
A Wasserstein norm for signed measures, with application to non

local transport equation with source term

Benedetto Piccoli ∗ Francesco Rossi † Magali Tournus ‡

Abstract

We introduce the optimal transportation interpretation of the Kantorovich norm on the
space of signed Radon measures with finite mass, based on a generalized Wasserstein distance
for measures with different masses.

With the formulation and the new topological properties we obtain for this norm, we prove
existence and uniqueness for solutions to non-local transport equations with source terms, when
the initial condition is a signed measure.
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1 Introduction

The problem of optimal transportation, also called Monge-Kantorovich problem, has been inten-
sively studied in the mathematical community. Related to this problem, Wasserstein distances in
the space of probability measures have revealed to be powerful tools, in particular for dealing with
dynamics of measures like the transport Partial Differential Equation (PDE in the following), see
e.g. [?, ?]. For a complete introduction to Wasserstein distances, see [13, 14].

The main limit of this approach, at least for its application to dynamics of measures, is that
the Wasserstein distances Wp(µ, ν) (p ≥ 1) are defined only if the two positive measures µ, ν have
the same mass. For this reason, in [11, 12] we introduced the generalized Wasserstein distances

W a,b
p (µ, ν), combining the standard Wasserstein and total variation distances. In rough words, for

W a,b
p (µ, ν) an infinitesimal mass δµ of µ can either be removed at cost a|δµ|, or moved from µ to ν

at cost bWp(δµ, δν). Further generalizations for positive measures with different masses, based on
the Wasserstein distance, are introduced in [4, 8, 9].

Such generalizations still have a drawback: both measures need to be positive. The first contri-
bution of this paper is then the definition of a norm on the space of signed Radon measures with
finite mass on Rd. Such norm, based on an optimal transport approach, induces a distance gener-
alizing the Wasserstein distance to signed measures. We then prove that this norm corresponds to
the extension of the so-called Kantorovich distance for finite signed Radon measures introduced in
[6] in the dual form

‖µ‖ = sup
‖f‖∞≤1, ‖f‖Lip≤1

∫
Rd
fdµ. (1)
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The novelty then lies in the dual interpretation of this norm in the framework of optimal trans-
portation. We also prove new topological properties and characterizations of this norm.

One of the interests of signed measures is that they can be used to model phenomena in which
the density is a quantity can increase (mass source) or decrease (mass sink). This also implies that
the density can eventually become negative. In this setting, the second main contribution of the
paper is to use this norm to guarantee well-posedness of the following non local transport equation
with a source term being a signed measure. We study the following PDE

∂tµt(x) + div (v[µt](x)µt(x)) = h[µt](x), µ|t=0(x) = µ0(x), (2)

for x ∈ Rd and µ0 ∈ Ms(Rd), where Ms(Rd) is the space of signed Radon measures with finite
mass on Rd. Equation (2) has already been studied in the framework of positive measures, where it
has been used for modeling several different phenomena such as crowd motion and development in
biology, se a review in [?]. Our main motivation to study equation (2) in the framework of signed
measure is the interpretation of µt as the spatial derivative of the entropy solution ρ(x, t) to a scalar
conservation law. A link between scalar conservation laws and non local transport equation has
been initiated in [2, 7], but until now, studies are restricted to convex fluxes and monotonous initial
conditions, so that the spatial derivative µt is a positive measure for all t > 0. Moreover, the mass
of µt is preserved, since ρ(+∞, t)− ρ(−∞, t) is a constant.

The authors of [1] suggested to extend the usual Wasserstein distance W1 to the couples of
signed measures µ = µ+ − µ− and ν = ν+ − ν− such that |µ+|+ |ν−| = |µ−|+ |ν+| by the formula
W1(µ, ν) = W1(µ+ + ν−, µ− + ν+). This procedure fails for p 6= 1, since triangular inequality is lost
(see a counter-example in [1]).

We use the same trick to turn the generalized Wasserstein distance into a distance for signed
measure and define Wa,b

1 (µ, ν) as W a,b
1 (µ+ + ν−, µ− + ν+). The space of signed measures being a

vector space, we also define a norm ‖µ‖a,b = Wa,b(µ, 0). Notice that to define the norm ‖.‖a,b, we
need to restrict ourselves to Radon measures with finite mass, since the generalized Wasserstein
distance [11] may not be defined for Radon measures with infinite mass.

We then use the norm ‖ · ‖a,b to study existence and uniqueness of the solution to the equation
(2). The regularity assumptions made in this paper on the vector field and on the source term are
the following:

(H-1) There exists K such that for all µ, ν ∈Ms(Rd) it holds

‖v[µ]− v[ν]‖C0(Rd) ≤ K‖µ− ν‖a,b. (3)

(H-2) There exist L,M such that for all x, y ∈ Rd, for all µ ∈Ms(Rd) it holds

|v[µ](x)− v[µ](y)| ≤ L|x− y|, |v[µ](x)| ≤M. (4)

(H-3) There exist Q,P,R such that for all µ ∈Ms(Rd) it holds

‖h[µ]− h[ν]‖a,b ≤ Q‖µ− ν‖a,b, |h[µ]| ≤ P, supp(h[µ]) ⊂ B0(R). (5)

The main result about equation (2) is the following:
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Theorem 1 (Existence and uniqueness). Let v and h satisfy (H-1)-(H-2)-(H-3) and µ0 ∈Ms(Rd)
compactly supported be given. Then, there exists a unique distributional solution to (2) in the space
C0
(
[0, 1],Ms(Rd)

)
. In adition, for µ0 and ν0 in Ms(Rd), denoting by µt and νt the solution, we

have the following property of continuous dependence with respect to initial data:

‖µt − νt‖a,b ≤ ‖µ0 − ν0‖a,b exp(Mt), M = 2L+ 2K(P + min{|µ0|, |ν0|}) +Q, t ≥ 0.

Remark 1. We emphasize that the assumptions (H-2)-(H-3) are incompatible with a direct inter-
pretation of the solution of (2) as the spatial derivative of a conservation law and need to be relaxed
in a future work. Indeed, to draw a parallel between conservation laws and non-local equations,
discontinuous vector fields need to be considered.

The structure of the article is the following. In Section 2, we state and prove preliminary results
which are needed for the rest of the paper. In Section 3, we define the generalized Wasserstein
distance for signed measures, we show that it can be used to define a norm, and prove some
topological properties. Section 4 is devoted to the use of the norm defined here to guarantee
existence, uniqueness, and stability to initial condition for the transport equation (2).

2 Measure theory and the Generalized Wasserstein distance

In this section, we introduce the notations and state preliminary results. Throughout the paper,
B(Rd) is the space of Borel sets on Rd,M(Rd) is the space of Radon measures with finite mass (i.e.
Borel regular, positive, and finite on every set).

2.1 Recalls on measure theory

In this section, µ and ν are in M(Rd).

Definition 1. We say that

• µ << ν if ∀A ∈ B(Rd), (ν(A) = 0)⇒ (µ(A) = 0)

• µ ≤ ν if ∀A ∈ B(Rd), µ(A) ≤ ν(A)

• µ ⊥ ν if there exists E ∈ B(Rd) such that µ(Rd) = µ(E) and ν(Ec) = 0

The concept of largest common measure between measures is now recalled.

Lemma 1. We consider µ and ν two measures in M(Rd). Then, there exists a unique measure
µ ∧ ν which satisfies

µ ∧ ν ≤ µ, µ ∧ ν ≤ ν, (η ≤ µ and η ≤ ν)⇒ η ≤ µ ∧ ν. (6)

We refer to µ ∧ ν as the largest common measure to µ and ν. Moreover, denoting by f the Radon
Nikodym derivative of µ with respect to ν, i.e. the unique measurable function f such that µ =
fν + ν⊥, with ν⊥ ⊥ ν, we have

µ ∧ ν = min{f, 1}ν. (7)

Proof. The uniqueness is clear using (6). Existence is given by formula (7) as follows. First, it is
obvious that min{f, 1}ν ≤ ν and using µ = fν + ν⊥, it is also clear that min{f, 1}ν ≤ µ. Let us
now assume by contradiction the existence of a measure η and of A ∈ B(Rd) such that

η ≤ µ, η ≤ ν, η(A) >

∫
A

min{f, 1}dν. (8)
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Since ν⊥ ⊥ ν, there exists E ∈ B(Rd) such that ν(A) = ν(A ∩ E) and ν⊥(A) = ν⊥(A ∩ Ec).
Since η ≤ ν, we have

η(A ∩ E) = η(A) >

∫
A∩E

min{f, 1}dν.

We define
B = A ∩ E ∩ {f > 1}.

If ν(B) = 0, then f ≤ 1 ν-a.e., hence η(A) ≤
∫
A

min{f, 1}dν. We then assume ν(B) > 0. Then

η(B) + η((A ∩ E) \B) = η(A ∩ E) >

∫
B

min{f, 1}dν(x) +

∫
(A∩E)\B

min{f, 1}dν

=

∫
B

1dν +

∫
(A∩E)\B

fdν = ν(B) + µ((A ∩ E) \B)

which contradicts the fact that η ≤ ν and η ≤ µ. This implies that η satisfying (8) does not exist,
and then (7) holds.

Lemma 2. Let µ and ν be two measures in M(Rd). Then η ≤ µ+ ν implies η − (µ ∧ η) ≤ ν.

Proof. Take A a Borel set. We write µ = fη + η⊥, with η⊥ ⊥ η. Then η ∧ µ = min{f, 1}η, and we
can write

η(A)− (η ∧ µ)(A) =

∫
A

(
max{1− f, 0}

)
dη.

Define B = A∩ {f < 1}, and E such that η(A∩E) = η(A) and η⊥(A∩Ec) = η⊥(A). It then holds

η(A)− (η ∧ µ)(A) =

∫
B∩E

(1− f)dη(x) = η(B ∩ E) + η⊥(B ∩ E)− µ(B ∩ E) ≤ ν(B ∩ E) ≤ ν(A).

Since this estimate holds for any Borel set A, the statement is proved.

2.2 Signed measures

We now introduce signed Radon measures, that are measures µ that can be written as µ = µ+−µ−
with µ+, µ− ∈M(Rd). We denote with Ms(Rd) the space of such signed Radon measures.

For µ ∈Ms(Rd), we define |µ| = |µJ+|+ |µJ−| where (µJ+, µ
J
−) is the unique Jordan decomposition

of µ, i.e. µ = µJ+ − µJ− with µJ+ ⊥ µJ−. Observe that |µ| is always finite, since µJ+, µ
J
− ∈M(Rd). We

now recall the definition of tightness for a sequence in Ms(Rd) and a weak compactness theorem.

Definition 2. A sequence (µn)n∈N of measures inM(Rd) is tight if for each ε > 0, there is a compact
set K ⊂ Rd such that for all n ≥ 0, µn(Rd \ K) < ε. A sequence (µn)n∈N of signed measures of
Ms(Rd) is tight if the sequences (µ+

n )n∈N and (µ−n )n∈N given by the Jordan decomposition are both
tight.

Lemma 3 (Weak compactness ). Let µn be a sequence of measures in M(Rd) that are uniformly
bounded in mass. We can then extract a subsequence µφ(n) such that µφ(n) ⇀

n→∞
µ for some µ ∈

M(Rd), i.e. for all continuous and bounded function φ, we have
∫

Rd ϕdµφ(n) →
n→∞

∫
Rd ϕdµ.

A proof can be found in [5].
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2.3 Properties of the generalized Wasserstein distance

In this section, we recall key properties of the generalized Wasserstein distance. The usual Wasser-
stein distance Wp(µ, ν) was defined between two measures µ and ν of same mass |µ| = |ν|, see
more details in [13]. A transference plan between two positive measures of same mass µ and ν is a
measure π ∈ P(Rd,Rd) which satisfies for all A,B ∈ B(Rd)

π(A× Rd) = µ(A), π(Rd ×B) = ν(B).

We denote by Π(µ, ν) the set of transference plans between µ and ν. The p-Wasserstein distance
for positive Radon measures of same mass is defined as

Wp(µ, ν) =

(
min

π∈Π(µ,ν)

∫
Rd×Rd

|x− y|pdπ(x, y)

) 1
p

.

It was extended to positive measures having possibly different mass in [11, 12], where the authors

introduce the distance W a,b
p on the space M(Rd) of Radon measures with finite mass. The formal

definition is the following.

Definition 3 (Generalized Wasserstein distance [11]). Let µ, ν be two positive measures in M(Rd).
The generalized Wasserstein distance between µ and ν is given by

W a,b
p (µ, ν) =

 inf
µ̃,ν̃∈M(Rd)
|µ̃|=|ν̃|

ap(|µ− µ̃|+ |ν − ν̃|)p + bpW p
p (µ̃, ν̃)


1/p

. (9)

We notice that

W a,b
p =

b

b′
W a′,b′
p , for

a

b
=
a′

b′
. (10)

Notice that the infimum in (9) is always attained. Moreover, there always exists a minimizer that
satisfy the additional constraint µ̃ ≤ µ, ν̃ ≤ ν.

We denote by C0
c (Rd; R) the set of continuous functions with compact support on Rd. For

f ∈ C0
c (Rd; R), we define

‖f‖∞ = sup
x∈Rd

|f(x)|, ‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

We also denote by C0,Lip
c (Rd; R) the subset of functions f ∈ C0

c (Rd; R) for which it holds ‖f‖Lip < +∞.
The following result is stated in [12, Theorem 13].

Lemma 4 (Kantorovitch Rubinstein duality). For µ, ν in M(Rd), it holds

W 1,1
1 (µ, ν) = sup

{∫
Rd
ϕ d(µ− ν); ϕ ∈ C0,Lip

c , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}
.

Lemma 5 (Properties of the generalized Wasserstein distance). Let µ, ν, η, µ1, µ2, ν1, ν2 be some
positive measures with finite mass on Rd. The following properties hold

1. W a,b
p (µ1 + µ2, ν1 + ν2) ≤W a,b

p (µ1, ν1) +W a,b
p (µ2, ν2).

2. W a,b
1 (µ+ η, ν + η) = W a,b

1 (µ, ν),
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Proof. The first property is taken from [11, Proposition 11]. The second statement is a direct
consequence of the Kantorovitch-Rubinstein duality in Lemma 4 for W 1,1. For general a > 0, b > 0,
we proceed as follows. Let µ, ν be two measures. Define

Ca,b(µ̄, ν̄, π;µ, ν) := a(|µ− µ̄|+ |ν − ν̄|) + b

∫
|x− y| dπ(x, y),

where π is a transference plan in Π(µ̄, ν̄). Define Dλ : x → λx with λ > 0 the dilation in Rn. It
holds

Ca,b(Dλ#µ̄,Dλ#ν̄,(Dλ ×Dλ)#π;Dλ#µ,Dλ#ν)

= a(|Dλ#µ−Dλ#µ̄|+ |Dλ#ν −Dλ#ν̄|) + b

∫
|x− y| d(Dλ ×Dλ)π(x, y),

= a(|µ− µ̄|+ |ν − ν̄|) + b

∫
|λx− λy| dπ(x, y) = Ca,λb(µ̄, ν̄, π;µ, ν).

As a consequence, it holds
W a,b(Dλ#µ,Dλ#ν) = W a,λb(µ, ν).

We now show that this impliesW a,b(µ+η, ν+η) = W a,b(µ, ν). Indeed, also applying Kantorovich-
Rubinstein for W 1,1 and (10) with a′ = 1, b′ = λ = b

a , it holds

W a,b(µ+ η, ν + η) = aW 1, b
a (µ+ η, ν + η) = aW 1,1(Dλ#µ+Dλ#η,Dλ#ν +Dλ#η) =

= aW 1,1(Dλ#µ,Dλ#ν) = aW 1, b
a (µ, ν) = W a,b(µ, ν).

Definition 4 (Image of a measure under a plan). Let µ and ν two measures in M(Rd) of same
mass and π ∈ Π(µ, ν). For η ≤ µ, we denote by f the Radon-Nykodym derivative of η with respect
to µ and by πf the transference plan defined by πf (x, y) = f(x)π(x, y). Then, we define the image
of η under π as the second marginal η′ of πf .

Observe that the second marginal satisfies η′ ≤ ν. Indeed, since η ≤ µ, it holds f ≤ 1. Thus,
for all Borel set B of Rd we have

η′(B) = πf (Rd ×B) ≤ π(Rd ×B) = ν(B).

3 Generalized Wasserstein norm for signed measures

In this section, we define the generalized Wasserstein distance for signed measures and prove some
of its properties. The idea is to follow what was already done in [1] for generalizing the classical
Wasserstein distance.

Definition 5 (Generalized Wasserstein distance extended to signed measures). For µ, ν two signed
measures with finite mass over Rd, we define

Wa,b
1 (µ, ν) = W a,b

1 (µ+ + ν−, µ− + ν+),

where µ+, µ−, ν+ and ν− are any measures in M(Rd) such that µ = µ+ − µ− and ν = ν+ − ν−.

Proposition 1. The operator Wa,b
1 is a distance on the spaceMs(Rd) of signed measures with finite

mass on Rd.
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Proof. First, we point out that the definition does not depend on the decomposition. Indeed, if
we consider two distinct decompositions, µ = µ+ − µ− = µJ+ − µJ−, and ν = ν+ − ν− = νJ+ − ν−J ,
with the second one being the Jordan decomposition, then we have (µ+ + ν−) − (µJ+ + νJ−) =
(µ− + ν+) − (µJ− + νJ+), and this is a positive measure since µ+ ≥ µJ+ and ν+ ≥ νJ+. The first
property of Lemma 5 then gives

W a,b
1 (µJ+ + νJ−, µ

J
− + νJ+) =

W a,b
1 (µJ+ + νJ− + (µ+ + ν−)− (µJ+ + νJ−), µJ− + νJ+ + (µ− + ν+)− (µJ− + νJ+)) =

W a,b
1 (µ+ + ν−, µ− + ν+).

We now prove that Wa,b
1 (µ, ν) = 0 implies µ = ν. As explained above, we can choose the Jordan

decomposition for both µ and ν. Since W a,b
1 is a distance, we obtain µ+ + ν− = µ− + ν+. The

orthogonality of µ+ and µ− and of ν+ and ν− implies that µ+ = ν+ and µ− = ν−, and thus µ = ν.
We now prove the triangle inequality. We have Wa,b

1 (µ, η) = W a,b
1 (µ+ + η−, µ− + η+). Using

Lemma 5, we have

Wa,b
1 (µ, η) = W a,b

1 (µ+ + η− + ν+ + ν−, µ− + η+ + ν+ + ν−)

≤W a,b
1 (µ+ + ν−, µ− + ν+) +W a,b

1 (η− + ν+, η+ + ν−)

= Wa,b
1 (µ, ν) + Wa,b

1 (ν, η).

We also state the following lemma about adding and removing masses.

Lemma 6. Let µ, ν, η, µ1, µ2, ν1, ν2 in Ms(Rd) with finite mass on Rd. The following properties
hold

• Wa,b
1 (µ+ η, ν + η) = Wa,b

1 (µ, ν),

• Wa,b
1 (µ1 + µ2, ν1 + ν2) ≤ Wa,b

1 (µ1, ν1) + Wa,b
1 (µ2, ν2).

Proof. The proof is direct. For the first item, it holds Wa,b
1 (µ + η, ν + η) = W a,b

1 (µ+ + ν+ + η+ +

η−, µ− + ν− + η+ + η−) which is W a,b
1 (µ+ + ν+, µ− + ν−) = Wa,b

1 (µ, ν).
For the second item, it holds

Wa,b
1 (µ1 + µ2, ν1 + ν2) = W a,b

1 (µ1,+ + µ2,+ + ν1,− + ν2,−, ν1,+ + ν2,+ + µ1,− + µ2,−)

≤W a,b
1 (µ1,+ + ν1,−, ν1,+ + µ1,−) +W a,b

1 (µ2,+ + ν2,−, ν2,+ + µ2,−)

= Wa,b
1 (µ1, ν1) + Wa,b

1 (µ2, ν2).

Definition 6. For µ ∈Ms(Rd) and a > 0, b > 0, we define

‖µ‖a,b = Wa,b
1 (µ, 0) = W a,b

1 (µ+, µ−),

where µ+ and µ− are any measures of M(Rd) such that µ = µ+ − µ−.

It is clear that the definition of ‖µ‖a,b does not depend on the choice of µ+, µ− as a consequence

of the corresponding property for W a,b
1 .
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Proposition 2. The space of signed measures (Ms(Rd), ‖.‖a,b) is a normed vector space.

Proof. First, we notice that ‖µ‖a,b = 0 implies that W a,b
1 (µ+, µ−) = 0, which is µ+ = µ− so that

µ = µ+ − µ− = 0. For triangular inequality, using the second property of Lemma 6, we have that
for µ, η ∈Ms(Rd),

‖µ+ η‖a,b = Wa,b
1 (µ+ η, 0) ≤ Wa,b

1 (µ, 0) + Wa,b
1 (η, 0) = ‖µ‖a,b + ‖η‖a,b.

Homogeneity is obtained by writing for λ > 0, ‖λµ‖a,b = Wa,b
1 (λµ, 0) = W a,b

1 (λµ+, λµ−) where
µ = µ+ − µ−. Using Lemma 4, we have

W a,b
1 (λµ+, λµ−) = sup

{∫
Rd
ϕ d(λµ+ − λµ−); ϕ ∈ C0,Lip

c , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}
= λ sup

{∫
Rd
ϕ d(µ+ − µ−); ϕ ∈ C0,Lip

c , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}
= λW a,b

1 (µ+, µ−).

3.1 Topological properties

In this section, we study the topological properties of the norm introduced above. In particular, we
aim to prove that it admits a duality formula that indeed coincides with (1). We first prove that
the topology of ‖.‖a,b does not depend on a, b > 0.

Proposition 3. For a > 0, b > 0, the norm ‖.‖a,b is equivalent to ‖.‖1,1.

Proof. For µ ∈Ms(Rd) denote by (ma,b
+ ,ma,b

− ) the positive measures such that

‖µ‖a,b = a|µ+ −ma,b
+ |+ a|µ− −ma,b

− |+ bW1(ma,b
+ ,ma,b

− ),

and similarly define (m1,1
+ ,m1,1

− ) By definition of the minimizers, we have

‖µ‖a,b = a|µ+ −ma,b
+ |+ a|µ− −ma,b

− |+ bW1(ma,b
+ ,ma,b

− )

≤ a|µ+ −m1,1
+ |+ a|µ− −m1,1

− |+ bW1(m1,1
+ ,m1,1

− ). ≤ max{a, b}‖µ‖1,1,

In the same way, we obtain

min{a, b}‖µ‖1,1 ≤ ‖µ‖a,b ≤ max{a, b}‖µ‖1,1.

We give now an equivalent Kantorovich-Rubinstein duality formula for the new distance. We
denote by C0

b (Rd; R) the set of bounded and continuous functions on Rd. For f ∈ C0
b (Rd; R), similarly

to C0
c (Rd; R), we define the following

‖f‖∞ = sup
x∈Rd

|f(x)|, ‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

We introduce
C0,Lip
b = {f ∈ C0

b (Rd; R) | ‖f‖Lip <∞}.

In the next proposition, we express the Kantorovich duality for the norm W1,1
1 . This shows that

W1,1
1 coincides with the bounded Lipschitz distance introduced in [6], also called Fortet Mourier

distance in [14].
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Proposition 4 (Kantorovich duality). The signed generalized Wasserstein distance W1,1
1 coincides

with the bounded Lipschitz distance: for µ, ν in Ms(Rd), it holds

W1,1
1 (µ, ν) = sup

{∫
Rd
ϕ d(µ− ν); ϕ ∈ C0,Lip

b , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}
Proof. By using Lemma 4 we have

W1,1
1 (µ, ν) = W a,b

1 (µ+ + ν−, ν+ + µ−)

= sup

{∫
Rd
ϕ d(µ+ − µ− − (ν+ − ν−)); ϕ ∈ C0,Lip

c , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}
= sup

{∫
Rd
ϕ d(µ− ν); ϕ ∈ C0,Lip

c , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}
.

We denote by

S = sup

{∫
Rd
ϕ d(µ− ν); ϕ ∈ C0,Lip

b , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}
.

First observe that S < +∞. Indeed, it holds
∫

Rd ϕ d(µ − ν) ≤ ‖ϕ‖∞(|µ| + |ν|) < +∞. Denote

with ϕn a sequence of functions of C0,Lip
b such that

∫
Rd ϕn d(µ − ν) → S as n → ∞. Consider a

sequence of functions ρn in C0,Lip
c such that ρn(x) = 1 for x ∈ B0(n), ρn(x) = 0 for x /∈ B0(n + 1)

and ‖ρn‖∞ ≤ 1. For the sequence ψn = ϕnρn of functions of C0,Lip
c , it holds∣∣∣∣∫

Rd
ψn d(µ− ν)− S

∣∣∣∣ ≤ ∣∣∣∣∫
Rd

(ψn − ϕn) d(µ− ν)

∣∣∣∣+

∣∣∣∣∫
Rd
ϕn d(µ− ν)− S

∣∣∣∣
≤ 2

∣∣∣∣∣
∫

Rd\B0(n)
d(µ− ν)

∣∣∣∣∣+

∣∣∣∣∫
Rd
ϕn d(µ− ν)− S

∣∣∣∣
since ‖ϕn‖∞ ≤ 1. The first term goes to zero with n, since (µ− ν) being of finite mass is tight, and
the second term goes to zero with n by definition of S and ϕn. Then

S = sup

{∫
Rd
ϕ d(µ− ν); ϕ ∈ C0,Lip

c , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}
,

and Proposition 4 is proved.

Remark 2. We observe that a sequence µn of Ms(R) which satisfies ‖µn‖a,b →
n→∞

0 is not neces-

sarily tight, and its mass is not necessarily bounded. For instance, we have that

νn = δn − δn+ 1
n

is not tight, whereas it satisfies for n sufficiently large ‖νn‖a,b = b
n →n→∞ 0. The sequence

µn = n δ 1
n2
− n δ− 1

n2

satisfies ‖µn‖a,b =
2bn

n2
for n sufficiently large (depending on a and b, it may be less expensive to

cancel the mass than to transport it), so that ‖µn‖a,b →
n→∞

0 whereas |µn| = 2n is not bounded.
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Remark 3. Norm ‖.‖1,1 does not metrize tight convergence, contrarily to what is stated in [6].
Indeed, take µn = δ√2πn+π

2
− δ√

2πn+ 3π
2

. We have

‖µn‖1,1 ≤

∣∣∣∣∣
√

2πn+
π

2
−
√

2πn+
3π

2

∥∥∥∥∥ →n→∞ 0,

even though for ϕ(x) = sin(x2) in C0
b (R), we have∫

R
ϕdµn = 2, n ∈ N.

Remark 4. We have as a direct consequence of Proposition 4 that

‖µn − µ‖a,b →
n→∞

0 ⇒ ∀ϕ ∈ C0,Lip
b (Rd),

∫
Rd
ϕdµn →

n→∞

∫
Rd
ϕdµ. (11)

However, the reciprocal statement of (11) is false: define

µn := n cos(nx)χ[0,π].

For

ϕn :=
1

n
cos(nx),

it is clear that ∫
R
ϕn dµn =

∫ π

0
cos2(nx) dx =

π

2
6→ 0.

We now prove that, for each ϕ in C0,Lip
b (R), it holds

∫
R ϕdµn → 0. Given ϕ ∈ C0,Lip

b (R), define

f(x) :=


ϕ(−x), when x ∈ [−π, π],

ϕ(x− 2π), when x > π,

ϕ(x+ 2π), when x < −π.

We have ∫
R
ϕdµn =

∫
R
f dµn.

Since f is a 2π-periodic function, it also holds
∫
f dµn = nan, where an is the n-th cosine coefficient

in the Fourier series expansion of f . We then prove nan → 0 for any 2π-periodic Lipschitz function
f , following the ideas of [15, p. 46, last line]. Since f is Lipschitz, then its distributional derivative
is in L∞[−π, π] and thus in L1[−π, π]. Then

an =
1

2π

∫ π

−π
f(x) cos(nx) dx = − 1

2nπ

∫ π

−π
f ′(x) sin(nx) dx = −b

′
n

n
,

where b′n is the n-th sine coefficient of f ′. As a consequence of the Riemann-Lebesgue lemma,
b′n → 0, and this implies nan → 0.

Proposition 5. Assume that ‖µn‖a,b →
n→∞

0, then ∆mn := |µ+
n | − |µ−n | →n→∞ 0.

10



Proof. We have by definition ‖µn‖a,b = W a,b
1 (µ+

n , µ
−
n ). We denote by µ̄+

n , µ̄
−
n the minimizers in the

right hand side of (9) realizing the distance W a,b
1 (µ+

n , µ
−
n ). We have

‖µn‖a,b = a
(
|µ+
n − µ̄+

n |+ |µ−n − µ̄−n |
)

+ bW1(µ̄+
n , µ̄

−
n ), |µ̄+

n | = |µ̄−n |.

Since ‖µn‖a,b →
n→∞

0, each of the three terms converges to zero as well. Thus,∣∣|µ+
n | − |µ−n |

∣∣ =
∣∣|µ+

n − µ̄+
n + µ̄+

n | − |µ−n − µ̄−n + µ̄−n |
∣∣

=
∣∣|µ+

n − µ̄+
n |+ |µ̄+

n | − |µ−n − µ̄−n | − |µ̄−n |
∣∣

=
∣∣|µ+

n − µ̄+
n | − |µ−n − µ̄−n |

∣∣ →
n→∞

0.

Theorem 2. The two following statements are equivalent:

(i) ‖µn − µ‖a,b →
n→∞

0.

(ii) There exists z+
n , z

−
n , m

+
n , m

−
n ∈M(Rd) such that

µ+
n = z+

n +m+
n ,

µ−n = z−n +m−n ,
with

W a,b
1 (z+

n , z
−
n ) →

n→∞
0,

W a,b
1 (m+

n , µ
+) →

n→∞
0,

W a,b
1 (m−n , µ

−) →
n→∞

0,

{m+
n }n and {m−n }n are tight and bounded in mass,

where µ = µ+ − µ− is the Jordan decomposition, and µn = µ+
n − µ−n is any decomposition.

Proof. We start by proving (i) ⇒ (ii). We have ‖µn − µ‖a,b = Wa,b
1 (µn, µ) = W a,b

1 (µ+
n + µ−, µ−n +

µ+) = →
n→∞

0. We denote by an ≤ (µ+
n + µ−) and bn ≤ (µ−n + µ+) a choice of minimizers realizing

W a,b
1 (µ+

n + µ−, µ−n + µ+), as well as πn being a minimizing transference plan from an to bn.
Step 1. The removed mass. We define by a+

n and b−n the largest transported mass which is
respectively below µ+

n and µ−n

a+
n = µ+

n ∧ an,
a−n = an − a+

n ,

b−n = µ−n ∧ bn,
b+n = bn − b−n .

The mass which is removed is then rn = r+
n + r−n := (µ+

n − a+
n ) + (µ− − a−n ) and r∗n = r∗,−n +

r∗,+n := (µ−n − b−n ) + (µ+ − b+n ). The removed mass rn and r∗n are expressed here as the sum of
two positive measures. Indeed, it is clear by definition that a+

n ≤ µ+
n , and since an ≤ µ+

n + µ−,
Lemma 2, gives that a−n = an − an ∧ µ+

n ≤ µ−. We reason the same way for r∗n. Then, we have
W a,b

1 (µ+
n + µ−, µ−n + µ+) = a (|µ+

n − a+
n |+ |µ− − a−n |+ |µ−n − b−n |+ |µ+ − b+n |) + bW1(an, bn). Since

W a,b
1 (µ+

n + µ−, µ−n + µ+) goes to zero, each of the five terms of the above decomposition goes to
zero, and in particular, |µ+

n − a+
n | →n→∞ 0 and |µ−n − b−n | →n→∞ 0 which implies that that

W a,b
1 (µ+

n − a+
n , 0) →

n→∞
0, W a,b

1 (µ−n − b−n , 0) →
n→∞

0. (12)

Step 2. The transported mass. The mass a+
n is split into two pieces: νn is sent to µ−n ,

and ξn is sent to µ+. Denote by ā+
n the image of a+

n under πn (using Definition 4), then we define

11



ν∗n = ā+
n ∧µ−n . (Still using Definition 4), we denote by νn the image of ν∗n under πn. Then, we define

ξn such that a+
n = νn + ξn, and we denote by ξ∗n the image of ξn under πn. By definition, we have

W1(an, bn) = W1(νn, ν
∗
n) +W1(ξn, ξ

∗
n) +W1(wn, w

∗
n) +W1(αn, α

∗
n), (13)

with a+
n = νn+ξn, w

∗
n is defined so that b−n = ν∗n+w∗n, wn is the image of w∗n under πn, αn is defined

so that µ− = wn + αn, α
∗
n is the image of αn under πn, and it can be checked that µ+ = ξ∗n + α∗n.

Since W1(an, bn) →
n→∞

0, each of the four term of the sum (13) is going to zero.

Step 3. Conclusion.
Let us write

z+
n = νn + (µ+

n − a+
n ), z−n = ν∗n + (µ−n − b−n ), m+

n = ξn, m−n = w∗n.

We show here that the sequences defined hereinabove satisfy the conditions stated in (ii). First, we
have z+

n +m+
n = ν+

n + (µ+
n − a+

n ) + ξn = µ+
n and similarly, z−n +m−n = ν∗n + (µ−n − b−n ) + w∗n = µ−n .

Then, we have

W a,b
1 (z+

n , z
−
n ) = W a,b

1 (νn + (µ+
n − a+

n ), ν∗n + (µ−n − b−n ))

≤W a,b
1 (νn, ν

∗
n) +W a,b

1 (µ+
n − a+

n , µ
−
n − b−n ) using Lemma 5

≤ bW1(νn, ν
∗
n) +W a,b

1 (µ+
n − a+

n , 0) +W a,b
1 (0, µ−n − b−n )

→
n→∞

0, using (12) and (13).

Here, we also used that for |µ| = |ν|, W a,b
1 (µ, ν) ≤ bW1(µ, ν). This is trivial with the definition of

W a,b
1 . Now, we also have

W a,b
1 (m+

n , µ
+) = W a,b

1 (ξn, µ
+) ≤W a,b

1 (ξn, ξ
∗
n) +W a,b

1 (ξ∗n, b
+
n ) +W a,b

1 (b+n , µ
+) (triangular inequality)

= W a,b
1 (ξn, ξ

∗
n) +W a,b

1 (α∗n, 0) +W a,b
1 (µ+ − b+n , 0)

since α∗n + ξ∗n = b+n . We know that W a,b
1 (ξn, ξ

∗
n) ≤ bW1(ξn, ξ

∗
n) →

n→∞
0 using (13), and that

W a,b
1 (µ+ − b+n , 0) →

n→∞
0 using (12). Let us explain now why W a,b

1 (α∗n, 0) →
n→∞

0. We recall

that W1(αn, α
∗
n) →

n→∞
0, αn ≤ a−n ≤ µ−, α∗n ≤ b+n ≤ µ+. Since (αn)n is uniformly bounded

in mass, then there exists α ∈ M(Rd) such that αϕ(n) ⇀
n→∞

α (weak compactness of uniformly

bounded in mass Radon measures, see [5]). We have also that (αϕ(n))n is tight, since αϕ(n) ≤ µ−

which has a finite mass. Using Theorem 13 of [10], we deduce that W a,b
1 (αϕ(n), α) →

n→∞
0. Then,

W a,b
1 (α∗ϕ(n), α) ≤ W a,b

1 (α∗ϕ(n), αϕ(n)) + W a,b
1 (αϕ(n), α) ≤ W1(α∗ϕ(n), αϕ(n)) + W a,b

1 (αϕ(n), α) →
n→∞

0.

Then, using again Theorem 13 of [10], we deduce that α∗ϕ(n) ⇀
n→∞

α Since αn ≤ µ−, we have α ≤ µ−.

Likewise, α∗n ≤ µ+ implies α ≤ µ+. Since µ− ⊥ µ+, we have α = 0. We have W a,b
1 (αϕ(n), 0) →

n→∞
0

and W a,b
1 (αϕ(n), 0) →

n→∞
0. The sequence (αn)n satisfies the following property: each of its sub-

sequences admits a subsequence converging to zero. Thus, we have that the whole sequence is
converging to zero, i.e. W a,b

1 (αn, 0) →
n→∞

0 and W a,b
1 (α∗n, 0) →

n→∞
0. Lastly, the tightness of (m+

n )n

and (m−n )n is given again by Theorem 13 of [10], since W a,b
1 (m±n , µ

±) →
n→∞

0.
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We prove now that (ii)⇒ (i). Let us assume (ii). We have

‖µn − µ‖a,b = W a,b
1 (µ+

n + µ−, µ−n + µ+) = W a,b
1 (z+

n +m+
n + µ−, z−n +m−n + µ+)

≤W a,b
1 (z+

n , z
−
n ) +W a,b

1 (m+
n , µ

+) +W a,b
1 (µ−,m−n )

→
n→∞

0,

which is (i).

We recall from [12] that the space (M(Rd),W a,b
p ) is a Banach space. The proof is based on the

fact that a Cauchy sequence of positive measures is both uniformly bounded in mass and tight.
This is not true anymore for a Cauchy sequence of signed measures.

Remark 5. Observe that (Ms(Rd), ‖.‖a,b) is not a Banach space. Indeed, take the sequence

µn =

n∑
i=1

(
δi+ 1

2i
− δi− 1

2i

)
.

It is a Cauchy sequence in (Ms(Rd), ‖.‖a,b), since it holds

Wa,b
1 (µn, µn+k) ≤ 2b

n+k∑
i=n+1

1

2i
≤ 2b

+∞∑
i=n+1

1

2i
→

n→∞
0.

However, such sequence does not converge in (Ms(Rd), ‖.‖a,b). As seen in Remark (3), the
convergence for the norm ‖.‖a,b implies the convergence in the sense of distributions. In the sense
of distributions we have

µn ⇀ µ∗ :=

+∞∑
i=1

(
δi+ 1

2i
− δi− 1

2i

)
/∈Ms(R).

Indeed, for all ϕ ∈ C∞c (R), since ϕ is compactly supported, it holds

〈µn − µ, ϕ〉 =

+∞∑
i=n+1

(
ϕ

(
i+

1

2i

)
− ϕ

(
i− 1

2i

))
→

n→∞
0.

Nevertheless, we have the following convergence result.

Theorem 3. A Cauchy sequence in (Ms(Rd), ‖.‖a,b) uniformly bounded in mass and tight converges
in (Ms(Rd), ‖.‖a,b).

Proof. Take a tight Cauchy sequence (µn)n ∈Ms(Rd) such that the sequences given by the Jordan
decomposition |µ+

n | and |µ−n | are uniformly bounded. Then, by Lemma 3, there exists µ+ and µ−

in M(Rd) and ϕ non decreasing such that, µ+
ϕ(n) ⇀

n→∞
µ+ and µ−ϕ(n) ⇀

n→∞
µ−. Since µ+

n and µ−n are

assumed to be tight, it holds W a,b
1 (µ+

ϕ(n), µ
+) →

n→∞
0 and W a,b

1 (µ−ϕ(n), µ
−) →

n→∞
0 (see [11, Theorem

13]). Then, we have

‖µn − (µ+ − µ−)‖a,b ≤‖µn − µϕ(n)‖a,b + ‖µϕ(n) − (µ+ − µ−)‖a,b

≤ ‖µn − µϕ(n)‖a,b +W a,b
1 (µ+

ϕ(n) + µ−, µ−ϕ(n) + µ+)

≤ ‖µn − µϕ(n)‖a,b +W a,b
1 (µ+

ϕ(n), µ
+) +W a,b

1 (µ−ϕ(n), µ
−) →

n→∞
0

since (µn)n is a Cauchy sequence.
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4 Application to the transport equation with source term

This section is devoted to the use of the norm defined in Definition 6 to guarantee existence,
uniqueness, and stability with respect to initial condition for the transport equation (2).

4.1 Estimates of the norm under flow action

In this section, we extend the action of flows on probability measures to signed measures, and state
some estimates about the variation of ‖µ − ν‖a,b after the action of a flow on µ and ν. Notice
that for µ ∈ Ms(Rd) and T a map, we have T#µ = T#µ+ − T#µ−, where µ = µ+ − µ− is any
decomposition of µ. Observe that in general, given µ ∈ Ms(Rd) and T : Rd 7→ Rd a Borel map, it
only holds |T#µ| ≤ |µ|, even by choosing the Jordan decomposition for (µ+, µ−), since it may hold
that T#µ+ and T#µ− are not orthogonal. However, if T is injective (as it will be in the rest of the
paper), it holds T#µ+ ⊥ T#µ−, hence |T#µ| = |µ|.

Lemma 7. For v(t, x) measurable in time, uniformly Lipschitz in space, and uniformly bounded,
we denote by Φv

t the flow it generates, i.e. the unique solution to

d

dt
Φv
t = v(Φv

t ), Φv
0 = Id.

Given µ0 ∈Ms(Rd), then, µt = Φv
t#µ0 is the unique solution of the linear transport equation

∂

∂t
µt +∇.(v(t, x)µt) = 0,

µ|t=0 = µ0

in C([0, T ],Ms(Rd)).

Proof. The proof is a direct consequence of [13, Theorem 5.34] combined with [3, Theorem 2.1.1].

Lemma 8. Let v and w be two vector fields, both satisfying for all t ∈ R and x, y ∈ Rd, the following
properties:

|v(t, x)− v(t, y)| ≤ L|x− y|, |v(t, x)| ≤M.

Let µ and ν be two measures of Ms(Rd). Then

• ‖φvt#µ− φvt#ν‖a,b ≤ eLt‖µ− ν‖a,b

• ‖µ− φvt#µ‖a,b ≤ b t M |µ|,

• ‖φvt#µ− φwt #µ‖a,b ≤ b|µ| (e
Lt−1)
L ‖v − w‖C0

• ‖φvt#µ− φwt #ν‖a,b ≤ eLt‖µ− ν‖a,b + b min{|µ|, |ν|} (eLt−1)
L ‖v − w‖C0

Proof. The first three inequalities follow from [12, Proposition 10]. For the first inequality, we write

‖φvt#µ− φvt#ν‖a,b = Wa,b
1 (φvt#µ, φ

v
t#ν) = Wa,b

1 (φvt#µ
+ − φvt#µ−, φvt#ν+ − φvt#ν−)

= W a,b
1 (φvt#(µ+ + ν−), φvt#(µ− + ν+))

≤ eLtW a,b
1 (µ+ + ν−, µ− + ν+) by [12, Prop. 10]

= eLt‖µ− ν‖a,b.
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For the second inequality,

Wa,b
1 (µ, φvt#µ) = W a,b

1 (µ+ + φvt#µ
−, µ− + φvt#µ

+)

≤W a,b
1 (µ+, φvt#µ

+) +W a,b
1 (µ−, φvt#µ

−) (Lemma 5)

≤ b t ‖v‖C0(|µ+|+ |µ−|) by [12, Prop. 10]

= b t ‖v‖C0 |µ| since µ = µ+ − µ− is the Jordan decomposition.

The third inequality is given by

‖φvt#µ− φwt #µ‖a,b = Wa,b
1 (φvt#µ

+ + φwt #µ−, φwt #µ+ + φvt#µ
−)

≤W a,b
1 (φvt#µ

+, φwt #µ+) +W a,b
1 (φwt #µ−, φvt#µ

−)

≤ bW1(φvt#µ
+, φwt #µ+) +W1(φwt #µ−, φvt#µ

−)

≤ (|µ+|+ |µ−|)(eLt − 1)

L
‖v − w‖|C0(Rd) using [12, Prop. 10] with µ = ν.

The last inequality is deduced from the first and the third one using triangular inequality.

4.2 A scheme for computing solutions of the transport equation

In this section, we build a solution to (2) as the limit of a sequence of approximated solutions
defined in the following scheme. We then prove that (2) admits a unique solution.

Consider µ0 ∈Ms(Rd) such that supp(µ0) ⊂ K, withK compact. Let v ∈ C0,Lip(Ms(Rd), C0,Lip(Rd))
and h ∈ C0,Lip(Ms(Rd),Ms(Rd)) satisfying (H-1)-(H-2)-(H-3). We now define a sequence (µkt )k of
approximated solutions for (2) through the following Euler-explicit-type iteration scheme. For sim-
plicity of notations, we define a solution on the time interval [0, 1].

Scheme

Initialization. Fix k ∈ N. Define ∆t =
1

2k
. Set µk0 = µ0.

Induction. Given µi∆t for i ∈ {0, 1, . . . , 2k − 1}, define vki∆t := v[µki∆t] and

µkt = Φvi∆t
t−i∆t#µ

k
i∆t + (t− i∆t)h[µki∆t], t ∈ [i∆t, (i+ 1)∆t]. (14)

Proposition 6. The sequence (µkt )k defined in the scheme above is a Cauchy sequence in the space
C0([0, 1],Ms(Rd), ‖.‖) with

‖µt‖ = sup
t∈[0,1]

‖µt‖a,b.

Moreover, it is uniformly bounded in mass, i.e.

sup
t∈[0,1]

|µkt | <∞. (15)

Proof. Let L be the Lipschitz constant in (H-2). We assume to have k sufficiently large to have
eLt ≤ 1 + 2Lt for all t ≤ [0,∆t]. This holds e.g. for L∆t ≤ 1, hence k ≥ log2(L).

We also notice that the sequence built by the scheme satisfies

|µkt | ≤ P + |µ0|, t ∈ [0, 1], (16)
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where P is such that |h[µ]| ≤ P by (H-3). Indeed, it holds for t ∈ [i∆t, (i+ 1)∆t]

|µkt | ≤ |Φ
vi∆t
t #µki∆t|+ ∆t|h[µki∆t]| ≤ |µki∆t|+ ∆tP,

and the result follows by induction. This proves (15). The sequence (µkt )k∈N also has uniformly
bounded support. Indeed, use (14) and (H-2)-(H-3) to write

supp{µkt } ⊆ Kt,M,R,

with supp{µ} = supp{µ+} ∪ supp{µ−} where (µ+, µ−) is the Jordan decomposition of µ, and

Kt,M,R := {x ∈ Rd, x = xK,R + x′, xK,R ∈ K ∪B0(R), ‖x′‖ ≤ tM}.

Take now R′ such that K∪B0(R) ⊂ B0(R′). Then, it holds Kt,M,R ⊂ B(0, R′ +M). Since such set
does not depend on t, while M,R are fixed, then µkt have uniformly bounded support.

We now follow the notations of [10] and define mk
j := µkj

2k

, vkj := v[mk
j ] and the corresponding

flow f j,kt := φ
vkj
t . Fix k ∈ N and t ∈ [0, 1]. Define j ∈ {0, 1, . . . , 2k} such that t ∈

]
j

2k
, j+1

2k

]
First case. If t ∈

]
j

2k
, 2j+1

2k+1

]
, we call t′ = t− j

2k
≤ 1

2k+1 and we obtain

Wa,b
1 (µkt , µ

k+1
t ) = Wa,b

1 (f j,kt′ #mk
j + t′h[mk

j ], f
2j,k+1
t′ #mk+1

2j + t′h[mk+1
2j ])

≤ Wa,b
1 (f j,kt′ #mk

j , f
2j,k+1
t′ #mk+1

2j ) + Wa,b
1 (t′h[mk

j ], t
′h[mk+1

2j ])

≤ eLt′Wa,b
1 (mk

j ,m
k+1
2j ) + |mk

j |
(eLt

′ − 1)

L
‖vkj − vk+1

2j ‖C0(Rd) + t′QWa,b
1 (mk

j ,m
k+1
2j )

≤ Wa,b
1 (mk

j ,m
k+1
2j )

(
eLt
′
+ (P + |µ0|) 1

L
(eLt

′ − 1) + t′Q

)
Since it holds

eLt
′ ≤ 1 + 2Lt′ ≤ 1 + 2L2−(k+1),

(eLt
′ − 1)

L
≤ 2 · 2−(k+1),

we have

‖µkt − µk+1
t ‖a,b ≤ ‖µkj

2k

− µk+1
2j
k+1

‖a,b
(

1 + 2−(k+1)
(
2L+ 2(P + |µ0|) +Q

))
, t ∈

[
j

2k
,
2j + 1

2k+1

]
.

(17)

Second case. If t ∈
]

2j+1
2k+1 ,

j+1
2k

]
, we call t′ = t− 2j+1

2k+1 ≤ 1
2k+1 and we obtain

µkt = f j,k
t′+ 1

2k+1

#mk
j +

(
t′ +

1

2k+1

)
h[mk

j ] = f j,kt′ #f j,k1
2k+1

#mk
j + t′h[mk

j ] +
1

2k+1
h[mk

j ],

µk+1
t = f2j+1,k+1

t′ #

(
f2j,k+1

1

2k+1

#mk+1
2j +

1

2k+1
h[mk+1

2j ]

)
+ t′h

[
f2j,k+1

1

2k+1

#mk+1
2j +

1

2k+1
h[mk+1

2j ]

]
= f2j+1,k+1

t′ #f2j,k+1
1

2k+1

#mk+1
2j +

1

2k+1
f2j+1,k+1
t′ #h[mk+1

2j ] + t′h

[
f2j,k+1

1

2k+1

#mk+1
2j +

1

2k+1
h[mk+1

2j ]

]
.

It then holds

‖µkt − µk+1
t ‖a,b ≤ Wa,b

1

(
f j,kt′ #f j,k1

2k+1

#mk
j , f

2j+1,k+1
t′ #f2j,k+1

1

2k+1

#mk+1
2j

)
+

1

2k+1
Wa,b

1

(
h[mk

j ], f
2j+1,k+1
t′ #h[mk+1

2j ]
)

+ t′Wa,b
1

(
h[mk

j ], h

[
f2j,k+1

1

2k+1

#mk+1
2j +

1

2k+1
h[mk+1

2j ]

])
.

(18)
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Use now Lemma 8 to prove the following estimate

Wa,b
1

(
f j,kt′ #f j,k1

2k+1

#mk
j , f

2j+1,k+1
t′ #f2j,k+1

1

2k+1

#mk+1
2j

)
≤ (1 + 2L2−(k+1))Wa,b

1

(
f j,k1

2k+1

#mk
j , f

2j,k+1
1

2k+1

#mk+1
2j

)
+ 2−(k+1)2P‖vkj − vk+1

2j+1‖C0(Rd).

Since, according to the first case, it holds both

Wa,b
1

(
f j,k1

2k+1

#mk
j , f

2j,k+1
1

2k+1

#mk+1
2j

)
≤ ‖mk

j −mk+1
2j ‖

a,b
(

1 + 2−(k+1)
(
2L+ 2(P + |µ0|)

))
and

‖vkj − vk+1
2j+1‖C0(Rd) ≤ KWa,b

1 (mk
j ,m

k+1
2j+1) ≤ KWa,b

1 (mk
j ,m

k+1
2j ) +KWa,b

1 (mk+1
2j ,mk+1

2j+1)

≤ KWa,b
1 (mk

j ,m
k+1
2j ) +KWa,b

1 (mk+1
2j ,mk+1

2j+1)

= KWa,b
1 (mk

j ,m
k+1
2j ) +KWa,b

1 (mk+1
2j , f2j,k+1

1

2k+1

#mk+1
2j )

= KWa,b
1 (mk

j ,m
k+1
2j ) +KM2−(k+1),

we have

Wa,b
1

(
f j,kt′ #f j,k1

2k+1

#mk
j , f

2j+1,k+1
t′ #f2j,k+1

1

2k+1

#mk+1
2j

)
≤ ‖mk

j −mk+1
2j ‖

a,b
(

1 + 2−(k+1)
(
4L+ 2(P + |µ0|)(1 + L) + 2KP

))
+ 2−2(k+1)2PKM.

(19)

Moreover, it also holds both

Wa,b
1

(
h[mk

j ], f
2j+1,k+1
t′ #h[mk+1

2j ]
)

≤ Wa,b
1

(
h[mk

j ], f
2j+1,k+1
t′ #h[mk

j ]
)

+ Wa,b
1

(
f2j+1,k+1
t′ #h[mk

j ], f
2j+1,k+1
t′ #h[mk+1

2j ]
)

≤ t′MP + eLt
′
Q‖mk

j −mk+1
2j ‖

a,b ≤ +MP2−(k+1) + (1 + 2L2−(k+1))‖mk
j −mk+1

2j ‖
a,b,

(20)

and

Wa,b
1

(
mk
j , f

2j,k+1
1

2k+1

#mk+1
2j +

1

2k+1
h[mk+1

2j ]

)
≤ Wa,b

1

(
mk
j , f

2j,k+1
1

2k+1

#mk+1
2j

)
+ 2−(k+1)Wa,b

1

(
0, h[mk+1

2j ]
)

≤ Wa,b
1

(
mk
j ,m

k+1
2j

)
+ Wa,b

1

(
mk+1

2j , f2j,k+1
1

2k+1

#mk+1
2j

)
+ 2−(k+1)aP

≤ ‖mk
j −mk+1

2j ‖
a,b + 2−(k+1)(|µ0|+ P (1 + a)).

(21)

Plugging (19), (20) and (21) into (18), and combining it with (17) we find

‖µkt − µk+1
t ‖a,b ≤ (1 + 2−kC1)‖mk

j −mk+1
2j ‖

a,b + C22−2k, t ∈
]
j

2k
,
j + 1

2k

]
,

with

C1 =
(
1 + 3L+ (P + |µ0|)(1 + L) +KP +Q

)
, C2 =

1

4
(MP (1 + 2K) + |µ0|+ P (1 + a)).
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By induction on j, we obtain

‖µkt − µk+1
t ‖ ≤ ‖mk

2k −m
k+1
2k+1‖a,b ≤

2k−1∑
j=0

(1 + 2−kC1)j2−2kC2 ≤
C2

C1
(eC1 − 1)2−k.

Since the right hand side is the term of a convergent series, then (µkt )k is a Cauchy sequence.

4.3 Proof of Theorem 1

In this section, we prove Theorem 1, stating existence and uniqueness of the solution to the Cauchy
problem associated to (2). The proof is based on the proof of the same result for positive measures
written in [12]. We first focus on existence.

Step 1. Existence. Observe that the sequence given by the scheme (µkt )k is a Cauchy sequence
(Proposition 6) in the space

(
C0[0, 1], Ms(Rd)

)
and is uniformly bounded in mass. Then, by using

Theorem 3, we define

µt := lim
k→∞

µkt , C0
(

[0, 1],Ms(Rd)
)
.

Denote the following:

〈µ, ϕ〉 :=

∫
Rd
ϕ(t, x)dµt(x).

The goal is to prove that for all ϕ ∈ D((0, 1)× Rd) it holds∫ 1

0
dt (〈µt, ∂tϕ(t, x) + v[µt].∇ϕ(t, x)〉+ 〈h[µt], ϕ(t, x)〉) = 0. (22)

We first notice that

2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt
(
〈µkt , ∂tϕ(t, x) + v[µkj∆t].∇ϕ(t, x)〉+ 〈h[µkj∆t], ϕ(t, x)〉

)
−→
k→∞

0

Indeed, νt := φvt#ν0 is a weak solution of ∂
∂tνt + ∇. (v(x)νt) = 0 with v a fixed vector field, and

ηt = η0 + th is a weak solution of ∂
∂tηt = h, with h a fixed measure. It then holds

∣∣∣ 2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt
(
〈µkt , ∂tϕ(t, x) + v[µkj∆t].∇ϕ(t, x)〉+ 〈h[µkj∆t], ϕ(t, x)〉

) ∣∣∣
=

∣∣∣∣∣∣
2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt 〈(t− j∆t)h[µkj∆t], v[µkj∆t].∇ϕ(t, x)〉

∣∣∣∣∣∣
≤MP‖∇ϕ‖∞2−(k+1) −→

k→∞
0.

Now, to guarantee (22), it is enough to prove that

lim
k→∞

∣∣∣ ∫ 1

0
dt (〈µt, ∂tϕ(t, x) + v[µt].∇ϕ(t, x)〉+ 〈h[µt], ϕ(t, x)〉)

−
2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt
(
〈µkt , ∂tϕ(t, x) + v[µkj∆t].∇ϕ(t, x)〉+ 〈h[µkt ], ϕ(t, x)〉

) ∣∣∣ = 0
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We have∣∣∣ ∫ 1

0
dt (〈µt, ∂tϕ(t, x)〉)−

2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt
(
〈µkt , ∂tϕ(t, x)〉

) ∣∣∣ ≤ ‖∂tϕ‖∞‖µt − µkt ‖ −→
k→∞

0,

∣∣∣ ∫ 1

0
dt〈h[µt], ϕ(t, x)〉 −

2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt〈h[µkt ], ϕ(t, x)〉

∣∣∣ ≤ Q‖ϕ‖∞‖µt − µkt ‖ −→
k→∞

0,

and∣∣∣ ∫ 1

0
dt〈µt, v[µt].∇ϕ(t, x)〉 −

2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt〈µkt , v[µkj∆t].∇ϕ(t, x)〉

∣∣∣
≤
∣∣∣ 2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt〈µkt − µt, v[µkj∆t].∇ϕ(t, x)〉

∣∣∣+
∣∣∣ 2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt〈µkt , (v[µkj∆t]− v[µkt ]).∇ϕ(t, x)〉

∣∣∣
+
∣∣∣ 2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt〈µkt , (v[µt]− v[µkt ]).∇ϕ(t, x)〉

∣∣∣
≤ ‖∇ϕ‖∞

(
M‖µt − µkt ‖+ LM(P + |µ0|)2−(k+1) + (P + |µ0|)L‖µt − µkt ‖

)
−→
k→∞

0.

This proves (22).
Step 2. Any weak solution to (2) is Lipschitz in time. In this step, we prove that any

weak solution to the transport equation (2) is Lipschitz with respect to time, since it satisfies

‖µt+τ − µt‖a,b ≤ L1τ, t ≥ 0, τ ≥ 0, (23)

with L1 = P + bM(P + |µ0|). To do so, we consider a solution µt to (2). We define the vector field
w(t, x) := v[µt](x) and the signed measure bt = h[µt]. The vector field w is uniformly Lipschitz and
uniformly bounded with respect to x, since v is so. The field w is also measurable in time, since by
definition, µt is continuous in time. Then, µt is the unique solution of

∂tµt(x) + div .(w(t, x)µt(x)) = bt(x), µ|t=0(x) = µ0(x). (24)

Uniqueness of the solution of the linear equation (24) is a direct consequence of Lemma 7. Moreover,
the scheme presented in Section 4.2 can be rewritten for the vector field w in which dependence
with respect to time is added and dependence with respect to the measure is dropped. Thus, the
unique solution µt to (24) can be obtained as the limit of this scheme. We have for k ≥ 0 the
following estimate

‖µt+τ − µt‖a,b ≤ ‖µt − µkt ‖a,b + ‖µkt − µkt+τ‖a,b + ‖µkt+τ − µt+τ‖a,b,

where µkt is given by the scheme. The first and third terms can be rendered as small as desired for
k ≥ k0 large enough, independent on t, τ . For ` := min{i ∈ {1, . . . , 2k}, t ≤ i

2k
}, j := min{i ∈

{1, . . . , 2k}, , t+ τ ≤ i
2k
} with the notations of the scheme, it holds

‖µkt+τ − µkt ‖a,b = ‖mk
j −mk

` ‖a,b = ‖
j−1∑
i=`

(mk
i+1 −mk

i )‖a,b = ‖
j−1∑
i=`

(φ
v[mki ]
∆t #mk

i + ∆th[mk
i ]−mk

i )‖a,b

≤
j−1∑
i=`

‖φv[mki ]
∆t #mk

i −mk
i ‖a,b + ∆t‖

j−1∑
i=`

h[mk
i ]‖a,b.
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Using Lemma 8 and (16), it holds

j−1∑
i=`

‖φv[mki ]
∆t #mk

i −mk
i ‖a,b ≤

j − `
2k

bM(P + |µ0|) ≤ bM(P + |µ0|)τ +
bM(P + |µ0|)

2k
. (25)

Using (H-3), we have

∆t‖
j−1∑
i=`

h[mk
i ]‖a,b ≤

j − `
2k

P ≤ Pτ +
P

2k
, (26)

Merging (25)-(26) and letting k →∞, we recover (23).
Step 3. Any weak solution to (2) satisfies the operator splitting estimate:

‖µt+τ − (φv[µt]
τ #µt + τh[µt])‖a,b ≤ K1τ

2, (27)

for some K1 > 0. Indeed, let us consider a solution µt to (2). As in the previous step, µt is the
unique solution to (24), and thus it can be obtained as the limit of the sequence provided by the
scheme. With the notations used in Step 2 and using Lemma 8

‖µt+τ − (φv[µt]
τ #µt + τh[µt])‖a,b ≤ ‖µt+τ − µkt+τ‖a,b + ‖µkt+τ − (φ

v[µkt ]
τ #µkt + τh[µkt ])‖a,b

+ τ‖h[µkt ]− h[µt]‖a,b + ‖φv[µt]
τ #µt − φ

v[µkt ]
τ #µkt ‖a,b.

The first, third and fourth terms can be rendered as small as needed for k sufficiently large,
independently on τ . We focus then on the second term. Assume for simplicity that t = `∆t and
t+ τ = (`+ n)∆t, we have

‖µkt+τ − (φv[µt]
τ #µkt + τh[µt])‖a,b = ‖mk

`+n − (φ
v[mk` ]

n∆t #mk
` + n∆t h[mk

` ])‖a,b.

For n = 2, we have

‖mk
`+2 − (φ

v[mk` ]

2∆t #mk
` + 2∆t h[mk

` ])‖a,b = ‖φv[mk`+1]

∆t #mk
`+1 + ∆t h[mk

`+1]− φv[mk` ]

∆t #φ
v[mk` ]

∆t #mk
` − 2∆t h[mk

` ]‖a,b

= ‖φv[mk`+1]

∆t #
(
φ
v[mk` ]

∆t #mk
` + ∆t h[mk

` ]
)

+ ∆t h[mk
`+1]− φv[mk` ]

∆t #φ
v[mk` ]

∆t #mk
` − 2∆t h[mk

` ]‖a,b

= ‖φv[mk`+1]

∆t #φ
v[mk` ]

∆t #mk
` + ∆t φ

v[mk`+1]

∆t #h[mk
` ] + ∆t h[mk

`+1]− φv[mk` ]

∆t #φ
v[mk` ]

∆t #mk
` − 2∆t h[mk

` ]‖a,b

≤ ‖φv[mk`+1]

∆t #φ
v[mk` ]

∆t #mk
` − φ

v[mk` ]

∆t #φ
v[mk` ]

∆t #mk
` ‖a,b + ∆t‖φv[mk`+1]

∆t #h[mk
` ] + h[mk

`+1]− 2h[mk
` ]‖a,b

Using Step 3, we have ‖mk
`+n −mk

` ‖ ≤ L1n∆t. Then, using Lemma 8

‖mk
`+2 − (φ

v[mk` ]

2∆t #mk
` + 2∆t h[mk

` ])‖a,b ≤ C∆t2

By induction on i = 1 . . . n, it then holds

‖mk
`+n − (φ

v[mk` ]

n∆t #mk
` + n∆t h[mk

` ])‖a,b ≤ C(n∆t)2,

and (27) follows.
Step 4. Uniqueness of the solution to (2) and continuous dependence. Assume that µt

and νt are two solutions to (2) with initial condition µ0, ν0, respectively. Define ε(t) := ‖µt− νt‖a,b.
We denote

20



Rµ(t, τ) = µt+τ − (φv[µt]
τ #µt + τh[µt]), Rν(t, τ) = νt+τ − (φv[νt]

τ #νt + τh[νt]).

Using Lemma 8 and Step 3, and eLτ ≤ 1+2Lτ for 0 ≤ Lτ ≤ ln(2), we have that ε(t) is Lipschitz
and it satisfies

ε(t+ τ) = ‖µt+τ − νt+τ‖a,b = ‖φv[µt]
τ #µt + τh[µt] +Rµ(t, τ)− φv[νt]

τ #νt − τh[νt]−Rν(t, τ)‖a,b

≤ ‖φv[µt]
τ #µt − φv[νt]

τ #νt‖a,b + τ‖h[µt]− h[νt]‖a,b + ‖Rµ(t, τ)‖a,b + ‖Rν(t, τ)‖a,b

≤ eLτ‖µt − νt‖a,b + b(P + |µ0|)
eLτ − 1

L
‖v[µt]− v[νt]‖C0 + τQ‖µt − νt‖a,b + 2K1τ

2

≤
(
eLτ + b(P + min{|µ0|, |ν0|})2τK + τQ

)
‖µt − νt‖a,b + 2K1τ

2

≤ (1 + τ(2L+ 2bK(P + min{|µ0|, |ν0|}) +Q)) ‖µt − νt‖a,b + 2K1τ
2,

which is

ε(t+ τ)− ε(t)
τ

≤Mε(t) + 2K1τ, t > 0, τ ≤ ln(2)

L
, M = 2L+ 2K(P + min{|µ0|, |ν0|}) +Q.

(28)
Letting τ go to zero, we deduce ε′(t) ≤Mε(t) almost everywhere. Then, ε(t) ≤ ε(0) exp(Mt), that
is continuous dependence with respect to the initial data.

Moreover, if µ0 = ν0, then ε(0) = 0, thus ε(t) = 0 for all t. Since ‖.‖a,b is a norm, this implies
µt = νt for all t, that is uniqueness of the solution.
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