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Abstract

We introduce the optimal transportation interpretation of the Kantorovich norm on the
space of signed Radon measures with finite mass, based on a generalized Wasserstein distance
for measures with different masses.

With the formulation and the new topological properties we obtain for this norm, we prove
existence and uniqueness for solutions to non-local transport equations with source terms, when
the initial condition is a signed measure.
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1 Introduction

The problem of optimal transportation, also called Monge-Kantorovich problem, has been inten-
sively studied in the mathematical community. Related to this problem, Wasserstein distances in
the space of probability measures have revealed to be powerful tools, in particular for dealing with
dynamics of measures like the transport Partial Differential Equation (PDE in the following), see
e.g. |7, ?7]. For a complete introduction to Wasserstein distances, see [13], [14].

The main limit of this approach, at least for its application to dynamics of measures, is that
the Wasserstein distances Wy,(u,v) (p > 1) are defined only if the two positive measures p, v have
the same mass. For this reason, in [I1) [I2] we introduced the generalized Wasserstein distances
Wy ’b(u, v), combining the standard Wasserstein and total variation distances. In rough words, for
Wy ’b(,u, v) an infinitesimal mass du of p can either be removed at cost a|dp|, or moved from p to v
at cost bW),(dp, 0v). Further generalizations for positive measures with different masses, based on
the Wasserstein distance, are introduced in [4, 8, 9].

Such generalizations still have a drawback: both measures need to be positive. The first contri-
bution of this paper is then the definition of a norm on the space of signed Radon measures with
finite mass on R?. Such norm, based on an optimal transport approach, induces a distance gener-
alizing the Wasserstein distance to signed measures. We then prove that this norm corresponds to
the extension of the so-called Kantorovich distance for finite signed Radon measures introduced in

[6] in the dual form
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The novelty then lies in the dual interpretation of this norm in the framework of optimal trans-
portation. We also prove new topological properties and characterizations of this norm.

One of the interests of signed measures is that they can be used to model phenomena in which
the density is a quantity can increase (mass source) or decrease (mass sink). This also implies that
the density can eventually become negative. In this setting, the second main contribution of the
paper is to use this norm to guarantee well-posedness of the following non local transport equation
with a source term being a signed measure. We study the following PDE

Oppe () + div (v[pe] (@) e () = hlpal (), pje=o() = po (), (2)

for x € R and pg € M*(RY), where M*(R%) is the space of signed Radon measures with finite
mass on R%. Equation has already been studied in the framework of positive measures, where it
has been used for modeling several different phenomena such as crowd motion and development in
biology, se a review in [?]. Our main motivation to study equation in the framework of signed
measure is the interpretation of y; as the spatial derivative of the entropy solution p(z,t) to a scalar
conservation law. A link between scalar conservation laws and non local transport equation has
been initiated in [2] [7], but until now, studies are restricted to convex fluxes and monotonous initial
conditions, so that the spatial derivative p; is a positive measure for all ¢ > 0. Moreover, the mass
of p is preserved, since p(+o0,t) — p(—o0,t) is a constant.

The authors of [I] suggested to extend the usual Wasserstein distance Wj to the couples of
signed measures = u" — p~ and v = v — v~ such that |ut| + [v7| = |u~| + [vT| by the formula
Wi (p,v) = Wy (u™ + v, u~ +v1). This procedure fails for p # 1, since triangular inequality is lost
(see a counter-example in [I]).

We use the same trick to turn the generalized Wasserstein distance into a distance for signed
measure and define Wcll’b(,u, v) as Wla’b(;ﬁ' + v, u” +vT). The space of signed measures being a
vector space, we also define a norm ||p||*? = W%®(;,0). Notice that to define the norm ||.||*?, we
need to restrict ourselves to Radon measures with finite mass, since the generalized Wasserstein
distance [11] may not be defined for Radon measures with infinite mass.

We then use the norm || - [|%* to study existence and uniqueness of the solution to the equation

. The regularity assumptions made in this paper on the vector field and on the source term are
the following:

(H-1) There exists K such that for all u,v € M*(R9) it holds

0[] = vlV]lleomey < K llp— v (3)
(H-2) There exist L, M such that for all z,y € R?, for all u € M*(R?) it holds
wlp)(z) —vlpl(y)| < Llz —yl,  |vfp](z)] < M. (4)
(H-3) There exist Q, P, R such that for all u € M*(R%) it holds

Ihlu] = A1 < Qllu—v|**,  |Alull < P, supp(hlu]) € Bo(R). ()

The main result about equation (2)) is the following:



Theorem 1 (Existence and uniqueness). Let v and h satisfy|(H-1{(H-2)}{(H-3) and po € M?*(R%)
compactly supported be given. Then, there exists a unique distributional solution to in the space
C% ([0,1], M*(RY)). In adition, for po and vy in M*(R?), denoting by p; and vy the solution, we
have the following property of continuous dependence with respect to initial data:

|40 exp(Mt), M =2L+ 2K(P + min{|uo|, |wo|}) + @, t > 0.

e — ve|| P < o — wo

Remark 1. We emphasize that the assumptions are incompatible with a direct inter-
pretation of the solution of as the spatial derivative of a conservation law and need to be relaxed
n a future work. Indeed, to draw a parallel between conservation laws and non-local equations,
discontinuous vector fields need to be considered.

The structure of the article is the following. In Section [2, we state and prove preliminary results
which are needed for the rest of the paper. In Section [3| we define the generalized Wasserstein
distance for signed measures, we show that it can be used to define a norm, and prove some
topological properties. Section [ is devoted to the use of the norm defined here to guarantee
existence, uniqueness, and stability to initial condition for the transport equation .

2 Measure theory and the Generalized Wasserstein distance

In this section, we introduce the notations and state preliminary results. Throughout the paper,
B(RY) is the space of Borel sets on R?, M(R?) is the space of Radon measures with finite mass (i.e.
Borel regular, positive, and finite on every set).
2.1 Recalls on measure theory
In this section, p and v are in M(R?).
Definition 1. We say that

o u<<vifvAc BRY), (v(A) =0)= (u(A) =0)

e 1 <vifVA € B(R?), u(A) <v(A)

e 11 L v if there exists E € B(R?) such that p(R) = u(E) and v(E€) =0

The concept of largest common measure between measures is now recalled.

Lemma 1. We consider i and v two measures in M(R?). Then, there exists a unique measure
1 A v which satisfies

uAv<p, pAv<v, M<pandn<v)=n<upAv. (6)

We refer to yu A v as the largest common measure to p and v. Moreover, denoting by f the Radon
Nikodym derivative of p with respect to v, i.e. the unique measurable function f such that p =
fv+vy, withv, L v, we have

uwAv=min{f,1}v. (7)

Proof. The uniqueness is clear using (@ Existence is given by formula @ as follows. First, it is
obvious that min{f,1}rv < v and using u = fv + v, it is also clear that min{f,1}v < pu. Let us
now assume by contradiction the existence of a measure 1 and of A € B(R?) such that

< w<e nd)> [ mingf 1 (®)
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Since v, L v, there exists E € B(R?) such that v(A) = v(AN E) and v, (A) = v, (AN E°).
Since 1 < v, we have

n(ANE)=n(A) > /AmE min{ f, 1}dv.

We define
B=AnEn{f>1}

If v(B) =0, then f <1 v-a.e., hence n(A) < / min{ f, 1}dv. We then assume v(B) > 0. Then
A

W(B) +0((ANE)\B) =(ANE) > [ min{f,av(a) + [ winff,1}av
B (ANE)\B
:/ 1dv+/ fdv=v(B)+ u((ANE)\ B)
B (ANE)\B

which contradicts the fact that n < v and 1 < p. This implies that 7 satisfying does not exist,
and then holds. O

Lemma 2. Let pu and v be two measures in M(R?). Then n < p+ v implies n — (uAn) < v.

Proof. Take A a Borel set. We write u = fn+mn,, with n, L 7. Then n A p = min{f,1}n, and we
can write

n(A4) = () (A) = [ (max{t = 7,0} )an

Define B = AN{f < 1}, and E such that n(ANE) =n(A) and n, (ANE) =1, (A). It then holds

n(A) = (n A p)(A) = /mE(l — fldn(z) =n(BNE)+n (BNE) - w(BNE) <v(BNE)<v(A).

Since this estimate holds for any Borel set A, the statement is proved.

2.2 Signed measures

We now introduce signed Radon measures, that are measures p that can be written as p = py —p—
with i, u— € M(R?). We denote with M*(R?) the space of such signed Radon measures.

For pu € M?*(RY), we define |u| = |u|+|p? | where (u, u?) is the unique Jordan decomposition
of pu, ie. p=pf —pd with pf L pZ. Observe that |u| is always finite, since pf, u7 € M(R?). We
now recall the definition of tightness for a sequence in M?*(R%) and a weak compactness theorem.

Definition 2. A sequence (fin)nen of measures in M(R?) is tight if for each e > 0, there is a compact
set K C R* such that for all n > 0, u,(R*\ K) < . A sequence (in)nen of signed measures of
ME(RY) is tight if the sequences (p} )nen and (p,; Jnen given by the Jordan decomposition are both
tight.

Lemma 3 (Weak compactness ). Let pi,, be a sequence of measures in M(R?) that are uniformly
bounded in mass. We can then extract a subsequence g,y such that figm) oK for some p €
n oo

M(RY), i.e. for all continuous and bounded function ¢, we have Jra ©dfig(n) = Jra .

n
n

A proof can be found in [5].



2.3 Properties of the generalized Wasserstein distance

In this section, we recall key properties of the generalized Wasserstein distance. The usual Wasser-
stein distance Wy,(u,v) was defined between two measures p and v of same mass || = |v|, see
more details in [I3]. A transference plan between two positive measures of same mass p and v is a
measure 7 € P(R?, RY) which satisfies for all A, B € B(R?)

(A x RY) = pu(4), w(R?x B) =wv(B).

We denote by II(u, ) the set of transference plans between p and v. The p-Wasserstein distance
for positive Radon measures of same mass is defined as

W) = (_min [ o ypan(ay) )]
mell(p,v) JRAxRE

It was extended to positive measures having possibly different mass in [11], [12], where the authors
introduce the distance W' * on the space M(R?) of Radon measures with finite mass. The formal
definition is the following.

Definition 3 (Generalized Wasserstein distance [I1]). Let u,v be two positive measures in M(R?).
The generalized Wasserstein distance between p and v is given by

1/p
Web(p,v) = inf  aP(|p— G|+ v — D)) + BPWP(f, D . 9
)= | n a2 P WG ) )
[al=]7|
We notice that ) ,
ab _ a’,b’ a N a
Wp = y Wp y fOI' 5 = y (10)

Notice that the infimum in @]) is always attained. Moreover, there always exists a minimizer that
satisfy the additional constraint g < p, v < v.

We denote by CS(Rd;R) the set of continuous functions with compact support on R?. For
f € CO(R%R), we define

1) — Il

[flloo = sup [f(z)|,  [[fllzip =sup
x€Rd T#y |39 - y|

We also denote by Co"“" (R%; R) the subset of functions f € CY(R% R) for which it holds || || Lip < +oc.
The following result is stated in [I2, Theorem 13].

Lemma 4 (Kantorovitch Rubinstein duality). For u, v in M(R?), it holds

1,1 i
W) =sup{ [ dln =) o € Bl < 1ol <1}

Lemma 5 (Properties of the generalized Wasserstein distance). Let p,v,n, p1, pio, v1,v2 be some
positive measures with finite mass on RT. The following properties hold

1. W + i, va + va) < Wi (ua, 1) + Wi (a, o).

b ,b
2. Wla (:U'+777V+77):W{1 (:uvl/)a



Proof. The first property is taken from [II, Proposition 11]. The second statement is a direct
consequence of the Kantorovitch-Rubinstein duality in Lemmafor WL, For general a > 0, b > 0,
we proceed as follows. Let u, v be two measures. Define

€)= alle =l + v = 7 +b [ o = yldn(a),

where 7 is a transference plan in II(, 7). Define Dy :  — Az with A > 0 the dilation in R”. It
holds

CUY(Dy#ii, Da#7,(Dy x Dy)#m; Dy, Dy#v)

= a(|Dax#p — Da#ti| + |Da#tv — Da#v]) + b/ |z —y|d(Dx x Dy)m(z,y),
=a(|p— gl + v —7]) + b/ Az — Ny|dn(2,y) = C*M (i, v, 7 p, ).

As a consequence, it holds
W (Da#p, Dagtv) = W (u, v).
We now show that this implies W (u+n, v+n) = W (u, v). Indeed, also applying Kantorovich-
Rubinstein for W1 and witha' =1,0/ =\ = g, it holds
W (4 m,v +n) = aWe (u+n,v +n) = aW ' (Dagip + Dakén, Dty + D) =
= aW L (Da#p, Da#tv) = aW e (u,v) = W (u,v).
O

Definition 4 (Image of a measure under a plan). Let p and v two measures in M(R?) of same
mass and m € (u,v). For n < u, we denote by f the Radon-Nykodym derivative of n with respect
to p and by s the transference plan defined by m¢(x,y) = f(x)w(x,y). Then, we define the image
of n under ™ as the second marginal ' of 7y.

Observe that the second marginal satisfies ' < v. Indeed, since n < p, it holds f < 1. Thus,
for all Borel set B of R? we have

7' (B) = ;(R? x B) < n(R? x B) = v(B).

3 Generalized Wasserstein norm for signed measures

In this section, we define the generalized Wasserstein distance for signed measures and prove some
of its properties. The idea is to follow what was already done in [I] for generalizing the classical
Wasserstein distance.

Definition 5 (Generalized Wasserstein distance extended to signed measures). For p, v two signed
measures with finite mass over R?, we define

b b
W (1, v) = Wi (s + v pe + ),
where piy, u_, vy and v_ are any measures in M(RY) such that = py —p_ and v =v, —v_.

Proposition 1. The operator W‘f’b is a distance on the space M*(R?) of signed measures with finite
mass on R?.



Proof. First, we point out that the definition does not depend on the decomposition. Indeed, if

we consider two distinct decompositions, p = py — p— = ui —pl,andv=v, —v_ = Vi —v_7,

with the second one being the Jordan decomposition, then we have (uy + v_) — (uf +v7) =
(u— +vy) — (2 +v]), and this is a positive measure since uy > pf and vy > v{. The first
property of Lemma 5] then gives
Wi vl p! +vl) =
b
Wi (el + vl + (g +vo) = (e + o)+ vl + (ue +vp) = (ul +v)) =
W (g + vy e+ 1),

We now prove that W‘f’b(,u, v) = 0 implies u = v. As explained above, we can choose the Jordan
decomposition for both y and v. Since W7 b s a distance, we obtain puy +v_ = u_ + vy4. The
orthogonality of py and p— and of v and v_ implies that uy = v4 and p— = v_, and thus p = v.

We now prove the triangle inequality. We have ch’b(u,n) = Wla’b(;ur + n—,pu— +ny). Using
Lemma [5] we have

b b
W (i) = W7 (g + 0+ v + v, ey +vg o)
b b
< WP (g +vos pe vy ) + W (- +vgmg +vo)
,b ,b
= W77 (k, v) + Wi (v, m).

We also state the following lemma about adding and removing masses.

Lemma 6. Let ju,v,1, i1, 2, V1, v2 in M*(R?) with finite mass on R?. The following properties
hold

b b
o Wi (p+mn,v+mn) =W (g, v),
o WP (1 + gy v+ 10) < W (1, 1) + WP (11, 11).

Proof. The proof is direct. For the first item, it holds W‘f’b(u +nv+4n) = I/Vl‘l’b(,u,Jr + vy + 04+
N—, pb— + v— + 14 + n—) which is I/Vla’b(/,ur ‘v, p-+vo)= W‘f’b(u, v).
For the second item, it holds

WP (1 + g, v+ vo) = Wi g + pay + v +vava g v+ + o)
b
SWP (4 41— vig + =) + W (g + o, v g + pi2,-)
= Wi, 1) + W (2, v2).

Definition 6. For u € M*(R%) and a >0, b> 0, we define

b b
| = WS (1, 0) = W™ (s, ),
where py and p_ are any measures of M(RY) such that = py — pi_.

It is clear that the definition of ||x[|*? does not depend on the choice of p, y_ as a consequence
. a,b
of the corresponding property for W,



Proposition 2. The space of signed measures (M?*(R?), ||.|*?) is a normed vector space.

Proof. First, we notice that ||u||*® = 0 implies that Wla (4, —) = 0, which is py = pu— so that
p = pi4 — p— = 0. For triangular inequality, using the second property of Lemma [6] we have that
for p,n € M*(R?),

b b ,b
i+ ** = Wi (e 1, 0) < W37(,0) + W (1, 0) = [l ** + || .
Homogeneity is obtained by writing for A > 0, ||Au|*® = WT’b()\,u,O) = Wla’b()\mr,)\u,) where
= ps — pi—. Using Lemma [ we have

WO ) = sup { [ o a0y = o) o € P ol < 1 il < 1)

A \
= Asup {/Rd @ d(py —p-); © €CPMP olloo < 1, |l Lip < 1} = AW (i, ).

O]

3.1 Topological properties

In this section, we study the topological properties of the norm introduced above. In particular, we
alm to prove that it admits a duality formula that indeed coincides with . We first prove that
the topology of ||.||[** does not depend on a,b > 0.

Proposition 3. For a >0, b > 0, the norm ||.||*? is equivalent to ||.|[*.

Proof. For i € M*(R?) denote by (m+ ,m™") the positive measures such that

b b b
™ = alpg — m3°| + alp- — m®®| + bWy (m%’, m™),

and similarly define (mfrl, m’ ) By definition of the minimizers, we have

m(i’b\ + bW, (mi’b, ma’b)

il = alps
< alps — my 4 alps — mM 4 W (md m). < max{a, b} ],

In the same way, we obtain
min{a, b}{|p| " < [|ul|*® < max{a, b}||p|"".
O

We give now an equivalent Kantorovich-Rubinstein duality formula for the new distance. We
denote by CJ(R% R) the set of bounded and continuous functions on R%. For f € CJ(R%R), similarly
to C2(R%;R), we define the following

1o = sup [f@)], 1 llzsy = sup LEL=SWI

zcRd x#y | _y|
We introduce
Li
¢, = {f € CYRYR) | [ fllzip < o0}

In the next proposition, we express the Kantorovich duality for the norm W}’l. This shows that
W%’l coincides with the bounded Lipschitz distance introduced in [6], also called Fortet Mourier
distance in [14].



Proposition 4 (Kantorovich duality). The signed generalized Wasserstein distance Wi’l coincides
with the bounded Lipschitz distance: for u, v in M*(R%), it holds

W) =sup { [ o dln =) o Pl < 1ol < 1
Proof. By using Lemma [4] we have
Wit (s, v) = W (g + v, vg + o)
= sup { /R (s — e = (g = v2)); 9 € O gl < 1, [l ip < 1}
—sup{ [ =) o €O lpl < 1ol <1

We denote by

0,Li
s=su{ [ o= o€ QP ol < Ll <1}

First observe that S < +o0. Indeed, it holds [pa¢ d(u —v) < [|¢lleo(|] + |v]) < +o00. Denote
with ¢, a sequence of functions of Cl?’Llp such that [ps¢n d(p—v) — S as n — oo. Consider a
sequence of functions p, in Co"" such that p,(z) = 1 for = € By(n), pn(x) = 0 for x ¢ Bo(n + 1)

and ||pplleo < 1. For the sequence 1, = ., p, of functions of co-Ltir , it holds

‘/ wndm—u)—S‘é
Rd

/ (an _(Pn) d(,u—u)
Rd

Lo =)
R4\ Bo(n)

since ||¢n|loo < 1. The first term goes to zero with n, since (1 — v) being of finite mass is tight, and
the second term goes to zero with n by definition of S and ¢,,. Then

+’/ sond(u—V)—5’
Rd

<2

+’/Rdg0nd(u—y)—5|

s=swp{ [ o=y o0 ol < Lllip <1}

and Proposition [4] is proved. O

|a,b

Remark 2. We observe that a sequence py, of M*(R) which satisfies ||| — 0 is not neces-
n—oo

sarily tight, and its mass is not necessarily bounded. For instance, we have that
Up =0p—0, 1

is not tight, whereas it satisfies for n sufficiently large ||vy||** =

% — 0. The sequence
n—oo

L =N 57%2 -n (5_7%2
satisfies ||l ** =

cancel the mass than to transport it), so that |||

2b
—;l for n sufficiently large (depending on a and b, it may be less expensive to
n

|90 — 0 whereas |p,| = 2n is not bounded.
n—oo



Remark 3. Norm |.|''' does not metrize tight convergence, contrarily to what is stated in [0].

Indeed, take ji, = (5\/27”1+£ - 6\/2 o We have
D) T+

i <

even though for ¢(x) = sin(x?) in CJ(R), we have

/(pd,un:Q, n € N.
R

Remark 4. We have as a direct consequence of Proposition [{] that

0,L7
i =™ = 0 = Vel P(RY, /

dpn  — pdp. (11)
Rd n—0o0 Rd

However, the reciprocal statement of 1s false: define

fin = n.COS(NT)X[0,7]-

For
©®n - cos(nx),
" n

it 1s clear that

/cpn dpy, = / cos?(nx) de = T # 0.
R 0 2
We now prove that, for each ¢ in Cg’Lip(R), it holds [5 @ dp, — 0. Given ¢ € Cg’Lip(R), define

o(—x), when z € [—m, 7],
f(x) = plx—271), when x>,
o(zr+2m),  when x < —m.

/sodﬂnz/fdun-
R R

Since f is a 2mw-periodic function, it also holds [ f du, = na,, where a, is the n-th cosine coefficient
in the Fourier series expansion of f. We then prove na, — 0 for any 2w-periodic Lipschitz function
f, following the ideas of [15, p. 46, last line]. Since f is Lipschitz, then its distributional derivative
is in L°[—m, 7] and thus in L'[—n,7]. Then

We have

an L[ f(x) cos(nz) dx = —

B 1
o

2nm

/7r f'(z) sin(nz) dz = —%,

n

—Tr

where bl is the n-th sine coefficient of f'. As a consequence of the Riemann-Lebesque lemma,
b, — 0, and this implies na, — 0.

Proposition 5. Assume that ||p,||*® — 0, then Amy, := || — ;| — 0.
n—oo n—oo
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Proof. We have by definition ||p,||** = Wf’b(uj{, ., ). We denote by fi,, fi;; the minimizers in the
right hand side of (9)) realizing the distance W' Pt ). We have

Il = a (|} — 51+ |pn — By ) +0Wa (50, By ), S = | -

Since ||| = 0, each of the three terms converges to zero as well. Thus,
n—oo

et | =l || = [lah = B+ Bt = (e — B+ iy ||
= |l — 5|+ || = i — i | — i, ||
= ||t = | = |y — i l| — 0.

n—o0

Theorem 2. The two following statements are equivalent:

. _ a,b
@) Npn = p*” = 0.

[e.9]

m}, m; € M(RY) such that

n?

(i1) There exists z\, 2,

n mn
ab, + _—
Wl (Zn ) % ) njoo 07

abe +  +
- - - with Wi i) ”j‘x’ 0
o = 2 Wi (my 1) = 0,

n—o0

no

,u:{:zf{—kar

{m}}, and {m; }, are tight and bounded in mass,

where = ut — p~ is the Jordan decomposition, and i, = " — u,, is any decomposition.

Proof. We start by proving (i) = (ii). We have ||, — u||*® = W‘f’b(un,u) = Wla’b(u;[ +u, ey, +
pt) = - 0. We denote by a, < (uf + p7) and b, < (u;, + ™) a choice of minimizers realizing
n—oo

wy ’b(uf{ + w4+ pt), as well as 1, being a minimizing transference plan from a,, to b,.
Step 1. The removed mass. We define by a,} and b;, the largest transported mass which is
respectively below p,b and pu;,

al = pul Aap, b,, = t,, N by,
a, =a, —a,, bl =b,—b,.
The mass which is removed is then 7, = 7 +r, = (uf —ab) + (u~ —a,) and 7} =~ +

et = (w, — b)) + (u™ — b}). The removed mass r, and 7} are expressed here as the sum of

two positive measures. Indeed, it is clear by definition that a;f < wf, and since a, < pf + p~,
Lemma |2 gives that a,, = a, — an A uf{ < p~. We reason the same way for r;. Then, we have
Wt + 1™+ 1) = a(ph — a4 |07 = ag | + lpn — by |+ 1" = b ]) + bWi(an, ba). Since
wy ’b(uf{ + p, 1y, + ut) goes to zero, each of the five terms of the above decomposition goes to
zero, and in particular, |} — a;F| = Oand |, — by | =0 which implies that that

Wltl’b(/‘: —ay 0) — 0, Wla’b(/%; _b;70) — 0. (12)

mn
n—oo n—o0

Step 2. The transported mass. The mass a, is split into two pieces: v, is sent to u,,
and &, is sent to u*. Denote by @, the image of a;} under 7, (using Definition [4]), then we define

11



vi=al Ap, . (Still using Deﬁnition, we denote by v, the image of v}, under m,. Then, we define
&, such that af = v, + &,, and we denote by & the image of &, under m,. By definition, we have

Wl(am bn) =W (Vna V:L) + Wl(ﬁna 5;:) + Wl(wna w;) + W (am a;)a (13)

with a) = vy, + &, w}; is defined so that b, = v} +w},, wy, is the image of w}, under m,, oy, is defined

so that 4~ = wy, + ayp, o is the image of o, under m,, and it can be checked that p* = & + .

Since W1 (ap, by) = 0, each of the four term of the sum is going to zero.
n—oo

Step 3. Conclusion.
Let us write

+

ZTT:VH_F(Nn_aI)? Z;:I/;-i-(ﬂ;—b;), m;rzg’m m;:w;;

We show here that the sequences defined hereinabove satisfy the conditions stated in (ii). Flrst we
have zm + m} = v + (uh —a}) + &, = pb and similarly, 2, +m,, = v} + (u, —b,,) +wi = p,, .
Then, we have

Wi (2 20) = Wi (v + (e — ) v + (= b))
< Wf’b(’/m v,) + Wla’b(un —af, u, —b,) using Lemma [f]
< bW (v, ) + Wf’bmz —a},0) + W0, 1y, —by)

o 0, using ) and .

Here, we also used that for |u| = |v|, Wla’b(,u, v) < bWi(p,v). This is trivial with the definition of
wy b, Now, we also have

Wf’b(m;‘;,ﬁ“) = Wf’b(ﬁmlﬁ) < Wfb(fn,f )+ Wlab(ﬁn, b))+ Wy b(bn ,1T)  (triangular inequality)
= Wf’b(gmfn) + Wla’b(an, 0) + Wla’b(u bt O)

n>

since of + & = b, We know that W{'(&,,&%) < bWi(,,&7) — 0 using (13), and that
n—oo

W (ut —bt,0) — 0 using (I2). Let us explain now why W{*(af,0) — 0. We recall
n—00 n—00

that Wi (ap, o) = 0, ap < a, < p, of < b < u'. Since (ayn), is uniformly bounded
n—oo

in mass, then there exists a € M(R?) such that Qpm) — «a (weak compactness of uniformly

n—oo

bounded in mass Radon measures, see [5]). We have also that (ay,m))n is tight, since o,y < pu~

which has a finite mass. Using Theorem 13 of [10], we deduce that W7" *(« Qp(n)> V) = 0. Then,
ab; « ab; « a,b a,b
Wy (a@(n) a) < Wi(a o(n)> Yo(n ) + Wi (apm), a) < Wi(e o(n)> Yeo(n ) + Wi (Qpm), @) . 0.

Then, using again Theorem 13 of [10], we deduce that o* o « Since ay, < =, we have a <y~

) n—oo

Likewise, o < u™ implies o < p™. Since = L pt, we have a = 0. We have Wf’b(a¢(n),0) = 0
n oo

and Wy ’b(a¢(n),0) = 0. The sequence («,), satisfies the following property: each of its sub-

sequences admits a subsequence converging to zero. Thus, we have that the whole sequence is
converging to zero, i.e. Wf’b(an,()) = 0 and Wf’b(a;;, 0) = 0. Lastly, the tightness of (m;),
n—oo n o

and (m,, ), is given again by Theorem 13 of [10], since Wf’b(mﬁ, put) — 0.

n—0o0
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We prove now that (i) = (i). Let us assume (ii). We have

b b _ _
It — | = Wi (ud + iy + ) = Wi (2 +myl + 2y +my, 4+ ')

b - ;b b, o —
S Wz, 20) + W (mi ™) + W (™, my,)
— 0,

n—oo

which is (i). O

We recall from [12] that the space (M (R?), W' ) is a Banach space. The proof is based on the
fact that a Cauchy sequence of positive measures is both uniformly bounded in mass and tight.
This is not true anymore for a Cauchy sequence of signed measures.

Remark 5. Observe that (MS(Rd), ||.H“7b) is not a Banach space. Indeed, take the sequence
n
Pn = Z; (5i+§ - 51'—%) .
1=

It is a Cauchy sequence in (M*(R%),]].]|*?), since it holds

n+k
WY (un,un+k ) <2b Z —<2b Z in—>oo
1= n+1 1=n+1

However, such sequence does not converge in (M?*(R%),||.[|*%). As seen in Remark (3)), the
convergence for the norm ||.||** implies the convergence in the sense of distributions. In the sense

of distributions we have
+oo

MAM*?Z(%%‘ '—%)¢M( )-

i=1
Indeed, for all p € C°(R), since ¢ is compactly supported, it holds

+o0
1 1
(un—u,@:i:;l <<p<1+2i) —w(z—2i>) = 0.

Nevertheless, we have the following convergence result.

Theorem 3. A Cauchy sequence in (M?*(R%),|.]|*%) uniformly bounded in mass and tight converges
in (M*(RY), ||.[|*?).
Proof. Take a tight Cauchy sequence (i), € M?*(RY) such that the sequences given by the Jordan

decomposition |u"| and |u,, | are uniformly bounded Then, by Lemma l there exists pu* and p~
in M(R%) and ¢ non decreasing such that, pt — u and p on) - . Since p;b and p;, are

TL—)OO

e(n) ns
assumed to be tight, it holds W’ (ut Hop(ny» 1) = 0 and Wb

13]). Then, we have

(P(n),/f) o 0 (see [11, Theorem

gt — (= u7)[|** < I+ oy = (F = )|
< it = o)1+ W (1 + 17 gy + 17)
< Nt = oI+ W (il 1) + W (i ™) = 0
since (y)y is a Cauchy sequence. O

13



4 Application to the transport equation with source term

This section is devoted to the use of the norm defined in Definition [f] to guarantee existence,
uniqueness, and stability with respect to initial condition for the transport equation ([2)).

4.1 Estimates of the norm under flow action

In this section, we extend the action of flows on probability measures to signed measures, and state
some estimates about the variation of ||u — v||*® after the action of a flow on p and v. Notice
that for u € M*(R?) and T a map, we have T#pu = T#u" — T#pu~, where p = p* — p~ is any
decomposition of y. Observe that in general, given u € M*(R?) and T : R? — R? a Borel map, it
only holds |T#u| < |u|, even by choosing the Jordan decomposition for (u™, ™), since it may hold
that T#u™ and T#pu~ are not orthogonal. However, if T' is injective (as it will be in the rest of the
paper), it holds T#u™ L T#u~, hence |T#u| = |-

Lemma 7. For v(t,x) measurable in time, uniformly Lipschitz in space, and uniformly bounded,
we denote by ®} the flow it generates, i.e. the unique solution to

d
Sap=u(@)),  ej=1,

Given g € MS(Rd), then, s = ®Y# o is the unique solution of the linear transport equation

0
Friis V.(v(t, )p) =0,
Hit=0 = HO
in C([0, 7], M*(R?)).
Proof. The proof is a direct consequence of [13, Theorem 5.34] combined with [3, Theorem 2.1.1]. [

Lemma 8. Let v and w be two vector fields, both satisfying for allt € R and z,y € R%, the following
properties:
lw(t,z) —o(t,y)| < Llz —yl,  |olt,2)] < M.

Let p and v be two measures of M*(R?). Then
o |[¢7#1 — i #v|
o [l —op#p|™® < bt Mul,
o gt — ol < Bl o — wleo
o |[¢i#n — o' #v

Proof. The first three inequalities follow from [12, Proposition 10]. For the first inequality, we write

a,b < eLt”,u, _ V”a,b

. Lt_g
%0 < | — wl|*b + b min{ |, [} C 2o — w]co

oy #u — o0 #0 ]| = WP (60 Hp, oV #v) = WP (@) T — SV #n™, oV #v™ — oV 4v)
= WP (o4 (" +v7), oy (u + o))
< eL"/VVla’b(,u+ +v7,u” +v") by [12Z, Prop. 10]

a,b

= eMu—v

14



For the second inequality,

b b -
WP (i, G #0) = W (" + Gyt n™ + o) #tu™)
S WPt o) + WP (™, oi#n) - (Lemmalf)
< bt oo+ |u) by [2 Prop. 10]
=bt ||v||co|u| since p= put — p~ is the Jordan decomposition.

The third inequality is given by

Gy — oP |0 = WP (@t + P, oWt + o)
< W (@t ) + W (OP #u™, oY #17)
S bWI(¢§#ﬂ+7 (biu#,u—‘r) + Wl (¢%U#'u—7 ¢?#M_)

(e - 1)

< (It 1+ p7)) 7

[v — wll|coray using [I2 Prop. 10] with = v.
The last inequality is deduced from the first and the third one using triangular inequality. [

4.2 A scheme for computing solutions of the transport equation

In this section, we build a solution to as the limit of a sequence of approximated solutions
defined in the following scheme. We then prove that admits a unique solution.

Consider 9 € M?*(R%) such that supp(ug) C K, with K compact. Let v € CO%LP(M?*(R?), cOLir(RY))
and h € COFP(M?3(RY), M*(R?)) satisfying [(H-1)H(H-2){(H-3)l We now define a sequence (u¥)y of
approximated solutions for through the following Euler-explicit-type iteration scheme. For sim-
plicity of notations, we define a solution on the time interval [0, 1].

SCHEME

1
Initialization. Fix k& € N. Define At = 5 Set uf = po.

Induction. Given pa for i € {0,1,...,2% — 1}, define vFy, := v[uky,] and

pt = AN #uiag + (E— ARl 1€ [IAL (i + 1)At). (14)

Proposition 6. The sequence (uF);. defined in the scheme above is a Cauchy sequence in the space

([0, 1], M*(R), [|-11) with
lpell = sup e .
tel0,1]

Moreover, it is uniformly bounded in mass, i.e.

sup |uf| < oo. (15)
te[0,1]

Proof. Let L be the Lipschitz constant in |(H-2)l We assume to have k sufficiently large to have
el <14 2Lt for all t < [0, At]. This holds e.g. for LAt < 1, hence k > logy(L).
We also notice that the sequence built by the scheme satisfies

g < P+ lpol, te€0,1], (16)
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where P is such that |h[u]| < P by [(H-3)} Indeed, it holds for ¢ € [iAt, (i + 1)At]
| < |97 Fpine| + Atlhlpfag| < lpfadl + ALP,

and the result follows by induction. This proves . The sequence (uf)ren also has uniformly
bounded support. Indeed, use and |[(H-2)H(H-3)| to write

supp{yi;'} € Ke.aa,r:
with supp{u} = supp{u™} Usupp{u~} where (1", ™) is the Jordan decomposition of p, and
Kimp:={r€RY z=axr+2, zxcr € CUBy(R), ||| <tM}.

Take now R’ such that KU By(R) C By(R'). Then, it holds IC;y pr,r € B(0, R + M). Since such set

does not depend on ¢, while M, R are fixed, then uf have uniformly bounded support.

We now follow the notations of [10] and define m = ¥ 5 ’? = v[mé?] and the corresponding

, k
flow ft’k = d):J. Fix k € N and ¢ € [0, 1]. Define j € {0,1,...,2"} such that t € } . ]2%1}

First case. If t € } 2%, ﬁ—ﬂ}, we call t/ =t — 2]7 < Qk% and we obtain
b by ik 2.k Iy
WP (g 1) = WP (f " gtmi + RImg], fo T gpmg o+ t hm )
by pik k b
< WP (S gmy, £ +1#mk+1)+W‘f (¢'R[mf], ¢ hms; )
(e — 1)
L
/ 1 !
W) (e (P ) 1)+ 0Q)

< HWLP (mf, my )+ [mf|

b
i [vf = v5; lleoray + ¢ QW (m, m5F )

J

Since it holds L
(6 B 1) S 9.9~ (kJrl)

el <14 2oLt <14 202 KD, -

we have

jo2i+1
I = s < Dy, = W0 (14270 2L+ 2P+ W) + Q) te [219721@“ ]
(17)

i+l < 2,6% and we obtain

Second case. If t € ] 23111, J;I} we call ¢/ =

k_ ik k 1 kY ik pik ko
pi = ft]urﬁ#mj + (t +2k+1> himj] = f}) #f%#mj +t'h[m ]+Wh[ ",

k+1 _ p2541,k+1 27,k+1 k:+1 k+1 27,k+1 k+1 k+1

pe = fu #<f2k1+1 #m +—2k+1h[m2j ]>+th[f2 0 #m +—2k+1h[ ]]
2j+1,k+1 2j,k+1

— t/J+ + #f] + # k+1

2k+1 f2.7+1,k+1#h[ k+1] +t h |:f2] k+1# k+1 + h[ k+1]:| ]

YES 2k+1

It then holds

Ik~ ol (AT sl I )

2k+T

2k+1wab( [ ] f2]+1 k:-i-l#h[ k:—i—l]) (18)

ab 2, k41

2
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Use now Lemma [8| to prove the following estimate
b ik edk k 2 i+ 1,k+1, (25 k+1 b+
WP (PR ok P )
ok+1
_ b rik 2j.k+1 _
< (L2027 WS (1 grm, S s ) 27 CTU2Pof — et lleogray.
S m; T J J j

Since, according to the first case, it holds both

wi? <f”“ # J,f”’““#mg“;l) < [jmff — mg | (1+2‘<’““> (2L+2(P+|u°\>))
2

ok+1
and
bk k1 b ko k1 b k1 k1
Hv —v23+1||co ray < KWy (mj,mQ;_l) < KW (mj m2]+ )+ KWY (mQJJr m2]++1)
b k+1 b k1 k1
< KWy (m mzj ) + KWy (m2]+ m2g++1)
b b 2j,k+1
= KW (mh, m5F) + KW (m5H, fZH* #mb )
2
= KW} (mf, mhft) + K o= (D)
we have

b i,k i,k 274+1,k+1 25,k 1
Wl117 <ft]; #f];lﬂ #m;c J+ + #f J,k+ k]+1>
2

(19)
< [lmh — mE b (1 + 2*“““) (4L +2(P 4 (1 + L) + 2KP)) + 272+ )9 P M.
Moreover, it also holds both
W (lmb), 774 el )
< Wllz,b ( im ] f2g+1 k+1#h[mk]) Wab <f2]+1 k+1#h[ ] f2]+1 k+1#h[mk+1]) (20)
<t'MP + ' Q|mf — mb] (142027 %) [mh — m;
and
a,b k £25,k+1 k+1 mk+1
Wi <mJ’ T #my;  + 2k+1h[ ]>
<Wa,b 27,k+1 k+1 92— (k+1) 0 h k+1
<w; ( T k) ( m ]) o

2k+1

< Hm’? —my " +2‘(’“+”<Iu0! +P(1 +a>)-
Plugging (19| and (21)) into (| , and combining it with (17) we find
J Jj+1
ok? ok |7

I = 1P < (L2t b4 oz, e

with

Ci=1+3L+P+|’)1+L)+KP+Q), Cp= %(MP(l +2K) + |°] + P(1 + a)).
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By induction on j, we obtain

2k_1
_ o Co _
Ik = T < e = mpEL 0 < ) (142770270 < (€@ - 12t
Jj=0

Since the right hand side is the term of a convergent series, then (uF)y is a Cauchy sequence. [

4.3 Proof of Theorem [

In this section, we prove Theorem [lI] stating existence and uniqueness of the solution to the Cauchy
problem associated to . The proof is based on the proof of the same result for positive measures
written in [12]. We first focus on existence.

Step 1. Existence. Observe that the sequence given by the scheme (uF);, is a Cauchy sequence
(Proposition @ in the space (CO [0, 1], MS(Rd)) and is uniformly bounded in mass. Then, by using
Theorem [3] we define

p= lim gk, € ([0,1, MP(RY)
k—o0
Denote the following:

)= [ ttaydu(a).
The goal is to prove that for all ¢ € D((0,1) x R?) it holds
1
/0 dt ({ue, Orp(t, ) + wlpe] Vop(t, ) + (bl (2, 2))) = 0. (22)

We first notice that

271 e(j41)At i i i}
S [ e (teh et o) + olufad Veoltsn) + (ka6 0)) 3 0
j=0 At o0

Indeed, v := ¢y#1p is a weak solution of %Vt + V. (v(x)ry) = 0 with v a fixed vector field, and
Nt = no + th is a weak solution of %Ut = h, with h a fixed measure. It then holds

251 L)AL
> / A at ({uf, dup(t, @) + ol Vip(t, ) + (Blibad, ot ) |
j=0 JIAL

251 (j+1)AL . .
- / dt ((t — GADRE A vl Vio(t, 2)
=0 JAL

< MP|Vg|s2~ ) — 0.
k—o00

Now, to guarantee , it is enough to prove that

1
i, | [ (. Ot 2) + 0l Ft.2)) + (Bl olt,2)

k—o0
251 L(j+1)At
=3 [ ((h duplta) + ol Violt ) + (ki) e, ) | = 0
j=0 JIAt
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We have

1 2" -1 a(+1)At
[ atudettan = X [ de (tuk,aute o) | < 10iglelie — ] 3
0 =0 JAL k—o0

j At

1 2 (j+1)At . .
| /0 dt(hlpi], ot 2)) = 3 / at(hlaf], ot 2))| < Qllpllc e — | — 0,
1 J
and

1 2°-1 c(j+1)At
[ttt Tty = 3 [ dtlk ol Vit o)
J

0 =0 Jiat
2P-1 (j+1)At . . 2°-1 L(j+1)At . . .

<X [0 et ol Vet | [T et ol = ol Veott. )
Do Jiat =0 Jiat

281 (1At
d f, V| — v f No(t, x
*‘;)/jm b (ol = o) Vgt )|

< Veelloo (Mllae = il + LM(P + 1ao])2754D 4 (P + o) Lz = wf ) — 0.

This proves .
Step 2. Any weak solution to (2) is Lipschitz in time. In this step, we prove that any
weak solution to the transport equation is Lipschitz with respect to time, since it satisfies

e — pue]|™* < Lyr, >0, 7 >0, (23)

with Ly = P+ bM (P + |uo|). To do so, we consider a solution y; to (2). We define the vector field
w(t, z) := v[p](z) and the signed measure by = hlu]. The vector field w is uniformly Lipschitz and
uniformly bounded with respect to z, since v is so. The field w is also measurable in time, since by
definition, py is continuous in time. Then, p; is the unique solution of

Dupae () + div . (w(t, @) (@) = (@), pumo(e) = pola). (24)

Uniqueness of the solution of the linear equation is a direct consequence of Lemma@ Moreover,
the scheme presented in Section [4.2] can be rewritten for the vector field w in which dependence
with respect to time is added and dependence with respect to the measure is dropped. Thus, the
unique solution u; to can be obtained as the limit of this scheme. We have for £k > 0 the
following estimate

j 1,

pter — | < e — pE11 ™0+ | 0f — |0+ i — paer

where p¥ is given by the scheme. The first and third terms can be rendered as small as desired for
k > ko large enough, independent on ¢,7. For £ := min{i € {1,...,2F} ¢ < ok}, J = min{i €
{1,...,2%}, t+71< zik} with the notations of the scheme, it holds

a,b

j—1 7j—1
k kb k k\jab k kyiiab _ m¥] & k k
ik = |0 = [l —mg |0 =11 (mf =m0 =D (ony" #mi + Ath[mf] — mf)
i=0 i=/

j—1 j—1
k
< SR et — k|0 4 AL S B[mk])|.
=0 1=
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Using Lemma |8 and , it holds

a4 bM (P +
ZH@bU[m] b < JQTbM(PHuoI) ng(P+|uo|)r+(2k|“°|). (25)
Using [(H-3), we have
6 P
At mmkt <L “p < p 26
H Z 1 T+ o (26)
Merging — and letting k — oo, we recover .
Step 3. Any weak solution to (2| satisfies the operator splitting estimate:
o7 — (@ Hpy + Thipe)) |0 < Ea7?, (27)

for some K7 > 0. Indeed, let us consider a solution u; to . As in the previous step, u: is the

unique solution to , and thus it can be obtained as the limit of the sequence provided by the
scheme. With the notations used in Step 2 and using Lemma

| s — (gbﬁ[’“]#,ut + Th(u])

S LY Oy TR S 3 P
+ | k] — Rl |0 + [0l g, — bt

The first, third and fourth terms can be rendered as small as needed for k sufficiently large,

independently on 7. We focus then on the second term. Assume for simplicity that ¢ = (At and
t+ 7= (¢ + n)At, we have

ik — (@ s - whaa)) | =l — (800 Hmf -+ St B |

For n = 2, we have

vmy]

Iy — (o mb + 288 R0 = 6 e gtk + At Bk, ] — 6l g m — ot b
= oy e (o el + At k1) + At bl ) — 6 o0 gk — 200 B¢

— o gl 1 At U k] + Al ) — oW a6t nk — 2A¢ himb] o

< Jlgutmin) gttt — gt gt kot 1 A2 ) h ] + Rk, ] — 2h{mE)|?

Using Step 3, we have |]m§+n —m§|| < LinAt. Then, using Lemma

vlmy]

1Mo — (Song #m + 24t h[mf])|[*0 < CAL?
By induction on ¢ = 1...n, it then holds

vlmy]

Imfsy — (Gnar #mi +nAt himf])|*? < C(nAt)?,

and follows.

Step 4. Uniqueness of the solution to and continuous dependence. Assume that p;
and v; are two solutions to () with initial condition pg, vo, respectively. Define e(t) := ||us — v4]|*®.
We denote

20
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Ru(tv T) = Wt4r — (flﬁ[“t]#ﬂt + Th[:ut])v RV(tv T) = Vt4r — <¢:[Vt]#yt + Th[yt])'
Using Lemma and Step 3, and e/™ < 1+2L7 for 0 < L7 < In(2), we have that () is Lipschitz

and it satisfies

et +7) = lprr = vaer | = @5 e + Thlud] + Ry(t,7) = 240y — Thin] = Ry (¢,7)||*
< gty — 2|0 4 7| R ) — ]| + (Rt T + R ()|
elm—1
< M lpe = viel|™” + b(P + |pol) [vlpe] = o[walllco + TQI s — | + 2K, 72
< (" + (P + min{|pol, [0 })27K + 7Q) [l — || *° + 2Ky 77
< (14 7(2L + 20K (P + min{| o), [v0]}) + Q) lue — vel|*® + 2K172,
which is
t —e(t In(2
w < Me(t) +2K17,  t>0, 7< né ) M = 2L+ 2K(P + min|jol, [o]}) + ©.

(28)

Letting 7 go to zero, we deduce £'(t) < Me(t) almost everywhere. Then, £(t) < £(0) exp(Mt), that
is continuous dependence with respect to the initial data.

Moreover, if ug = v, then £(0) = 0, thus £(t) = 0 for all £. Since ||.||*" is a norm, this implies

ue = vy for all ¢, that is uniqueness of the solution.
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