtained from the
Bayesian adaptive lasso (top panels), the adaptive normal gamma (middle panels),
and the horseshoe (bottom panels).
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2.5.2 Out-of-sample forecasting performance

For each industry, we follow Campbell and Thompson (2007); Goyal and Welch (2008)

and calculate the out-of-sample predictive R2 as

R2
i,oos = 1−

∑T
t0=2 (yit − ŷit (Ms))

2∑T
t0=2 (yit − yit)

2
,

where t0 is the date of the first prediction, yit is the naive forecast from the recursive

mean and ŷit (Ms) is the forecast for a given industry i = 1, . . . , d from a given shrinkage

prior specificationMs. We consider a 360 months rolling window period for the recursive

mean and the model estimation, so that for instance for the 30 industry portfolio the

out-of-sample forecasting period is from July 1957 to May 2020.

Table 2.2 reports a set of summary statistics for the cross section of industry-specific

R2
ooss. In each panel we compare the forecasts obtained from our VB estimation versus

a standard MCMC and LVB, for different shrinkage priors as outlined in Section 2.3. In

addition, the first four columns in each panel report the results obtained from univariate

models. The latter boil down to assume a diagonal covariance matrix Ω; that is, the

forecasts from the univariate models do not depend on any Cholesky parametrization

although ignore potential contemporaneous correlations across industry returns.

Panel A reports the results for the 49 industry classification. For each case we report

the mean and median R2
oos across industries as well as a set of percentiles and the min

and max values. In addition, we report the percentage of industry portfolios for which

a given model can generate positive out-of-sample R2. Consistent with conventional

wisdom, the normal priors tend to overfit in large-dimensional regression models (see,

e.g., Korobilis, 2013; Bhattacharya et al., 2015; Hahn and Carvalho, 2015; Griffin and

Brown, 2017). This translates in largely negative out-of-sample R2
oos.

Notably, the simple naive forecast based on the rolling mean represents a challenging

benchmark to beat for regularised forecasts as well. This is consistent with the existing

evidence in returns predictability, such as Campbell and Thompson (2007); Goyal and

Welch (2008); Pettenuzzo et al. (2014); Bianchi and McAlinn (2020), among others.

For instance, none of the univariate models or the multivariate forecasts obtained from

MCMC can generate a positive R2
oos. The univariate model with normal gamma prior

generates a -0.6% out-of-sample R2, whereas the BNG produces a still negative -1.48%

R2
oos under an MCMC estimation procedure.

The performance of the LVB method is dismal, with only 4% of the industry portfolio

returns that turn out to be predictable under the horseshoe prior. In addition, the

magnitude of the predictability is rather low, with the maximum R2
oos equal to 0.99%.
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On the other hand, the forecasting performance of our VB approach outperform both

competing approaches. For instance, more than 8% of the industry portfolios report a

R2
oos > 0, with a value as high as 3% for monthly returns. The cross section of the R2

oos

also provides evidence in favour of our VB method. For instance, the 97.5th percentile

of the R2
oos under the LVBL is -6% versus a 1.7% under our VB approach.

Panel B of Table 2.2 reports the performance for the 30 industry classification. The

median R2
oos is substantially higher across different methods. Athough slightly negative,

our VB produces higher R2
oos versus both the MCMC or LVB across all different shrinkage

priors. In fact, for about of a third of the 30 industries, the out-of-sample R2
oos from

the VB is positive and is as high as 1.9% monthly, which means it outperforms the naive

rolling mean forecast.

These results are key since they lie on the fact that unlike the MCMC and LVB ap-

proaches, our estimation procedure directly shrinkage the coefficients on the regression

matrix Θ rather than A = LΘ. In addition, we provide solid out-of-sample evidence to

the in-sample perspective of Cohen and Frazzini (2008) and Menzly and Ozbas (2010),

who find that economic links among certain individual firms and industries could pos-

sibly contribute to cross-industry return predictability.

Existing studies, such as Rapach et al. (2010), Henkel et al. (2011), Dangl and Halling

(2012), and Farmer et al. (2019) show that the predictability of aggregate stock market

returns is primarily concentrated in economic recessions, while it is largely absent during

economic expansions. In the next Section we investigate if the performance gap with

respect to the naive rolling window forecast decrease during recessions.

Returns predictability during recessions. We now delve further into the analysis

of the forecasting performance in recession periods. More precisely, we split the data

into recession and expansionary periods using the NBER dates of peaks and troughs.

This information is considered ex-post and is not used at any time in the estimation

of the predictive models. Then, we compute the corresponding R2
oos for the recession

periods only. Table 2.3 reports the results for the recession periods using the same

structure as in Table 2.2

The predictive ability of all prior specifications, including the normal prior, substan-

tially increases for both the cross section of 49 and 30 industry portfolios. Nevertheless,

our VB estimation approach generate the highest median R2
oos different shrinkage priors.

For instance, the median R2
oos for the VBL is 1.4% against a -17% (19%) obtained from

the BL (LVBL) approach. Similarly, the median R2
oos for the VBNG us 1.6% against a still

dismal -4% (-16%) obtained from the BNG (LVBNG) method.
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Instead, our VB approach delivers a positive median R2
oos irrespective of the shrinkage

prior specification. The performance gap is also clear when we look at the cross section

of industries. For instance, more than 50% of the industries have a positive R2
oos when

posterior estimates are based on our approach. This is compared to 11% of positive

R2
oos across industries, on average across priors, obtained from the MCMC and the LVB

method.

The differences in the forecasting performance during recessions narrows when con-

sidering the 30 industry classification. For instance, univariate models produce an out-

of-sample R2 which is now comparable to our VB approach. However, this result is

limited to the normal gamma shrinkage prior, whereas both the Bayesian adaptive lasso

and the horseshoe still under-perform their multivariate counterpart. Interestingly, the

MCMC BNG is also quite competitive compared to the VBNG approach.

The results shown in Table 2.3 suggest that the predictive ability of all prior specifi-

cations, including the non-sparse normal prior, substantially increases across industries

during recessions. Nevertheless, the more accurate estimate of the regression matrix Θ

obtained through our variational Bayes approach seems to pay off in terms of forecast-

ing accuracy compared to both MCMC and a benchmark linearised variational Bayes

method. Perhaps with the only exception of the normal gamma prior for the 30 industry

classification, the forecasting performance of our approach is higher for the cross section

of industry returns.

2.5.3 Economic significance

It is of paramount importance to evaluate the extent to which apparent gains in pre-

dictive accuracy translates into better investment performances. Following existing lit-

erature (see, e.g., Goyal and Welch, 2008; Rapach et al., 2010; Dangl and Halling, 2012

and Pettenuzzo et al., 2014), we consider a representative investor with power utility

(CRRA) preferences of the form, Ût,s = Ŵ 1−γ
t (Ms)/(1 − γ), and Ŵt(Ms), the wealth

generated by the competing model, s, at time, t.

Campbell and Viceira (2004) show that the optimal portfolio allocation based on the

conditional forecast can be expressed for the multi-asset case as wt = γ−1Σ−1
t|t−1[ŷt +

σ2
t|t−1/2], with ŷt the vector of returns forecast at time t, σ2

t|t−1 a vector containing the

diagonal elements of conditional covariance matrixΣt|t−1. Given the optimal weights, we

compute the realised returns. Following Fleming et al. (2001), we obtain the certainty

equivalent differential by subtracting the average utility of each alternative model s, ut,s

to the average utility of the historical average forecast, ut,HA. A positive value indicates
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that a representative investor is willing to pay a positive fee to access the investment

strategy implied by a given forecasting model.

Notice that this Chapter focuses on the estimation of the regression coefficients under

shrinkage priors, and thus modeling time-varying volatility is beyond our scope (see

Section 2.2). However, an input to the optimal weights wt is an estimate of the returns

covariance matrix. Consistent with the recursive nature of the forecasts, we consider

a simple estimate of Σt|t−1 based on the rolling window forecasting errors for each

predictive model. We also winsorize the weights for each of the industry to −1 ≤ wt ≤ 2

to prevent extreme short-sales and leverage positions. Finally, to make our results

directly comparable to other studies we assume a risk aversion γ = 5 (see, e.g., Johannes

et al., 2014).

Table 2.4 shows a set of descriptive statistics summarising the cross section of in-

dividual industry certainty equivalent returns expressed in annualised percentage. We

report both the individual industry allocation, based on the univariate version of the

weights wt, and the multi-asset case calculated as outline above. Panel A reports the

results for the 49 industry classification. For each case we report the mean and median

CER across industries as well as a set of percentiles and the min and max values. In

addition, we report the percentage of industry portfolios for which a given model can

generate positive out-of-sample CERs.

The economic significance confirms the evidence offered by the R2
oos. From a pure

economic standpoint, the forecast from a recursive mean are quite challenging to beat,

with the mean and median industry CER differentials that are essentially zero. Nev-

ertheless, more than a half of CERs obtained from our variational Bayes approach are

positive, compared to a 45%, on average across shrinkage priors, obtained from MCMC

and LVB methods. Perhaps more importantly, for both the adaptive Bayesian lasso, the

adaptive normal-gamma and the horseshoe, our variational Bayes estimation approach

produces multi-asset CER which is higher than both the MCMC and the LVB approach.

Economically, the results show that a representative investor with power utility is will-

ing to pay almost 1% annually to access the strategy based on our variational Bayes

estimation.

The results for the cross section of 30 industry portfolios reported in Panel B provide

similar evidence. The multi-asset CER obtained from our variational Bayes estimation

strategy compares favourably against both MCMC and LVB methods, on average across

shrinkage priors. In addition, the fraction of positive CERs in the cross section of indus-

try portfolios is higher under our approach, with a certainty equivalent return as high

as 0.76% annualised under the forecasts from the horseshoe prior (VBHS). This compares
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to a 0.59% and a 0.28% obtained from the LVBHS and BHS estimation, respectively.

2.6 Concluding remarks

We are interested in estimating a large-scale multivariate linear regression model and

propose a novel variational Bayes estimation algorithm based on a non-linear parametri-

sation of the regression parameters. This allows a fast and accurate identification of the

regression coefficients without leveraging on a standard Cholesky-based transformation

of the parameter space. Empirically, we show that our estimation approach substan-

tially outperforms, both statistically and economically, forecasts from state-of-the-art

estimation strategies, such as MCMC and linearized variational Bayes methods. This

holds across alternative hierarchical shrinkage priors.



Chapter 3

Smooth stochastic volatility

3.1 Introduction

Stochastic volatility (SV, hereafter) models are non-linear hidden Markov models for the

dynamic evolution of the conditional variance of an observed random variable (Bernardi

et al., 2020). Although the stochastic volatility models were developed in parallel with

the ARCH-type models (Engle, 1982; Bollerslev, 1986) they are less popular because

of their estimation complexity. Indeed, the latent volatilities enters the observation

equation in a non-linear way leading to a likelihood function that depends upon high

dimensional integrals. A variety of estimation procedures have been proposed to over-

come this difficulty, including the generalized method of moments (GMM) of Melino and

Turnbull (1990), the quasi maximum likelihood (QML) approach of Harvey et al. (1994)

and Ruiz (1994), the efficient method of moments (EMM) of Gallant et al. (1997), and

MCMC methods Jacquier et al. (2002) and Kim et al. (1998). In a comparative study

of estimation methods, Andersen and Sørensen (1996) showed that MCMC methods

are the most efficient estimation techniques for SV models. As concerns the Bayesian

paradigm, the analysis of stochastic volatility models has been first proposed by Jacquier

et al. (2002, 2004). They introduced a single move Gibbs sampler to simulate the log-

volatilities one at a time that results in high correlation and bad mixing of the chain. To

improve the simulation efficiency, Shephard and Pitt (1997, 2004) propose multi-mover

algorithms that leverages the Markovian structure of the model to sample the latent

volatilities in blocks. However, their solution to simulate the unknown states, based on

a proposal distribution obtained as a second order Taylor expansion of the target, be-

comes less and less efficient as the dimension of the blocks increases. More recently, and

Durbin and Koopman (2000) proposed an importance sampling algorithm that relies on

a linear and Gaussian approximation of the non-linear volatility model.

47
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The large amount of data available in financial markets and the need of continu-

ously updating the volatility forecasts as a new observation comes in, has motivated the

research on the topic of on-line filtering. In this direction, more recent estimation tech-

niques that joint updates the filtered unknown volatility states and the parameters of

the models, as the new information becomes available, have been proposed and named

particle filters, (see, e.g., Speekenbrink, 2016, for a systematic review). In their basic

and most popular form, particle filter algorithms approximate the sequence of filtering

distributions of the volatility process by a set of weighted particles conditional to the

parameters that should preventively estimated (see the seminal work of Gordon et al.

(1993) and the auxiliary particle filter of Pitt and Shephard (1999, 2001); Douc et al.

(2009)). Various extensions of the basic particle filter to the simulation from the fil-

tering distribution of the states and parameters have been proposed: the works of Liu

and West (2001) on the regularized particle filter and Storvik (2002) seems to be the

most innovative in this topic. Recently, Andrieu et al. (2010); Mendes et al. (2020)

have introduced a new generation of algorithms that make use of the particle filtering

techniques to build a good proposal for the posterior simulation of the volatility states

through Markov chain Monte Carlo methods.

Despite recent advances, estimating flexible stochastic volatility models using MCMC

methods remains computationally intensive. Variational approximations represent a

faster alternative approach to Bayesian inference. Recently Koop and Korobilis (2018)

and Gefang et al. (2019) adopted variational Bayes methods to estimate stochastic

volatility models. Despite the computational advantages, variational methods suffer

from a bounded approximation accuracy, as discussed in Chapter 1. The aforemen-

tioned works rely on local approximations, such as Taylor expansions. These have been

shown to perform well in the proximity of the expansion point, but their accuracy de-

creases rapidly as one moves further away. In contrast, Chan and Yu (2022) propose a

global approximation of the joint distribution of the (log-)volatility using a multivariate

Gaussian approximation. The authors show that their proposal enlarges the family of

local approximations and provides a smaller Kullback-Leibler divergence, and therefore

higher approximation accuracy.

In this Chapter, we propose a wider family of multivariate Gaussian approximations

that generalizes the approach of Chan and Yu (2022) by relaxing some assumptions on

the variance-covariance matrix. In particular, the authors does not jointly optimize the

mean vector and the variance-covariance matrix of the Gaussian approximation at each

variational update, while, for computational simplicity, they fix the latter to match the

inverse of the negative Hessian of the log-variational proposal evaluated at its mode.
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As pointed out in the reference paper, this might represent a sub-optimal solution. In

order to overcome this limitation, we allow the covariance matrix to vary as well, and

we tackle the arising computational complexity by leveraging the updating scheme of

Rohde and Wand (2016).

Form an empirical perspective, stochastic volatility models have been considered

in the financial-econometric literature because of their ability to capture some impor-

tant stylized facts frequently observed in financial data such as fat-tailed distributions,

the slow decay of the autocorrelation function, and the asymmetric response of the

volatility to the return shocks (see Ghysels et al., 1996; Shephard and Pitt, 1997, for a

review the main properties of the stochastic volatility models). The superior ability of

stochastic volatility models to capture stylized facts displayed by the data along with

the increasing computer power and the development of efficient estimation techniques

gave rise to many financial applications and model extensions of the basic stochastic

volatility model. Nowadays, univariate and multivariate stochastic volatility models are

effectively applied not only to volatility estimation and forecasting, but also for option

pricing, asset allocation and risk management.

A second contribution of this Chapter is motivated by an interesting application

is volatility-managed portfolio strategies within the empirical finance literature. No-

tice that the terms volatility-targeting and volatility-managing are used interchange-

ably throughout this Chapter as they carry the same meaning for our purposes. The

widespread evidence that volatility tends to cluster over time and negatively correlates

with realised returns have motivated the use of volatility targeting to dynamically ad-

just the notional exposure to a given portfolio. A conventional approach to volatility

targeting builds upon the idea that the capital exposure to a given portfolio is levered up

(scaled down) based on the inverse of the previous month’s realised variance. The the-

oretical foundation lies in the evolution of the risk-return trade-off over time (see, e.g.,

Moreira and Muir, 2017). However, volatility management based on realised variance es-

timates is associated with a dramatic increase in portfolio turnover and significant time-

varying leverage. This casts doubt on the usefulness of conventional volatility-managed

portfolios, especially for large institutional investors with high all-in implementation

costs (see, e.g., Patton and Weller, 2020). A simple approach towards cost mitigation

is to reduce liquidity demand by slowing down the time-series variation in the factor

leverage; this is often achieved by using less erratic estimates of risk, such as the realised

volatility instead of the realised variance, or by introducing leverage constraints in the

form of a capped notional exposure (see, e.g., Moreira and Muir, 2017; Cederburg et al.,

2020; Barroso and Detzel, 2021). While imposing leverage constraints may simplifies an
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empirical analysis, they do not regularise the often erratic monthly underlying volatility

estimates and are typically set arbitrarily, absent sounded economic arguments for their

optimal setup. We propose an alternative approach towards slowing down turnover in

volatility-managed portfolios which is based on smoothing the predictive density of an

otherwise standard stochastic volatility model. In fact, the portfolio turnover directly

depends on the measure of volatility estimate used. Our view is that by smoothing

monthly volatility forecasts, one can regularise trading turnover and therefore mitigate

the effect of transaction costs on volatility-managed portfolios. Such regularisation is

achieved in our variational Bayes framework by assuming a general formulation for the

mean vector of the Gaussian approximation. This allows for posterior estimates of the

latent process to be arbitrary smooth and provides an inference scheme which flexibly

encompasses different smoothness assumptions irrespective of the underlying persistence

of the latent state.

3.2 Modeling stochastic volatility

Let consider a standard univariate dynamic regression model with stochastic volatility

(Taylor, 1994). A general specification is based on a state-space representation of the

form:

yt = x⊺
tβ + exp(ht/2)εt, εt ∼ N(0, 1) (3.1)

ht = c+ ρ(ht−1 − c) + ut, ut ∼ N(0, η2), (3.2)

where yt, xt ∈ Rp, ht = log σ2
t are, respectively, the observed response variable, a

set of covariates, and the log-volatility of the residuals at time t, for t = 1, 2, . . . , n.

The error terms εt and ut are mutually independent Gaussian white noise processes.

The latent process in (3.2) is a conventional autoregressive process of order one, with

unconditional mean c, persistence ρ, and conditional variance η2. We assume the process

to be stationary |ρ| < 1, so that the initial state h0 can be sampled from the marginal

distribution, i.e., h0 ∼ N
(
c, η2

1−ρ2

)
. In what follows we are interested in work with

a vector form representation of (3.1)-(3.2). Let y = (y1, . . . , yn)
⊺ ∈ Rn and X =

(x1, . . . ,xn) ∈ Rp×n, then the state equation can be written as

y = X⊺β + ε, ε ∼ Nn(0,Diag{exp(h1/2)}) (3.3)

where h1 = (h1, . . . , hn) is the vector of latent log-volatilities excluding the initial state

h0, and Diag(a) is the operator that returns a diagonal matrix with diagonal elements
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equal to the vector a. To achieve a joint representation of the latent process (3.2), we

exploit the following remark.

Remark 3.1. The joint distribution of h = (h0, h1, . . . , hn) can be written using the

first-order Markov property p(h) = p(h0)p(h1|h0) . . . p(hn|hn−1). Then, following Rue

and Held (2005), the joint vector h admits a Gaussian Markov random field (GMRF)

representation of order one h ∼ Nn+1(cιn+1, η
2Q−1) with tridiagonal precision matrix

Q = Q(ρ) with diagonal elements q1,1 = qn+1,n+1 = 1 and qi,i = 1 + ρ2 for i = 2, . . . , n.

The off diagonal elements are qi,j = −ρ if |i − j| = 1 and 0 elsewhere. Moreover, the

inverse of Q, namely Σ = Q−1, has elements σi,j = ρ|i−j|/(1− ρ2).

To complete the Bayesian model specification we need to define a prior distribution

for the parameters that govern the dynamic of the state equation and autoregressive

process, i.e., ϑ = (β⊺, c, ρ, η2)⊺. In particular, we assume standard non-informative

priors. Let β ∼ Np(µβ,Σβ) and c ∼ N(µc, σ
2
c ) be Gaussian distributions, η2 ∼ IGa(A,B)

an inverse-gamma, and ρ ∼ U(−1, 1) a continuous uniform between -1 and 1.

3.2.1 Variational inference

In Chapter 1 we discuss different variational Bayes paradigms. In this work, we base

the inference on a semi-parametric approach which leverages on both the mean-field

factorization assumption and a Gaussian variational approximation. In the following,

we consider a factorization of the joint variational density of the latent log-variances h

and the parameters ϑ = (β, c, ρ, η2) of the form:

q(h,ϑ) = q(h)q(ϑ) = q(h)q(β)q(c)q(ρ)q(η2), (3.4)

where the variational distribution of the latent states q(h) is a joint distribution over

all times, which is introduced in order to preserve the dependence structure. The latter

is called global approximation. Recall the closed-form update in (1.7) to compute the

optimal variational density for a parameter under the mean-field approach. The follow-

ing Propositions provide q∗(β), q∗(c), q∗(ρ), and q∗(η2) and the corresponding proofs

are available in Appendix B.1.

Proposition 3.1. The optimal variational density for the regression parameter vector

is q(β) ≡ Np(µq(β),Σq(β)) where:

Σq(β) =
(
XH−1X⊺ +Σ−1

β

)−1
µq(β) = Σq(β)

(
XH−1y +Σ−1

β µβ

)
, (3.5)
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and H−1 = Diag
(
Eh

[
eh1
])

is a diagonal matrix with elements that depend on the optimal

density for the latent log-volatilities.

Proof. See proof B.1 in Appendix B.1.

Proposition 3.2. The optimal variational density for the unconditional mean of the

log-volatility process is q(c) ≡ N(µq(c), σ
2
q(c)) where:

σ2
q(c) = (µq(1/η2)ι

⊺
n+1µq(Q)ιn+1 + 1/σ2

c )
−1

µq(c) = σ2
q(c)(µq(1/η2)ι

⊺
n+1µq(Q)µq(h) + µc/σ

2
c ),

(3.6)

with

µq(Q) =



1 −µq(ρ) . . . 0 0

−µq(ρ) 1 + µq(ρ2) . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 + µq(ρ2) −µq(ρ)

0 0 . . . −µq(ρ) 1


.

Proof. See proof B.2 in Appendix B.1.

Proposition 3.3. The optimal variational density for the autoregressive parameter has

the following form:

log q(ρ) ∝ 1

2
log(1− ρ2)− 1

2
µq(1/η2)

(
ρ2

n−1∑
t=1

at − 2ρ
n−1∑
t=0

bt

)
, ρ ∈ (−1, 1) (3.7)

with

at = Eq

[
(ht − c)2

]
= (µq(ht) − µq(c))

2 + σ2
q(ht) + σ2

q(c)

bt = Eq [(ht − c)(ht+1 − c)] = (µq(ht) − µq(c))(µq(ht+1) − µq(c)) + σq(ht,ht+1) + σ2
q(c),

where σq(ht,ht+1) denotes the covariance between ht and ht+1 under the approximating

density q. Notice that log q(ρ) can be written as:

log q(ρ) ∝ 1

2
log(1− ρ2)− 1

2
µq(1/η2)

(
n−1∑
t=1

at

)(
ρ−

∑n−1
t=0 bt∑n−1
t=1 at

)2

, ρ ∈ (−1, 1) (3.8)

thus the normalizing constant and the first two moments can be found by Monte Carlo

methods by sampling from an univariate Gaussian distribution with mean
∑n−1

t=0 bt∑n−1
t=1 at

and

precision µq(1/η2)

(∑n−1
t=1 at

)
.

Proof. See proof B.3 in Appendix B.1.
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Proposition 3.4. The optimal variational density for the variance parameter is an

inverse-gamma distribution q(η2) ≡ IGa(Aq(η2), Bq(η2)), where:

Aq(η2) = A+
n+ 1

2

Bq(η2) = B +
1

2
(µq(h) − µq(c)ιn+1)

⊺µq(Q)(µq(h) − µq(c)ιn+1)

+
1

2

(
tr
{
Σq(h)µq(Q)

}
+ σ2

q(c)ι
⊺
n+1µq(Q)ιn+1

)
,

(3.9)

and recall that µq(1/η2) = Aq(η2)/Bq(η2).

Proof. See proof B.4 in Appendix B.1.

Once the optimal variational densities for the parameters in ϑ are analytically de-

rived, we focus on the approximating density for the latent process h, where the novelty

of our estimation procedure can be well understood when compared to the existing lit-

erature (see, e.g., Chan and Yu, 2022). We exploit the representation of h as GMRF

to obtain the approximating density q(h) as h ∼ Nn+1(µq(h),Ω
−1
q(h)) with mean vector

µq(h) = Wfq(h) and variance-covariance matrix Σq(h) = Ω−1
q(h), where Ωq(h) is a tridiag-

onal matrix. First of all, notice that the choice of µq(h) as a linear projection Wfq(h),

with fq(h) ∈ Rk the projection coefficients and W an (n + 1) × k deterministic ma-

trix, has a direct effect on the posterior estimates of log-volatility. In Section 3.2.2 we

discuss in details how different structures of W leads to different posterior estimates

irrespective of the underlying dynamics of the latent state. This is a key feature of our

estimation strategy, since it allows to customise the volatility estimates and forecasts

without changing the underlying model assumptions. As first approximation proposal,

we assume an homoschedastic GMRF specification defined as h ∼ Nn+1(Wf , τ 2Γ−1),

where µq(h) = Wf is the mean vector and Σq(h) = τ 2Γ−1 is the variance-covariance

matrix. More precisely, Γ = Γ(γ) is a tridiagonal precision matrix with diagonal ele-

ments Γ1,1 = Γn+1,n+1 = 1 and Γi,i = 1 + γ2 for i = 2, . . . , n, and off-diagonal elements

Γi,j = −γ if |i− j| = 1 and 0 elsewhere. Under this setting, the density function of the

approximate distribution is given by:

log ϕ(h|Wf , τ 2Γ−1) ∝ −n+ 1

2
log(τ 2)−n

2
log(1−γ2)− 1

2τ 2
(h−Wf)⊺Γ(h−Wf). (3.10)

Let ξ = (f , τ 2, γ) be the collection of the variational parameters. In order to find

the optimal values ξ̂, we have to maximize the variational lower bound (ELBO) ξ̂ =



54 Modeling stochastic volatility

argmaxξ ψ(f , τ
2, γ), where the ELBO is given by:

ψ(f , τ 2, γ) = Eq(log p(h,y))− Eq(log q(h))

∝ −1

2
ι⊺nW1f −

1

2
µ⊺

q(s)e
−W1f+

1
2
τ2ιn

− 1

2
µq(1/η2)(Wf − µq(c)ιn+1)

⊺µq(Q)(Wf − µq(c)ιn+1)

− 1

2
µq(1/η2)τ

2tr(Γ−1µq(Q))

+
n+ 1

2
log(τ 2) +

n

2
log(1− γ2), (3.11)

with µq(s) = (µq(s1), . . . , µq(sn))
⊺, µq(st) = (yt−x⊺

tµq(β))
2+tr

{
Σq(β)xtx

⊺
t

}
, andW1 ∈ Rn×k

denotes the matrix obtained by deleting the first row of W. The objective function

ψ(f , τ 2, γ) has gradient ∇ξ and Hessian Hξ available in closed form (see Appendix B.2

for a detailed computation) and an iterative Newton-type algorithm can be implemented

to fin the optimal variational parameters (f̂ , τ̂ 2, γ̂). Although the proposed approxima-

tion shows a satisfying accuracy within a simulated scenario, it does not represent the

optimal approximation choice because of the homoschedastic assumption. Therefore,

we relax the latter assumption and also provide a more general approximation which

allows for an heteroschedastic Gaussian Markov random field, i.e., Ωq(h) is still a tridi-

agonal matrix, but with generic elements [Ωq(h)]i,j. Similarly as before, the optimal

parameters ξ = (fq(h),Σq(h)) of the approximating density q (h) can be found by maxi-

mizing the variational lower bound. To solve the optimization, we leverage on the results

in Rohde and Wand (2016). The authors provide a closed-form updating scheme for

the variational parameters when the approximating density is a multivariate Gaussian.

Proposition 3.5 shows the details on the optimal updating scheme for the variational

density of the latent volatility states.

Proposition 3.5. Let h ∼ Nn+1(µq(h),Ω
−1
q(h)) be the proposed approximation, with mean

vector µq(h) = Wfq(h) and variance-covariance matrix Σq(h) = Ω−1
q(h), an iterative algo-

rithm can be set as:

Σnew
q(h) =

[
∇2

µq(h)µq(h)
S(µold

q(h),Σ
old
q(h))

]−1

, (3.12)

fnewq(h) = foldq(h) +W+Σnew
q(h)∇µq(h)

S(µold
q(h),Σ

old
q(h)), (3.13)

µnew
q(h) = Wfnewq(h) , (3.14)
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where W+ = (W⊺W)−1W⊺ is the left Moore–Penrose pseudo-inverse of W. The func-

tion S is S(µq(h),Σq(h)) = Eq(log p(h,y)):

S(µq(h),Σq(h)) = −1

2
[0, ι⊺n]µq(h) −

1

2
[0,µ⊺

q(s)]e
−µq(h)+

1
2
σ2

q(h) − 1

2
µq(1/η2)tr(Σq(h)µq(Q))

− 1

2
µq(1/η2)(µq(h) − µq(c)ιn+1)

⊺µq(Q)(µq(h) − µq(c)ιn+1), (3.15)

such that its first and second derivative are equal to:

∇µq(h)
S(µq(h),Σq(h)) = −1

2
[0, ι⊺n]

⊺ +
1

2
[0,µ⊺

q(s)]
⊺ ⊙ e−µq(h)+

1
2
diag(Σq(h))

− µq(1/η2)µq(Q)(µq(h) − µq(c)ιn+1), (3.16)

∇2
µq(h)µq(h)

S(µq(h),Σq(h)) = −1

2
Diag

[
[0,µ⊺

q(s)]
⊺ ⊙ e−µq(h)+

1
2
diag(Σq(h))

]
− µq(1/η2)µq(Q),

(3.17)

where ⊙ denotes the Hadamard product and diag(A) is the operator that returns the

diagonal elements in the matrix A.

Proof. See Appendix B.3.

The Gaussian variational approximation for h directly allows for a known distribution

function for the variances σ2 = (σ2
0, σ

2
1, . . . , σ

2
n).

Remark 3.2. Under the multivariate Gaussian approximation of q(h) with mean vector

µq(h) and covariance matrix Σq(h), the optimal density of the vector σ2 = exp{h},
namely q∗(σ2), is a multivariate log-normal distribution such that:

Eq[σ
2
t ] = exp{µq(ht) + 1/2σ2

q(ht)},

Varq[σ
2
t ] = exp{2µq(ht) + σ2

q(ht)}(exp{σ
2
q(ht)} − 1), (3.18)

Covq[σ
2
t , σ

2
t+1] = exp{µq(ht) + µq(ht+1) + 1/2(σ2

q(ht) + σ2
q(ht+1)

)}(exp{Covq[ht, ht+1]} − 1).

Our approach expands the global approximation method proposed by Chan and Yu

(2022) along three main dimensions. First, we relax the assumption that the initial

distribution q(h0) is independent on the trajectory of the latent state q(h1), that is,

we do not assume q(h) = q(h0)q(h1). Second, we do not make any assumption on the

Σq(h), which is not fixed conditional on µq(h), but is estimated jointly with µq(h). As

highlighted by Chan and Yu (2022), by enlarging the class of distributions the optimal

density is expected to be better approximation to q(h). Third, our latent volatility

state accommodates a more general AR(1) dynamics, instead of a random walk. While
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Algorithm 3.1: Variational Bayes for arbitrary smoothness in stochastic volatility.

Initialize: q∗(ϑ,h), W, ∆

while
(
∆̂ > ∆

)
do

Update q∗(h) as in Proposition 3.5;

Update q∗(c) = N(µq(c), σ
2
q(c)) as in (3.6) with

σ2
q(c) = (µq(1/η2)ι

⊺
n+1µq(Q)ιn+1 + 1/σ2

c )
−1,

µq(c) = σ2
q(c)(µq(1/η2)ι

⊺
n+1µq(Q)µq(h) + µc/σ

2
c ).

Update q(η2) = IGa(Aq(η2), Bq(η2)) as in (3.9) with
Aq(η2) = A+ n+1

2
, Bq(η2) = B + 1

2
(µq(h) − µq(c)ιn+1)

⊺µq(Q)(µq(h) − µq(c)ιn+1)

+1
2

(
tr
{
Σq(h)µq(Q)

}
+ σ2

q(c)ι
⊺
n+1µq(Q)ιn+1

)
.

Update q∗(ρ) as in (3.8);

Update q(β) = Np(µq(β),Σq(β)) as in (3.5) with

Σq(β) =
(
X⊺H−1X+Σ−1

β

)−1
, µq(β) = Σq(β)

(
X⊺H−1y +Σ−1

β µβ

)
.

Compute ∆̂ = q∗(ϑ,h)(iter) − q∗(ϑ,h)(iter−1) ;
end

the latter reduces the parameter space, it imposes a strong form of non-stationarity in

the log-volatility process. In Section 3.3, we show via a simulation study that all these

features have a significant effect on the accuracy of the variational Bayes approximation.

A pseudo-code for the implementation of the proposed iterative estimation procedure

is available in Algorithm 3.1, where the convergence is achieved when the variation in

the optimal densities update q∗(ϑ,h)(iter)− q∗(ϑ,h)(iter−1) is smaller than a threshold ∆.

3.2.2 Smoothing the volatility estimates

The choice of µq(h) as a linear projection Wfq(h), with fq(h) ∈ Rk being the projection

coefficients andW an (n+1)×k deterministic matrix, has a direct effect on the posterior

estimates of log-volatility. Figure 3.1 shows examples of the shape of µq(h) = Wfq(h) for

different choices of W (solid line), and the corresponding 95% HPD intervals implied

by Σq(h) (dashed line). The gray trajectory represents the true simulated value of the

log-stochastic volatility. The top-left panel reports the posterior estimates obtained by

setting W = In+1, with In+1 an identity matrix of dimension n + 1. This represents

a non-smooth estimate which is akin to the output of a standard MCMC estimation

scheme (see, e.g., Hosszejni and Kastner, 2021).

The remaining panels of Figure 3.1 highlight a key feature of our estimation strategy;

that is, it allows to customize the volatility forecasts without changing the underlying
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(a) Identity matrix (b) Daubechies wavelet basis matrix with l = 4

(c) Identity + Daubechies wavelet basis matrix (d) B-spline basis matrix with kn = 20 and dg = 3

Figure 3.1: Shape of the posterior log-volatility estimates for different W.

model assumptions. For instance, the top-right panel shows the posterior estimates of

the latent volatility state with W a matrix of Daubechies wavelet basis functions with

a fixed degree of smoothness l = 4.

The bottom panels in Figure 3.1 highlight the flexibility of our approach; the left

panel shows that more than one smoothing assumption can coexists in the same optimal

variational density. For instance, the shape of the posterior estimates assuming W =

In+1 for the first half of the sample and W a wavelet basis function with l = 4 for the

second half of the sample. The bottom-right panel shows that a variety of smoothing

functions can be adopted; for instance, the estimates of the latent stochastic volatility

can be smoothed based on W equal to a B-spline basis matrix representing the family

of piecewise polynomials with the pre-specified interior knots (kn), degree (dg), and

boundary knots.

Figure 3.2 depicts the form of W when B-spline and Daubechies wavelets are used.

The form of W in case of B-spline basis functions (top) and wavelet basis functions

(bottom). Right panels correspond to columns of the matrix W. The B-spline basis
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(a) Daubechies wavelet basis matrix (b) Daubechies wavelet basis functions

(c) B-spline basis matrix with kn = 20 and dg = 3 (d) B-spline basis functions

Figure 3.2: The structure of W in modeling smoothing volatility.

functions is a sequence of piecewise polynomial functions of a given degree, in this case

dg = 3. The locations of the pieces are determined by the knots, here we assume kn = 20

equally spaced knots. The functions that compose the Daubechies wavelet basis matrix

W are constructed over equally spaced grids on [0, n] of length R, where R is called

resolution and it is equal to 2l−1, where l defines the level, and as a result the degree of

smoothness. The number of functions at level l is then equal to R and they are defined

as dilatation and/or shift of a more general mother function. In our case the level is

l = 5 and therefore the resolution is R = 16.
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3.2.3 Prediction

Consider the posterior distribution of p(h,ϑ|y) given the information set available at

time t, y = {y1:t}, and p(hn+1|y,h,ϑ) the likelihood for the new latent state hn+1. The

predictive density then takes the familiar form:

p(hn+1|y) =
∫
p(hn+1|y,h,ϑ)p(h,ϑ|y) dhdϑ. (3.19)

Given a variational density q(h,ϑ) = q(h)q(ϑ) that approximates p(h,ϑ|y), we follow

Gunawan et al. (2021) and obtain the variational predictive distribution:

q(hn+1|y) =
∫
p(hn+1|y,h,ϑ)q(h)q(ϑ) dhdϑ

=

∫
p(hn+1|hn,ϑ)q(hn)q(ϑ) dhndϑ, (3.20)

where the second equality follows from Markov property. Recall that our object of

interest is the forecast of the variance σ2
t , rather than the log-volatility ht for t = n+1.

Since hn+1 = log σ2
n+1, the variational predictive density of the conditional variance is

readily available as

q
(
σ2
n+1|y

)
=
∂hn+1

∂σ2
n+1

q (hn+1|y)
∣∣∣
hn+1=log σ2

n+1

=
1

σ2
n+1

q (hn+1|y)
∣∣∣
hn+1=log σ2

n+1

. (3.21)

The integral in (3.20) cannot be solved analytically. However, it can be approximated

through Monte Carlo integration exploiting the fact that the optimal variational densi-

ties q∗(hn) and q
∗(ϑ) are known and we can efficiently sample from them. A simulation-

based approximated estimator for the variational predictive distribution of the condi-

tional variance q(σ2
n+1|y) is therefore obtained by averaging the density p(hn+1|h(i)n ,ϑ

(i))

over the draws h
(i)
n ∼ q∗(hn) and ϑ(i) ∼ q∗(ϑ), for i = 1, . . . , N , from the optimal

variational density, such that q̂(σ2
n+1|y) = (Nσ2

n+1)
−1
∑N

i=1 p(hn+1|h(i)n ,ϑ
(i)).

3.3 Simulation study and inference properties

We now perform an extensive simulation study to evaluate the properties of our estima-

tion framework in a controlled setting. We compare our variational Bayes (VB) method

against two state-of-the-art Bayesian approaches used within the context of stochastic

volatility models, such as MCMC (here we use the R-package stochvol of Hosszejni and

Kastner, 2021) and the global variational approximation recently introduced by Chan

and Yu (2022) (henceforth CY). Since neither of the benchmark approaches entertain the
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possibility of arbitrarily smooth predictive densities, the baseline comparison is based on

the assumption that W = In+1 and the underlying latent state follows an autoregressive

dynamics. This gives a cleaner comparison of the accuracy of our variational estimates

both in absolute terms and with respect to MCMC methods.

We compare each estimation method across N = 100 replications and for all different

specifications. We consider n = 600, consistent with the shortest time series in the

empirical application, c = 0, η2 = 0.1 and both low and high persistence ρ ∈ {0.70, 0.98}.
Recall that our estimation framework is agnostic on the structure of covariance of the

approximating density Σq(h). However, to better understand the contribution of such

generalisation compared to existing methods, we also consider the performance of the

homoschedastic approximation (henceforth VBH).

Figure 3.3 reports the estimation mean squared error, together with a measure of

global accuracy compared to the MCMC and computational running time. The mean

squared error is measured as MSE = n−1
∑n

t=1(ht − ĥt)
2, where ht and ĥ are the

simulated log-variance and its estimate, respectively. The average aggregated accuracy

(gACC) of variatonal Bayes with respect to the MCMC approach is calculated aggregating

over replicates and time the accuracy measure in (1.4). For the higher-persistence

scenario with ρ = 0.98 (top panels), the MCMC, CY, VB, and VBH provide statistically

equivalent performances. The best approximation to the MCMC is provided by our VB for

ρ = 0.98.

Interestingly, for the lower-persistent scenario with ρ = 0.70 (bottom panels), the

CY approach shows some difficulty in capturing the full extent of the dynamics of the

latent stochastic volatility process. This is also reflected in a generally lower accuracy in

approximating the true posterior density p(h|y) compared to the MCMC approach. The

lower accuracy of the CY approach for ρ = 0.7 is due to a more restrictive dynamics

of the latent states imposed by their estimation setting. The approximation proposed

by Chan and Yu (2022) is based on the computationally convenient assumption that

the latent volatility state is a random walk. As a result, it shows a substantially lower

accuracy when ρ≪ 1.

Although neither the CY nor the MCMC approach entertain the possibility of smooth

volatility forecasts, for a full comparison of the estimation accuracy of our VB method we

also evaluate the performance of two alternative smoothing approaches, with W either

a B-spline basis matrix with knots equally spaced every 10 time points (henceforth VBS),

or a Daubechies wavelet basis matrix with l = 5 (henceforth VBW). The choice of the

equally spaced knots in the basis function and the l for the wavelet basis matrix is

such that both approaches give a similar degree of smoothness. Notice that both these
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(a) MSE when ρ = 0.98 (b) gACC when ρ = 0.98 (c) Comp. time when ρ = 0.98

(d) MSE when ρ = 0.70 (e) gACC when ρ = 0.70 (f) Comp. time when ρ = 0.70

Figure 3.3: Latent volatility estimates: mean squared error (MSE), global accuracy
(gACC) and computational time across methods. We report the simulation results for
both ρ = 0.98 (top panels), and ρ = 0.7 (bottom panels).

modifications of W represent an arbitrary intervention on the approximating density

q (h). Compared to the baseline VB, the smooth approximations have a lower accuracy

in the estimate of the underlying AR(1) latent process. Interestingly, similar to CY the

global accuracy with respect to the MCMC deteriorates as the persistence of the latent

log-volatility process decreases.

The last column of Figure 3.3 shows that our variational Bayes is less computationally

expensive compared to both MCMC and CY methods. The gain in terms of computational

cost holds for both highly persistent latent stochastic volatility (top-right panel) and

lower-persistent volatility (bottom-right panel). More generally, our VB is almost an or-

der of magnitude faster than MCMC, on average. This intuitively represents an advantage

when implementing real-time predictions for a large set of equity strategies, as in our

main empirical application.

Figure 3.3 suggests that the accuracy of our variational Bayes estimation framework

deteriorates when smoothness on the latent state is imposed via the structure in W. We
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(a) ĉ when ρ = 0.98 (b) η̂2 when ρ = 0.98 (c) ρ̂ when ρ = 0.98

(d) ĉ when ρ = 0.70 (e) η̂2 when ρ = 0.70 (f) ρ̂ when ρ = 0.70

Figure 3.4: Estimates for the latent process parameters from different methods. We
report the simulation results for both ρ = 0.98 (top panels), and ρ = 0.7 (bottom
panels).

now investigate more in details why that is the case by looking at the posterior estimates

of the parameters of interest {c, η2, ρ} for difference specifications of W. Figure 3.4

shows that by imposing smoothness in the form of either B-spline or a Daubechies

wavelet basis forces the posterior estimates of ρ to be close to one, irrespective of the

actual level of persistence in the underlying latent process. Similarly, the estimates of

the latent state variance η2 are smaller for both VBS and VBW versus MCMC’s, and even

more so when ρ = 0.7. Figure 3.4 confirms the intuition that a lower accuracy of the

posterior estimates of the latent state is due to a tight regularization of the parameters

implied by smoothing. The effect on the conditional variance estimates is particularly

striking.

Beside the possibility of introducing smoothness in the estimates, our variational

Bayes approach relax the assumption that the initial distribution q(h0) is independent

on the trajectory of the latent state q(h1), that is, we do not assume q(h) = q(h0)q(h1).

Figure 3.5 shows that this generalisation has a non-negligible impact on the posterior
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(a) t ∈ (1, 10) when ρ = 0.98 (b) t ∈ (301, 310) when ρ = 0.98 (c) t ∈ (591, 600) when ρ = 0.98

(d) t ∈ (1, 10) when ρ = 0.70 (e) t ∈ (301, 310) when ρ = 0.70 (f) t ∈ (591, 600) when ρ = 0.70

Figure 3.5: Accuracy measure at each time. This figure depicts the accuracy of our
variational Bayes inference method against the global approximation method proposed
by Chan and Yu (2022). The top (bottom) panels report the accuracy when ρ = 0.98
(ρ = 0.7) in different periods in the timeline.

estimate of the latent state, especially at the beginning on the sample. This is shown

by comparing the accuracy (ACC) for different slices of observations. The top (bottom)

panels report the accuracy when ρ = 0.98 (ρ = 0.7). We report the estimation results for

t ∈ (1, 10) in the left panel, t ∈ (301, 310) in the middle panel, and t ∈ (591, 600) in the

right panel. The simulation results show that our variational Bayes approach maintains

an optimal performance over all the timeline. On the other hand, the accuracy of CY

drops at the beginning of the time series. This is due to the restrictive independence

assumption between the initial condition and the rest of the latent state trajectory

q(h) = q(h0)q(h1).
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3.4 Smoothing volatility targeting

We now investigate the statistical and economic value of our smooth volatility estimate

within the context of volatility targeting across a large set of equity strategies. We

first consider the nine equity factors examined by Moreira and Muir (2017). We collect

daily and monthly data on the excess returns on the market, and the daily and monthly

returns on the size, value, profitability and investment factors as originally proposed by

Fama and French (2015), in addition to the profitability and investment factors from

Hou et al. (2015) and the betting-against-beta factor from Frazzini and Pedersen (2014).

We augment the first group of test portfolios with a second group covering a broader

set of trading strategies based on established asset pricing factors. We start with the

list of 153 characteristic-managed portfolios, or factors, reported in Jensen et al. (2022).

We then restrict our analysis to value-weighted strategies that can be constructed using

the Center for Research in Security Prices (CRSP) monthly and daily stock files, the

Compustat Fundamental annual and quarterly files, and the Institutional Broker Esti-

mate (IBES) database. In addition, we exclude a handful of strategies for which there

are missing returns. This process identifies 149 value-weighted long-short portfolios for

which we collect both daily and monthly returns. For a more detailed description of the

portfolio construction we refer to Jensen et al. (2022). The combined sample consists of

158 equity trading strategies.

For a given equity trading strategy, let yt be the buy-and-hold excess portfolio re-

turn in month t. We follow Moreira and Muir (2017) and construct the corresponding

volatility-managed portfolio return yσt as

yσt =
c∗

σ̂2
t|t−1

yt, (3.22)

where c∗ is a constant chosen such that the unconditional variance of the managed yσt and

unmanaged yt portfolios coincide, and σ̂
2
t|t−1 is the variance forecast of unscaled portfolio

returns based on information available up to the previous month t − 1. The objective

of (3.22) is to adjust the capital invested in the original equity strategy based on the

inverse of the predicted variance. Effectively, a volatility-managed portfolio is targeting

a constant level of volatility, rather than a constant level of notional capital exposure.

As such, the dynamics investment position in the underlying portfolio c∗/σ̂2
t|t−1 is a

measure of (de)leverage required to invest in the volatility-portfolio in month t. Notice

that in the standard implementation in (3.23) the scaling parameter c∗ is not know by

an investor in real time as it requires to observe the full time series of the unscaled

returns yt and the volatility forecasts σ̂2
t|t−1.
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A benchmark approach to approximate the variance forecast at month t, σ̂2
t|t−1 is to

use the previous month’s realized variance (henceforth RV) calculated based on daily

portfolio returns (see, e.g., Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016;

Moreira and Muir, 2017; Cederburg et al., 2020; Barroso and Detzel, 2021),

σ̂2
t|t−1 =

22

Dt−1

Dt−1∑
j=1

y2j,t−1, (3.23)

where yj,t−1 be the excess returns on a given portfolio in day j = 1, . . . , Dt−1 for month

t − 1. In addition to the realised variance, we compare our smoothing volatility tar-

geting approach (SSV) against a variety of alternative rescaling approaches. The first

uses the expected variance from a simple AR(1) rather than realized variance (RV AR),

which helps to reduce the extremity of the weights. Second, we follow Barroso and Det-

zel (2021) and consider an alternative six-month window to estimate the longer-term

realised variance (RV6). Third, we consider both a long-memory model for volatility

forecast as proposed by Corsi (2009) (HAR), and a standard AR(1) latent stochastic

volatility model (SV) (see, e.g., Taylor, 1994). Finally, we consider a plain GARCH(1,1)

specification (Garch), which has been shown to be a challenging benchmark in volatility

forecasting (see, Hansen and Lunde, 2005). Notice that, for comparability with the

existing literature on volatility-managed portfolios, we assume a constant mean µ in the

observation equation (3.1), such that there are no covariates. Throughout the empirical

analysis we follow Cederburg et al. (2020) and consider both unconditional volatility

targeting, whereby c∗ is calibrated to match the unconditional volatility of the scaled

and unscaled portfolios, as well as real-time volatility targeting, whereby c∗t is calibrated

to match the volatility of the scaled and unscaled portfolios at each month t.

As mentioned in the introduction, volatility management based on realised variance

estimates is associated with a dramatic increase in portfolio turnover and significant

time-varying leverage. Figure 3.6 shows this case in point. The left panel shows the

volatility-managed portfolio allocation based on realised variance estimates for three

common portfolios; the market, and the size and momentum factors as originally pro-

posed by Fama and French (1996) and Jegadeesh and Titman (1993), respectively.

Simple volatility targeting leads to a tenfold notional exposure compared to the origi-

nal equity strategy. This excess leverage is pervasive across a broad set of 158 equity

trading strategies. For instance, the middle panel in Figure 3.6 shows that volatility

targeting based on realised variance leads to a leverage between 1.8 and 4 times for

more than 10%, and between 3 to 11 times for at least 1% of the original 158 equity

strategies. This makes volatility-managed strategies potentially both risky and costly
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(a) Realised variance targeting (b) Leverage distribution (c) Market volatility targeting

Figure 3.6: Volatility targeting and portfolio leverage. The left panel reports the
rescaling using RV over time for three common factor portfolios. The middle panel
reports the cross-sectional distribution of the mean, median, top 10% and top 1%
highest leverage weights across all 158 factor portfolios. Right panel shows the weights
over time implied by different volatility measures with different smoothness.

to implement, especially when volatility targeting is missed and/or forecasts are not

sufficiently accurate (see, e.g., Bongaerts et al., 2020).

3.4.1 A simple statistical appraisal

In this section we provide a statistical appraisal of the performance of our smooth-

ing volatility targeting approach compared to both conventional realised variance mea-

sures and benchmark volatility forecasts. This is based on the predictive density of

the volatility forecasts obtained for both the non-smooth SV and smooth SSV stochastic

volatility models. Recall that real-time volatility targeting for month t takes the form

ωt = c∗t/σ̂
2
t|t−1, t = 1, . . . , n. As a result, given the unmanaged factors yt and the re-

cursively calibrated coefficient c∗t , for each month we can define the distribution of the

volatility-managed returns based on the variational predictive density q(σ2
t |y) with y

collecting the strategy returns up to t− 1 (see Section 3.2.3 for more details).

Figure 3.7 shows this case in point. The top panels report the distribution of

the volatility-managed portfolio returns implied by the non-smooth SV (red area) and

smooth SSV (blue area) stochastic volatility models. For the sake of simplicity, we report

the volatility-managed returns on the market portfolio over two distinct months, namely

October 1995 and March 2009. The returns on the unmanaged portfolio and its scaled

version based on previous month’s realised variance are indicated as a white and green

circle, respectively. By comparing this distribution on a given month with the realised
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returns on a benchmark strategy for the same month, we can calculate P
(
yM1
t > yM0

t

)
.

Here yM0
t represents the returns on the benchmark volatility managing method, for e.g.,

RV, whereas yM1
t the returns on volatility targeting based on either a non-smooth or a

smooth stochastic volatility model.

The bottom panel of Figure 3.7 shows an example of the distribution of the returns

on a volatility-managed momentum portfolio. Note that the distribution of SSV and

SV can be highly time varying and the large negative performance of the unmanaged

momentum strategy in March-May 2009 coincides with the so-called momentum crashes

(see Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016; Bianchi et al., 2022).

Two interesting facts emerge. First, and perhaps not surprisingly, a non-smooth

stochastic volatility model tends to produce relatively similar volatility adjusted returns

with few exceptions. In this respect, a standard RV rescaling substantially overperform

(underperform) the unmanaged portfolio during periods of large negative (positive)

returns. Put it differently, standard volatility targeting helps to mitigate tail risk at the

expense of cutting upside opportunities. This is consistent with the abundant empirical

evidence that indeed, on average, RV targeting does not systematically outperforms

unmanaged portfolios. The second interesting fact pertains our smoothing volatility

targeting; the returns on the SSV are closer to the original equity strategy.

We now take to task the intuition highlighted in Figure 3.7 and compare our SSV

methodology against all of the competing volatility targeting methods, across all of the

158 equity strategies in our sample. Specifically, we calculate each month two indicator

dummies I+i,t, I
−
i,t for each of the t = 1, . . . , n and each of the i = 1, . . . ,m equity trading

strategies,

I+i,t =

{
1 if P

(
ySSVi,t > yM0

i,t

)
> 0.95

0 otherwise
I−i,t =

{
1 if P

(
ySSVi,t < yM0

i,t

)
> 0.95

0 otherwise

(3.24)

We can then calculate p+i = n−1
∑n

t=1 I
+
i,t and p

−
i = n−1

∑n
t=1 I

−
i,t, with n the sample of

observations, for each equity trading strategy. These indicate the frequency over the

full sample with which SSV over-performs M0, i.e., p
+
i , or SSV under-performs M0, i.e.,

p−i .

Figure 3.8 reports the difference between p+i and p−i for all 158 equity strategies.

This indicates the imbalance between out-performance and under-performance of our

ySSVi,t compared to a benchmark yM0
i,t . The left panel compares our SSV against the original

factor portfolios U and the volatility targeting based on the realised variance RV. The

comparison against the unscaled factors confirms the results of Cederburg et al. (2020);
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(a) MKT October 1995 (b) MKT March 2009

(c) Momentum factor over 2008/2009

Figure 3.7: Probabilistic assessment of volatility-managed returns. The plot re-
ports the distribution of the volatility-managed portfolio returns implied by the non-
smooth SV (red area) and smooth SSV (blue area) stochastic volatility models. The
RV-managed an the unmanaged returns are highlighted as green and white circles,
respectively.

there is no systematic out-performance of volatility targeting versus unmanaged equity

strategies over the sample under investigation. This is reflected in the fact that the

difference between p+i and p−i is centered around zero for the cross section of equity
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(a) ySSVt vs yUt , y
RV
t (b) ySSVt vs yRV6t , yRVARt (c) ySSVt vs yHARt , yGarcht

Figure 3.8: Smoothing vs alternative volatility targeting for the full sample. This
figure reports pi = p+i − p−i for the cross section of 158 equity trading strategy. The
left panel compares our SSV versus U and RV. The middle panel compares our SSV

against two alternative smoothing volatility forecasts used in the literature, i.e., RV6
and RV AR. The right panel compares out SSV against two popular volatility forecasting
methods, such as HAR and Garch.

strategies. The middle and right panel also confirms that, unconditionally over the full

sample, the performance of our SSV does not systematically dominate other competing

volatility targeting methods. For instance, the spread pi = p+i − p−i is as low as -0.1 and

as high as 0.05 when comparing SSV vs RV6. Similarly, pi ranges between -0.05 and 0.05

when comparing our SSV against the HAR or the Garch methods.

The results in Figure 3.8 show that the returns on volatility-managed portfolios are

statistically equivalent to unscaled factors, at least unconditionally. We now look at

a conditional aggregation of the indicators I+i,t and I−i,t. Specifically, we construct a

p+t = m−1
∑m

i=1 I
+
i,t and p−t = m−1

∑m
i=1 I

−
i,t, with m the number of equity strategies,

for month t = 1, . . . , n. Figure 3.9 reports the spread pt = p+t − p−t across the whole

sample of observations. The left panel compares the performance of SSV versus RV and

the unmanaged factors U. Two interesting facts emerge; first, for the most part of the

sample the performance of the SSV is subpar compared to the RV. This is primarily

concentrated in the expansionary periods, whereby volatility is low and the exposure to

the original unscaled portfolios is levered up (see, e.g., Figure 3.6).

Second, a smooth volatility targeting substantially improves upon RV during the

recession in the aftermath of the dot-com bubble and the great financial crisis of

2008/2009. Interestingly, most of the under-performance of SSV versus U is concen-

trated during the burst of the dot-com bubble. A possible explanation is that volatility-

targeting implies a deleveraging on the original factor, in period in which high volatility
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(a) ySSVt vs yUt , y
RV
t (b) ySSVt vs yRV6t , yRVARt (c) ySSVt vs yHARt , yGarcht

Figure 3.9: Smoothing vs alternative volatility targeting over time. This figure
reports the probability pt = p+t − p−t for the sample period. The left panel compares
our SSV versus U and RV. The middle panel compares our SSV against two alternative
smoothing volatility forecasts used in the literature, i.e., RV6 and RV AR. The right
panel compares out SSV against two popular volatility forecasting methods, such as
HAR and Garch.

did not necessarily correspond to large losses in the original equity factors. The middle

and right panel in Figure 3.9 shows that alternative volatility measures to RV share

a similar pattern compared to our SSV; that is, by smoothing volatility forecasts the

performance during major recessions improves at the expenses of a subpar performance

during economic expansions and/or lower-volatility periods.

3.4.2 Economic evaluation

Most prior studies assess the value of volatility targeting strategies by comparing the

Sharpe ratios obtained by scaled factors yσt as in (3.22), with the Sharpe ratios ob-

tained from the original factors yt (see, e.g., Barroso and Santa-Clara, 2015; Daniel and

Moskowitz, 2016; Moreira and Muir, 2017; Bianchi et al., 2022). Moreover, for each eq-

uity strategy and volatility-targeting methodology, we estimate the spanning regression

on both the scaled and unscaled returns,

yσt = α + βyt + ϵt. (3.25)

The economic implication of α > 0 is that volatility scaled portfolios may expand

the mean-variance frontier relative to the unscaled portfolios (see, e.g., Gibbons et al.,

1989). We test this assumption by comparing the certainty equivalent return (CER)

when factoring in moderate levels of notional transaction costs. Specifically, we compare
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two strategies: (i) a strategy that allocates between a given volatility-managed portfolio

and its corresponding original portfolio, and (ii) a strategy constrained to invest only

in the original portfolio. The baseline combination correspond to the optimal mean-

variance allocation assuming a risk aversion coefficient equal to five. Additional results

considering leverage constraints are available in Appendix B.4.

Results without transaction costs. Table 3.1 reports the annualised Sharpe ratio

(henceforth SR) and the Sortino ratio, for both unconditional and real-time volatility

targeting. For each performance measure, we report both the mean value and the 2.5th,

25th, 50th, 75th, and 97.5th percentiles across all the 158 equity trading strategies. Both

the original and the volatility-managed factors yield a positive annualised Sharpe ratio,

on average. The risk-adjusted performance is comparable across volatility estimates. For

instance, the annualised SR from the RV is 0.28 against 0.26 from SSV. The dispersion

of SRs across equity strategies is also quite comparable across methods. For instance,

the 97.5th percentile in the distribution of SRs is 0.69 for the SSV against 0.81 from a

six-month realised variance RV6.

To determine whether the SR from a given volatility-managed portfolio is statisti-

cally different from its unmanaged counterpart, we follow Cederburg et al. (2020) and

implement a block bootstrap approach as proposed by Jobson and Korkie (1981); Ledoit

and Wolf (2008). Table 3.1 reports the percentage, out of all 158 equity strategies, of SR

differences that are positive or negative, and are statistically significant at the 5% level.

The results in Table 3.1 confirms the existing evidence in the literature that volatility-

managed portfolios do not systematically outperform their original counterparts (see,

e.g., Barroso and Detzel, 2021). For instance, RV yields a significantly larger (smaller)

SR compared to unmanaged portfolios for 6% (2.5%) of the 158 equity trading strategies

considered.

The percentage of higher and significant SRs slightly improves when using our SSV

method versus both RV and all other competing volatility forecasts. Nevertheless, the

percentage of significant and positive SRs tend to be quite similar across different volatil-

ity targeting estimates. Table 3.1 also reveals that the gross performance across methods

is quite comparable when looking at the risk-adjusted returns with a focus on downside

risk only. For instance, the average Sortino ratio is 1.44, which is smaller than the 1.77

obtained from the RV, but economically fairly close. Again, the Sortino ratios are fairly

comparable across scaling methods.

Existing evidence on the performance of volatility-managed portfolios follows from a

spanning regression approach. The object of interest is the intercept α, that is a positive
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Table 3.1: Volatility-managed portfolios and original equity strategies.

This table compares the performance of volatility-managed and original portfolios (U) for the cross
section of 158 equity strategies. For a given factor, the volatility-managed factor return in month t is
based on a forecast of the conditional variance. For each volatility targeting method we report the mean
annualised Sharpe ratio and Sortino ratio, as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles
in the cross section of equity strategy. In addition, we report the fraction of volatility-managed portfolios
that generate a Sharpe ratio which is statistically different from the unscaled strategy (see, Ledoit and
Wolf, 2008), and is either positive or negative. The table reports both the performance measure with
the scale parameter c∗ calibrated over the full sample (unconditional targeting) or at each month t, c∗t
(real time targeting).

Unconditional targeting Real time targeting

U RV RV6 RV AR HAR Garch SV SSV U RV RV6 RV AR HAR Garch SV SSV

SR

Mean 0.24 0.28 0.29 0.29 0.27 0.26 0.26 0.26 0.24 0.27 0.28 0.28 0.27 0.26 0.26 0.26
Percentiles
2.5 -0.12 -0.20 -0.22 -0.19 -0.20 -0.21 -0.20 -0.20 -0.12 -0.22 -0.23 -0.20 -0.20 -0.22 -0.21 -0.19
25 0.08 0.07 0.06 0.07 0.07 0.03 0.03 0.06 0.08 0.07 0.06 0.08 0.06 0.03 0.02 0.07
50 0.22 0.26 0.27 0.27 0.26 0.25 0.30 0.23 0.22 0.25 0.26 0.26 0.27 0.26 0.28 0.22
75 0.37 0.48 0.48 0.49 0.45 0.43 0.44 0.43 0.37 0.45 0.48 0.46 0.45 0.44 0.43 0.41
97.5 0.63 0.79 0.81 0.80 0.73 0.78 0.79 0.69 0.63 0.75 0.77 0.76 0.74 0.77 0.76 0.68

p< 0.05 & SR> 0 6.33 7.59 7.59 8.23 8.86 7.59 10.13 5.06 6.96 7.59 8.23 8.86 8.23 11.39
p< 0.05 & SR< 0 2.53 0.00 1.27 1.90 6.33 5.06 5.06 2.53 0.63 1.27 1.27 4.43 5.70 3.80

Sortino

Mean 1.44 1.77 1.84 1.79 1.60 1.56 1.61 1.55 1.44 1.74 1.85 1.75 1.61 1.59 1.61 1.51
Percentiles
2.5 -0.79 -1.06 -1.27 -1.06 -1.20 -1.21 -1.19 -1.12 -0.79 -1.23 -1.39 -1.22 -1.22 -1.23 -1.26 -1.11
25 0.49 0.46 0.44 0.50 0.39 0.17 0.18 0.35 0.49 0.48 0.41 0.47 0.38 0.16 0.13 0.44
50 1.38 1.59 1.66 1.62 1.55 1.67 1.72 1.43 1.38 1.58 1.63 1.61 1.55 1.57 1.67 1.42
75 2.17 2.90 2.95 2.85 2.69 2.63 2.53 2.40 2.17 2.80 2.90 2.81 2.66 2.62 2.54 2.39
97.5 3.50 5.77 5.03 5.47 4.48 4.77 4.64 4.18 3.50 4.84 4.75 4.73 4.55 4.73 4.62 4.09

α implies that a combination of the original unmanaged factor and its volatility-managed

counterpart expands the mean-variance frontier compared to investing in the original

unscaled portfolio alone (see, e.g., Gibbons et al., 1989). The top panel in Table 3.2

reports the mean alpha (in %) across all the 158 equity strategies obtained from different

volatility target methods. Similar to the Sharpe ratios, we report the 2.5th, 25th, 50th,

75th, and 97.5th percentile of the alphas across all rescaled portfolios, in addition to the

mean value across equity strategies. Volatility targeting based on realised variance RV

achieves the highest average gross α (1.68%), on par with the six-month realised variance

RV6. This holds both for the unconditional and the real-time volatility implementation.

The fraction of positive and significant gross alphas, at a 5% level, is also higher for the

RV and RV6 methods.

Moreira and Muir (2017) link their spanning test results to appraisal ratios and util-

ity gains for investors. Both metrics can be red in the context of mean-variance portfolio

choice. The appraisal ratio for a given scaled strategy is AR = α̂/σ̂ε, where α̂ is the esti-

mated gross alpha from the spanning regression and σ̂ε the root mean squared error. The

squared of the appraisal ratio reflects the extent to which volatility management can be
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Table 3.2: Spanning regression results.

This table reports the results from a spanning regression of the form yσt = α + βyt + ϵt, with yσt the
returns on the volatility managed portfolio and yσt its unscaled counterpart. We report the estimated
alphas (α̂ in %), the appraisal ratio AR = α̂/σ̂ε and the difference in the certainty equivalent return
between and investor that can access both the volatility-managed and the original portfolio, and an
investor constrained to invest in the original portfolio only ∆CER. We also report the fraction of
volatility-managed alphas that are significant and either positive or negative. The table reports both
the performance measure with the scale parameter c∗ calibrated over the full sample (unconditional
targeting) or at each month t, c∗t (real time targeting).

Unconditional targeting Real-time targeting

RV RV6 RV AR HAR Garch SV SSV RV RV6 RV AR HAR Garch SV SSV

α(%)

Mean 1.68 1.68 1.49 0.93 1.20 1.17 0.74 1.78 1.84 1.50 0.98 1.39 0.49 0.34
Percentiles
2.5 -1.87 -1.77 -1.59 -1.77 -2.51 -2.33 -1.62 -2.93 -1.83 -2.52 -1.45 -2.19 -0.96 -0.97
25 -0.04 -0.10 0.03 -0.13 -0.34 -0.25 -0.32 -0.05 -0.15 0.02 -0.14 -0.29 -0.12 -0.19
50 1.11 1.04 0.92 0.66 0.66 0.69 0.32 1.04 0.99 0.88 0.55 0.60 0.28 0.15
75 2.23 2.23 1.91 1.30 1.80 1.61 1.08 1.98 1.90 1.56 1.26 1.27 0.60 0.56
97.5 7.06 8.03 6.53 5.39 6.49 6.21 3.63 10.78 10.48 9.08 6.38 8.57 2.40 2.12

p< 0.05 & α > 0 36.08 40.51 34.18 26.58 32.28 31.65 31.01 32.91 34.18 33.54 28.48 32.28 29.75 27.22
p< 0.05 & α < 0 1.90 2.53 1.90 2.53 8.86 5.70 6.96 1.90 2.53 3.16 2.53 8.23 7.59 9.49

AR

Mean 0.05 0.05 0.05 0.04 0.03 0.04 0.03 0.04 0.05 0.05 0.04 0.03 0.03 0.03
Percentiles
2.5 -0.06 -0.06 -0.06 -0.06 -0.09 -0.08 -0.09 -0.06 -0.06 -0.07 -0.06 -0.08 -0.08 -0.09
25 0.00 -0.01 0.00 -0.01 -0.02 -0.02 -0.02 0.00 0.00 0.00 -0.01 -0.02 -0.02 -0.02
50 0.04 0.05 0.05 0.04 0.03 0.04 0.03 0.04 0.05 0.04 0.04 0.04 0.04 0.03
75 0.09 0.09 0.09 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
97.5 0.19 0.19 0.20 0.18 0.18 0.17 0.16 0.16 0.18 0.17 0.19 0.18 0.17 0.16

∆CER(%)

Mean 17.91 18.78 16.37 9.30 13.77 12.55 9.10 14.52 16.77 12.49 6.77 11.99 3.77 4.03
Percentiles
2.5 -5.93 -4.56 -4.65 -3.82 -7.75 -6.83 -6.10 -23.07 -7.84 -10.55 -9.91 -10.98 -37.33 -34.61
25 0.06 0.52 0.35 0.00 -0.36 -0.03 -0.75 5.02 4.97 3.79 2.75 3.45 0.65 1.10
50 5.69 5.84 5.29 2.85 3.12 3.47 1.83 11.25 10.87 11.26 9.15 9.33 6.44 6.33
75 19.86 17.65 16.26 10.81 12.82 10.34 7.13 22.37 24.68 21.10 16.76 13.78 11.84 11.35
97.5 91.73 65.32 80.30 40.51 49.43 47.05 26.22 75.94 80.12 62.56 38.23 41.86 29.19 22.99

used to increase the slope of the mean-variance frontier (see, Gibbons et al., 1989). The

mid panel of Table 3.2 shows the results for both unconditional and real-time volatility

targeting. On average, the appraisal ratio from the RV is higher (0.05) compared to our

SSV (0.03). The cross-sectional distribution of the ARs is quite symmetric, as the mean

and median estimates tend to coincide.

Perhaps more interesting is the fact that the estimates of the α̂ from the spanning

regressions can be used to quantify the utility gain from volatility management. This is

achieved by comparing the certainty equivalent return (CER) for the investor who has

access to both the original and the volatility-managed factor against the investor who

is constrained to the original equity strategy only. We follow Cederburg et al. (2020);

Barroso and Detzel (2021) and define the difference in CER from the unmanaged and
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the scaled portfolios as

∆CER =
SR (z∗t )− SR (yt)

2γ
,

where SR (yt) is the Sharpe ratio of the unscaled portfolio and SR (z∗t ) is the Sharpe

ratio of the combined strategy zt = xσωt + x, with ωt = c∗/σ̂2
t|t−1. The ex post optimal

policy [xσ, x]
′ = 1

γ
Σ̂−1µ̂ allocates a static weight xσ to the volatility-managed portfolio

and a static x weight on the original factor, based on the sample covariance Σ̂ and the

sample mean µ̂ returns of the scaled and unscaled portfolios. This policy is equivalent to

dynamically adjust the exposure to the original factor portfolio according to zt, so that

the returns on the combined strategy can be obtained as z∗t = zt yt. The bottom panel

of Table 3.2 reports ∆CER(%) for the unconditional and real-time volatility targeting.

We follow Cederburg et al. (2020); Wang and Yan (2021) and consider a risk aver-

sion coefficient equal to γ = 5. The ∆CER confirms that volatility targeting based on

realised variance does indeed expands ex post the mean-variance frontier relative to the

other volatility targeting methods, when no transaction costs or cost-mitigation strate-

gies are considered. For instance, the ∆CER from the RV is 18% versus 9% obtained

from our SSV smoothing volatility forecast. Interestingly, a slightly smoother estimate

of realised volatility, i.e., RV6, produces a higher ∆CER(%), both unconditionally and

in real time.

Turnover and leverage. A standard volatility targeting strategy is built upon scal-

ing the original portfolio returns by c∗/σ̂2
t|t−1. The often erratic nature of σ̂2

t|t−1 based

on realised volatility implies that volatility-managed portfolios are associated with high

turnover and significant time-varying leverage ωt. This is likely to cast doubt on the ac-

tual usefulness of volatility targeting portfolios under common liquidity constraints (see

Moreira and Muir, 2017; Harvey et al., 2018; Bongaerts et al., 2020; Patton and Weller,

2020; Barroso and Detzel, 2021). Table 3.3 shows the amount of portfolio turnover for

different volatility targeting methods. The portfolio turnover is calculated as the av-

erage absolute change of the leverage weights |∆w| (see Moreira and Muir, 2017). We

report the mean turnover as well as the 2.5th, 25th, 50th, 75th, and 97.5th percentile

across the 158 equity strategies.

Clearly, our SSV method substantially reduces the portfolio turnover compared to

all other volatility forecasting methods. For instance, the turnover from the RV is 0.65

against a 0.05 from SSV, on average across equity strategies. Our SSV produces a lower

turnover not only on average, but for the full cross section of equity strategies. For

instance, the 2.5th (97.5th) percentile is 0.03 (0.06) for the SSV against a 0.51 (0.91) from
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Table 3.3: Portfolios turnover and leverage dispersion.

This table reports a set of descriptive statistics for the volatility-managed portfolio turnover and lever-
age. The portfolio turnover is calculated as the average absolute change in monthly volatility-managing
weights |∆w| (see Moreira and Muir, 2017). The leverage is calculated as ωt =

c∗

σ̂2
t|t−1

. The table reports

both the performance measure with the scale parameter c∗ calibrated over the full sample (uncondi-
tional targeting) or at each month t, c∗t (real time targeting).

Unconditional targeting Real time targeting

RV RV6 RV AR HAR Garch SV SSV RV RV6 RV AR HAR Garch SV SSV

Turnover

Mean 0.65 0.14 0.48 0.23 0.16 0.21 0.05 69.98 27.22 50.05 22.17 15.66 8.99 2.66
Percentiles
2.5 0.51 0.11 0.32 0.13 0.05 0.10 0.03 42.08 16.20 29.49 12.82 4.59 4.97 1.36
25 0.57 0.12 0.41 0.20 0.13 0.17 0.04 51.17 19.23 37.26 19.26 10.59 7.64 2.34
50 0.62 0.14 0.45 0.23 0.15 0.20 0.05 59.43 22.04 40.98 21.80 14.09 8.35 2.57
75 0.69 0.16 0.54 0.26 0.19 0.24 0.05 86.49 34.09 64.53 24.94 19.25 10.14 2.92
97.5 0.91 0.22 0.71 0.30 0.29 0.33 0.06 128.35 55.72 98.16 33.43 34.72 14.38 4.21

Average leverage

Mean 1.24 1.30 1.30 1.23 1.24 1.26 1.22 1.33 1.36 1.34 1.22 1.18 0.56 0.73
Percentiles
2.5 1.00 1.08 1.07 1.06 1.00 1.04 1.02 0.83 0.89 0.91 0.86 0.76 0.33 0.53
25 1.15 1.20 1.21 1.15 1.15 1.18 1.15 1.00 1.06 1.06 1.01 0.93 0.47 0.67
50 1.22 1.29 1.28 1.22 1.22 1.24 1.20 1.19 1.22 1.19 1.14 1.08 0.56 0.73
75 1.30 1.36 1.35 1.29 1.31 1.33 1.26 1.58 1.63 1.57 1.39 1.38 0.62 0.79
97.5 1.59 1.67 1.65 1.53 1.55 1.56 1.45 2.22 2.21 2.22 1.95 1.93 0.79 0.92

Leverage dispersion

Mean 1.09 0.92 0.79 0.51 0.72 0.72 0.43 1.21 1.00 0.85 0.48 0.70 0.32 0.27
Percentiles
2.5 0.71 0.55 0.41 0.29 0.33 0.27 0.22 0.64 0.49 0.38 0.28 0.26 0.13 0.14
25 0.92 0.76 0.62 0.44 0.56 0.56 0.36 0.82 0.68 0.58 0.40 0.48 0.24 0.23
50 1.02 0.87 0.74 0.50 0.66 0.64 0.41 0.97 0.80 0.66 0.46 0.58 0.30 0.26
75 1.22 1.04 0.94 0.55 0.87 0.85 0.49 1.62 1.18 1.10 0.55 0.86 0.37 0.32
97.5 1.71 1.39 1.34 0.80 1.38 1.28 0.70 2.47 2.03 1.82 0.82 1.46 0.61 0.40

RV. Perhaps not unexpectedly, the six-month realised variance implies a lower turnover

compared to RV. Nevertheless, our SSV stands out in terms of portfolio stability, both

within the context of unconditional or real-time volatility targeting.

The middle panel of Table 3.3 also reports the average leverage implied by volatility

targeting, i.e., ωt = c∗/σ̂2
t|t−1. The real-time implementation of the RV portfolio scaling

implies a leverage that is almost twice as large as the one implied by SSV volatility

targeting (0.73). Differences across volatility methods are lower for the unconditional

targeting. In addition, the bottom panel shows that our smoothing volatility forecasting

method significantly reduce liquidity demand, that is increases the stability of ωt over

time. For instance, the variability of leverage from SSV is half (0.43) compared to RV

(1.09). The leverage mitigation effect of SSV is even more clear when looking at the

real-time implementation; the standard deviation of wt is 0.27, on average across equity

strategies. This compares to 1.21, 1, and 0.85 from the RV, RV6 and RV AR, respectively.
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Results with transaction costs. Table 3.3 shows that alternative scaling methods,

such as HAR, Garch and RV AR indeed helps to stabilise volatility managing compared to

a standard RV. Yet, our smoothing volatility prediction SSV generates by the lowest and

most stable liquidity demand across all methods. For each equity factor we now consider

the costs of the leverage adjustment associated with volatility targeting. We follow

Moreira and Muir (2017); Wang and Yan (2021) and consider two alternative levels of

transaction costs of 14 basis points (bps) of the notional value traded to implement

volatility targeting (see, e.g., Frazzini et al., 2012) and a more conservative 50 basis

points (see, e.g., Wang and Yan, 2021).

Table 3.4 reports the net-of-costs performance statistics for the managed factors.

After 14 bps costs, the average SR for RV decreases from 0.23 to 0.17. With a more

conservative level of transaction costs, the average SR from RV turns to a negative -0.11

annualised. This is in stark contrast of what we obtain by smoothing the volatility

predictions; that is, our SSV generates a remarkable stable SR of 0.25 and 0.23 after 14

and 50 basis points of notional trading costs, respectively. Perhaps more importantly,

only 10% of volatility-managed portfolios produce a significantly lower SR compared

to the unmanaged counterpart even with conservative 50 bps of trading costs. This

is in contrast to RV, for which 79% of Sharpe ratios are significantly lower than the

unscaled portfolios. Furthermore, when we consider 50 basis points of transaction costs,

the Sortino ratio from SSV is 1.38 versus -0.69 from RV, 0.85 from RV6 and 0.98 from a

Garch model, respectively.

Table 3.5 reports the results for the spanning regression yσt = α + βyt + ϵt, with y
σ
t

the returns on the volatility managed portfolio net of transaction costs and yσt its the

original equity strategy. The top panels report the estimated alphas (α̂ in %). When

considering a conservative notional trading cost of 50 basis points, our SSV volatility

forecast generates a positive alpha of 0.46% annualised. This is against a large and

negative alpha from the RV, RV AR, HAR, and SV methods. Consistent with Barroso and

Detzel (2021), a longer-term six-month estimate of the realised variance RV6 improves

the volatility-managed alphas (0.12%). Perhaps more importantly, our SSV method

generates a significantly positive alpha for 21% of the equity strategies in our sample,

against, for instance, a 3%, 9%, and 14% of the strategies from the RV, RV6 and Garch

models, respectively.

The appraisal ratio AR reported in the middle panel of Table 3.5 confirms that SSV

substantially improves upon realised variance measures RV, especially when a conserva-

tive transaction cost is factored in. For instance, with 50 basis points of trading costs
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Table 3.4: Volatility-managed portfolios with transaction costs.

This table compares the performance of volatility-managed and original portfolios (U) for the cross
section of 158 equity strategies. For a given factor, the volatility-managed factor return in month t is
based on a forecast of the conditional variance. For each volatility targeting method we report the mean
annualised Sharpe ratio and Sortino ratio, as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles
in the cross section of equity strategy. In addition, we report the fraction of volatility-managed portfolios
that generate a Sharpe ratio which is statistically different from the unscaled strategy (see, Ledoit and
Wolf, 2008), and is either positive or negative. The table reports the results for two levels of transaction
costs, 14 and 50 basis points of the notional value traded to implement volatility targeting.

14 basis points 50 basis points

U RV RV6 RV AR HAR Garch SV SSV U RV RV6 RV AR HAR Garch SV SSV

SR

Mean 0.24 0.17 0.25 0.21 0.23 0.23 0.23 0.25 0.24 -0.11 0.14 0.01 0.13 0.16 0.14 0.23
Percentiles
2.5 -0.12 -0.32 -0.26 -0.28 -0.26 -0.23 -0.24 -0.20 -0.12 -0.65 -0.39 -0.52 -0.40 -0.31 -0.32 -0.22
25 0.08 -0.03 0.02 0.00 0.02 0.00 -0.01 0.05 0.08 -0.30 -0.09 -0.19 -0.08 -0.06 -0.09 0.03
50 0.22 0.16 0.23 0.20 0.21 0.23 0.26 0.23 0.22 -0.14 0.13 0.00 0.11 0.16 0.16 0.21
75 0.37 0.36 0.43 0.41 0.40 0.40 0.39 0.42 0.37 0.05 0.32 0.17 0.27 0.33 0.30 0.39
97.5 0.63 0.69 0.77 0.72 0.69 0.76 0.76 0.68 0.63 0.48 0.66 0.54 0.59 0.71 0.66 0.66

p< 0.05 & SR> 0 1.90 4.43 3.80 5.06 6.96 6.96 8.86 0.00 1.27 0.00 1.90 3.80 1.27 6.96
p< 0.05 & SR< 0 15.19 5.70 10.76 6.96 12.03 12.66 5.70 79.11 27.22 65.82 36.71 27.22 36.08 10.13

Sortino

Mean 1.44 1.08 1.52 1.30 1.35 1.40 1.40 1.50 1.44 -0.69 0.85 0.04 0.75 0.98 0.86 1.38
Percentiles
2.5 -0.79 -1.92 -1.55 -1.62 -1.52 -1.32 -1.43 -1.15 -0.79 -4.16 -2.29 -3.05 -2.33 -1.77 -1.91 -1.27
25 0.48 -0.21 0.13 -0.01 0.12 0.03 -0.05 0.32 0.48 -1.82 -0.58 -1.22 -0.50 -0.39 -0.53 0.21
50 1.36 0.91 1.40 1.15 1.27 1.48 1.52 1.37 1.36 -0.91 0.78 0.02 0.68 1.01 1.01 1.25
75 2.16 2.21 2.60 2.30 2.37 2.41 2.30 2.34 2.16 0.32 1.84 1.05 1.62 1.98 1.75 2.21
97.5 3.49 5.14 4.87 5.01 4.17 4.65 4.41 4.14 3.49 3.55 4.32 3.85 3.62 4.43 3.84 4.04

the SSV is the only method that can still generate a positive appraisal ratio. By compar-

ison, the RV, RV6, Garch and RV AR all generate significantly negative ARs. The bottom

panels report the difference in the certainty equivalent return between and investor that

can access both the volatility-managed and the original portfolio, and an investor con-

strained to invest in the original portfolio only. The utility gain ∆CER(%) is highly in

favour of our SSV volatility targeting. For instance, for 14 basis points of transaction

costs, the second-best performing strategy is the RV6 rescaling with a ∆CER of 9.56%,

annualised, against a 14.5% from our SSV.

3.5 Concluding remarks

In this Chapter we propose a parametric variational Bayes approach to approximate

the posterior distribution of a stochastic volatility process. The latter has two main

advantages with respect to state-of-the-art approaches. Firstly, it enlarges the family of

possible optimal densities, leading to higher approximation accuracy when compared to

recent variational Bayes algorithm. Second, it allows arbitrary smooth estimates of the
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Table 3.5: Spanning regression results with transaction costs.

This table reports the results from a spanning regression of the form yσt = α + βyt + ϵt, with yσt the
returns on the volatility managed portfolio and yσt its unscaled counterpart. We report the estimated
alphas (α̂ in %), the appraisal ratio AR = α̂/σ̂ε and the difference in the certainty equivalent return
between and investor that can access both the volatility-managed and the original portfolio, and an
investor constrained to invest in the original portfolio only ∆CER. We also report the fraction of
volatility-managed alphas that are significant and either positive or negative. The table reports the
results for two levels of transaction costs, 14 and 50 basis points of the notional value traded to
implement volatility targeting.

14 basis points 50 basis points

RV RV6 RV AR HAR Garch SV SSV RV RV6 RV AR HAR Garch SV SSV

α(%)

Mean 0.58 1.22 0.68 0.51 0.92 0.82 0.66 -2.23 0.12 -1.39 -0.47 0.23 -0.08 0.46
Percentiles
2.5 -3.00 -2.50 -2.59 -2.18 -2.73 -2.76 -1.71 -6.30 -3.88 -5.42 -3.11 -3.49 -3.92 -1.92
25 -1.02 -0.46 -0.69 -0.49 -0.62 -0.62 -0.40 -3.65 -1.37 -2.52 -1.42 -1.34 -1.44 -0.62
50 0.13 0.76 0.18 0.26 0.41 0.34 0.25 -2.61 -0.27 -1.71 -0.73 -0.29 -0.46 0.06
75 1.17 1.67 1.04 0.87 1.47 1.25 1.01 -1.66 0.65 -0.92 -0.01 0.86 0.46 0.83
97.5 5.62 6.74 5.39 4.92 6.04 5.66 3.53 2.39 5.16 2.58 3.91 5.01 4.29 3.30

p< 0.05 & α > 0 11.39 26.58 13.92 15.19 28.48 20.25 28.48 3.16 8.86 4.43 6.33 14.56 8.23 21.52
p< 0.05 & α < 0 14.56 7.59 12.03 9.49 13.92 13.29 10.13 70.89 23.42 60.13 37.34 23.42 32.28 15.82

AR (%)

Mean 0.60 3.21 1.22 1.49 2.19 1.80 2.50 -10.23 -1.29 -8.30 -4.31 -1.01 -2.70 1.04
Percentiles
2.5 -10.51 -8.26 -10.20 -8.60 -9.76 -9.67 -9.72 -25.05 -14.14 -21.95 -16.84 -13.79 -15.14 -11.17
25 -4.24 -1.76 -3.90 -3.39 -2.79 -3.54 -2.75 -15.13 -6.40 -13.33 -8.92 -6.53 -9.02 -4.55
50 0.43 2.85 1.01 1.83 1.83 2.06 2.17 -10.33 -0.99 -8.44 -4.89 -1.88 -2.76 0.52
75 4.82 6.97 5.03 4.70 6.97 6.15 7.55 -5.78 2.82 -4.16 -0.05 4.34 2.27 6.09
97.5 16.35 16.31 16.92 15.75 17.21 16.08 15.43 8.14 12.20 9.53 12.18 13.48 12.50 14.43

∆CER(%)

Mean 2.85 9.56 9.05 9.10 6.35 3.57 14.50 -14.50 -0.31 -9.70 -2.26 0.65 -3.75 9.47
Percentiles
2.5 -17.02 -7.83 -9.22 -6.10 -9.77 -9.42 -6.53 -49.06 -18.03 -31.85 -15.63 -20.97 -21.88 -8.28
25 -3.33 -0.79 -1.94 -1.56 -1.47 -1.68 -0.95 -22.35 -5.21 -15.50 -7.62 -6.03 -7.31 -2.21
50 0.04 3.14 0.07 0.92 1.64 1.13 1.24 -8.72 -0.62 -6.79 -3.25 -0.54 -1.90 0.14
75 5.28 12.63 7.40 4.99 10.24 7.00 6.10 0.45 1.51 -0.91 -0.01 4.30 1.04 4.52
97.5 43.98 59.18 59.85 29.98 46.04 34.18 25.00 19.55 34.38 20.69 21.91 38.48 18.34 22.41

latent process. This is done by forcing the approximation to have a specific form of the

mean vector.

Beside methodological results, we highlight the importance of the proposed algorithm

in practice. Prior studies found that volatility-managed portfolios that increase leverage

when volatility is low produce statistically equivalent economic value compared to the

original unscaled factors. We show that such equivalence is primarily due to the extreme

leverage implied by volatility targeting. Indeed, volatility-managed portfolios based

on standard realised variance tend to have extremely levered exposure to the original

factors; such exposure is highly time varying. When factoring in moderate levels of

notional transaction costs the benefit of volatility-managing disappears.

The variational Bayes inference with possible smoothness regularises turnover and

mitigates the effect of transaction costs on volatility-managed portfolios. Using a large
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set of 158 equity strategies, we provide evidence that our smoothing volatility targeting

approach has economic value when conservative levels of transaction costs are con-

sidered. This has important implications for both the risk-adjusted returns and the

mean-variance efficiency of volatility-managed portfolios.





Chapter 4

Dynamic sparsity in time-varying

parameter regressions

4.1 Introduction

Dynamic linear models are widely used tools in statistical analysis for time series data,

since they are highly interpretable and useful for forecasting purposes. However, due to

the increasing number of observations (n) and the availability of large set of variables

(p), two main problems arise. As a first fact, the assumption of constant parameters

on large time windows is unrealistic and yields to poor out-of-sample predictions. In

this direction, many authors (see, e.g., Cogley and Sargent, 2001; Primiceri, 2005; West

and Harrison, 2006) highlight the importance of consider a time-varying effect of the

covariates in the model specification, moving the attention to state-space models. The

second issue concerns the possible over-fitting when dealing with large set of predictors.

The latter causes unreliable forecasts and complicates the interpretation of the results.

For this reason, estimates’ regularization and variable selection techniques are essential

to perform accurate inference and automatically separate the true signal from noise,

therefore basing the entire analysis on a reduced subset of relevant covariates (Varian,

2014). In the Bayesian literature, shrinkage priors (Park and Casella, 2008; Griffin

and Brown, 2010; Carvalho et al., 2010) and variable selection methods (Ročková and

George, 2014, 2018) are usually considered to push towards zero unimportant coefficients

and select the best set of relevant ones. These methods have the effect to control the bias-

variance trade off usually leading to improved prediction performances and to provide

the best subset of variables on which the practitioners can base their analysis.

A recent stream of literature in Bayesian statistics, considered the combination of

time-varying regressions and variable selection approaches. Belmonte et al. (2014) and

Bitto and Frühwirth-Schnatter (2019) consider a continuous shrinkage prior to force

81
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some regression coefficients to be very close to zero for the whole time series. The main

limitation of this approach is the assumption that variable’s importance is fixed over

time, while it is often reasonable to assume that the subset of relevant predictors can

change over time. For example, in economics, we can expect that variables have differ-

ent impact according to the business cycle. In this direction, Kalli and Griffin (2014)

proposed a normal-gamma autoregressive process to dynamically shrink towards zero

unimportant coefficients. The latter approach falls into the class of dynamic shrinkage

processes studied in Kowal et al. (2019). Other methods aim to perform model selection

rather than shrinkage. Koop and Korobilis (2012), for example, leverage the dynamic

model averaging (DMA) method of Raftery et al. (2010) to dynamically select a suit-

able model by choosing at each time the best among the all 2p possible. It is immediate

to see that for moderate p (for example p > 10) this approach may be computation-

ally infeasible. More recently, Ročková and McAlinn (2021) and Koop and Korobilis

(2020) proposed a dynamic variable selection method that leverages the spike-and-slab

type prior of Mitchell and Beauchamp (1988); George and McCulloch (1997); Ishwaran

and Rao (2005). In the first aforementioned paper, the authors present the dynamic

spike-and-slab process (DSS) and assume a smooth and deterministic trajectory for the

dynamic of coefficients’ inclusion probabilities, given the past history of the process.

In their approach the degree of sparseness is governed by a fixed marginal importance

weight which controls for the overall balance between the spike and the slab components

of the mixture prior. Instead, Koop and Korobilis (2020) propose a variational Bayes

approach for dynamic variable selection (VBDVS), thereby undertaking the problem of

variable selection using a similar mixture prior specification while assuming stochastic

and independent a-priori inclusion probabilities. Although these methods are intriguing,

their main issue lies in the fact that they require a sensible hyper-parameters tuning. In

fact, small changes in such parameters produces completely different variables’ subset

selection.

In this Chapter, we extend the Bernoulli-Gaussian model, previously considered by

Ormerod et al. (2017) for the linear regression model, to deal with dynamic variable

selection. The model specification considers a stochastic process that governs the evolu-

tion of the time-varying regression coefficients and possibly for the conditional variance,

to account for heteroskedasticity. To increase the flexibility of the model, we further

assume an autoregressive process for the a-priori inclusion probability. Unlike existing

methods, an important feature of the Bernoulli-Gaussian specification is that it only

requires minimal hyperparameter tuning. The inference is carried out within a varia-

tional Bayes paradigm which exploits a non-parametric mean-field approach as well as
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two parametric approximations. Leveraging on the theory developed by Ormerod et al.

(2017), we further provide a similar results for the time-varying framework here intro-

duced. Specifically, we ensure that the model performs an effective variable selection,

therefore achieving sparse estimates. Then, we show that under certain conditions it is

possible to reduce the set of covariates directly in real time, while the algorithm is run-

ning, leading to a fast procedure able to efficiently deal with large set of variables. The

latter results are achieved by inspecting the behavior of the variational updates. As con-

cern the results, we show through and extensive simulation study that our method has

excellent performances in separating the true signal from the noise when compared with

state-of-the art approaches, while gaining in computational efficiency. We also highlight

the main differences that emerge when estimating the underlying model through varia-

tional Bayes versus the benchmark true posterior as approximated by MCMC methods.

Finally, we show the effectiveness of our model in providing reliable predictions within

a real data application in inflation forecasting.

4.2 Model specification and inference

The Bernoulli-Gaussian specification presented within a variational Bayes framework

by Ormerod et al. (2017) for a static liner regression model represents an interesting

approach to variable selection. The time-varying parameter regression model with dy-

namic variable selection can be seen as a generalization of the aforementioned model

specification, and reads as follows:

yt = x⊺
t β̃t + εt, εt ∼ N(0, σ2

t ), t = 1, . . . , n, (4.1)

where yt is the response, xt ∈ Rp is a set of covariates associated to the sparse time-

varying parameter β̃t ∈ Rp. The latter is defined as a product of two components

β̃t = Γtβt, where Γt is a diagonal matrix of indicator variables with non-zero entries

γj,t ∈ {0, 1} and βt is the regression coefficient at time t, and σ2
t > 0 is the unknown

time dependent variance of the residuals. The dynamic variable selection comes from

the fact that each coefficient βj,t ∈ βt, for j = 1, . . . , p, can be either included or

not in the model depending on the value of the diagonal elements γj,t ∈ {0, 1}. The

idea behind this model specification is to introduce a stochastic process for both the

time evolution of the coefficients and the dynamics of the sparsity over time. Indeed,

the assumption of a persistent stochastic process for the inclusion probabilities, i.e.,

P(γj,t = 1), represents the main novelty with respect to state-of-the-art techniques. In

fact, the latter either assumes independence over time (see Koop and Korobilis, 2020)
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or defines a deterministic evolution of P(γj,t = 1), given the information up to t − 1

(as in Ročková and McAlinn, 2021). To account for a time dependence structure, we

assume a random walk specification for the dynamic of βj,t, i.e.,

βj,t = βj,t−1 + vj,t, vj,t ∼ N(0, η2j ), j = 1, . . . , p, (4.2)

and βj,0 ∼ N(0, k0η
2
j ) defines the initial state. Notice that the latter formulation is equiv-

alent to consider a Gaussian Markov random field (GMRF) for the joint distribution βj

as stated in the following Remark 4.1.

Remark 4.1. The joint distribution of βj = (βj,0, βj,1, . . . , βj,n)
⊺ can be written lever-

aging the first-order Markov property p(βj) = p(βj,0)p(βj,1|βj,0) . . . p(βj,n|βj,n−1), for

j = 1, . . . , p. Then, following Rue and Held (2005), the joint vector β admits a Gaus-

sian Markov random field (GMRF) representation of order one βj ∼ Nn+1(0, η
2
jQ

−1)

with tridiagonal precision matrix Q with diagonal elements q1,1 = 1+1/k0, qn+1,n+1 = 1,

and ql,l = 2 for l = 2, . . . , n. The off diagonal elements are ql,m = −1 if |l −m| = 1 and

0 elsewhere.

The same dynamic applies to the logarithm of the variance ht = log σ2
t to account

for possible heteroskedastic nature of the data h ∼ Nn+1(0, ν
2Q−1). The homoskedastic

alternative can be obtained by setting σ2 ∼ IGa(Aσ, Bσ). In what follows we detail how

we specify the stochastic process that governs the dynamic sparsity of the regression

parameters. Specifically, the indicator variables γj,t are assumed to be independent

Bernoulli γj,t|ωj,t ∼ Bern(pj,t) given the auxiliary parameters ωj,t, where ωj,t = logit(pj,t),

for j = 1, . . . , p. Then, we assume a GMRF specification for the joint vector ωj =

(ωj,0, ωj,1, . . . , ωj,n)
⊺ ∼ Nn+1(0, ξ

2
jQ

−1). Under this setting, the marginal distribution for

the vector γj = (γj,1, . . . , γj,n)
⊺ is retrieved by integrating out ωj, as follows:

p(γj,1, . . . , γj,n) =

∫
p(ωj)

n∏
t=1

p(γj,t|ωj,t) dωj, (4.3)

and it has correlated components.

To complete the Bayesian model specification, we place inverse-gamma priors for the

variances parameters ν2 ∼ IGa(Aν , Bν), η
2
j ∼ IGa(Aη, Bη), and ξ

2
j ∼ IGa(Aξ, Bξ), which

represents a common choice in Bayesian analysis.

Approximate Bayesian inference for the parameters of the time-varying Bernoulli-

Gaussian model is carried out by the implementation of a semi-parametric variational

Bayes algorithm (see, e.g., Wand, 2014). Let ϑ = (h⊺,β⊺,γ⊺,ω⊺, ν2,η2⊺, ξ2⊺)⊺ be the

collection of latent variables and model’s parameters. Recall that the aim of variational
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Bayes (VB) is to find the distribution q(ϑ) ∈ Q that better approximates the posterior

p(ϑ|y) in terms of Kullback-Leibler (Kullback and Leibler, 1951) divergence measure.

The choice of the family of distributions over which the optimization problem has to

be solved, namely Q, is particularly important, and different choices lead to different

approaches. In this Chapter, we consider two main assumptions on Q. First, we propose

a convenient mean–field factorisation for the joint variational density. Second, for some

components we impose a parametric approximation. The key ingredient for getting the

optimal variational densities is the joint distribution of the data, the latent processes,

and the parameters p(y,ϑ) which can be factorized as follows:

p(y,ϑ) = p(y|ϑ)p(h)p(ν2)
p∏

j=1

p(βj|η2j )p(γj|ωj)p(ωj|ξ2j )p(η2j )p(ξ2j ), (4.4)

where p(γj|ωj) =
∏n

t=1 p(γj,t|ωj,t) also factorizes over time. Observe that the full con-

ditional distribution of ωj, i.e., p(ωj|rest), is not recognized as a know distribution and

therefore it complicates the computations. Following Polson et al. (2013), we exploit

the Polya-Gamma representation of γj,t:

p(γj,t|ωj,t) =

∫ +∞

0

p(γj,t|zj,t, ωj,t)p(zj,t|ωj,t) dzj,t, (4.5)

where p(zj,t) is the probability density function of a Polya-Gamma PG(1, 0) random

variable. Leveraging the stochastic representation in (4.5), the augmented version of

(4.4) has the advantage of being more tractable. As concerns the first assumption on

the variational family Q, i.e., the mean–field factorisation, we propose:

q(ϑ) = q(h)q(ν2)

p∏
j=1

q(βj)q(ωj)q(η
2
j )q(ξ

2
j )

n∏
t=1

q(γj,t)q(zj,t), (4.6)

where a joint distribution for h, βj, and ωj is required in order to preserve the time

dependence and to provide a global approximation for the vector of latent states. The

following propositions present the main optimal variational densities, namely q∗(βj) and

q∗(γj,t). The proofs and the analytical derivation of the remaining optimal densities, are

available in Appendix C.1.

Proposition 4.1. The optimal variational density for the regression parameters is a

multivariate Gaussian q∗(βj) ≡ Nn+1(µq(βj)
,Σq(βj)), where:

Σq(βj) = (Dj
2 + µq(1/η2j )

Q)−1, µq(βj)
= Σq(βj)Djµq(ε−j)

, (4.7)
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where Dj and D2
j are diagonal matrices with elements [Dj]t = µq(1/σ2

t )
µq(γj,t)xj,t and

[Dj]
2
t = µq(1/σ2

t )
µq(γj,t)x

2
j,t, respectively. Moreover, µq(ε−j)

is the vector of partial residuals

with elements µq(ε−j,t) = yt −
∑p

k=1,k ̸=j xk,tµq(γk,t)µq(βk,t).

Proof. See proof C.3 in Appendix C.1.

Proposition 4.2. The optimal variational density for the parameters γj,t is a Bernoulli

random variable q∗(γj,t) ≡ Bern(expit(ωq(γj,t))), where expit(·) is the inverse of the logit

function and ωq(γj,t) = µq(ωj,t) − 1
2
µq(1/σ2

t )
(x2j,tEq[β

2
j,t]− 2µq(βj,t)xj,tµq(ε−j,t)).

Proof. See proof C.4 in Appendix C.1.

Beside the mean–field factorisation assumption, we also implement two parametric

approximations. The first one imposes a multivariate Gaussian distribution with vari-

ational parameters (µq(h),Σq(h)) on q(h). Proposition C.1 in Appendix C.1 provides

details on how to find the optimum couple (µ̂q(h), Σ̂q(h)). The second parametric ap-

proximation concerns the optimal density of the indicator variables γj,t, and it has a

practical motivation. In fact, as proved in Proposition 4.2, the optimal variational den-

sity q(γj) =
∏n

t=1 q(γj,t) is such that each component q(γj,t) is Bern(expit(ωq(γj,t))) and

therefore the whole trajectory over time of the posterior inclusion probabilities can be

obtained as the mean vector Eq(γj) = expit(ωq(γj)). We notice that the latter may

not provide a smooth pattern since it is completely data driven, and therefore the vari-

ability of the data can cause undesired peaks as shown in Figure 4.1(a). This aspect

also impacts on the estimates of the regression coefficient. To this aim, we consider a

parametric approximation to force the posterior estimates to follow a smooth trajectory.

In particular, we approximate the sequence of densities {q(γj,t)}nt=1 with the closest se-

quence {q̃(γj,t)}nt=1 in terms of Kullback-Leibler (KL) divergence, such that {q̃(γj,t)}nt=1

leads to smooth sequence of posterior inclusion probabilities, which coincides with their

expected values. The following Proposition explains this procedure.

Proposition 4.3. A smooth estimate for the trajectory of the inclusion probabilities can

be achieved assuming q̃(γj) =
∏n

t=1 q̃(γj,t) such that q̃(γj,t) is Bern(πj,t) with constrained

mean logit(πj,t) = w⊺
t f . Therefore, Eq̃(γj) = πj and logit(πj) = Wf , where W is a n×k

B-spline basis matrix. The optimal value of f is the solution of f̂ = argmaxf∈Rk ψ(f)

where ψ(f) =
∑n

t=1

[
(ωq(γj,t) −w⊺

t f)expit(w
⊺
t f) + log(1 + exp(w⊺

t f))
]
.

Proof. See proof C.5 in Appendix C.1.

The implementation of the parametric approximation presented above, leads to better

estimates for the regression coefficients and the corresponding inclusion probabilities,

and, as a consequence, provides more interpretable results (see Figure 4.1(b)).



Dynamic sparsity in time-varying parameter regressions 87

(a) Non-smooth estimates of µq(β) and (µq(γ1), . . . , µq(γn))

(b) Smooth estimates of µq(β) and (µq(γ1), . . . , µq(γn))

Figure 4.1: Smoothing procedure using parametric variational Bayes.

We presented the derivation of q(βj) and q(γj,t) separately, but we remind that our

main interest is to provide a distribution for the product-parameter β̃j = Γjβj. The

optimal density is provided in Proposition 4.4.

Proposition 4.4. Let q∗(βj) and q
∗(γj,t) be the optimal variational densities presented

in Propositions 4.1 and 4.2 (or its smoothed alternative). Define β̃j = Γjβj, where the

matrix Γj = Diag(1, γj,1, . . . , γj,n) is diagonal. The optimal variational density of β̃j is

given by a mixture of multivariate Gaussian distributions:

q∗(β̃j) =
∑
s∈S

ws Nn+1(Dsµq(βj)
,D1/2

s Σq(βj)D
1/2
s ), (4.8)

where S = {sequences of {0, 1}of length n} with cardinality |S| = 2n, the diagonal ma-

trix Ds = Diag(1, s1, . . . , sn), and mixing weights:

ws =
n∏

t=1

µst
q(γj,t)

(1− µq(γj,t))
1−st , (4.9)
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where s = (s1, . . . , st, . . . , sn) ∈ S is an element in S. Moreover, the mean and variance

can be computed analytically:

µq(β̃j)
= µq(Γj)

µq(βj)
, (4.10)

Σq(β̃j)
= (µq(γj)

µ⊺
q(γj)

+Wµq(γj)
)⊙Σq(βj) +Wµq(γj)

⊙ µq(βj)
µ⊺

q(βj)
, (4.11)

where Wµq(γj)
is a diagonal matrix with elements (1, {µq(γj,t)(1− µq(γj,t))}nt=1).

Proof. See proof C.6 in Appendix C.1.

4.3 Properties of the algorithm

In this Section we present some theoretical results and properties of the proposed al-

gorithm. In particular, we focus on the behavior of variational densities’ updates from

one iteration to the next as the inclusion probabilities tend to zero. Specifically, in

Proposition 4.5 we extend the main result of Ormerod et al. (2017) to the dynamic

variable selection with time-varying coefficients scenario here considered. Some of the

definitions and lemmas useful to understand the following propositions, together with

the corresponding proofs are postponed to Appendix C.2, for the sake of clarity.

Proposition 4.5. Assume that the maximum over time of the inclusion probabilities, for

a given variable j, at the i-th iteration of the algorithm is such that maxt∈{1,...,n} µ
(i)
q(γj,t)

=

ϵ, and ϵ≪ 1 is small enough. Moreover, let Σ
(i)
q(ωj)

−Σ
(i−1)
q(ωj)

be a positive matrix, which

is Σ
(i)
q(ωj)

−Σ
(i−1)
q(ωj)

≥ 0, then:

1. µ
(i+1)
q(γj,t)

= expit
{
µ
(i+1)
q(ωj,t)

− 1
2
µ
(i+1)

q(1/σ2
t )
x2j,tµ

−1(i+1)

q(1/η2j )
qt,t +O(ϵ)

}
, qt,t = [Q−1]t,t ≥ 0;

2. µ
(i+1)
q(ωj,t)

= −1/2
∑n

k=1 st,k +O(ϵ), st,k = [Σq(ωj)]t,k ≥ 0;

3. µ
(i+1)
q(ωj,t)

≤ µ
(i)
q(ωj,t)

decreases after each iteration.

Proof. See proof C.12 in Appendix C.2.

The following lemma is stated in Ormerod et al. (2017) and provides expansion results

for the expit(·) function.

Lemma 4.1. Let a ∈ R+, then, as a→ +∞, the following expansions hold: expit(−a) =
exp(−a) +O(exp(−2a)) and expit(a) = 1− exp(−a) +O(exp(−2a)).

Leveraging Proposition 4.5 and Lemma 4.1, we can define the following two properties

for the proposed semi–parametric variational Bayes algorithm.
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Result 4.1. (Sparsity). For ϵ ≪ 1 sufficiently small, we obtain the following approxi-

mation for the update of the inclusion probabilities:

µ
(i)
q(γj,t)

≈ expit

{
µ
(i+1)
q(ωj,t)

− 1/2µ
(i+1)

q(1/σ2
t )
x2j,t

[
µ
(i+1)

q(1/η2j )

]−1

qt,t

}
. (4.12)

Moreover, when M(i) = argmaxt∈{1,...,n} µ
(i)
q(ωj,t)

is small enough, i.e., M(i) ≪ 0, after i

iterations, the sequence {µ(i)
q(γj,t)

}nt=1 is entirely represented as 0 when implemented on a

computer.

Result 4.1 shows that, similarly to the static framework discussed in Ormerod et al.

(2017), this algorithm is able to achieve exact sparsity, i.e., exactly zero inclusion prob-

abilities.

Result 4.2. (Dimension reduction). If µ
(i)
q(γj,t)

≈ 0, for all t, then all the successive

updates ik ≥ i remains numerically µ
(ik)
q(γj,t)

≈ 0 since µ
(ik+1)
q(ωj,t)

≤ µ
(ik)
q(ωj,t)

and therefore

M(ik+1) ≤ M(ik). As a consequence, we can remove the j-th variable from the set of

covariates within the algorithm. This procedure reduces the computational cost of the

successive iterations.

Result 4.2 provides a real-time dimension reduction strategy embedded into the esti-

mation procedure. The latter is of interest since it ensures that the proposed algorithm is

computationally efficient when the dimension of regression coefficient p increases, but the

signal p̄ ≤ p remains constant, where p̄ = card(J ) and the set J = {j :
∑n

t=1 γj,t > 0}
collects the indexes of regression coefficients that are included in the model at least for

one t.

An efficient iterative algorithm to perform approximate posterior inference within

this paradigm is presented in Algorithm 4.1 and the convergence is assessed looking

at the variation in the optimal densities updates between two consecutive iterations

q∗(ϑ)(iter) − q∗(ϑ)(iter−1) < ∆.

4.4 Simulation study

In this Section we focus on performances in a controlled simulation-based setting. We

divide the discussion into two studies. The first one compares the posterior distribu-

tions estimated via the Gibbs sampling algorithm and the variational densities obtained

through Algorithm 4.1. The second simulation study serves the purpose of evaluating

the proposed method with respect to established state-of-the-art alternative approaches.
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Algorithm 4.1: Semi–parametric variational Bayes for time-varying Bernoulli-
Gaussian model with dynamic sparsity.

Initialize: q(ϑ), ∆ϑ, ϵ

while
(
∆̂ϑ > ∆ϑ

)
do

for j = 1, . . . , p do
Update q(βj) as in 4.1; and q(ηj) as in C.9;
Update q(ωj) as in C.7 and q(ξj) as in C.10;
for t = 1, . . . , n do

Update q(zj,t) as in C.8;
Update q(γj,t) as in 4.2 (non-smooth) or 4.3 (smooth);

end

end
Update q(σ) as in C.1 (heteroskedastic) or C.2 (homoskedastic);
Update q(ν2) as in C.11;
if assumptions in 4.5 hold then

for j = 1, . . . , p do
if maxt{µq(γj,t)} < ϵ then

Drop the j-th variable
end

end

end

Compute ∆̂ϑ = q(ϑ)(iter) − q(ϑ)(iter−1) ;
end

4.4.1 Comparison with Markov chain Monte Carlo

The evaluation of the variational Bayes approximation compared to MCMC is often

a challenging task to undertake. As mentioned in Section 4.2, the data augmentation

approach based on the Polya-Gamma representation has the main advantage to lead

to a more tractable joint distribution p(y,ϑ). The latter results in full conditional

distributions that are recognized as known density functions. This aspect is crucial

to implement an efficient Gibbs sampling scheme to carry out Bayesian inference. In

this Section, we compare the posterior distribution for the parameters of the underlying

model achieved via variational Bayes and MCMC. To this aim, we use the accuracy

measure (1.4) introduced in Chapter 1, where q is the variational density and p denotes

the posterior distribution sampled via MCMC. In particular, we retain 20000 draws

from the posterior and we discard the first 10000 as a burn-in.

The simulation is set-up as follows. We consider p = 3 and n = 100, and generate

{β1,t, β2,t, β3,t}100t=1 such that β1,t is a time-varying intercept always included in the model,

β2,t is set equal to zero for all the timeline, while β3,t shows a dynamic sparsity pattern.

Note that for the scope of this study the small dimension p has a limited impact on
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Figure 4.2: Comparison with MCMC when β1,t is a time-varying intercept with
γ1,t = 1, for all t. Top panel shows the overlapping posterior densities of β̃1,t obtained
via VB (blue) and MCMC (red), for one selected replicate. Bottom panel shows the
accuracy over time for β1,t (left) and γ1,t (right).

the validity of the results and it is chosen for convenience to speeding up the MCMC

computation. Then, we generate N = 100 replicates from yt = x1,tβ1,t + x2,tβ2,t +

x3,tβ3,t + εt, with εt ∼ N(0, 0.25), for t = 1, . . . , 100.

As concerns the results, we first focus on the time-varying intercept, which is always

included in the true model. Figure 4.2 highlight a good approximation in this scenario.

In fact, the posterior distribution obtained via VB and MCMC for β̃1,j overlap enough.

Notice that the posterior inclusion probabilities estimated via VB tend to one. This

lead to weights in the mixture defining q∗(β̃1) (see Proposition 4.4) such that ws = 1

if s = (1, 1, . . . , 1) and ws = 0 otherwise. Hence, we only keep one component of the

mixture. This is not the case for MCMC which shows some sampled values of γ1,t to

be zero. However, the accuracy measure is satisfactory for β1,t (it lies around 80%) and

close to 100% for γ1,t.

Then, we consider the opposite case, that is the coefficient which is always equal to

zero. Figure 4.3 highlights that VB provides posterior inclusion probabilities very close
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Figure 4.3: Comparison with MCMC when β3,t is a coefficient constant at zero, i.e.,
γ3,t = 0, for all t. Top panel shows the overlapping posterior densities of β̃3,t obtained
via VB (blue) and MCMC (red), for one selected replicate. Bottom panel shows the
accuracy over time for β3,t (left) and γ3,t (right).

to zero (recall the exact sparsity property in Result 4.1). This lead to weights in the

mixture defining q∗(β̃3) such that ws = 1 if s = (0, 0, . . . , 0) and ws = 0 otherwise.

Hence, we only keep the component of the mixture that identifies a sequence of Dirac

at zero δ0(β̃3,t). This is not the case for MCMC which shows larger variability around

zero. Nevertheless, the accuracy measure is around 75% for both β3,t and γ3,t.

The last comment considers the parameter β3,t, which displays a more interesting

dynamic sparsity behavior. Figure 4.4 depicts a good approximation during periods in

which the coefficient is included in the model (initial and final part), while the per-

formances deteriorate when γ2,t = 0 (middle part). The latter aspect is emphasized if

we focus on the accuracy measure for γ2,t (bottom-right panel). In fact, this scenario

resumes the conclusions we carry out for the previous two settings.
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Figure 4.4: Comparison with MCMC when β2,t is a coefficient that shows dynamic
sparsity. Top panel shows the overlapping posterior densities of β̃2,t obtained via VB
(blue) and MCMC (red), for one selected replicate. Bottom panel shows the accuracy
over time for β2,t (left) and γ2,t (right).

4.4.2 Comparison with state-of-the-art

In this Section we assess both the selection and estimation accuracy of our approach

under different behaviors of the regression coefficients. We consider 100 replicates from

the following data generating process

yt = x⊺
tβt + εt, εt ∼ N(0, 0.25), t = 1, . . . , 200, (4.13)

where the entries of xt are independently generated from a standard Gaussian distri-

bution. The dimension of the regression parameter βt is equal to p ∈ {50, 100, 200}.
As before, β1,t is a time-varying intercept always included, i.e., γ1,t = 1 ∀t, β2:7,t show
dynamic sparsity, and β8:p,t is set to zero for all t, i.e., γ8:p,t = 0 ∀t. Moreover, we

consider different behaviors for the dynamic sparsity in β2:7,t, which will be discussed

later.

We implement different versions of our main algorithm. Hereafter, BG denotes the
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Bernoulli-Gaussian method accounting for stochastic volatility without smoothness in

the inclusion probabilities, BGH is the homoskedastic alternative to BG, and BGS performs

smoothing on the posterior inclusion probabilities exploiting the parametric variational

approximation. Furthermore, we also consider BG algorithm with fixed variances ξ2j ∈
{0.5, 1} of the latent process ωj,t.

We compare our methods with two recent developments in time-varying regressions

with dynamic sparsity. The first one is the dynamic variable selection (DVS) of Koop and

Korobilis (2020), while the second matches the dynamic spike-and-slab (DSS) of Ročková

and McAlinn (2021) for three different values of the marginal importance weight param-

eter Θ ∈ {0.1, 0.5, 0.9}. Since the literature on dynamic sparsity is not wide, we also

compare static variable selection models estimated with recursive rolling windows. The

latter is a widely used procedure to mimic a time-varying behavior. Here, we consider

two continuous shrinkage priors, i.e., the normal-gamma prior of Griffin and Brown

(2010) (BNG) and the horseshoe prior of Carvalho et al. (2010) (BHS), and the variable

selection method of George and McCulloch (1993) (SSVS) and that of Ročková and

George (2014) (EMVS). The estimates shrinked towards zero with BNG and BHS are then

sparsified using the signal adaptive variable selector (SAVS) of Ray and Bhattacharya

(2018).

We are interested in both point estimation accuracy and signal identification. The

first one is assessed by looking at the mean squared error (MSE), while the signal iden-

tification is measured via the F1-score. As a last, interesting assessment, we compare

the methodologies in terms of computational efficiency.

In what follows, we present the simulation results separately for the behavior of the

true regression coefficient and we focus on p = 50, 200. The results for the case p = 100

are reported in Appendix C.3.

Time varying intercept. Figure 4.5 shows an example of simulated time-varying

intercept and relative estimates for one selected replicate. Figure 4.6 depicts the results

under this first scenario. The F1-score suggests two main comments. Firstly, all the

methods provide good performances (in median) in recognizing a time-varying intercept.

As a second fact to mention, DSS seems to be sensible to the choice of the hyperparameter

Θ. By looking at the MSE measure, we notice that the dynamics of the coefficient are

badly replicated using a rolling window estimation, even if this procedure does not

impact on the F1-score.

Balanced dynamic sparsity with one switch. Figure 4.7 clarifies this behavior.

This represents a more intriguing scenario than the previous one. As highlighted in
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Figure 4.5: Example of time-varying intercept β1,t. It follows an autoregressive pro-
cess of order one, AR(1) hereafter, with unconditional mean far from zero, persistence
ϕ1 = 0.98 and conditional variance equal to 0.1.

Figure 4.6: F1-score (top panel) and MSE (bottom panel) for the time-varying
intercept estimation, when p = 50 (left) and p = 200 (right).

Figure 4.8, the performances are more heterogeneous. Three comments are in order.

First of all, we notice a very similar performance among the different versions of our

algorithm. This is a sign of robustness of the dynamic variable selection procedure.

Second, the rolling window estimation is not able to properly detect dynamic sparsity,

as reflected by the low F1-score. Third, perhaps more important, we out-perform the

state-of-the-art methodologies in dynamically separate the true signal from the noise.
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Figure 4.7: Example of dynamic sparsity with one switch β2,t. The parameter is
generated as follows. Divide the interval in sub-periods [1, n] = [1, t1] ∪ [t1 + 1, t1 +
t2]∪ ...∪ [t1 + . . .+ tn +1, n], where tk ∼ Pois(n/2), and then alternate periods where
γj,t = 0 and γj,t = 1 starting randomly. For the intervals where γj,t = 1 we generate
a process as for β1,t.

Figure 4.8: F1-score (top panel) and MSE (bottom panel) for the balanced dynamic
sparsity setting with one switch, when p = 50 (left) and p = 200 (right).

As a byproduct, our estimation algorithms also show lower MSE, thus providing more

accurate point estimates.

Balanced dynamic sparsity with two switches. Figure 4.9 complicates the pre-

vious scenario. This setting represents a more complex scenario to handle. In fact, the
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Figure 4.9: Example of dynamic sparsity with two switches β4,t. The parameter
is generated as follows. Divide the interval in sub-periods as for β2,t, but set tk ∼
Pois(n/4), and then alternate periods where γj,t = 0 and γj,t = 1 starting randomly.
For the intervals where γj,t = 1 we generate a process as for β1,t.

Figure 4.10: F1-score (top panel) and MSE (bottom panel) for the balanced dynamic
sparsity setting with two switches, when p = 50 (left) and p = 200 (right).

F1-scores in Figure 4.10 are, on median, lower that the previous paragraph. However,

in terms of relative comparisons among methods, we can draw the same conclusions.

Low signal dynamic sparsity. Figure 4.11 depicts what we mean with low signal

dynamic sparsity. The latter constitutes a very challenging behavior to detect. Indeed,

small periods of signal are more complex to extract. Figure 4.12 shows that account for
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Figure 4.11: Example of low signal in dynamic sparsity β6,t. The parameter is
generated as follows. Sample an interval length ∆i ∼ Pois(n/10) and place it at
random on the timeline, in that period γj,t = 1 and we generate a process as for β1,t.

Figure 4.12: F1-score (top panel) and MSE (bottom panel) for the dynamic sparsity
setting with low signal, when p = 50 (left) and p = 200 (right).

a time-varying dynamic in the coefficient is essential to detect short periods of signal

since the rolling window procedure returns estimated trajectories that do not respond

to sudden variations, and therefore strongly under-performs in terms of F1-score. A

second comment which arises is that, on median, we observe a better performance of

our methodologies with respect of both DSS and DVS.
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Figure 4.13: Example of coefficient constant at zero β8,t.

Figure 4.14: F1-score (top panel) and MSE (bottom panel) for the always zero
coefficients, when p = 50 (left) and p = 200 (right).

Constant at zero. Figure 4.13 shows estimation results for one replicate when the

coefficient is set always to be zero. Within this setting there’s no signal to identify.

To this aim we report the total accuracy measure (ACC), computed as % of true zeros

recognized, instead of the F1-score. By looking at Figure 4.14, notice that all the models

provide good results when there’s only noise to recognize. The only issues appear when

we focus on DVS for p = 50 and some rolling window estimation methods.



100 Inflation forecasting

Figure 4.15: Computational efficiency of the algorithms computed as running time
in second, varying the dimension p.

Computational efficiency. The last simulation result concerns the computational

efficiency of the alternative methodologies. To evaluate the latter we track the running

time in seconds of the algorithms. Figure 4.15 highlight two main conclusions. First of

all, the DSS leads to the slowest algorithm, regardless to the dimension of the parameter

p. Secondly, and perhaps more interesting, we observe that, when p = 50, the DVS

is faster that BG, but when we move towards higher dimensions the situation changes.

In fact, for p = 100, BG slightly over-performs DVS, but when p = 200, BG provides

posterior inference 2.70 time faster than DVS and 3.85 time faster than DSS, on median.

The computational efficiency of BG comes from the properties of the proposed algorithm

presented in Section 4.3. This makes our approach particularly suitable in cases in which

n is moderate, p is big and the problem is sparse.

4.5 Inflation forecasting

In this Section we evaluate the performance of Bernoulli-Gaussian model with time-

varying sparsity approach to predict the future dynamic of the inflation using a large

set of predictors. The latter study has a long history within macroeconomic literature

(a non-exaustive list of works includes Stock and Watson, 2010; Koop and Korobilis,

2012; Kalli and Griffin, 2014; Koop and Korobilis, 2020; Ročková and McAlinn, 2021).

We retrieve the macroeconomic data from the FRED-QD database McCracken and

Ng (2020). The variables consists in quarterly data spanning the period 3rd quarter
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1967 to 2nd quarter 2022, such that the sample includes oil shocks in 1973 and 1979,

mild recession in 1990, the dot-com bubble and the great recession in 2007-2009, and the

covid-19 pandemic since late 2019. We focus on forecasting four measures of inflation,

namely total CPI (CPIAUCSL), core CPI (CPILFESL), GDP deflator (GDPCTPI),

and PCE deflator (PCECTPI). The name in parenthesis coincides with the variables’

code in the original database. The 229 predictors are transformed according to standard

norms in literature and the set also includes first two lags of the response variable.

We divide the following real data application into two parts. The first one focuses

on in sample estimation to assess some structural evaluations of the process that drives

the inflation. The second part compares three sets of models in terms of both point

prediction accuracy and density forecast.

4.5.1 In sample analysis

First of all we focus on an in sample evaluation of the dynamics that drive inflation.

Figure 4.16 and Figure 4.17 show the evolution over time (x-axis) of the regression coef-

ficients for the predictors (y-axis). The left panels highlight that the estimates are very

sparse and only few parameters enter in the model for at least one time. The behavior

of the selected time-varying coefficients is better depicted in Figures 4.18–4.21 together

with the trajectories of the posterior inclusion probabilities (bottom panel). Different

target measures of inflation are driven by different number of predictors. However,

they all show dependence on the first lag in the first part of the sample. Interestingly,

some variables such as industrial production (INDPRO), 5-year treasury interest rates

(T5YFFM), and producer price index (WPSFD49207) are commonly chosen for different

inflation measures and show similar behaviors.

Another interesting fact that arises from the in sample analysis regards the relation-

ship between the signal and volatility. The signal is computed at each time t as the

sum of absolute values of the variational mean of the active regression coefficients, i.e.,∑p
j=1 |µq(β̃j,t)

|, and serves as a measure of information available to predict the target

variable. Figure 4.22 shows that when the volatility is low, a weak signal is observed

meaning that the variability in the target is treated as pure noise. In contrast, when

the volatility measure increases, the power of the signal does, meaning there’s a part

of the variability of the inflation measure that can be explained using the large set of

covariates.
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(a) total CPI (CPIAUCSL) (b) total CPI (CPIAUCSL) only selected

(c) core CPI (CPILFESL) (d) core CPI (CPILFESL) only selected

Figure 4.16: In sample estimates for regression coefficients when CPI measures are
target. The heatmap can be seen as a matrix collecting the values of the time-varying
coefficients for each variable (y-axis) over time (x-axis).

4.5.2 Forecasting performance

In this Section we evaluate the forecasting performances of our methodology compared

with some widely used benchmarks and state-of-the-art approaches. We look at both

point prediction accuracy, by considering the mean-squared error (MSE), and density

forecast performance, assessed in terms of log-predictive density score (LPD). Beside the

measure for each target variable, we also provide some aggregated indicators. For the

mean-squared error we take into account the mean (Avg) and the weighted mean (W

Avg) where the weights depend on the marginal variance of the target variable. As an

aggregated measure for density forecast we consider the multivariate predictive density

score (Multi) which in our scenario coincides with the sum of the LPD for each target.

We can divide the competing methods into three groups. The first one is made of

what we call benchmark models and represents tough competitors to beat in macroeco-

nomic forecasting. The latter are the local-level (or random-walk, RW hereafter) model,
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(a) GDP deflator (GDPCTPI) (b) GDP deflator (GDPCTPI) only selected

(c) PCE deflator (PCECTPI) (d) PCE deflator (PCECTPI) only selected

Figure 4.17: In sample estimates for regression coefficients when GDP and PCE
deflator are target. The heatmap can be seen as a matrix collecting the values of the
time-varying coefficients for each variable (y-axis) over time (x-axis).

an autoregressive of order two (AR2), and an autoregressive of order two with time-

varying parameters (TVAR). Notice that these models does not provide any information

about the factors that drive inflation since they do not consider the large set of predic-

tors. The second group are composed by static models estimated using a rolling window

procedure. A factor model with 5 factors (F5) is added to the shrinkage and variable

selection methodologies already presented in the simulation study. The last group of

models considers recent advances in dynamic variable selection with time varying pa-

rameters, i.e., BGS, BGH, DSS, and DVS, that have been presented in Section 4.4.2.

Table 4.1 and 4.2 show the results. Here we highlight both the best model (bold)

and the best model excluding the benchmarks (red). Both tables suggest that RW is a

tough benchmark to beat in point prediction, while autoregressive models are difficult

to outperform when looking at density forecast. However, our methods, namely BGS and

BGH, provide good performances and are always the best alternative among the models
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Figure 4.18: Time-varying coefficients estimates µq(β̃j,t)
and posterior inclusion

probabilities for total CPI (CPIAUCSL).

Figure 4.19: Time-varying coefficients estimates µq(β̃j,t)
and posterior inclusion

probabilities for core CPI (CPILFESL).
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Figure 4.20: Time-varying coefficients estimates µq(β̃j,t)
and posterior inclusion

probabilities for GDP deflator (GDPCTPI).

Figure 4.21: Time-varying coefficients estimates µq(β̃j,t)
and posterior inclusion

probabilities for PCE deflator (PCECTPI).
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(a) total CPI (CPIAUCSL) (b) core CPI (CPILFESL)

(c) GDP deflator (GDPCTPI) (d) PCE deflator (PCECTPI)

Figure 4.22: Signal (blue) computed as
∑p

j=1 |µq(β̃j,t)
|, for t = 1, . . . , n, against the

time-variant volatility σt.

with many predictors (the only exception is the LPD for CPILFESL).

Although the MSE evaluation metrics indicates better performances for the bench-

mark, we implement a Diebold-Mariano test (Diebold and Mariano, 1995) to assess

weather the performances are statistically equal or not. Figure 4.23 shows that BGS

and BGH provide the same performances as the benchmark, while they are frequently

outperforming all the other methodologies (see the first two columns of the plots). In

conclusion, if the aim is just providing accurate predictions, the benchmark models and

our dynamic Bernoulli-Gaussian specification are equivalent. However, if the final goal

is to juxtapose accurate predictions with the understanding of the key drivers of the

inflation’s dynamic, then the proposed algorithm represents the best alternative so far.
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Table 4.1: Point forecast.

Bold denotes the best model, and red denotes the best model among the ones with large-set of covariates
and variable selection. We report the MSE for each target variable together with aggregate measures.

CPIAUCSL CPILFESL GDPCTPI PCECTPI Avg W Avg

RW 1.745 2.382 1.130 1.071 1.582 1.186
AR2 1.943 2.582 1.244 0.964 1.683 1.276
TVAR 1.857 2.513 1.194 1.090 1.664 1.250

F5 2.070 2.627 1.727 1.480 1.976 1.469
NG 2.517 3.073 1.357 1.326 2.068 1.567
HS 2.497 3.298 1.360 1.263 2.105 1.601
EMVS 3.389 4.803 1.478 1.417 2.772 2.164
SSVS 2.433 3.422 1.398 1.359 2.153 1.630

BGS 1.772 2.565 1.027 0.989 1.588 1.204
BGH 1.814 2.712 1.011 0.950 1.622 1.238
DSS 0.1 2.393 2.941 1.952 2.134 2.355 1.742
DSS 0.5 2.394 2.940 1.952 2.132 2.354 1.741
DSS 0.9 2.391 2.939 1.945 2.148 2.356 1.742
DVS 2.855 3.595 1.669 1.330 2.362 1.799

Table 4.2: Density forecast.

Bold denotes the best model, and red denotes the best model among the ones with large-set of covariates
and variable selection. We report the LPD for each target variable together with an aggregated measure.

CPIAUCSL CPILFESL GDPCTPI PCECTPI Multi

RW -2.316 -2.576 -2.274 -1.607 -8.773
AR2 -2.064 -2.327 -1.498 -1.148 -7.036
TVAR -1.994 -2.395 -1.559 -1.104 -7.051

F5 -2.200 -2.486 -1.857 -1.558 -8.102
NG -2.105 -2.348 -1.781 -1.766 -7.999
HS -2.112 -2.394 -1.866 -1.681 -8.054
EMVS -5.555 -5.724 -3.235 -2.245 -16.759
SSVS -2.559 -2.807 -2.519 -2.668 -10.553

BGS -2.058 -2.427 -1.739 -1.251 -7.474
BGH -1.971 -2.506 -1.740 -1.339 -7.557
DSS 0.1 -4.225 -4.420 -3.960 -3.875 -16.481
DSS 0.5 -4.193 -4.149 -3.900 -4.033 -16.275
DSS 0.9 -4.041 -4.345 -3.902 -3.876 -16.163
DVS -6.614 -9.006 -4.761 -2.643 -23.024
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(a) total CPI (CPIAUCSL) (b) core CPI (CPILFESL)

(c) GDP deflator (GDPCTPI) (d) PCE deflator (PCECTPI)

Figure 4.23: Diebold-Mariano test for the null hypothesis H0 : MSEC = MSER

(forecasting equivalence), where MSEC and MSER denote the mean-squared error
of the column and row model respectively. If the null is not rejected at level 5% we
report 0 (white). If the null is rejected and MSEC < MSER, so that the column
model provides better forecasts than the row one, we report 1 (blue). If the null is
rejected and MSEC > MSER we report −1 (red).

4.6 Concluding remarks

In this Chapter we extend the Bernoulli-Gaussian model in order to deal with dynamic

sparsity in time-varying parameters regression. Unlike recent state-of-the-art develop-

ments, the proposed model specification assumes that the latent dynamic sparsity is



Conclusion 109

governed by a stochastic process and the weak dependence on fixed hyper-parameters

makes this method more robust with respect to more commonly used spike-and-slab

type dynamic priors. Moreover, the semi-parametric variational Bayes algorithm pre-

sented provides exact sparsity when the coefficient is set to zero. In addition, it is

suitable to deal with large set of covariates, thanks to the dimension reduction property.

Empirically, we show two results. First of all, the proposed algorithm is sufficiently

accurate in approximating the posterior distribution compared to MCMC, especially

when the underlying parameter is included in the model. Secondly, we assess the better

performances in point estimation, signal identification, and forecasting, when compared

to state-of-the-art methods.





Conclusion

In this thesis we develop novel algorithms to perform inference in high-dimensional dy-

namic models. We consider different notions of dimensionality: fat (many variables)

and tall (long series) data. Together with computational issues, increasing dimension

often leads to the over-parametrization problem which causes poor interpretability and

prediction performances. As a consequence, regularization of the estimates and variable

selection techniques are desirable properties within a large-dimensional setting. The

common thread of the Chapters in this thesis is variational Bayes. The latter repre-

sents an appealing approach to approximate Bayesian inference since it is proven to

be computationally convenient with respect to classical MCMC methods. In this the-

sis variational Bayes represents the computational solution to tackle high-dimensional

problems. As regards the over-parametrization issue, we focus on different solutions

across Chapters.

In Chapter 2 we develop a novel algorithm to estimate a multivariate regression

model with continuous shrinkage priors. The latter is suitable to deal with the increasing

dimension of the cross-sections and size of the covariates’ set. We show that the proposed

approach permits a better estimation of the regression coefficients and a more accurate

identification of the true signal with respect to state-of-the-art algorithms.

Chapter 3 focuses on the estimation of univariate stochastic volatility models. First

of all, we provide a more accurate Gaussian approximation with respect to the existing

literature. Second, we propose to use the parametric approximation scheme to introduce

regularization in the estimates. In particular, we develop a flexible algorithm that can

be used to obtain a smooth trajectory for the posterior estimates of the latent volatility

process.

In Chapter 4 we extend the static Bernoulli-Gaussian model for variable selection to

deal with dynamic sparsity within a variational Bayes approach to approximate Bayesian

inference. We highlight that this model specification and the choice of the proposed vari-

ational densities provide the optimal solution to dynamically select important covariates

in the context of time-varying parameter linear models, so far. The over-performance of

our algorithm is emphasized in both a simulated scenario and an application in inflation
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forecasting.

Future research

The most interesting ideas for a future path of research regards some extensions of the

dynamic variable selection described in Chapter 4. The first one that comes to mind

is the multivariate case. A second, perhaps more challenging advancement considers

the nature of the response variable. To the best of our knowledge, at the moment

there’s no algorithms suitable to deal with variable selection in time-varying generalized

linear models. Our belief is that this should be an intriguing and stimulating topic,

as well as useful in practice. In fact, binary and counts time series are interesting in

some applications such as fraudolent transactions, cybersecurity (Soundarya and Usha,

2020), companies and countries default analysis (Kristóf, 2021), Covid-19 data, and

gene expression data (Bar-Joseph et al., 2012). A last extension of the proposed model,

regards the type of dependence. In Chapter 4 we analise the case in which the data are

equally spaced over time, but this is not always the case. An example is given by tick-

by-tick data in finance (Engle and Sun, 2005). The joint representation of the regression

coefficient as a Gaussian Markov random field is of particular convenience in order to

easily account for different dependence structures. In fact, by simply changing the

precision matrix of the random field, we fall into different scenarios (see Rue and Held,

2005). Irregular spaced time locations can be modeled assuming a joint representation

of a continuous random walk process. Moreover, not only time-dependence can be

incorporated, but also a spatial variable selection can be considered for lattice data or

irregular locations in space. The latter has recently gained some attention within a

machine learning context (Meyer et al., 2019).
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Appendix A

This appendix refers to chapter 2 and it provides the derivation of the optimal densities

used in the mean-field variational Bayes algorithms. The derivation concerns the optimal

densities for both the normal prior as well as the adaptive Bayesian lasso, the adaptive

normal-gamma and the horseshoe. In addition, in this appendix we provide additional

simulation and empirical results.

A.1 Auxiliary theoretical results

This Section provides major results that will be repeatedly used in the proofs of the

derivation of the optimal densities used in the mean-field variational Bayes algorithms

presented in Appendix A.2.

Result A.1. Assume that y is a n-dimensional row vector, X a p× n matrix and ϑ a

p-dimensional row vector of parameters whose distribution is denoted by q(ϑ).

Define ∥y − ϑX∥22 = (y − ϑX)(y − ϑX)⊺, then it holds:

Eϑ

[
∥y − ϑX∥22

]
= yy⊺ + Eϑ [ϑXX⊺ϑ⊺]− 2µq(ϑ)Xy⊺

= yy⊺ + tr {Eϑ [ϑ
⊺ϑ]XX⊺} − 2µq(ϑ)Xy⊺

= yy⊺ + µq(ϑ)XX⊺µ⊺
q(ϑ) + tr

{
Σq(ϑ)XX⊺

}
− 2µq(ϑ)Xy⊺

= ∥y − µq(ϑ)X∥22 + tr
{
Σq(ϑ)XX⊺

}
,

where Eϑ(f(ϑ)) denotes the expectation of the function f(ϑ) : Rp → Rk with respect

to q(ϑ), tr(·) denotes the trace operator that returns the sum of the diagonal entries of

a square matrix, and µq(ϑ) and Σq(ϑ) denotes the mean and variance-covariance matrix

of ϑ.

Result A.2. Let Θ be a d × p random matrix with elements ϑi,j, for i = 1, . . . , d and

j = 1, . . . , p, and let A be a p× p matrix. Our interest relies on the computation of the

expectation of ΘAΘ⊺ with respect to the distribution of Θ, where the expectation is

taken element-wise. The (i, j)-th entry of ΘAΘ⊺ is equal to ϑiAϑ⊺
j , where ϑi and ϑj

denote the i-th and j-th row of Θ, respectively.
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Therefore, the (i, j)-th entry of ΘAΘ⊺ is equal to:

E
(
ϑiAϑ⊺

j

)
= E

(
tr
{
ϑ⊺

jϑiA
})

= tr
{
E(ϑ⊺

jϑiA)
}
= tr

{
E(ϑ⊺

jϑi)A
}
.

Denote by µϑi
= E(ϑi) and Σϑi,ϑj

= Cov(ϑi,ϑj), then the previous expectation reduces

to:

E(ϑiAϑ⊺
j ) = tr

{(
µ⊺

ϑj
µϑi

+Σϑi,ϑj

)
A
}
= µϑi

Aµ⊺
ϑj

+ tr
{
Σϑi,ϑj

A
}
.

In matrix form, E(ΘAΘ⊺) = µΘAµ⊺
Θ +KΘ, where µΘ is a d× p matrix with elements

µϑi,j
, while KΘ is a d× d symmetric matrix with elements equal to tr

{
Σϑi,ϑj

A
}
.

Result (A.2) can be further generalized to compute the expectation of Θ1AΘ⊺
2 with

respect to the joint distribution of (Θ1,Θ2) where Θ1 is d1 × p and Θ2 is d2 × p.

Result A.3. Let ϑ be a d-dimensional Gaussian random vector with mean µϑ and

covariance matrix Σϑ. The expectation of the quadratic form (ϑ − µϑ)
⊺Σ−1

ϑ (ϑ − µϑ)

with respect to ϑ is equal to d. Indeed:

Eϑ

[
(ϑ− µϑ)

⊺Σ−1
ϑ (ϑ− µϑ)

]
= tr

{
Eϑ [(ϑ− µϑ)(ϑ− µϑ)

⊺]Σ−1
ϑ

}
= tr

{
[(µϑ − µϑ)(µϑ − µϑ)

⊺ +Σϑ]Σ
−1
ϑ

}
= tr

{
ΣϑΣ

−1
ϑ

}
= tr {Id}

= d.

A.2 Derivation of the variational Bayes algorithms

This appendix explains how to obtain the relevant quantities of the mean-field varia-

tional Bayes algorithms described in Section 2.3 for the prior distributions described

in Section 2.3.1. We begin by discussing the non-informative prior, then turn to the

adaptive Bayesian lasso, the adaptive normal-gamma and conclude with the horseshoe

prior.



Appendix 117

A.2.1 Normal prior specification

Proposition A.1. The optimal variational density for the precision parameter νj is

equal to q∗(νj) ≡ Ga(aq(νj), bq(νj)), where, for j = 1, . . . , d:

aq(νj) = aν + T/2,

bq(νj) = bν +
1

2

T∑
t=1

E−νj

[
ε2j,t
]
,

(A.1)

where

E−νj

[
ε2j,t
]
=
(
yj,t − µq(βj)

µq(rj,t)
− µq(ϑj)

zt−1

)2
+ tr

{
Σq(ϑj)zt−1z

⊺
t−1

}
+ tr

{(
Σq(βj) + µ⊺

q(βj)
µq(βj)

)
Kϑ,t

}
+ tr

{
Σq(βj)µq(rj,t)

µ⊺
q(rj,t)

}
− 2kϑ,tµ

⊺
q(βj)

,

where µq(rj,t)
= yj

t−µq(Θj)zt−1, and, for i = 1, . . . , j−1 and k = 1, . . . , j−1, the elements

in the matrix Kϑ,t and in the row vector kϑ,t are [Kϑ,t]i,k = tr
{
Cov(ϑi,ϑk)zt−1z

⊺
t−1

}
and

[kϑ,t]i = tr
{
Cov(ϑi,ϑj)zt−1z

⊺
t−1

}
respectively. Notice that under row-factorization of Θ,

we have that kϑ,t = 0j.

Proof. Consider the model written for the j-th variable:

yj,t = βjrj,t + ϑjzt−1 + εj,t, εj,t ∼ N(0, 1/νj),

and notice that εj,t = yj,t − βjrj,t − ϑjzt−1. Recall that a priori νj ∼ Ga(aν , bν) and

compute log q∗(νj) ∝ E−νj [ℓj(ξ;y,x) + log p(νj)]:

log q∗(νj) ∝ E−νj

[
T

2
log νj −

νj
2

T∑
t=1

ε2j,t + (aν − 1) log νj − bννj

]

∝
(
T

2
+ aν − 1

)
log νj − νj

(
bν +

1

2

T∑
t=1

E−νj

[
ε2j,t
])

,
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where

E−νj

[
ε2j,t
]
= E−νj

[(
yj,t − βjrj,t − ϑjzt−1

)2]
= y2j,t + Eϑ

[
ϑjzt−1z

⊺
t−1ϑj

]
+

A︷ ︸︸ ︷
Eϑ,βj

[
βjrj,tr

⊺
j,tβ

⊺
j

]
− 2yj,tEϑ [ϑj] zt−1 − 2yj,tEβj

[
βj

]
Eϑ [rj,t]

+ 2Eϑ

[
ϑjzt−1r

⊺
j,t

]
Eβj

[
β⊺

j

]︸ ︷︷ ︸
B

= y2j,t + µq(ϑj)
zt−1z

⊺
t−1µq(ϑj)

+ µq(βj)
µq(rj,t)

µ⊺
q(rj,t)

µ⊺
q(βj)

− 2yj,tµq(ϑj)
zt−1 − 2yj,tµq(βj)

µq(rj,t)

+ 2µq(ϑj)
zt−1µ

⊺
q(rj,t)

µ⊺
q(βj)

+ tr
{
Σq(ϑj)zt−1z

⊺
t−1

}
+ tr

{(
Σq(βj) + µ⊺

q(βj)
µq(βj)

)
Kϑ,t

}
+ tr

{
Σq(βj)µq(rj,t)

µ⊺
q(rj,t)

}
− 2kϑ,tµ

⊺
q(βj)

=
(
yj,t − µq(βj)

µq(rj,t)
− µq(ϑj)

zt−1

)2
+ tr

{
Σq(ϑj)zt−1z

⊺
t−1

}
+ tr

{(
Σq(βj) + µ⊺

q(βj)
µq(βj)

)
Kϑ,t

}
+ tr

{
Σq(βj)µq(rj,t)

µ⊺
q(rj,t)

}
− 2kϑ,tµ

⊺
q(βj)

,

where µq(rj,t)
= yj

t − µq(Θj)zt−1.

The computations involving terms A and B are presented in the following equations.

Firs of all, define βjrj,tr
⊺
j,tβ

⊺
j = ∥βjrj,t∥22, then the term A above is equal to:

Eϑ,βj

[
∥βjrj,t∥22

]
= Eβj

[
βj

See Results A.1 and A.2︷ ︸︸ ︷
Eϑ

[
rj,tr

⊺
j,t

]
β⊺

j

]
= Eβj

[
βj

{
µq(rj,t)

µ⊺
q(rj,t)

+Kϑ,t

}
β⊺

j

]
= µq(βj)

{
µq(rj,t)

µ⊺
q(rj,t)

+Kϑ,t

}
µ⊺

q(βj)
+ tr

{
Σq(βj)

[
µq(rj,t)

µ⊺
q(rj,t)

+Kϑ,t

]}
= ∥µq(βj)

µq(rj,t)
∥22 + tr

{(
Σq(βj) + µ⊺

q(βj)
µq(βj)

)
Kϑ,t

}
+ tr

{
Σq(βj)µq(rj,t)

µ⊺
q(rj,t)

}
,
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while the term B is:

Eϑ

[
ϑjzt−1r

⊺
j,t

]
Eβj

[
β⊺

j

]
= Eϑ

[
ϑjzt−1y

j⊺
t −

See Result A.2︷ ︸︸ ︷
ϑjzt−1z

⊺
t−1Θ

j⊺

]
µ⊺

q(βj)

=
(
µq(ϑj)

zt−1y
j⊺
t − µq(ϑj)

zt−1z
⊺
t−1µ

⊺
q(Θj)

− kϑ,t

)
µ⊺

q(βj)

= µq(ϑj)
zt−1µ

⊺
q(rj,t)

µ⊺
q(βj)

− kϑ,tµ
⊺
q(βj)

.

Notice that for the latter derivation we use Results A.1 and A.2. To conclude, we obtain:

log q∗(νj) ∝
(
T

2
+ aν − 1

)
log νj − νj

(
bν +

1

2

T∑
t=1

E−νj

[
ε2j,t
])

,

then take the exponential and notice that the latter is the kernel of a gamma random

variable Ga(aq(νj), bq(νj)) as defined in Proposition A.1.

Proposition A.2. The optimal variational density for the parameter βj for j = 2, . . . , d

is equal to q∗(βj) ≡ Nj−1(µq(βj)
,Σq(βj)), where:

Σq(βj) =

(
µq(νj)

T∑
t=1

(
µq(rj,t)

µ⊺
q(rj,t)

+Kϑ,t

)
+ 1/τIj−1

)−1

,

µq(βj)
= Σq(βj)µq(νj)

T∑
t=1

(
µq(rj,t)

(yj,t − µq(ϑj)
zt−1)

⊺ + kϑ,t

)
.

(A.2)

Proof. Consider the model written for the j-th variable:

yj,t = βjrj,t + ϑjzt−1 + εj,t, εj,t ∼ N(0, 1/νj).

Recall that a priori βj ∼ Nj−1(0, τIj−1) and compute the optimal variational density as

log q∗(βj) ∝ E−βj

[
ℓj(ξ;y,x) + log p(βj)

]
:

log q∗(βj) ∝ E−βj

[
−νj

2

T∑
t=1

(
yj,t − ϑjzt−1 − βjrj,t

)2 − 1

2τ
βjβ

⊺
j

]

∝ E−βj

[
−1

2

{
βj

(
νj

T∑
t=1

rj,tr
⊺
j,t + 1/τIj−1

)
β⊺

j

−2βjνj

T∑
t=1

rj,t(yj,t − ϑjzt−1)
⊺

}]
,
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and, applying some results defined is Appendix A.1, we get:

log q∗(βj) ∝ −1

2

{
βj

(
µq(νj)

T∑
t=1

Eϑ

Result A.2︷ ︸︸ ︷[
rj,tr

⊺
j,t

]
+1/τIj−1

)
β⊺

j

− 2βjµq(νj)

T∑
t=1

Eϑ

Result A.2︷ ︸︸ ︷
[rj,t(yj,t − ϑjzt−1)

⊺]

}

∝ −1

2

{
βj

(
µq(νj)

T∑
t=1

(
µq(rj,t)

µ⊺
q(rj,t)

+Kϑ,t

)
+ 1/τIj−1

)
β⊺

j

− 2βjµq(νj)

T∑
t=1

(
µq(rj,t)

(yj,t − µq(ϑj)
zt−1)

⊺ + kϑ,t

)}
.

Take the exponential and notice that the latter is the kernel of a Gaussian random

variable Nj−1(µq(βj)
,Σq(βj)), as defined in Proposition A.2.

Proposition A.3. The optimal joint variational density for the parameter ϑ is equal

to a multivariate Gaussian q∗(ϑ) ≡ Ndp(µq(ϑ),Σq(ϑ)), where:

Σq(ϑ) =

(
µq(Ω) ⊗

T∑
t=1

zt−1z
⊺
t−1 + 1/υIdp

)−1

, µq(ϑ) = Σq(ϑ)

T∑
t=1

(
µq(Ω) ⊗ zt−1

)
yt,

(A.3)

where µq(Ω) = Eq [Ω] = Eq [L
⊺VL] = (Id − µq(B))

⊺µq(V)(Id − µq(B)) + Cϑ and Cϑ is a

d× d symmetric matrix whose generic element is given by:

[Cϑ]i,j =
d∑

k=j+1

Cov(βk,i, βk,j)µq(νk).

Proof. Consider the model written as Lyt = LΘzt−1+εt with εt ∼ Nd(0,V
−1) and then

apply the vectorisation operation on the transposed and get Lyt = (L ⊗ z⊺t−1)ϑ + εt,

where εt ∼ Nd(0,V
−1). Recall that a priori ϑ ∼ Ndp(0, υIdp). Compute the optimal

variational density for the parameter ϑ as log q∗(ϑ) ∝ E−ϑ [ℓ(ξ;y,x) + log p(ϑ)]:

log q∗(ϑ) ∝ −1

2
E−ϑ

[
T∑
t=1

(
Lyt − (L⊗ z⊺t−1)ϑ

)⊺
V
(
Lyt − (L⊗ z⊺t−1)ϑ

) ]
− 1

2υ
E−ϑ

[
ϑ⊺ϑ

]

∝ −1

2
E−ϑ

[
T∑
t=1

(
ϑ⊺(L⊺VL⊗ zt−1z

⊺
t−1)ϑ

)
− 2

T∑
t=1

ϑ⊺
(
(L⊺VL⊗ zt−1)yt

)]
− 1

2υ
ϑ⊺ϑ

∝ −1

2

{
ϑ⊺

(
µq(Ω) ⊗

T∑
t=1

zt−1z
⊺
t−1 + 1/υIdp

)
ϑ− 2ϑ⊺

T∑
t=1

(
µq(Ω) ⊗ zt−1

)
yt

}
.
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To compute the expectation µq(Ω) = E−ϑ [(Id −B)⊺V(Id −B)] we use the following:

EB,V [(Id −B)⊺V(Id −B)] = EB,V [V − 2B⊺V −B⊺VB]

= µq(V) − 2µ⊺
q(B)µq(V) − EB,V [B⊺VB]

= µq(V) − 2µ⊺
q(B)µq(V) + µ⊺

q(B)µq(V)µq(B) +Cϑ

= (Id − µq(B))
⊺µq(V)(Id − µq(B)) +Cϑ,

where we exploit the fact that the (i, j)-th element of B⊺VB is given by:

[B⊺VB]i,j =
d∑

k=j+1

βk,iβk,jνk, i ≤ j and [B⊺VB]i,j = [B⊺VB]j,i

hence

EB,V [B⊺VB]i,j = EB,V

[
d∑

k=j+1

βk,iβk,jνk

]

=
d∑

k=j+1

(
µq(βk,i)µq(βk,j) + Cov(βk,i, βk,j)

)
µq(νk)

=
d∑

k=j+1

µq(βk,i)µq(βk,j)µq(νk) +
d∑

k=j+1

Cov (βk,i, βk,j)µq(νk)

=
[
µq(B⊺)µq(V)µq(B)

]
i,j

+
d∑

k=j+1

Cov (βk,i, βk,j))µq(νk).

Thus, each element of Cϑ is given by

[Cϑ]i,j =
d∑

k=j+1

Cov(βk,i, βk,j)µq(νk) = [Cϑ]j,i .

Take the exponential of the log q∗(ϑ) derived above and notice that it coincides with

the kernel of a Gaussian random variable Ndp(µq(ϑ),Σq(ϑ)), as in Proposition A.3.

Proposition A.4. The optimal variational density for the row-parameter ϑj is equal

to a multivariate Gaussian q∗(ϑj) ≡ Np(µq(ϑj)
,Σq(ϑj)), where:

Σq(ϑj) =

(
µq(ωj,j)

T∑
t=1

zt−1z
⊺
t−1 + 1/υIp

)−1

,

µq(ϑj)
= Σq(ϑj)

(
T∑
t=1

(
µq(ωj)

⊗ zt−1

)
yt −

(
µq(ωj,−j)

⊗
T∑
t=1

zt−1z
⊺
t−1

)
µq(ϑ−j)

)
.

(A.4)
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Under this setting the vector kϑ,t computed for q∗(νj) and q∗(βj) is a null vector since

the independence among rows of Θ is assumed.

Proof. Consider the setting as in Proposition A.3, define µq(Ω) = E−ϑ [(Id −B)⊺V(Id −B)]

the expectation of the precision matrix and compute the optimal variational density for

the parameter ϑj as log q
∗(ϑj) ∝ E−ϑj

[ℓ(ξ;y,x) + log p(ϑj)]:

log q∗(ϑj) ∝ −1

2
E−ϑj

[ϑ]⊺
(
µq(Ω) ⊗

T∑
t=1

zt−1z
⊺
t−1

)
E−ϑj

[ϑ]− 1

2υ
ϑ⊺

jϑj

+ E−ϑj
[ϑ]⊺

T∑
t=1

(
µq(Ω) ⊗ zt−1

)
yt

∝ −1

2
ϑ⊺

j

(
µq(ωj,j)

T∑
t=1

zt−1z
⊺
t−1

)
ϑj −

1

2υ
ϑ⊺

jϑj

+ ϑ⊺
j

T∑
t=1

(
µq(ωj)

⊗ zt−1

)
yt − ϑ⊺

j

(
µq(ωj,−j)

⊗
T∑
t=1

zt−1z
⊺
t−1

)
µq(ϑ−j)

.

Where we used the following partitions:

ϑ =

(
ϑj

ϑ−j

)
, Ω =

(
ωj,j ωj,−j

ω−j,j Ω−j,−j

)
,

and we denote with ωj the j-th row of Ω. Re-arrange the terms, take the exponential of

the log q∗(ϑj) derived above and notice that it coincides with the kernel of a Gaussian

random variable Np(µq(ϑj)
,Σq(ϑj)), as defined in Proposition A.4.

Proposition A.5. The variational lower bound for the non-sparse multivariate regres-

sion model can be derived analytically and it is equal to:

log p(y; q) = d

(
−T
2
log 2π + aν log bν − log Γ(aν)

)
−

d∑
j=1

(
aq(νj) log bq(νj) − log Γ(aq(νj))

)
− 1

2

d∑
j=2

j−1∑
k=1

(
log τ + 1/τµq(β2

j,k)

)
+

1

2

d∑
j=2

(
log |Σq(βj)|+ (j − 1)

)
− 1

2

d∑
j=1

p∑
k=1

(
log υ + 1/υµq(ϑ2

j,k)

)
+

1

2

(
log |Σq(ϑ)|+ dp

)
.

(A.5)
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Proof. First of all, notice that the lower bound can be written in terms of expected

values with respect to the density q as:

log p(y; q) =

∫
q(ξ) log

p(ξ,y)

q(ξ)
dξ = Eq [log p(ξ,y)]− Eq [log q(ξ)] ,

where log p(ξ,y) = ℓ(ξ;y) + log p(ξ). Following our model specification, we have that

log p(ξ,y) =
d∑

j=1

(ℓj(ξ;y,x) + log p(νj)) +
d∑

j=2

log p(βj) + log p(ϑ),

where ℓj(ϑ;y,x) denotes the log-likelihood for the j-th variable:

ℓj(ξ;y,x) = −T
2
log 2π +

T

2
log νj −

νj
2

T∑
t=1

(
yj,t − βjrj,t − ϑjzt−1

)2
.

For the variational density we have log q(ξ) =
∑d

j=1 log q(νj)+
∑d

j=2 log q(βj)+log q(ϑ),

and the lower bound can be divided into terms referring to each parameter:

log p(y; q) =
d∑

j=1

Eq [ℓj(ξ;y,x) + log p(νj)− log q(νj)]

+
d∑

j=2

Eq

[
log p(βj)− log q(βj)

]
+ Eq [log p(ϑ)− log q(ϑ)]

=
d∑

j=1

(
Eq

[
ℓj(ξ;y,x) + log p(y; νj)

]︸ ︷︷ ︸
A

+
d∑

j=2

Eq

[
log p(y;βj)

]︸ ︷︷ ︸
B

+Eq

[
log p(y;ϑ)

]︸ ︷︷ ︸
C

,

(A.6)

thus our strategy will be to evaluate each piece in the latter separately and then put

the results together.

The first part of the lower bound we compute is A = ℓj(ξ;y,x) + log p(y; νj):

A = Eq

[
−T
2
log 2π +

T

2
log νj −

νj
2

T∑
t=1

(
yj,t − βjrj,t − ϑjzt−1

)2]
+ Eq [aν log bν − log Γ(aν) + (aν − 1) log νj − νjbν ]

− Eq

[
aq(νj) log bq(νj) − log Γ(aq(νj)) + (aq(νj) − 1) log νj − νjbq(νj)

]
= −T

2
log 2π +

T

2
µq(log νj) −

µq(νj)

2

T∑
t=1

Eq

[
ε2j,t
]

+ aν log bν − log Γ(aν) + (aν − 1)µq(log νj) − µq(νj)bν

− aq(νj) log bq(νj) + log Γ(aq(νj))− (aq(νj) − 1)µq(log νj) + µq(νj)bq(νj)
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= −T
2
log 2π + aν log bν − log Γ(aν)− aq(νj) log bq(νj) + log Γ(aq(νj)),

where we exploit the definitions of Eq

[
ε2j,t
]
, aq(νj), bq(νj) given in Proposition A.1. The

second term to compute is equal to:

B = Eq

[
−j − 1

2
log 2π − 1

2

j−1∑
k=1

log τ − 1

2τ

j−1∑
k=1

β2
j,k

]

− Eq

[
− j − 1

2
log 2π − 1

2
log |Σq(βj)| −

1

2

See Result A.3︷ ︸︸ ︷
(βj − µq(βj)

)Σ−1
q(βj)

(βj − µq(βj)
)⊺
]

= −1

2

j−1∑
k=1

log τ − 1

2τ

j−1∑
k=1

µq(β2
j,k)

+
1

2
log |Σq(βj)|+

j − 1

2
,

where µq(β2
j,k)

= µ2
q(βj,k)

+ σ2
q(βj,k)

and σ2
q(βj,k)

denotes the k-th element on the diagonal of

Σq(βj). To conclude, we compute the last term:

C = Eq

[
−dp

2
log 2π − 1

2

d∑
j=1

p∑
k=1

log υ − 1

2υ

d∑
j=1

p∑
k=1

ϑ2
j,k

]

− Eq

[
− dp

2
log 2π − 1

2
log |Σq(ϑ)| −

1

2

See Result A.3︷ ︸︸ ︷
(ϑ− µq(ϑ))

⊺Σ−1
q(ϑ)(ϑ− µq(ϑ))

]
= −1

2

d∑
j=1

p∑
k=1

log υ − 1

2υ

d∑
j=1

p∑
k=1

µq(ϑ2
j,k)

+
1

2
log |Σq(ϑ)|+

dp

2
.

Put together the terms A,B,C as in (A.6) and notice that the variational lower bound

here computed coincides with the one presented in Proposition A.5.

A.2.2 Bayesian adaptive lasso

In order to induce shrinkage towards zero in the estimates of the coefficients ϑ, we

assume an adaptive lasso prior. Notice that the optimal densities for the variances

νj and for the cholesky factor rows βj remain exactly the same computed in Section

A.2.1. The changes in the optimal densities q∗(ϑ) consist in the fact that now the prior

variances are no more fixed, but random variables themselves.
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Proposition A.6. The joint optimal variational density for the parameter ϑ is equal

to q∗(ϑ) ≡ Ndp(µq(ϑ),Σq(ϑ)), where:

Σq(ϑ) =

(
µq(Ω) ⊗

T∑
t=1

zt−1z
⊺
t−1 + Diag(µq(1/υ))

)−1

, µq(ϑ) = Σq(ϑ)

T∑
t=1

(
µq(Ω) ⊗ zt−1

)
yt,

(A.7)

where Diag(µq(1/υ)) is a diagonal matrix with elements µq(1/υ) = (µq(1/υ1,1), . . . , µq(1/υd,p)).

Under the row-independence assumption, the optimal variational density for the pa-

rameter ϑj is equal to q∗(ϑj) ≡ Np(µq(ϑj)
,Σq(ϑj)), where:

Σq(ϑj) =

(
µq(ωj,j)

T∑
t=1

zt−1z
⊺
t−1 + Diag(µq(1/υj)

)

)−1

,

µq(ϑj)
= Σq(ϑj)

(
T∑
t=1

(
µq(ωj)

⊗ zt−1

)
yt −

(
µq(ωj,−j)

⊗
T∑
t=1

zt−1z
⊺
t−1

)
µq(ϑ−j)

)
,

(A.8)

where Diag(µq(1/υj)
) is a diagonal matrix where µq(1/υj)

= (µq(1/υj,1), . . . , µq(1/υj,p)).

Hereafter we describe the optimal densities for the parameters used in hierarchical spec-

ification of the prior here assumed.

Proposition A.7. The optimal density for the prior variance 1/υj,k is equal to an

inverse Gaussian distribution q∗(1/υj,k) ≡ IG(aq(1/υj,k), bq(1/υj,k)), where, for each j =

1, . . . , d and k = 1, . . . , p:

aq(1/υj,k) = µq(ϑ2
j,k)
, bq(1/υj,k) = µq(λ2

j,k)
. (A.9)

Moreover, it is useful to know that

µq(1/υj,k) =
√
bq(1/υj,k)/aq(1/υj,k), µq(υj,k) =

√
aq(1/υj,k)/bq(1/υj,k) + 1/bq(1/υj,k).

Proof. Consider the prior specification which involves the parameter υj,k:

ϑj,k|υj,k ∼ N(0, υj,k), υj,k|λ2j,k ∼ Exp
(
λ2j,k/2

)
.

Compute the optimal variational density log q∗(υj,k) ∝ E−υj,k [log p(ϑj,k) + log p(υj,k)]:

log q∗(υj,k) ∝ E−υj,k

[
−1

2
log υj,k −

1

2υj,k
ϑ2
j,k − υj,k

λ2j,k
2

]
∝ −1/2 log υj,k −

1

2υj,k
µq(ϑ2

j,k)
− υj,k

µq(λ2
j,k)

2
,
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and, as a consequence, we obtain:

log q∗(1/υj,k) ∝ −3/2 log(1/υj,k)−
1

2
(1/υj,k)µq(ϑ2

j,k)
−

µq(λ2
j,k)

2(1/υj,k)
.

Take the exponential and notice that the latter is the kernel of an inverse Gaussian

random variable IG(aq(1/υj,k), bq(1/υj,k)), as defined in Proposition A.7.

Proposition A.8. The optimal density for the latent parameter λ2j,k for j = 1, . . . , d

and k = 1, . . . , p is equal to a q∗(λ2j,k) ≡ Ga(aq(λ2
j,k)
, bq(λ2

j,k)
), where:

aq(λ2
j,k)

= h1 + 1, bq(λ2
j,k)

= µq(υj,k)/2 + h2. (A.10)

Proof. Consider the prior specification which involves the parameter λ2j,k:

υj,k|λ2j,k ∼ Exp
(
λ2j,k/2

)
, λ2j,k ∼ Ga(h1, h2).

Compute the optimal variational density as log q∗(λ2j,k) ∝ E−λ2
j,k

[
log p(υj,k) + log p(λ2j,k)

]
:

log q∗(λ2j,k) ∝ E−λ2
j,k

[
h1 log λ

2
j,k − λ2j,k (υj,k/2 + h2)

]
∝ h1 log λ

2
j,k − λ2j,k

(
µq(υj,k)/2 + h2

)
,

then take the exponential and notice that the latter is the kernel of a gamma random

variable Ga(aq(λ2
j,k)
, bq(λ2

j,k)
), as defined in Proposition A.8.

Proposition A.9. The variational lower bound for the multivariate regression model

with adaptive Bayesian lasso prior can be derived analytically and it is equal to:

log p(y; q) = d

(
−T
2
log 2π + aν log bν − log Γ(aν)

)
−

d∑
j=1

(
aq(νj) log bq(νj) − log Γ(aq(νj))

)
− 1

2

d∑
j=2

j−1∑
k=1

(
log τ + 1/τµq(β2

j,k)

)
+

1

2

d∑
j=2

(
log |Σq(βj)|+ (j − 1)

)
+

1

2

(
log |Σq(ϑ)|+ dp

)
+

d∑
j=1

p∑
k=1

1

2
µq(λ2

j,k)
µq(υj,k)

−
d∑

j=1

p∑
k=1

(1/4 log(bq(1/υj,k)/aq(1/υj,k))− logK1/2(
√
bq(1/υj,k)aq(1/υj,k)))

+ dp (h1 log h2 − log Γ(h1))−
d∑

j=1

p∑
k=1

(
aq(λ2

j,k)
log bq(λ2

j,k)
− log Γ(aq(λ2

j,k)
)
)
.

(A.11)
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Proof. As we did in (A.6) for Proposition A.5, the lower bound can be divided into

terms referring to each parameter:

log p(y; q) = A+
d∑

j=1

p∑
k=1

(
Eq

[
log p(y; υj,k)

]︸ ︷︷ ︸
B

+ Eq

[
log p(y;λ2j,k)

]︸ ︷︷ ︸
C

)
,

where A is equal to (A.6) in the previous non-informative model specification. Our

strategy will be to evaluate each piece in the latter separately and then put the results

together. Notice that the computations for the piece A are already available from

Proposition A.5 and they are equal to the lower bound for the model with the non-

informative prior where we still have to take the expectations with respect to the latent

parameters υj,k. Thus, we have that:

A = d

(
−T
2
log 2π + aν log bν − log Γ(aν)

)
−

d∑
j=1

(
aq(νj) log bq(νj) − log Γ(aq(νj))

)
− 1

2

d∑
j=2

j−1∑
k=1

(
log τ + 1/τµq(β2

j,k)

)
+

1

2

d∑
j=2

(
log |Σq(βj)|+ (j − 1)

)
− 1

2

d∑
j=1

p∑
k=1

(
µq(log υj,k) + µq(1/υj,k)µq(ϑ2

j,k)

)
+

1

2

(
log |Σq(ϑ)|+ dp

)
.

Consider now the piece B and recall that, since q∗(1/υj,k) ≡ IG(aq(υj,k), bq(υj,k)), then its

inverse follows q∗(υj,k) ≡ GIG(1/2, bq(1/υj,k), aq(1/υj,k)). We have that

B = Eq

[
log λ2j,k − log 2− υj,k

λ2j,k
2

]
− Eq

[
h(1/2, bq(1/υj,k), aq(1/υj,k))− 1/2 log υj,k −

1

2

(
bq(1/υj,k)υj,k +

aq(1/υj,k)

υj,k

)]
= µq(log λ2

j,k)
− log 2− h(1/2, bq(1/υj,k), bq(1/υj,k)) + 1/2µq(log υj,k)

− 1

2

(
µq(υj,k)µq(λ2

j,k)
− bq(1/υj,k)µq(υj,k) − aq(1/υj,k)µq(1/υj,k)

)
,

where h(ζ, a, b) denotes the logarithm of the normalizing constant of a GIG distribution,

i.e.,

h(ζ, a, b) = ζ/2 log(a/b)− log 2− logKζ(
√
ab).
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The term involving λ2j,k, for j = 1, . . . , d and k = 1, . . . , p, is equal to:

C = Eq

[
h1 log h2 − log Γ(h1) + (h1 − 1) log λ2j,k − λ2j,kh2

]
− Eq

[
aq(λ2

j,k)
log bq(λ2

j,k)
− log Γ(aq(λ2

j,k)
) + (aq(λ2

j,k)
− 1) log λ2j,k − λ2j,kbq(λ2

j,k)

]
= h1 log h2 − log Γ(h1) + (h1 − 1)µq(log λ2

j,k)
− µq(λ2

j,k)
h2

− aq(λ2
j,k)

log bq(λ2
j,k)

+ log Γ(aq(λ2
j,k)

)− (aq(λ2
j,k)

− 1)µq(log λ2
j,k)

+ µq(λ2
j,k)
bq(λ2

j,k)
.

Group together the terms and exploit the analytical form of the optimal parameters

to perform some simplifications. The remaining terms form the lower bound for a

multivariate regression model with adaptive lasso prior.

A.2.3 Adaptive normal-gamma

In order to induce shrinkage towards zero in the estimates of the coefficients, we assume

an adaptive normal-gamma prior on ϑ. Notice that the optimal densities for the vari-

ances νj and for βj remain exactly the same computed in Section A.2.1. The optimal

density q∗(ϑ) has the same structure as the one computed in Proposition (A.6) for the

lasso prior.

Hereafter we describe the optimal densities for the parameters used in hierarchical spec-

ification of the normal-gamma prior.

Proposition A.10. The optimal density for the prior variance υj,k is equal to a gen-

eralized inverse Gaussian distribution q∗(υj,k) ≡ GIG(ζq(υj,k), aq(υj,k), bq(υj,k)), where, for

j = 1, . . . , d and k = 1, . . . , p:

ζq(υj,k) = µq(ηj) − 1/2, aq(υj,k) = µq(ηj)µq(λj,k), bq(υj,k) = µq(ϑ2
j,k)
. (A.12)

Moreover, it is useful to know that

µq(υj,k) =

√
bq(υj,k)Kζq(υj,k)+1

(√
aq(υj,k)bq(υj,k)

)
√
aq(υj,k)Kζq(υj,k)

(√
aq(υj,k)bq(υj,k)

) ,

µq(1/υj,k) =

√
aq(υj,k)Kζq(υj,k)+1

(√
aq(υj,k)bq(υj,k)

)√
bq(υj,k)Kζq(υj,k)

(√
aq(υj,k)bq(υj,k)

) −
2ζq(υj,k)

bq(υj,k)
,

µq(log υj,k) = log

√
bq(υj,k)√
aq(υj,k)

+
∂

∂ζq(υj,k)
logKζq(υj,k)

(√
aq(υj,k)bq(υj,k)

)
,

where Kζ(·) denotes the modified Bessel function of second kind.
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Proof. Consider the prior specification which involves the parameter υj,k:

ϑj,k|υj,k ∼ N(0, υj,k), υj,k|ηj, λj,k ∼ Ga

(
ηj,

ηjλj,k
2

)
.

Compute the optimal variational density as log q∗(υj,k) ∝ E−υj,k [log p(ϑj,k) + log p(υj,k)]:

log q∗(υj,k) ∝ E−υj,k

[
−1

2
log υj,k −

1

2υj,k
β2
j,k + (ηj − 1) log υj,k − υj,k

ηjλj,k
2

]
∝
(
µq(ηj) −

1

2
− 1

)
log υj,k −

1

2υj,k
µq(ϑ2

j,k)
− υj,k

µq(ηj)µq(λj,k)

2
,

where µq(ϑ2
j,k)

= σ2
q(ϑj,k)

+ µ2
q(ϑj,k)

. Take the exponential and notice that the latter is the

kernel of a generalized inverse Gaussian random variable GIG(ζq(υj,k), aq(υj,k), bq(υj,k)), as

defined in Proposition A.10.

Proposition A.11. The optimal density for the latent parameter λj,k for j = 1, . . . , d

and k = 1, . . . , p is equal to a q∗(λj,k) ≡ Ga(aq(λj,k), bq(λj,k)), where:

aq(λj,k) = µq(ηj) + h1, bq(λj,k) =
µq(ηj)µq(υj,k)

2
+ h2. (A.13)

Moreover, it is useful to know that

µq(λj,k) =
aq(λj,k)

bq(λj,k)

, µq(log λj,k) = − log bq(λj,k) +
Γ′(aq(λj,k))

Γ(aq(λj,k))
.

Proof. Consider the prior specification which involves the parameter λj,k:

υj,k|ηj, λj,k ∼ Ga

(
ηj,

ηjλj,k
2

)
, λj,k ∼ Ga(h1, h2).

Compute the optimal variational density as log q∗(λj,k) ∝ E−λj,k
[log p(υj,k) + log p(λj,k)]:

log q∗(λj,k) ∝ E−λj,k

[
(ηj + h1 − 1) log λj,k − λj,k

(ηjυj,k
2

+ h2

)]
∝
(
µq(ηj) + h1 − 1

)
log λj,k − λj,k

(µq(ηj)µq(υj,k)

2
+ h2

)
,

(A.14)

then take the exponential and notice that the latter is the kernel of a gamma random

variable Ga(aq(λj,k), bq(λj,k)), as defined in Proposition A.11.
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Proposition A.12. The optimal density for the latent parameter ηj for j = 1, . . . , d is

equal to:

q∗(ηj) =
h(ηj)

cηj
exp

{
−ηj

p∑
k=1

(µq(λj,k)µq(υj,k)

2
− µq(log λj,k) − µq(log υj,k) + log 2 + h3

)}
,

(A.15)

where log h(ηj) = p(ηj log ηj − log Γ(ηj)) and

cηj =

∫
R+

h(ηj) exp

{
−ηj

p∑
k=1

(µq(λj,k)µq(υj,k)

2
− µq(log λj,k) − µq(log υj,k) + p log 2 + h3

)}
dηj.

Then, we have that µq(ηj) =
∫
R+ ηjq

∗(ηj) dηj.

Proof. Consider the prior specification which involves the parameter ηj:

υj,k|ηj, λj,k ∼ Ga

(
ηj,

ηjλj,k
2

)
, ηj ∼ Exp(h3).

Compute the optimal variational density as log q∗(ηj) ∝ E−ηj [
∑p

k=1 log p(υj,k) + log p(ηj)]:

log q∗(ηj) ∝ E−ηj

[
p (ηj log ηj − log Γ(ηj))− ηj

p∑
k=1

((
λj,kυj,k

2
− log

λj,kυj,k
2

)
+ h3

)]
= p (ηj log ηj − log Γ(ηj))

− ηj

p∑
k=1

(
µq(λj,k)µq(υj,k)

2
− Eυj,kλj,k

[
log

λj,kυj,k
2

]
+ h3

)
,

(A.16)

which is not the kernel of a know distribution, but since E [log x] ≤ logE [x] < E [x], it

holds that

µq(λj,k)µq(υj,k)

2
> Eυj,kλj,k

[
log

λj,kυj,k
2

]
= µq(log λj,k) + µq(log υj,k) − log 2,

hence the exponential of term in (A.16) is integrable and thus we can compute the

normalizing constant and its expectation.
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Proposition A.13. The variational lower bound for the multivariate regression model

with adaptive normal-gamma prior can be derived analytically and it is equal to:

log p(y; q) = d

(
−T
2
log 2π + aν log bν − log Γ(aν)

)
−

d∑
j=1

(
aq(νj) log bq(νj) − log Γ(aq(νj))

)
− 1

2

d∑
j=2

j−1∑
k=1

(
log τ + 1/τµq(β2

j,k)

)
+

1

2

d∑
j=2

(
log |Σq(βj)|+ (j − 1)

)
+

1

2

(
log |Σq(ϑ)|+ dp

)
−

d∑
j=1

p∑
k=1

h(ζq(υj,k), aq(υj,k), bq(υj,k)) + d log h3

+ dp (h1 log h2 − log Γ(h1))−
d∑

j=1

p∑
k=1

(
aq(λj,k) log bq(λj,k) − log Γ(aq(λj,k))

)
+

d∑
j=1

log cηj +
d∑

j=1

µq(ηj)

p∑
k=1

(
µq(λj,k)µq(υj,k) − µq(log λj,k) − µq(log υj,k)

)
.

(A.17)

Proof. As we did in (A.6) for Proposition A.5, the lower bound can be divided into

terms referring to each parameter:

log p(y; q) = A+
d∑

j=1

p∑
k=1

(
Eq

[
log p(y; υj,k)

]︸ ︷︷ ︸
B

+Eq

[
log p(y;λj,k)

]︸ ︷︷ ︸
C

+Eq

[
log p(y; ηj)

]︸ ︷︷ ︸
D

)
,

(A.18)

where A is equal to (A.2.2).

Our strategy will be to evaluate each piece in the latter separately and then put the

results together. Consider the piece B:

B = Eq

[
ηj log ηj + ηj (log λj,k − log 2)− log Γ(ηj) + (ηj − 1) log υj,k − υj,k

ηjλj,k
2

]
− Eq

[
h(ζq(υj,k), aq(υj,k), bq(υj,k)) + (ζq(υj,k) − 1) log υj,k −

aq(υj,k)υj,k

2
−
bq(υj,k)

2υj,k

]
= µq(ηj log ηj) + µq(ηj)

(
µq(log λj,k) − log 2

)
− µq(log Γ(ηj)) − h(ζq(υj,k), aq(υj,k), bq(υj,k))

+ (µq(ηj) − 1)µq(log υj,k) − (ζq(υj,k) − 1)µq(log υj,k)

− 1

2

(
µq(υj,k)µq(ηj)µq(λj,k) − aq(υj,k)µq(υj,k) − bq(υj,k)µq(1/υj,k)

)
,

where h(ζ, a, b) denotes the logarithm of the normalizing constant of a GIG distribution,

i.e.,

h(ζ, a, b) = ζ/2 log(a/b)− log 2− logKζ(
√
ab).
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The term involving λj,k, for j = 1, . . . , d and k = 1, . . . , p, is equal to:

C = Eq [h1 log h2 − log Γ(h1) + (h1 − 1) log λj,k − λj,kh2]

− Eq

[
aq(λj,k) log bq(λj,k) − log Γ(aq(λj,k)) + (aq(λj,k) − 1) log λj,k − λj,kbq(λj,k)

]
= h1 log h2 − log Γ(h1) + (h1 − 1)µq(log λj,k) − µq(λj,k)h2

− aq(λj,k) log bq(λj,k) + log Γ(aq(λj,k))− (aq(λj,k) − 1)µq(log λj,k) + µq(λj,k)bq(λj,k),

and, to conclude, compute the term D:

D = Eq [log h3 − ηjh3]

− Eq

[
log h(ηj)− log cηj − ηj

p∑
k=1

(µq(λj,k)µq(υj,k)

2
− µq(log λj,k) − µq(log υj,k) + log 2 + h3

)]
= log h3 − µq(ηj)h3

− µq(log h(ηj)) + log cηj + µq(ηj)

p∑
k=1

(µq(λj,k)µq(υj,k)

2
− µq(log λj,k) − µq(log υj,k) + log 2 + h3

)
.

Group together the terms and exploit the analytical form of the optimal parameters

to perform some simplifications. The remaining terms form the lower bound for a

multivariate regression model with adaptive normal-gamma prior.

A.2.4 Horseshoe prior

First of all, notice that the optimal densities for the variances νj and for the coefficients

βj remain the same computed in Section A.2.1. The changes in the optimal densities

q∗(ϑ) are stated in the next Proposition.

Proposition A.14. The joint optimal variational density for the parameter ϑ is equal

to q∗(ϑ) ≡ Ndp(µq(ϑ),Σq(ϑ)), where:

Σq(ϑ) =

(
µq(Ω) ⊗

T∑
t=1

zt−1z
⊺
t−1 + µq(1/γ2)Diag(µq(1/υ2))

)−1

,

µq(ϑ) = Σq(ϑ)

T∑
t=1

(
µq(Ω) ⊗ zt−1

)
yt,

(A.19)

where Diag(µq(1/υ2)) is a diagonal matrix and µq(1/υ2) = (µq(1/υ2
1,1)
, µq(1/υ2

1,2)
, . . . , µq(1/υ2

d,p)
).
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Under the row-independence assumption, the optimal variational density for the pa-

rameter ϑj is equal to q∗(ϑj) ≡ Np(µq(ϑj)
,Σq(ϑj)), where:

Σq(ϑj) =

(
µq(ωj,j)

T∑
t=1

zt−1z
⊺
t−1 + µq(1/γ2)diag(µq(1/υ2

j )
)

)−1

,

µq(ϑj)
= Σq(ϑj)

(
T∑
t=1

(
µq(ωj)

⊗ zt−1

)
yt −

(
µq(ωj,−j)

⊗
T∑
t=1

zt−1z
⊺
t−1

)
µq(ϑ−j)

)
,

(A.20)

where Diag(µq(1/υ2
j )
) is a diagonal matrix and µq(1/υ2

j )
= (µq(1/υ2

j,1)
, µq(1/υ2

j,2)
, . . . , µq(1/υ2

j,p)
).

Hereafter we describe the optimal densities for the parameters used in hierarchical spec-

ification of the prior.

Proposition A.15. The optimal density for the prior local variance υ2j,k is equal to

an inverse-gamma distribution q∗(υ2j,k) ≡ IGa(1, bq(υ2
j,k)

), where, for j = 1, . . . , d and

k = 1, . . . , p:

bq(υ2
j,k)

= µq(1/λj,k) +
1

2
µq(ϑ2

j,k)
µq(1/γ2). (A.21)

Proof. Consider the prior specification which involves the parameter υ2j,k:

ϑj,k|γ2, υ2j,k ∼ N(0, γ2υ2j,k), υ2j,k|λj,k ∼ IGa (1/2, 1/λj,k) .

Compute the optimal variational density log q∗(υ2j,k) ∝ E−υ2
j,k

[
log p(ϑj,k) + log p(υ2j,k)

]
:

log q∗(υ2j,k) ∝ E−υ2
j,k

[
−1

2
log υ2j,k −

1

2γ2υ2j,k
ϑ2
j,k − (1/2 + 1) log υ2j,k −

1

υ2j,kλj,k

]
∝ −2 log υ2j,k −

1

υ2j,k

(
µq(1/γ2)µq(ϑ2

j,k)
/2 + µq(1/λj,k)

)
.

Take the exponential and notice that the latter is the kernel of an inverse-gamma random

variable IGa(1, bq(υ2
j,k)

), as defined in Proposition A.15.

Proposition A.16. The optimal density for the prior global variance γ2 is equal to an

inverse-gamma distribution q∗(γ2) ≡ IGa(aq(γ2), bq(γ2)), where:

aq(γ2) =
dp+ 1

2
, bq(γ2) = µq(1/η) +

1

2

d∑
j=1

p∑
k=1

µq(1/υ2
j,k)
µq(ϑ2

j,k)
. (A.22)



134 Appendix

Proof. Consider the prior specification which involves the parameter γ2:

ϑj,k|γ2, υ2j,k ∼ N(0, γ2υ2j,k), γ2|η ∼ IGa (1/2, 1/η) .

Compute the optimal variational density log q∗(γ2) ∝ E−γ2

[∑d
j=1

∑p
k=1 log p(ϑj,k) + log p(γ2)

]
:

log q∗(γ2) ∝ E−γ2

[
−dp

2
log γ2 − 1

2γ2υ2j,k
ϑ2
j,k − (1/2 + 1) log γ2 − 1

γ2η

]

∝ −
(
dp+ 1

2
+ 1

)
log γ2 − 1

γ2

(
d∑

j=1

p∑
k=1

µq(1/υ2
j,k)
µq(ϑ2

j,k)
/2 + µq(1/η)

)
.

Take the exponential and notice that the latter is the kernel of an inverse-gamma random

variable IGa(aq(γ2), bq(γ2)), as defined in Proposition A.16.

Proposition A.17. The optimal density for the latent parameter λj,k is equal to an

inverse-gamma distribution q∗(λj,k) ≡ IGa(1, bq(λj,k)), where, for j = 1, . . . , d and k =

1, . . . , p:

bq(λj,k) = 1 + µq(1/υ2
j,k)
. (A.23)

Proof. Consider the prior specification which involves the parameter λj,k:

υ2j,k|λj,k ∼ IGa (1/2, 1/λj,k) , λj,k ∼ IGa (1/2, 1) .

Compute the optimal variational density log q∗(λj,k) ∝ E−λj,k

[
log p(υ2j,k) + log p(λj,k)

]
:

log q∗(λj,k) ∝ E−λj,k

[
−1

2
log λj,k −

1

υ2j,kλj,k
− (1/2 + 1) log λj,k −

1

λj,k

]
∝ −2 log λj,k −

1

λj,k

(
1 + µq(1/υ2

j,k)

)
.

Take the exponential and notice that the latter is the kernel of an inverse-gamma random

variable IGa(1, bq(λj,k)), as defined in Proposition A.17.

Proposition A.18. The optimal density for the latent parameter η is equal to an

inverse-gamma distribution q∗(η) ≡ IGa(1, bq(η)), where:

bq(η) = 1 + µq(1/γ2). (A.24)
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Proof. Consider the prior specification which involves the parameter η:

γ2|η ∼ IGa (1/2, 1/η) , η ∼ IGa (1/2, 1) .

Compute the optimal variational density log q∗(η) ∝ E−η [log p(γ
2) + log p(η)]:

log q∗(η) ∝ E−η

[
−1

2
log η − 1

γ2η
− (1/2 + 1) log η − 1

η

]
∝ −2 log η − 1

η

(
1 + µq(1/γ2)

)
.

Take the exponential and notice that the latter is the kernel of an inverse-gamma random

variable IGa(1, bq(η)), as defined in Proposition A.18.

Proposition A.19. The variational lower bound for the multivariate regression model

with Horseshoe prior can be derived analytically and it is equal to:

log p(y; q) = d

(
−T
2
log 2π + aν log bν − log Γ(aν)

)
−

d∑
j=1

(
aq(νj) log bq(νj) − log Γ(aq(νj))

)
− 1

2

d∑
j=2

j−1∑
k=1

(
log τ + 1/τµq(β2

j,k)

)
+

1

2

d∑
j=2

(
log |Σq(βj)|+ (j − 1)

)
+

1

2

(
log |Σq(ϑ)|+ dp

)
+ µq(1/γ2)

(
µq(1/η) +

d∑
j=1

p∑
k=1

µq(ϑ2
j,k)
µq(1/υ2

j,k)

)

+
d∑

j=1

p∑
k=1

(
µq(1/υ2

j,k)
µq(1/λj,k) − log bq(υ2

j,k)
− log bq(λj,k) − log π

)
− aq(γ2) log bq(γ2) − log bq(η) − log π.

(A.25)

Proof. As we did in (A.6) for Proposition A.5, the lower bound can be divided into

terms referring to each parameter:

log p(y; q) = A+ Eq

[
log p(y; γ2)

]︸ ︷︷ ︸
B

+Eq

[
log p(y; η)

]︸ ︷︷ ︸
C

+
d∑

j=1

p∑
k=1

(
Eq

[
log p(y; υ2j,k)

]︸ ︷︷ ︸
D

+Eq

[
log p(y;λj,k)

]︸ ︷︷ ︸
E

)
,

(A.26)

where A is similar to (A.6) in the previous non-informative model specification. Our

strategy will be to evaluate each piece in the latter separately and then put the results

together. Notice that the computations for the piece A are similar to Proposition A.5.
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Hence, we have that:

A = d

(
−T
2
log 2π + aν log bν − log Γ(aν)

)
−

d∑
j=1

(
aq(νj) log bq(νj) − log Γ(aq(νj))

)
− 1

2

d∑
j=2

j−1∑
k=1

(
log τ + 1/τµq(β2

j,k)

)
+

1

2

d∑
j=2

(
log |Σq(βj)|+ (j − 1)

)
− 1

2

d∑
j=1

p∑
k=1

(
µq(log δ2) + µq(log υ2

j,k)
+ µq(1/δ2)µq(1/υ2

j,k)
µq(ϑ2

j,k)

)
+

1

2

(
log |Σq(ϑ)|+ dp

)
.

(A.27)

Consider now the piece B. We have that:

B = Eq

[
−1

2
log η − 1

2
log π − (1/2 + 1) log γ2 − 1/(γ2η)

]
− Eq

[
aq(γ2) log bq(γ2) − log Γ(aq(γ2))− (aq(γ2) + 1) log γ2 − bq(γ2)/γ

2
]

= −1

2
µq(log η) −

1

2
log π − (1/2 + 1)µq(log γ2) − µq(1/γ2)µq(1/η)

− aq(γ2) log bq(γ2) + log Γ(aq(γ2)) + (aq(γ2) + 1)µq(log γ2) + µq(1/γ2)bq(γ2),

while, C reduces to:

C = Eq

[
−1

2
log π − (1/2 + 1) log η − 1/η

]
− Eq

[
log bq(η) − 2 log η − bq(η)/η

]
= −1

2
log π − (1/2 + 1)µq(log η) − µq(1/η) − log bq(η) + 2µq(log η) + µq(1/η)bq(η).

The remaining terms behave likely B and C. For j = 1, . . . , d and k = 1, . . . , p:

D = Eq

[
−1

2
log λj,k −

1

2
log π − (1/2 + 1) log υ2j,k − 1/(υ2j,kλj,k)

]
− Eq

[
log bq(υ2

j,k)
− 2 log υ2j,k − bq(υ2

j,k)
/υ2j,k

]
= −1

2
µq(log λj,k) −

1

2
log π − (1/2 + 1)µq(log υ2

j,k)
− µq(1/υ2

j,k)
µq(1/λj,k)

− log bq(υ2
j,k)

+ 2µq(log υ2
j,k)

+ µq(1/υ2
j,k)
bq(υ2

j,k)
,

and

E = Eq

[
−1

2
log π − (1/2 + 1) log λj,k − 1/λj,k

]
− Eq

[
log bq(λj,k) − 2 log λj,k − bq(λj,k)/λj,k

]
= −1

2
log π − (1/2 + 1)µq(log λj,k) − µq(1/λj,k) − log bq(λj,k) + 2µq(log λj,k) + µq(1/λj,k)bq(λj,k).
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Group together the terms and exploit the analytical form of the optimal parameters

to perform some simplifications. The remaining terms form the lower bound for a

multivariate regression model with Horseshoe prior.

A.3 Variational predictive density

Recall that the variational predictive posterior can be computed as:

q(yt+1|z1:t) =
∫
p(yt+1|zt, ξ)q∗(ξ)dξ =

∫ ∫
p(yt+1|zt,ϑ,Ω)q(ϑ)q(Ω)dϑ dΩ, (A.1)

which requires only a simulation step according to the first methodology presented in

the main paper. If we wish to make the estimation simpler, we can integrate out the

precision parameter Ω (whose optimal variational density is discussed in Section 2.3.2)

in the following way:

q(yt+1|z1:t) =
∫
q(ϑ)

[∫
Nd(yt+1;Θzt,Ω

−1)Wishartd(Ω; δ,H)dΩ

]
︸ ︷︷ ︸

A

dϑ, (A.2)

where

A =
2−d(δ+1)/2|H|δ/2

πd/2Γd(δ/2)

∫
|Ω|(δ−d)/2 exp

{
−1

2
tr
{
Ω
(
H−1 + (yt+1 −Θzt)(yt+1 −Θzt)

⊺
)}}

︸ ︷︷ ︸
Kernel of a Wishartd(δ+1,(H−1+(yt+1−Θzt)(yt+1−Θzt)⊺)

−1)

dΩ

=
|1 + 1

v
(yt+1 −Θzt)

⊺vH(yt+1 −Θzt)|−
v+d
2 Γ(v+d

2
)

πd/2vd/2|H−1|1/2Γ(v/2)
= h(yt+1|zt,ϑ),

(A.3)

is the density function of a multivariate Student-t distribution with dimension d, v =

δ − d + 1 degrees of freedom, mean vector Θzt and scaling matrix S = (vH)−1, i.e.,

tv(Θzt,S). Then, the integral in (A.1) becomes

q(yt+1|z1:t) =
∫
h(yt+1|zt,ϑ)q(ϑ)dϑ, (A.4)

which requires to simulate from the optimal multivariate Gaussian distribution of ϑ

according to the second methodology presented in the main paper.

A second-order approximation can be implemented in order to increase the compu-

tational efficiency. To this aim, we propose to approximate the multivariate Student-t



138 Appendix

in (A.4) with the closest multivariate normal distribution in terms of KL divergence:

KL(h∥ϕ) ∝ −
∫

log ϕ(yt+1|m,R−1)h(yt+1|zt,ϑ) dyt+1

= −Eh(log ϕ(yt+1|m,R−1)) = ψ(m,R),

(A.5)

where, in particular,

ψ(m,R) ∝ Eh

(
−1

2
logR+

1

2
(yt+1 −m)⊺R(yt+1 −m)

)
= −1

2
logR+

1

2
(Θzt −m)⊺R(Θzt −m) +

v

2(v − 2)
tr {RS} ,

(A.6)

which turns out to be minimized when m = Θzt and R = v−2
v
S−1. If we substitute the

function h(·) with its Gaussian approximation we get

q(yt+1|z1:t) =
∫
ϕ(yt+1|m,R−1)q(ϑ)dϑ, (A.7)

where now ϕ(yt+1|Θzt,R
−1) denotes the density of the multivariate normal distribution

that is closest in a KL sense to the multivariate Student-t h(yt+1|zt,ϑ). The advantage
of this procedure is that the integral in (A.7) can be solved analytically leading to a

variational predictive density q(yt+1|z1:t) which is a multivariate Gaussian distribution

with variance matrix Σpred and mean vector µpred. Define Zt = (Id ⊗ z⊺t ) and compute

the integral above:

q(yt+1|z1:t) ∝
∫

exp

{
−1

2

[
(yt+1 − Ztϑ)

⊺R(yt+1 − Ztϑ) + (ϑ− µq(ϑ))
⊺Σ−1

q(ϑ)(ϑ− µq(ϑ))
]}

dϑ

∝ exp

{
−1

2
y⊺
t+1Ryt+1

}
×
∫

exp

{
−1

2

[
ϑ⊺(Σ−1

q(ϑ) + Z⊺
tRZt)ϑ− 2ϑ⊺(Σ−1

q(ϑ)µq(ϑ) + ZtRyt+1)
]}

dϑ,

(A.8)

where the term in the integral is the kernel of a multivariate Gaussian random variable

with variance matrix Σ̃ = (Σ−1
q(ϑ) + Z⊺

tRZt)
−1 and mean µ̃ = Σ̃(Σ−1

q(ϑ)µq(ϑ) + ZtRyt+1).

Solve the integral and get:

q(yt+1|z1:t) ∝ exp

{
−1

2
(y⊺

t+1Ryt+1 − µ̃⊺Σ̃µ̃)

}
∝ exp

{
−1

2
(y⊺

t+1Ryt+1 − y⊺
t+1RZtΣ̃Z⊺

tRyt+1 − 2yt+1RZtΣ̃Σ−1
q(ϑ)µq(ϑ))

}
= exp

{
−1

2
(y⊺

t+1(R−RZtΣ̃Z⊺
tR)yt+1 − 2yt+1RZtΣ̃Σ−1

q(ϑ)µq(ϑ))

}
,

(A.9)
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which is the kernel of a multivariate Gaussian with variance matrix Σpred = (R −
RZtΣ̃Z⊺

tR)−1 and mean µpred = ΣpredRZtΣ̃Σ−1
q(ϑ)µq(ϑ). To conclude, the second-order

Gaussian approximation to the variational predictive posterior is such that q(yt+1|z1:t) ≡
Nd(µpred,Σpred).

Figure A.1 shows the approximation of variational predictive posterior with Monte

Carlo methods (MC) and via Gaussian approximation (GA) varying the degrees of

freedom δ̂ for the distribution of Ω. We can see that if δ̂ ≫ d the approximation is

rather accurate, while the accuracy decreases as δ̂ approaches d. However, even for the

case δ̂ ≈ d, we can still obtain rather precise estimates of the first and second moments

of the variational predictive posterior.

Figure A.1: Second-order approximation of the predictive density.

A.4 Simulation details and additional results

In this Section we report additional details and results on the simulation study we

highlighted in Section 3.3. We set the length of the time series equal to T = 360,

corresponding to 30 years of monthly data, the dimension of the multivariate regression

model equal to d = 15, 30, 49 and we further assume both moderate level of sparsity

(50% of true zeros) and high level of sparsity (90% of true zeros). The true matrix Θ is

generated as follows: we fix to zero sd2 entries at random, where s = 0.5, 0.9, while the

remaining non zero coefficients are sampled from a mixutre of two Gaussian with means
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−0.08 and 0.08, and standard deviation 0.1. Figure A.2 reports the distribution of the

non-zero parameters. Notice the draws from the Normal distributions are truncated at

−0.05 and 0.05 respectively, to avoid very small values for the non zero parameters.

Figure A.2: Distribution of non-zero parameters in the regression matrices used to
generate the data for the simulation study.

Figure A.3 shows examples of the true regression matrixes for different dimensions

d = 15, 30, 49 and for two alternative levels of sparsity s = 0.5, 0.9, that is 50% and 90%

of the entries in the matrix Θ are set to zero.

(a) d = 15 moderate sparsity (b) d = 30 moderate sparsity (c) d = 49 moderate sparsity

(d) d = 15 high sparsity (e) d = 30 high sparsity (f) d = 49 high sparsity

Figure A.3: Regression matrices for the simulation study. We assume both moderate
level of sparsity (top, 50% of zeros) and high level of sparsity (bottom, 90% of zeros).
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Additional simulation results. We now show some of the additional results on

smaller dimensional simulation cases. Figure A.4 reports the Frobenius norm (top

panels) and the F1-score (bottom panels) as in the main text. Similar to the larger-

dimensional cases in the main text, our VB estimation procedure outperform both

MCMC and LVB approach. For instance, focusing on the moderate sparsity case (i.e.,

50% of zeros in the true matrix), the different priors performs equally given the es-

timation method, while when the sparsity is high horseshoe tends to perform better

that lasso and normal-gamma. Another interesting result is that when the sparsity

level is fixed at 50%, methods that work with the reparametrization of the regression

matrix provide results similar to the non-informative priors and the difference with our

approach is evident.

(a) Frobenius norm d = 15, moderate sparsity (b) Frobenius norm d = 15, high sparsity

(c) F1-score norm d = 15, moderate sparsity (d) F1-score norm d = 15, high sparsity

Figure A.4: Top panels report the Frobenius norm of Θ − Θ̂ for different hierar-
chical shrinkage priors and inference approaches. Bottom panels report the F1-score
computed looking at the true non-null parameters in Θ and the non-null parameters
in the estimated matrix Θ̂. The box charts show the results for N = 100 replications,
d = 15 and different levels of sparsity.
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A.5 Additional empirical results

Computational cost of the recursive forecasts. The faster computation turns

out to be key within the context of recursive forecasting. Table A.1 shows the computa-

tional time in hours, for each estimation method and across different hierarchical priors.

Our approach is significantly faster than an MCMC estimation method and performs

virtually on par with a linearized variational Bayes method.

d = 30 d = 49

Normal BL NG HS Normal BL NG HS

MCMC 16.9 17.8 160.1 17.8 19.4 20.4 155.9 20.3
LVB 0.1 0.1 100.7 0.2 0.5 0.5 94.6 0.5
VB 1.8 1.5 110.4 1.7 5.4 4.0 113.2 4.4

Table A.1: Computational time in hours to perform the empirical analysis.

In-sample estimates for 49 industries. Figure A.5 shows the in-sample posterior

estimates estimates of the regression coefficients for the d = 30 industry case.

The posterior estimates highlight three main results. First, the Θ̂ obtained from the

MCMC and the linearised variational Bayes tend to coincide. This is reassuring since,

in principle, the linearised VB and the MCMC estimation setting should converge to

similar posterior estimates (see, e.g., Gefang et al., 2019; Chan and Yu, 2022).

The second main result from Figure A.5 is that for both the MCMC and the linearised

VB method there are visible differences in the posterior estimates across shrinkage priors.

For instance, the Θ̂ from the BNG method is arguably more sparse than the one obtained

from the horseshoe prior (BHS). Similarly, under the linearised variational inference

method, the regression parameters estimates are more sparse under the LVBHS compared

to the Bayesian adaptive lasso (LVBL).

Perhaps more interesting, the third main fact that emerges from Figure A.5 is that

under our variational inference method the estimates of Θ are (1) more sparse com-

pared to both MCMC and linearised VB, and (2) are remarkably similar across different

shrinkage priors.
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(a) Θ from BL (b) Θ from LVBL (c) Θ from VBL

(d) Θ from BNG (e) Θ from LVBNG (f) Θ from VBNG

(g) Θ from BHS (h) Θ from LVBHS (i) Θ from VBHS

Figure A.5: Posterior estimates of the regression coefficients Θ for different estima-
tion methods. We report the estimates for the d = 49 industry case obtained from the
Bayesian adaptive lasso (top panels), the adaptive normal gamma (middle panels),
and the horseshoe (bottom panels).
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This Appendix refers to Chapter 3. In particular, it provides the complete derivation of

the optimal variational density approximations for both the latent stochastic volatility

state and the corresponding structural parameters. Moreover, we show some additional

empirical results.

B.1 Parameters optimal densities

Proposition B.1. The optimal variational density for the regression parameter vector

is q(β) ≡ Np(µq(β),Σq(β)) where:

Σq(β) =
(
X⊺H−1X+Σ−1

β

)−1
µq(β) = Σq(β)

(
X⊺H−1y +Σ−1

β µβ

)
, (B.1)

where H−1 = Diag
(
Eh

[
eh1
])

is a diagonal matrix with elements that depend on the

optimal density for the latent log-volatilities.

Proof. The logarithm of the full conditional (β|rest) is proportional to:

log p(β|rest) ∝ −1

2
(y −Xβ)⊺ diag

(
eh1
)
(y −Xβ)− 1

2

(
β − µβ

)⊺
Σ−1

β

(
β − µβ

)
∝ −1

2

(
β⊺X⊺diag

(
eh1
)
Xβ − 2β⊺X⊺diag

(
eh1
)
y
)
− 1

2

(
β⊺Σ−1

β β − 2β⊺Σ−1
β µβ

)
.

Compute the optimal variational density as log q(β) = E−β [log p(β|rest)]:

log q(β) ∝ −1

2

(
β⊺X⊺diag

(
Eh

[
eh1
])

Xβ − 2β⊺X⊺
(
Eh

[
eh1
])

y
)

− 1

2

(
β⊺Σ−1

β β − 2β⊺Σ−1
β µβ

)
= −1

2

(
β⊺(X⊺H−1X+Σ−1

β )β − 2β⊺(X⊺H−1y +Σ−1
β µβ)

)
,

where H−1 = Diag
(
Eh

[
eh1
])
. Take the exponential and end up with the kernel of a

multivariate Gaussian distribution with parameters as in (B.1).
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Proposition B.2. The optimal variational density for the unconditional mean of the

log-volatility process is q(c) ≡ N(µq(c), σ
2
q(c)) where:

σ2
q(c) = (µq(1/η2)ι

⊺
n+1µq(Q)ιn+1 + 1/σ2

c )
−1

µq(c) = σ2
q(c)(µq(1/η2)ι

⊺
n+1µq(Q)µq(h) + µc/σ

2
c ).

(B.2)

where

µq(Q) =



1 −µq(ρ) . . . 0 0

−µq(ρ) 1 + µq(ρ2) . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 + µq(ρ2) −µq(ρ)

0 0 . . . −µq(ρ) 1


.

Proof. The logarithm of the full conditional (c|rest) is proportional to:

log p(c|rest) ∝ − 1

2η2
(h− cιn+1)

⊺Q(h− cιn+1)−
1

2σ2
c

(c− µc)
2

∝ − 1

2η2
(c2ι⊺n+1Qιn+1 − 2cι⊺n+1Qh)− 1

2σ2
c

(c2 − 2cµc).

Compute the optimal variational density as log q(c) = E−c [log p(c|rest)]:

log q(c) ∝ −1

2
Eη2 [1/η

2](c2ι⊺n+1Eρ[Q]ιn+1 − 2cι⊺n+1Eρ[Q]Eh[h])−
1

2σ2
c

(c2 − 2cµc)

= −1

2
µq(1/η2)(c

2ι⊺n+1µq(Q)ιn+1 − 2cι⊺n+1µq(Q)µq(h))−
1

2σ2
c

(c2 − 2cµc)

= −1

2

(
c2(µq(1/η2)ι

⊺
n+1µq(Q)ιn+1 + 1/σ2

c )− 2c(ι⊺n+1µq(Q)µq(h) + µc/σ
2
c )
)
,

where µq(Q) denotes the element-wise expectation of the matrixQ. Take the exponential

and end up with the kernel of an univariate Gaussian distribution with parameters as

in (B.2).

Proposition B.3. The optimal variational density for the autoregressive parameter has

the following form:

log q(ρ) ∝ 1

2
log(1− ρ2)− 1

2
µq(1/η2)

(
ρ2

n−1∑
t=1

at − 2ρ
n−1∑
t=0

bt

)
, ρ ∈ (−1, 1) (B.3)
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with

at = Eq

[
(ht − c)2

]
= (µq(ht) − µq(c))

2 + σ2
q(ht) + σ2

q(c) (B.4)

bt = Eq [(ht − c)(ht+1 − c)] = (µq(ht) − µq(c))(µq(ht+1) − µq(c)) + σq(ht,ht+1) + σ2
q(c), (B.5)

where σq(ht,ht+1) denotes the covariance between ht and ht+1 under the approximating

density q. Notice that log q(ρ) can be written as:

log q(ρ) ∝ 1

2
log(1− ρ2)− 1

2
µq(1/η2)

(
n−1∑
t=1

at

)(
ρ2 −

∑n−1
t=0 bt∑n−1
t=1 at

)2

, ρ ∈ (−1, 1) (B.6)

thus the normalizing constant and the first two moments can be found by Monte Carlo

methods by sampling from an univariate Gaussian distribution with mean
∑n−1

t=0 bt∑n−1
t=1 at

and

precision µq(1/η2)

(∑n−1
t=1 at

)
.

Proof. The logarithm of the full conditional (ρ|rest) is proportional to:

log p(ρ|rest) ∝ 1

2
log |Q| − 1

2η2
(h− cιn+1)

⊺Q(h− cιn+1)

∝ 1

2
log(1− ρ2)− 1

2η2

(
ρ2

n−1∑
t=1

(ht − c)2 − 2ρ
n−1∑
t=0

(ht − c)(ht+1 − c)

)
,

for ρ ∈ (−1, 1). Compute the optimal variational density as log q(ρ) = E−ρ [log p(ρ|rest)]:

log q(ρ) ∝ 1

2
log(1− ρ2)− 1

2
Eq

[
1/η2

](
ρ2

n−1∑
t=1

Eq

[
(ht − c)2

]
− 2ρ

n−1∑
t=0

Eq [(ht − c)(ht+1 − c)]

)

=
1

2
log(1− ρ2)− 1

2
µq(1/η2)

(
ρ2

n−1∑
t=1

at − 2ρ
n−1∑
t=0

bt

)
, ρ ∈ (−1, 1),

where at and bt are as in (B.4). Take the exponential and obtain:

q(ρ) ∝
√

1− ρ2 Iρ∈(−1,1) ϕ

(
ρ;

∑n−1
t=0 bt∑n−1
t=1 at

,
1

µq(1/η2)

∑n−1
t=1 at

)
,

where ϕ(x;m, s2) denotes the density function of an univariate gaussian distribution

with mean m and variance s2.
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Proposition B.4. The optimal variational density for the variance parameter is an

inverse-gamma distribution q(η2) ≡ IGa(Aq(η2), Bq(η2)), where:

Aq(η2) = A+
n+ 1

2

Bq(η2) = B +
1

2
(µq(h) − µq(c)ιn+1)

⊺µq(Q)(µq(h) − µq(c)ιn+1)

+
1

2

(
tr
{
Σq(h)µq(Q)

}
+ σ2

q(c)ι
⊺
n+1µq(Q)ιn+1

)
,

(B.7)

and recall that µq(1/η2) = Aq(η2)/Bq(η2).

Proof. The logarithm of the full conditional (η2|rest) is proportional to:

log p(η2|rest) ∝ −n+ 1

2
log η2 − 1

2η2
(h− cιn+1)

⊺Q(h− cιn+1)− (A+ 1) log η2 −B/η2

∝ −
(
A+

n+ 1

2
+ 1

)
log η2 − 1

η2

(
B +

1

2
(h− cιn+1)

⊺Q(h− cιn+1)

)
.

Compute the optimal variational density as log q(η2) = E−η2 [log p(η
2|rest)]:

log q(η2) ∝ −
(
A+

n+ 1

2
+ 1

)
log η2 − 1

η2

(
B +

1

2
Ec,ρ,h [(h− cιn+1)

⊺Q(h− cιn+1)]

)
,

where

Ec,ρ,h [(h− cιn+1)
⊺Q(h− cιn+1)] = Ec,ρ,h

[
h⊺Qh− 2ch⊺Qιn+1 + c2ι⊺n+1Qιn+1

]
= Eh

[
h⊺µq(Q)h

]
+ Ec[c

2]ι⊺n+1µq(Q)ιn+1

− 2µq(c)µ
⊺
q(h)µq(Q)ιn+1

= tr
{
Eh[hh

⊺]µq(Q)

}
+ (µ2

q(c) + σ2
q(c))ι

⊺
n+1µq(Q)ιn+1

− 2µq(c)µ
⊺
q(h)µq(Q)ιn+1

= tr
{(

µq(h)µ
⊺
q(h) +Σq(h)

)
µq(Q)

}
+ (µ2

q(c) + σ2
q(c))ι

⊺
n+1µq(Q)ιn+1

− 2µq(c)µ
⊺
q(h)µq(Q)ιn+1

= µ⊺
q(h)µq(Q)µq(h) + µ2

q(c)ι
⊺
n+1µq(Q)ιn+1

− 2µq(c)µ
⊺
q(h)µq(Q)ιn+1

+ tr
{
Σq(h)µq(Q)

}
+ σ2

q(c)ι
⊺
n+1µq(Q)ιn+1

= (µq(h) − µq(c)ιn+1)
⊺µq(Q)(µq(h) − µq(c)ιn+1)

+ tr
{
Σq(h)µq(Q)

}
+ σ2

q(c)ι
⊺
n+1µq(Q)ιn+1.
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Take the exponential and end up with the kernel of an inverse-gamma distribution with

parameters as in (B.7).

B.2 Homoschedastic approximation

First of all, the joint distribution of the latent states and the observations, given the set

of covariates is given by:

log p(h,y|X) ∝ log p(y|h1,X) + log p(h)

= −1

2
ι⊺nh1 −

1

2
s⊺e−h1 − 1

2η2
(h− cιn+1)

⊺Q(h− cιn+1), (B.1)

where s = (s1, . . . , sn)
⊺ with st = (yt−x⊺

tβ)
2, h1 = (h1, . . . , hn)

⊺ and eh1 = (eh1 , . . . , ehn)⊺.

Let the homoschedastic approximation be defined as h ∼ Nn+1(Wf , τ 2Γ−1) where

µq(h) = Wf is the mean vector and Σq(h) = τ 2Γ−1 is the variance-covariance ma-

trix. More precisely, Γ is a tridiagonal precision matrix with diagonal elements Γ1,1 =

Γn+1,n+1 = 1 and Γi,i = 1 + γ2 for i = 2, . . . , n, and off-diagonal elements Γi,j = −γ if

|i − j| = 1 and 0 elsewhere (see Rue and Held, 2005). Under this setting, the density

function of the approximate distribution is given by:

log ϕ(h|Wf , τ 2Γ−1) ∝ −n+ 1

2
log(τ 2)−n

2
log(1−γ2)− 1

2τ 2
(h−Wf)⊺Γ(h−Wf). (B.2)

Define the variational lower bound (ELBO) as:

ψ(f , τ 2, γ) = Eq(log p(h,y))− Eq(log q(h))

∝ −1

2
ι⊺nW1f −

1

2
µ⊺

q(s)e
−W1f+

1
2
τ2ιn

− 1

2
µq(1/η2)(Wf − µq(c)ιn+1)

⊺µq(Q)(Wf − µq(c)ιn+1)

− 1

2
µq(1/η2)τ

2tr(Γ−1µq(Q))

+
n+ 1

2
log(τ 2) +

n

2
log(1− γ2), (B.3)

where µq(s) = (µq(s1), . . . , µq(sn))
⊺ with µq(st) = (yt − x⊺

tµq(β))
2 + tr

{
Σq(β)xtx

⊺
t

}
, and

W1 ∈ Rn×k denotes the matrix obtained by deleting the first row of W. Moreover

tr(Γ−1µq(Q)) = 2 + (1 + µq(ρ2))(n− 1)− 2nγµq(ρ).
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Let ξ = (f , τ 2, γ) be the collection of the optimal parameters, the optimization we have

to solve is equal to ξ̂ = argmaxξ ψ(f , τ
2, γ), where the objective function ψ(f , τ 2, γ) has

gradient equal to

∇ξψ(f , τ
2, γ) =


∇fψ(f , τ

2, γ)

∇τ2ψ(f , τ
2, γ)

∇γψ(f , τ
2, γ)

 ,
where

∇fψ(f , τ
2, γ) = −1

2
W⊺[0, ι⊺n]

⊺ +
1

2
W⊺

(
[0,µ⊺

q(s)]
⊺ ⊙ e−Wf+ 1

2
τ2ιn+1

)
− µq(1/η2)W

⊺µq(Q)(Wf − µq(c)ιn+1), (B.4)

∇τ2ψ(f , τ
2, γ) = −1

4
(µq(s) ⊙ ιn)

⊺e−W1f+
1
2
τ2ιn

− 1

2
µq(1/η2)(2 + (1 + µq(ρ2))(n− 1)− 2nγµq(ρ)) +

n+ 1

2τ 2
, (B.5)

∇γψ(f , τ
2, γ) = nτ 2µq(1/η2)µq(ρ) −

nγ

1− γ2
, (B.6)

and Hessian equal to:

Hξ =


∇2

f ,fψ(f , τ
2, γ) ∇2

f ,τ2ψ(f , τ
2, γ) ∇2

f ,γψ(f , τ
2, γ)

∇2
f ,τ2ψ(f , τ

2, γ) ∇2
τ2,τ2ψ(f , τ

2, γ) ∇2
τ2,γψ(f , τ

2, γ)

∇2
f ,γψ(f , τ

2, γ) ∇2
τ2,γψ(f , τ

2, γ) ∇2
γ,γψ(f , τ

2, γ)

 ,
with

∇2
f ,fψ(f , τ

2, γ) = −1

2
W⊺

{
Diag

[
[0,µ⊺

q(s)]
⊺ ⊙ e−Wf+ 1

2
τ2ιn+1

]
+ µq(1/η2)µq(Q)

}
W

(B.7)

∇2
τ2,τ2ψ(f , τ

2, γ) = −1

8
(µq(s) ⊙ ιn)

⊺e−W1f+
1
2
τ2ιn − n+ 1

2τ 4
(B.8)

∇2
γ,γψ(f , τ

2, γ) = −n(1 + γ2)

(1− γ2)2
(B.9)

∇2
f ,τ2ψ(f , τ

2, γ) =
1

4
W⊺([0,µ⊺

q(s)]
⊺ ⊙ e−Wf+ 1

2
τ2ιn+1) (B.10)

∇2
f ,γψ(f , τ

2, γ) = 0k (B.11)

∇2
τ2,γψ(f , τ

2, γ) = nµq(ρ)µq(1/η2) (B.12)

where a = diag(A) denotes the operator that returns the vector a ∈ Rn of elements

belonging to the main diagonal of the square matrix A ∈ Rn×n, while A = Diag(a)
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denotes the operator that returns a diagonal square matrix A ∈ Sn
+ whose entries

consist of the corresponding elements of the vector a ∈ Rn.

B.3 Heteroschedastic approximation

Let the heteroschedastic approximation be defined as h ∼ Nn+1(Wfq(h),Σq(h)) where the

mean vector is µq(h) = Wfq(h). To find the optimal parameters of the approximating

density (fq(h),Σq(h)), we have to solve the following optimization problem:

ξ̂ = argmax
ξ
ψ(fq(h),Σq(h)), (B.1)

where ψ(fq(h),Σq(h)) = Eq(log p(h,y)) − Eq(log q(h)) is called variational lower bound

(ELBO). To this aim, we can exploit a result provided by Rohde and Wand (2016) valid

when the approximating density is a multivariate gaussian distribution. The latter

states a closed-form update scheme for the variational parameters:

Σnew =
[
∇2
µ,µS(µ

old,Σold)
]−1

(B.2)

µnew = µold +Σnew∇µS(µ
old,Σold), (B.3)

where ∇µS(µ
old,Σold) and ∇2

µ,µS(µ
old,Σold) denote the first and second derivative of

S(µ,Σ) with respect to µ and evaluated at (µold,Σold). The function S is the so called

non-entropy function which is given by Eq(log p(h,y)). In our scenario, we have that

S(µq(h),Σq(h)) = −1

2
[0, ι⊺n]µq(h) −

1

2
[0,µ⊺

q(s)]e
−µq(h)+

1
2
σ2

q(h) − 1

2
µq(1/η2)tr(Σq(h)µq(Q))

− 1

2
µq(1/η2)(µq(h) − µq(c)ιn+1)

⊺µq(Q)(µq(h) − µq(c)ιn+1), (B.4)

where σ2
q(h) = diag(Σq(h)) is the vector of variances and the diag operator extracts the

diagonal vector from the input matrix. Moreover, we obtain:

∇µq(h)
S(µq(h),Σq(h)) = −1

2
[0, ι⊺n]

⊺ +
1

2
[0,µ⊺

q(s)]
⊺ ⊙ e−µq(h)+

1
2
σ2

q(h)

− µq(1/η2)µq(Q)(µq(h) − µq(c)ιn+1), (B.5)

∇2
µq(h)µq(h)

S(µq(h),Σq(h)) = −1

2
Diag

[
[0,µ⊺

q(s)]
⊺ ⊙ e−µq(h)+

1
2
σ2

q(h)

]
− µq(1/η2)µq(Q), (B.6)

where ιn is an n-dimensional vector of ones, µq(1/η2) is the variational mean of 1/η2,

µq(Q) is the element-wise variational mean of Q, and ⊙ denotes the Hadamard product.
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Then, since µq(h) = Wfq(h), the updating scheme becomes:

Σnew
q(h) =

[
∇2

µq(h)µq(h)
S(µold

q(h),Σ
old
q(h))

]−1

, (B.7)

fnewq(h) = foldq(h) +W+Σnew
q(h)∇µq(h)

S(µold
q(h),Σ

old
q(h)), (B.8)

µnew
q(h) = Wfnewq(h) , (B.9)

with W+ = (W⊺W)−1W⊺ the left Moore–Penrose pseudo-inverse of W.

B.4 Additional empirical results

This Section shows additional empirical results considering transaction costs with lever-

age constraints.

The results in Tables 3.4–3.5 show that when conservative levels of transaction costs

to implement volatility targeting are considered, the performance of standard volatility

targeting methods substantially deteriorates. Standard volatility targeting strategies

are not designed to mitigate transaction costs. Hence, we next evaluate whether by

reducing liquidity demand via capping leverage render volatility targeting still prof-

itable after costs. This approach does not necessarily aim at an optimal allocation from

the perspective of a mean-variance investor. Rather, it is a simple, yet effective, risk-

management approach that aims to regularise the capital exposure to the original equity

trading strategy. We follow Moreira and Muir (2017); Cederburg et al. (2020); Barroso

and Detzel (2021); Wang and Yan (2021) and consider two different levels of leverage

constraint; one that cap the leverage at 1.5 times the original factor, and a second less

restrictive that cap leverage at 5 times the exposure to the original factor.

Table B.1 reports the Sharpe and the Sortino ratios considering the same level of

transaction costs as in Section 3.4.2, namely 14 and 50 basis points of the notional

trading exposure. Panel A shows the results for a 500% leverage constraint. For a

conservative 50 basis points transaction costs our SSV produces the highest Sharpe and

Sortino ratios among the volatility targeting methods, on average across the 158 equity

strategies. For instance, the SSV generates a 0.23 Sharpe ratio on average against a dis-

mal -0.10 annualised Sharpe ratio from the RV. Compared to the unmanaged portfolios,

the number of significantly higher SRs is also higher for the SSV case. For instance, none

of the re-scaled portfolios with RV has a positive and significant SR differential against

7% of the portfolios re-scaled with SSV.

Panel B shows the results for a more restrictive leverage constraint, which forces the

exposure from volatility targeting no more than 1.5 times the original factor portfolio.
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Consistent with Moreira and Muir (2017); Barroso and Detzel (2021), a tighter cap

does indeed regularise more the performance of volatility targeting across all competing

methods. Nevertheless, the performance of our SSV portfolio is quite stable across

different levels of leverage constraints. Interestingly, unlike the case without leverage

constraints, the RV6 plus leverage cap proves to be a quite competitive benchmark

volatility targeting method.

Table B.2 reports the results for the spanning regressions. The top panels report the

estimated alphas (α̂ in %). When considering a conservative notional trading cost of 50

basis points, our SSV volatility forecast generates a positive alpha of 0.46% annualised.

This is against a large and negative alpha from the RV, RV AR, HAR, and SV methods.

Perhaps more importantly, our SSV method generates a significantly positive alpha for

21% of the equity strategies in our sample, against, for instance, 3%, 17%, and 14%

from the RV, RV6 and Garch models, respectively.

The appraisal ratio AR reported in the middle panel of Table B.2 confirms that our

SSV substantially improves upon standard volatility targeting based on RV, especially

when more conservative transaction costs are factored in. For instance, with 50 basis

points of trading costs the SSV is the only method that can still generate a positive ap-

praisal ratio together with the RV6 long-term realised variance method. By comparison,

the RV, Garch and RV AR all generate significantly negative ARs. The bottom panels

report the difference in the certainty equivalent return between and investor that can ac-

cess both the volatility-managed and the original portfolio, and an investor constrained

to invest in the original portfolio only. The utility gain ∆CER(%) is highly in favour of

our SSV volatility targeting. For instance, for 14 (50) basis points of transaction costs,

our SSV method generates a 12% (8%) utility gain. This compares to the 7% from the

HAR with 14 basis points and 2.2% from the RV6 with 50 basis points of transaction

costs.

Table B.3 reports the spanning regression results with a tighter leverage cap of 1.5.

The results are largely in line with Table B.2. That is, the RV6 does indeed represents

a challenging benchmark for our SSV method when it comes to the estimated alphas.

However, the ∆CER(%) from the combination strategy is substantially in favour of

our smoothing volatility targeting. For instance, the ∆CER(%) from the SSV is 9.52%

(13.8%) with 50 (14) basis points of notional transaction costs, against a 4.5% (8/2%)

from the RV6 volatility targeting.
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Table B.1: Volatility-managed portfolios with leverage constraints.

This table compares the performance of volatility-managed and original portfolios (U) for the cross
section of 158 equity strategies. For a given factor, the volatility-managed factor return in month t
is based on a forecast of the conditional variance. The volatility-managed weights are capped so that
the maximum leverage attainable is 500% (panel A) or 50% (panel B) of the original factor exposure.
In addition to our smoothing volatility forecast (SSV), the variance forecasts are from a simple AR(1)
fitted on the realised variance (RV AR), an alternative six-month window to estimate the longer-term
realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi (2009) (HAR), a
standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification (Garch).
For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and
maximum drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross
section of equity strategy. In addition, we report the fraction of volatility-managed portfolios that
generate a Sharpe ratio which is statistically different from the unscaled strategy (see, Ledoit and Wolf,
2008), and is either positive or negative. The table reports the results for two levels of transaction
costs, 14 and 50 basis points of the notional value traded to implement volatility targeting.

Panel A: 500% leverage constraint

14 basis points 50 basis points

U RV RV6 RV AR HAR Garch SV SSV U RV RV6 RV AR HAR Garch SV SSV

SR

Mean 0.24 0.17 0.27 0.21 0.23 0.23 0.23 0.25 0.24 -0.10 0.21 0.01 0.13 0.16 0.14 0.23
Percentiles
2.5 -0.12 -0.32 -0.25 -0.28 -0.26 -0.23 -0.24 -0.20 -0.12 -0.66 -0.34 -0.52 -0.40 -0.30 -0.32 -0.22
25 0.08 -0.03 0.05 0.00 0.02 0.00 -0.01 0.05 0.08 -0.29 -0.02 -0.19 -0.08 -0.06 -0.09 0.03
50 0.22 0.15 0.24 0.20 0.21 0.23 0.26 0.23 0.22 -0.11 0.20 0.00 0.11 0.17 0.16 0.21
75 0.37 0.36 0.47 0.41 0.40 0.40 0.39 0.42 0.37 0.06 0.40 0.17 0.27 0.34 0.30 0.39
97.5 0.63 0.73 0.82 0.74 0.70 0.76 0.75 0.68 0.63 0.53 0.75 0.57 0.62 0.71 0.66 0.66

p< 0.05 & SR> 0 1.90 6.33 3.80 3.80 7.59 6.96 8.86 0.00 3.80 0.00 1.27 3.80 1.90 6.96
p< 0.05 & SR< 0 15.19 2.53 12.03 6.33 12.66 12.66 5.70 75.95 12.66 65.82 37.97 28.48 36.08 11.39

Sortino

Mean 1.44 1.11 1.68 1.31 1.36 1.40 1.39 1.50 1.44 -0.61 1.29 0.05 0.75 0.99 0.86 1.38
Percentiles
2.5 -0.79 -1.92 -1.40 -1.61 -1.52 -1.33 -1.44 -1.15 -0.79 -4.16 -1.85 -3.05 -2.33 -1.75 -1.93 -1.27
25 0.48 -0.20 0.31 -0.02 0.12 0.03 -0.05 0.32 0.48 -1.78 -0.09 -1.22 -0.47 -0.39 -0.53 0.21
50 1.36 0.88 1.48 1.16 1.27 1.49 1.52 1.37 1.36 -0.77 1.11 0.02 0.68 1.07 1.05 1.25
75 2.16 2.21 2.76 2.30 2.36 2.37 2.30 2.34 2.16 0.36 2.31 1.05 1.59 2.00 1.75 2.21
97.5 3.49 5.22 4.88 5.02 4.31 4.64 4.35 4.14 3.49 3.75 4.54 3.86 3.87 4.42 3.83 4.04

Panel B: 50% leverage constraint

14 basis points 50 basis points

U RV RV6 RV AR HAR Garch SV SSV U RV RV6 RV AR HAR Garch SV SSV

SR

Mean 0.24 0.22 0.28 0.24 0.24 0.25 0.25 0.25 0.24 0.04 0.24 0.11 0.16 0.20 0.19 0.24
Percentiles
2.5 -0.12 -0.30 -0.21 -0.26 -0.24 -0.22 -0.21 -0.19 -0.12 -0.50 -0.28 -0.40 -0.34 -0.26 -0.27 -0.20
25 0.08 0.01 0.07 0.02 0.03 0.02 0.01 0.06 0.08 -0.15 0.03 -0.09 -0.03 -0.03 -0.04 0.05
50 0.22 0.19 0.26 0.20 0.22 0.24 0.24 0.21 0.22 0.04 0.23 0.09 0.14 0.19 0.19 0.20
75 0.37 0.40 0.46 0.41 0.41 0.43 0.42 0.42 0.37 0.23 0.42 0.28 0.33 0.37 0.35 0.41
97.5 0.63 0.74 0.81 0.72 0.70 0.71 0.73 0.68 0.63 0.59 0.77 0.60 0.62 0.67 0.67 0.66

p< 0.05 & SR> 0 1.90 6.33 2.53 3.80 7.59 6.96 4.43 0.63 5.06 1.27 1.90 4.43 4.43 4.43
p< 0.05 & SR< 0 10.13 1.90 5.70 5.70 8.86 8.23 4.43 55.06 4.43 43.67 25.95 20.25 25.32 6.96

Sortino

Mean 1.44 1.34 1.66 1.42 1.42 1.45 1.44 1.48 1.44 0.28 1.44 0.66 0.97 1.17 1.10 1.40
Percentiles
2.5 -0.79 -1.67 -1.27 -1.46 -1.35 -1.27 -1.25 -1.07 -0.79 -2.99 -1.55 -2.30 -1.91 -1.48 -1.60 -1.18
25 0.48 0.06 0.41 0.16 0.17 0.14 0.08 0.34 0.48 -0.95 0.18 -0.57 -0.16 -0.15 -0.24 0.26
50 1.36 1.19 1.55 1.21 1.33 1.42 1.46 1.27 1.36 0.28 1.37 0.53 0.84 1.21 1.17 1.21
75 2.16 2.40 2.66 2.49 2.43 2.41 2.34 2.41 2.16 1.46 2.47 1.73 1.95 2.12 1.98 2.31
97.5 3.49 4.73 4.74 4.55 4.19 4.42 4.37 4.13 3.49 4.06 4.54 3.99 3.80 4.21 4.05 4.06
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Table B.2: Spanning regression results with 500% leverage constraint.

This table reports the results from a spanning regression of the form yσt = α + βyt + ϵt, with yσt the
returns on the volatility managed portfolio and yσt its unscaled counterpart. The volatility-managed
weights are capped so that the maximum leverage attainable is 500% of the original factor exposure.
We report the estimated alphas (α̂ in %), the appraisal ratio AR = α̂/σ̂ε and the difference in the
certainty equivalent return between and investor that can access both the volatility-managed and the
original portfolio, and an investor constrained to invest in the original portfolio only ∆CER. In
addition to our smoothing volatility forecast (SSV), the variance forecasts are from a simple AR(1)
fitted on the realised variance (RV AR), an alternative six-month window to estimate the longer-term
realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi (2009) (HAR), a
standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification (Garch).
For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and
maximum drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross
section of equity strategy. In addition, we report the fraction of volatility-managed alphas that are
significant and either positive or negative. The table reports the results for two levels of transaction
costs, 14 and 50 basis points of the notional value traded to implement volatility targeting.

14 basis points 50 basis points

RV RV3 RV AR HAR Garch SV SV5 RV RV3 RV AR HAR Garch SV SV5

α(%)

Mean 0.56 1.39 0.67 0.54 0.91 0.79 0.66 -2.08 0.78 -1.38 -0.45 0.24 -0.08 0.46
Percentiles
2.5 -2.92 -2.11 -2.60 -2.16 -2.72 -2.85 -1.71 -5.80 -2.76 -5.36 -3.11 -3.43 -3.89 -1.92
25 -0.97 -0.31 -0.69 -0.49 -0.54 -0.57 -0.40 -3.48 -0.86 -2.50 -1.42 -1.24 -1.44 -0.62
50 0.11 0.84 0.18 0.30 0.40 0.33 0.25 -2.51 0.32 -1.69 -0.71 -0.28 -0.47 0.06
75 1.15 1.92 1.04 0.89 1.47 1.18 1.01 -1.49 1.25 -0.89 -0.01 0.86 0.46 0.83
97.5 5.52 7.57 5.39 4.96 6.05 5.66 3.53 2.51 6.71 2.63 3.91 5.02 4.34 3.30

p< 0.05 & α > 0 12.03 30.38 13.92 15.82 27.85 20.89 28.48 3.16 17.72 4.43 6.96 13.92 8.86 21.52
p< 0.05 & α < 0 15.19 3.16 12.03 8.86 13.29 13.92 10.13 70.25 13.92 59.49 36.08 23.42 32.28 15.82

AR(%)

Mean 0.01 0.04 0.01 0.02 0.02 0.02 0.02 -0.10 0.01 -0.08 -0.04 -0.01 -0.03 0.01
Percentiles
2.5 -0.11 -0.07 -0.10 -0.09 -0.10 -0.10 -0.10 -0.25 -0.10 -0.22 -0.17 -0.14 -0.15 -0.11
25 -0.04 -0.02 -0.04 -0.03 -0.03 -0.03 -0.03 -0.15 -0.04 -0.13 -0.09 -0.07 -0.09 -0.05
50 0.00 0.04 0.01 0.02 0.02 0.02 0.02 -0.10 0.02 -0.08 -0.05 -0.02 -0.03 0.01
75 0.05 0.08 0.05 0.05 0.07 0.06 0.08 -0.06 0.05 -0.04 0.00 0.04 0.02 0.06
97.5 0.17 0.19 0.17 0.16 0.17 0.16 0.15 0.09 0.17 0.10 0.12 0.13 0.13 0.14

∆CER(%)

Mean 1.41 3.52 6.68 7.16 2.97 0.77 11.99 -4.53 2.24 -2.40 1.85 1.67 -1.16 8.26
Percentiles
2.5 -1.01 -0.17 -0.62 -0.08 -0.49 -0.24 -0.01 -6.80 -0.61 -4.22 -0.35 -0.89 -0.82 -0.01
25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.25 0.00 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
75 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
97.5 18.67 35.18 34.75 28.94 23.41 18.11 16.31 0.96 28.34 4.18 20.08 16.93 9.45 14.89
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Table B.3: Spanning regression results with 50% leverage constraint.

This table reports the results from a spanning regression of the form yσt = α + βyt + ϵt, with yσt the
returns on the volatility managed portfolio and yσt its unscaled counterpart. The volatility-managed
weights are capped so that the maximum leverage attainable is 50% of the original factor exposure. We
report the estimated alphas (α̂ in %), the appraisal ratio AR = α̂/σ̂ε and the difference in the certainty
equivalent return between and investor that can access both the volatility-managed and the original
portfolio, and an investor constrained to invest in the original portfolio only ∆CER. In addition to our
smoothing volatility forecast (SSV), the variance forecasts are from a simple AR(1) fitted on the realised
variance (RV AR), an alternative six-month window to estimate the longer-term realised variance (RV6), a
long-memory model for volatility forecast as proposed by Corsi (2009) (HAR), a standard AR(1) latent
stochastic volatility model (SV), and a plain GARCH(1,1) specification (Garch). For each volatility
targeting method we report the mean annualised Sharpe ratio, Sortino ratio and maximum drawdown
(in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section of equity
strategy. In addition, we report the fraction of volatility-managed alphas that are significant and either
positive or negative. The table reports the results for two levels of transaction costs, 14 and 50 basis
points of the notional value traded to implement volatility targeting.

14 basis points 50 basis points

RV RV3 RV AR HAR Garch SV SV5 RV RV3 RV AR HAR Garch SV SV5

α(%)

Mean 0.47 0.88 0.50 0.48 0.62 0.58 0.44 -0.75 0.61 -0.51 -0.19 0.23 0.10 0.31
Percentiles
2.5 -1.58 -1.04 -1.44 -1.30 -1.95 -1.90 -1.48 -2.86 -1.34 -2.51 -1.98 -2.29 -2.36 -1.61
25 -0.44 -0.12 -0.42 -0.35 -0.20 -0.31 -0.31 -1.73 -0.41 -1.44 -1.03 -0.72 -0.81 -0.44
50 0.24 0.60 0.26 0.25 0.37 0.32 0.25 -1.00 0.31 -0.77 -0.41 -0.05 -0.14 0.10
75 0.95 1.24 0.94 0.83 1.10 0.93 0.83 -0.24 0.99 -0.07 0.18 0.78 0.48 0.70
97.5 3.34 4.34 3.39 3.57 4.39 4.21 2.82 2.11 4.02 2.35 2.94 3.88 3.62 2.68

p< 0.05 & α > 0 15.82 28.48 15.82 17.09 25.32 19.62 27.22 5.70 18.99 6.33 8.23 15.82 12.66 20.25
p< 0.05 & α < 0 10.76 1.90 6.96 5.70 11.39 8.23 8.23 48.10 6.33 41.77 24.68 20.25 24.68 12.66

AR(%)

Mean 0.02 0.04 0.02 0.02 0.03 0.02 0.02 -0.06 0.02 -0.05 -0.02 0.00 -0.01 0.01
Percentiles
2.5 -0.10 -0.06 -0.09 -0.07 -0.09 -0.09 -0.09 -0.20 -0.09 -0.18 -0.14 -0.12 -0.13 -0.11
25 -0.03 -0.01 -0.03 -0.02 -0.03 -0.03 -0.03 -0.11 -0.02 -0.09 -0.07 -0.06 -0.06 -0.04
50 0.02 0.04 0.02 0.02 0.02 0.02 0.02 -0.07 0.02 -0.05 -0.03 0.00 -0.01 0.01
75 0.05 0.07 0.05 0.05 0.07 0.06 0.07 -0.01 0.06 0.00 0.01 0.05 0.03 0.06
97.5 0.15 0.19 0.15 0.16 0.17 0.17 0.15 0.10 0.17 0.11 0.13 0.15 0.15 0.14

∆CER(%)

Mean 3.52 8.24 9.00 9.20 5.75 3.21 13.84 -9.14 4.96 -5.50 1.07 2.52 -1.26 9.52
Percentiles
2.5 -7.81 -1.95 -3.83 -4.48 -5.95 -6.19 -4.99 -28.64 -4.98 -19.61 -10.43 -10.47 -12.08 -7.00
25 -0.13 0.00 0.00 0.00 0.00 0.00 0.00 -9.54 -0.01 -6.19 -1.82 -0.12 -0.46 0.00
50 0.00 0.03 0.00 0.00 0.00 0.00 0.00 -0.82 0.00 -0.04 0.00 0.00 0.00 0.00
75 1.34 6.55 1.98 2.55 4.52 3.08 3.25 0.00 2.89 0.00 0.00 1.51 0.02 2.35
97.5 43.98 60.33 65.16 37.37 46.04 32.86 24.00 10.39 46.72 15.88 26.67 38.48 18.34 21.78
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This Appendix for Chapter 4 is structured as follows. In Section C.1 we present the

computations to derive the optimal variational densities. In Section C.2 we provide

useful definitions and the proof of Proposition 4.5. Moreover, we provide additional

simulation results in Section C.3.

C.1 Variational densities

Proposition C.1. The latent log-volatility vector h is approximated by a multivari-

ate Gaussian distribution q∗(h) ≡ Nn+1(µq(h),Σq(h)), where the parameters are updated

according to

Σnew
q(h) =

[
∇2

µq(h),µq(h)
S(µold

q(h),Σ
old
q(h))

]−1

(C.1)

µnew
q(h) = µold

q(h) +Σnew
q(h)∇µq(h)

S(µold
q(h),Σ

old
q(h)). (C.2)

Define ε2 = ε ⊙ ε with components [ε2]t = (yt − x⊺
tΓtβt)

2, and σ2
q(h) = diag(Σq(h)).

Then,

∇µq(h)
S(µold

q(h),Σ
old
q(h)) = −ιn

2
+

1

2
Eq(ε

2)⊙ e−µold
q(h)

+σ2 old
q(h)

/2 − µq(1/ν2)Qµold
q(h), (C.3)

and

∇2
µq(h),µq(h)

S(µold
q(h),Σ

old
q(h)) = −1

2
Diag(Eq(ε

2)⊙ e−µold
q(h)

+σ2 old
q(h)

/2)− µq(1/ν2)Q, (C.4)

denote the first and second derivative of S(µq(h),Σq(h)) with respect to µq(h) and evalu-

ated at (µold
q(h),Σ

old
q(h)).

Proof. The updating scheme follows the algorithm provided in Rohde and Wand (2016)

for Gaussian variational approximations. The function S is called non-entropy function
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and it is given by S(µq(h),Σq(h)) = Eq(log p(y,ϑ)):

S(µq(h),Σq(h)) = −ι⊺n
2
µq(h) −

1

2
E⊺

q(ε
2)e−µq(h)+σ2

q(h)
/2

− 1

2
µq(1/ν2)

(
µ⊺

q(h)Qµq(h) + tr
{
Σq(h)Q

})
,

(C.5)

where ε2 = ε ⊙ ε with components [ε2]t = (yt − x⊺
tΓtβt)

2, and σ2
q(h) = diag(Σq(h)).

Then, the first derivative with respect to the variational mean vector µq(h) is given by

∇µq(h)
S(µq(h),Σq(h)) = −ιn

2
+

1

2
Eq(ε

2)⊙ e−µq(h)+σ2
q(h)

/2 − µq(1/ν2)Qµq(h). (C.6)

Moreover, derive ∇µq(h)
S(µq(h),Σq(h)) again with respect to µq(h):

∇2
µq(h),µq(h)

S(µq(h),Σq(h)) = −1

2
Diag(Eq(ε

2)⊙ e−µq(h)+σ2
q(h)

/2)− µq(1/ν2)Q. (C.7)

Remark C.1. Under the multivariate Gaussian approximation of q(h) with mean vector

µq(h) and covariance matrix Σq(h), the optimal density of the vector σ2 = exp{h},
namely q∗(σ2), is a multivariate log-normal distribution such that:

Eq[σ
2
t ] = exp{µq(ht) + 1/2σ2

q(ht)},

Varq[σ
2
t ] = exp{2µq(ht) + σ2

q(ht)}(exp{σ
2
q(ht)} − 1), (C.8)

Covq[σ
2
t , σ

2
t+1] = exp{µq(ht) + µq(ht+1) + 1/2(σ2

q(ht) + σ2
q(ht+1)

)}(exp{Covq[ht, ht+1]} − 1).

Proposition C.2. The optimal variational density for the homoskedastic variance σ2

is an inverse-gamma q∗(σ2) ≡ IGa(Aq(σ2), Bq(σ2)) where:

Aq(σ2) = Aσ +
n

2
, Bq(σ2) = Bσ +

1

2
Eq [ε

⊺ε] , (C.9)

where:

E−σ2 [ε⊺ε] = y⊺y − 2

(
p∑

j=1

Xjµq(Γj)
µq(βj)

)⊺

y +

p∑
j=1

tr
{(

µq(βj)
µ⊺

q(βj)
+Σq(βj)

)
µq(Γj)

X2
j

}
+

p∑
j=1

µ⊺
q(βj)

µq(Γj)
Xj

p∑
k=1,k ̸=j

Xkµq(Γk)
µq(βk)

.
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Proof. The full conditional distribution of σ2 given the rest p(σ2|y,ϑ−σ2) is proportional

to:

p(σ2|rest) ∝ −n
2
log σ2 − 1

2σ2

(
y −

p∑
j=1

XjΓjβj

)⊺(
y −

p∑
j=1

XjΓjβj

)

− (Aσ + 1) log σ2 − Bσ

σ2
,

where Xk, and Γk are diagonal matrices with elements xk,t and γk,t respectively. Define

ε = y −
∑p

j=1XjΓjβj, the optimal variational density is given by:

log q(σ2) ∝ E−σ2 [log p(σ2|rest)]

∝ −(Aσ +
n

2
+ 1) log σ2 − 1

σ2

{
Bσ +

1

2
E−σ2 [ε⊺ε]

}
,

(C.10)

where:

E−σ2 [ε⊺ε] = E−σ2

[(
y −

p∑
j=1

XjΓjβj

)⊺(
y −

p∑
j=1

XjΓjβj

)]

= y⊺y − 2

(
p∑

j=1

E−σ2

[
XjΓjβj

])⊺

y

+

p∑
j=1

E−σ2

[
β⊺

jΓjXjXjΓjβj + β⊺
jΓjXj

p∑
k=1,k ̸=j

XkΓkβk

]

= y⊺y − 2

(
p∑

j=1

Xjµq(Γj)
µq(βj)

)⊺

y +

p∑
j=1

tr
{
Eβj

[
βjβ

⊺
j

]
µq(Γj)

X2
j

}
+

p∑
j=1

µ⊺
q(βj)

µq(Γj)
Xj

p∑
k=1,k ̸=j

Xkµq(Γk)
µq(βk)

= y⊺y − 2

(
p∑

j=1

Xjµq(Γj)
µq(βj)

)⊺

y +

p∑
j=1

tr
{(

µq(βj)
µ⊺

q(βj)
+Σq(βj)

)
µq(Γj)

X2
j

}
+

p∑
j=1

µ⊺
q(βj)

µq(Γj)
Xj

p∑
k=1,k ̸=j

Xkµq(Γk)
µq(βk)

.

The function in C.10 is recognized to be the kernel of a Inverse-Gamma distribution as

in Proposition C.2.
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Proposition C.3. The optimal variational density for the regression parameters is a

multivariate Gaussian q(βj) ≡ Nn+1(µq(βj)
,Σq(βj)), where:

Σq(βj) = (Dj
2 + µq(1/η2j )

Q)−1, µq(βj)
= Σq(βj)Djµq(ε−j)

, (C.11)

where Dm
j is a diagonal matrix with elements [Dm

j ]t = µq(1/σ2
t )
µq(γj,t)x

m
j,t and the vector

µq(ε−j)
= (0, µq(ε−j,1), . . . , µq(ε−j,n)) with µq(ε−j,t) = yt −

∑p
k=1,k ̸=j xk,tµq(γk,t)µq(βk,t).

Proof. The full conditional distribution of βj given the rest p(βj|y,ϑ−βj
) is proportional

to:

p(βj|rest) ∝ −1

2

(
y −

p∑
k=1

XkΓkβk

)⊺

H

(
y −

p∑
k=1

XkΓkβk

)
− 1

2
µq(1/η2j )

β⊺
jQβj

where H, Xk, and Γk are diagonal matrices with elements 1/σ2
t , xk,t, and γk,t respec-

tively. Define ε−j = y −
∑p

k=1,k ̸=j XkΓkβk, then

p(βj|rest) ∝ −1

2

(
ε−j −XjΓjβj

)⊺
H
(
ε−j −XjΓjβj

)
− 1

2
µq(1/η2j )

β⊺
jQβj

∝ −1

2

(
β⊺

jΓjXjHXjΓjβj − 2β⊺
jΓjXjHε−j

)
− 1

2
µq(1/η2j )

β⊺
jQβj.

The optimal variational density is given by:

log q(βj) ∝ E−βj
[log p(βj|rest)]

∝ −1

2

(
β⊺

jD
2
jβj − 2β⊺

jDjµq(ε−j)

)
− 1

2
µq(1/η2j )

β⊺
jQβj

∝ −1

2

(
β⊺

j (D
2
j + µq(1/η2j )

Q)βj − 2β⊺
jDjµq(ε−j)

)
,

(C.12)

where Dm
j is a diagonal matrix with elements

[Dm
j ]t = E−βj

[γj,tx
m
j,t/σ

2
t )] = µq(1/σ2

t )
µq(γj,t)x

m
j,t,

and µq(ε−j)
= (0, µq(ε−j,1), . . . , µq(ε−j,n)) with

µq(ε−j,t) = E−βj

[
y −

p∑
k=1,k ̸=j

XkΓkβk

]
= yt −

p∑
k=1,k ̸=j

xk,tµq(γk,t)µq(βk,t).

The function in C.12 is recognized to be the kernel of a multivariate Gaussian distribu-

tion as in C.3.
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Proposition C.4. The optimal variational density for the parameters γj,t is a Bernoulli

random variable q(γj,t) ≡ Bern(e
ωq(γj,t)/(1 + e

ωq(γj,t))), where:

ωq(γj,t) = µq(ωj,t) −
1

2
µq(1/σ2

t )
(x2j,tEq[β

2
j,t]− 2µq(βj,t)xj,tµq(ε−j,t)), (C.13)

where Eq[β
2
j,t] = µ2

q(βj,t)
+ σ2

q(βj,t)
.

Proof. The full conditional distribution of γj,t given the rest p(γj,t|y,ϑ−γj,t) is propor-

tional to:

p(γj,t|rest) ∝ − 1

2σ2
t

(
yj,t −

p∑
k=1

xk,tγk,tβk,t

)2

+ γj,tωj,t

∝ − 1

2σ2
t

(γ2j,tx
2
j,tβ

2
j,t − 2γj,tβj,txj,tµq(ε−j,t)) + γj,tωj,t

∝ γj,t

{
ωj,t −

1

2σ2
t

(x2j,tβ
2
j,t − 2βj,txj,tµq(ε−j,t))

}
.

The optimal variational density is given by:

log q(γj,t) ∝ E−γj,t [log p(γj,t|rest)]

∝ γj,t{µq(ωj,t) −
1

2
µq(1/σ2)(x

2
j,tEq[β

2
j,t]− 2µq(βj,t)xj,tµq(ε−j,t))},

(C.14)

where Eq[β
2
j,t] = µ2

q(βj,t)
+ σ2

q(βj,t)
. The function in C.14 is recognized to be the kernel of

a Bernoulli distribution as in C.4.

Proposition C.5. A smooth estimate for the trajectory of the inclusion probabilities can

be achieved assuming q̃(γj) =
∏n

t=1 q̃(γj,t) such that q̃(γj,t) is Bern(πj,t) with logit(πj,t) =

w⊺
t f . Therefore, Eq̃(γj) = πj and logit(πj) = Wf , where W is a n × k b-spline basis

matrix.

(i) The optimal value of f is the solution of the following optimization problem:

f̂ = argmax
f∈Rk

ψ(f), ψ(f) =
n∑

t=1

[
(ωq(γj,t) −w⊺

t f)expit(w
⊺
t f) + log(1 + exp(w⊺

t f))
]
.

(C.15)

(ii) The gradient ∇fψ(f) of ψ(f) is equal to:

∇fψ(f) =
n∑

t=1

w(ωq(γj,t) −w⊺
t f)

expit(w⊺
t f)

1 + exp(w⊺
t f)

. (C.16)
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Proof. To find the best q̃ that approximates q, minimize the Kullback-Leibler divergence

KL (q̃ || q). This corresponds to maximize Eq̃[log q] − Eq̃[log q̃] over the parameters of

the approximating density q̃. In our case we obtain:

f̂ = argmax
f∈Rk

ψ(f) = argmax
f∈Rk

{
Eq̃[log q(γj)]− Eq̃[log q̃(γ)]

}
= argmax

f∈Rk

n∑
t=1

{Eq̃[log q(γj,t)]− Eq̃[log q̃(γj,t)]}

and define ψt(f) = Eq̃[log q(γj,t)]− Eq̃[log q̃(γj,t)]. The first term is equal to:

Eq̃[log q(γj,t)] = Eq̃[γj,tωq(γj,t)] = ωq(γj,t)expit(w
⊺
t f),

while the second one can be written as:

Eq̃[log q̃(γj,t)] = Eq̃[γj,tw
⊺
t f − log(1 + exp(w⊺

t f))]

= w⊺
t fexpit(w

⊺
t f)− log(1 + exp(w⊺

t f)).

Group together and obtain:

ψt(f) = (ωq(γj,t) −w⊺
t f)expit(w

⊺
t f) + log(1 + exp(w⊺

t f)).

which completes the proof of (i). Derive ψ(f) with respect to f :

∇fψ(f) =
∂

∂f
ψ(f) =

n∑
t=1

∂

∂f
ψt(f).

Compute the latter and get:

∂

∂f
ψt(f) = −wtexpit(w

⊺
t f) +wt(ωq(γj,t) −w⊺

t f)
expit(w⊺

t f)

1 + exp(w⊺
t f)

+wtexpit(w
⊺
t f)

= wt(ωq(γj,t) −w⊺
t f)

expit(w⊺
t f)

1 + exp(w⊺
t f)

,

which proves (ii).

Proposition C.6. Let q∗(βj) and q
∗(γj,t) be the optimal variational densities presented

in Propositions 4.1 and 4.2 (or its smoothed alternative). Define β̃j = Γjβj, where the

matrix Γj = Diag(1, γj,1, . . . , γj,n) is diagonal. The optimal variational density of β̃j is
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given by a mixture of multivariate Gaussian distributions:

q∗(β̃j) =
∑
s∈S

ws Nn+1(Dsµq(βj)
,D1/2

s Σq(βj)D
1/2
s ), (C.17)

where S = {sequences of {0, 1}of length n} with cardinality |S| = 2n, the diagonal ma-

trix Ds = Diag(1, s1, . . . , sn), and mixing weights:

ws =
n∏

t=1

µst
q(γj,t)

(1− µq(γj,t))
1−st , (C.18)

where s = (s1, . . . , st, . . . , sn) ∈ S is an element in S. Moreover, the mean and variance

can be computed, and they are equal to:

µq(β̃j)
= µq(Γj)

µq(βj)
, (C.19)

Σq(β̃j)
= (µq(γj)

µ⊺
q(γj)

+Wµq(γj)
)⊙Σq(βj) +Wµq(γj)

⊙ µq(βj)
µ⊺

q(βj)
, (C.20)

where Wµq(γj)
is a diagonal matrix with elements (1, {µq(γj,t)(1− µq(γj,t))}nt=1).

Proof. Recall that under the variational Bayes assumptions on q, we have that

q(βj, γj,1, . . . , γj,n) = q(βj)
n∏

t=1

q(γj,t). (C.21)

For the sake of simplicity, in what follows we drop the index j and define γ = diag(Γ)

the diagonal elements in Γ. Consider the following transformation of random variables

(γ = γ, β̃ = Γβ), so that β = Γ−1β̃. Hence it follows that:

J =

 ∇γ(γ1, . . . , γn)
⊺ ∇β(γ1, . . . , γn)

⊺

∇γΓ
−1β̃ ∇ ˜β

Γ−1β̃

 =

[
In 0

∇γΓ
−1β̃ Γ−1

]
, (C.22)

and so |J| = |Γ−1|. The joint distribution of (β̃, γ1, . . . , γn) can be written as:

q(β̃, γ1, . . . , γn) = |Γ−1|q(Γ−1β̃)
n∏

t=1

q(γj,t) = f(β̃|γ1, . . . , γn)f(γ1, . . . , γn), (C.23)

where q are then replaced by the optimal elements q∗. For the conditional distribution

in (C.23), we have that:

f(β̃|γ) = |Γ−1|ϕn+1(Γ
−1β̃|µq(β),Σq(β)), (C.24)
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where ϕn+1(·|µ,Σ) is the density function of a multivariate Gaussian. After some com-

putations we have that f(β̃|γ) = ϕn+1(β̃|µ(γ),Σ(γ)) with mean vector µ(γ) = Γµq(β)

and covariance matrix Σ(γ) = Γ1/2Σq(β)Γ
1/2. The marginal for β̃ can be find:

q(β̃) =
∑
s∈S

ϕn+1(β̃|µ(γ = s),Σ(γ = s))
n∏

t=1

q(γt = st), (C.25)

where S denotes the domain of γ = (1, γ1, . . . , γn), and it is composed by all the possible

sequences of {0, 1} of length n, since the first element is fixed to be 1. The latter set

has cardinality |S| = 2n. The distributional result concerning β̃ is therefore proven.

To compute the marginal mean recall that Ex(x) = Ey(Ex(x|y)). Hence Eq(β̃) =

Eγ(Γµq(β)) = µq(Γ)µq(β). The marginal variance-covariance matrix is then computed as

Varq(β̃) = E(β̃β̃⊺
)− E(β̃)E(β̃)⊺ where

E(β̃β̃⊺
) = E(Γβ(Γβ)⊺) = E(Γββ⊺Γ) = E(γγ⊺ ⊙ ββ⊺) = E(γγ⊺)⊙ E(ββ⊺)

= (µq(γ)µ
⊺
q(γ) +Wµq(γ)

)⊙ (µq(β)µ
⊺
q(β) +Σq(β)), (C.26)

where Wµq(γ)
is a diagonal matrix with elements (1, {µq(γt)(1− µq(γt))}nt=1). Plug-in the

latter in the formula for Varq(β̃) and recall the analytical form of the mean E(β̃). After
some simplification we end up with Σq(β̃) = (µq(γ)µ

⊺
q(γ) + Wµq(γ)

) ⊙ Σq(β) + Wµq(γ)
⊙

µq(β)µ
⊺
q(β), which concludes the proof.

Proposition C.7. The optimal variational density for the parameter ωj is a multivari-

ate Gaussian q(ωj) ≡ Nn+1(µq(ωj)
,Σq(ωj)), where:

Σq(ωj) = (Diag(0,µq(zj)
) + µq(1/ξ2j )

Q)−1, µq(ωj)
= Σq(ωj)(0,µ

⊺
q(γ̄j)

)⊺, (C.27)

where µq(γ̄j)
= µq(γj)

− 1/2ιn.

Proof. The full conditional distribution of ωj given the rest p(ωj|y,ϑ−ωj
) is proportional

to:

p(ωj|rest) ∝ ω⊺
j (γj − 1/2ιn)−

1

2
ω⊺

jDiag(zj)ωj −
1

2ξ2j
ω⊺

jQωj.
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The optimal variational density is given by:

log q(ωj) ∝ E−ωj
[log p(ωj|rest)]

∝ ω⊺
jµq(γ̄j)

− 1

2
ω⊺

jDiag(µq(zj)
)ωj −

1

2
µq(1/ξ2j )

ω⊺
jQωj

∝ −1

2

(
ω⊺

j (Diag(0,µq(zj)
) + µq(1/ξ2j )

Q)ωj − 2ω⊺
j (0,µ

⊺
q(γ̄j)

)⊺
)
,

(C.28)

where µq(γ̄j)
= µq(γj)

− 1/2ιn. The function in C.28 is recognized to be the kernel of a

multivariate Gaussian distribution as in C.7.

Proposition C.8. The optimal variational density for the zj,t parameters is a Polya-

Gamma q(zj,t) ≡ PG(1,
√
µq(ω2

j,t)
) and define

µq(zj,t) = Eq [zj,t] =
1

2

1√
µq(ω2

j,t)

tanh

(√
µq(ω2

j,t)

2

)
(C.29)

Proof.

log q(zj,t) ∝ −ztµq(ω2
j,t)

+ log p(zj,t), (C.30)

where p(zj,t) is the density function of a PG(1, 0).

Proposition C.9. The optimal variational density for the variance parameter η2j is an

inverse-gamma distribution q(η2j ) ≡ IGa(Aq(η2j )
, Bq(η2j )

), where:

Aq(η2j )
= Aη +

n+ 1

2
, Bq(η2j )

= Bη +
1

2

(
µ⊺

q(βj)
Qµq(βj)

+ tr
{
Σq(βj)Q

})
. (C.31)

Proof. The full conditional distribution of η2j given the rest p(η2j |y,ϑ−η2j
) is proportional

to:

p(η2j |rest) ∝ −n+ 1

2
log η2j −

1

2η2j
β⊺

jQβj − (Aη + 1) log η2j −
Bη

η2j
.

The optimal variational density is given by:

log q(η2j ) ∝ E−η2j
[log p(η2j |rest)]

∝ −n+ 1

2
log η2j −

1

2η2j
E−η2j

[
β⊺

jQβj

]
− (Aη + 1) log η2j −

Bη

η2j

∝ −(
n

2
+ Aη + 1) log η2j −

1

η2j

(
Bη +

1

2

(
µ⊺

q(βj)
Qµq(βj)

+ tr
{
Σq(βj)Q

}))
.

(C.32)

The function in C.32 is recognized to be the kernel of an Inverse-Gaussian distribution

as in C.9.
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Proposition C.10. The optimal variational density for the variance parameter ξ2j is

an inverse-gamma distribution q(ξ2j ) ≡ IGa(Aq(ξ2j )
, Bq(ξ2j )

), where:

Aq(ξ2j )
= Aξ +

n+ 1

2
, Bq(ξ2j )

= Bξ +
1

2

(
µ⊺

q(ωj)
Qµq(ωj)

+ tr
{
Σq(ωj)Q

})
. (C.33)

Proof. The full conditional distribution of ξ2j given the rest p(ξ2j |y,ϑ−ξ2j
) is proportional

to:

p(ξ2j |rest) ∝ −n+ 1

2
log ξ2j −

1

2ξ2j
β⊺

jQβj − (Aξ + 1) log ξ2j −
Bξ

ξ2j
.

The optimal variational density is given by:

log q(ξ2j ) ∝ E−ξ2j
[log p(ξ2j |rest)]

∝ −n+ 1

2
log ξ2j −

1

2ξ2j
E−ξ2j

[
ω⊺

jQωj

]
− (Aξ + 1) log ξ2j −

Bξ

ξ2j

∝ −(
n

2
+ Aξ + 1) log ξ2j −

1

ξ2j

(
Bξ +

1

2

(
µ⊺

q(ωj)
Qµq(ωj)

+ tr
{
Σq(ωj)Q

}))
.

(C.34)

The function in C.34 is recognized to be the kernel of an Inverse-Gaussian distribution

as in C.10.

Proposition C.11. The optimal variational density for the variance parameter ν2 is

an inverse-gamma distribution q(ν2) ≡ IGa(Aq(ν2), Bq(ν2)), where:

Aq(ν2) = Aν +
n+ 1

2
, Bq(ν2) = Bν +

1

2

(
µ⊺

q(h)Qµq(h) + tr
{
Σq(h)Q

})
. (C.35)

Proof. The full conditional distribution of ν2 given the rest p(ν2|y,ϑ−ν2) is proportional

to:

p(ν2|rest) ∝ −n+ 1

2
log ν2 − 1

2ν2
h⊺Qh− (Aν + 1) log ν2 − Bν

ν2
.

The optimal variational density is given by:

log q(ν2) ∝ E−ν2 [log p(ν
2|rest)]

∝ −n+ 1

2
log ν2 − 1

2ν2
E−ν2 [h

⊺Qh]− (Aν + 1) log ν2 − Bν

ν2

∝ −(
n

2
+ Aν + 1) log ν2 − 1

ν2

(
Bν +

1

2

(
µ⊺

q(h)Qµq(h) + tr
{
Σq(h)Q

}))
.

(C.36)
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The function in C.36 is recognized to be the kernel of an Inverse-Gaussian distribution

as in Proposition C.11.

C.2 Proof of Proposition 4.5

Definition C.1. A is a Z-matrix if its off-diagonal elements satisfy ai,j ≤ 0, for i ̸= j.

Definition C.2. A is a strictly diagonally dominant (SDD) matrix if, for each i row of

A, |ai,i| >
∑

j ̸=i |ai,j|.

Corollary C.1. If a matrix A is SDD and all its diagonal elements ai,i are positive,

then the real parts of its eigenvalues are positive.

Definition C.3. A matrix A is said to be an M-matrix if it is a strictly diagonally

dominant Z-matrix and all its diagonal elements ai,i are positive.

Corollary C.2. If a matrix A is an M-matrix, then it belongs to inverse-positive ma-

trices, i.e all elements of the inverse are positive [A−1]i,j ≥ 0, for all (i, j).

Lemma C.1. The matrix Q−1 is a positive matrix, i.e [Q−1]i,j ≥ 0.

Proof. Follows from the tridiagonal form of Q with q1,1 = 1 + 1/k0, and k0 < +∞.

Lemma C.2. The matrix Σq(ωj) is a positive matrix, i.e [Σq(ωj)]i,j ≥ 0.

Proof. Recall that

Σq(ωj) = W−1 =
(
Diag (0,Eq [zj]) + µq(1/ξ2j )

Q
)−1

, (C.1)

is tridiagonal, where Eq [zj,t] > 0 and µq(1/ξ2j )
> 0. Notice that W has off-diagonal

elements equal to −µq(1/ξ2j )
< 0 in the first sub/over-diagonal and 0 elsewhere and

therefore it is a Z-matrix. Moreover, wt,t > 0 for all t and:

w1,1 = (1 + k−1
0 )µq(1/ξ2j )

> µq(1/ξ2j )
= |w1,2| (C.2)

wt,t = 2µq(1/ξ2j )
+ Eq [zj,t] > 2µq(1/ξ2j )

= |wt,t−1|+ |wt,t+1|, t = 2, . . . , n (C.3)

wn+1,n+1 = µq(1/ξ2j )
+ Eq [zj,n] > µq(1/ξ2j )

= |wn+1,n−1|, (C.4)

thusW is SDD with positive diagonal elements. Hence, by definition C.3 is an M-matrix

and corollary C.2 tells us that its inverse is a positive matrix.

Proposition C.12. Assume that the maximum over time of the inclusion probabilities,

for a given variable j, at the i-th iteration of the algorithm is such that maxt∈{1,...,n} µ
(i)
q(γj,t)

=
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ϵ, and ϵ ≪ 1 is small enough. Moreover, let Σ
(i)
q(ωj)

− Σ
(i−1)
q(ωj)

be a positive matrix, i.e.,

Σ
(i)
q(ωj)

−Σ
(i−1)
q(ωj)

≥ 0, then:

1. µ
(i+1)
q(γj,t)

= expit
{
µ
(i+1)
q(ωj,t)

− 1
2
µ
(i+1)

q(1/σ2
t )
x2j,tµ

−1(i+1)

q(1/η2j )
qt,t +O(ϵ)

}
, qt,t = [Q−1]t,t ≥ 0;

2. µ
(i+1)
q(ωj,t)

= −1/2
∑n

k=1 st,k +O(ϵ), st,k = [Σq(ωj)]t,k ≥ 0;

3. µ
(i+1)
q(ωj,t)

≤ µ
(i)
q(ωj,t)

decreases after each iteration.

Proof. We start proving 1). Consider the update for µ
(i+1)
q(γj,t)

:

µ
(i+1)
q(γj,t)

= expit
{
µ
(i+1)
q(ωj,t)

− 1/2µ
(i+1)

q(1/σ2
t )

(
E(i+1)

q [β2
j,t]x

2
j,t − 2µ

(i+1)
q(βj,t)

xj,tE(i+1)
q [εj,t]

)}
. (C.5)

Notice that the vector for all times µ
(i+1)
q(βj)

has the following formula:

µ
(i+1)
q(βj)

=
(
µ
(i+1)

q(1/σ2
t )
(D̃2(i)

γj
) + µ

(i)

q(1/η2j )
Q
)−1

µ
(i+1)

q(1/σ2
t )
D̃(i)

γj
µ

(i+1)
q(ε̃−j)

, (C.6)

where D̃γj = Diag((0,µq(γj)
) ⊙ (0,xj)) and D̃2

γj
= Diag((0,µq(γj)

) ⊙ (0,xj ⊙ xj)). By

assumption we can write each µ
(i+1)
q(γj,t)

= αtϵ, with 0 < αt ≤ 1. Now defineα the collection

of the αt, and Aγj = Diag((0,α)⊙ (0,xj)) and A2
γj

= Diag((0,α)⊙ (0,xj ⊙ xj)). (C.6)

can be written as

µ
(i+1)
q(βj)

=
(
µ
(i+1)

q(1/σ2
t )
(ϵA2(i)

γj
) + µ

(i)

q(1/η2j )
Q
)−1

µ
(i+1)

q(1/σ2
t )
ϵA(i)

γj
µ

(i+1)
q(ε̃−j)

, (C.7)

and

lim
ϵ→0

µ
(i+1)
q(βj)

ϵ
<∞ =⇒ µ

(i+1)
q(βj,t)

= O(ϵ). (C.8)

Consider now the variance matrix Σ
(i+1)
q(βj)

:

Σ
(i+1)
q(βj)

=
(
µ
(i+1)

q(1/σ2
t )
(ϵA2(i)

γj
) + µ

(i)

q(1/η2j )
Q
)−1

= f(ϵ), (C.9)

as a scalar to matrix function f with

f ′(ϵ) =
(
µ
(i+1)

q(1/σ2
t )
(ϵA2(i)

γj
) + µ

(i)

q(1/η2j )
Q
)−1 (

µ
(i+1)

q(1/σ2
t )
(A2(i)

γj
)
)(

µ
(i+1)

q(1/σ2
t )
(ϵA2(i)

γj
) + µ

(i)

q(1/η2j )
Q
)−1

.

Using Taylor expansion in ϵ = 0 we obtain:

Σ
(i+1)
q(βj)

=
(
µ
(i)

q(1/η2j )
Q
)−1

+ ϵ
(
µ
(i)

q(1/η2j )
Q
)−1 (

µ
(i+1)

q(1/σ2
t )
(A2(i)

γj
)
)(

µ
(i)

q(1/η2j )
Q
)−1

+ . . .
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and therefore each diagonal element is σ
2(i+1)
q(βj,t)

=
[
µ
(i)

q(1/η2j )

]−1

qt,t + O(ϵ) and it follows

that

E(i+1)
q [β2

j,t] = (µ
(i+1)
q(βj,t)

)2 + σ
2(i+1)
q(βj,t)

=
[
µ
(i)

q(1/η2j )

]−1

qt,t +O(ϵ). (C.10)

Put together (C.8) and (C.10) completes the proof. Similarly we prove 2). Recall the

function to jointly update µ
(i+1)
q(ωj)

:

µ
(i+1)
q(ωj)

= Σ
(i+1)
q(ωj)

(
0,µ

(i)⊺
q(γj)

− 1/2ι⊺n

)⊺
, (C.11)

then the update of the t-th component is:

µ
(i+1)
q(ωj,t)

= s⊺t

(
0,µ

(i)⊺
q(γj)

− 1/2ι⊺n

)⊺
= −1/2s⊺t (0, ι

⊺
n)

⊺ + s⊺t

(
0,µ

(i)⊺
q(γj)

)⊺
= −1/2

n∑
k=1

st,k +
n∑

k=1

st,kµ
(i)
q(γj,k)

, (C.12)

where st denotes the t-th column in Σ
(i+1)
q(ωj)

. Notice that, since µ
(i)
q(γj,k)

≤ ϵ, for all k, we

can write µ
(i)
q(γj,k)

= αkϵ, where 0 < αk ≤ 1. Plug-in the latter in (C.12) and get

µ
(i+1)
q(ωj,t)

= −1/2
n∑

k=1

st,k + ϵ
n∑

k=1

αkst,k = −1/2
n∑

k=1

st,k +O(ϵ). (C.13)

To prove the last statement 3), assume that we observe Σ
(i)
q(ωj)

−Σ
(i−1)
q(ωj)

positive matrix.

Then we have that, for ϵ small:

|µ(i)
q(ωj)

| = 1

2
Σ

(i)
q(ωj)

(0, ι⊺n)
⊺ ≥ 1

2
Σ

(i−1)
q(ωj)

(0, ι⊺n)
⊺ = |µ(i−1)

q(ωj)
|, (C.14)

and therefore:

E(i)
q (ωjω

⊺
j ) = µ

(i)
q(ωj)

(µ
(i)
q(ωj)

)⊺+Σ
(i)
q(ωj)

≥ µ
(i−1)
q(ωj)

(µ
(i−1)
q(ωj)

)⊺+Σ
(i−1)
q(ωj)

= E(i−1)
q (ωjω

⊺
j ), (C.15)

which means that E(i)
q (ωjω

⊺
j ) − E(i−1)

q (ωjω
⊺
j ) is a positive matrix. Consider now the

update for the variable zj,t:

E(i)
q [zj,t] =

1

2

1√
E(i)

q (ω2
j,t)

tanh(

√
E(i)

q (ω2
j,t)

2
) ≤ E(i−1)

q [zj,t] , (C.16)
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since it is decreasing in E(i)
q (ω2

j,t), for all t. And similarly for ξ2j :

µ
(i)

q(1/ξ2j )
=

Aξ +
n+1
2

Bξ +
1
2
tr
{
E(i)

q (ωjω
⊺
j )Q

} ≤ µ
(i−1)

q(1/ξ2j )
, (C.17)

since it is decreasing in E(i)
q (ωjω

⊺
j ) and E(i)

q (ωjω
⊺
j )− E(i−1)

q (ωjω
⊺
j ) is a positive matrix.

The next update of Σq(ωj) is equal to:

Σ
(i+1)
q(ωj)

=
(
Diag

(
0,E(i)

q [zj]
)
+ µ

(i)

q(1/ξ2j )
Q
)−1

, (C.18)

which increases as both E(i)
q [zj] and µ

(i)

q(1/ξ2j )
decreases. Hence also Σ

(i+1)
q(ωj)

− Σ
(i)
q(ωj)

is a

positive matrix and therefore, for ϵ small:

|µ(i+1)
q(ωj)

| ≥ |µ(i)
q(ωj)

|, (C.19)

and from statement 2) we have that µ
(i+1)
q(ωj)

≤ µ
(i)
q(ωj)

. Set i = i + 1 and repeat the

procedure from (C.14). Observe that µq(ωj)
decreases after each iteration until conver-

gence.

C.3 Additional simulation results

Figure C.1: F1-score (left panel) and MSE (right panel) for the time-varying inter-
cept estimation, when p = 100.
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Figure C.2: F1-score (left panel) and MSE (right panel) for the balanced dynamic
sparsity setting with one switch, when p = 100.

Figure C.3: F1-score (left panel) and MSE (right panel) for the balanced dynamic
sparsity setting with two switches, when p = 100.

Figure C.4: F1-score (left panel) and MSE (right panel) for the dynamic sparsity
setting with low signal, when p = 100.
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Figure C.5: F1-score (left panel) and MSE (right panel) for the always zero coeffi-
cients, when p = 100.
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