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A B ST R AC T

In the last decade the availability of Big data and Cloud computing has
pushed the research community towards the development of algorithms able
to automatically learn patterns from data. Despite the huge versatility of these
models, they usually require a large number of data and computational power,
that are seldom met in industrial scenarios where data are expensive to obtain
and devices have strict constraints on their computing capabilities. This work
seeks to address these challenges, developing algorithms that can perform in
the mentioned scenario and can improve the reliability of industrial devices.
This indeed can be achieved by tacking advantage both of data coming from
machine’ sensors and algorithms that are able to detect anomalies or possible
malfunctions. In the present thesis multiple algorithms will be proposed to
reach this goal, explaining the industrial challenges by means of an industrial
use case. The main focus will be on industrial Anomaly Detection and how
to enhance the reliability of industrial devices, however the faced challenges
pushed us to formulate new research questions and consequently to contaminate
this topic with many other approaches in the context of Machine Learning.

In this work, we will address the following research questions: i) How
to update the model if the user provides feedback? ii) Which sensor is
responsible for the anomalies? iii) Is there a way to compress the memory and
computations a model needs? vi) Which are the most interesting data points to
show a model? v) Is it possible to adapt a detector between different machines?
We will investigate such research directions by providing new algorithms and
performing experiments showing performances on real scenarios.

S O M M A R I O

Negli ultimi dieci anni la disponibilità di grandi quantità di dati e potenza di
calcolo ha spinto la comunità scientifica verso lo sviluppo di algoritmi capaci
di imparare autonomamente dai dati. Sebbene questi modelli si siano dimostrati
estremamente versatili, solitamente richiedono una grande mole di dati e di
capacità computazionali, che sono rare in contesti industriali dove ottenere dei
nuovi campioni è costoso e dove i dispositivi hanno poche risorse di calcolo.
Questo lavoro si propone di affrontare queste sfide, sviluppando algoritmi che
aumentino l’affidabilità dei dispositivi industriali combinando dati provenienti
dai sensori della macchina con algoritmi capaci di individuare anomalie o
possibili malfunzionamenti. In questa tesi sono illustrate numerose sfide che
il contesto industriale pone nei confronti di tali metodi; a titolo di esempio
verrà utilizzato un particolare caso d’uso proveniente dal mondo dell’Oil&Gas.
Sebbene il principale obiettivo sia l’aumento dell’affidabilità dei macchinari
industriali attraverso il rilevamento delle anomalie, durante le svolgimento della
tesi sono emersi nuovi quesiti che hanno richiesto l’utilizzo di altre tecniche
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di apprendimento automatico. Ci si è chiesto infatti come includere feedback
sul comportamento del modello forniti dall’utente oppure se fosse possibile
capire la causa radice che ha portato un rilevatore di anomalie a segnalare
un certo comportamento. Sono state esplorate anche problematiche di tipo
computazionale cercando di trovare strade per ridurre le risorse necessarie
all’algoritmo. Per quanto riguarda i dati ci si è chiesto quali fossero i campioni
più importanti su cui allenare il modello in modo da ridurre il numero di dati
necessari ad allenarlo. Infine è stata esplorata l’ applicazione del modello a
macchine leggermente differenti, trasferendo informazioni da una macchina
all’altra. Per tutti questi quesiti sono stati proposti degli algoritmi che sono
stati successivamente testati in scenari industriali reali.
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1
I N T RO D U C T I O N

The fourth industrial revolution is a game-changer in the automation of industrial
processes, allowing for self-optimization, self-cognition and self-customization.
Rather than relying on direct programming and guidance by a human operator,
the industrial devices are now expected to operate autonomously managing
their own upkeep. This new development means that the machines can now
collect, understand and draw conclusions from data on its own.

Three main approaches to maintenance are envisioned in literature [47, 53,
59, 277] which differ in the way a possible malfunction is handled:

• Run To Failure (R2F) is the simplest possible approach to maintenance,
indeed it waits for the fault to intervene. This choice can be very
dangerous as a sudden breakdown might interfere with other production
activities linked to the broken equipment.

• Preventive Maintenance (PvM) is the classic maintenance strategy, indeed
in this case the maintenance is scheduled at fixed intervals in order to
anticipate the failure. It is more safe than the previous choice, but it can
be expensive: some intervention might be useless and some spare parts
might be substituted before they are actually worn.

• Predictive Maintenance (PdM) represents a paradigmatic change in
maintenance operations, indeed this strategy makes use of models able
to predict when the piece needs to be replaced or maintained. This
allows to avoid unnecessary operations but at the same time to promptly
intervene when a fault is approaching.

A key factor of this transition process are Smart Monitoring Systems (SMS):
the equipment must be capable of measuring its health status and to act
accordingly. If the SMS detects a possible breakdown, the equipment might
ask for human intervention or might try to compensate the fault automatically.
In the development of SMS two opposite but complementary approaches can
be followed: the diagnostic and the prognostic approach. The first concerns
with what is happening or what has already happened in the past: the machine
detects a fault or perceives a possible anomaly during its operations. After
that, the SMS should be able to understand which was the root cause and take
an autonomous decision. On the contrary, the prognostic approach refers to
what is likely to occur in the future: the machine should be able to predict
in sufficient time when it will experience a fault, so the Remaining Useful
Life (RUL) of a component.

A challenging application of these concepts is the Multiphase Flow Meter
(MPFM): developed in the ’80s, the MPFM has begun to spread since the ’00s.
It is used to measure the individual phase flow rates of a multiphase flow and
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indeed it is widely adopted by the oil companies that install it on oil extraction
systems: it provides real-time simultaneous measurements of the commingled
flow of oil, water and gas of a well combining the measurement of several
sensors. It is very appreciated because it measures the fluid properties in a
non-intrusive way and therefore it doesn’t need to separate the phases and to
stop the production [79]. The two most important measurements provided by
the instrument are the ratio of water over the liquid flow and the fraction of gas
over the total flow. These data are subsequently used by the oil company to
measure the performance of the deposit and to forecast the future production.
The MPFM experiences a variety of fluid flows [78]: depending on the well
conditions that can strongly vary between different geographical areas, the
meter measures a process that continuously evolves in time and draws new
fluid patterns.

As it can be imagined, the MPFMs are installed in remote areas of the world
where maintenance can be very expensive. A potential fault is costly: from the
point of view of the supplier a malfunction forces the service to an unscheduled
maintenance, while from the point of view of the oil company the fault forces
the production to stop. This not only reduces the profit, but also affects the
physical behaviour of the oil reservoir.

Other characteristics make the adoption of SMS on MPFM very challenging.
The computation of semi-physical model that provides the phase flow rates
exploits a large part of the computational resources of the instrument, forcing
the SMS to cope with this limitation.

The aim of this project is to study the Smart Monitoring challenges previously
described in the MPFM application scenario and to develop new data-driven
methodologies for their solution. Great attention will be paid to Machine
Learning (ML) approaches that in recent years are showing their abilities to
model complex patterns from huge amounts of data. In this context a big
effort has been dedicated to the development and application of Soft Sensing
techniques able to improve the flow rate estimation over the physical model,
and Anomaly Detection tools to detect unusual sensor behavior, possibly related
to ongoing faults.

This thesis is organized as follows: Chapter 2 accurately describes the
use-case and the challenges this work tries to address, then Chapter 3 focuses
on Soft Sensing estimation of water extracted by the oil field, while Chapters
4,5,6,7,8,9,10 describe the solutions proposed by this work to the anomaly
detection challenges. In the final Chapter 11 the achieved goals are summarized
and future directions are drawn.



2
U S E CA S E A N D R E L AT E D C H A L L E NG E S

The motivation behind the present work is discussed in this Chapter together
with the main challenges that have been faced.

As we push forward the performances of industrial equipment increasing its
complexity, maintenance and reliability become central aspects. In this context
machines are expected to self-diagnoses and to collaborate with humans in
order to solve potential issues that might compromise the production. This
ability is mainly allowed by the advance of a new set of techniques that come
under the name of Machine Learning (ML) and proved to be very effective
not only in difficult popular tasks like audio and image recognition but also
in predicting the remaining useful life of industrial equipment [178]. ML
includes many different techniques that are associated by the ability to learn in
autonomous fashion from a large set of data. This allows to reduce the human
intervention and to find complex patterns that would be otherwise difficult to
identify with traditional techniques.

ML models can be divided into two main categories, depending on which
data they rely on: data describing the link between input and output, often
named labelled data, are handled by supervised techniques; the most common
tasks belonging to this category are regression and classification. On the other
side data that lacks a label describing a desired output are named unlabelled;
unsupervised techniques can be used to infer some information from these data,
for example data can be clustered in groups or samples having an anomalous
behaviour can be detected. In practical scenarios, having labels associated to
each sample is uncommon [217] as the labelling procedure is often difficult to
perform or expensive: to assign a label requires a human operator that is expert
in the specific domain that is asked to model, moreover obtaining some labels
might be dangerous or might require some expensive destructive experiments.

In this work the goal is to expand the Predictive Maintenance techniques using
the ML approach, both with unsupervised and supervised tools depending on
the available data. The techniques developed in the present thesis are intended
to be general, but were developed keeping in mind a specific use case that
is described in the following Section 2.1. This use case, named Multiphase
Flow Meter, is very interesting as it poses numerous interesting challenges in
the context of PdM that can be generalized to other industrial equipment like
engines [77], satellites [158], natural gas compressors [183] or robotic arms
[266].

2.1 ��� ����: ��� ���������� ���� �����

The Multiphase Flow Meter (MPFM) is an example of a complex measuring
system composed of many measuring modules and requiring data fusion to
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Figure 2: A Multiphase Flow Meter built in a modular way: it is possible to observe
the Venturi tube placed in vertical position with the pressure probes and
the densitometer placed in horizontal position. The impedance probes are
installed inside the tube in close contact with the fluid.

provide the target measure (Figure 2). The MPFM is an in-line measuring
instrument able to quantify the individual flow rates of oil, water, and gas
coming from an oil well; as it does not separate the phases, it is able to provide
measures in real-time, differently from other systems like separators that stop
the flow until the three components are fully unmixed.

The Gas Volume Fraction (GVF), the Water Liquid Ratio (WLR), and the
Total flow rate (Qtot) are important production parameters in the estimation of
the individual flow rates of oil, water, and gas. The WLR and GVF are defined
as functions of the single-phase and total flow rates as follows:

⌧+� =
&60B

&C>C0;

,!' =
&F0C4A

&>8; +&F0C4A

and the total flow rate is simply:

&C>C0; = &>8; +&F0C4A +&60B

An accurate estimation of these parameters is essential not only for the
extraction, production, and management activities of a single well but of whole
fields and reservoirs too. In particular, an accurate WLR measurement is
required to determine the maturity of a field and to estimate its lifetime, to
understand the amount of water produced, as it is an expensive by-product,
since it can greatly increase the extraction cost, and to optimize the chemical
injection needed to avoid scaling, corrosion, emulsion, or formation of hydrates,
which can even stop the production. Directly measuring the WLR is not an
easy task, as a consequence, multiple solutions have been presented in the
literature to tackle this issue [78, 105, 239].



2.1 ��� ����: ��� ���������� ���� ����� 5

2.1.1 Alternatives to MPFM

The most widespread technology for flow measurement is the Test Separator
(TS), which consists of a pressure vessel where the multiphase flow is separated
into its single phases. Indeed, the mixture coming from the reservoir is
transported into the tank, and it is generally split into three phases (oil, gas,
and water) by means of gravity and additional chemicals. Once the phases
are separated, on each leg of the TS, the measurements are performed with
technologies such as Venturi or Coriolis meters [105, 188]. In most situations,
the test separator method is sufficiently accurate and reliable; however, it is
not able to operate in real time, since the separation of the three-phase flow
might take a lot of time, especially in the presence of emulsions. Moreover,
the separator occupies a lot of space, causing logistic problems, for example,
in platform installation, where the room available is limited. In addition, it
is not able to deal with different flow regimes and requires long stabilization
times before reliable measurements can be obtained [188, 239]. Because
of these drawbacks, it is convenient to operate directly on the three-phase
flow by introducing the MPFM, a tool that combines different measurement
technologies with the purpose of obtaining information from the multiphase
flow without performing the time-consuming separation. Moreover, its physical
footprint is negligible compared to that of the TS, and it is almost independent
of the flow regime. The MPFM described here provides precise measurements,
but it is quite expensive, and it requires manual intervention if there is a sensor
failure, which increases the operational cost [33, 128]. Furthermore, MPFMs
have an operation range beyond which the accuracy of the flow rate parameter
estimates can dramatically decrease. Therefore, recently, there has been much
research on the search for a more reliable and cheaper measurement system. An
alternative to the MPFM is the Virtual Flow Meter (VFM) [11, 33], a tool that is
able to provide flow rate estimations using field data that are already available
for the production site without the employment of expensive measurement
instruments. The usual data available are:

• Bottomhole pressure and temperature

• Wellhead pressure and temperature upstream of the choke

• Wellhead pressure and temperature downstream of the choke

• Choke opening (i.e., the percentage of opening of the choke valve)

These are fed into numerical models that make the predictions. This approach
is clearly advantageous for both maintenance costs and hardware costs; the
VFM is able to perform in real time and can be used both standalone or coupled
with an MPFM as a backup in situations in which the latter is unavailable for
some of the aforementioned reasons.
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2.1.2 The MPFM’s equipment

MPFMs are employed both onshore and offshore, in topside, or subsea
configuration. In this work, data have been collected using a MPFM [195],
which is made in a modular way. As each module contains a specific set of
sensors, in the following paragraphs the words sensor and module will be
treated as synonyms.

The most common instruments employed by MPFMs are [105]:

������� ���� It is the most popular instrument [268], low cost and quite
cheap compared to other equipment as it consists of a pipe with a
shrinkage in the middle, named throat. In this location, the temperature
(T) and absolute pressure (P) are usually measured, together with the
pressure difference (DP) between the inlet and the throat. The Venturi
meter structure can be split into three parts: a first restriction of the
pipe, called contraction section, a middle part called throat and a final
part called diffusion section where the pipe section expands again.
The physics behind the Venturi Meter is the continuity equation and
the Bernoulli equation of fluids: ? + Ä

Å
dE

Å
+ d6⌘ = 2>=BC0=C, where

p,v,h,d are the pressure, the velocity, the height and the density of
the fluid. The principle states that the sum of these three terms must
be constant in every point of the pipe: therefore, when the fluid goes
through the contraction section, the velocity increases, and the static
pressure decreases. Thus, a positive differential pressure is created before
and after the contraction section. On the other hand in the diffusion
section the flowrate slows down creating a negative differential pressure.
These two pressure differences are labeled as dP1 and dP2 and are
proportional to the density and the velocity of the fluid, which are useful
to understand the flow composition. Usually, only the first differential
pressure is used, as well as in the current work [27]. The main drawback
of the Venturi meter is that it needs to measure a fluid with an almost
constant composition [105]: to overcome this problem, the Venturi meter
is usually combined with other sensors like gamma densitometers.

��������� ������ Electrical impedance sensors are made by electrodes
placed around the pipe in electrical contact with the mixture [105]: a
current is injected and the voltage on the electrodes is measured. Cross
correlating these measurement, the velocity of the fluid can be inferred.
In the presented work, there are three sets of electrodes that provide
three sets of signals, which can be useful to increase reliability: if a
sensor fails, there are still two that can be used for the measurement. The
sensors work in different modes depending on the flow composition [27]:
if the concentration of water is higher than the oil one the fluid is water
continuous, therefore the flow is conductive and the sensor measures
the conductivity of the fluid. In an oil continuous situation, instead, the
permittivity is measured since the fluid is capacitive. The main drawback
is the high uncertainty in the transition region, i.e. between water and
oil continuous phases. To be oil continuous, water must be dispersed in
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oil in a way water droplets do not form a continuous path between the
electrodes: as long as the WLR is below 60% - 70%, the flow remains
oil continuous [55].

����� ��� ������������ This technology uses a radioactive source to
retrieve information on the composition of the multi-phase flow. The
source radiates gamma rays to a detector through the mixture, therefore
the sensor is able to tell how much the fluid has absorbed the radiations:
since the attenuation is dependent on the composition of the mixture,
this can give information on the fraction of each phase.
A first drawback of this method is of course the presence of a radioactive
source, which can be harmful both to operators and the environment
[271]; moreover, depending on the beam energy emitted from the
radioactive source, the accuracy of the measurement may vary depending
the salinity of the water. In fact, for low-energy sources, freshwater
and saltwater have different attenuation coefficients, leading to different
results as the salinity changes [105]; instead, for high-energy sources,
the attenuation is independent from the salinity content [30]. In the
presented work, the source of gamma rays is the radioactive isotope
of Cesium ÄÇÜCs, which has a half-life of almost 30 years and a beam
energy of 662 keV, thus making the measurement insensitive to salinity
variations. Finally, as already said before, a gamma densitometer should
be coupled with another measurement source, like a Venturi meter:
otherwise, it can only measure the average density of the mixture.

The stream of data coming from these sensors is then fed into a model that
is able to estimate the three quantities of interest. This is usually based on
physical conservation equations, but it requires closure equations to get a
solvable system of equations. Unfortunately, due to the complexity of the
modelled process, the closure equations are represented by empirical equations
that need to be accurately tuned to the specific working condition. In recent
years, there has been a growing interest in the application of Machine Learning
(ML) data fusion techniques to this kind of instruments to obtain easier and
more accurate models to predict the flow composition [25, 207].

2.1.3 Bench test and data collection

Dataset point collection consists in gathering flow information with the MPFM
technologies. This cannot be done in situ: firstly because it would exponentially
increase the costs of data gathering and secondly because the flow composition
cannot be controlled. In fact, one may want to collect more data in some
particular parameter areas: this cannot be done in the production site, because
the mixture coming from the reservoir is unknown.
Instead, data are collected in a physical test bench called flow-loop: it is a
laboratory instrument for investigating the flow characteristics in pipes and
for studying the response of MPFM instruments to this flow. The mixture
is circulated continuously in a loop, while MPFM instruments, that can be
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placed at different deviations from vertical through horizontal, collect signals
at that flow condition. The multi-phase properties, fractions and velocities can
all be varied, making the exploitation of a desired configuration quite handy.
The data, used in this thesis, have been collected at ProLabNL[197], an high
pressure multiphase flow loop, using hydrocarbon gas and crude oil, which
provides the possibility to test a MPFM against a precise set of references:
temperature, pressure and oil, water and gas rates and densities. This is done
with the employment of the following instrumentation:

• Gas and Liquid reference meters

• Temperature, pressure and pressure difference transmitters

• Online Gas Densitometer

• Nucleonic Level Measurement

2.1.4 General MPFM requirements

The main characteristics that customers and producers look for in multiphase
flow meters are summarized in [35, 105], and they are:

���-����������� The technology employed to get information on the flow
must not interfere with the flow of the mixture. In this sense the test
separator is not a good option as it is a very intrusive instrument.

���� ������ ������������ Different flow patterns appear depending
on several factors [105, 234], such as the flow properties (phase, velocity,
fraction), reference pressure and temperature, pipe physical properties
and direction, presence of obstructions (valves, junctions), and flow
state (steady state or in transition). The typical flow regimes are bubble
(where the gas bubbles are dispersed in the liquid), slug (where the
gas, increasing its velocity, tends to form larger and more consistent
bubbles), churn (the transition phase), annular (where the gas flows in
the internal part of the tube, while the liquid phase runs only in the
external part), and dispersed flow (where the liquid part is divided into
small droplets). The meter is expected to perform equally well in all of
the flow conditions. An ideal meter measures the phases in all of these
conditions.

�������� ��� ����������� The MPFM measurements should be con-
sistent, coherent, and precise, since measurements and, most of all,
their accuracy have significant consequences for the management of
wells, fields, and reservoirs. For example, in the presence of unreliable
measurements, such as in transition regions, the MPFM should alert the
user by assigning a large uncertainty to the provided estimates.

It is important to stress the context in which the MPFM is installed to fully
understand the challenges this instrument has to cope with: no matter the precise
location where it is installed, the MPFM is always installed in very remote
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and harsh environments where the instrument itself is severely stressed, the
maintenance is impossible or very hard to make and the connectivity is absent.
In this scenario the machine must be autonomous both in the normal working
operations, and in self-diagnosing potential issues to its instrumentation.

In this context the MPFM poses many interesting and challenging practical
problems to solve:

������� �������� ��������� The physical model employed to estimate
the individual flow rates is not sufficiently accurate, indeed it needs
many empirical closure equations to get a system that can be actually
solved. Moreover it needs a time consuming period of calibration to set
all the model parameters.

���������� ������������ �� ���������� ������� In between flow
transitions, the measurements provided by the instrument might be not
very accurate. This is because both the model is inaccurate, and the
sensors do not get stable measurements. An example is the transition
between oil and water continuous phases: in this case the impedance
sensor flips between the capacitive and the resistive circuit, and might
provide unreliable measurements.

������������ ������ The MPFM is made up of many sensors that interact
between each other so a malfunction in one of these might affect the
others. Moreover the dynamics of the measured flow can change a lot
during the lifetime of the instrument. As a consequence, some faults
and anomalies can be detected looking at the interaction between the
sensors measurements. However, once a fault is detected, it is not easy to
understand which is the module responsible of the malfunction, making
difficult to analyse the root cause of the problem.

���� �� ������ ����� ������ It is very hard to test an instrument like
this, as the test bench has to replicate as accurately as possible the real
working conditions of an oil well. This means that controlled experiments
performed in test benches, named flow loops, are very expensive to do
and acquisition campaign might be reduced as much as possible. Also
field tests are not easy to be performed due to the harsh environmental
conditions and the lack of connectivity. This leads to scarcity of labelled
data both showing faulty or not-faulty behaviours, and the real individual
rates of the fluid flow.

���� ���������� This instrument is not built in series but is tailor-made
on the customer needs, leading to a variety of slightly different machines.
They can vary in size, but also in the number and kind of modules they
employ; the behaviour changes from machine to machine, therefore
obtaining a unique model that works for each machine is a difficult task.

��� ������������� ����� ��� ������ ��������� Despite the in-
strument complexity, the computational power left after the computations
of the physical model is quite low. Due to this fact, every model that needs
to be run on board, has to cope with strict computational requirements.
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Many of these practical problems are common to other instruments frequently
encountered in industry like airplane engines or satellites. These problems have
been addressed from a more theoretic point of view using data driven techniques
that come under the name of Machine Learning and will be discussed in more
detail in the following Section and Chapters.

2.2 ���������� �� ����� ��� ����������

To solve the aforementioned practical issues it has been decided to rely on
data driven approaches, often named Machine Learning. This choice has been
motivated by the great flexibility these methods provide and by their ability to
perform well in a variety of scenarios. The advantage of using these tools is
they do not need the knowledge of complex physical equations to model the
system, but they just require to have some data where to train a model. This
highly reduce the modelling effort and lets to speed up its deployment.

In general, Machine Learning (ML) techniques include a variety of methods
able to automatically learn from data, without the need for the user to explicitly
write the model. There exist plenty of tasks that can be solved with the use
of these methods like classification, regression or clustering. Two of the most
important tasks in the context of this thesis are named Soft Sensing (SftS) and
Anomaly Detection (AD). SftS exploits the availability of data that are already
collected by the machine and use regression models to estimate expensive
quantities, allowing to have an estimation when real metrology instruments
are not in place or, possibly, to reduce the number of "physical" sensors. On
the other hand, the goal of AD models is to look for data that are somehow
different from the majority, and do not follow its pattern.

In this work SftS has been addressed in Chapter 3, paying attention to
Uncertainty Quantification (UQ) techniques able to estimate not only the
quantity of interest but also the associated level of uncertainty. On the other
side, concerning the detection of anomalies in the sensing devices, AD has
been widely studied, employed and extended in new directions.

In particular the classic Anomaly Detection task has been discussed in
Chapters 4 and 5, contaminated with Tiny Machine Learning in Chapter 6,
with Active Learning in Chapters 7 and 8, with explainable AI in Chapter 9
and Domain Adaptation topics in Chapter 10.

The Machine Learning with the adjective tiny is a new branch of ML (Tiny
Machine Learning (TinyML)) that tries to develop new models that can run on
computational and memory constrained devices like micro-controllers (MCU).
This is very complex but allows to get huge energy savings, lower latency, lower
deployment costs and increased privacy. These concepts were used to develop
a compression algorithm able to fit an anomaly detector in less memory and
with less time complexity.

Active Learning (AL) is the research area that studies how to make interact
the model user with the algorithm and relies on the assumption that if the
algorithm is let free to ask for new labels, it is able to reach better performance
with less labelled data. This topic was particularly useful in relation to the
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scarcity of labels showing if the machine was exhibiting faulty or not faulty
behaviour, indeed thanks to this work it was possible to train a better detector
with less human labelling effort.

ML models are notoriously black boxes, in the sense that it is very hard
to understand why the model took a particular decision. To overcome this
limitation in recent years a new research area is growing, named Exlainable
Artificial Intelligence (XAI), that tries to develop easier to be explained models
or algorithms able to explain the predictions made by black box models. In the
context of this thesis it is important to provide the user with an intuition as to
why the model suggests that a particular condition might be faulty, and which
is the sensor responsible for it.

Domain Adaptation (DA) on the other side is a branch of Transfer Learning,
i.e. the research area that studies how to transfer knowledge between different
but related tasks. It proved its usefulness when developing models able to adapt
to different prototypes or machines, without the need of fully re-sampling
every new machine that needs a detector.





3
S O F T S E N S O R

The goal of this work, to make the instrument more reliable, can been reached
by two paths: a first approach is to focus on the output i.e. the flow rate
estimation model, indeed a more accurate model means better predictions and
uncertainty estimations. A second and complementary approach is to focus
on the input of the model because, to have a good estimation model, is not
sufficient if the data that are fed into the model are unreliable.

The first approach, focused on the model improvement, has been reached with
the use of Soft Sensing (SftS) and Uncertainty Quantification (UQ) techniques
that are the subject of this Chapter. This work has been published in [88].

3.1 ������������

Oil and natural gas are still one of the world most important basic goods,
but the pandemic crisis started in 2020 and governments pushing towards a
low-carbon future temporally collapsed the demand [176]. This is driving oil
companies to look for methods and techniques that will, on one side, reduce the
cost related with the overall extraction, drilling and other production activities,
but also they will increase the extraction efficiency. Oil and gas companies are
nowadays focusing their effort to overcome this unforeseen and sudden shift
in the market request. The optimization of the exploration and production is
definitely one way to deal with the actual situation.

Therefore, it is crucial to have accurate measurements equipment, since
they can assist and support the reservoir and production engineers in the
decision making. Moreover accurate measurements are used for many tasks
like production management, tax allocation and oilfield modeling. In this
context uncertainty measures can be fed into these models in order to have a
more detailed understanding of the production trend and a more reliable vision
of the process to take the required decisions. Besides, knowing the accuracy
or the relative uncertainty of real-time measurements will help engineers and
operators to define the optimal parameters to manage the wells and the whole
reservoir.

The estimation of the uncertainty confidence, for a data-driven model, is
becoming a common and highly requested requirement, as crucial as the
prediction interpretability. This applies to many areas, not only the energy
sector, but also where the prediction accuracy has a high impact on the outcome
like finance and medicine. In particular, the only pointwise inference is no
more sufficient to complete successfully a task, but confidence estimations
for the predicted measures are needed. The most natural way to address this
requirement is using the Uncertainty Quantification (UQ) approach. UQ is a
set of statistical tools that determines uncertainties associated with a given

13
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model, aiming to consider all possible and reasonable uncertainty sources in
order to correctly assess a comprehensive uncertainty [57]. The aim of this
work is to present methods, applied to Multiphase Flow Meter (MPFM), that
will return not only accurate predictions of production parameters, but also
uncertainty confidence estimations.

3.1.1 Previous work

Focusing on the uncertainty estimation, the literature concerning the application
of these methodologies to real life problems is quite vast, it ranges from
chemistry [121, 187] to material science [240], localization [154], geology
[14] and of course medical science [8] where the majority employs techniques
based on bootstrap, Bayesian approaches and dropout.

3.1.2 Novelty and previous works

The novelty provided by this Chapter is the application of uncertainty estimation
to the Multiphase Flow estimation problem. Usually, in the found literature, only
the quality of the prediction is treated, while the uncertainty of the prediction
is not reported: therefore, another goal will be to provide a confidence interval
for the predictions. To the best of our knowledge this is the first described
applications of these methodologies to Multiphase Flow Meters in literature,
and therefore benchmarking papers are still absent. However in recent years
multiple authors are approaching the standard multiphase problem, using a
variety of tools and different settings [261].

The implementation of artificial Neural Networks (NN) is particularly
trending nowadays, for their ability to determine non-linearities, which are very
useful especially for WLR estimation, as well as for their various architectures
that adapts to the type of measurement signals feed as input. In [208] a
gamma-ray densitometer measures the attenuation of gamma rays through
the fluid, and use it as an input feature for a Radial Basis Function Network
(RBFN) (the innovation is using only the 4 strongest peaks instead of the entire
gamma spectrum): with this configuration, they were able to estimate both
flow patterns and values of volume fractions. A similar network was used also
in [201], where a RBFN is implemented and validated in estimating gas flow
rate. In [271], the authors tried to estimate WLR by collecting time-series data
from a microwave-based measurement technology: the setup was made by
dual sensor that is able to measure both the attenuation and the phase shift of
the wave through the fluid. Signal information was then extracted by applying
two different methods: wavelet transform and CNN, where the latter perform
slightly better than the former. In [20] the authors tried to predict the flow
rates of oil, gas and water in a three-phase flow: the aim was reducing the
cost of data gathering by implementing an NN with only flow parameters
(temperature, viscosity and pressure signals) and statistical parameters of the
pressure signal (namely standard deviation, kurtosis and skewness coefficients)
as inputs. In particular, they compared the ability of the network with two
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different inputs combinations, first using only flow parameters, then adding
statistical parameters: they were able to show that the prediction improved in
the latter case, with an R-score of at least 0.995 in all three cases. In [134],
Khan implemented various types of AI techniques, besides a classical NN: an
Adaptive neuro-fuzzy inference system (ANFIS) which is an hybrid version
of neural network and fuzzy logic system; a Support Vector Machine (SVM),
functional nets (FN), which is a network where different neurons embed
different functions. The application of these techniques led to a prediction with
range of accuracy of 96-99%. In many works, due to the type of data handled, a
particular focus is set on the Convolutional Neural Network (CNN), which are
greatly effective when using structured data, like time-series signals (1D-CNN),
images (2D-CNN) or 3D signals (3D-CNN): the latter case is treated in [63],
where the authors have computed gas-liquid flowrates using data collected
by a wire-mesh sensor, a tool able to collect 3D flow information, as input
for an NN. In this case, due to the particular nature of the signal, different
type of NN architectures have been used, including 3D-CNN and Long-Short
Time Memory (LSTM). In [268], instead, the authors have implemented
a 1D-CNN in order to estimate the GVF: in this case, input signals were
flowrate parameters (differential pressure signals and pressure and temperature
signals, which provide gas density) collected from a Venturi meter in a 5
min experiment. In [117], the authors applied a CNN to predict the flow of
gas-liquid multiphase flow in different regions. They also tested a modified
version of a Generative Adversarial Network (GAN) that is able to improve
the performance of the CNN adapting to the current flow domains. In [80]
the authors implemented a method to estimate liquid and gas flow rates of
two-phase air-water flow using conductance probes and neural network: in
particular, the velocity of the fluid, inferred from the cross correlation of the
probes signals, is used to estimate the rates, achieving a measurement accuracy
error smaller than 10%.

In [123] the authors go through a description of the various Tomography
technologies, like resistive (ERT), capacitive (ECT) and magnetic (EMT)
tomography and describe their applications, focusing in particular on the
capacitive one. The ECT is employed also in [184], where the authors used this
technology to take pictures of the flow distribution, which give information on
the flow regime and composition.

3.2 ����-������ ������ ��� ����������� ����������

As previously discussed in the introduction, uncertainty is a crucial issue
in many real life scenarios. Providing a prediction without the associated
uncertainty can be dangerous in case where the prediction is subsequently
used to take important decisions [16]. The sources of uncertainty are often
decomposed into two parts, the aleatoric and the epistemic [163]: the first
is inherent in process at study, while the second depends on the inadequate
knowledge of the model most suited to explain the data. The uncertainty is
usually considered a confidence interval on the point wise inference. The
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confidence level associated to the confidence intervals in this work is set to
95%.

There are many tools to estimate the uncertainty like bootstrapping, quantile
regression, Bayesian inference and dropout for the Neural Networks [2, 221,
247].

In the next paragraphs the data-driven models employed in this Chapter will
be briefly described, namely Feed-forward Neural Network, Gaussian Process,
Local Linear Forest, Random Forest. Despite the different structure, all these
models have been chosen for their ability to return uncertainty estimations
associated to each individual prediction.

3.2.1 Feed-forward neural network

The Neural Network (NN) is a very popular model, composed by a collection
of artificial neurons linked together. Each neuron receives the input data and
applies a non-linear function to the weighted sum of their inputs. In recent years
many successful architectures proven to be particularly effective in the most
disparate learning tasks like computer vision and natural language processing.
Even though very powerful, NN suffer a variety of issues such as the data-
expensive training and the difficulty to get explainable predictions. These
problems tend to limit their widespread adoption in contexts where data are
scarce and when decisions based on the network outcomes have a serious impact
on real life. One way to mitigate and to manage the risk of taking dangerous
decisions is to estimate the prediction uncertainty. There are a number of
methods to estimate it from a NN like Bayesian methods and bagging [2] but for
sure the most popular is by using dropout [91]. This technique was originally
developed to avoid the co-adaptation of the parameters during the network
training in order to reduce over-fitting and improve the generalization error. It
has the great advantage of being conceptually simple, fast to implement and
very cheap to compute, as a matter of fact it consists in the random shutdown of
some neurons during training. In the uncertainty estimation process the dropout
is activated also at inference time, leading to multiple predictions with different
neurons activation for the same input datum. This allows to get a prediction
distribution and therefore the prediction uncertainty. The correctness of this
approach is guaranteed by Bayesian arguments [91], indeed it turns out that
this procedure computes an approximation of a probabilistic deep Gaussian
Process.

In this case, due to the scarcity of data, the choice relies on Feed-forward
Neural Network, one of the simplest network architecture. This model is
composed of multiple dense layers of decreasing size stacked one on top the
other.

3.2.2 Gaussian Processes

A Gaussian Process (GP) is a non-parametric regression algorithm which tries
to find a distribution for the target values over different possible functions that
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are consistent with input data [203]. Like the Bayesian Ridge Regression, the
GP is a Bayesian algorithm, but while the former needs a prior information
over the parameters, the latter needs a prior information over the functions it
tries. This prior information is embedded in the covariance function or kernel
of the function.

The most interesting advantage of GP is that, since it is a Bayesian method
it returns not only the expected value of the posterior distribution, i.e. the
prediction, but also the associated variance that can be used to measure the
uncertainty.

As already mentioned, the choice of the kernel, when building the GP
regressor, is crucial because it embeds the assumptions (prior information)
made on the function aimed to be learned. Since a general function 5 (GÄ, GÅ)

that takes GÄ, GÅ as inputs is not a kernel function, in the literature are given
some covariance functions that are commonly used [75]. During the training of
the best kernel, it’s common use to consider the kernel as an hyper-parameter
and therefore to try different combinations.

3.2.3 Local Linear Forest

Local Linear Forests (LLFs) have been introduced very recently by Friedberg
in [89]: the authors point out a weakness of the RFs, that is their inability to
make effective predictions in presence of smoothness in explored regression
regions. In particular, a RF prediction can be expressed in Eq. 1, where the
reported version is the one with adaptive weights [89]:
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the number of training points. From a more practical view, it is the fraction of
trees where the i-th observation ends up in the same leaf as the new point G�.

The improvement introduced by the LLF is to use these weights to fit a local
linear regression, which is a great method to explore smooth behaviours but
tends to fail in high-dimensions due to the curse of dimensionality. Therefore,
LLFs are able to take the pros of both methods, predicting effectively in high
dimensions with presence of smooth signals. In practice, the LLF tries to solve
the minimization problem:
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The general rule used by RF algorithms to split a node in two children is
the so called CART split. Basically [89], naming the node to be split % and a
set of observations (GÄ,.Ä), . . . (G=,.=), a candidate pair of children nodes is
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exploited: the mean value of . inside this nodes is computed as .Ä, .Å. The
selected children nodes among all candidate pairs are the ones that minimizes
the following rule:’
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In LLF, instead, it is better to leave to the final regression step to model smooth
signals: in the parent node % it is run a ridge regression in order to predict the
output .8:
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After this step, the standard CART splitting rule is applied on the residuals
.8 � .̂8 .

3.2.4 Confidence estimation for tree based methods: Infinitesimal Jackknife

Wager developed a technique to estimate the RF and LLF prediction variance,
the Infinitesimal Jackknife: in his paper [248] it is shown how the variance of
the prediction quickly drops with the growing of the number of decision trees
⌫.

In the variance estimation procedure, there are two types of noises: the
sampling noise (due to randomness in data) and the Monte Carlo noise, due to
the fact that the number of trees are not infinite but need to be approximated
by a finite B, which increases the variance. In the mentioned paper it is shown
that in order to reduce Monte Carlo noise at the level of sampling noise it is
sufficient a ⌫ = ⇥(=). Of course, the reduction holds up to a good prediction,
meaning that if there is a bad prediction due to different reasons, as lots of
irrelevant input features, the variance will be big despite the value chosen for
B.

3.2.5 Random Forests

Bagging or Bootstrap Aggregate is a technique that allows to reduce variance
when performing estimates on particularly high variance models, such as
decision trees. Such trees are able to capture complex interactions in data [108],
and do not suffer from high bias if the tree is deep. On the other hand, they are
characterized from high prediction variance, therefore take advantage from
averaging estimations coming from different trees, which helps to reduce the
noise: at the same time, bias in the averaged tree is the same of the one of a
single tree, since each tree is identically distributed. The variance of the trees
average is:

df
Å

+
Ä � d

⌫

f
Å (5)

where fÅ is the variance of a single tree and ⌫ is the number of trees in the
forest. The first term comes from the fact that the trees are not necessarily
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independent, so a general coefficient of correlation between trees d is employed
[108]. It is therefore clear that as the number of trees B increases the second
term disappears, but the first term which embeds the correlation between trees
cannot be lowered.

Random Forests (RFs) has been introduced by Breiman in [34]: the purpose
of this method is to reduce the value of the first term in Eq. 5 without increasing
the second. This is done by randomly selecting a subset of total features for
splitting during the tree growing.

By taking a small subset of features, the correlation between any tree
couple in the forest is reduced: intuitively, if each tree uses a small set of the
available features to make the prediction, it is likely that the estimation done
by two different trees in the forest will be performed taking different features.
Therefore according to Eq.5 this choice on ⌫ helps in reducing the variance of
the average.

3.2.6 Metrics

The previously discussed models will be primarily compared on their Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE) and 95-th percentile
of the absolute errors. In case two or more models will result equivalent, they
will be compared according the confidence intervals they provide. To make this
comparison, two more metrics are needed: the Prediction Interval Coverage
Probability (PICP) and the Mean Prediction Interval Width (MPIW) [221].
The first metric is defined as:
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and it is the percentage of times the actual value is contained in the interval,
while the second is the average width of the predicted interval and is defined
as:
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where D(G) and ; (G) are respectively the upper and lower bound of the interval.

3.3 �������

This Section shows the results of the present study and it is mainly divided
into three parts: the first part describes the preprocessing phase, the second
deals with the selection of the best predictive model, while the third one shows
the confidence interval estimation.

As previously mentioned in Section 2, data come from an acquisition
campaign that took place in ProLabNL high pressure flow loop. Data have
been sampled using the experimental grid shown in Figure 3, and consist in
about 300 experiments with 5 minutes of recording each and varying flow
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Figure 3: Experiments composing the dataset. The purple points are the oil-continuous
experiments, while the yellow ones are the water-continuous experiments.
WLR and GVF are percentages, while Qtot is depicted using auxiliary units.

conditions. These are controlled by 3 main parameters that are GVF, the total
flow rate &C>C and WLR, the target of the estimation model. The conditions
depicted in the grid are often named multiphase conditions, as opposed to the
wet gas conditions that refer to situations where the GVF exceeds 90% [104].

Depending on the fluid properties, the dataset can be divided into two parts:
when the flow is mainly composed by water and the mixture is conductive the
fluid is named water-continuous; on the contrary when the isolating fluids (oil
and gas) are the majority, the fluid is named oil-continuous and no conductivity
can be measured. The transition between these conditions can be appreciated
in Figure 3, where it is clear WLR is the main parameter controlling this effect,
and only weakly Qtot. Unfortunately these fluid properties need two mutually
exclusive measuring instruments to be implemented, one for the conductive
regime and another for the capacitive regime where no fluid conduction can
measured. This leads to the development of two estimators based on the two
dataset partitions, the water and the oil-continuous with respectively about
130 and 170 experiments.

The input sensors collect a stream of measurements with a high frequency
rate. Features are extracted from these signals every minute and then are
collected in a 5 minutes array. Once this array is full, the median value of each
feature is stored and used for the flow estimation. This procedure allows to
obtain robust features that are seldom corrupted by instrumentation anomalous
behaviours. The extracted features are computationally efficient functions that
can be easily computed on the device. An example of the stored data is depicted
in Figure 4 where one feature for each sensor is shown.
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(a) Oil continuous dataset.

(b) Water continuous dataset.

Figure 4: Input data and anomaly scores obtained by the Isolation Forest: the color
scale goes from blue to red, where red is indicates a higher probability
to be an outlier. All the above data are depicted with auxiliary units. C1
and Cond7 are two electrical impedance signals, G represents the density
measured by the gamma module, DP is the pressure difference measured by
the Venturi meter and Speed is the flow speed measured by cross correlating
the impedance signals.
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Despite the efforts to get robust fluid proprieties measures, some flow
conditions are very difficult to be sampled and the resulting measures exhibits
anomalous behaviours. To overcome this issue and to train and test the model
on reliable data, an additional preprocessing step has been implemented.
This consisted in the application of anomaly detection techniques in order to
highlight experiments that may arouse the suspicious to have been measured
with malfunctioning sensors. The tool employed in this context is an Isolation
Forest [160], a powerful and popular method to detect in an unsupervised
manner anomalous data points. The Isolation Forest is a collection of trees
that randomly partition the feature space, isolating the samples. The most
anomalous data tend to be isolated faster than the normal ones, therefore to be
more easily detected. This algorithm have many nice properties like the fast
inference time that allows this model to be implemented on board, checking if
the incoming data are anomalous or not. The Figure 4 shows the application of
this algorithm to the two datasets: to each data point the IF associates a score
proportional to the abnormality level of the point. This procedure highlights
the water continuous dataset, in particular the impedance module, exhibits
severe abnormal behaviours in some experiments. To avoid unreliable results,
these anomalous samples have been dropped in the last preprocessing step; on
the contrary the oil continuous data are considered already sufficiently clean.

At this point the main dataset is divided into two smaller datasets containing
all the features extracted by each experiment. This means in the next phase
two models will be developed, one for each dataset. The selected model is the
one that minimizes the Root Mean Squared Error (RMSE), the Mean Absolute
Error (MAE) and the 95-th percentile of the residuals (95-th percentile) over
10 repetitions of training and testing, where the test set is composed of 30%
of the randomly shuffled total dataset, paying attention not to take too close
training and testing points. The proximity between data points has been defined
over the output space GVF-WLR-Qtot.

As mentioned in Section 3.2, in this work 4 models that can provide
confidence intervals to the estimated quantity have been tested: the Feed-
forward Neural Network (FNN), the Linear Local Forest (LLF), the Gaussian
Process (GP), and the Random Forest (RF). Since the GP is quite sensitive to
the kernel choice, it has been tuned according a 5-fold cross validation, testing
different combinations of polynomial and radial basis function kernels with
different hyper-parameters. Figure 5 shows the mean results obtained by the
procedure previously described, together with their standard deviation. In the
oil-continuous case looking only at the mean MAE score LLF seems to be the
best predictive model, however the very large error bar suggests LLF and GP
might be equivalent in statistical sense. On the contrary in the water-continuous
dataset the clear winner is GP with much better performances in comparison
with the competitors. These results are consistent with what can be expected by
the dataset size: GP has a few parameters to be tuned with respect to the other
models, while RF and FNN suffer from the lack of data. Despite the similarity
of LLF to RF, this method makes stronger assumptions that in this context
improve its learning ability. More detailed results are shown in Table 1 and
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FNN GP LLF RF

2 MAE 14.36 2.94 7.34 16.89
2 RMSE 17.60 3.89 9.66 19.96
95th percentile 15.79 3.86 9.68 17.24

Table 1: Water-continuous mean results. To be consistent with the 95-percentile of the
absolute error, it was reported twice the MAE and the RMSE.

FNN GP LLF RF

2 MAE 5.96 3.02 2.66 4.97
2 RMSE 8.13 5.47 4.27 7.42
95th percentile 8.20 4.87 3.57 7.07

Table 2: Oil-continuous mean results. To be consistent with the 95-percentile of the
absolute error, it was reported twice the MAE and the RMSE.

Table 2 where the mean results in terms of MAE, RMSE and 95-th percentile
are compared. The choice to show all these scores and not just the RMSE is
due to the presence of ouliers, indeed in some cases this score is not reliable
and a more fair index might be MAE or 95-th percentile.

Figure 5: Results of the model selection. It is reported twice the MAE to be consistent
with Tables 1 and 2.

The next step is to test the ability of the selected models in providing reliable
confidence intervals on the two datasets. Starting from the water-continuous
dataset, the GP has been trained and tested over randomly generated partitions
and the results are depicted in Figures 6,7 and 8. The first Figure shows the
predicted versus the actual values and the residuals versus the actual values. It
confirms the good results expected in the previous test indeed the majority of
the test points are close to the bisector and only few points are poorly estimated.
Here it starts appearing a zone where the model struggles to predict the correct
value an where its confidence intervals are wider, that is close to the transition
line at 40-60% WLR. The sorted errors with their related intervals are visible
in Figure 7. It is interesting here to note that on average the confidence intervals
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Figure 6: GP on the Water dataset. Gaussian Process predictions and related confidence
intervals. 2 MAE: 3.04, 2 RMSE: 4.53, 95-th percentile: 5.41.

Figure 7: GP on the Water dataset. Sorted test points with their related uncertainties.
The MPIW is 2.6 and the percentage of intervals crossing the zero-error line
PICP is 86% compared to the expected 95%.
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Figure 8: GP on the Water dataset. Errors and confidence intervals over the flow
parameter space. The size of the dot is proportional to the error while the
color is proportional to the uncertainty. The color scale goes from purple to
yellow.

gets wider as the errors increase, which is an appealing effect for practitioners
that may easily neglect predictions with low confidence levels. However some
confidence intervals are quite large even if the prediction error is low, like in
Figure 7. To this situation it is possible to find a partial explanation looking at
a more complex plot in Figure 8. Here the test points are shown in the flow
parameter space with size proportional to the error, and color proportional to
the confidence interval. It is interesting to note the points where the prediction
is less accurate are the ones close to the boundary where the model may suffer
from boundary effects and the instruments are more severely challenged by
the extreme working conditions. Moreover, the points close to the transition
boundary around 50% WLR are the ones for which the model returns the most
uncertain estimates.

Concerning the Oil dataset, as previously explained, the best model is not
clear because the performance of LLF and GP are very close. To understand
which model to prefer, the behaviour of the confidence intervals may be
discriminating. The application of LLF to a randomly partitioned test set is
shown in Figure 9, while the GP application in 10. The prediction performance
of the GP are slightly worse than LLF as expected, but the great diversity is
in the confidence intervals (Figures 11 and 12), indeed the LLF intervals are
much shorter (1.59 on average) than the GP’s (4.56 on average) but they are
not proportional to the error like in the GP model; moreover the percentage
of intervals crossing the zero-error line (the PICP) is quite different: 0.64
against 0.98. The choice on which model to prefer may depend on the specific
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Figure 9: LLF on the Oil dataset: predictions and related confidence intervals. 2 MAE:
2.03, 2 RMSE: 2.68, 95-th percentile: 2.72.

Figure 10: GP on the Oil dataset dataset: predictions and related confidence intervals.
2 MAE: 2.49, 2 RMSE: 3.74, 95-th percentile: 4.58.
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Figure 11: LLF on the Oil dataset. Sorted test points with their related confidence
intervals. The MPIW is 1.59 and the percentage of intervals crossing the
zero-error line PICP is 64 compared to the expected 95%.

Figure 12: GP on the Oil dataset. Sorted test points with their related confidence
intervals. The MPIW is 4.56 and the percentage of intervals crossing the
zero-error line PICP is 98 compared to the expected 95%.

application since some applications might prefer larger confidence intervals
but more certain, while others smaller intervals but less reliable. Comparing
the two models in the flow parameter space it is possible to see a pattern
similar to the one previously described only in the GP case (Figures 13,14).
The majority of the uncertainty together with the largest errors cluster close
to the transition zone. In conclusion, even if GP is less accurate than LLF it
seems to have confidence intervals more in line with what can be expected
from a physical model.

3.4 �����������

This study applied uncertainty quantification techniques to the estimation of
extraction performance in the Oil & Gas production. The extraction perfor-
mance depends on the three indicators that summarise the liquid fraction,
the gas fraction and the total flow of the extracted mixture of oil, gas and
water. This work mainly focused on the Water Liquid Ratio, i.e. the fraction of
water inside the total volume of liquid, since it is the most important and most
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Figure 13: LLF on the Oil dataset. Errors and confidence intervals over the flow
parameter space. The size of the dot is proportional to the error while the
color is proportional to the uncertainty. The color scale goes from purple
to yellow.

Figure 14: GP on the Oil dataset. Errors and confidence intervals over the flow
parameter space. The size of the dot is proportional to the error while the
color is proportional to the uncertainty. The color scale goes from purple
to yellow.
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complex among the discussed parameters when the final target is the extraction
efficiency.

Four models have been tested to understand their behaviour on this particular
context, both in terms of prediction accuracy and uncertainty estimation. These
models are Feed-forward Neural Networks, Gaussian Process, Linear Local
Forest and Random Forests and were applied to two complementary datasets
previously pre-processed using the anomaly detection algorithm Isolation
Forest. These data come from a particular instrument named Multiphase Flow
Meter, that is used to extract information from the flow and to provide the
extraction parameters.

The results show that most of the time the Gaussian Process is the preferable
model since it has a low error compared to the other methods, and good ability
in handling uncertainty. In fact in this context it returned confidence interval
proportional to the prediction error. Moreover it estimated uncertainties that
are in accordance with what domain experts would expect: when data are
more uncertain, like when the flow is highly non-stationary in the transition
regions between two flow conditions, it returns a higher uncertainty. However
another model named Linear Local Forest proven its potential in making
accurate predictions with few data. The main differences between these two
models resulted in the confidence intervals: while Linear Local Forest has
shorter confidence intervals at the cost of excluding more often the true value,
Gaussian Process tends to have wider uncertainties.

Future works should focus on the data collection indeed it is likely that with
more data the performances of all methods will improve, especially Random
Forests and Neural Networks. In this context, one research direction that
the authors are currently investigating is the application of Active Learning
algorithms that are able to lessen the need for big dataset at the same time
improving the predictions, like the ones exposed in Chapter 7.





4
A NO M A LY D E T E C T I O N A N D T R E E - BA S E D M E T H O D S

Another approach to enhance the reliability of the provided estimates is to
monitor the sensor readings that are then fed into the model that estimates the
production parameters. This was achieved using techniques called (sometimes
interchangeably) Anomaly Detection (AD) or Fault Detection (FD), that have
the goal to automatically find data not conforming to the expected behaviour.
There exists many kind of anomalies depending on the data at hand: data might
assume different formats like tables, streams, or images; the user might be
interested on local, global, collective or context anomalies. More importantly,
anomalies might assume different meanings depending on the context where
they have been detected and the user expectations: what can be considered
anomalous in one context, might be normal in another. In this Chapter we will
describe the anomaly detection task and then we will focus on a particular
class of models that originates from the Isolation Forest algorithm. This work
has been published in [26].

4.1 ������������

The problem of finding novel or anomalous behaviours, often referred as
Anomaly or outlier Detection (AD), is common to many contexts: anomalies
may be very critical in many circumstances that affect our everyday life, in
contexts like cybersecurity, fraud detection and fake news [126, 165]. In science
Anomaly Detection tasks can be found in many areas, from astronomy [174]
to health care [179]; moreover, Anomaly Detection approaches have been even
applied to knowledge discovery [60] and environmental sensor networks [110].

One of the areas that mostly benefits from the employment of AD modules
is the industrial sector, where quality is a key driver of performance and
success of productions and products. With the advent of the Industry 4.0
paradigm, factories and industrial equipment are generating more and more
data that are hard to be fully monitored with traditional approaches; on the
other hand, such availability of data can be exploited for enhanced quality
assessment and monitoring [164, 225]. Moreover, products and devices, thanks
to advancements in electronics and the advent of the Internet of Things, are
increasingly equipped with sensors and systems that give them new capabilities,
like for example the ability to check their health status thanks to embedded/cloud
Anomaly Detection modules [15, 135, 252].

Despite the heterogeneous systems that may benefit from AD modules/-
capabilities, there are several desiderata that are typically requested for an
AD module, since obviously looking for high detection accuracy is not the
only important requisite. For example, in many contexts the delay between the
occurred anomaly and its detection might be critical and the low latency of
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the model becomes a stringent requirement. One way to mitigate the detection
delay problem is typically to embed the AD model in the equipment/device: this
implementation scenario directly affects both the choice of the detection model
and, in some cases, the hardware. As a consequence practitioners will typically
have to find a compromise between detection accuracy and computational
complexity of the model: while this is true for any Machine Learning module,
it is typically more critical when dealing with AD tasks. Moreover, in presence
of complex processes or products equipped with different sensors, data will
exhibit high dimensionality and therefore practitioners will tend to prefer
models that are able to efficiently handle multiple inputs. Summarizing, a good
real-world AD solution: i) has to provide high detection performances; ii) has
to guarantee low latency; iii) requires low computational resources; iv) should
be able to efficiently handle high dimensional data.

The former list of desiderata for AD solutions is not exhaustive, and other
characteristics can increase the model appeal in front of practitioners. In recent
years, model interpretability is an increasingly appreciated property. Detecting
an anomaly is becoming no longer enough and providing a reason, why a point
has been labelled as anomalous, is getting more and more importance. This is
particularly true in manufacturing processes where the capability of quickly
finding the root cause of an anomalous behaviour can lead to important savings
both in terms of time and costs. In addition, interpretability enhances the trust
of users in the model, leading to widespread adoption of the AD solution.

Another attractive property is the ability of the model to handle data coming
from non-stationary environments. Especially in early stages of AD adoption,
available data are few and restricted to a small subset of possible system
configurations; a model trained on such data risks to label as anomalous all
the states not covered in the training domain, even if they are perfectly normal.
In order to overcome this issue, the model should detect the changes in the
underling distribution and continuously learn new normal data. In this process,
however, the AD model should not lose its ability to detect anomalies.

Given the importance and diffusion of AD approaches, we deemed relevant
to review and compare an important class of algorithms particularly suited
for the aforementioned requirements. The subject of this investigation is the
tree-based approaches to AD, i.e. approaches that have a tree structure in their
decision making evaluation; the most popular representative of this class is
the famous Isolation Forest algorithm, originally proposed by Liu [160, 162],
an algorithm that is receiving increasing attention and sees application in
many scenarios. In this work, for the first time to our knowledge, we try to
systematically review all the AD methods in this emerging class, to discuss
their costs and performances in benchmarks, to report industrial applications
and to guide readers through available implementations and popularity of the
various approaches in the scientific literature.

This review is conceived both for researchers and practitioners. The first
ones will find a comparison between the many proposed variants, while the
second ones will find useful information for practical implementation. Despite
this work mainly copes with AD algorithms designed for tabular datasets, it is
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important to note that AD can be performed on a variety of data structures like
images or audio signals and algorithms dedicated for different types of data
format are also present in the literature. Nevertheless, it should be remarked that
any data structures can be transformed into tabular data extracting appropriated
features, making AD approaches for tabular data applicable potentially to any
scenario.

4.2 �������� ��� ���������� �� ������� ���������

While many Anomaly Detection approaches have been developed, a simple
taxonomy divides such methods into two categories:

• Model-based - It is the most traditional Anomaly Detection category
and employs a predefined model that describes the normal or all the
possible anomalous operating conditions. These approaches usually
rely on physics or domain-knowledge heuristics; unfortunately they are
often unfeasible and costly to be developed since they require extended
knowledge of the system under exam.

• Data-driven - The approaches examined in this thesis rely instead on
data availability. More precisely, such approaches make use of two
ingredients: data sampled from the analyzed system and algorithms able
to automatically learn the abnormality level of those data. Such category
of approaches is often referred as data-driven anomaly detection and its
advantages are the great flexibility and absence of strong assumptions
that limit the model applicability.

Additionally, when looking at anomalous behaviours, two problem settings
can be defined: the supervised and the unsupervised one. The former consists in
classifying data, based on previously tagged anomalies. It is called supervised
since training data are collected from sensor measurements and have an
associated label that identifies them as anomalous or not; in industrial context,
the supervised scenario is typically named Fault Detection. Unfortunately,
supervised settings are seldom available in reality [44]: labelling procedures
are very time consuming and typically require domain experts to be involved.

On the contrary, the unsupervised scenario is the most common in real world
applications. In this case, data are not equipped with labels and therefore the
learning algorithm lacks a ground truth of what is anomalous and what is not.
Given that, the goal of the algorithm is to highlight the most abnormal data,
assigning to each one an Anomaly Score (AS). In this Chapter the focus will
be on the unsupervised setting since it is the most applicable in real-world
scenarios.

To be more precise, the unsupervised setting can be further divided into two
sub-categories, based on the nature of the available data. The fully unsupervised
one relies on training set composed of both anomalies and normal data. However
in some applications obtaining training data with anomalies is quite complex,
therefore in such cases data are composed only of normal instances: in this
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scenario semi-supervised approaches, sometimes named one-class setting, are
the most natural ones to be adopted.

4.2.1 Formal definition of anomaly

The definition of anomaly is far from trivial, and depending on it, methods
that try to detect anomalous data behave differently. The most widely accepted
definition is quite general, and it was given by Hawkins in [109]:

"Observation which deviates so much from other observations as
to arouse suspicion it was generated by a different mechanism".

This statement can refer to multiple different anomalies, and does not give
a clear indication on which way to follow to detect them. According to
this definition it may be inferred that: i) a model needs to measure (in a
not-specified way) the deviation between points; ii) each observation has an
associated probability to be an outlier; iii) a different mechanism is present in
the case of anomalous samples, suggesting that, on a data perspective, outliers
follow a distribution that is different from the one of the inliers. The reported
definition does not speak about the numerosity of outliers, but there is an hint
that outliers are fewer than inliers in number. These indications give wide
space to interpretations and as it will be clear later on, they encourage very
different approaches.

Anomalies are traditionally divided into 4 categories even if some authors
suggest different classes. Generic datasets looks like Figure 15: they are made
up of normal dense and sparse clusters, surrounded by global sparse and dense
anomalies. These can be defined global anomalies if they look anomalous
w.r.t all the normal points, or local if their abnormality is w.r.t a single normal
cluster.

4.2.2 Static and dynamic problems

Depending on the application and the available data, different problem state-
ments can be defined. The anomaly detection problem is defined static if the
analysis is performed on time-independent data (static datasets, where the
order of the observations do not matter), while it is dynamic if it is performed
on time-dependent data (time-series data or dynamic datasets). Another very
basic discrimination is between univariate or multivariate anomaly detection.

A more subtle distinction concerns the way in which the algorithm training
is performed. The most traditional one is the batch training where the model is
trained only once, using all the available training data. This approach might
be unpractical when the dataset is too large to fit into the memory, or when
sampled data do not cover sufficiently well the normal operating domain: in
this case the model needs to be continuously updated as new data are collected;
this is even more important in situations where the normal data distribution
undergoes a drift, and samples that were used in the first part of the training
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Figure 15: Example of anomalies in a simple dataset composed of dense and scattered
normal clusters. Anomalies can be locally defined w.r.t a specific cluster,
or global. They can be scattered in the domain or they can group together
in anomalous clusters. Figure adapted from [18].

now become anomalous. Therefore in such case, the model has to adapt by
learning the new configuration and by forgetting the outdated distribution.

4.2.3 Classes of algorithms

Depending on the interpretation that each author gives to the definition in
Section 4.2.1, there exists different ways to measure anomaly. The only thing
that brings together all the approaches is the use of an Anomaly Score (AS)
assigned to each point. This score should serve as a proxy of the probability to
be an outlier. Obviously, each method assigns a different anomaly score to the
same point since it is based on different detection strategies.

There exists a variety of anomaly detection algorithms, but they can be
categorized into 5 classes. The distinction between classes is not strongly fixed,
and some methods could be categorized at the same time in different classes.
The most intuitive class of algorithms is the distance-based one. It is based on
the assumption that outliers are spatially far from the rest of the points [13].
Also the density-based class is quite intuitive since assumes outliers living in
rarefied areas [100]. The statistics-based ones are conceptually simple, but
often make use of heavy assumptions on the distribution that generated training
data [120]. Clustering-based employ clustering techniques in order to find
clustered data, moreover, they are strongly susceptible to hyper-parameters and
often rely on density or distance measures [125].

Unfortunately, these approaches are expensive to compute or rely on too
strong assumptions. Density and distance-based methods are hard to compute
especially in high dimensional settings and when many data are available;
such approaches are hardly applicable in scenarios where detection has to
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be performed online and on fast evolving data streams. Moreover, statistical
methods are often restricted to ideal processes, rarely observed in practice.

Quite recently a new class of methods emerged: the isolation-based. This
class is very different from the previous ones: it assumes that outliers are few,
different and, above all, easier to be separated from the rest of data. This draws
the attention from normal data to anomalies and allows to obtain much more
efficient anomaly detectors. The primary goal of these methods is to quickly
model the anomalies by isolating them, rather than spending resources on the
modeling of the normal distribution. The seminal, and most popular, approach
in this class is the Isolation Forest algorithm [160] that will be extensively
discussed in Section 4.3. The original idea is based on tree-methods, but it has
been recently extended to Nearest Neighbors algorithm [24].

4.2.4 Tree-based methods

Tree-based methods, as suggested by the class name, rely on tree structures
where the domain of the available data is recursively split in a hierarchical way,
in non-overlapping intervals named leaves. In the Anomaly Detection context,
these models are seen as a tool rather than a separate detection approach. As a
matter of fact, they are employed in both density-based and isolation-based
approaches. The former approach is perhaps the most intuitive since at high
densities one expects normal data clusters, vice-versa in low density regions
one expects anomalous data. However this approach is in contrast with the
simple principle of never solving a more difficult process than is needed [194].
Density estimation is a computationally expensive task since it focuses on
normal data points, that are the majority. However, the ultimate goal of anomaly
detection problem is to find anomalies, not to model normal data. Outliers are
inferenced only at a second step. On the contrary, the isolation approach is
less simple to formulate but also less computationally expensive. It directly
addresses the detection of anomalies since points that are quickly isolated are
more likely to be outliers.

The literature concerning anomaly detection using tree-based methods is
quite vast, but in the present review we decided to focus on methods that
naturally apply to the unsupervised setting, due to its relevance in industry. Not
only we decided to exclude the supervised approaches, but also we excluded
the ones that artificially create a second class of outliers like in [64]. These
approaches often try to fit supervised models into unsupervised settings at cost
of inefficient computations, especially at high dimensionality.

4.2.5 Structure of the Chapter and contribution

The aim of this Chapter will be to describe the most salient features of
unsupervised tree-based algorithms for AD. Great attention will be devoted to
the algorithms that primarily try to isolate anomalies, and then, as a by-product,
estimate density. As stated above, to the best of our knowledge this is the first
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work that reviews the methods that originated from Isolation Forest, or that are
closely related to it.

Throughout this Chapter, we will refer to the Isolation Forest algorithm
[160] as the original algorithm, or by using the acronym IF. Moreover, the
term outlier and anomaly will be considered synonyms. Normal data will be
often named inliers and must not be confused with Gaussian data.

This Chapter is divided into 5 sections. After the first two introductory
sections, the third reviews the tree-based approaches: in the first part of
such section the Isolation Forest original algorithm is extensively discussed
together with all the variants applied to time independent datasets; this part
prepares the ground for the more complex time dependent datasets and their
algorithms presented in Section 4.3.2. After this, some paragraphs are devoted
to distributed and interpretable models. The fourth section compares the
performances of the methods, looking at the results declared in the papers.
A practical comparison between the methods fall outside the scope of this
Chapter, but case studies and multiple source code repositories are listed for the
interested reader. In the last Section, conclusions and ideas for future research
directions are discussed.

4.3 ��������� ������ ��� ���� ����� ����������

Figure 16: Combined citations of IF original paper [160] and its extended version
[162] by the same authors. Source: Scopus. Retrieved on the 30th of March
2021.

Isolation Forest (IF) is the seminal algorithm in the field of isolation tree-
based approaches and it was firstly described in [160]: in recent years IF has
received an increasing attention from researchers and practitioners as it can
be noted in Figure 16, where the evolution of citations of the algorithm in
scientific papers has increased exponentially over the years.

As the name suggests, IF is an ensemble algorithm that resembles in some
aspects the popular Random Forest algorithm revised in the unsupervised
anomaly detection settings. Indeed, IF is a collection of binary trees: while in
Random Forest (RF) [34] we are dealing with decision trees, here the ensemble
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model is composed by isolation trees, that aim at isolating a region of the space
where only a data point lies. IF is based on the idea that, since anomalies are by
definition few in numbers, an isolation procedure will be faster in separating
an outlier from the rest of the data than when dealing with inliers.

More in details, the algorithm consists in two steps: training and testing.
In the training phase, each isolation tree recursively splits data into random
partitions of the domain. As said, the core idea is that anomalies on average
require less partitions to be isolated. Therefore inliers live in a leaf in the
deepest part of the tree, while outliers in a leaf close to the root. More formally,
the anomaly score is proportional to the average depth of the leaf where
each datum lies. For the sake of clarity, we report the training and testing
pseudo-codes (Algorithm 1, 2 and 3 - adapted from [160]).

Algorithm 1: IsolationForest(- , =) , k)

Input: - – data in R3 , =) – number of trees, k – sample size
Output: list of Isolation Trees
forest empty list of size =) ;
⌘<0G  dlog

Å
|- |e;

for 8 = Ä to =) do
-̂  sample(- , k);
forest[8]  IsolationTree( -̂ , �, ⌘max);

end
return forest

Algorithm 2: IsolationTree(X, h, hmax)

Input: - – data in R3 , ⌘ – current depth of the tree, ⌘max – depth limit
Output: Isolation Tree (root node)
if ⌘ � ⌘max or |- | � Ä then

return Leaf {
size |- |

};
else

@  randomly select a dimension from {Ä, Å, . . . , 3};
?  randomly select a threshold from [min - (@)

, max - (@)
];

-!  filter(- , - (@)
� ?);

-'  filter(- , - (@)
< ?);

return Node {
left IsolationTree(-! , ⌘ + Ä, ⌘max),

right IsolationTree(-', ⌘ + Ä, ⌘max),

split_dim q,
split_thresh p

};
end
The training phase starts subsampling the dataset composed of = data points,

in =) randomly drawn subsets of k samples. Then, for each subset a random
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tree is built. At each node of the random tree a feature is uniformly drawn. The
split point is uniformly sampled between the minimum and maximum value
of the data along the selected feature, while the split criterion is simply the
inequality w.r.t the feature split point. The splitting procedure is recursively
performed until a specific number of points are isolated or when a specific
tree depth is reached. In principle, the full isolation tree should grow until all
points are separated, unfortunately risking to grow trees with depth close to
= � Ä. However data that lie deep in the tree are the normal ones, not the target
of the detector. For efficiency reasons, this is not practical and since anoma-
lies are easy to be isolated, the tree only needs to reach its average depth

⌃
log

Å
=

⌥
.

Algorithm 3: PathLength(x, T, h)

Input: G – instance in R3 , ) – node of IsolationTree, ; – current length
(to be initialized to 0 when first called on the root node)

Output: path length of x
if T is a leaf node then

return ⌘ + 2() .size);
end
@  ) .split_dim;
if G (@) < ) .split_tresh then

return PathLength(G, ) .left, ; + Ä);
else

return PathLength(G, ) .right, ; + Ä);
end

The testing phase is different and consists in checking the depth ⌘(·) reached
by the data point G in all the isolation trees, and taking the average.

The anomaly score B(G, =) is defined as:

B(G, =) = Å�
⇢ (⌘(G) )
2 (=)

where 2(=) is a normalizing factor and ⇢ (⌘(G)) is the average of the tree depths.
Note that when G is an anomaly, ⇢ (⌘(G)) ! � and therefore B(G) ! Ä, while
when ⇢ (⌘(G)) ! = � Ä, B(G) ! �. When ⇢ (⌘(G)) ! 2(=), B(G) ! �.Ñ.

The computational complexity of IF is $ (=)k logk) in training while
$ (==)k logk) in testing, where we recall that k is the subsampling size of
the dataset. It is interesting to note that in order to have better detection results,
k needs to be small and constant across different datasets.

Isolation forest has many advantages compared to the methods belonging
to other classes. Firstly it is very intuitive and requires a small amount of
computations. For this reason it is particularly suited for big datasets and for
applications where low latency is a strict requirement. The use of random
feature selection and bagging allows to efficiently handle high dimensional
datasets. In addition, the use of tree collections makes the method highly
parallelisable. Unfortunately the algorithm has some issues. The most severe
is the masking effect created by the axis parallel partitions and anomalous
clusters, that perturbs the anomaly score of some points. A closely related
issue is the algorithm difficulty to detect the local anomalies.
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Trying to make a summary: the standard isolation forest defines anomalies
as few and different, and approaches their detection not modelling normal data
but trying to separate them as fast as possible with the aid of bagged trees.
The split criterion is based on randomly selected feature and split point, that
create axis-parallel partitions. These characteristics will be challenged by the
following methods but the structure of the algorithms will remain quite the
same.

In the following subsections the focus will be on static approaches (Sec-
tion 4.3.1), dynamic (Section 4.3.2), distributed (Section 4.3.3) and finally
interpretable and feature selection methods (Section 4.3.4).

4.3.1 Static learning

Static learning methods can be generally divided into two sub-categories, using
two approaches. The first one groups i) methods that directly originate from
the seminal work [160] slightly modifying the Isolation Forest, and ii) methods
that start from a different but similar algorithms like the Half-Space (HS) trees
or Random Forests (RF). The former group focuses on the importance of fast
isolation, while the latter on the density approximation. The second grouping
approach subdivides the static methods based on how is computed the anomaly
score. The majority relies on the mean leaf depth but a growing number of
algorithms employs some variation of the leaf mass.

��������� ��� ����������: � ���-����� �������� ��� ����-
����� ��� ��������� ������� ��������� The general intuition
that an AD algorithm should focus more on the detection of anomalies than
the modelisation of normal data, has been developed also in [265]. In this
case, the algorithms is based on two stages: filtering and refinement. At the
first stage, the majority of normal data are filtered using a computationally
cheap algorithm, while at the second stage, the remaining data are processed
by a more refined but expensive tool. Filtering is performed by a tree based
method quite similar to IF except for the splitting criterion: here the choice is
deterministic and based on feature entropy and univariate densities computed
by histograms. After that, distance-based methods are applied to the most
abnormal data points and two anomaly scores are proposed to detect sparse
global anomalies and clustered local anomalies.

The time complexity of the filtering stage is close to the IF, while the
refinement stage is $ (B

Å
) where B is the number of filtered samples. It is easy

to see that the filtering stage is very important to get competitive computational
performances.

�� ��������� ��������� ��������� ����� ��������� (������-
���) SCiForest [161] takes the assumptions of IF and tries to improve it,
with special attention to clustered anomalies. Indeed Isolation Forest performs
quite poorly on them. The two most important novelties that this method
introduces are: i) the use of oblique hyper-planes, instead of axis-aligned, and
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ii) the use of a split criterion that replaces the random split. At each partition
multiple hyper-planes are generated, but only the one that maximises a certain
criterion is selected.

The intuition behind this criterion is that clustered anomalies have their own
distribution and the optimal split separates normal and anomalous distributions
minimizing the dispersion. Therefore the split criterion is formalized as:

Sdgain =
std(-) � average

�
std(- left

), std(- right
)
�

std(-)

where std(·) computes the standard deviation.
Due to the new computations, the complexity of the SCiForest increases

reaching $ (=)gk(@k + logk + k)) in the training stage, and $ (@==)k) in
the evaluation stage, where C is the number of trees in the forest, g the number
of hyper-plane trials and @ the number of features composing each hyper-plane
dimensions.

���� ���������� (������) The authors of Mass estimation (MassAD)
started in their papers [241, 242] recalling the classic definition of the mass
i.e. the number of points in a region. However their definition of the mass
of a point is slightly more complex since they consider all the overlapping
regions that cover that point. Doing that, they obtain a family of functions that
accentuates the fringe points in a data cloud. Despite its usefulness, this sort
of anomaly score is too computationally expensive. To overcome this issue
they propose an algorithm that approximates it, employing Half Space trees.
These can be thought as a simplification of isolation trees, indeed only the
splitting feature is taken at random, while the splitting value is half of the
range along that feature. They propose two variants of the same algorithm:
one grows leaves of the same depth, while the other lets them to have different
depths. The latter not only estimates the score using the leaf mass, but also
improves it with a factor dependent on the tree depth.

The authors report a time complexity $ (=) (k + =)⌘) that includes both
training and testing. The space complexity is $ (Ck⌘) .

������� ���������: �� ��������� ��� ��������� �����������
������� ��������� ��������� (������) The method proposed
in [50] eliminates the randomness of isolation forest, partitioning the space
by means of successive uniform grids and at each depth the grid doubles its
resolution.

The time complexity is $ (= log =).

��������� ������� ���� �������� ���� (������ ��) ReMass
IF [18] starts from quite similar premises to the SCiForest’s, but focuses on
the poor performances of IF on local anomalies. Unlike SCiForest, it does not
suggest to modify the training algorithms but the anomaly score: it proposes to
substitute the tree depth with a new function, the relative mass.

The mass of a leaf <(·) is defined as the number of data points inside the
leaf while the relative mass of the leaf is the ratio between the mass of the
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parent and the mass of the leaf. More precisely, the anomaly score for each
tree is defined in this way:

B8 (G) =
Ä

k

<(-parent)

<(-leaf)

The authors suggest to modify only the anomaly score formula, keeping the rest
of the algorithm untouched. This helps improving the anomaly score, while
preserving the low computational complexity.

The time and space complexities are the same as IF.

�������� ��������� ������ (���) In the paper [107] the authors
observe the masking effect created in the IF algorithm by the axis-aligned
partitions. The intersection of multiple masks can even create some fake normal
areas of the domain, leading to completely wrong anomaly detection. In order
to overcome the described issue, the authors suggest a very simple but effective
strategy already employed in SCiForest: the use of oblique partitions. However
in this case the authors do not use a repeated split criterion, loosing its benefits
but also the additional computational overload.

The time complexity is similar to the SCiForest, except for the saving of the
g repetitions.

����������� ����-����� ����� ��������� ����� ������ �����
������������ The approach presented in [95] is very similar to [241] and
mainly differs in the way the anomaly score is computed: it does not rely only
on the mass and depth of the leaf, but is weighted by the deviation between the
selected split point and the corresponding feature value of the tested point.

The authors report time and space complexities similar to MassAD, i.e. a
time complexity $ (=)⌘(log = + k)).

���������� ��������� ������ (���������� ��) IF was naturally
born for static data but it can also be employed for functional data. In this case
anomalies can be subdivided into shift, amplitude and shape anomalies. These
can be transient or persistent depending on their duration. In [223] the authors
formalise this approach adapting the IF algorithm to the new setting. The set
of features are not given with the dataset, but are extracted projecting the
functional sample over a dictionary chosen by the user. This choice is arbitrary
and highly affects the resulting performances. The projection is not performed
using a classical inner product because it does not account for shape anomalies;
on the contrary the authors suggest to employ the Sobolev scalar product.

��� ����� ��������� �������� ��� ������ ������� (����������)
The Random Forest algorithm naturally applies to the supervised setting, how-
ever some attempts to adapt it to the unsupervised one has been made. As
previously discussed in the former section, the most intuitive solution is to
artificially sample the domain in order to create outlier data [64], but this has
been shown to be inefficient. Another approach described in [99] extends the
split criterion based on the Gini index to the unsupervised scenario. Intuitively,
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the criterion tries to generate two children: the first that isolates the minimum
number of samples in the maximum volume, while the second the contrary. In
practice, the authors suggest two strategies to adapt the Gini index in absence
of a second class: one considers the outliers uniformly distributed, while the
other at each split estimates the outliers as a fixed fraction of inliers.

� ����� ���������-����� ������� ��������� ������ (����-
���) Sciforest is not the only one that tries to improve the algorithm using
split criteria: EgiTree [220] (a very similar approach was presented in [155])
employs heuristics based on entropy to effectively select both attribute and
split value. Indeed, the goal is to take the randomness out of the algorithm. The
authors start observing that in practice, looking at the features individually,
two kind of anomalies exist: anomalies that are outside the normal range,
and other that are inside the normal feature range but have abnormal feature
combinations. In the first case anomalous data are easier to be detected since a
gap is easily identifiable, and the disorder is lower. In the second, it is difficult
to find a gap simply looking at the projections of data over the axes. From these
observations the authors defined two heuristics. If the feature that exhibits
lower entropy has an entropy value i) less than a threshold, it is partitioned
along the biggest gap between the feature data ii) greater that this threshold, it
is partitioned along the mean feature value, creating a balanced partition. At
each splitting iteration a partition cost is computed. When the first heuristic is
used, the partition cost is roughly inversely proportional to the gap, and takes
the form:

cost(-) = Ä �
maxgap(-feature)

max(-feature) �min(-feature)

On the contrary, when the second heuristic is employed, the partition cost is
maximal and equal to 1. The total partition cost of a data point is the sum on
the partition costs of each node traversed by the datapoint, and the anomaly
score related to a single tree is the inverse of the total partition costs.

����������: � ������� ��������� ��� ���� ���� ���������
����� �������� ������� �������� (����������) The algo-
rithm presented in [269] combines the isolation tree approach with the Locality
Sensitive Hashing (LSH) forest, where given a certain distance function 3,
neighbours samples produce the same hash with high probability while sam-
ples far from each other produce the same hash with low probability. The
probabilities can be tuned by concatenating different hash functions, so that
an isolation tree can be constructed by concatenating a new function at each
internal node. The path from the root to a leaf node is the combined key of
the corresponding data instance. Since 3 is generic, this extension allows to
incorporate any similarity measure in any data space. Moreover, the authors
show that their framework easily accommodates IF and SCiForest when par-
ticular hash functions are selected. They adapted the method in this way: i)
the sampling size is not fixed but variable, ii) the trees are built using the
LSH functions, iii) the height limit and the normalisation factor are changed
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consequently and iv) the individual scores are combined after the exponential
rescaling. The average-case time complexity in the training stage is ⇥(k logk),
while in the evaluation phase it is ⇥(logk).

������ ��������� ������ (��� ��� ����) The authors of [177]
observe that IF behaves differently if the dataset has a convex or concave shape.
For example they analyze the detection performances on a dataset composed
of a toroidal normal cluster and some scattered anomalies that lie inside and
just outside the torus. It turns out that IF struggles to detect inner anomalies,
giving them a score too close to the normality. To overcome this issue the
authors propose two approaches, one of which is unsupervised: at each leaf
node the centroid of leaf training data is computed and recorded, then in the
testing phase the distance between the point and the corresponding centroid
is measured. This new score is linearly combined with the traditional leaf
depth, obtaining a more robust score. Unfortunately this approach employs
euclidean distance that is not scale invariant and, therefore, requires some
unpractical normalizations. In [114] the approach described in the previous
paper is enhanced by the using of the Extended Isolation Forest [107], obtaining
a better detector.

The authors claim the time complexity of this algorithm is slightly higher
than IF due to the additional computations, but anyway comparable. To verify
their hypotheses they perform some simple simulations.

� ����� ������� ��������� ��������� ����� �� �������
���� (�-������) The method [267] is based on a very simple tree
structure: the trident tree. As the name suggests, this structure is not a binary
tree but it generates three children at a time. Like IF, a random feature is
selected and a split criterion is applied. The split criterion is simple: data that
are three standard deviations to the left of the mean are sent to the left child,
the contrary for the right child, and the part in the middle of the distribution is
assigned to the central child. The anomaly score is then computed in a similar
way to ReMass IF, i.e. using the mass instead of the leaf depth.

The authors report a time complexity of$ (=)k log =) and space complexity
of$ (=)k=) for the training phase, while the time complexity of the evaluation
phase is $ (<=) log (=k))

������������� ������� ��������� ���� ������ ���������
������ In the context of computer vision, a small modification to the
original algorithm has been shown in [153]. Here the goal is to find anomalous
pixels inside a hyper spectral image. A kernel is employed in order to extract non
linear features to be used in the IF. Then the principal components are selected,
a global method is trained on the whole image and the most anomalous pixels
are detected. The connected components of anomalous pixels are subjected
to a local procedure, where a new model is trained and tested on the pixels.
This method is applied recursively until a sufficiently small anomalous area is
detected.
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The authors calculate a time complexity of $ (=)k(k + =pixels)).

� ����� ������� ����� ��� ��������� ������� The classic
mean leaf depth as proxy of the data anomaly is questioned in [180]. According
to the authors, the information encoded in the structure of the original isolation
tree, is not fully exploited by its anomaly score. After this premise, they suggest
three different alternatives that do not change the learning algorithms but only
how is computed the anomaly score. Instead of the standard path length that
adds a unit at each traversed node, they propose a weighted path. They suggest
multiple strategies to obtain these weights. The first relies on the concept of
neighborhood: more isolated points will have smaller neighbors, therefore at
each node the weight will be the inverse of data passing through it. The second
strategy starts from [99] where a split criterion based on Gini impurity was
employed. In this context the authors suggest to weight the node using the
inverse of the split criterion value, since it measures how well the split was
performed. The last strategy simply takes the product between the former two.

������������ ������: �� ������� ��������� ������ �����
�� ��������� ������ (�������) The variant proposed in [263] does
not rely on axis parallel or oblique partitions but on elliptic ones. In this
case, at each node multiple random features are selected and the covariance is
computed. Then data are divided using the Mahalanobis distance: points that
lye inside the hyper ellipsoid are sent to the left child, while the ones outside of
the elliptic boundary are sent to the right leaf. The split value is chosen such
that a fixed portion of data are outside the ellipse.

The time complexity differs from the IF one in the last step of covariance
computing. As the subset of selected features increases, this diversity becomes
more marked.

�������� ��� ����������� �� ��������� ������ �� �����-
���� �� ����� ������� ������ (����) Multiple approaches have
been proposed to overcome the limitations of IF in detecting local outliers.
In [92] the authors suggest the combination of clustering based algorithms
and the original IF. Despite its efficacy, the choice of using a more expensive
model to enhance a cheaper one, seems counter intuitive.

�-�����-����� ��������� ������ (�-����� �� ��� �-��� ��)
In the papers [130, 131] the authors investigate the impact of the branching
process in the original isolation forest algorithm. More precisely they are
interested in how the algorithm behaves changing the number of children each
node has to grow. They try to improve the original algorithm by means of
K-means clustering over the selected splitting feature and using a score that
measures the degree of membership of the point to the each traversed node.

����������: ����� ���������� ������� ����� ��������� ���-
��� ��� ������ ��� �������� ������� ��������� (�������-
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���) The work shown in [258] improves on the core ideas of the LSHiForest
by proposing a learning to hash (LTH) method to select the hashing function
which best preserve similarities in the dataset in the projected space. The
order preserving hashing algorithm (OPH) is chosen for such task as it shows
excellent performances in nearest neighbour search. This algorithm is able to
find the hash function which minimizes the order alignment errors between
original and projected data samples. Moreover, an improved two-phases learn-
ing process for OPH is presented to enable faster computation. An isolation
forest is built based on the hashing scheme, where the specific hash function
to use at each node is not random, but it is fine-learnt by OPH. Finally, the
evaluation phase is similar to the LSHiForest.

While this method hash higher training time complexity (⇥(�1Ak
Å
=)0 logk))

with respect to LSHiForest due to the learning process, it shows similar perfor-
mance in the evaluation phase (⇥(=)=0 logk)).

���������: ������� ��������� ��� ������� ��������������
(���������) Classical IF relies on the concept of isolation susceptibility,
which intuitively can be outlined as the average number of random slices that
are needed to fully isolate the target data. This definition of anomaly has some
great advantages, but also some pitfalls. In particular, in high dimensional data,
many attributes are likely to be irrelevant and isolation may be sometimes very
demanding.

PIDForest [101] is based on an alternative definition of anomaly. The
authors assert that an anomalous instance requires less descriptive information
to be uniquely determined from the other data. Then, they define their partial
identification score (PIDScore) in a continuous setting as a function of the
maximum sparsity over all the possible cubical subregions containing the
evaluated data point G. Say - full data, and ⇠ a subcube of the product space
and d a sparsity measure, PIDScore can be formalized as

PIDScore = max
G2⇠

d(- ,⇠) = max
G2⇠

vol(⇠)
|⇠ \ - |

PIDForest builds a heuristic that approximates the PIDscore. The strategy is to
recursively choose an attribute to be splitted in : intervals, similarly to :-ary
variants of IF (authors suggest default hyperparameter : < Ñ). Intuitively, we
would like to partition the space into some sparse and some dense regions. For
this purpose, a possible objective is to maximize the variance over the partitions
in terms of sparsity, that can be treated as a well-studied computational problem
related to histograms and admits efficient algorithms for its solution. For each
attribute the optimal splits are computed and the best attribute is chosen as
coordinate for partitioning. Then, the iteration is repeated on each partition,
until a data point is fully isolated or a maximum depth parameter is exceeded.
Now the resulting leaf is labelled with the sparsity of the related subregion. In
the testing phase, a data point can be evaluated on each tree of the PIDForest
and the maximum score (or a robust analog, like 75% percentile) gives an
estimate of the PIDScore.
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In the words of its authors, the fundamental difference between IF and
PIDForest is that the latter zooms in on coordinates with higher signal,
being less susceptible to irrelevant attributes at the cost of more expensive
computation time. Each PIDTree takes $ (:

⌘
3k logk) as training time, while

testing is pretty much equivalent to IF.

�� ��������� ������������� ��������� ��� ��������� ���-
��� As many other methods, also [167] tries to improve the stability and
accuracy of IF, designing new split criteria. It starts observing that the separa-
bility of two distributions, the anomalous and normal one, is proportional to
two factors: the distance between peaks and the dispersion of the distributions.
The authors developed a simple index, named separability index roughly
similar to the one described in [161] but considering also the distance between
distributions a feature at a time. Another difference relies in the choice of
the best splitting value: instead of trying multiple random values and taking
the best out of them, an optimization procedure based on the gradient of
separability function is chosen.

The time complexity is $ (:=(log =)Å).

������� ��������� ������ (���) In [224] the authors observe that
IF is specifically suited for the unsupervised setting previously discussed in
Section 4.2, where the training set is composed both of normal and anomalous
samples. However, in case of normal-only training data, this model does not
create leaves representing the anomalous feature space, and tends to give high
scores to inliers. To overcome this issue the authors introduce a new structure
based on two new concepts: i) the anomaly leaves that should model the feature
values not contained in the range of training samples, and ii) the isolation
level that is the node size below which the anomaly leaves are created. The
authors also define a special kind of internal node, named anomaly catcher:
when the node size is less than the isolation level threshold, it generates a
generic child and an anomaly leaf. Two kinds of split criteria are used: one for
the partition of generic internal nodes, and one for the partition of anomaly
leaves. The first is quite similar to the uniformly random criteria of IF, with the
difference it tries to guarantee a less unbalanced split. The second generates
the empty (anomaly) leaf by splitting the feature between the extreme value
of the dataset and the extreme value of the node space. These modifications
require a small adjustment on the anomaly score since in this new settings the
original normalising factor does not make sense anymore. As a consequence
the observed average path length has been preferred.

The time complexity in the testing phase is similar to IF, but the one in
the training phase is higher due to additional sortings done in the split value
computation.

�����: � ������ ������� �������� ����� �� ������������
���������� ������ (�����) The work presented in [17] addresses the
issue of different units/scales in data, starting by showing some examples where



48 ������� ��������� ��� ����-����� �������

different non-linear scales lead to completely different anomalies. To solve
this issue the authors propose usfAD, a method that combines Unsupervised
Stochastic Forest (USF) with IF, and naturally born for the semi-supervised
task. This hybrid model recursively splits the subsample until all the samples
are isolated. However it is different from the IF since it grows balanced trees
with leaf of the same depth. This is accomplished using a splitting rule that
uses the median value as split point. The core idea is that the median, since it
relies on ordering, is more robust to changes in scale or units. After the tree
growth, normal and anomalous regions are associated to each node: the former
consists in the hyper-rectangle containing the training points, while the latter
is the complementary region. All these modifications lead to a quite different
testing phase. The anomaly score of a test point is the depth of the first node
where it falls outside the normal region.

The time complexity is slightly higher than IF: the training is $ (==)⌘ +

=)Å
⌘
3) while the testing$ (=) (⌘ + 3)). Moreover, it needs$ (=)Å

⌘
3) memory

space.

����� ���-����� ��������� ������ (����� ��) Attempts to im-
prove the IF algorithm have been made also by using Fuzzy Sets approaches
[129]. The anomaly score is simply measured by the so called degree of
membership, i.e. at each node a function of the distance between the point and
the centroid is incrementally added.

���������� �������� ������ ��� ������� ��������� ���-
������ ���� ��� ��������� ���������� In the paper [200] a method
based on Kernelized Locality-Sensitive Hashing (KLSH) combined with IF
is proposed, with the aim of improving the detection of local anomalies. A
gaussian kernel function is used to map features to a higher dimensional feature
space to map local anomalies in the original space into global anomalies,
which are easy to isolate and detect. IF is then used to isolate anomalies in
the kernelized dataset. Furtheremore, two improvements on IF are proposed: a
random non-repeating subsampling technique and a mean optimization strategy
to optimally select the segmentation attributes and values.

����������: �������� ���� ��� ����-����� ���� ����� ���-
��� ��� ������� ��������� (����������) The algorithm pre-
sented in [171] tries to combine the advantages of the Half-Space tree described
also in [242] and the anomaly score proposed in the ReMass-IF [18] algorithm.
In this context the authors employ Half-Spaces for the tree construction and
modify the ReMass score function adding the depth and taking a logarithmic
function of the relative mass.

The time and space complexity are respectively$ (=) (k +=)⌘) and$ (=)k⌘).

������� ��������� �� ����� ������ ���������� ������
(���) Many works in anomaly detection with tree-based methods still refer
to Random Forests. One of them is [49] where a revised splitting rule based
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on the Kullback-Leibler divergence and oblique projections instead of axis
aligned are used to model the dataset density distribution.

���������� ������� ��������� ���� ����� (���) The method
proposed in [38] focuses on two aspects. Firstly it proposes a theoretical
framework that interprets the isolation forest variants from a distributional
point of view. More precisely, it interprets isolation as a density estimation
heuristic in which the algorithm reckons the weights of a mixture distribution,
where the dominant component characterizes normal data, while the minor
ones can be considered as anomalous. The authors conclude that any tree-
based algorithm with sufficiently many fine-grained splits can guarantee some
approximation quality of the underlying probability distribution.

Afterwards, starting from these premises a new method is developed, named
Generalized Isolation Forest. The proposed algorithm makes use of non-binary
partitions and the data are divided based on the maximization of a custom
inner kernel function, in order to produce regions that are small and dense
enough, as the theoretical dissertation suggests. As in the original IF, the tree
is not required to be fully grown, but the partitioning process stops when a
sufficient level of the distribution approximation is reached. Then, a density
function, like frequency of observations, is used in testing phase, instead of
path length.

Despite its name, GIF turns to be pretty much different than original IF.
Nevertheless, it promises interesting performances and a solid foundation, the
downside resides on the need of fine-tuning of many hyperparameters and an
arguably expensive computational time for big datasets.

���: ������� ��������� ��� ���������� ��������� (���) As
discussed above, anomaly definition varies across the papers: in this approach
[151] the authors point out the difference between general statistical anomalies
and pattern anomalies (Figure 17). The former are typically defined as samples
falling in regions where the density is low, while the latter are samples that
deviate from some structured pattern. Finding and fitting these structures to
find the anomalies is extremely expensive, therefore the authors suggest a new
method, named Preference IF, to directly tackle the problem.

The proposed method consists mainly in two steps: i) the embedding of data
in a new space, named preference space and ii) the adoption of tree based
isolation approach specifically suited for this new space. In particular, the
adoption of a nested Voronoi tessellation and the Tanimoto distance allows
much better performances than simply using the original IF in the preference
space.

The complexity of this algorithm is $ (k=)1 logk) in the training phase,
and similarly$ (==)1 logk) in the testing one, where 1 is the branching factor
of the PI-tree.

�� ����������� ������� ��������� ������ ����� ������–
��������� ����� Another tree-based approach employed in anomaly
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Figure 17: Statistical vs pattern anomalies. The latter are very complex since they are
defined as points not belonging to a specific but unknown pattern. Figure
adapted from [151].

detection is described in [191], where Region-Partition trees are employed. It
is quite different from the IF. A tree with maximum height ⌘ has the same
amount of randomly selected features used at each depth level to split data.
At each level a feature is selected and divided into : intervals. This tabular
structure is used to build the actual tree, starting from the empty root intervals
and adding recursively a new data point, creating a new child when needed.
This training procedure is performed only with normal data, therefore all nodes
correspond only to regions where the distribution is expected to be normal.
The detection of anomalies is quite simple since if a new sample arrives to a
leaf node it is marked normal, if instead it gets stuck in a node it is labelled as
outlier. In order to get an intuition about the cause that generated that anomaly,
the authors suggest to count the number of times a feature is responsible to the
internal node stop. To get the anomalous range, the intersection between the
anomalous feature intervals for each tree can be easily performed.

4.3.2 Dynamic Datasets

Dynamic datasets are made up of infinite data streams [235]. This poses new
challenges that previously described methods cannot tackle. The most simple
challenge is the continuous training: since the stream is infinite, the training
data may be insufficient to fully describe it. In order to do that, the model
should continuously learn from the incoming data stream, and at the same
moment detect anomalous points. The most complex setting is represented
by the distributional drift. In this case, the stream is not stationary and its
distribution experiences time-dependent variations. Here, the model must adapt
to the evolving data stream, but at the same time discern anomalies from new
normal data points.

The weak point of these methods is the assumption about the rarity of
anomalies. If they are too numerous, they can be confused with a change in
the normal distribution of data points, leading to an erroneous adaptation of
the model. Doing this the model will consider them as normal and it will not
raise the necessary alarm.
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�� ������� ��������� �������� ����� �� ��������� ���-
��� ��������� ��� ��������� ���� ����� ������� ������
(����������) The method proposed in [67] is an adaptation of the original
algorithm to the streaming settings. It is very simple: it splits the stream in
windows, and checks each window to detect anomalies. If the ratio between
normal data and anomalies is too high (exceeds the expected anomaly ratio), it
assumes a concept drift is happening. In this case the model is re-trained on
the new window. Obviously, the threshold on the anomaly ratio and the width
of the window are delicate hyper-parameters that highly depend on the specific
application.

���� ������� ��������� ��� ��������� ���� (���������
��) In the paper [235] an adaptation of [241] to data streams is presented.
Unlike other tree based approaches, it is not built starting from training data
but its structure is induced only by the feature space dimension. It doesn’t need
split point evaluation, and therefore it is fast and able to continuously learn
from new data. Contrary to the basic Isolation Forest, this method employs
the concept of mass to determine the anomaly score. In practice, this method
works segmenting the stream in windows, and working with two of them:
reference and the latest windows (despite their name, they are immediately
consecutive). The reference window is used to record the mass profile, while
the latest one is used for testing. When this is done, the latest becomes the
reference and a new mass profile is recorded.

The authors show a time complexity of $ (=) (⌘ + k)) in the worst case.

��-������: � ����� ������� ��������� ��� ��������� �������
��������� (��-������) The method published in [256] relies on a type
of tree quite similar to the isolation one, that is let growing until a maximum
depth is reached independently on the data. Before the tree construction, the
feature space is enlarged in order to cope with possible feature drifts. The score
is based on the density of the points in the leaf volume and the model update
relies on dual node profiles similarly to the previous method.

The time complexity of the method is$ (
=

k
<Å

(⌘+Ä)
) while space complexity

is constant since is $ (Å
⌘
).

�� ������ ������� ��������� ������ ��� ������ ���� �����
��������� ��������� ��� ��������� ��������� (���������)
Isolation Forest is a light-weighted method only designed for batch data,
furthermore it suffers of slow convergence having no knowledge on the
distribution of data.

In the paper [68] both these limitations are inspected, and a new method
called AHIForest is proposed. This is identical to Isolation Forest, except for
the selection step of the splitting point. Indeed, after a dimension is randomly
picked, the choice of the threshold is not drawn from a uniform distribution,
but it is based on the histogram that approximates the distribution of data
projected on the given axis. The idea of histogram-based has the advantage of
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speeding up the convergence, at the price of adding a new critical parameter,
the bin size, to be carefully chosen.

On the other hand, AHIForest deals with streaming data using a sliding
window strategy. Firstly, a forest is built by data sampled from the first window,
and new observations are judged in real time. Then, if anomaly rate exceeds
a pre-defined threshold (as in iForestASD) or the buffer is full, the forest is
updated, growing new trees from the last window and pruning old estimators.

The time complexity of this algorithm is $ ("#), where # is the number
of individual detectors and " is the maximum number of leaves of each tree.
Space complexity is $ ("#), too.

������ ������ ��� ������ ����� ������� ��������� ��
������� (����) RRCF [102] presents exactly the same structure and
anomaly scoring of isolation forest, except for the mechanism how the splitting
dimension is chosen. The intuition of the authors was to pick what they called
"robust random cuts" proportionally to the span of data in each dimension,
instead of uniformly at random, as in the original version. In this manner,
the method loses the property of scaling invariance of the Isolation Forest,
but achieves some sense of self-consistency after addition or deletion of data,
i.e. any tree preserves the same distributional properties independently if
constructed given the whole dataset in a batch fashion and if dynamically
grown from a stream of data.

Naturally, RRCF is a straightforward solution to propose the same key-ideas
of Isolation Forest in a suitable way for online anomaly detection, without the
need of rebuilding the model from scratch.

When a new data instance arrives, it runs across the tree, starting from the
root. At each node, a candidate cut is randomly proposed in the subregion
represented by the node, following the same mechanism as described above. If
the new point is fully isolated by the candidate cut, this is kept and a new leaf
is there inserted, otherwise the cut is discharged and the data instance moves
the next node through the branch. Instance by instance, new branches grow
up, making evolve the shape of trees in RRCF with respect to concept drift
phenomena of data stream.

���� ������� ��������� �� �������� �����-�����������
���� ������� (��������� ����������) The model presented
in [226] extends the LSHiForest algorithm for streaming data exploiting a
dynamic isolation forest. The procedure can be split into three main phases: i) a
dataset of historical data points is used to build a LSHiForest data structure, as
presented in the original paper, then ii) the data points collected from multiple
data streams are preprocessed to find "suspicious" samples, which are outlier
candidates. Finally, iii) the suspicious data are updated into the LSHiForest
structure and the anomaly scores of the updated data points are recalculated.
To effectively extract suspicious points from the streaming data, Principal
Component Analysis (PCA) and the weighted Page-Hinckley Test (PHT) are
applied to a sliding window, to cope with the challenges of high dimensionality
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and concept drift. An update mechanism is proposed to iteratively update the
LSHiForest by replacing the previous data points observed on a stream with
suspicious ones.

��������� �������� ������ ��� ����� ��� ������ �������
��������� (��������� �������� ������) The Mondrian Forest
[172] represents a family of random hierarchical binary partitions, based on
the Mondrian Process, that tessellates the domain in a tree-like data structure.
This random process recursively generates a series of axis-aligned slices
that recall the abstract grid-based paintings by Piet Mondrian (1872 - 1944).
Each slice is associated with a split time and the partitioning process can be
eventually stopped after a given budget time. In the past few years, the interest
upon Mondrian Forest raised up in machine learning, both for regression and
classification purposes. Only recently, an application of Mondrian Forest has
been proposed in anomaly detection, that exploits the similarities with the data
structure from Isolation Forest, and uses the same depth-based anomaly score
of the latter.

The advantage of Mondrian Forest lies on its nice self-consistency property,
in particular a Mondrian Tree can be infinitely extended performing new
partitions on its sub-domains, preserving the same distributional properties.
Therefore a Mondrian Forest can be dynamically updated by the arrival of new
data and this makes the algorithm particularly suitable for online / streaming
applications.

The update mechanism is very similar to the one described for Robust
Random Cut Forest. Again, each novel data point travels through the trees
in the forest, and a candidate split is picked at each node. In this case, the
candidate is maintained if its split time is lower than the one of the node; this
can be interpreted as a split that is occurred before; otherwise it is discarded
and the data instance moves to the next node until it reaches a leaf, which is
associated with an infinite time.

The training and evaluation time complexities for online processing of <
new points are $ (=)3 (= +<) log(= +<)) and $ (=) (= +<)) respectively.

������������� ������� ��������� ���� �������� �����
������� �� ���� ������� (�������� ����� ������) Mondrian
Polya Forest (MPF) [65] is another example of a method based on the Mondrian
Process, that seems one of the most promising research paths in tree-based
approaches for anomaly detection.

As the previously described Isolation Mondrian Forest, Mondrian Polya
Forest grows a tree partition based on Mondrian Process. The difference lies
on the evaluation procedure, that estimates the density function of data instead
of inferring their isolation scores. As the name suggests, MPF makes use of
Polya Trees for modeling the distribution of the mass in the nested binary
partition constructed by each Mondrian Tree, each cut is then associated with
a beta-distributed random variable, which reflects the probability of a data
point to lie in one of the sub-partitions in the hierarchical structure of the tree.
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In this setting, an anomaly is identified by the fact it occurs in a region with
lower density than normal data.

Alike Isolation Mondrian Forest, this method takes advantages of the
properties of the Mondrian Forest, then it is able to efficiently update by nesting
of new slices, instead of rebuilding the tree structure from scratch, when new
data instances are available. A streaming version of the method has been
proposed by the same authors of MPF with interesting results.

��������� ��������� ����� ��������� �� �������-��������
���� ������� In the paper [243] the authors review several isolation-
based techniques in streaming anomaly detection, in particular iForestASD
and Half-Space Trees, both previously introduced. The main differences are
remarked, like the strong dependency by data of the first, versus the lack of
knowledge in the building phase of the latter, and the different approaches for
handling drift.

Moreover, a couple of new strategies are proposed, based on iForestASD.
ADWIN (ADaptive WINdowing) is a well-known solution, that maintains a
variable-length window of data, which increases with incoming observations.
The algorithm compares any subset of the window until it detects a significant
difference between data, then the new information is kept while the old one is
erased. Slight variants are PADWIN (Prediction based ADWIN) and SADWIN
(Scores based ADWIN), which take predictions and scores as input of ADWIN
for detecting drift, respectively. KSWIN (Kolmogorov-Simirnov WINdowing)
is a more innovative approach, based on Kolmogorov–Simirnov (KS) statistic
test. KS is a non-parametric test, originally suitable for one-dimensional
data only. The authors propose to overcome this restriction by declaring the
occurrance of drift if it is detected in at least one dimension.

Empirical experiments show the inefficiency of vanilla iForestASD in real-
world scenarios and the need of explicit concept drift detection methods, such
as the proposed ones.

4.3.3 Distributed approaches

Wireless Senor Networks (WSNs) pose new and more challenging constraints
to Anomaly detection. Indeed sensor nodes are usually quite cheap but
have multiple constrains on energy consumption, communication bandwidth,
memory and computational resources. Moreover they are often deployed in
harsh environments that can corrupt sensor measurements and communication
[66]. Despite the distributed nature of the network, Anomaly Detection on such
applications should minimize the communication burden as much as possible,
since data transmission is the most energy intensive process.

����������� ��������� ��� ��� The authors of [66] suggest the
adaptation of IF to this distributed problem, considering the spatial correlation
between neighbour sensor nodes in a local and global manner. They chose this
base algorithm due to its already mentioned properties, that fits perfectly in
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this settings. However in the WSN context, data can be anomalous w.r.t. the
single sensor node or w.r.t. the whole network. The local detector consists in a
collection of isolation trees trained on a group of neighbouring nodes while the
global one is made up of local detectors. When an anomaly is locally detected,
it is marked as an error if it is not detected by neighbor sensors, otherwise it is
considered an event.

The space and time complexity is $ (:<), where : is the number of trees
on a local node, and < the number of leaves.

������ ����������� ������� ��������� ����� ������� ��������
���-����� ������ ������� (��-����) A similar approach has
been exploited in [246], where a one-class random forest has been chosen
as base detector. Here each sensor node builds his own model, but it is also
augmented with the models belonging to neighbouring devices. In addition, a
strategy to weight the most effective neighbor models has been implemented,
based on the minimization of the model uncertainty. Uniform voting is reason-
able in circumstances where all the learners arise from the same distribution, but
when models come from heterogeneous data distributions this strategy shows
its weaknesses. Larger weights are assigned to trees that are in accordance with
the majority, while trees that increase the overall uncertainty are penalized.
The optimization of these weights is performed in a fully unsupervised fashion.
In presence of distributional drifts, the overall model can be easily adapted
to the new conditions, optimising new weights or substituting the trees with
lower weight importance. The communication between the node is employed
just at early stages for the sharing of the detecting models, not for the sampled
data sharing.

The time and space complexity of this approach are$ (=)⌘) and$ (=)Å
⌘+Ä

)

respectively.

4.3.4 Interpretability and feature selection

The detection of anomalies is an important activity in manufacturing processes
but it is useless if a corresponding action does not take place. That action is
expected to be proportional to the gravity of the anomaly (encoded by the
anomaly score), and to the cause that generated it. For doing that a tool to
interpret that anomaly is needed. It is easy to understand that if unsupervised
anomaly detection is challenging, interpretable models face even more complex
issues. In real word scenarios anomalies are unlabelled and lack of proper
interpretations.

Moreover [45] observes that interpretable models enhance the trust of the
user in the anomaly detection algorithms, leading to a more systematic use of
these tools.

������������� ������� ��������� ���� �����: �����-�����
������� ���������� ��� ��� ��������� ������ (�����) IF
is a highly randomised algorithm and therefore the logic behind the model
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predictions is very hard to grasp. In the paper [45], a model specifically
designed for the interpretability of IF outcomes is presented. In particular
the authors developed two variants: i) a global interpretability method able
to describe the general behaviour of the IF on the training set, and ii) a local
version able to explain the individual IF predictions made on test points. The
central idea of this method, named DIFFI, relies on the following two intuitions:
the split of an important feature should a) induce faster isolation at low levels
(close to the root) and b) produce higher unbalance w.r.t splits of less important
features. This is encoded in a new index named cumulative feature importance.
With this in mind, the authors formulate the global feature importance as
the weighted ratio between the cumulative feature importance computed for
outliers and inliers. The local interpretation of single detected anomalies is
sightly different but relies on the same intuitions. DIFFI can also be exploited
for unsupervised feature selection in the context of anomaly detection.

������� ����������� ���� ������ ������� Authors in [139]
developed an algorithm able to explain the outcome of a generic anomaly
detector by using sets of human understandable rules. More specifically, the
proposed model consists in a special random forest trained to separate the
single anomaly from the rest of the dataset. This algorithm provides two kinds
of explanations: the minimal and the maximal. The first is performed isolating
the anomaly using the minimal number of necessary features. On the contrary
the maximal explanation looks for all the features in which the anomaly is
different, employing a recursive feature reduction. Once the forest are trained
and the explanations are obtained, the decision rules are extracted in a human
readable manner.

The time complexity of the algorithm is $ (=C)sel)train) where )sel is linear
with the number of normal samples in the data. For the minimal explanation =C
is the number of trees trained for each anomaly and )train = $ (3 |) |

Å
), where 3

is the number of features and ) is the size of the training set. For the maximal
explanation =C = $ (3 � Ä) while )train = $ (3

Å
|) |

Å
).

���������-����� ������� ��������� ��� ������������ ���-
���� ��������� (����) In settings where the dimensionality of data
is very high, even the most efficient anomaly detection algorithm may suffer.
Methods of feature selection are used to the purpose of reducing the computa-
tional and memory cost. Isolation-based feature selection (IBFS) described in
[262] computes an unbalanced score each time a node is split, based on the
resulting entropy weighted by fraction of data samples in each leaf. Adding all
the scores of the traversed nodes, it is possible to obtain a global features score
that highlights the best features for anomaly detection.



4.4 ������������ ���������� 57

4.4 ������������ ����������

4.4.1 Methods comparison and available implementations

Unfortunately a small subset of authors provided an open implementation
of the methods presented in the previous Section: for this reason it is hard
to have a comprehensive overview of performances for the overall plethora
of isolation-based and tree-based methods. Most of the authors report some
performance scores (commonly ROC AUC) for their proposed methods, using
as benchmarks only the original IF and few of the most popular close variants,
such as Split-Criteria IF, Robust Random Cut Forest or Extended IF and other
density or distance-based anomaly detection approaches.

To the best of our knowledge, an extended comparison between all the
variants of tree-based AD has never been realised. To cope with this issue, we
have worked to collect results available in literature on various AD benchmarks,
in order to provide an easier comparison between the different approaches also
in terms of accuracy.

We selected a subset of the datasets where we could have a consistent amount
of outcomes, that turn out to be all from UCI Machine Learning Repository
[72]. For this reason, we excluded all the methods that are intended to work
on a specific scope, for instance image detection or functional-based anomaly
detection. A schematic description of datasets is in Table 3.

Table 3: Description of test data sets.

Dataset Size Dim. % anomalies

HTTP 567497 3 0.4%

SMTP 95156 3 0.03%

Forest Cover 286048 10 0.9%

Shuttle 49097 9 7%

Mammography 11183 6 2%

Satellite 6435 36 32%

Pima 768 8 35%

Breastw 683 9 35%

Arrhytmia 452 274 15%

Ionosphere 351 32 32%

Moreover, we limited to the static approach, since testing for streaming
algorithms allows a variety of different setups and it is hard or impossible to
achieve a fair comparison with existing results.
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Table 4 contains the result from our survey. In all cases it was possible, we
used the ROC AUC scores from the original papers, and we suppose each
method is tuned at the best of author’s expertise. For many of the algorithms
that were publicly available, we filled the eventually missing scores by running
the tests ourselves. In this case, we consider those hyperparameters indicated
in the original IF paper [160] (number of trees = 100, sample size = 256)
as the most appropriate universal setup. Finally, we avoided to fill missing
outcomes for such methods, like GIF, where the authors provided a fine-tuning
of their algorithms, since our last assumptions would not replicate the same
performances.

From the collected scores, we have not found a method consistently outper-
forming all the others, and it’s not clear how to build a hierarchy between all
the variants. We can conclude that IF is an efficient baseline that shows good
performance in many cases, however each method may be the most appropriate
in any specific real-life scenario and the final choice it can only be up to the
practitioner.

One of the limitations of the proposed comparison is related to the choice
of the Area Under Receiver Operating Characteristic Curve (ROC AUC) as
main performance indicator used in most of the reviewed papers. In fact, [212]
already highlights the inefficiency of ROC AUC if data are strongly unbalanced,
and suggests the usage of other metrics, such as Area Under Precision-Recall
Curve (PR AUC): ROC curve is drawn by plotting the true positive rate (or
recall) against the the false positive rate; however, when positive labelled data
are rare, ROC AUC can be misleading since even a poor skilled models can
achieve high scores. For such reasons, the validity of the reported results for
strongly unbalanced datasets like HTTP, SMTP or Forest Cover should be
considered with some skepticism.

On the contrary, PR curve represents the precision over the recall for a
binary classifier, and it would be more informative when normal instances
outnumber anomalies. A slightly different alternative is Precision-Recall-Gain
(PRG) curve [82]. Specifically, PRG AUC maintains the pros of the PR AUC,
but allows to evaluate the model against a baseline binary classifier, i.e. the
always-positive classifier, as ROC AUC does with the random classifier model.

There are many other metrics in the literature besides ROC AUC and PR
AUC that capture different aspects of detection performance. Although in this
thesis we will mainly focus on PR AUC because it is a robust and widely
employed measure of detection performance, we refer the interested reader to
[39].

In order to promote reproducibility, and to help practitioners in developing
real-word applications, we provide a list of the available source codes about
the previously discussed methods (Table 5). Unfortunately, as stated above, we
were able to retrieve just a portion of the reviewed methods but we hope as
anomaly detection becomes a more mature field, authors will be more used
to share their code for enhancing adoption and comparisons of the proposed
approaches.
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Table 5: Source code repositories.

Model Repository Language

DIFFI [45] github.com/mattiacarletti/DIFFI Python
EIF [107] github.com/sahandha/eif Python
Functional IF [223] github.com/GuillaumeStaermanML/FIF Python
GIF [38] github.com/philippjh/genif Python
HIF [202] github.com/pfmarteau/HIF Python
IF [160] scikit-learn.org Python
iForestASD [67, 243] github.com/Elmecio/IForestASD_based_methods_in_scikit_Multiflow Python
Isolation Mondrian Forest [172] github.com/bghojogh/iMondrian Python
LSHiForest [269] github.com/xuyun-zhang/LSHiForest Python
MassAD [241] sourceforge.net/projects/mass-estimation MATLAB
OneClassRF [99] github.com/ngoix/OCRF Python
PIDForest [101] github.com/vatsalsharan/pidforest Python
RRCF [102] github.com/kLabUM/rrcf Python
SCiForest [161] github.com/david-cortes/isotree Python

4.4.2 Industrial Case Studies

Tree based AD approaches have been extensively employed in industry because
of their nice properties. Some of the relevant industrial applications of tree
based methods are summarized in Table 6. Despite the existence of multiple
tree-based algorithms, the large majority of applications concerns the original
Isolation Forest and a big part of them are applications in the power industry.
Fraud detection and cybersecurity examples, while being really popular in the
literature, were not considered in this list since they are not strictly industrial
applications.

In some of the reported cases, authors used the reported anomaly detection
method as part of a more complex pipeline that typically involve a feature
extraction procedure when dealing with non-tabular data for example: for the
sake of simplicity, we didn’t report such ’evolutions’ of the methods in our
classification.

github.com/mattiacarletti/DIFFI
github.com/sahandha/eif
github.com/GuillaumeStaermanML/FIF
github.com/philippjh/genif
github.com/pfmarteau/HIF
scikit-learn.org
github.com/Elmecio/IForestASD_based_methods_in_scikit_Multiflow
github.com/bghojogh/iMondrian
github.com/xuyun-zhang/LSHiForest
sourceforge.net/projects/mass-estimation
github.com/ngoix/OCRF
github.com/vatsalsharan/pidforest
github.com/kLabUM/rrcf
github.com/david-cortes/isotree
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Table 6: Industrial applications of tree-based approaches for Anomaly Detection.

Work Year Sector/Equipment Type Method

Ahmed et at. [6] 2019 Smart Grid IF
Alsini et al. [9] 2021 Construction Industry IF
Antonini et al. [15] 2018 IoT audio sensors IF
Barbariol et al. [27] 2020 Multi-phase Flow Meters IF
Brito et al. [37] 2021 Rotating Machinery DIFFI
Carletti et al. [44] 2019 Home Appliances Manufacturing DIFFI
De Santis et al. [213] 2020 Power Plants EIF
Du et al. [71] 2020 Sensor Networks IF
Hara et al. [106] 2020 Hydroelectric Generators IF
Hofmockel et al. [113] 2018 Vehicle Sensors IF
Li et al. [152] 2021 Machine Tools IF
Lin et al. [156] 2020 Power Plants IF
Luo et al. [170] 2019 Eletricity Consuption IF
Kim et al. [136] 2017 Energy & Smart Grids IF
Maggipinto et al. [173] 2019 Semiconductor Manufacturing IF
Mao et al. [175] 2018 Power Consumption IF
Puggini et al. [199] 2018 Semiconductor Manufacturing IF
Riazi et al. [206] 2019 Robotic Arm IF
Susto et al. [228] 2017 Semiconductor Manufacturing IF
Tan et al. [236] 2020 Marine Gas Turbines IF
Tran et al. [245] 2020 Fashion Industry IF
Wang et al. [249] 2019 Power Transformers & Gas-insulated Swithchgear IF
Wetzig et al. [254] 2019 IoT-Gateway Streaming HS
Wu et al. [257] 2018 Energy & Smart Grid IF
Zhang et al. [270] 2019 Cigarette Production IF
Zhong et al. [274] 2019 Gas Turbine IF

In this review, many approaches have been listed and it might be hard to get
a feeling on their actual importance for the research community, also given
the fact that many approaches have been only recently submitted. To mitigate
such issue, some statistic related to the method citations have been collected
in Table 7 and 8. Given that citations are only a proxy of the relevance of
an AD method and that it is somehow unfair to compare citation of recently
introduced methods versus established ones, the proposed list should be taken
as a loose reference for listed methods importance.
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Table 7: Static methods. The ’*’ highlights methods published in 2020 or 2021 for
which the reported statistics at the time of the writing of this work (March
2021) is of course not reliable.

Paper Acronym Citations in 2020 Total citations Annual rate

Liu et al. (2010) [161] SCIForest 10 49 4.1
Aryal et al. (2014) [18] ReMass 7 20 2.5
Li et al. (2020) [153] *7 *7 *3.5
Ting et al. (2010) [241] MassAD 6 53 4.4
Zhang et al. (2017) [269] 6 26 5.2
Karczmarek et al. (2020) [131] K-Means IF *5 *7 *3.5
Liu et al. (2018) [167] 4 9 2.2
Marteau et al. (2017) [177] HIF 4 6 1.2
Staerman et al. (2019) [223] Functional IF 3 5 1.7
Goix et al. (2017) [99] OneClassRF 2 4 0.8
Yu et al. (2009) [265] 1 26 2.0
Zhang et al. (2018) [267] T-Forest 1 4 1.0
Chen et al. (2015) [49] RPF 1 3 0.4
Shen et al. (2016) [220] EGiTree 1 2 0.3
Hariri et al. (2021) [107] EIF *1 *1 *1.0
Mensi et al. (2019) [180] 1 1 0.3
Gopalan et al. (2019) [101] PIDForest 1 1 0.3
Liao et al. (2019) [155] E-iForest 0 5 1.7
Chen et al. (2011) [50] kpList 0 4 0.4
Aryal et al. (2021) [17] usfAD *0 *1 *1.0
Buschjager et al. (2020) [38] GIF *0 *1 *0.5
Park et al. (2021) [191] *0 *0 *0.0
Holmer et al. (2019) [114] HEIF 0 0 0.0
Ghaddar et al. (2019) [95] 0 0 0.0
Yao et al. (2019) [263] dForest 0 0 0.0
Karczmarek et al. (2020) [130] n-ary IF *0 *0 *0.0
Sternby et al. (2020) [224] ADF *0 *0 *0.0
Xiang et al. (2020) [258] OPHIForest *0 *0 *0.0
Gao et al. (2019) [92] CBIF 0 0 0.0
Leveni et al. (2021) [151] PIF *0 *0 *0.0
Lyu et al. (2020) [171] RMSHForest *0 *0 *0.0
Karczmarek et al. (2020) [129] Fuzzy IF *0 *0 *0.0
Qu et al. (2020) [200] *0 *0 *0.0

MassAD gathers the citations from Ting et al. (2010) [241] and Ting et al. (2013) [242].
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Table 8: Dynamic methods. The ’*’ highlights methods published in 2020 or 2021 for
which the reported statistics at the time of the writing of this work (March
2021) is of course not reliable.

Paper Acronym Citations in 2020 Total citations Annual rate

Ding et al. (2013) [67] iForestASD 25 69 7.7
Tan et al. (2011) [235] Streaming HS 17 82 7.5
Guha et al. (2016) [102] RRCF 9 23 3.8
Wu et al. (2014) [256] RS-Forest 7 39 4.9
Ding et al. (2015) [68] AHIForest 1 3 0.4
Sun et al. (2019) [226] Streaming LSHiForest 0 2 0.7
Ma et al. (2020) [172] Isolation Mondrian Forest *0 *0 *0.0
Dickens et al. (2020) [65] Mondrian Polya Forest *0 *0 *0.0
Togbe et al. (2021) [243] *0 *0 *0.0

4.5 ���������� ��� ������ ����

In this work we focused on anomaly detection, a practical problem that many
times arises in industrial applications. Indeed, the detection of product defects
or production instruments faults can be quickly addressed by this kind of
techniques.

This review dealt with a particular type of algorithms based on tree structure.
These have many advantages, like fast computations, low latency, low memory
requirements, parallelism and high detection performances. Moreover, they
can cope with the streaming data scenario where the model has to adapt to
new incoming data. Moreover, recent efforts have been made by the scientific
community to equip such methods with interpretable traits, making them
particularly appealing in real-world contexts where root cause analysis is also
of paramount importance.

The main procedural differences between the different methods have been
discussed and the performances declared by their authors have been compared.

Use cases and a list of ready to use implementations has been made in order
to provide practitioners an effective review. The methods performances over
different datasets have been grouped together in a unique table.

This Chapter has highlighted the many advantages of tree-based approaches
over competing alternatives, and the different strategies proposed by the
authors.

Some of them are very similar but others introduced very interesting novelties.
Just to name a few, the authors found very promising the isolation principle,
the anomaly score based on the mass in addition to tree depth, the weighted
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trees, the pattern anomalies, the continuous training made on data streams and
the split criterions that try to accelerate the isolation.

On the other side, criteria that rely on distances other than !Ä-distance, or
that try to directly estimate the density, risk to quickly lose the advantage over
more traditional methods.

The present study has some limitations, mainly due to the fact that many
methods are recent or do not have public implementations provided by the
proposing authors, nevertheless this work is intended to be a stating point
for future investigations. The most important one lies in the performance
comparison; moreover the provided tables have been assembled using results
declared in the reviewed papers, so caution must be taken when looking at this
comparison and the time complexities.



5
W I N D OW I NG A NO M A LY D E T E C T I O N

The first anomaly detection approach on time-series is by applying static
models on intervals (windows) of the evolving signal. This approach, even if
conceptually simple, has some issue that will be discussed in this Chapter. The
goal of this work is to find a computationally simple approach in order to filter
the behaviour of the measurement system, from the behaviour of the measured
process. In fact the measured flow is non-stationary and might evolve in a
multitude of possible flow patterns that are perfectly normal but might not be
seen during the training phase. An anomalous measurement might be due to
a possible fault, or might be due to a flow condition that was not observed
before. This motivates the work presented in this Chapter and published in
[27] that tries to decouple the flow evolution from the instrument in order to
apply AD model on the measurement process.

5.1 ������������

In recent years, many efforts have been done in order to improve the MPFM
performances, increasing its complexity: many sensors have been implemented
on-board, improving the number of available physical variables. Unfortunately,
the increased complexity is associated with a bigger set of failure types that
the system can experience. The reliability of this system is crucial for every
customer that consumes the supplied data for monitoring, decision making and
control the oil production. To achieve the required reliability, the MPFM must
be able to self-diagnose its sensors in an autonomous fashion.

Besides the energetic sector, data reliability is fundamental in many fields
such as: finance, IT, security, medical, e-commerce, agriculture, and social
media. With the advent of "Industry 4.0", the interest in accurate metrology
tools has pushed many companies to develop complex measuring instruments.
These sophisticated systems, that we call Complex Measuring Systems (CMSs),
estimate quantities difficult to be measured combining different sensors mea-
surements and data fusion techniques [253]. The MPFM is one example of
CMSs and therefore in the following pages, the acronyms will be treated
as synonyms. Although specifically developed for the MPFM, the proposed
methodology could be applied to other CMSs.

Self-diagnosis capabilities can be reached in two ways: by leveraging a
priori/physical knowledge of the metrology tool and the underlying measured
phenomena, or by exploiting historical data and statistics/Machine Learning.
In the latter case (that is the focus of this work), several algorithms can be
employed, both in the realm of classification approaches and in the category of
unsupervised anomaly detection methodologies. The choice mainly depends
on the type of available data. In the context of MPFM, these techniques cannot

65
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be directly applied and many constrains have to be taken into account; such
challenges can be summarized as follows:

• Data structure and multi-dimensionality: MPFMs are usually made up
of different metrology modules that measure quantities related to distinct
physical variables and each module can have a different sampling rate.
As a result, data to be monitored are a collection of multivariate and
heterogeneous streaming of time-series.

• Non-stationarity: The measured process can be non-stationary, i.e. the
mean and the variance of the underlying process can vary over time;
in this context, historical data can be not representative of the possible
system states. To overcome this issue, the monitoring agent has to
find some quantities that describe the behaviour of the instrument,
independently on the process.

• Root cause analysis: Due to the changing environment and the complex
interaction between the modules, identifying the faulty sensor/module
can be a quite difficult task.

• Edge application: For most MPFMs, self-diagnosis capabilities have to
be equipped on the edge, since: (i) many systems have to provide data in
real-time, (ii) Internet-of-Things scenario [103] may not be feasible or
cost-effective for many customers.

• Limited Resources: Many MPFMs have unfortunately limited computa-
tional power and memory capacity.

Given the problems previously discussed, there is a great need for developing
robust algorithmic techniques for MPFM self-diagnosis that are able to: (i)
provide confidence intervals for the measures they produce and to (ii) detect
sensors/measuring modules that are proving anomalous measures. Such targets
may be achieved by the usage of Anomaly Detection techniques [127]. More
specifically, given the above issues and following the guidelines in [4], we
define here the general requirements for real-world anomaly detection algorithm
applied to the MPFMs:

• predictions must be made in real time and on-board;

• algorithms should not rely on historical data to be trained, but it must
learn from data collected on the field;

• outcomes of the anomaly detection module need to be accurate and
robust, i.e. they shouldn’t be affected by changes in the underlying
process;

• anomaly detection algorithms should minimize an optimal trade-off
between false positives and false negatives; the optimality is defined
given the application at hand;

• the computations must be as light as possible;
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• the anomaly detection algorithm must handle different sampling fre-
quencies;

• the anomaly detection algorithm must be independent on the meter
calibration settings.

The focus of this work will be to present an Anomaly Detection approach
for MPFM that considers the aforementioned constraints and allows to equip
the instrument with self-diagnosis capabilities. In particular, a preprocessing
pipeline specifically designed for this type of meter will be shown. This will
allow to: i) effectively employ computationally efficient Anomaly Detection
tools; ii) develop a powerful Root Cause Analysis algorithm. Moreover, we
will test such approach exploiting real data, coming from specialized testing
facilities, called flow loops. In the following we will refer to the proposed
approach with the name AD4MPFM that stands for: Anomaly Detection for
Multiphase Flow Meters.

����-������ ������� ��������� Classically, a model-based strategy
is the most natural approach to tackle the Anomaly Detection problem. However,
the performances of these strategies are strongly dependent on the quality
of the model they rely on. Finding a model for a MPFM can be particularly
challenging, since it means: i) modelling all the measuring modules, their
interaction and the underlying process; ii) due to the system non-stationarity,
the usage of fixed models without customization and periodic updates is hardly
viable.

By exploiting the availability of historical data, a data-driven strategy
is typically preferable. Data-driven approaches [42, 51, 52, 251] aims at
finding a model that best fits data without physical a priori knowledge of the
process. They are usually divided into two main categories: supervised and
unsupervised. Supervised methods are very powerful but need data where
each sample is labelled Faulty/Non-Faulty. Unfortunately labelled datasets are
hardly available: the labelling procedure is very expensive and time-consuming.
A human domain expert has to manually tag the dataset with a posteriori visual
inspection. However the large number of module combinations and operating
conditions makes these methods typically hardly viable.

Unsupervised techniques allow to overcome these issues. Their main benefits
are [3]: (i) the capacity of handling multivariate data and multi-modal distri-
butions and (ii) the fact that they do not need labels. Unsupervised Anomaly
Detection (AD) algorithms are fundamental tools to detect anomalous be-
haviour in metrology instruments. Working in an unsupervised way, they are
flexible, accurate and highly suited for fault detection in complex systems. They
are able to perceive abnormal instrument behaviours that even domain experts
struggle to detect. Given the advantages described above, AD approaches have
been applied in various contexts: automotive [237], biomedical instruments
[179], decision support systems [43], fraud detection [232] and industrial
processes [231].
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In literature there are many definitions of anomaly depending on the
application of interest. Hawkins in [109] describes an outlier in a way that
seems the more appropriate to our problem:

"An outlier is an observation which deviates so much from the
other observations as to arouse suspicions that it was generated
by a different mechanism."

Therefore outliers are far and, hopefully, less than inliers. The choice on how
far and how few the observations must be to be outliers is not trivial. The outlier
numerosity can vary: it is reasonable to assume that anomalous observations
will increase as the environment ruins the sensor. When the fault is fully
developed the outliers can be a significant percentage of the total samples.

���������� ������ Despite the importance of detecting malfunctions
in MPFMs, the literature on self-diagnosis and AD applied to CMS is not very
broad. Traditionally, CMS are monitored employing univariate control charts
[7, 86] that fail to capture complex data behaviours and multidimensional
anomalies. Moreover they are generally more effective in monitoring the
underlying process instead of the performance of the CMS. More refined
techniques that manage multivariate data, are scattered on a lot of different
applications such as automotive [40], aerospace [21], chemical industry [238],
Heating, Ventilating and Air Conditioning [31] and other industrial/manufac-
turing applications [12, 32, 124, 141, 168, 227]. Other approaches that are
similar to the one set by the CMS, can be found in [190, 264] and [122] where
AD techniques are applied to wireless sensor networks in a non-stationary
environment. Unsupervised methods able to detect the root cause of the CMS
fault are, to the best of our knowledge, still missing. As stated above, the
literature concerning the self-diagnosis and fault detection applied to MPFMs
is at its early stages.

In general, AD detection on multivariate time series is still a quite unexplored
research field. The existing literature is mainly divided into techniques applied
to multivariate static datasets [229], and methods applied to univariate time-
series [230].

Some of the most important multivariate static emerging techniques will
be briefly described in Section 5.2. Concerning AD on univariate time series
we cite the following approaches. [5] employs a neural network to model the
time-series and detects the anomaly looking at the residue: an anomaly occurs
when the actual value is too far from the network prediction. In [112] the
authors look for contextual anomalies in univariate time-series that show a
strong seasonality. They decompose the series in median, seasonal and residue
and use robust univariate AD methods on signal windows. Two interesting
approaches that consider the correlation between the measures can be found in
[145] and [119]. The last one faces a problem very similar to ours since they
manage highly dynamic, correlated, and heterogeneous sensor data.

In this Chapter we try to combine and to take the best from these approaches,
enlarging the few unsupervised tools applied to multivariate time series.
The proposed algorithm is designed to fit the MPFM requirements and
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Figure 18: AD4MPFM: Flowchart of the proposed algorithm for anomaly detection
of Multiphase Flow Meters.

characteristics described in Section 2. Moreover the AD4MPFM is able not
only to detect the fault, but also to detect the root cause in an unsupervised
fashion. In Chapter 9 more sophisticate approaches will be developed to address
the same problem.

5.2 �������� ��������

The key points that led us to the development of AD4MPFM were basically
three:

• non-stationarity of the underlying process;

• high correlation between the measuring modules;

• need for light computations to enable edge computation.

As already mentioned, the MPFM is employed in the estimation of physical
quantities that are challenging to be measured. For doing this, it might combine
many measurements coming from different modules. The physical quantities to
be measured might vary widely and frequently over time: this makes the use of
historical data very hard. Indeed, when available, these data might not describe
all the possible operating points of the MPFM. In addition the same type of
MPFM can behave differently due to different sensors calibration. Therefore
we need a monitoring algorithm that is:

• independent on the process - it is able to decouple the dynamics of the
measured process from the dynamics of the instrumentation;

• independent on the calibration settings - i.e. able to auto-tune its
parameters.

In MPFM it is frequent to have highly correlated sensing modules: some
sensing modules might measure the same physical property in order to get
robust measurement or to measure derived quantities (e.g. velocity). A more
interesting case is the correlation between modules that measure different
physical properties: they are usually at least locally correlated because they see
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the same physical process (e.g. the appearance of a bubble, or the development
of a slug flow) by different perspectives. In other words, all sensors at any
given moment measure a different property of the same physical phenomenon.
We stress that by locally correlated we mean correlated on a sufficiently small
time interval.

A common strategy in AD [5, 93] is to model the underlying process and
looking at the residue between the prediction and the actual value; when the
residue becomes bigger than the confidence interval of the predictive model,
the anomaly is detected. However modelling a non stationary process is very
complex from many points of view and, as explained above, in this context
we need a computationally light model that does not need to be trained on
historical data, therefore this kind of strategy is not viable in AD for MPFM.

Although we cannot afford to model and forecast the evolution signal G8,
we develop a different approach based on the following intuition: since the
correlation between G8 and G 9 is sufficiently high, we can think of G 9 as an
approximate model for G8, and vice versa. Looking at the difference between
correlated modules, we filter the process dynamics and we are able to analyze
the instrumentation behaviour. The basic assumption is that an anomaly is likely
to be present when the modules disagree: it occurs when the informative content
of one signal differs from all the others. This approach does not need historical
data but it only needs to find a suitable way to get the difference between
different sensor measurements. Obviously, the higher the correlation between
the modules is, the better this kind of filter will work. If the instrumentation
works in ideal way, the differences will be gaussians.

��������� The algorithm depicted in the block diagram in Figure 18
is our proposal for AD for MPFM, namely AD4MPFM, and it expresses the
fundamental intuition detailed in the previous sub-section. In this sub-section
every step of this flowchart will be analyzed in detail.

���� ���������� The first step is the collection of signals belonging
to the locally correlated modules. Since these modules might have different
acquisition rates, a homogenisation of the signals time frequencies has to be
done. This can be achieved taking the mean of all the signals over the lowest
sampling rate.

��������� The AD4MPFM algorithm requires fixed size batches; for
this reason, the signals need to be windowed. The windowing procedure splits
the original signals into small overlapping intervals of size g and time-overlap
U.

��������� The sensing modules might have a time delay between them.
However the efficacy of the following feature design is obtained only when the
modules measure the same event at the same time, namely when the signals
are well aligned in time and the correlation between them is sufficiently high.
To ensure such alignment a cross correlation procedure is employed; such
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choice over more sophisticated time alignment algorithms like Dynamic Time
Warping [133] was motivated by the computational resources constrains.

������������� An important and simple preprocessing procedure for
comparing two signals belonging to sensors that measure different physical
properties, is by normalising them. This step is very simple but quite delicate:

• subtracting the mean and dividing by standard deviation can be dangerous,
due to the possible presence of outliers. To overcome this issue, we
decided to normalise each signal window using the median and median
absolute deviation;

• in order to be consistent between different windows of the same signal,
we have defined a reference batch, whose median and median absolute
deviation <03 have been used to normalize the other batches;

• despite the outlier robustness of the median and mad, the choice of the
reference batch has to be done carefully. This batch should be collected
in controlled conditions, keeping attention to the possible outliers.

������� ������ The next step in the AD4MPFM is to encode the
previously explained insight: the features should express the difference between
the informative content of the signals. Given two normalised and windowed
signal G8 and G 9 , the feature I8 9 has been defined as:

I8 9 = G8 � sign( 8 9)G 9 I8 9 = �I 98

where  is the correlation matrix between all the signals and  8 9 is the
correlation between G8 and G 9 . The presence of the sign(·) is necessary when
the considered data are negatively correlated. While other choices for making
signals comparable can be employed (for example allowing a softer difference
or by weighting the difference with the correlation value), we decided to adopt
the procedure described above for simplicity in the edge deployment.

������������ ������� ���������: ������� Unsupervised AD
algorithms can be divided into many categories depending on their working
strategy. In this Chapter the authors have chosen to compare six different AD
algorithms belonging to the most important families: Proximity-Based; Linear
Model; Outlier Ensembles; Statistical methods.

Probabilistic and statistical methods are a class of very general techniques.
They usually assume an underlying data distribution. After the parameter
training, the model becomes a generative model able to compute the probability
of a sample to be drawn from the underlying distribution. The method that
we named MAD is a multidimensional extension of the well-known control
chart based on the median absolute deviation <03. Since mean and standard
deviation are very sensitive to outliers, it is common practice to set control
limits on the basis of <03 and <4380= [209] since they are much more robust.
Given a window of the signal G8:

mad(G8) = 1 median( |G8 �median(G8) |), 1 = Ä.ÉáÅÖ
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the anomaly score (AS) for each sample is defined by the MAD algorithm as:

"�⇡ (C) = max
82{Ä,...,3}

����G8 (C) �median(G8)
mad(G8)

����
Note that in ideal conditions, <03 gives a robust estimate of the Gaussian
standard deviation. Since the MAD algorithm is based on the median absolute
deviation, its AS can be easily interpreted as the relative distance of the samples
from the distribution center.

������������ ������� ���������: ����� ��� ������� After
the computations, a general AD algorithm returns an index that measures the
abnormality level of data, namely the anomaly score of each sample. Data
with higher AS are more likely to be outliers. In order to assess which method
performs better at detecting anomalies, the AS must be converted in a binary
anomalous/not anomalous notation with the aid of a threshold. Note that in
the real implementation of the algorithm, this threshold is the value above
which the CMS raises a malfunction alarm. This threshold setting can be quite
challenging, and it is usually a compromise between false positive and false
negative alarms.

In presence of an unbalanced dataset, as in the anomaly detection settings
where outliers are much less than normal data, the precision (PREC) and
recall (REC) metrics are more meaningful than true positive and false positive
rate [212]. The precision is the number of true anomalies (i.e. the number
of items correctly labelled as belonging to anomalies) divided by the total
number of items labelled by the algorithm as anomalies. The recall is defined
as the number of true anomalies divided by the total number of measures that
are actually anomalies. A common way to make a comparison between the
performance of multiple classifiers is by using the F-score or the AUC score:
both of them summarize precision and recall measures. The F-score is defined
as the harmonic mean between PREC and REC: finding the classification
threshold that maximises F-score means finding an optimal compromise
between precision and recall; more precisely, according to the F-score, the
best method is the one the has PREC and REC values closest to the (1,1).
AUC stands for Area Under the Curve and indeed it is the measure of the area
enclosed by the curve in the PREC and REC diagram. The bigger the AUC
for a specific method is, the better this method will perform on average. The
AUC score is a global performance measure that does not depend on a specific
threshold, like the one that maximizes F-score. For this reason we have chosen
to compare the unsupervised AD methods using this metric instead of the
F-score.

���� ����� �������� In many applications, interpretability and ex-
plainability are fundamental to ensure that relevant actions are enabled in
association with the outcome of an AD module [43]. The AD4MPFM can also
enable interpretability: the feature design process is able not only to greatly
simplify the anomaly detection, but also the Root Cause Analysis (RCA). In this
sub-section we will show a new RCA that takes advantage of the preprocessing
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procedure. The intuition behind this method is the following: assuming that at
most one sensor can fail at a time, there exists a direction in the =-dimension
features space, where anomalies distribute, which identifies the faulty sensor.
This technique can be applied to any number of features but can be easily un-
derstood in 3 dimensions. If a fault generates on GÄ, the =-dimensional features
space IÄ,Å, IÄ,Ç, IÅ,Ç will show outliers that will propagate along the bisector
of the plane IÄ,Å, IÄ,Ç. On the contrary, the magnitude of the projection along
the axis IÅ,Ç will be negligible. The guilty direction 3, relative to fault on GÄ is
[Ä/
p
Å, Ä/
p
Å, �]

) . In the simple case of three signals, the GÅ-guilty direction
is given by [�,�Ä/

p
Å, Ä/
p
Å]

) while the 3 for GÇ is [�,�Ä/
p
Å,�Ä/

p
Å]

) . In
the general case there are as many 3 as the number of employed signals. If
a generic sample ?(C⇤) = [GÄ(C

⇤
), GÅ(C

⇤
), GÇ(C

⇤
)]

) is labelled as anomaly, the
corresponding features [IÄ,Å(C

⇤
), IÄ,Ç(C

⇤
), IÅ,Ç(C

⇤
)]

) are projected onto the
these special directions. The bigger is the projection, the bigger the suspected
contribution is to the fault. In general the root cause A is defined as:

A (C) = arg max
82{Ä,...,3}

68 (C)

where 6 is the guilty score vector obtained as:

68 (C) =
|38 · I(C) |Õ
9
|3 9 · I(C) |

The guilty directions matrix ⇡ can be obtained by the Algorithm 4.

Algorithm 4: Algorithm for the creation of the guilty directions matrix.
Data: Number of employed signals =3
Result: Guilty directions matrix ⇡
Number of features = 5 equal to =

Å
3�=3

Å
;

Matrix initialization with size = 5 ⇥ =3;
Find row and column indices of a strictly upper triangular matrix with
size =3;

foreach Feature indices 8 2 {�, Ä, . . . = 5 � Ä} do
Take the 8-th couple of row and column indices (A, 2);
foreach Direction indices 9 2 {�, Ä, . . . =3 � Ä} do

if 9 equal to A then
⇡ [8, 9] = Ä;

else if 9 equal to 2 then
⇡ [8, 9] = �Ä;

else
⇡ [8, 9] = �;

end
end

end
Normalize the columns of ⇡ by the euclidean norm;
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Figure 19: Small interval of the three employed signals. Their high correlation is used
by the method to detect possible faults.

���� ����� ��� ������������ �������� As stated above, the
AD4MPFM approach has been developed and tested on a particular CMS that
is the MPFM. Real and synthetic datasets have been used to test the proposed
algorithm.

In this analysis we have decided to use the three highly correlated signals
shown in Figure 19. These signals are close to sinusoidal because they were
collected during a slug flow: great bubbles of low and high density fluid were
alternating [55] [35]. We have chosen these data because here, global and local
anomalies are easily identifiable by visual inspection.

5.2.1 Fault Types

Measuring instruments can incur many types of fault. [73] has isolated four
elementary faults: the bias, the drift, the precision degradation and the complete
failure fault (Figure 20). Although a general event can be a combination of
these faults, we have decided to rely on this classification in order to provide a
more robust benchmark.

While bias, complete failure and precision degradation do not evolve in time,
the drift fault has a linear deteriorating behaviour. This is why in the following
paragraphs we will make different analysis depending on the fault type.

5.2.2 Synthetic fault generation

One of the main challenges in evaluating AD approaches is that tagged data
are required, even though typically these are not available. This is the reason
why unsupervised approaches are chosen in the first place. In this case study, a
number of faults have been added over real MPFM data in order to have a sure
evaluation of the effectiveness of the AD4MPFM approach.

The synthetic faults were obtained adding anomalies inside these data, in
particular the faults were generated on GÇ, the earliest signal (Figure 19 and 20).
In order to be consistent between different signals and datasets, the anomaly
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amplitude is proportional to the median absolute deviation mad(·) of the
anomalous signal.

Given a signal G belonging to the module - and indexed by the discrete
time C 2 [�, #], the bias fault of module - has been obtained in the following
way (Figure 20c):

Gbias(C) = G(C) + 5bias C ⇠ Bernoulli{2}

where Bernoulli is the Bernoulli distribution, 2 is the outlier contamination
and

5bias = � mad(G)

� has been named anomaly amplitude and takes values in [�, +).
The complete failure fault translates to a constant value (Figure 20b):

Gcomplete failure(C) = 5complete failure C ⇠ Bernoulli{2}

where :

5complete failure = median(G) + � mad(G)

Given a normal distribution N , the precision degradation fault is defined as
(Figure 20a):

Gprecision degradation(C) = G(C) + 5precision degradation C ⇠ Bernoulli{2}

where:

5precision degradation = : � mad(G) : ⇠ N{�, Ä}

Unlike other faults, the drift evolves in time:

Gdrift(C) = G(C) + 5drift C ⇠ Bernoulli{2}

where:

5drift = � mad(G)
C

#

Together with fault type and anomaly detection models, we vary the following
quantities in order to provide an extended evaluation of the AD4MPFM
efficiency: contamination, anomaly amplitude, window size g and window
overlap U.

5.2.3 Research Questions

In the design of the experiments we have decided to define some guidelines
for investigation. To prove the effectiveness of the AD4MPFM approach and
to show the effect of different design choices, we have developed various
experiments aiming at exposing the impact of each building block of the
AD4MPFM pipeline depicted in Figure 18.
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(a) Sensor precision degradation.

(b) Sensor complete failure.

(c) Sensor bias.

Figure 20: (sx) Synthetic anomalous signal obtained starting from the real signal GÇ of
Figure 19. Contamination 10%, anomaly amplitude 1. (dx) Corresponding
feature subspace. Synthetic anomalies are red colored. We highlight the
effectiveness of the preprocessing block of AD4MPFM that makes anoma-
lous samples lie on the subspace diagonal.
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W.r.t. the preprocessing block we will show in the next Section by visual
inspection how resulting features do have a discriminative quality.

Regarding anomaly detection block, since unsupervised AD methods are
not widely used in CMS, we will focus our investigation in showing the
performance of various methods, the effect of parameter tuning and the impact
on various fault types. In the wide context of Unsupervised Anomaly Detection
methods, we will compare 6 different approaches, namely CBLOF, HBOS, IF,
MAD, MCD and PCA that are representative of the 4 families described in
Section 5.2. In particular, we have chosen approaches that can be implemented
in typical CMS scenarios: this will be discussed in more details in Section 5.3.
In particular, concerning the static faults, namely the ones that do not evolve
in time (complete failure, bias, precision degradation), we will try to answer
the following questions:

1. Given an anomaly amplitude, how does the contamination affect the
performances of each model?

2. Given a contamination, how does the anomaly amplitude affect the
performances of each model?

3. In the general case where both the anomaly amplitude and the contami-
nation can vary, which is the model that behaves better?

On the contrary, for the drift case we will address other questions that will be
answered in paragraph 5.3.5:

1. Given a contamination value and some windowing settings, which is the
model that performs better along the windows?

2. Are there any differences if the contamination changes?

3. How is the optimal threshold affected by the contamination?

Later, in Section 5.3, we will wonder which is the best AD method amongst
the ones shown in Section 5.2, given the computational complexity.

Finally, w.r.t. the Root Cause Analysis block, we will perform analysis by
visual inspection that show the effectiveness of the guilty direction procedure.

5.3 �������

5.3.1 Preprocessing

We remark that, in the AD4MPFM pipeline, the goal of the preprocessing
block is to decouple the observed dynamics of the underlying process from the
behaviour of the metrology instrument; in order to demonstrate such capacity,
we report in Fig. 21 an example of the time series evolution of the MPFM
raw data. Moreover, in Figure 22 scatterplot matrices of the same data are
reported, by also showing the effect of the preprocessing steps. In particular, in
panel (a) of Figure 22, impedance, gamma and Venturi module measurements
are reported. It can be easily appreciated that the 2 dimensional distributions
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Figure 21: Real Data: raw signal example. Signals from different modules are not
aligned in time and have different scales.

(a)

(b) (c)

Figure 22: Real data: physics dynamics and meter behaviour decoupling of signals
shown in Figure 21. (a) Scatter plot of the signals. They can draw very
different patterns depending on their value, misalignment and correlation.
(b) Signal alignment. It always improves the correlation between the signals.
(c) Data after the process filtering. The measured dynamics is filtered and
only the instrumentation behaviour is shown.
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between two variables are not gaussian, making it difficult to implement self-
diagnosis procedures. In panel (b), showing the data after the alignment step, it
can be seen how crosscorrelations have been enhanced. Finally, in panel (c) it
is evident the benefit of the feature design step: features now exhibit gaussian
distributions that will ease the detection of CMS anomalies as expected.

The effectiveness of the proposed preprocessing box can be appreciated even
more in the semi-synthetic data reported in Figure 20. The simulated faults
are shown on the left panel while the corresponding data, after the feature
design process, are shown on the right. The corrupted data are colored in red.
It is clear the advantage given by the proposed manipulation: local, global and
context anomalies can be more easily identified. Note that the few corrupted
points that cannot be distinguished, are the ones were the added noise is almost
equal to zero.

While the signals shown in Figure 20 represent only some of the many
trends that the flow can develop depending on the operating point, we have
seen that the preprocessing block of AD4MPFM is effective in any of the
observed conditions: unfortunately, we cannot report here for conciseness
other examples, but such effective behaviour is demonstrated by the AD results
reported in the following experiments that are based on this preprocessing step.

We stress the fact that the preprocessing phase greatly simplifies the task
of detecting outliers: instead of monitoring a continuously changing complex
signal pattern, the unsupervised AD methods has only to detect the outliers
that lie outside the unique central cluster.

5.3.2 AD module: Complete failure

During a complete failure fault, the anomalous signal keeps a constant trend.
An example of feature subspace (IÄ,Ç, IÅ,Ç) containing this type of anomalies is
shown in Figure 20b. The fault was generated on GÇ: the correct samples gather
in a central cluster, while the anomalous samples distribute on the diagonal.
The majority of them can be easily distinguished by the normal cluster, indeed
the only anomalies that cannot be detected are those within the normal process
dynamics. Beware that the normal cluster width and position can be affected
by the normalization phase: if the reference window is seriously corrupted, the
reference median and mad can be biased. For this reason, care must be taken
on the choice of the scaling references.

�������� 1 Given an anomaly amplitude and for small values of contami-
nation, the best methods seems to be MCD and MAD (Figure 23b). Increasing
the contamination, the performances of almost every method get worse: only
the CBLOF seems not to be affected by the anomaly concentration. At very
high contamination all the methods have a very low AUC.

�������� 2 Fixing the contamination, the minimum AUC value is obtained
for anomaly amplitude between 0.5 and 1. CBLOF performs better, followed
by MAD and MCD. PCA is among the worst (Figure 23a).
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(a) Fixed contamination %10. The anomaly
amplitude varies.

(b) Fixed anomaly amplitude 1. The con-
tamination varies.

(c) General case, where both the anomaly
amplitude and the contamination vary.
Contamination view.

(d) General case, where both the anomaly
amplitude and the contamination vary.
Anomaly amplitude view.

Figure 23: Complete failure.

�������� 3 In the more general case (Figures 23c and 23d) both the
amplitude and the contamination vary. There, CBLOF performs substantially
better and has less deteriorating capabilities; it seems not to be robust only at
high contamination level.

5.3.3 AD Module: Bias

In the bias fault of Figure 20c both contextual and global anomalies are present.
The surprisingly good ability of the feature design process to distinguish both
types of anomalies is shown in the feature subspace. The normal central cluster
is still there, but another anomalous cluster is present on the diagonal.

�������� 1 At fixed �, MAD has less deteriorating performances. CBLOF
is very good but, as expected it is not robust at high contamination. IF
deteriorates as 2 increases (Figure 24b).

�������� 2 Fixing 2 it is possible to observe many interesting facts: MCD
is able to detect the smallest anomalies. MAD performs well but CBLOF
recovers quickly. HBOS and IF perform almost the same way, independently
on the anomaly amplitude (Figure 24a).
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(a) Fixed contamination %10. The anomaly
amplitude varies.

(b) Fixed anomaly amplitude 1. The con-
tamination varies.

(c) General case, where both the anomaly
amplitude and the contamination vary.
Contamination view.

(d) General case, where both the anomaly
amplitude and the contamination vary.
Anomaly amplitude view.

Figure 24: Bias.

�������� 3 It is not simple to get conclusions on the general case from
Figures 24c and 24d. MCD works better excluding at high 2. CBLOF and
MAD outperform the other methods when the anomalies are quite evident.

5.3.4 AD Module: Precision degradation

The feature design process distributes the anomalies on an ellipse centered
in the normal cluster (Figure 20a). As before, too small anomalies cannot be
detected, but it’s not important since they are within the normal signal noise.
Note that the central cluster is more centered because these anomalies do not
bias the reference median and mad.

�������� 1 While MAD and CBLOF have better performance at high
2, MCD has the best performance at low contamination level. Increasing the
number of outliers, the other methods improve their AUC (Figure 25b).

�������� 2 All but PCA and HBOS increase their AUC with the changing
anomaly amplitude. As expected MCD detects the anomalies much earlier
(Figure 25a).

�������� 3 When both the anomaly amplitude and the contamination
can change, as the contamination increases, CBLOF loses its advantage and
is ouperformed by MAD and MCD. When the anomalies are small and few
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(a) Fixed contamination %10. The anomaly
amplitude varies.

(b) Fixed anomaly amplitude 1. The con-
tamination varies.

(c) General case, where both the anomaly
amplitude and the contamination vary.
Contamination view.

(d) General case, where both the anomaly
amplitude and the contamination vary.
Anomaly amplitude view.

Figure 25: Precision degradation.

MCD outperforms the other methods, otherwise MAD and CBLOF are better
(Figures 25c and 25d).

5.3.5 AD Module: Drift

As drift evolves linearly in time, every window has its own feature subspace
(Figure 26). Given a sufficiently small window size, these subspaces can be
thought as a sequence of bias faults with increasing anomaly amplitude. In the
first window the anomalous cluster is completely inside the normal cluster, but
slowly it comes out.

�������� 1 As expected by the previous experiments MCD detects the
fault earlier and MAD has good performance too. In question 5.3.3 we have
already observed that CBLOF recovers quickly and aligns to MCD and MAD.
PCA arrives at good AUC values but too slowly. IF and HBOS saturate quickly
at the same low value (Figure 27b).

�������� 2 Lowering the contamination, the variance of the methods
explodes and the AUC score becomes very noisy (Figure 27a). On the contrary
increasing the number of anomalies, the AUC of the first window improves
and the variance reduces.



5.3 ������� 83

Figure 26: Sensor drift. The signal has been windowed in = segments in order to
highlight the = different anomaly settings. The representation of the data in
the feature subspace is not reported here for conciseness, but for obvious
reasons it would be similar to the one reported in panel (2) of Figure 20
with various anomaly amplitudes.

(a) 1% of contamination. (b) 10% of contamination.

(c) 20% of contamination.

Figure 27: Drift fault: evolution of the AUC score along the windows. The perfor-
mances are strongly sensitive to the outliers contamination. The shade
extends from the minimum and maximum values of the data, the dashed
lines represents the first and third quartiles, while the solid line is the
median (second quartile).
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Figure 28: Normalised F1-max-threshold of the last window. Not every method starts
from the max threshold because the normalisation has been done on all
the windows and sometimes a larger threshold has been used in previous
windows.

Figure 29: Plot of the computational time employed by each unsupervised method, for
different window sizes. Two groups can be distinguished: CBLOF, IF and
MCD are very slow while HBOS, PCA and MAD are very fast methods.

�������� 3 With optimal threshold we mean the one that maximizes
the F1-score. In order to make model and window comparisons, this has
to be normalized. Fixing the window, the answer to the question 3 is quite
simple when looking at Figure 28: if the contamination increases, the threshold
has to be lowered. But not all the methods behave in the same way: MCD
needs a severe adjustment of the threshold, while CBLOF is less affected by
the contamination. In this case PCA performs poorly because it has a huge
threshold variation, even inside the contamination classes.

5.3.6 Root Cause Analysis

The algorithm usually applies the RCA only to the anomalous samples, but in
order to understand how this block works we have applied it on every sample.
The results are shown in Figure 30. The first fact that can be noticed is the great
ability to correctly classify the faulty module; in these examples the anomalies
are assigned to the faulty signal GÇ. The second fact is the great simplicity of
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Table 9: Time Complexity [ms].

Model / Window Size 500 1000 1500 2000

CBLOF 60.9 96.3 121.2 140.7
HBOS 1.7 1.9 1.9 2.0
IF 195.0 243.9 270.9 297.8
MAD 0.8 0.9 0.9 1.0
MCD 33.9 399.2 417.2 422.0
PCA 2.1 2.3 2.5 2.6

the method obtained thanks the proposed feature design: the guilty directions
are clearly visible inside the central cluster.

5.3.7 Implementation Discussion

The results obtained on semi-synthetic datasets are promising, as a matter
of fact the AD4MPFM algorithm is able to detect with high performances
(accordingly to process experts) the generated fault and the faulty module as
shown in the previous experiments. The promising results were the basis for
proceeding with edge implementation of the AD4MPFM approach in real
MPFMs. While the approach has been designed in order to satisfy real-world
constrains of CMSs, several aspects should be taken into account before
implementation.

Robustness to outlier severity: robustness is a key property for applications
where the CMS is placed in remote or ‘costly’ locations. In fact, the MPFM is
a typical example, since such CMS is usually placed in harsh and remote sites.
In Sections 5.3.2,5.3.3 and 5.3.4 we have tested many AD algorithms changing
the type of fault and studying their robustness to different fault contaminations
and anomaly amplitudes. MAD seems to be the one that in general is less
affected by the changing fault conditions.

Threshold setting: from the implementation point of view, the optimal
threshold must be easy to be set and has to be stable; indeed, on edge
applications (especially with installations in remote sites) correcting the
threshold could be hardly viable. Studying the drift fault we have observed
how the optimal threshold behaves and which method exhibit the more stable
set up. In our context, CBLOF has the most robust threshold.

Trade-off between detection abilities and time complexity: depending on
the application at hand, the choice of the optimal AD method can be done by
investigating the trade-off between detection accuracy and time complexity.
Table 5.3.5 and Figure 29 show the mean computational time1 needed by the
AD algorithm to compute the AS for one window. CBLOF, IF and MCD can be
considered heavy methods since they are slower by two degrees of magnitude

1The time complexity of the algorithms was measured on a 2.7 GHz Intel Core 5 Processor
and refers to the PyOD implementation available in [273].
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(a) Precision degradation fault. (b) Complete failure fault.

(c) Bias fault.

Figure 30: Root Cause Analysis: The samples in the feature subspace are colored by
guilty index. It is clear the simplicity and the effectiveness of the proposed
method.
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than MAD, PCA and HBOS. Unfortunately MCD was one of the most effective
methods but is the worst compared in terms of time complexity. Increasing the
window amplitude, there is not a significant increase in computational time.
Since MAD is much faster than the other methods and has good detecting
abilities, it can be considered as a good candidate for maximizing the trade-off
between the mentioned properties in many application scenarios.

Simplicity of the coding implementation: Simplicity of the coding implemen-
tation is a key factor in applications that do not use high level programming
languages. MAD is not only the fastest algorithm, but it is also the simplest to
be implemented: MAD does not need complex computations and can be easily
written in any coding language.

Interpretability: as stated before, interpretability is a key property for
monitoring and maintenance-related intelligent tool. For some applications,
where interpretability is more relevant than other qualities, MAD is the
recommended amongst the considered AD approaches. MAD threshold is
easily interpretable (see Section 5.2). Nevertheless, other AD methods can
be equipped with interpretability procedure [43], however this will require
additional complexity that may not be feasible in some application scenarios.

5.4 ����������

In this Chapter, we have proposed a novel approach for the self-diagnosis
and anomaly detection of Multiphase Flow Meters, named AD4MPFM. The
approach is specifically designed for handling the typical constrains of complex
metrology instruments like the MPFM that are based on multiple sensing mod-
ules, time-series streams and data fusion. The building blocks of AD4MPFM
are modern unsupervised anomaly detection techniques and a preprocessing
pipeline able to decouple the complex dynamics of the underlying process with
the quality of the metrology tool behaviour. Moreover, given the importance
of interpretability and explainability in monitoring and maintenance contexts,
we have equipped AD4MPFM with Root Cause Analysis capabilities, thanks
to a so-called guilty direction that points out the module responsible for an
anomaly. The main advantage of AD4MPFM is the fact that it does not need
historical data to be trained and it is ready for Plug & Play implementations.

The effectiveness of the proposed algorithm has been tested both on semi-
synthetic and real datasets. Many types of faults have been simulated, changing
the severity of the faulty conditions. As discussed, MPFMs can be very different:
therefore, the various desired properties (robustness, accuracy, complexity, etc.)
for the self-diagnosis system can vary in order of importance. In this regards,
as shown by the experiments reported in this work, the AD4MPFM procedure
allows to adopt various design choices in order to make some properties better
satisfied than other. As future work, a research direction could be to adopt an
ensemble approach on the employed Anomaly Detection methods in order to
maintain all the good properties of various unsupervised techniques.
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A further remark is that, as shown by the reported experiments, a simple
approach like MAD is still very accurate in detection, proving the effectiveness
of the preprocessing procedure and on the whole AD4MPFM pipeline.

Additional research investigations will be focused on other four aspects: (i)
validation of the proposed approach on new Complex Measuring Systems real
case studies; (ii) the employment of deep learning approaches for anomaly
detection that will fit the IoT scenario, where the edge implementation constrain
can be relaxed, iii) exploration of new approaches in order to reduce the
dependence of the algorithm from normalization and alignment, iv) analysis
of models that do not need to explicitly extract features from the signals but
rely on distances and similarities like the one exposed in [182]. Indeed, the
feature extraction process is a delicate step: in some scenarios the extraction of
significant features could be very complex or the extraction process could be
so coarse that the information encoded in the signal is lost.



6
I S O L AT I O N F O R E ST O N R E S O U RC E C O N ST R A I N E D
D E V I C E S

This work tries to address the limited computational capabilities of industrial
devices where it is important to detect possible anomalies. An example is again
the MPFM because, even if provided with discrete computational resources,
only a small part of them can be devoted to Anomaly Detection tasks. The
ideas developed in this Chapter were published in [28].

6.1 ������������

Over the last few years, the cost of sensors and microprocessors (MCUs) have
significantly decreased; moreover, the new technological scenarios brought by
the Internet of Things (IoT) and Industry 4.0, are pushing to the embedding
of such sensors and MCUs in an increasing number of systems and devices
with edge computing capabilities. On one side, the combined availability of
sensing and computational capabilities into local devices paves the way for
new applications [196], like for example the automatic monitoring of the
data sensed by edge computing devices [74] by means of Machine Learning
(ML) approaches; on the other hand, such new scenario inspires the research
community towards the development of algorithms able to run ML models
onto these ultra-constrained devices [23]. Low resources ML models need to
be as light as possible in order to fit the available memory and to be computed
on MCUs, moreover they need to efficiently handle multidimensional data that
come from a variety of sensors that might be linked to the board.

Concerning the computing paradigm, at the moment we are witnessing a
change in the considered architectures: traditional IoT-designed ML models
usually heavily rely on cloud computations with resulting latency, bandwidth
and privacy concerns that are nowadays representing in many cases an obstacle
to the adoption of such solutions [215]. We now instead see the increase of
a new paradigm that comes under the name of TinyML, where computations
are done on the edge tiny devices like MCUs [118]. This change allows to
drastically reduce the latency and the energy consumption caused by the
transmission process, and to send to the cloud only the necessary data packet,
enhancing the system security. Unfortunately these improvements come at the
cost of stricter constraints on the memory and complexity a model can handle
to run on these devices: the memory capacity goes from some gigabytes (cloud
GPUs) to kilobytes (MCUs), with coherent computational speed scaling [22].

In the context of this work, we focus on a particular ML application, Anomaly
Detection (AD), that is gaining increasing attention in past recent years. AD
algorithms are particularly useful in order to monitor large amount of data
[76], and to provide efficient feedback on the data reliability; these models are
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specifically designed to find unusual patterns inside data that are generated
by complex multidimensional processes. This task is usually unsupervised,
meaning the labels describing if a sample is anomalous, are few or totally absent.
In this context the Isolation Forest (IF) is a very appealing algorithm due to its
good detecting performances compared to its algorithmic complexity [210].
However, in the case of ultra-constrained devices, even small improvements in
the algorithm can make a difference: the detection performance is only one of
the factors that might be considered in the choice of an algorithm to be run on
an edge device; other factor might be memory, latency, computational power
and energy cost to run on battery power [210].

The goal of this work is to show an algorithm like Isolation Forest that is
very cheap to train, could be shrunken in a way that simultaneously reduces its
hardware requirements and increases its performances. This can be achieved
adding a weak supervision in the form of few labels, allowing the forest to
be rearranged without a proper retraining; indeed the proposed methodology
might be used to train a new forest from scratch or to retrofit a previously
trained forest with newly obtained labels, similarly to an Online Learning
scenario [62, 205].

The relaxation of the unsupervised settings is typically reasonable in the
context of Decision Support Systems (DSS). In recent years DSSs became
pervasive and today are applied to all fields where complex and delicate
decision have to be made to assist human operators in the decision-making
process like in medicine [233], precision agriculture [143], energy [189],
environment [56] and security [147, 250]. These systems are equipped with
anomaly detection functionalities that allow to automatically monitor the
process, giving feedback and alerting the human user to make a possible action;
in this context end-users can provide feedback on anomaly detection module
suggestions [217], making the weakly-supervised scenario that is considered
in this work, reasonable.

Moreover, it has to be taken into account that the development of effective
AD model is typically a collaborative and iterative process between data
scientists (AD developers) and end-users (AD users): the firsts choose the
algorithm that best fits the given requirements, while the latter ones evaluate
if the model ranks the anomalies according to the their expectations. This is
necessary since outliers are not uniquely defined but they depend on the user
and the context [217], therefore requiring different detection strategies [26];
for a more detailed dissertation we refer the interested reader to [217].

In this context, we propose here the TiWS-Isolation Forest (TiWS-IF)
algorithm that is intended to dialogue with the DSS, following the TinyML
paradigm: the DSS system shares with the model the available annotations
provided by the end-user, in a weakly supervised fashion [41, 150], that can be
exploited to enhance performance and reduce complexity. Indeed, by assuming
that a first model is trained on a fully unlabelled dataset and put in operation on
a DSS, during its lifetime it is not unlikely to collect some weak supervision
in the form of few labels that can be used to improve the existing detection
algorithm. This allows the model to adapt to the user definition of true outliers,
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giving a more domain-specific prediction of outlierliness [61, 62]. To the best
of our knowledge, TiWS-IF is one of the first approaches in the Isolation Forest
literature designed to work in a weakly-supervised scenario and to enforce
the user-definition of anomaly in an iterative way. Moreover it is the first that,
exploiting the available knowledge, reduces the algorithm complexity in view
of edge implementations.

This Chapter is organized as follows: in Section 6.2 the Isolation Forest
algorithm is described focusing on the algorithmic complexity and the ensemble
strategy; the datasets employed to test the proposed strategy is described in the
same Section. Then Section 6.3 goes deeper in the analysis of the algorithm
describing some issues related to the standard training procedure and showing
many examples. Starting from this point, Section 6.4 describes a weakly-
supervised algorithm whose goal is to overcome the previously mentioned
obstacles. Here a number of results concerning the application of this new
algorithm to real world datasets are shown, proving the effectiveness of the
proposed approach. In the final Section the work is summarized and future
improvements are discussed.

6.2 ��������� ������ ��������� ��� ����������� �������

Isolation Forest [162] is an ensemble of binary trees named isolation trees
since their goal is to isolate data points. As already stated in Chapter 4 this
algorithm relies on the assumption that anomalies are few and different from
normal points, and that recursive space partitioning should isolate anomalous
data points (outliers) in an easier way w.r.t. normal data points (inliers). This
is done by means of an isolation tree that recursively splits the space, choosing
randomly with uniform probability the feature and the threshold where to split
the space [244]; this process is repeated until every point is isolated in a leaf,
or the isolation tree reaches a maximum depth. Since it is reasonable to expect
that anomalies are isolated faster than inliers, their path length along the tree
should be smaller when compared to normal data points. This allows to define
an anomaly score B(·) as:

B(G) = Å�
⇢ [⌘ (G) ]

2

where G is the input data point, 2 is a normalising factor representing the
average depth of a binary tree and ⇢ [⌘(G)] is the expected isolation tree depth
reached by the point G. Then, in many applications, the anomaly score is
transformed in a binary label by means of a threshold g (usually 0.5): if the
anomaly score associated to a point is higher than the threshold, the point is
flagged as an anomaly, otherwise is considered normal.

As previously mentioned, IF is an ensemble of different isolation trees that
are constructed in a way to guarantee robustness also in the presence of random
choices that are present in the isolation procedure: each isolation tree is trained
using a bagging strategy, i.e. by using different sub-samples of the same dataset.
Experimentally, the IF authors suggested as a guideline to use C = Ä�� trees
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with sub-samples of k = ÅÑÖ points for obtaining a stable estimate ⇢ [⌘(G)]
using the sampling mean:

⌘(G) =
Ä

=)

=)’
C

FC⌘C (G)

where every isolation tree is implicitly assumed to be equally informative, and
therefore weighted by the same constant value FC = 1. The aforementioned
choices for =) and k are typically adopted by many authors in the literature
and they are the default choice in many libraries implementing IF.

Bagging allows IF to achieve linear time-complexity together with small
memory requirements [162], that are very interesting properties when con-
sidering tiny implementations on MCUs. Indeed the time complexities in
the training stage is $ (=)k logk) while in the testing is only $ (==) logk)
where = is the number of tested instances [160]; the memory requirements are
bounded by the number of nodes of each isolation tree, that is Åk � Ä and the
number of trees in the forest =) [162], therefore are $ (=)k).

In the rest of the Chapter, the original Isolation Forest algorithm with 100
randomly grown trees is referred as the standard or original one.

Any anomaly detector returns a continuous score associated to each point
that should reflect its degree of anomaly and it is called anomaly score (AS).
To convert the AS into binary labels (anomaly/inlier) a threshold is set: points
with an AS above the threshold are predicted as anomalies, and vice versa. By
varying this classification threshold it is possible to measure a different true
positive rate (TPR), false positive rate (FPR), precision and recall. However, to
understand the global performances of a model it is necessary to summarize
these quantities into an unique value: the area under the curve TPR-FPR curve
(ROC AUC score), the average precision ?, and the F1-score are some of
the most popular choices. The preferred metric employed in this work is the
average precision:

? =
=g’
8

?8 (A8 � A8�Ä),

that summarises the precision ?8 and recall scores A8 and it is better than the
area under the ROC curve when the dataset is highly unbalanced [212]. The
F1-score is a valuable metric that summarizes the precision and recall by
taking their harmonic mean.

6.3 �������� �� ��� �������� ��������� ������ ���������

In the previous Section, Isolation Forest is described as an ensemble i.e.
a collection of weak learners (isolation trees) that are trained following a
completely random procedure. This might induce to believe that all of the
learners have similar impact and averaging their contribution is the best possible
approach, but is it true? Are the isolation trees similarly informative?

A first evidence that this is not the case can be seen in Figure 31a and 31b
where two isolation trees are constructed on the same toy dataset composed of
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(a) Good random isolation: the splitting values lie in between normal
and anomalous values.

(b) Bad random isolation: the splitting process focuses on normal data
and ignores anomalous ones. This leads to not effective isolation.

Figure 31: Two different isolation trees grown on the same dataset. The anomalies
included in the dataset are depicted in red.

a unique central normal cluster and some quite simple anomalies. It is clear
that while the first isolation tree makes use of its partitions in an effective way
isolating quickly the anomalies, the second focuses too much on normal points
and therefore it looses many chances to isolate data.

From the previous qualitative example it seems that not all the isolation
trees have the same role in the IF and their equal weighting might not be
the best choice. To get a quantitative feeling of the previous intuition it was
settled a more rigorous experiment: 100 isolation trees were randomly grown
following the standard procedure, creating the forest named �Ä��. Then each
tree was individually tested using the available labels together with the average
precision ?(·) and the histogram of their average precision plotted in Figure
32b. From this picture it easy to see that not all the isolation trees behave in
the same way: the range between the best and the worst is quite large and the
majority lies in between.

This analysis led us to the following idea, which is at the core of the proposed
TiWS-IF algorithm: why not to exploit the available weak supervision in order
to sort the trees and possibly to get only the best performing isolation trees?
This might reduce the model complexity, following the TinyML paradigm, and
fine-tune the detection algorithm towards the outlier definition expected by the
end-user of the DSS.
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With this idea in mind, we made additional analysis by sorting the isolation
trees according to three ordering strategies: i) the best strategy, the worst
strategy and the random strategy that are described in the next few lines.
The best consists in sorting the isolation trees according to their ? score in
descending order i.e. from the best tree to the worst; the worst strategy is the
opposite and sorts the trees from the worst to the best. The random instead,
chooses a random permutation of the trees and therefore it simply shuffles
them.

Using the best strategy, 100 different isolation forests were built using an
increasing number of trees: the first forest contained only the best isolation
tree, the second one only the two best trees and so on, until the 100-th forest
contained all the 100 trees like the standard Isolation Forest. At each iteration
the average precision of the forest was measured, leading to the blue line in
Figure 32c. The same was performed with the worst strategy (orange line) and
with the random (green dashed line); however, since the random permutation
is a non-deterministic strategy, it was repeated 100 times in order to get stable
results and to draw the green area.

Figure 32c shows quite interesting results that anticipate some aspects that
are also visible in real world datasets: the first and most evident is that good
performances can be reached with just 5-40 isolation trees instead of 100. This
means that many isolation trees are just overabundant or little informative. The
three lines obviously terminate with the same value (the standard Isolation
Forest performances) but follow quite different paths: the blue line starts very
well and rapidly reaches ?

Ä��
while the others require many isolation trees to

reach appropriate average precision.
Other interesting results can be observed in Figure 47 where a second toy

dataset is considered: a toroidal dataset with some anomalies in its center; also
in this case, the same type of experiments, previously performed on the first
toy dataset, were considered, but the previously discussed aspects became even
more evident. First of all, the random training procedure generates a lot of very
ineffective isolation trees, and very few good ones are present in Figure 33b.
This behaviour directly reflects on the IF construction: not only the BC0=30A3
performances were reached very quickly like in the previous toy example, but
the best achievable performances are much higher than the standard ones.
In this example, the best isolation tree alone is better than the whole forest,
and with few more trees the forest can reach even better results; indeed on a
scale between 0 and 1 with very poor standard performances around 0.2, the
best achievable performance exceeds 0.7. Unfortunately, due to the corrupting
effect introduced by the bad isolation trees on the left of Figure 33b, adding
more trees means poisoning the solution leading to quite bad standard results
(Figure 33c). Actually this effect is visible in Figure 32c too, but is less evident
and the gap between best performances (blue line) and the mean performances
(green line) is smaller. This suggests that in many datasets the IF results may
be improved, depending also on the structure of the dataset itself.
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(a) Simple dataset made up of two
clusters and some scattered
anomalies.

(b) Histogram of the average precision
scores obtained measuring the perfor-
mances of the isolation trees.

(c) Average precision of different forests built with
different strategies.

Figure 32: Toy example: double cluster dataset.
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(a) Normal data organized in a
square toroid and anomalous
points inside.

(b) Histogram of the average precision
scores obtained measuring the perfor-
mances of the isolation trees. There are
many very bad trees and some few good
ones.

(c) Average precision of different forests built with
different strategies.

Figure 33: Toy dataset: square cluster. A more complex example where the advantages
of carefully choosing the best isolation trees makes a huge difference in
performances.
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6.3.1 Real world datasets

We applied an experimental procedure similar to the one previously described
for toy datasets, on real-world data: such data were retrieved in [204] and
are adaptations of the UCI Machine Learning datasets [72] for the Anomaly
Detection task. Such datasets consists of labelled data coming from different
domains:

• biomedical (annthyroid, arrhythmia, breastw, cardio, mammography,
pima, thyroid, vertebral);

• environmental (cover, ionosphere, satellite, satimage-2);

• human language (letter, mnist, optdigits, pendigits, pendigits, speech,
vowels);

• others (musk, shuttle).

# data # features # anomalies contamination %

annthyroid 7200 6 534 7.42
arrhythmia 452 274 66 14.60
breastw 683 9 239 34.99
cardio 1831 21 176 9.61
cover 286048 10 2747 0.96
ionosphere 351 33 126 35.90
letter 1600 32 100 6.25
mammography 11183 6 260 2.32
mnist 7603 100 700 9.21
musk 3062 166 97 3.17
optdigits 5216 64 150 2.88
pendigits 6870 16 156 2.27
pima 768 8 268 34.90
satellite 6435 36 2036 31.64
satimage-2 5803 36 71 1.22
shuttle 49097 9 3511 7.15
speech 3686 400 61 1.65
thyroid 3772 6 93 2.47
vertebral 240 6 30 12.50
vowels 1456 12 50 3.43

Table 10: Summary of the main characteristics of the real word dataset employed in
this Chapter.
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In Table 10, the datasets are all summarized by providing the number
of samples, features, anomalies and the contamination, i.e. the percentage
of anomalies inside the datasets. The number of samples varies from few
hundreds (vertebral) to hundreds of thousands (cover), while the number of
features starts from 6 to 400 in the speech dataset. However, the most important
characteristic in this context is the contamination: some datasets have less than
1% of anomalies (cover) and reach above the 35% (ionosphere). All of them
have a number of anomalies that exceeds 30 in order to obtain reliable results
in the following analysis.

In Figures 34 and 35 the experimental results with the real world datasets are
reported, showing similar traits with the ones obtained with toy datasets: there
seems to be two peculiar behaviours, one described by a logarithmic-shape
curve (for example breastw and satimage-2) and the other by a bell-shape (like
cardio or vowels). Both of them reach the best performance very quickly, i.e.
with 5-20 isolation trees, but the bell-shaped starts with higher performances
than the standard, reaching very fast the best achievable scores and then
degrading. In this case, the gap between best and average results (blue and
green lines) is very large, suggesting the standard IF algorithm might have a
lot of room for improvements. It is not clear the underlying motivation of these
behaviours: we expect them to be dependent to the structure of the dataset
and the definition of outlier that, as explained in the Introduction, it is very
dependent on the domain and the end-user expectations.

6.4 ������-���������� ���������

One may ask how the analysis reported in the previous Section can be exploited
in order to improve the original algorithm, and if these results are just over-fitted,
meaning the best isolation trees here obtained are valid only for the employed
data, or if they can be generalized to new data points. In other words, can the
procedure that selects the best isolation trees lead to over-fitting results? Or,
on the contrary, might such procedure be used to learn the best performing
trees on a portion of the dataset and to apply those trees on other data coming
from the same dataset distribution? This procedure might help in many ways:
it can be used to reduce the number of trees and therefore the memory and
power consumption of the algorithm, but it might also be used to increase the
average performance of the forest.

Based on these questions, a new weakly-supervised algorithm, called TiWS-
IF, was designed and tested on multiple real word datasets. Starting from an
unsupervised training of the Isolation Forest, the TiWS-IF algorithm use the
available weak supervision provided by the domain expert to choose the best
performing trees and consequently the best performing forest. Defining ?(·) as
the average precision scoring function, argsort(E) the sequence of indexes able
to sort the vector E in descending order and argmax(E) the index associated to
the maximum entry of E, the procedure is defined in Algorithm 5. This takes as
input the standard Isolation Forest IF=) , i.e. the collection of =) trees )C grown
with the original unsupervised procedure, and the small set of supervised data
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Figure 34: Real-world examples: datasets with smallest contamination. It can be seen
how in some cases the gap between the random results (green distribution)
and best achievable (blue line) is quite large, meaning that there is a lot of
room to improve the original algorithm.
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Figure 35: Real-world examples: datasets with highest contamination. It can be seen
how in some cases the gap between the random results (green distribution)
and best achievable (blue line) is quite large, meaning that there is a lot of
room to improve the original algorithm.
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Figure 36: Application of the proposed algorithm to the real word datasets with the
smallest contamination, with supervision applied to 20% of the training
dataset. The blue curve shows the performance of the algorithm on the
supervised part of the training dataset, while the orange are obtained on
the test dataset (50% of the full dataset). The two black dots highlight:
the average precision obtained on the test set obtained with the forest
that maximises the average precision during training, the number of trees
needed to get these performances, and the average precision of the standard
algorithm during test.
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Figure 37: Application of the proposed algorithm to the real word datasets with the
highest contamination, with supervision applied to 20% of the training
dataset. The blue curve shows the performance of the algorithm on the
supervised part of the training dataset, while the orange are obtained on
the test dataset (50% of the full dataset). The two black dots highlight:
the average precision obtained on the test set obtained with the forest
that maximises the average precision during training, the number of trees
needed to get these performances, and the average precision of the standard
algorithm during test.
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Algorithm 5: TiWS-IF training
Data: IF=) = {)C } with C = Ä, . . . , =) , ⇡B = (-

B
, H

B
)

Result: TiWS-IF = {)C }, C 2 {C = Ä, . . . , =) }
B
) and B� initialization;

for C = Ä, . . . , =) do
B
)

C
 ?()C (-

B
), H

B
);

0  argsort(B) )
for 5 = Ä, . . . , =) do

IF 5  {):}, : = 0Ä, . . . , 0 5 ;
B
�

5
 ?(IF 5 (-

B
), H

B
);

1  argmax(B�)
TiWS-IF IF 5 with 5 = 0Ä, . . . , 01

⇡
B = (-

B
, H

B
). Note that )C (-) (and IFC (-)) returns the anomaly score given

by )C (IFC ) associated to every sample in - . Using ⇡B each tree is measured
according to the average precision metric ? and the sorting order 0 is computed.
Given this ordering, =) new forests are created in an incremental way, adding
one tree at a time: the first contains only the best tree, the second contains the
two bests and so on until the =) -th forest that contains the original forest. At
this point each forest is again tested using the available dataset, and the best
performing forest is saved and becomes the TiWS-IF. If more than two forests
reach the highest precision, the forest with less trees is discarded in favour of
the largest; this choice to select the most robust forest among the best ones,
mitigating possible over-fitting behaviours.

Given =B the number of labeled points, the average precision scoring
is $ (=)=B) while the sorting $ (=) log =) ). Excluding the anomaly score
estimation )C (-B

) that is anyway performed by the IF, this means that for small
number of labels the training time complexity is controlled by the number of
trees (leading to $ (=) log =) )), otherwise is $ (=)=B). Moreover by selecting
a smaller amount of trees the new forest reduce its testing time complexity to
$ (=A logk) and the memory requirements to $ (Ak) where A  =) .

Intuitively a cross validation phase might be added to the previous algorithm
to achieve a more robust ranking of the best trees. Unfortunately not only
increases the computational cost that needs to be maintained as low as possible,
but from numerical experiments it also seems not to bring the expected benefit.
This might be due to the strong unbalancement between labelled anomalies
and labelled inliers, indeed doing a stratified validation shows the model the
same anomalies many times, decreasing the effect of cross validation.

The proposed algorithm was tested over multiple datasets, splitting the full
dataset into two equally large sets keeping constant the outlier contamination.
Then, to simulate the role of the domain expert, a fraction of the training set
with the same anomaly contamination was labelled and used in the supervised
part of the algorithm. In all experiment, =) was set to be equal to 100, following
the guideline provided by the original Isolation Forest paper and the common
practice in the community.
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An example of the results is visible in Figures 36 and 37 where the algorithm
is tested on the same datasets shown in Figures 34 and 35, but with a supervised
fraction of the training set of about 20%. As expected, the reported results
resemble the ones shown in Figures 34 and 35, but they are different since now
the training algorithm does not see the full dataset (and its anomalies) but a
very small portion of those. In this picture the blue line shows the performances
obtained from each forest in the supervised portion of the dataset, and the
orange line represents the average precision that is measured using the same
forests but over the testing set. The vertical line lies in correspondence with
the maximal point reached by the blue curve, while the horizontal highlights
the performances obtained by the standard forest on the test set. Larger is
the interval between the two black dots, better is performing the proposed
algorithm. The first aspect that needs to be discussed is the performances of
the last forest, i.e. the last point of the curves in Figures 36 and 37, that depicts
the average performances of the standard algorithm in the training (blue) and
testing phase (orange); sometimes they perfectly overlap but unfortunately this
not always happen due to the presence of different kind of anomalies inside the
two datasets, since they are very few and different with respect to the whole
dataset. This therefore justifies the different shapes of the training and testing
curves that are very often, but not always, similar. The value of the proposed
approach lies in the fact that choosing the best trees in the supervised set leads
to maximise the chances to get a forest that outperforms the standard one even
in the test set, and this is clearly visible in Figures 36 and 37. The only dataset
where TiWS-IF fails is the speech dataset that has very high dimensionality
(400 features) compared with the contamination (1.65%). On the contrary, the
algorithm very often is able to choose a IF that reaches better performances
with respect to the standard ones and even in many cases it selects a point that
is close to optimal.

Obviously, the previously mentioned Figures 36 and 37 proved the TiWS-IF
validity, but it needs to be repeated to get robust results and to better quantify
the improvements lead by this choice of trees: since anomalies are few and
different a particular split of the data may affect the results; to filter out
the randomness introduced by this aspects, the algorithm is tested with 25
repetitions by shuffling the datasets before partitioning, with varying number
of labels but by keeping constant the contamination: the results are reported in
Figures 38-39 and 40-41. During the experiments, three values are collected:
the baseline i.e. the value of the standard forest on the test set, the number of
best trees learnt during training and the average precision measured in the test
phase using this subset of trees. Moreover to assess the quality of the proposed
solution, three popular approaches have been compared to TiWS-IF and to
the standard Isolation Forest: namely the Local Outlier Factor (LOF) [36], the
One-Class SVM (OC-SVM) [216] and the Histogram-based Outlier Score
(HBOS) [100].

The detection results are depicted in Figures 38-39, while in Figures 40-41
the memory savings due to the forest reduction can be noticed by means of the
tree cardinality of the selected forest. In Figures 38-39 the value of the standard
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forest on the test set is drawn using the blue color while the red represents
the improvement due to the proposed strategy, the green is the OC-SVM, the
purple LOF and in yellow the HBOS. From the Figures 38-39, Isolation Forest
and TiWS-IF are, overall, the best approaches on average, however there is
not an absolute winner (as typically happen when comparing several anomaly
detection approaches over different problems), but it depends on the dataset
structure: in some cases IF and TiWS-IF are the best methods, but in other
cases OC-SVM or LOF performs better. The biggest absolute improvement of
TiWS-IF over IF is measured on the cover dataset, where the average precision
goes from about 0.1 to 0.8, probably due to the huge quantity of available data
and repeatable anomalies. However, the second biggest relative improvement
is on the optdigits dataset that does not have any special property with respect
to the other datasets. In most of the cases TiWS-IF is able to improve over IF
when has just one labelled anomaly on the supervised set and with more labels
it shows a rapid improvement.

Looking at Figures 40-41 instead it is possible to see the number of trees that
the forest needs to get the results shown in Figures 38-39. The model reduction
is most of the times very large, indeed the bars seldom exceed 20-40, saving a
lot of memory and computational power since, as previously explained, both
memory requirements and time complexity scales linearly with the number of
trees. It is interesting to note that as the fraction of labelled data increases, the
algorithm is able to reduce more the size of the selected forest. Moreover the
algorithm avoids to remove trees in cases like musk and shuttle where the IF
performs already in a very good way.

One of the goal of TiWS-IF was to improve the average precision of the
anomaly detector, providing a small supervision. Additional experiments were
conducted to study the behaviour of other metrics describing the performance
of the detector, like the ROC AUC score, and the maximum F1 score obtainable
varying the classification threshold. In Figure 42 the improvements in these
metrics before and after the TiWS-IF algorithm are depicted with different
colors depending on the dataset. As expected, both of the pictures as positively
correlated meaning that improving the average precision leads to improve
the ROC AUC and the F1-score too. However the F1-score and the average
precision are more correlated as they rely on the same basic quantities, i.e.
precision and recall.

6.5 �����������

The detection of anomalies is a critical task in many real life scenarios, however
the majority of algorithms are not designed to run on edge devices, learning
from unsupervised data and getting the most out of few labelled data, when
available. This Chapter tried to cope with these challenges, primarily observing
that even one of the most popular and effective algorithm like the Isolation
Forest can be improved considering this scenario. This is due to the creation of
randomly grown isolation trees that, even tough they are the key aspect of the
original algorithm being very cheap to train, some of them risk to damage the
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Figure 38: Detection performances: results obtained on 20 real word datasets; for
each dataset, three different training sizes are analyzed, keeping the same
dataset contamination but increasing the number of anomalies from 1 to 3;
note that the number of labelled inliers changes accordingly. The algorithm
seems to be robust even with very small and unbalanced training sets.
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Figure 39: Detection performances: results obtained on 20 real word datasets; for
each dataset, three different training sizes are analyzed, keeping the same
dataset contamination but increasing the number of anomalies from 1 to 3;
note that the number of labelled inliers changes accordingly. The algorithm
seems to be robust even with very small and unbalanced training sets.
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Figure 40: Reduction performances: results obtained on 20 real word datasets; for
each dataset, three different training sizes are analyzed, keeping the same
dataset contamination but increasing the number of anomalies from 1 to
3; note that the number of labelled inliers changes accordingly. The
blue bars represent the median number of trees that the proposed strategy
needs to reach its performances, while the black interval shows the 5th and
95th percentile. As opposed to the standard algorithms, TiWS-IF needs a
fraction of memory and computations.
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Figure 41: Reduction performances: results obtained on 20 real word datasets; for
each dataset, three different training sizes are analyzed, keeping the same
dataset contamination but increasing the number of anomalies from 1 to
3; note that the number of labelled inliers changes accordingly. The
blue bars represent the median number of trees that the proposed strategy
needs to reach its performances, while the black interval shows the 5th and
95th percentile. As opposed to the standard algorithms, TiWS-IF needs a
fraction of memory and computations.
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Figure 42: Performance improvement measured with different metrics: average preci-
sion, ROC AUC curve and F1-score. The improvements are valued as the
difference between the score of the TiWS-IF and the corresponding IF.

solution accidentally. This work tries to solve this problem, designing a simple
solution to remove the unnecessary trees, keeping only the most informative
with the aid of few labels, named TiWS-IF. As shown in experiments on
real world datasets, the forest highly benefits from this procedure and allows
the practitioner to include some information in the unsupervised algorithm
without a retraining procedure. Not only the detection performances increase,
but also the memory and computational cost highly decreases, allowing the
implementation of even more constrained devices.

A similar approach might be used vice-versa to generate the maximum
number of isolation trees that fits into a given memory, that are the best with
respect to the available supervised data, or it can be applied to other variants of
Isolation Forest, like Extended Isolation Forest [107] and Isolation Mondrian
Forests [172].

Another very promising approach, which we reserve as future work, is to
exploit the insights described in [181], where the authors test alternative ways
to compute the anomaly score. Indeed, in the cited article, the authors show
that there may be other clever strategies to group the anomaly scores of the
ensemble of trees to obtain the final anomaly score. This could give more
robust results, inducing other strategies to select the best compressed forest.

As our work was inspired by DSS and dynamic settings, where data
availability change over time, as future works, we will investigate the capability
of handling the so-called concept drift, i.e. when the data distribution drifts and
the new labels that are collected might refer to related but different concepts.
Regarding this, we underline that the original Isolation Forest algorithm do not
naturally cope with concept drift, making such research direction relevant not
only in a TinyML scenario, but, more in general, in the application of Anomaly
Detection solutions in real world scenario.
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Furthermore, in a weakly supervised scenario, the risk of overfitting is real,
as the number of labels used for training is very low and the number of labeled
anomalies even more so. That said, experimental results show that the proposed
approach rarely goes into overfit, either because the anomalies are somewhat
similar to each other, or because the compression procedure saved the trees that
generalize best. However, two strategies may be used to mitigate this possible
effect: i) the simplest would be to choose more trees than the ones proposed
by the best forest, where best is referred to the small set of available labels.
This would give a less compressed forest, more similar to the original Isolation
Forest. Another strategy that the authors reserve as a future work, might consist
in using different labelled samples to rank the trees, and to rank the forests.
This indeed might increase the generalisation capabilities of the algorithm.





7
AC T I V E A NO M A LY D E T E C T I O N

In many fields, the application of ML techniques is severely limited by
difficulties in the labelling process [96, 276]. Large scale unlabelled data
sets might be available, but obtaining accurate labels for that data is costly,
requiring expert intervention, or in some case absolutely impossible. Anomaly
detection is one of such domains. Anomalies, by their nature are generally
hard to identify, and therefore obtaining accurate labels is usually a difficult
task. For this reason most approaches rely on unsupervised algorithms, where
labels are not needed.

Active Learning (AL) is a subset of ML where models are assumed to be
interacting with an oracle that can provide labels for a specific data point.
There are many variants of AL setups, but in its simplest formulation, a model
is given access to a relatively large unlabelled dataset, and it can subsequently
query the oracle for the correct label of specific data points [219]. This might
represent an user giving targeted feedback to the model, in order to improve
performance with as little information as possible. The hope is that doing
so, the model is able to direct the labelling efforts and minimize the costs
associated with the expensive labelling process.

To convince the reader about the advantages of performing active learning
strategies while learning a model here it is proposed a simple example of a
binary classification problem on a set of linearly separable points uniformly
distributed in the unit interval. We assume to have access to a large unlabelled
dataset, but since the labelling "budget" is scarse, at most : labels can be
obtained. We know the data are linearly separable, so we want to identify the
boundary between the two classes. We will try to do so by training a simple
Support Vector Machine (SVM) on the labelled points. If we were to randomly
label : points from the data, the resulting model’s decision boundary will
be halfway between the most extreme cases we were able to acquired from
both classes. If we assume the data to be linearly separable, the true decision
boundary might be anywhere in the interval between the maximum of one
class and the minimum of the other. We can analytically derive the expected
size of this region by considering that the expectation of the minimum of :
i.i.d random variables G8 ⇠ * (0, 1) is:

⇢ [min{GÄ, GÅ, . . . , G:}] =
1 � 0

: + Ä
+ 0 . (6)

From this we can derive the expected distance of the closest example of each
class to the real decision boundary to be proportional to Ä

:
. This means that the

model is quite slow in identifying the real boundary between the two classes,
since the error shrinks linearly with k. The main reason why the error has a
poor dependency on : is that, if we label a new data point that is not in the
uncertainty region, the new label is essentially useless to the model. As the
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error becomes smaller, so is the probability of randomly sampling an useful
label. This consideration gives an intuition to why the AL approach can be
useful. In fact, if we actively query points that are as closely as possible to
the midpoint of the uncertain region, the maximum error is cut in half with
new each label obtained. Therefore, the error under this approach shrinks
proportionally to Å�: , which is an exponential decrease. This algorithm is
essentially performing a binary search for the optimal solution. In [149] the
authors show that the reasoning for this simple one dimensional case can be
extended to binary classification with SVM in higher dimensions.

It is important to note that, in order to sample the optimal point, we need to
evaluate each candidate separately. This might be very expensive to do, since
it might require to evaluate the model’s output for the whole dataset.
Also, identifying the model’s "uncertain" region might require the solution of
complex non linear optimization problems. In general, for most applications,
rather than querying the "optimal" point with computationally expensive
operations, one can resort to simple heuristic rules to simplify this step. In later
Sections, we will rely on the second approach, since we are not particularly
interested in exact bounds on the model’s error, and good simple heuristic
rules can significantly reduce the overhead introduced by the AL procedure.

The toy problem of binary classification is closely related to the AD task. In
the AD case, the binary classification is usually very unbalanced. In practical
application, things get more complicated, and we are unlikely to see the same
exponential relations obtained for this simple case. However, most observations
made remain very relevant, and will be crucial in understanding the motivations
behind the model introduced in later Sections.

The popular definition of anomalies, i.e. observations which deviate sig-
nificantly from the majority of the data and do not conform to a well defined
notion of normal behaviour is too general and might not be applicable in
every context. Anomalies are very domain dependent and samples considered
anomalous in a context are normal in another and vice versa. Unfortunately
to train a detector on a specific context requires labelled data that are often
missing, therefore it is common practice to rely on unsupervised models: even
if they are based on general notions of anomaly, they can return an anomaly
score without the need of expensive labelled data. In this Chapter the goal is
to develop a model that starting from an initial unsupervised solution, is able
to tune it towards the user definition of anomaly, by interacting recursively
with the user. This, following the Active Learning approach, allows to achieve
the same or even better results w.r.t. a supervised model, with less labelled
samples.

7.1 ������������

Anomaly detection is commonly tackled in many industrial scenarios, such
as credit card fraud detection [97], insurance fraud detection [81], insider
trading detection [69], medical anomaly detection [255]. In these dynamic
and often complex contexts, the problem of detecting anomalies is crucial in
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order to predict and avoid failures as well as to perform fault detection. In
many industrial processes in fact, data-driven approaches for smart monitoring
(for example predictive maintenance) have a key role, allowing to identify
and isolate faults and to prevent future sudden failures. To solve this problem,
anomaly detection represents an efficient solution. Generally, in this scenario a
great amount of collected data are available but, since labelling is an expensive
and time consuming process, there is a lack of ground truth labels, undoubtedly
stating whether or not a point is anomalous. The learning problem therefore
is unsupervised and the algorithm can just blindly look at the structure of
the dataset, without a clear definition of what is an anomaly from the user
perspective. Therefore unsupervised algorithms can only detect samples that
exhibit some general property different to the rest of the dataset, for example
some approaches look for points far from the majority, or detect points living
in low density areas.

Unfortunately, anomalies are strongly domain specific [85]: as stated above,
since no official definition is given, the concept of what an anomaly is entirely
relies on the application in question. Specifically, it may happen that a set of
data has different anomalies based on the given application domain and that the
same data may be considered anomalous in one domain but normal in another
[217]. For instance looking at data acquired by a measuring instrument, the
manufacturer might define anomalies as events where the instrument has a
faulty behaviour while the end-user might be more interested in events where
the measured process behaves in a previously unseen way [27]. As a direct
consequence, training a domain specific anomaly detector would require a full
set of labeled data to capture the user definition of anomaly.

In real world applications, assigning labels to input data pose a considerable
challenge to take into account [276]. In order to train reliable models, a large
amount of labeled data is needed but, in practical scenarios, labeled examples
are limited or often too expensive and time-consuming to collect, leading to a
huge issue to face. Obtaining labels requires an often too expensive cost to take
care of since the labeling procedure is usually carried on by a human domain
expert who manually labels each point with a time-consuming and demanding
routine. Moreover, by definition anomalous points are rare and difficult to spot,
making the problem a difficult challenge to be solved.

Due to the difficulty of finding labeled points, in practical contexts anomaly
detection is often treated as an unsupervised learning task. For the classical
unsupervised anomaly detection problem, the purpose is to detect outliers with
no use of labeled data based on the fact that normal data greatly outnumbers
anomalous data, and anomalies are very different with respect to inliers.
Unsupervised anomaly detection models are not tuned for the precise domain
of application but are generally based on identifying rules based on specific
data characteristics, such as density based algorithms, distance based methods
etc. [36, 110, 112, 138]. However recent literature [61, 217] distinguishes the
outliers to the anomalies: the first are the points highlighted by an unsupervised
model, while the second are the ones the user actually sees as anomalous. As
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Figure 43: Projection of the vowels dataset on 2 dimensions using Principal Component
Analysis. Purple data points are normal data, yellow points are anomalous
data. Two aspects are clearly visible: i) it is impossible to separate anomalies
from normal data with only two features and ii) anomalies tend to form
a different class and might be quite different from general outliers. Not
all the data points lying in low density areas or far from the majority are
defined as anomalies, but just the ones lying in a specific part of the space.
As a consequence, in the considered scenario, identifying anomalies might
be a challenging task for an unsupervised detector.

the unsupervised model is not directly tuned to the detection of the anomalies,
the outliers might weakly correlate with them.

Therefore, running unsupervised anomaly detection algorithms may be risky
and often misleading: as stated above anomalies are strongly domain dependent
and as a direct consequence, an unsupervised detector might not identify
anomalous data which should be considered as such, as well as could wrongly
detect as anomalies points which are normal based on the context taken under
consideration [61]. Figure 43 presents a visual representation of the strong
connection between anomalous data points and context domain. Specifically,
the plot shows the two-dimensional projection of the vowels dataset [204]. As
it can be seen, anomalies are not defined just as data points lying far or in
low-density regions, but they form a class with a specific pattern defined by
domain-experts, making complicated for the automatic detector to correctly
identify them.

Among the unsupervised models, as stated in Chapter 4 a very popular
anomaly detection algorithm is the Isolation Forest (IF) [160, 162], which
presents a very different approach w.r.t. the majority of models: instead of
creating a profile for normal data, it explicitly tries to isolate anomalies. To do
it, IF relies on two assumptions: anomalies are fewer in number and they have
very different attributes compared to normal data.
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Figure 44: Active learning core structure. At each iteration a novel point is actively
selected from the unlabeled set of data and the corresponding label is
requested. Based on the received information, the model is modified.

In Decision Support Systems (DSS) [132], data streams are analysed in
order to quickly extract strategic decisions on complex problems. Such process
is monitored by users who frequently interact with the system and represent the
actual decision maker of the whole process. In such framework, the proposed
algorithm ALIF, represents an extremely appealing approach. Specifically,
if a DSS is present, as a direct consequence, a user is already overseeing
the process and inspecting data points: considering an unsupervised anomaly
detection problem, inexpensive labels may be obtained in a fast way and using
ALIF the model may be inexpensively updated.

In this Chapter we describe a procedure able to tune the detector model on
domain specific anomalies by interacting with a human expert. To perform
the proposed tuning method, not every training data are presented and labeled
but a subset is automatically selected so that the number of interactions
between the system and the human is minimised. The core idea is to ask labels
corresponding to the most significant points to reduce the labeling cost and at
the same time to maximize the detection performance. As a direct consequence,
the proposed procedure may be regarded as an Active Learning (AL) based
model [144].

Indeed AL represents a training approach particularly suitable when labeled
samples are too expensive or difficult to obtain. Specifically, AL is a particular
ML algorithm based on a key idea: despite the shortage of labeled data, high
accuracy results may be obtained if the training algorithm is allowed to choose
the points to be labeled and learn from them [218]. An AL algorithm asks
an oracle to label the data considered most informative with an iterative
approach. Doing so, since the queried points are directly selected by the
learning algorithm, the amount of necessary labeled data is much smaller than
that required for classical supervised ML approach. Figure 44 shows the core
structure of any AL algorithm: at each iteration the model is updated using the
labelled dataset, and is allowed to ask for a new label in the unlabelled dataset.
This process repeats until the model reaches sufficient performances or when
the number of iterations reaches the maximum budget.

This Chapter focuses on the Isolation Forest detector, and suggests a strategy
to tune it towards the user definition of anomaly. In this work the authors
compare two AL query policies to ask the user new labels, and other two
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policies to update the internal structure with minimal computational effort. The
goal is to increase the performance of the detector as much as possible, keeping
very low both the labelling effort and the updating procedure. Moreover this
method has two key advantages over the supervised and computationally
expensive models: as it relies on an initial unsupervised training, it can start
to work when there are no labels, but more importantly it can work even if
instances from only one class are labelled. This is particularly useful when
obtaining labels from the anomalous class is very uncommon or expensive.

The rest of the Chapter is organized as follows. Initially, in Section 7.1
we outline the essential details about the Isolation Forest in detail useful to
understand the proposed work, and we indicate an existing active learning-
based anomaly detection algorithm that will be used as a benchmark in this
work. Then, in Section 7.2 we illustrate the proposed model ALIF: namely, we
describe the strategies suggested to query the points as well as the approaches
employed to update the model. In Section 7.3 we test ALIF, comparing it with
other models in relation to multiple real set of data. Finally, in Section 7.4 we
draw conclusions for the present work.

������� ����� Similarly to Random Forest [111], Isolation Forest
training phase constructs an ensemble of decision trees, also known as isolation
trees (iTrees), relying on the fact that anomalies are easier to be isolated, i.e.,
partitioned from the rest of the data, due to their distinctive features. First,
Isolation Forest randomly sub-samples the dataset so that each iTree is obtained
with a different set of data. Then, the structure of an iTree is generated in a
completely random way: each partition is produced with a random selection
of an attribute value from the subset at disposal and by the choice of the split
value, selected randomly in the range of the picked attribute. This recursive
procedure is repeated until all points are isolated or a predefined limit height is
reached. After that, a novel random sub-sample is selected and the isolation
procedure is repeated, in order to create a new random iTree. Once the training
phase is completed and every iTree is fully grown, data traverse the different
iTrees and its depths, i.e., the number of edges traversed from the root node to
the external node containing it, are collected. Based on these depths ⌘D, also
known as path lengths, the anomaly score is computed, i.e., an indicator of the
likelihood that a point is an anomaly. Differently to Chapter 4, in the present
Chapter we will make use of the superscript D to denote the depth ⌘ obtained
by the model trained in the traditional unsupervised way.

Let G 2 - , then the corresponding anomaly score is defined as

B(G) = Å�
⇢ (⌘D (G) )

2 (k) (7)

where ⇢ (⌘D (G)) is the average path length of G with respect to all trees and
2(k) is a normalization factor with the sub-sample set size as input.

Recall that, 2(k) defines the average path length of an unsuccessful search
in a binary search tree computed with a set of cardinality k. Based on Eq. (7):
when ⇢ (⌘D) ! k � Ä, B(G) ! � and it is quite safe to consider G a normal
point; on the contrary when ⇢ (⌘D) ! �, B(G) ! Ä and G is most likely an
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Symbol Description
- generic sample set
-
B set of labelled training points

-
D set of unlabelled training points

=- number of observations in -
=B number of observations in -B

=D number of observations in -D

G 9 9�th queried point
� forest
)C tree
=) number of trees
! leaf
=! number of leaves
% partition of - made by !
⌘! depth of !
� number of inlier points in !
$ amount of anomalies contained in !
⌘
D
(G) "unsupervised" path length of generic point G

⌘
B
(G) "supervised" path length of generic point G

: (!) color of leaf !
_) (G) compute leaf containing G with respect to tree )
� 9C compute the path length of G 9 with respect to tree )C
� 2 R=)⇥=D matrix of elements � 9C

Table 11: List of symbols used.
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anomaly; when ⇢ (⌘D) ! 2(k), namely when the average path length of G
is close to the normalization factor, then B(G) ⇡ �.Ñ and the sample has no
recognizable anomalous factor. Note that, in order to classify whether or not
a point is anomalous, it is necessary to define a score based border value,
establishing a division between anomalous points and normal ones. However,
the choice of such border value is strongly data dependent, relying upon its
target subject, making it not a trivial task to be managed [113].

The proposed algorithm starts by growing a standard Isolation Forest. After
that, an active learning based approach is carried on: in an iterative way, the
model is allowed to ask for a point to be labeled, obtaining the true information
about its nature as a direct consequence. Based on it, the inner structure of each
tree is modified to exploit the incoming information and to improve/calibrate
the model if necessary.

A similar active learning anomaly detection algorithm using an optimization
based approach is presented in [61]. The paper describes an Active Anomaly
Discovery (AAD) method where the points having the highest anomaly score are
presented to an expert analyst in an iterative way, requesting the corresponding
true label. Based on the information received, the algorithm tries to place
the points labeled as anomalies as close as possible to the higher part of the
model. Specifically, the model considers the structure defined by the Isolation
Forest and associates to each leaf a weight value, starting from a uniform
fixed value and, based on the feedback received, such weights are iteratively
updated. Such updating approach is performed with the use of an iterative
optimization problem, where the optimal weights are computed so that every
labeled anomaly has a score which is higher with respect to the labeled normal
points ones. Note that, in this approach the partitions computed by the Isolation
Forest are not modified, only the corresponding weights are. The proposed
method is applied into a tree-based detector [62], where the described updating
approach is used into the Isolation Forest algorithm. Such algorithm is called
IF-AAD.

Here we present a novel approach, called Active Learning-based Isolation
Forest (ALIF), which differs from the aforementioned works because of its
easy yet efficient formulation: independently from the size of the input set, the
algorithm will execute in constant time, modifying the average path length of
the input points but leaving unchanged the Isolation Forest partitions, with
the perk of using both current and past information. Differently from IF-AAD
and Random Forest, the proposed approach does not need to pass through an
optimization procedure, leading to a much lighter update. In Section 7.3 we
report the performance benchmarking of our approach, IF-AAD and Random
Forests.

7.2 �������� �����

In this work we present an adaptive anomaly detection model for fixing leaf
depths according to labels received from domain experts. The core idea of the
proposed approach is presented in Algorithm 6 and relies on developing an
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Isolation Forest based model in which the detector has the possibility to query
domain experts for labels. In this iterative environment, once the Isolation
Forest is fully grown, the algorithm can choose the points to be labeled and,
based on the novel information achieved, its core structure is modified, in order
to obtain a strong increase in the performance, with the use of only a limited
number of labeled points. For every iteration, such modification only takes
place in the external node containing the queried point, maintaining the main
structure of the Isolation Forest untouched. In this way, the main goal is, given
the novel information, to update the Isolation Forest structure, readjusting it
based on the labeled points.

Algorithm 6: ALIF((GB, HB), -D
, �)

Data: labeled point (GB, HB), unlabeled dataset -D, forest �
Result: updated forest �, query point GB
�  LeafDepthUpdate((GB, HB), �);
�  GetDepthMatrix(-D, �);
G
B
 GetQuery(�)

Algorithm 7: LeafDepthUpdate((GB, HB), �)
Data: labeled point (GB, HB), unlabeled dataset -D, forest �
Result: updated leaf !
for )C in � do

!  _)C (G
B
) ;

if HB == anomaly then
$  $ + Ä ;

else
�  � + Ä ;

⌘!  ⌘
B
(: (!))

Algorithm 8: GetDepthMatrix(-D
, �)

Data: unlabeled dataset -D, forest �
Result: updated leaf !
for )C in � do

for GD
9

in -D do
!  _)C (G

D

9
) ;

� 9C  ⌘
B
(: (!))

Specifically, the proposed approach may be outlined as follows. Let - =
{G

Ä
, . . . , G

=
} be a generic training dataset, where G8 2 R<, 8 = Ä, . . . , =. First,

the Isolation Forest algorithm is trained, leading to a forest � = {)C }
=)
C=Ä of

fixed number =) of fully grown iTrees. By construction, ) = {!;}
=!
;=Ä namely

each tree ) is characterized by a variable number of leaves !. We use the
following form to describe each leaf !: ! = (%, ⌘! , �,$) where
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!

: (!) =
Ä

Å

✓
Å � Ç

Å + Ç
+ Ä

◆

Figure 45: Every time a novel point is queried and the corresponding label is obtained,
every iTree is investigated and the leaves containing the queried point
are considered. A visual representation of the color of a generic leaf
! is displayed: green dots represents normal labeled instances; labeled
anomalies are depicted by red dots. The corresponding color : (!) is
computed using Equation (8).

• % defines the partition of R3 made by !, describing where a leaf is
located with respect to the input space;

• ⌘! is the depth of !;

• � refers to the number of normal points in !;

• $ specifies the amount of anomalies contained in !.

As a direct consequence, initially each data G 2 - is assigned with the
corresponding average path length ⇢ (⌘

D
(G)) and anomaly score B(G) as

computed by the Isolation Forest.
From this step, the proposed iterative active learning approach can start.

At each iteration, a point GB is selected and the corresponding true label HB
is requested. Accordingly, each iTree ) is investigated, determining the leaf
where the queried point lies, and modified as a result. We define -D = {G

D
},

-
B = {G

B
} and . B = {H

B
} respectively the set of unlabeled training points,

the set of labeled inputs and the set of corresponding labels. Note that, by
definition we have that - = -D

[ -
B.

The key intuition behind the modification of the structure of each iTree is very
simple. First, a queried point is selected and the corresponding trusted label
is obtained. Secondly, for each ) of the model, the external node containing
the point is analysed: its depth is updated based on the achieved information
so that true anomalies are located closer to the root node while true normal
points are far away from it.

Based on this scenario, it is important to define two essential yet independent
tasks on which the entire algorithm relies on:

i. Update strategy: The actual approach employed to modify the classical
Isolation Forest model;

ii. Query strategy: The plan of action to choose the optimal method to
select the queried points.

Both tasks are detailed in the following.
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������ �������� Let ! be the leaf under investigation. Then, based on
the labeled points contained in it, i.e., based on the proportion of anomalies
and normal points contained in !, we define the color of !

: (!) =
$ � �

$ + �
, (8)

where � and $ are respectively the number of labeled normal points and the
number of labeled anomalies sampled in the leaf. Therefore, the color of a
leaf defines its inner structure, describing how the total amount of labeled data
contained in it is distributed. Specifically, it outlines the probability of a leaf to
be anomalous with respect to the labeled data in it. Based on the color of a
leaf, the corresponding fixing procedure is performed. Figure 45 shows how
the color of a leaf is computed in a visual way.

Every time a novel point is queried, the model is updated based on the
received information. In relation to each iTree, the update exclusively takes
place with respect to the leaf containing the queried point. Specifically, let us
consider a generic iTree ) : once the queried point GB is selected and the true
label is obtained, ) is investigated and the leaf containing GB is considered. Its
depth ⌘D (G) (computed by the Isolation Forest) is forgotten and substituted
with a supervised value ⌘B (G), entirely depending on the supervised data
contained in the leaf, i.e., on � and $. Algorithm 7 summarizes the above
described procedure.

Equations (8) is used to obtain a leaf coefficient value : (!), describing
the structure of the leaf with respect to the current labeled point as well as
taking into account the past information received. Specifically, based on the
information in use, the corresponding leaf value becomes

: (!) =
Ä

Å

�
: + Ä

�
. (9)

For consistency with the rest of the manuscript we renamed the function in (9)
as : . Note that, using Equation (9), the codomain of function : (!) is given by
the closed interval [�, Ä]. Specifically, the following evaluations are made:

· If ! contains only normal points and it is fully labeled, then : (!) ! �;

· If ! contains only anomalies and it is fully labeled, then : (!) ! Ä;

· If ! has a balanced number of both anomalies and normal points then
: (!) = Ä

Å
.

Obviously : (!) is computed only for leaves containing some labelled data
while the algorithm keeps untouched the leaves that are not actively sampled.

The novel supervised depth ⌘B (:) takes Equation (9) as argument. Specifi-
cally, we define two different approaches to compute ⌘B (:) defined as:

1. Piece-wise Linear supervised depth

⌘
B

(:) =

8>>>>><
>>>>>:

Å:

⇥
2(k) � ⌘<0G

⇤
+ ⌘<0G , if �  : <

Ä

Å

Å:

⇥
⌘<8= � 2(k)

⇤
+ Å2(k) � ⌘<8=, if Ä

Å
 :  Ä

(10)
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where ⌘<0G and ⌘<8= are respectively the minimum depth and the maxi-
mum depth of the Isolation Forest computed during the unsupervised
training.

2. Logarithmic supervised depth

⌘
B

(:) = �2(k) log
Å
(:). (11)

Note that, in Equations (10)

· when : (!) ! �, then ⌘B (:) ! ⌘<0G;

· when : (!) ! Ä, then ⌘B (:) ! ⌘<8=;

· when : (!) = Ä

Å
, then ⌘B (:) = 2(k).

Regarding the logarithmic depth described in Equation (11), when : (!) = Ä

Å
,

then ⌘B (:) = 2(k). Nevertheless, when : (!) ! Ä, then ⌘B (:) converges to �
and, analogously, ⌘B (:) ! +1when : (!) ! �. Unfortunately, this makes the
logarithmic choice quite unstable when normal points are labelled. However,
it is possible to apply a threshold on the logarithm to saturate it, leading to a
behaviour very similar to the piece-wise linear function. Figure 46 plots the
relation connecting the leaf value : (!) with the supervised depth ⌘B (:) for
both the piece-wise linear depth and the logarithmic depth.

It is important to note that, the proposed update strategy does not require to
fully retrain the forest but, on the contrary, when novel information is acquired,
ALIF only modifies the actively sampled leaves, leaving the rest unchanged.
Therefore, the time complexity of the update strategy is linear with respect to
the number =) of trees in the Forest.

����� �������� The idea of incorporating expert feedback in unsuper-
vised anomaly detection algorithms aims at improving the achieved perfor-
mance adding a relatively small computational and labelling cost. To improve
the model in an optimal manner, the choice of the proper strategy to select
the points to be queried must be established. Beyond the employed strategy to
modify the structure of the Isolation Forest based on the novel information in
fact, the proposed model is significantly based on the choice of the queried
points. Specifically, for the successful outcome of the method, choosing for the
most appropriate point to be labeled is a key factor which could compromise
its outcome. In classical active learning scenarios, several possible query
strategies are presented [218].

For any iTree )C 2 � and input point G 9 2 -D, let _ be defined as

_)C (G) = !, (12)

namely, function _ assigns at each input point G 9 the leaf containing it with
respect to tree )C . Now, using Equation (12), we define

� 9C B ⌘
B

(: (_)C (G 9))) = ⌘
B

(: (!)).
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�

Figure 46: Visual representation of the two possible definitions of supervised depth.
The blue function represents the piece-wise linear depth: when the leaf
value : (!) is close to 0, i.e., the leaf is fully labeled with normal points,
the novel supervised depth of ! is tends to the maximum depth; if : (!)
takes a value close to 1, the leaf will be push to the minimum depth, as this
situation corresponds to ! fully labeled of anomalies. The red function
shows the logarithmic depth: in the range extremes � and Ä, a threshold
value is applied and the depth values are forcibly set to respectively ⌘<0G

and ⌘<8=.

Then, let � 2 R=)⇥=D be the following matrix

� =

26666664

�ÄÄ · · · �Ä=D

... . . . ...
�=)Ä · · · �=)=D

37777775
.

The choice of the point to request fully relies on matrix �. Details of the design
of matrix � can be found in Algorithm 8.

Based on �, we define the two following query strategies:

1. Maximum uncertainty: at each iteration the point selected to be labeled
G
B is the one where the iTrees disagree the most, namely

G
B = argmax

9=Ä,...,=D
std

C=Ä,...,=)
� (13)

By doing so, the intended purpose would be to give the greater assistance
to the model. Specifically, at each iteration we ask for the label of the
data point where the model is more unsure, adding information with
respect to the most uncertain data.

2. Most anomalous: at each iteration the point selected to be labeled GB is
the point having the highest anomaly score value in the current iteration,
namely

G
B = argmin

9=Ä,...,=D
mean

C=Ä,...,=)
� (14)
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This query strategy is the less expensive and more straightforward one
and involves asking for the label of the point regarded as the most
anomalous.

Note that, in order to make the proposed approach feasible, for each of the
listed strategies, each point may only be queried once. When a point is queried
and the corresponding label is obtained in fact, there is no need to ask for its
label again since we are considering the information received undoubtedly
true.

From a business process point of view, querying the most anomalous point
may represent a sort of DSS, providing assistance to the decision making
process and at the same time extracting information from a significant amount
of data. As stated above, a DSS software gathers data considered the most
informative and, based on the information achieved, it generates analysis tools
useful for the decision making process.
In this scenario when a point is strongly considered an anomaly from the
system, the domain expert is trigged for a checking. In this situation, the expert
attention is drawn: the point has to be analysed in order to provide the actual
corresponding label. Doing so, novel data information is obtained, combining
the expert’s knowledge together with the computerized system. In this way, the
expert may validate the decision-making process and at the same time quickly
extract useful information for the decision-making process.

From a model based viewpoint, asking for the point where the iTrees are
more uncertain may be the most relevant strategy. With this approach in fact,
the assistance provided by the expert aims at addressing the decisions where the
model struggles the most and, doing so, at updating the most critical situations.
Of course, given the unbalanced number of anomalies, it is highly likely that,
using the maximum uncertainty strategy, the vast majority of the labeled points
would be normal data, making it possibly less suitable in a more practical
prospective.

As specified by Equations (13) and (14), ALIF query strategy corresponds
to searching along the number of rows and columns of matrix � and has time
complexity $ (=-=) ).

7.3 �������

In this section, we analyse the performance of ALIF, matching both the
proposed update strategies with the two described query approaches. Doing
so, we hope to obtain a full and detailed evaluation of the presented model,
with the purpose of analysing the efficiency of each combination as well as
giving meaningful guidance on the proper use of the proposed strategies.

Firstly, we tested our approach on synthetic datasets like the challenging
shape depicted in Figure 47, where the normal data make up a square toroid
and the anomalous data lie inside it. In this kind of datasets, the Isolation
Forest perform quite badly and there is a lot of room for improvement as it
struggles to separate in few steps the anomalies: in this case it is much easier
to wrongly separate normal points w.r.t. anomalies, indeed the first iteration
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Figure 47: Test of the algorithm on a square toroidal dataset: anomalies lie inside of a
box made up of normal instances. This setting is particularly challenging
for the Isolation Forest algorithm as it is much easier to quickly separate
normal points (depicted in purple) w.r.t anomalies (yellow). The anomaly
score on test samples is shown on the second and third panel: the yellow
is assigned to the points having the highest anomaly score, the purple
viceversa. In the second row of panels the performances of the detector
at each iteration is depicted: the area under the ROC curve (auc) and the
average precision (ap) measured on the test set quickly improve.
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of the model corresponding to the unsupervised training gives the highest
anomaly score to the normal bottom left point of the toroid. On the contrary,
at the 25-th iteration the model has learnt the correct function and is able to
perfectly classify all the points. This is also visible in the panels of the second
row of Figure 47, where the performance of the detector at each iteration is
depicted with lines having different colors. As the model is allowed to query
new points, the average detection performance quickly improves.

We decided to test the model on a set of Äá real data openly available [72,
204]. Table 12 presents the dataset used to test the performance of the proposed
model. These come from different domains like medicine, industry and natural
sciences and are characterised by various number of points as well as percentage
of anomalous data. Defining the contamination as the ratio between the number
of anomalies and total number of samples of the dataset, they are characterized
by a wide feature range between Ö to Ä�� and a contamination percentage
between �.à% and ÇÖ%. It is very important to highlight how most of these
datasets were built: they are adaptations of multi-class classification datasets
to the anomaly detection task where one of the classes is under sampled and
labelled as outlier. This means that points considered outliers are not just points
randomly scattered in the features space like general anomalies, but they live
in specific positions of the space that can be hard to be defined without labels.
In this context, weakly supervised methods prove their efficacy, starting from
an unsupervised guess, and improving continuously as labels are included in
the model.

We used the average precision score metric to measure the results obtained.
Splitting equally the dataset in training and testing set, we carried on a number
of ÅÑ queries, and the experiments were conducted Ñ� independent times
to study the performances distribution. The experiments were performed on
equipment with Intel Core i7-6800K CPU and 32 GB RAM.

First, we tested the four possible combinations of the two proposed update
strategies together with the two query strategies so as to determine the best
combination with respect to the majority of the considered test sets. Figure 48
shows the obtained results.

Given that the first point of the curve represents the performance of the fully
unsupervised Isolation Forest, it can be observed as, broadly speaking, all four
proposed matches represent an improvement with respect to the performance of
the Isolation Forest. The two trials of the "most anomalous" query are depicted
in solid line, while the "maximum uncertainty" in dashed line. Even if there are
some exceptions, in most cases the first policy seems the one having the fastest
improvements. This is a very interesting aspect since the "most anomalous"
strategy is the cheapest and most natural policy among the two considering
the DSS scenario previously described. Concerning the updating strategy, as
expected, the piece-wise linear is the one having the most stable improvements
in the dataset and among the datasets. As a direct consequence, we decided to
use the combination "most anomalous - piecewise linear" for the comparison
to the other baseline and state-of-art competitor.
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Dataset Instances Features Anomalies Contamination
AnnThyroid 7200 6 534 7.42%
Breastw 683 9 239 35 %
Cardio 1831 21 176 9.6%
Cover 286048 10 2747 0.9%
Ionosphere 351 33 126 36%
Letter 1600 32 100 6.25%
Mammography 11183 6 260 2.32%
Mnist 7603 100 700 9.2%
Optdigits 5216 64 150 3%
Pendigits 6870 16 156 2.27%
Pima 768 8 268 35%
Satellite 6435 36 2036 32%
Satimage-2 5803 36 71 1.2%
Thyroid 3772 6 93 2.5%
Vertebral 240 6 30 12.5%
Vowels 1456 12 50 3.4%
WBC 278 30 21 5.6%
Wine 129 13 10 7.7%

Table 12: Set of data used in the experimental phase. The first column gives the
name of the dataset; the second column describes the number of instances
contained in each set; the third column defines the total amount of features;
the fourth column gives the number of outliers; the last column presents the
contamination rates.
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Figure 48: Performance of the four combinations of the proposed strategies with
the datasets described in Table 12. As a general result, it can be noticed
that querying the most anomalous point represents the most appropriate
choice, overall leading to quicker improvements of the performance. When
it comes to the update strategies, both the linear and the logarithmic depths
seem to represent a reasonable choice. However, the linear depth appears
to moderately be more stable.
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As our approach ALIF essentially relies on designing an active learning
based modification of the classical Isolation Forest, we decided to compare
it with other tree based models: a fully supervised model, i.e. the Random
Forest, and a weakly supervised model, the Isolation Forest - Active Anomaly
Detection (IF-AAD). The RF represents the baseline since it is the most well
known but simple classification approach; unfortunately it requires samples
from both the classes inlier/outlier and it is computationally expensive as every
time the user labels a new data point the forest is retrained. As the RF does
not have a default method to query its points, in the following comparison the
points given to the RF for training are the points queried by our ALIF. On the
other side IF-AAD is a active semi-supervised model that does not need both
class labels and is available online1.

Figure 49 and Table 13 show the benchmark results: it is prominent that
ALIF obtains the finest results with a very little number of labels, generally
outperforming IF-AAD. Due to the strong imbalance between inliers and
outliers RF receives quite late both labels from the two classes, leading to poor
detection performances: in breastw, satellite, and satimage-2 the querying
process never got them over 25 iterations and 50 independent repetitions

7.4 �����������

In this Chapter a modification of the unsupervised Isolation Forest named ALIF
has been suggested to improve the performance of the standard algorithm. Due
to the lack of fully labelled datasets, Anomaly Detection is often performed by
means of unsupervised models. However, as anomalies heavily depend on the
context and are very domain specific, unsupervised models may be unable to
detect them because of different definition of anomaly. To solve this problem
we suggest a model that starting from an unsupervised model, iteratively tunes
the model towards the user-definition of anomaly. This allows to enhance the
detection performances, avoiding the need to fully label the training dataset and
keeping as low as possible the number of required labels. Indeed this approach
takes advantage of the Active Learning framework where the model is able to
query the user and select the most interesting samples to label. ALIF relies on
two important and inter-connected steps: the query policy that selects the point
to be labelled, and the model update policy that allows the model to actually
learn from the new query. From experiments performed on real datasets it
turned out it is better to ask to label the most anomalous point, leading to a
cheap and natural query strategy in practice. Concerning the update policy, the
model does not need to fully retrain the forest, but needs just a simple update
of the leaf depth, with a cost $ (=) ). Regarding the query strategy, the required
cost is $ (=-=) ). The cheap time complexity together with the fact that ALIF
does not need labels of both anomalies and normal points provides a great
advantage compared to other state-of-art algorithms. Comparing ALIF with
other methods, it turns out it is also generally much faster in the learning of
the correct anomaly definition, when the labelling effort needs to be kept low.

1https://github.com/shubhomoydas/ad_examples

https://github.com/shubhomoydas/ad_examples
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Figure 49: Comparison of most anomalous - piece-wise linear ALIF with IF-AAD
and RF. It can be observed that, in general our method represents the best
course of action, having the highest performance score usually with a very
small amount of labeled data.
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anom-log anom-lin unc-log unc-lin
IF-AAD RF ALIF RF ALIF RF ALIF RF ALIF

annthyroid 0.34 0.11 0.41 0.11 0.41 0.11 0.44 0.22 0.45
breastw 0.93 0.00 0.98 0.00 0.98 0.28 0.99 0.48 0.98
cardio 0.56 0.15 0.63 0.16 0.63 0.34 0.57 0.49 0.69
cover 0.18 0.20 0.21 0.18 0.20 0.25 0.09 0.46 0.19
ionosphere 0.84 0.08 0.85 0.08 0.85 0.47 0.70 0.52 0.82
letter 0.12 0.08 0.11 0.07 0.14 0.06 0.07 0.07 0.11
mammography 0.28 0.09 0.40 0.10 0.43 0.04 0.28 0.18 0.28
mnist 0.36 0.15 0.41 0.15 0.43 0.25 0.24 0.42 0.42
optdigits 0.11 0.46 0.49 0.38 0.51 0.00 0.05 0.00 0.06
pendigits 0.42 0.28 0.39 0.34 0.59 0.10 0.19 0.24 0.42
pima 0.50 0.44 0.49 0.43 0.56 0.34 0.57 0.43 0.54
satellite 0.65 0.01 0.69 0.01 0.68 0.42 0.64 0.49 0.70
satimage-2 0.92 0.00 0.93 0.00 0.93 0.25 0.48 0.53 0.88
thyroid 0.66 0.37 0.69 0.33 0.80 0.10 0.73 0.33 0.80
vertebral 0.14 0.16 0.27 0.12 0.22 0.17 0.14 0.22 0.17
vowels 0.29 0.29 0.33 0.30 0.51 0.07 0.06 0.18 0.27
wbc 0.71 0.68 0.76 0.68 0.82 0.11 0.69 0.21 0.73
wine 0.69 0.73 0.80 0.75 0.85 0.28 0.38 0.47 0.64

Table 13: Summary of the obtained results. The reported performances are the mean
performance along the 25 iterations and 50 repetitions of the algorithm.
ALIF consistently beats the other tested approached on all the datasets, in
particular the combination of the most anomalous query policy and the
piece-wise linear leaf update.
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Future work will investigate other ways to construct the anomaly score
from the available weak supervision. Indeed, these could exploit the insights
discussed in [181], where the anomaly score is obtained from the weighted
path of the point. In this way, not only the final leaf but also the internal
nodes could play an important role. Moreover, hybrid query strategies that
use a combination of the previously described most anomalous and uncertain
strategy, might lead to even better results.
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AC T I V E A NO M A LY D E T E C T I O N : A BAY E S I A N
A P P ROAC H

The previously described algorithm ALIF can be inserted in a more theoretically
grounded scenario. The goal of this Chapter is indeed to adapt ALIF in order
to fit into a Bayesian framework, showing the theoretical and practical benefits
of such procedure. In fact, the problem can be seen as a Bayesian inference
problem where the previously trained forest serves as a prior, and the posterior
is updated as new points arrive. Moreover this Chapter also highlights the
benefits of an Active Learning scenario in comparison to a standard Weakly-
Supervised scenario where the model is not allowed to ask for labels but
passively receives random data points.

8.1 ������������

Anomaly Detection, also referred as Outlier Detection, is a field of Machine
Learning that, as the name suggests, focuses on the identification of deviations
from standard "normal" behaviour observed in the majority of the data [109].
There is no universally accepted definition of what constitutes an anomalous
point and, as such, its definition may vary from task to task [85]. The motivations
behind the desire for identification of anomalies might also vary: developers
for example may have the need to remove outliers from the dataset to improve
the robustness of some model or accuracy of statistical measures, or, as in
more modern applications, anomalies might themselves be points of interest
(i.e. fault detection); users, on the other hand, may be interested in AD tools to
have enhanced monitoring capabilities of complex systems [19, 140, 272].

As in other ML fields, approaches for anomaly detection can be classified as
supervised, semi-supervised and unsupervised1. The first requires a labelled
dataset to train the model on. This is by far the least common class of approaches
in anomaly detection since in most scenarios data might be plentiful, but
accurate labels are difficult to obtain especially for the rare anomalous class.
For this reason, unsupervised approaches are the most common since they do
not require any labelled data.

Unfortunately unsupervised approaches are based on generic definitions
of anomalies that might not coincide with the definition the end-user would
provide and expect to see [217]. Moreover, these models are based on generic
definitions of anomaly that typically reflect their detection strategy: as a
consequence, each unsupervised model is best suited to the detection of
specific sets of outliers. For example Isolation Forest assumes outliers are few
and far from normal data therefore are easy to be separated. However this is

1Other authors in the literature refer to ’Anomaly Detection’ only in case of unsupervised
settings, labeling the supervised or semi-supervised scenario as ’Fault Detection’.

135
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not always the case as in some contexts outliers form a dense cluster and the
previous anomaly definition might fail. Similar issues can arise using other
detection strategies based for example on density, distance or probabilistic
models. As [217] highlights, domain knowledge can be used to select the best
approach and to encode the user definition of anomaly into the model. This
issue could be solved using supervised models but, as previously discussed,
these methods require labelled data that can be hard to obtain. To solve this
problem in recent years two types of semi-supervised approaches have been
proposed to encode available information inside an already existing detection
model. (i) If few labelled samples are available it is possible to frame the
problem in a weakly-supervised (WS) scenario and to take advantage of the
available labels by updating the model accordingly. (ii) Another promising
approach is to let the model interact with the domain expert. The model can
actively learn (AL) from a pool of unsupervised data, by asking a human
expert to label only a small subset of the full dataset, saving a lot of human
effort but at the same time improving the model rapidly. This approach has
been extensively exploited in classification context [166, 219] and only recently
also in anomaly detection [61] under the name of Active Learning.

The aim of this study is: i) to develop a model that in presence of few
available labels can be updated, and ii) to develop a model able to interact
with the end-user and to incorporate the information iteratively provided, iii)
to frame the previously discussed ALIF algorithm in a more mathematically
grounded scenario. Indeed the main goal is to develop not only a model able to
update its structure, but also to query the label of the most informative point in
order to reduce the necessary labels and save human effort. This is particularly
appealing in contexts where Decision Support Systems are in place, allowing
a fluid interaction between the detection model and the human expert.

Only recently the research community pointed its attention towards the
introduction of expert feedback into unsupervised detection models, like One
Class-SVM or IF [149]. Indeed, despite the existence of multiple variants to the
original Isolation Forest [26], the most are unsupervised algorithms that are not
able to cope with a actively supervised scenario. An exception is IF-AAD [62],
that based on the feedback received, is able to adjust the leafs of an Isolation
Forest by means of an iterative optimization procedure. A completely different
approach that will be used as baseline is the popular Random Forest [34].

In the proposed approach, the main idea is to start from an unsupervised
model, the popular Isolation Forest, and then to develop model updates and
sample query strategies, similarly to the ones discussed in Chapter 7 where
ALIF was discussed. While ALIF presents one of the first approaches in the
literature to deal with active learning with Isolation Forest, it has some major
weaknesses that are overcomed with the approach presented in this Chapter.
Indeed even if ALIF works well in practice, it is completely based on heuristics.
Moreover due to its simple updating procedure that do not take into account
model uncertainty, it may have an unstable learning process and in presence
of dense anomalous areas it suffers of slow learning rates that worsen the
algorithm data efficiency. The proposed approach, named B-ALIF, solves the



8.2 ������������� 137

sames problem in an original way by formalizing it in a Bayesian framework
and therefore proposing a new approach more statistically grounded and more
effective.

The rest of the Chapter is organized as follows: after the description of the
applicative problem, Section 8.2 gives an overview of the preliminaries on
which this work is developed, i.e. the Isolation Forest algorithm (Section 8.2.1),
and some basics on Bayesian inference (Section 8.2.2). Afterwards, in Section
8.3, we will discuss an alternative theoretical formulation of the ALIF model,
that leverages basic probabilistic programming notions to re-frame the existing
algorithm from a Bayesian point of view. Under this framework, we will discuss
the possible extensions that come natural under the new interpretation, as well
as the advantages brought forward by the richer description. At the end of
Section 8.4, results are shown that prove the efficacy of the proposed method
and conclusions are drawn in Section 8.5.

8.2 �������������

8.2.1 Isolation Forest

This Section will recall the IF algorithm explained in Chapter 4 and will
provide the required notations to understand the proposed algorithm.

The IF algorithm is somehow similar to the popular supervised algorithm
Random Forest (RF) [111], being an ensemble tree-based algorithm. As such,
the model training consists in building a specific data structure represented by
an ensemble of =) binary trees, namely a forest � = {)

Ä
,)

Å
, ...,) C

, ...,)=) },
using an unlabelled dataset -D = {G

D
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}. Each node in a given tree
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C identifies a specific region of the data domain, so that the collection of
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, ..., !C

=C
} defines a partition of the data domain. Each

tree in the ensemble is constructed independently from the others as follows.
The dataset is randomly sub sampled to size k, so that only a small portion
of the original data is used in the construction of each tree. The root node is
initialized to represent the whole domain. The tree is grown recursively at each
node by dividing the domain region they identify with a random cut aligned
with an axis, splitting the node into its two children. This process repeats until
only one data point of the sub sample reaches a particular node, or when a
depth ⌘<0G is reached. Terminal nodes for this process are the leafs of the tree
and each is associated with a specific domain region. We will refer to both
by !C

8
. This "terminal" region identify a partition of the original domain. As

such, given a point G, it lies inside one and only one terminal region !C
8

for a
given tree in the ensemble )C , and as such an unique path in the tree from the
root to that specific terminal region. The subscript G will be used in the rest
of the Chapter to indicate !C

G
= !C

8
3 G, the leaf where the point G lies. When

referring to a generic partition of the space we will simply write ! or !C
8
.

Using the same notation, one can identify the "depth" of a data point for a
given tree as the depth of the terminal region containing that point:

⌘
C

G
= depth of !C

G
. (15)
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Once the model is trained, a point can be evaluated by considering the path
taken in each of the trees. In particular, we are interested in evaluating the
average observed path length ⇢C [⌘

C

G
]: the rationale is that anomalies should,

on average, be easier to be separated from other data points, and, therefore,
have a shorter path lengths associated to them. The average depth of a point
is associated to an anomaly score B(G) in the interval [�, Ä], following an
exponential map:

B(G) = Å
�⇢C [⌘

C
G ]

2 (k)
, (16)

where 2(k) is the expected average path length already discussed in Chapter 4.

8.2.2 Bayesian Inference

In the field of AL, if the models under consideration are probabilistic, the
integration of new labelled data might require an inference step [29]. This
topic is an extremely vast one, and in this Section we will limit ourselves to a
brief introduction of the main concepts needed to fully understand what will
be presented in later Sections.

Being ⇥ the parameters of a given model, one could ask how they are
distributed given some observed data D and some knowledge of the data
generating process. By applying the simple Bayes formula, it is possible to
reduce the problem to [29]:

?⇥ |D (\ | 3) =
?D|⇥(3 | \) ?⇥(\)

?D(3)
=

?D| \ (3 | \) ?⇥(\)Ø
?D| \ (3 | \) ?⇥(\) 3\

, (17)

where ?D| \ (3 | \) represents the likelihood (or generative model), ?⇥(\) is
the prior belief about the model parameters, ?D(3) is named evidence and
?⇥ |D (\ | 3) is the posterior distribution of ⇥ that can be inferred from the
data D.

One obstacle in obtaining the posterior probability in most practical cases is
the evaluation of the evidence term. This term is essentially only a normalization
condition, and can be expressed in terms of the likelihood. However, obtaining
its exact value requires the solution of a complex integral and in general it might
be extremely hard to do analytically. In some special cases, the solution to this
integral can be written explicitly, but this is an exception rather than the norm.
The most common scenario of this kind is the one where the prior and posterior
are part of the same family of probability distributions. In this case, this family
is said to be conjugate of the given likelihood function. If the likelihood
function admits a family of conjugate priors, then it is usually beneficial to
select the original prior inside such family. Notably, all distributions in the
exponential family admit conjugates. One notable example is the Normal
distribution that is its own conjugate, but in this work we will use mostly the
fact that the Beta distribution is the conjugate for Bernoulli and Binomial
likelihoods. Since the evidence always normalizes the resulting distribution so
that its integral is unitary, it is sufficient to show proportionality, and therefore
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the demonstration of this examples is very straightforward and only requires
some basic algebraic manipulations. On this note we remind the most common
ways to parameterize the Beta distribution as:

6(I) ⇠ Beta(U, V) / IU�Ä(Ä � I)V�Ä. (18)

Alternatively, in some case it might be easier to represent the distribution in
terms of its mean ` = U

U+V
and sample size a = U + V:

6(I) ⇠ Beta(`:`, a:a) / I`a�Ä(Ä � I) (Ä�`)a�Ä. (19)

One convenient aspect of dealing with the exponential family of distributions
is that it is possible to express the Bayesian inference step in terms of simple
update rules on distribution parameters.

This comes handy in computation, since there is no need for trapezoidal
integration or approximate sampling, only a few additions and multiplications
are required. In particular, when dealing with a Beta distributed prior 6(I) ⇠
Beta(U, V), and a Binomial distributed likelihood ;: (I | :) ⇠ B(=, I) = : , the
posterior 6(I | :) becomes:

6(I | :) / 6�(I);: (I | :) / I
U�Ä

(Ä� I)
V�Ä

I
:

(Ä� I)
=�:
⇠ Beta(U+ : , V+=� :).

(20)

The same relation also holds for a Bernoulli likelihood, that can be seen as a
Binomial with parameter = = Ä.
Therefore, the Bayesian update step for this cases reduces to simple additions,
dependent on to the observed realization : .

8.3 �������� ���� (�-����)

Like ALIF, also B-ALIF is meant to be employed both on weakly-supervised
(WS) and active learning (AL) scenarios. We stress that for weakly supervised
scenario we mean scenarios where after a fully unsupervised training, some
random labels become available and the user wants to exploit this information
to update the model. On the other side we speak about active learning scenarios
when the detector is allowed to interact with the domain expert. This distinction
shows up in the way the model is designed, indeed it is made up of two
main routines: the updating strategy, used for both WS and AL, and the query
strategy used only in the AL scenario. In this Section we are going to show how
these two routines adapts to the Bayesian framework introduced in B-ALIF.

8.3.1 B-ALIF updating strategy

The idea at the core of ALIF is simple yet effective. By assigning abstract
information to nodes, we can maintain the efficiency of the IF tree structure,
but we are also able to modify the model and adjust its predictions with almost
no overhead. The iterative updating procedure of node parameters according
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to new information gathered by labelled data, is, in some ways, reminiscent of
Bayesian updating on Conjugate priors as introduced in Section 8.2.2.

The core idea of this generalization is to allow the abstract information
stored in a node to be uncertain, that is, instead of storing exact observable
information, we will keep track of a probability density on the dimensions of
interest. We call this approach Bayesian-ALIF (B-ALIF). In this context, we
can take a step back, considering the task of AD, and what anomaly scores
might represent. Given an observation G in a region !, we are interested in
assessing the probability that such point is an anomaly. We try to approximate
this info by assigning to each point an anomaly score B(G), such that higher
anomaly scores represent higher probability of being an anomaly, but there is
no real effort to make the two coincide. However, in an ideal world, we would
like the two to coincide, and, in the context of Bayesian inference, working with
anomaly probabilities directly is a simplifying assumption to obtain sensible
results.

Bayesian Leaf Update

Both ALIF and B-ALIF inherit the space partitions from the unsupervised IF,
but estimate the anomaly rate of each partition (leaf) in a different way. While
ALIF simply estimates it by taking the ratio between anomalies and points
sampled inside the leaf, B-ALIF formalize the problem in a theoretical way
using Bayesian arguments.

Therefore, we will start by directly trying to model the anomaly rate of a
given region !, that is the probability that a random observation G inside such
region is anomalous:

Ar(!) = P [G is anomaly | G 2 !] (21)

For this reason, we will keep track of the abstract propriety Ar(!) of each
node in the form of a probability distribution on the interval [�, Ä].

6! (I) = P [Ar(!) = I] (22)

We will be assume the anomaly rate of non overlapping regions to be indepen-
dent unless otherwise stated.

Similarly to ALIF, we will define model predictions on a point G 2 !\
G
=

\C!
C

G
as a function of abstract node proprieties, as:

B(G) = 5

⇣
6
!
�
G
, 6

!
Ä
G
, . . . , 6

!
C
G
, . . . , 6

!

=)
G

⌘
(23)

Under this formulation, the incorporation of new data point G with label H into
the model consists of modifying the beliefs on the anomaly rates of different
terminal regions, that we assume to be independent.
Considering each tree ) in the ensemble separately we can write for any region
! where the point G lies:

6! (I | G 2 !, H) =
6! (I)P [G 2 !, H | I]

P [G 2 !, H]
(24)
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We are of course interested in studying in particular the structure of the
likelihood. With some elementary manipulation, we can rewrite it as:

P [G 2 !, H | I] = P [H | G 2 !, I] P [G 2 ! | I] (25)
= IH (Ä � I)Ä�HP [G 2 ! | I] (26)

Where we leveraged the fact that the label probability conditioned on the
anomaly rates of regions is Bernoulli distributed with parameter I. Let us also
assume for the time being that P [G 2 !] is independent of the anomaly rates of
the other regions containing G and therefore independent of I. This of course
can only be the case if points are sampled independently of region’s anomaly
rates. This assumption can hold in WS scenarios but it for sure not going to be
true if the model is inserted into an AL loop. We will discuss the validity of
this assumption more in depth in the conclusive Section.

Under this assumptions, the likelihood reduces to a simple Bernoulli dis-
tribution, for which we have shown in previous Section 8.2.2 that exists a
family of conjugate priors in the form of Beta distributions. Therefore, if
we restrict our abstract node proprieties to be Beta distributed, we can very
efficiently perform this Bayesian update step analytically and in closed form.
Moreover, to exactly characterize the distribution 6! (I) we only need to store
two parameters, U and V. We can also identify explicitly the update rules for U
and V by considering

6! (I) ⇠ Beta(U, V) / IU�Ä(Ä � I)V�Ä , (27)

6! (I | G 2 !, H) / I
U�Ä

(Ä� I)
V�Ä

I
H

(Ä� I)
Ä�H
⇠ Beta(U + H, V + Ä� H) .

(28)

It all essentially boils down to adding one to either one of the two parameters,
according to the label H, and only in the region of interest where the point G is
found. This means that for every generic leaf !C

8
, we can fully characterize the

abstract node propriety 6
!
C
8

with only the two values UC
8

and VC
8
, that will be

updated following the simple update rules previously described each time a new
labelled point is incorporated into the model. The relation can be expressed
explicitly in terms of the original values of UC

8
and VC

8
(denoted by ÛC

8
, V̂C

8
) and

the number of observed labels of each class (denoted by $C

8
, � C

8
) obtaining:

U
C

8
= ÛC

8
+$

C

8
and VC

8
= V̂C

8
+ �

C

8
.

Initialization and IF prior

Since in B-ALIF node abstract proprieties parameterize a probability distri-
bution, initialization of model parameters ÛC

8
, V̂

C

8
can be interpreted as the

selection of a prior distribution for 6
!
C
8
(I). To set an uninformative prior, we

can set ÛC
8
= V̂C

8
= F�, obtaining a totally uniform distribution over the interval

[�, Ä] for F� = Ä. If however, we want to bias the distribution towards extreme
values (to represent that anomaly rates tend to be polarized), we can simply set
F� < Ä, with lower values of F representing a larger bias of this kind.
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However, the constraint ÛC
8
= V̂C

8
is not optimal. In fact, we do not start from

a totally uninformed prospective, since we can rely on the original prediction
made by the unsupervised IF model.

Therefore, one degree of freedom in the distribution can be set by enforcing
the model prediction to match the underlying IF forest when no relevant labels
are provided. This can be easily translated in a constraint on the mean of the
distribution (for reasonable choice of ensemble prediction function). In order
to fully characterize the distribution, the sample size âC

8
= ÛC

8
+ V̂

C

8
needs to be

determined. âC
8

sets the "strength" of the prior relative to the weight of new
observations. ALIF completely disregards IF predictions as soon as a single
relevant labelled point is obtained, and it has been shown to perform well in
practice, this suggests that setting a weak prior should be a pragmatic choice,
allowing the model to evolve quickly.

Therefore, we set the second degree of freedom in the parameters by
minimizing âC

8
, subject to ÛC

8
� F� and V̂C

8
� F�. The rationale of this strategy

is to add the minimal amount of fictitious observations (�UC
8
= Û

C

8
� F�,

�VC
8
= V̂C

8
� F�) needed to shift an uninformative prior for a set bias value F�,

to one that matches the IF prediction. For instance, for a flat uninformative

prior (F� = Ä), if the original IF prediction B�(!C
8
) = Å�

⌘C8
2 (k) is matched to the

mean of the distribution 6
!
C
9
, the constrains reduce to ÛC

8
=

B> (!
C
9 )

Ä
Å� |B> (!

C
9 )�

Ä
Å |

and

V̂
C

8
=

Ä�B> (!
C
9 )

Ä
Å� |B> (!

C
9 )�

Ä
Å |

.
While this approach for modelling the prior distribution allows for straightfor-

ward extension of the IF algorithm by retaining the original model predictions,
one important limitation of this method that needs to be considered is that the
anomaly scores obtained by the IF model are not meant to be probabilities and
in general do not span the entire range (0,1). Due to the truncation applied
in the tree building process, low anomaly scores are virtually impossible to
achieve, even for points that are extremely unlikely to be anomalous. Therefore
priors obtained this way are highly biased towards larger anomaly rates. In
this work we do not explore in depth this aspect, but simply try to balance
this effect by linearly re scaling the anomaly score range to the more desirable
interval (�, Ä). Therefore, B-ALIF does not exactly match the IF predictions,
but rather a re scaled version of it. This is by no means an optimal solution to
the issue, but we will discuss it more in depth in the conclusions Section.

Anomaly score

To provide a prediction for a given point G, we need to combine the distributions
of model beliefs on the anomaly rate of individual leafs that contain G into a
unique anomaly score (Equation 23). Therefore, in the context of B-ALIF, if two
points GÄ, GÅ are such that !\

GÄ
= \C!CGÄ = !\

GÅ
= \C!CGÅ , the model predictions

are bound to be the same. As such, the best prediction for any point G that can
be achieved in this way is closely related to the anomaly rate of the region
!
\
G
. Therefore, the anomaly score can be represented naturally as a likelihood

distribution ⌧G (I) on the anomaly rate of !\
G
, that can be summarized by a
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single value B(G) if needed. There are multiple possible formulations depending
on the chosen assumptions, in this Section we want to present two possibilities:
likelihood based on strict condition �A (!\

G
) = �A (!C

G
), and naive based on the

assumption that �A (!C
G
) ⇡ �A (!

C

G
\ !
\
G
) .

���������� �������� ���������� This ensemble prediction method
is based on the assumption that the true anomaly rate does not vary significantly
in the neighborhood of the point G. This assumption can be translated into
imposing an equality of anomaly rates across all terminal regions containing
the point G, and their intersection.

�A (!
\

G
) = �A (!�

G
) = �A (!Ä

G
) = . . . = �A (!=)

G
) (29)

From this we obtain a simple formulation for the likelihood of Ar(!\
G
):

⌧G (I) = P
�
Ar(!\

G
) = I

�
/

÷
C

P
�
Ar(!C

G
) = I

�
(30)

From this, we can easily recover an explicit formulation for the likelihood
⌧G (I) as the product of C Beta distributions. Making explicit the dependence
of the parameters UC

G
and VC

G
:

⌧G (I) /

÷
C

I
U
C
G�Ä(Ä� I)

V
C
G�Ä ⇠ Beta

 
Ä +

’
C

(U
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G
� Ä) , Ä +

’
C

(V
C

G
� Ä)

!

(31)

Conveniently, this formulation not only provides us with a simple closed form
solution for⌧G (I), but gives us a straightforward way to determine the anomaly
score 0(G) as the maximum of the likelihood function, that can be recovered
from the mode of the Beta distribution.

B(G) = maxlikelihood⌧G (I) =
Õ

C
(U

C

G
� Ä)Õ

C
(U

C

G
+ V

C

G
� Å)

(32)

This result is especially neat, simplifying model’s predictions to the proportion
of excess anomalies in all terminal regions across the ensemble relevant to
the point G. This once again, does not involve the solution any optimization
problem but can be obtained in closed form.

����� �������� ���������� The second ensemble prediction approach
is based on the assumption that for a given point G the intersection of its terminal
regions !\

G
= \C!CG is much smaller than each individual term !

C

G
, and as such

the anomaly rate of the region !C
G
\ !
\
G

is approximately equal to the one of
!
C

G
, that is �A (!C

G
\ !
\
G
) ⇡ �A (!

C

G
). With some simple algebraic manipulation,

this assumption imposes the relation:

Ar(!\
G
) ⇡

Ä

=)

’
C

Ar(!C
G
) (33)
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Unfortunately, the distribution of the average of = beta distributed random
variables is not known explicitly in closed form, but for large =) , it can be well
approximated as a Beta distribution. Therefore, following this approximation,
by equating the distribution moments we obtain:

⌧G (I) ⇠ Beta

 
`:
Ä

=)

’
C

U
C

G

U
C

G
+ V

C

G

, a:
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(U
C

G
+ V

C

G
)

!
(34)

Using this expression for the distribution for the anomaly rate of the
intersection, the anomaly score of the point G can be computed ad the probability
of it being an anomaly under the approximate distribution ⌧G .

B(G) = E⌧G

⇥
P[x is anomaly| Ar(!\

G
) = I]

⇤
=
Ä

=)

’
C

U
C

8

U
C

8
+ V

C

8

(35)

Which is exactly the mean of the distribution ⌧G .

8.3.2 Connections with ALIF leaf update

In this section, we will explore the connections between the ALIF algorithm and
B-ALIF. In fact, one might recognize that the parameters used in B-ALIF are
closely related to the abstract proprieties defined in ALIF, since UC

8
= ÛC

8
+$

C

8

and VC
8
= V̂

C

8
+ �

C

8
, and in fact coincide in the limit for the prior weight F�

going to zero. Also note that in this case, the node’s color under ALIF exactly
matches the mean of the belief distribution in B-ALIF.

:
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(36)

In this sense, we can interpret ALIF as a specific case of B-ALIF, where
labelled data is assumed to be sampled independently of individual region’s
anomaly rates, the prior weight is set to zero, and the ensemble prediction
function is simply the geometric average of log-predictions of individual trees.

For instance, if we consider the logarithmic variant of ALIF, it is possible
to write the equivalent prediction function for a point G 2 \8!)8G in terms of
beliefs distributions in a concise way:

B(G) = Å�
⇢ [�2 (k);>6Å (:CG ) ]

2 (k) = =

s÷
8

:
C

G
= =

s÷
8
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C
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U
C

G
+ V

C
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(37)

8.3.3 Query strategy

When it comes to the query strategy, we can make the same considerations
made for ALIF, where actively trying to query the most anomalous points
in terms of anomaly score is likely to result in improvement of performance.
However, we also propose an alternative to the uncertainty based one. While
for ALIF, model uncertainty was assessed by considering the disagreement
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Figure 50: Example of visualizations of likelihood margins for different likelihood
prediction functions. The figure illustrates how the margin values take into
account both the location of the peak and the dispersion of the distribution

across different trees in the ensemble, and this could very well be reproduced
one to one in B-ALIF, the reinterpretation under the Bayesian framework
naturally gives us a measure of model uncertainty in the form of a likelihood
distribution we can derive analytically and exactly.

In fact, since model predictions are naturally expressed as a likelihood
function, and are only afterwards condensed into a single maximum likelihood
value when an anomaly score is needed, we can assess how localized are the
model beliefs on the anomaly score of a specific point. If the likelihood is flat,
the model is unsure about the true value. Moreover, if the range of most likely
values is near the decision boundary, small deviation in the mode might result
in a qualitative change in prediction, however, if the range is near the extremes,
further information is unlikely to change the model output. For this reason we
propose a query strategy based on the likelihood ratio evaluated at the mode,
and at a fixed point A:

margin
A
(G) =

max
I

⌧G (I)

⌧G (A)
(38)

This represents the likelihood ratio between the most likely values for
the positive and negative classes, if the decision boundary was set to A. An
uninformative choice of A is �.Ñ, while for A = Ä, querying the points with
largest margin is equivalent to the "most anomalous" strategy. In general,
in-between values represent a trade off between the two approaches, as "margin
on A" query strategy tries to clear unsure predictions in the region of the vicinity
of A , in order to perfectly separate the two classes.

8.4 �������

In this Section we present some experimental results both on synthetic data
sets and on real world data. We follow a similar testing procedure to the
one employed in the original ALIF work, giving in depth considerations on
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synthetic tests, and introducing an optimization for the anomalous querying
strategy. We then show real world performance of the AL loop comparing
across B-ALIF variants and to ALIF.

At its core, most tasks in anomaly detection can be interpreted as a binary
classification problem, even if highly unbalanced, where anomalies need to be
separated from normal data instances. Even when the model does not directly
classify points into anomaly or inlier, but yields for instance an anomaly score,
it generally needs to be converted into a classifier by finding an appropriate
threshold. Unfortunately, as discussed in [212], when the dataset is highly
unbalanced like in anomaly detection settings, true positive rate and false
positive rate are not reliable metrics, so in this work we will use precision and
recall to measure the detection performances. In particular, to obtain an unique
score that assess the detection performances independently on the threshold
we will use the average precision score.

8.4.1 Experiments on synthetic dataset

Following the experimental setup of Chapter 7, we test the proposed algorithm
on a synthetic dataset represented by a two-dimensional square toroidal shaped
ring of densely packed normal data points that surrounds a sparse cloud of
anomalous points in the center (Figure 51a). This particular setup is especially
challenging for the IF algorithm, since the anomalous central points are more
difficult to isolate compared to normal points at the edges of the domain.

On this setup, ALIF has been shown to be able to quickly fix the poor
predictions of the underlying IF, achieving high performance with just a few
iterations. However, we find that both ALIF and B-ALIF performance on this
dataset are highly subject to changes in hyper parameters of the data generation
process.

These effects seem to depend mainly on the querying strategy employed,
therefore in the following we will present a few different scenarios, and provide
some basic reasoning to explain the observed changes in behaviour.

Firstly, we consider a baseline case, where roughly 500 data points are
generated, with approximately a 10% anomaly rate. To obtain training and test
data, we then perform a 50-50 stratified random split. This is the setup was
already presented in Chapter 7. By running simulations, we can qualitatively
describe what the algorithm tries to do.

By querying for the most anomalous datapoint (Figure 51b), the model firstly
asks labels of points near the edges of the domain, following the inaccurate
predictions of the baseline IF model. Doing so, it quickly learns that the
edges of the domain are unlikely to be anomalies. Soon, the algorithm will
start to query points in the central region, finding its first anomaly. When
this happens, the models predicts point in the neighbourhood of the anomaly
to be likely anomalous as well. This starts a propagation process, where the
area of anomalous predictions quickly spreads with each successive query on
anomalous points, until the anomalous region is perfectly identified. For this
particular choice of data generation parameters, the whole process takes in the
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(a) Dataset

(b) Anomalous query strategy

(c) Margin query strategy

Figure 51: Square toroidal datasets and qualitative evolution of BALIF predictions
on the synthetic "square toroid" dataset after 10, 20 and 30 queries. Low
density experiment.

order of 30-40 queries to end, depending on how efficiently the algorithm is
able to find its first anomaly, and how many successive queries are spent on
correctly identifying the exact region boundary. However, we can intuitively
understand that this process is highly dependant on the density of the anomalous
region.

In fact, if we consider a dense version of the same dataset, 10 times the size
of the original one, we can clearly see that it takes the algorithm much longer to
completely profile the anomalous region (Figure 52b). This is simply because
the velocity at which the algorithm is able to profile an anomalous cluster, is
inversely proportional to the density of data in such region, and therefore it is
severely slowed down in the dense version of the dataset.

However, it is possible to somewhat counteract this unpleasant effect by
introducing a sub sampling step (Figure 53a). If we only allow the model to
ask labels amongst a random subset of the original data, the dependency on
density can be greatly reduced.
Doing so the model is no longer able to profile the region by small incremental
steps, but instead is forced to take large jumps, speeding up the procedure.
Sampling also reduces the computational complexity of the update step, since
it is no longer needed to evaluate the model on the whole dataset. This can be
especially useful in online applications or for performing updates on streaming
data.
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(a) Dataset

(b) Anomalous query strategy

(c) Margin query strategy

Figure 52: Qualitative evolution of BALIF predictions on a dense version of the
synthetic "square toroid" dataset after 10, 20 and 30 queries.

(a) Anomalous query strategy

(b) Margin query strategy

Figure 53: Qualitative evolution of BALIF predictions on a dense version of the
synthetic "square toroid" dataset when using query subsampling after 10,
20 and 30 queries.

When switching to the "margin" query strategy, the aforementioned depen-
dence on data density is greatly reduced (Figure 52c). In fact, when using
this strategy, the model is not interested in labels of points in the vicinity of
already queried ones, unless they are close to a boundary between anomalous
and normal regions.
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However, while overall being a more robust method, the margin strategy
heavily relies on the proper selection of threshold value A for the margin
strategy. If the value A is not representative of the "uncertainty" region, the
algorithm might run through a significant portion of the labelling budget trying
to improve its accuracy on anomaly rate of regions, while failing to improve in
the classification task. This effect is also very sensible to any bias in the prior
distributions originated from the underlying IF. This is because any bias of this
kind will introduce a shift in the "uncertainty" region, and therefore directly
impact the validity of the margin strategy.

This being said, each query strategy has its merits, and depending on the
structure of the dataset, either one can outperform the other in practice.

8.4.2 Experiments on real world data sets

In this Section we evaluate the model’s performance on multiple real world
data sets for anomaly detection.

The data sets can be found on the ODDS website [204], and are derived
from multi-class classification problems, where one underrepresented class is
considered as anomalous, while the others represent the normal data. For this
reason, anomalies in these data sets aren’t random points out of distribution,
but rather live in specific regions of the domain, and present specific patterns.
This makes this kind of data sets difficult to solve in a completely unsupervised
setting.

Figure 54: Comparison of B-ALIF predictions (left) and belief distributions (right)
on the "wine" dataset without labelled data (top row), and after 10 queries
(bottom row). Results are qualitatively similar amongst different model
configurations, as well as quantitatively (see Figure 56 plots).
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To remove as much as possible any bias coming from the selection of the
train-test split (as described in the previous section), all splits are performed
on a 80-20 basis, and the model is only able to ask info for points in a random
subset of the original training set. This subset is different at each iteration and
its size is at most ÑÄÅ.

To give qualitative idea of the results obtained with the B-ALIF algorithm,
in Figure 70d we show the results on the wine dataset before and after 10
iterations of the B-ALIF algorithm with anomalous querying strategy. In the
left Figures it is possible to see a t-SNE projection of the wine dataset on two
dimensions where each point is coloured with the associated anomaly score,
and the true anomalies are marked with a cross. On the right for each point
a distribution is depicted showing the ensemble prediction. It is easy to see
that without supervision the predictions are very poor, while after 10 iterations
(Figure 54b) the true anomalous points are much more separated.

In doing the experiments we were guided by three main research questions:

1. In a weakly supervised scenario where it is not possible to query a
domain expert or where few labelled data are already present, which
is the best model among ALIF-based methods and other more classic
approaches like the Random Forest?

2. If the domain expert is available, is it worth to let the model query some
points, or it is better just to label random samples? Which strategy is the
most useful for B-ALIF?

3. Among the active learning algorithms that are based on IF, which
performs the best?

We try to answer Question 1 evaluating the performance evolution for
models following a random query strategy that simulates the passive weakly
supervised approach where the provided information is sampled without a
specific strategy (Figure 55). This indeed allows us to assess performance of
ALIF and B-ALIF when used as weakly supervised approaches, by eliminating
the AL step. We then compare it to a random forest trained only on the labelled
data. We indeed find that B-ALIF provides a steady improvement over the pure
IF, and is generally preferrable to the random forest when labelled data is scarse,
however the benefits of the weakly supervised approach are highly dependent
on the dataset considered. In general, this method shines the most when the
underlining IF achieves moderately good performance, that can however be
refined by incorporating information from labelled points into the model. It is
interesting to note in this passive setting B-ALIF is systematically better or
equal than ALIF.

We then try to answer Question 2 looking at the difference between active
and passive query strategies for the B-ALIF algorithm. Secondly, we evaluate
the effects of different query strategies (anomalous or margin) for B-ALIF, as
well as the effects of different choices of ensemble prediction function (Figure
56). We use as a baseline for comparison the passive (weakly-supervised)
variant of B-ALIF (random query), to assess the impact of the AL step on
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performance. We find that the ensemble prediction function seems to have
little impact on the overall model behaviour, with the naive variant being the
best one in most cases. Conversely, the querying strategy used has a much
more significant impact. Comparing the two proposed approaches, the margin
strategy seems to provide a more stable option, being consistently better than
the random query process. This is not the case for the anomalous query strategy,
that even if slightly optimal for some datasets, can sometimes perform worse
than querying random points. However in general we see that AL strategies
performs much better than passive ones.

Finally in Figure 57 we answer to Question 3 comparing the active approaches
i.e. B-ALIF (margin query strategy), ALIF, and IF-ADD. The perfomance are
quite dataset dependent, however it is clear B-ALIF (green) generally performs
best, followed by ALIF (blue) and then IF-AAD (red).

8.5 ����������

The motivation of this work was based on extending the core ideas presented
in Chapter 7 into a rigorous Bayesian framework.
In doing so we shed some light on the underlying reasons for the efficacy of
the simple heuristic rules employed in the original work, as well as proposing
some extensions that come natural under the new formulation. This Bayesian
interpretation of the ALIF algorithm has proved to be a viable alternative,
giving multiple extra dials that can be used to adapt the model to specific
situations in a natural way.
This include setting a relative strength of the prior in order to give more
or less importance to the original underlying IF model, to an alternative
formulation of the query strategy that is more in line (in spirit) with the core
ideas of AL, asking for information that clears up uncertainty in the model.
We also explored more in depths the trade-offs of different query strategies, by
qualitatively illustrating the changes in model behaviour on a simple toy dataset.
We introduced the idea of sub sampling to counteract the poor dependency
of the anomalous strategy on data density, keeping the benefits of biasing the
search towards anomalous data, for which info is more valuable.

Moreover, the proposed model works directly in the space of anomaly rates,
relaxing the need to define an heuristic map from some abstract space to the
interval [�, Ä].
In this context, model prediction represent the actual confidence of the model
on the probability that a given observation is in fact anomalous. This gives
not only a more interpretable result, but the possibility of comparing anomaly
rates across different data sets.

The development of this model is still in its early stages and many future
work direction can be explored. This includes, but is not limited to:

• a more detailed description of the likelihood function by considering
the nature of the querying process
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• more careful modelling of the original prior given by the baseline
unsupervised model

• more refined modelling of the ensemble prediction function

• consideration of intra region interactions by tracking abstract properties
of non terminal nodes

• extension to other tree based tessellation algorithms to profile the data
distribution.
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Figure 55: Question 1. Comparison between RF, ALIF and B-ALIF as weakly super-
vised models (no active query) on real world data sets. The figure shows
how the model’s Average Precision improves as a function of the number
of labelled data and is compared to the one achieved with a random forest
trained on the same amount of labelled data.
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Figure 56: Question 2. Comparison between different variants of B-ALIF on real world
data sets. The figure shows how the model’s Average Precision improves
as a function of the number of queries for all combination of ensemble
predictions and querying strategies, compared with a weakly supervised
variant (random query).
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Figure 57: Question 3. comparison between different Active Learning algorithms. B-
ALIF and ALIF generally outperform other methods while also introducing
significantly less overhead.





9
E X P L A I NA B L E A NO M A LY D E T E C T I O N

Merely identifying anomalous data is not enough in many real-works appli-
cations. Users of these systems may benefit from understanding the reasons
behind the predictions, as this can facilitate root-cause analysis and increase
trust in the model. Unfortunately, anomaly detection is an unsupervised task, so
the development of interpretable tools quite challenging. Nevertheless, some
algorithms were proposed to equip anomaly detection algorithms with explana-
tions, including DIFFI [46], which is a model-specific approach for providing
global and local feature rankings within the well-known Isolation Forest (IF).
Despite its popularity, IF has some biases in the tree construction phase, which
can reduce its detection performance. Thus, a new model called Extended
Isolation Forest (EIF) was introduced, which uses a different isolation strategy
and improves detection performance. In this Chapter, a new approach called
ExIFFI is proposed to provide Extended Isolation Forest with interpretability
traits, in the form of feature rankings. We test ExIFFI on both synthetic and real
datasets and demonstrate its effectiveness in providing explanations. Feature
selection is employed here as a proxy task to assess the effectiveness of the
provided interpretability; we also show how ExIFFI can be employed as a valid
feature selection approach in unsupervised settings.

9.1 ������������

Machine Learning (ML) and Artificial Intelligence (AI) are playing a central
role in the ongoing socio-economic change, revolutionizing various sectors
such as manufacturing [142, 259], medicine [116], and the Internet of Things
[137]. With the increasing deployment of ML across various industries, new
problems have emerged due to the widespread application of these systems,
which are often complex and opaque. Moreover, the end users of these systems
are becoming more diverse, including people from various backgrounds who
may not have a knowledge in data-driven methods. Therefore, it is essential
to develop explanation algorithms that provide a deeper understanding of
the model structure and predictions to ensure that these systems can be used
effectively by a wide range of users.

Many scientific works identify explainability1 as a key factor to enable
the successful adoption of ML-based systems [54, 70, 157]. The relevance
of explainability in ML-based technologies is paramount, as users are being
asked to accept their integration into everyday decisions. This is particularly
challenging in critical areas such as medical diagnosis, insurance, and financial

1While authors in the literature use the term ’interpretability’ and ’explainability’ associated
with slightly different concepts when associated to Machine Learning/Artificial Intelligence as
presented in [98], in this work we will use both terms interchangeably.

157
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services. Given the significant influence of ML technologies, institutions
are making considerable efforts to regulate them, typically by ensuring that
interpretability traits are available. For instance, the European Union’s General
Data Protection Regulation (GDPR) [1] stipulates a right to obtain “meaningful
information about the logic involved” for consumers affected by an automatic
decision.

In the case of tabular data, there are various methods for explaining the
outcomes of a model [185]. One common approach is to calculate the impor-
tance of each feature in the model’s predictions. This involves evaluating the
influence of each feature on both individual predictions (referred to as "local
importance") and the overall dataset ("global importance"). By understanding
the relative importance of each feature, users can gain insight into how the
model is using the input data to inform its predictions.Feature importance has
been widely exploited and popularized in recent years thanks to the Random
Forest (RF) algorithm. RF provides built-in approaches to provide a ranking
of the most important features [146]. Moreover, thanks to the rise of many
post-hoc methods [222], like permutation importance [10] or SHAP [169],
feature ranking as an interpretability measure has been extended also to models
that are not tree-based.

Despite the remarkable recent advancements in eXplainable Artificial
Intelligence (XAI), most approaches are designed for supervised tasks, leaving
unsupervised tasks, like Anomaly Detection (AD), rarely discussed in the
literature.

As discussed in Chapter 4 Isolation Forest [159] is one of the most popular
AD approaches due to its high accuracy, low computational costs, and rela-
tively simple inner mechanisms. This method relies on an iterative process.
Recursively splitting the feature space along axis-aligned hyper-planes chosen
at random, IF can isolate anomalous points using few space partitions. The
first approach to provide explainability features for IF, named Depth-based
Isolation Forest Feature Importance (DIFFI) [46] takes advantage of the inner
structure of the IF to supply global and local model explanations.

Unfortunately, the one-dimensional partition process that IF relies on causes
the creation of artifacts that degrade the detection of anomalies and negatively
affect feature explanation. Thus, the Extended Isolation Forest (EIF) has been
proposed [107]. EIF improves over the IF using oblique partitions that avoid
creating the previously discussed artifacts.

In this Chapter we will contribute to the research area of interpretable AD,
by providing, to the best of our knowledge, the first model-specific2 approach,
called ExIFFI, which can provide explanations about the Extended Isolation
Forest. In designing ExIFFI, we drew inspiration from the ideas behind DIFFI.
However, we introduced a more sophisticated procedure. While IF separates
the input space by considering a variable at a time to define random splitting
hyper-planes, EIF considers multiple variables, which leads to an attribution

2Model-specific interpretation tools are limited to specific model classes. Instead, Model-
agnostic tools can be used on any machine learning model and are applied after the model has
been trained [185]
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problem when aiming at fairly distributing the contribution of the different
variables to the decision made by the algorithm.

In the following sections, the effectiveness of ExIFFI will be demonstrated
also by means of feature selection, problem that is employed here as a proxy
task [185]. Feature selection in Anomaly Detection is a task poorly explored in
the literature: while this will not be the focus of our work, we also show the
potential of ExIFFI if used to guide feature selection.

The rest of the Chapter is organized as follows. First, we will recall the
the EIF algorithm only briefly discussed in Chapter 4.3.1, in particular, the
differences that allow EIF to overcome the structural problems that are hidden
in the original IF implementation. Next, after introducing DIFFI in Section
9.3, the theory behind ExIFFI is provided in Section 9.4. Finally, ExIFFI is
experimentally validated on 12 datasets, 4 synthetic and 8 real, by providing a
comparison with DIFFI and Random Forest feature importance. In Section
9.5, the effectiveness of ExIFFI global importance is assessed using feature
selection as a proxy task; moreover, also the local importance is analyzed by
comparing the importance scoremaps of the ExIFFI algorithm compared to
those of the DIFFI algorithm. Finally, in Section 9.6, conclusions are discussed.

9.2 �������� ��������� ������

Although IF is one of the most popular and effective anomaly detection
algorithms, it has some drawbacks due to its partition strategy. One of them is
related to considering only hyper-planes that are orthogonal with respect to the
directions of the feature space, as Hariri et al. show in [107]. In some cases,
this bias leads to the formation of some artifacts where points are associated
with low anomaly scores even if they are clearly anomalous. These areas are in
the intersection of the hyperplanes orthogonal to the dimensions associated
with the detection of inliers (Figure 58), creating misleading score maps and,
in some cases, wrong predictions.

Figure 58: Scoremap differences between IF and EIF in the 2 dimensional space
dataset bimodal described in Section 9.5.1. Figure inspired by [107].

As a consequence, Hariri et al. in [107] tried to improve the anomaly
detection algorithm by correcting this bias with a different and more general
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algorithm called Extended IF. Instead of selecting a hyper-plane orthogonal to
a single input dimension chosen at random, they suggested picking a random
point p and a random vector v that are consequently used to build a hyperplane
H that will split the space at each node of the binary tree into two smaller
subspaces, as the IF does. Therefore, they proposed a more generic and
extended paradigm, while maintaining the fast execution and low memory
requirements of the original IF.

In the following, we will briefly describe the working principle of the EIF
model. Let’s consider a set - of = elements x8 2 R3 with 8 2 {Ä, . . . , =}. The
EIF model [107] generates a forest of =) full binary trees, in order to evaluate
the anomaly score of the points.

� = {)�,)Ä, . . . ,)C , . . . ,)=) }. (39)

Every tree )C 2 � is built from a bootstrap sample - C
⇢ - .

At each node : of the tree )C a random hyperplane H C

:
is selected by picking

a random point p inside the distribution space limits, and v as a Normalized
Standard Normal random vector:

v ⇠ ///

k/// kÅ
, (40)

/// = (/Ä, . . . , /3)
>
, (41)

/8 ⇠ N(�, Ä) 8 8 2 {Ä, . . . , 3}. (42)

At the root node :�, the algorithm starts by generating a random hyperplane
defined by a intercept point p� and v�.

Thus the hyperplane splits the dataset -� into two subsets,

!� = {GGG |GGG 2 -
C

�
, EEE� · GGG > EEE� · p�},

'� = - C

�
\ !�.

(43)

The root node of the tree, :�, is the space splitting made by the hyperplane
H

C

�
. Then, this method is applied recursively to the subsets !� and '� until the

max number of splits is reached, which corresponds to the preset max depth of
the tree or when the set to split has only one element.
As a consequence every tree )C is composed of a set of nodes:

)C = {:�, :Ä, . . . , :<}, (44)

and each node is a split of the space made by a particular hyperplane.
Thanks to this hierarchical tree structure, to evaluate if an element is an

anomaly, the model extracts the path of the point G 2 -C from the root to the
leaf nodes down the tree. Then, as IF does [211], the EIF algorithm uses the
average depth of the point in each tree to evaluate the anomaly score, according
to the paradigm that the anomalies are isolated with few partitions. Indeed
anomalous points are considered to be few with respect to inliers and far from
the distribution of the rest of the dataset, therefore it is more probable that they
will be isolated faster than the inliers. Hence, on average, they will have shorter
paths than other points in the tree as introduced in Section 4.3.1.
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9.3 �����-����� ��������� ������ ������� ����������

Depth-based Isolation Forest Feature Importance (DIFFI) is the first unsuper-
vised model-specific method addressing the need for interpretability of the
IF detector [46]. It exploits the structure of the trees in the IF algorithm to
understand which features are the most relevant to discriminate whether a point
is an outlier or not. It is based on two intuitions concerning the usefulness of a
split node:

• the feature along which it splits the data should isolate as fast as possible
the anomalies;

• this feature should create a high imbalance when isolating anomalous
points, the opposite for inliers.

With this in mind, the present Section is going to describe which tools DIFFI
uses to measure these intuitions. In particular, DIFFI defines:

������� ��������� ������������ _ : given an internal node : of an
isolation tree, let =(:) be the number of points that the node divides,
=; (:) and =A (:) the number of points on the left child and right child,
respectively. The coefficient measuring the induced imbalance of the
node : is:

_(:) =

(
� if =; (:) = � or =A (:) = �
_̂(:) otherwise

(45)

with:

_̂(:) = 6
✓
max(=; (:), =A (:))

=(:)

◆
(46)

6(0) =
0 � _<8= (=)

Å(_<0G (=) � _<8= (=))
+ �.Ñ (47)

where _<8= and _<0G denote the minimum and maximum scores that
can be obtained a priori given the number of data =(:). This coefficient
measures the imbalance induced by each node in the tree, i.e. the first of
the two main intuitions.

���������� ������� ����������� ��� : it is a vector of dimension 3
where the 9-th component is the feature importance of the 9-th feature.
It is distinguished between the one of created using predicted inlier
points, denoted ��� � and the one belonging to outliers ���$. Concerning
��� � , the procedure starts with the initialization ��� � = 03 and considering
the subset of predicted inliers for the tree C, P� ,C . Then, for the generic
predicted inlier G� 2 P� ,C , DIFFI iterates over the internal nodes in
its path %0C⌘(G� , C). If the splitting feature associated with the generic
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internal node : is 5 9 , then we update the 9-th component of ��� � by adding
the quantity:

� =
Ä

⌘C (G� )
_� (:) (48)

The same procedure applies for G$ 2 P$,C and ���$. Intuitively at each
point and each step, the vector accumulates the imbalance produced by
each feature. The imbalance is measured by the previously defined _ and
weighted by the depth of the node, meaning that features that allowed to
isolate faster the points, are considered to be more useful.

�������� ������� +++ : it is used to compensate for uneven random feature
sampling that might bias the calculated cumulative feature importance.
At each passage of a point through a node, the entry of the counter
corresponding to the splitting feature is incremented by one. As for the
cumulative feature importance, two features counter are calculated, the
one for predicted inliers+++ � and the one for outliers+++$.

Finally, the Global Feature Importance is obtained looking at the weighted
ratio between outliers and inliers cumulative feature importance:

⌧�� =
���$/+++$

��� �/+++ �

9.4 �������� ��������� ������ ������� ����������

As DIFFI does with the IF (Section 9.3), with the Extended Isolation Forest
Feature Importance (ExIFFI) we will try to rank and evaluate the importance
of the features in deciding whether a sample is an anomaly or not for the EIF
model.

As seen in Section 9.2 a tree is built in a way that an hyperplane H
C

:
, that

splits the subsample - C

:
✓ -

C
✓ - , is associated to each node : 2 )C of the tree

)C 2 �. The hyperplane is well defined by a vector orthogonal to its direction
and a point that belongs to it {EEEC

:
, pC

:
}.

The hyperplane H C

:
separates the points in a set of elements on the left side

of the hyperplane and a set of elements on the right side of the hyperplane.

!
C

:
= {x|x 2 - C

:
, vC

:
· x > vC

:
· pC

:
},

'
C

:
= - C

:
\ !

C

:
.

(49)

We want to know which features influenced the most the isolation procedure
for a sample G. ExIFFI assigns a vector of feature importances to each node of
the tree, based on two paradigms:

• The importance of the node for a point G is higher when it creates a
greater inequality between the number of elements on each side of the
hyperplane and G is in the smaller subset. Indeed, greater inequality
means a higher grade of isolation for the points in the smaller set.
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• In each node of the model, the relative importance of each feature
is determined by the projection of the normal vector of the splitting
hyperplane onto that feature. If the split occurs along a single feature,
that feature will receive the importance score. If the splitting hyperplane
is oblique, the importance scores of multiple features will be calculated
based on their respective projections onto the normal vector of the
hyperplane.

Then we assign an importance value function to every node of the trees
that is the projection on the normal vector of the splitting hyperplane of the
quotient between the cardinality of the sample before a particular node and
after it, following the path of a sample G. Thus, knowing that the splitting
hyperplane H C

:
of that node is determined by the pair {vC

:
, pC

:
}:

___
C

:
(x) =

8>>><
>>>:

⇣
|-

C
: |

|!
C
: |

⌘
|vC

:
|, if vC

:
· x > vC

:
· pC

:⇣
|-

C
: |

|'
C
: |

⌘
|vC

:
|, otherwise

(50)

The vector of importances evaluated in the tree )C for an point G is the sum
of all the importance vectors of all the nodes that the element G passed through
on its path to the leaf node in the C-th tree defined in Equation (??):

��� C (G) =
’
:2P

C
G

___C ,: (G). (51)

We then calculate the sum of the importance vector of the point G for all the
trees in T :

��� (G) =
’
C2)

��� C (G) (52)

+++ (G) is the sum of the vectors orthogonal to the hyperplanes of the nodes
that an element G passes in a tree, then we calculate the sum of the values in
all the trees:

+++ (G) =
’
C2)

’
:2P

C
G

EEE
C

:
(53)

9.4.1 Global and Local interpretation

On one hand, the results of the EIF can be interpreted globally, meaning that
they apply to the entire model. This type of interpretation provides a ranking
of the features in terms of their contribution to the outliers. On the other hand,
interpretability can also be local, meaning that it focuses on understanding
which features caused a specific sample to deviate from the distribution of the
dataset.

Global Feature Importance

To globally evaluate the importance of the features, as DIFFI does with the
IF interpretation, we divide - into the subset of predicted inliers Q� = {x8 2



164 ����������� ������� ���������

- | Ĥ8 = �} and the one of predicted outliers Q$ = {x8 2 - | Ĥ8 = Ä} where
Ĥ8 2 {�, Ä} is the binary label produced by the thresholding operation indicating
whether the corresponding data point x8 is anomalous ( Ĥ8 = Ä) or not ( Ĥ8 = �).

We define the global importance vectors for the inliers and for the outliers
by summing out the importance values introduced in Equation (52):

��� � =
’

x2Q�

��� (x),

���$ =
’

x2Q$

��� (x).
(54)

Likewise the sum of the orthogonal vectors:

+++ � =
’

x2Q�

+++ (x),

+++$ =
’

x2Q$

+++ (x).
(55)

Due to stochastic sampling of hyperplanes, in order to avoid the bias
generated by the fact that it is possible that some dimensions are sampled more
often than others, the vectors of importance have to be divided by the sum of
the orthogonal vectors.

�̂�� � =
��� �

+++ �

,

�̂��$ =
���$

+++$

.
(56)

To evaluate which are the most important features to discriminate a data as
an outlier we divide the importance vector unbiased of the inliers by the one of
the outliers Equation (56), and we obtain the global feature importance vector
as the DIFFI algorithm [46]:

⌧��⌧��⌧�� =
�̂�� �

�̂��$

. (57)

Local Feature Importance

Let’s take into account an element G, the Equation (52) gives a vector of
importances ��� (G) of the sample G for each feature. Then the vector+++ (G) is the
normalization factor of the feature importance. The Local Feature Importance
(!��!��!��) of an element G is the quotient:

!��!��!�� (G) =
��� (G)

+++ (G)
. (58)

Non Depth-Based importance

DIFFI and ExIFFI differ in a key concept, with DIFFI being depth-based. The
DIFFI algorithm assigns importance scores to each node based on the inverse
of the depth of the node. As emerges from in Equation (48) DIFFI weights
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_� (:) by the inverse of the node depth Ä

⌘C (G� )
, as it is assumed that the deeper

the cut is in the isolation tree, the less important it is in determining if a sample
is an outlier or not. In contrast, as shown in Equation (50), ExIFFI does not
take depth into account when computing importance scores. This is for two
main reasons:

1. if there is a cut at the beginning of the tree that is important in terms of
isolation, it can generate a larger quotient because it has to split a larger
dataset. However, if the cut does not create any isolation, there is no
reason to prioritize it over other cuts;

2. given a sample, the importance of the feature that determines if it is an
outlier or not is the summation of all the importance vectors of the path
followed by the sample G from the root node to the leaf as shown in
Equation (51). On one hand, if a sample is an outlier, it has fewer nodes
in its path, so the summation is done using only the initial hyperplanes.
These hyperplanes are essential as they separate the outlier from the rest.
The most significant features of the outlier are highly correlated to these
hyperplanes. On the other hand, if a sample is an inlier, it has to pass
through many nodes, so the importance vector is a summation of many
elements that characterize the sample less.

Modifying the contributions of the deeper nodes in a decision tree by using
the inverse of the depth or does not significantly alter the resulting feature
importance scores. It is possible to observe that the ranking of the features
remains similar in the histograms of the importance scores in Figures 59a
and 59b. Because the results obtained using different methods for weighting
the contributions of the deeper nodes in a decision tree are similar, it is more
efficient to use a simpler algorithm that does not require the addition of a
depth-based parameter. Therefore, we decided that the ExIFFI method does
not incorporate depth as a factor in its calculations.

9.5 ���������� �� �������������� ����������

9.5.1 Datasets

To evaluate the interpretation of the algorithms twelve datasets with labelled
anomalies will be used as a benchmark. These datasets consist of four synthetic
datasets, which were created to investigate the differences of the models, and
eight open source datasets based on real applications. In the rest of the Chapter
the datasets will be indicated using an italic font.

Synthetic datasets

The synthetic datasets are designed to highlight the limits and strengths of
the two models. The first dataset, henceforth called bimodal, is a very simple
two-dimensional dataset that is composed of two Gaussian distributions around
the positions (Ä, Ä) and (�Ä,�Ä). Moreover, it has some anomalies in the other
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(a) Histogram with the mean importance score for each feature in the case of a depth-based
algorithm and non depth-based

(b) Distances

point of intersection of the orthogonal axis defined by the equations G = Ä and
H = �Ä. It has the perfect characteristics to show the structural consequences
of the bias generated by the IF model. The other three synthetic datasets come
from the paper by Carletti et al. [46]. Inliers are generated according to a
zero-mean six-dimensional Gaussian distribution. The three datasets differ in
the distribution of the anomalies: they are distributed along the first dimension
(feature 0) in one dataset named synt xaxis, along the second dimension (feature
1) in another dataset named synt yaxis and along the bisection line of the first
two dimensions in the third dataset named synt bisec.

Real datasets

The model was also tested on eigth widely used real benchmark datasets for
anomaly detection listed in Table 14 and openly available at [204]. The datasets
are very diverse in terms of domains since they come from different fields like
medicine, industry, and natural sciences.

Their size is very heterogeneous: the wine dataset has just ÄÅà elements,
while the largest is shuttle with Éà�àÜ elements. To ease the burden of the
experiments, we undersample large datasets in a way that preserves the original
proportion of inliers and outliers, but limits the sample size to ÅÑ�� elements
at most. As shown in Table 14, we can divide the datasets into three levels of
dimensionality: (i) Low (less than 7 features), (ii) Medium (between 7 and 20
features) and (iii) High (more than 20 features). There are even three types
of contaminations, in pima, ionosphere and breastw more than Ç�% of the
dataset are outliers so they have very high contamination rate. On the contrary,
mammography and pendigits have approximately only Å% of contamination
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rate. The other datasets have roughly the á% of outliers. It is important to
outline how these datasets were built: starting from multi-class classification
datasets, a class was under-sampled and labeled as an outlier, usually the one
that a priori is known to be more structurally different than the others. As a
consequence, the anomalies are not just uniformly distributed random points
far from the normal distribution but are a particular class coherent with the
other anomalies and sometimes even with the dataset.

n. data n. anomalies contamination n. features (Dimensionality)
= % 3

annthyroid 7200 534 7.42 6 (Low)
breastw 683 239 35 9 (Middle)
cardio 1831 176 9.6 21 (High)
ionosphere 351 126 36 33 (High)
pendigits 6870 156 2.27 16 (Middle)
pima 768 268 35 8 (Middle)
shuttle 49097 3511 7.15 9 (Middle)
wine 129 10 13 7.7 (Middle)

Table 14: Set of data used in the experimental phase. The first column gives the
name of the dataset; the second column describes the number of instances
contained in each set; the third column gives the number of outliers; the
fourth column presents the contamination rates; the fifth column defines the
total amount of features; the last shows the dataset dimensionality.

One significant challenge in the evaluation of ML interpretability approaches
is that it is difficult to determine the quality of an explanation. Indeed, there
is no objective metric for comparing the performance of different algorithms
in terms of their ability to provide good explanations. Since the popular book
written by Molnar [185], many papers tried to set up an objective theory
on what is an explanation and how to evaluate it [54, 70, 157, 217, 275].
To evaluate the XAI algorithm, we first assess its effectiveness on synthetic
benchmark datasets. Such datasets are designed to analyze if the algorithm
is able to detect the dimensions along which the anomalies are distributed,
both with Local and Global Feature Importance scores. We will then make
experiments on "real datasets" where the distributions are not defined ad-hoc
for our purposes.

As discussed in [185], assessing the effectiveness of XAI approaches in
real world problems is not straightforward. One way to provide an evaluation
is through a ’proxy task’, i.e. a related problem which can be instead easily
assessed in a quantitative way: we then exploit the evaluation on the proxy
task as a surrogate for the evaluation of the original task, the XAI problem.
As done in [46] we will exploit feature selection as a proxy task: we will
use the indication of ExIFFI and competitor methods for guiding the feature
selection, i.e. by keeping the 8 features (for different values of 8) that are globally
considered as the most important by the XAI approach. While feature selection
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in anomaly detection is not the focus of this work, we will implicitly show the
effectiveness of exploiting ExIFFI also in this task.

Moreover, we will resort to an additional test for assessing the quality of the
ExIFFI interpretation, which is a comparison with the interpretation provided
by Random Forest (RF). RF is a popular supervised algorithm, which is also
an ensemble approach based on trees, with the main difference that in RF
we are resorting to decision trees, not isolation trees as in the IF/EIF. RF
is equipped with a procedure for providing feature rankings, that is widely
used by the scientific community and by practitioners: we will compare the
feature rankings provided by RF, when considering the AD problem as a
binary classification one (with inliers and outliers being the two classes), with
the ones provided by ExIFFI. While the rankings provided by RF are not to
be considered a ground truth and RF may not be effective with unbalanced
classification problems, RF has the advantage of exploiting labels for both
solving the classification and the XAI task: in light of this, we consider such
test as a relevant one for the purpose of evaluation ExIFFI capabilities.

9.5.2 Synthetic datasets

Global Feature Importance

In order to analyze the effectiveness of the global feature importance, we
decided to use the synthetic dataset setup shown in the DIFFI paper [46]
introduced in the Section 9.5.1. In this way we will have a previously validated
proxy to show how much and to what extent ExIFFI works. The three examples
have a central ball with inliers and some anomalies distributed along specific
directions: the first example has the anomalies along feature 0, the second
example along feature 1, and the third along a combination of the previous
directions.

Figure 59 shows the global feature importance of ExIFFI in the case of the
first and the second synthetic example. We can observe in Figure 59a that
the model detects the correct feature consistently, this means that it detects
with strong belief that feature � is the most important one to determine an
outlier. In the case of Figure 59b, the feature Ä is correctly identified as the
most important one.

Finally, as Carletti et al. did in [46], we want to analyse what happens when
the anomalous points are distributed along the bisector line of the feature 0
and feature 1 as shown in Figure 60.

Since the EIF model is stochastic and both of the first two features are
important, we expect that computing the model multiple times the feature
ranking changes: sometimes the first one is feature 0, and sometimes feature 1,
meaning that both of them are important in Figure 61a. The histogram depicted
in the Figure 61b illustrates the mean importance scores for each feature in the
case of the three 6-dimensional synthetic datasets. In the synt xaxis and synt
yaxis datasets, the importance scores for feature 0 and feature 1 are not equal,
with one score being greater than the other. In contrast, in the synt bisec dataset,
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(a) Importance barplot of the dataset of anomalies
distributed along the feature 0

(b) Importance barplot of the dataset of anomalies
distributed along the feature 1

Figure 59: Feature importance obtained on datasets synt xaxis and synt yaxis explained
in Section 9.5.1 where anomalies lie respectively on feature 0 and feature
1.

both feature 0 and feature 1 have very high and nearly identical importance
scores.

Local Feature Importance

It is crucial to know which features are most important for identifying whether
a single sample is an outlier. For example, in an industrial process where an
AD model detects an outlier, understanding the most relevant features can
facilitate root cause analysis and allow for fast and effective corrective actions.

In [107], the authors demonstrated that Extended IF is able to address
the bias limitations of IF through the use of a comparative approach. They
presented the anomaly score maps of both algorithms, highlighting the ability
of EIF to more accurately generalize the score map.

Similarly to that analysis, here we present a scoremap of the Local feature
importance score originated from the DIFFI and ExIFFI algorithms, where the
corresponding IF and EIF models were trained on a dataset named bimodal
introduced in Section 9.5.1, mainly made up of points distributed into two
separate balls along the bisector line. Then the scoremap is made by taking
in consideration the whole space around the distribution, demonstrating how
the ExIFFI is able to generalize better the importance scores related to the
anomalies.

In Figure 62, the scoremaps display the relative importance of two features
using red and blue colors. Red regions indicate higher importance of feature
1, while blue regions indicate higher importance of feature 0. The intensity
of the color reflects the magnitude of the feature importance at each point.
Lighter colors correspond to lower importance values, and thus points in these
regions are less likely to be considered outliers with respect to the features
under analysis. Additionally, the score map includes contour plots, represented
by grey lines surrounding the data points. These contour plots depict different
levels of the combined importance of the features.

Similar to IF, the score map of the DIFFI algorithm exhibits a strong bias
along the direction orthogonal to the features. This bias can negatively impact
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Figure 60: Synthetic dataset synt bisec with anomalies in orange distributed along the
bisection line of the feature 0 and 1. Training data are depicted in blue,
while testing data are depicted in orange.

the model’s comprehension of the feature, as it limits the ability of the DIFFI
model to generalize well beyond the region of the feature space where the
original distribution is concentrated. As a result, the model may struggle to
accurately identify the features that have the greatest influence on determining
whether a sample is an outlier in various regions of the feature space.

In a real-world scenario, it is possible that the interpretation algorithm is
required to provide accurate interpretations for points that are located far from
the distribution of the training dataset. If the DIFFI algorithm exhibits this
bias, evidenced with the scoremap, it may struggle to accurately interpret such
points, potentially leading to the provision of incorrect information.

To illustrate this point let’s consider the scoremap presented in the image
on the left of Figure 62. The bundles crossing the dataset orthogonally with
respect to the principal directions exhibit lighter colors, indicating that data
samples located in these regions are less anomalous compared to darker regions.
However, it is not clear whether points located within the bundles but farther
from the dataset are necessarily less anomalous than points that are at a similar
distance but not within the bundles. Additionally, the top-left and bottom-right
corners of the image appear to have a plain dark color, without distinguishing
the region by intensity or feature colour.
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(a) Importance barplot of the dataset of anomalies
distributed along the feature 1

(b) Importance barplot of the dataset of anomalies
distributed along the feature 1

Figure 61: Feature importance obtained on datasets synt bisec explained in Section
9.5.1 where anomalies lie on feature 0 and feature 1.

Figure 62: Feature importance scoremap of DIFFI and ExIFFI along the first two
features of dataset bimodal.

9.5.3 Real data examples

We used 8 widely used real datasets benchmark for anomaly detection intro-
duced in Section 9.5.1 and listed in the Table 14. Obtaining a gold standard
reference for evaluating explanations in the context of explainability can be
challenging, as it often requires either a large group of people to assess the
quality of a set of explanations or a domain expert to provide expert explana-
tions of anomalies. As an alternative, we use feature importances provided by a
supervised method, specifically Random Forest (RF), as a proxy measure of the
performance of our unsupervised approach. The use of RF feature importances
is motivated by the assumption that they provide good explanations because it
is a supervised algorithm and the similarity between RF and EIF, both based
on a decision tree structure. We compare the ranking of features produced
by our unsupervised approach with those produced by RF to understand how
much ExIFFI is close to RF in terms of feature selection. This allows us to
assess the efficacy of our unsupervised approach.

The feature selection experiments have been repeated Ä� times: the detection
model has been trained on the full set of features, and the least important
feature has been removed at each step, retraining the model and recording the
detection performances. At the end of the procedure, the model is allowed
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to observe only the most important feature. The same procedure has been
computed using the feature importance provided by different approaches: the
random approach (baseline), the DIFFI (old approach), the ExIFFI (proposed
approach) and the RF one that is the only allowed to see the labels of the points.

The first real dataset where ExIFFI was tested is annthyroid, a medical
dataset related to patients with thyroid diseases. The results of the repeated
feature importance for DIFFI and ExIFFI shown respectively in Figures 63a
and 63b: in such panels statistics concerning the most important feature are
reported; it can be seen that such statistics are in accordance with the ones
obtained with the RF shown in Figure 63c; however, it can be seen how
DIFFI tends to give a high rank to feature 2 and 4 that are the least important
according to RF. In Figure 63d it is interesting to observe the behaviour of the
feature selection provided by DIFFI and ExIFFI on annthyroid: removing the
unnecessary features, the detection model is able to perform much better than
with the full set of features. On the contrary, removing a random feature (red
line), the model is not able to improve.

Looking at the dataset distribution in Figure 71a it is possible to observe
that the outliers, shown in the shape of a star, are easily detected using the
feature 1 alone.

(a) DIFFI (b) ExIFFI

(c) RF (d) Feature selection

Figure 63: Consistency of the feature importance and feature selection applied to the
annthyroid dataset.

In the case of breastw dataset while both DIFFI and ExIFFI agree on
which are the most important features to detect the anomalies, Random
Forest feature importance have completely different outcomes. By analyzing
Figure 64d, we can observe that RF has lower performances compared to the
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unsupervised feature selection algorithms, while ExIFFI has consistently the
highest performances. This suggests the possibility to perform unsupervised
feature selection.

(a) DIFFI (b) ExIFFI

(c) RF (d) Feature Selection

Figure 64: Consistency of the feature importance and feature selection applied to the
breastw dataset

In the case of the dataset named cardio we can observe that DIFFI and
ExIFFI algorithm agree that the feature Ö and the feature Å play a central role
to detect anomalies, moreover the DIFFI observes the feature Ñ as the most
important one very consistently. The only feature that the unsupervised feature
ranking algorithm have in common with Random Forest feature importance is
the feature number Ö.

What it is possible to infer from the feature selection in Figure 65d is that
the best feature selection is the one based on the ranking given by RF. In this
case DIFFI performs better than ExIFFI.

ionosphere is a very complex dataset due to its high dimensionality (33
features), and this complexity reflects in the different behaviour of the models.
We can observe in Figure 66a that the feature 0 is consistently selected by
DIFFI as the most important feature while in Figure 66b ExIFFI does not show
to have any preferences on the most important feature. RF on the contrary
highlights the features Å,Ç and ÅÑ. What we can observe looking to the feature
selection graph is that DIFFI is only slightly better than the other algorithms.
This fact underlines that as far as the ionosphere dataset is concerned, there
are not real preferences among the features.

pima is also a medical dataset showing diabetic patients. Here it seems
DIFFI and ExIFFI capture different aspects of the problem, indeed in Figure
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(a) DIFFI (b) ExIFFI

(c) RF (d) Feature Selection

Figure 65: Consistency of the feature importance and feature selection applied to the
cardio dataset

(a) DIFFI (b) ExIFFI

(c) RF (d) Feature selection

Figure 66: Consistency of the feature importance and feature selection applied to the
ionosphere dataset
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67 DIFFI is more consistent in highlighting feature 2 and 5 while ExIFFI 1
and 2. However RF consistently prefers feature 1 and feature 5 while discards
common feature 2.

That said, Figure 67d shows that with many features DIFFI and ExIFFI
perform quite the same, but selecting the three most important ExIFFI starts to
perform much better with respect to DIFFI, with performances similar to RF.
However in this dataset it is possible to observe that for some combinations
of the features, the random feature selection can achieve even better results.
This indicates that RF is a good reference, but might not be the best possible
option. The last dataset considered is called pendigit, in this case we can

(a) DIFFI (b) ExIFFI

(c) RF (d) Feature selection

Figure 67: Consistency of the feature importance and feature selection applied to the
pima dataset

observe that, even if DIFFI and ExIFFI consistently agree on the two most
important features, RF strongly disagrees sharing with them only feature 5.
ExIFFI initially follows the performances of RF, while DIFFI has the same
performances of the casual feature selection.

shuttle is shown in Figure 69. It is interesting to note DIFFI consistently
ranks feature 3 in the first position while RF never suggests it as a relevant
feature. On the contrary, ExIFFI gives results more similar to RF, highlighting
feature 8 and feature 0. Similarly to pima feature selection in Figure 69d we can
observe that DIFFI algorithm have a drop down in precision. Unfortunately,
while RF achieves the best possible results and despite the good explanation
results, ExIFFI performs on average as the random feature selection.

A very different result is obtained in wine, the smallest dataset with ÄÅà
elements and ÄÇ dimensions with only 10 anomalies. In this context DIFFI and
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(a) DIFFI (b) ExIFFI

(c) RF (d) Feature Selection

Figure 68: Consistency of the feature importance and feature selection applied to the
pendigits dataset

ExIFFI strongly disagree, but only ExIFFI is able to detect the most important
feature, the number 12 (Figure 70). This directly reflects in Figure 70d, where
ExIFFI performs much better than DIFFI as it is able to select quite easily the
most important feature for the detection.

In almost all feature selection Figures we have previously discusses, we
can observe that the feature selection made using the ranking made by the
ExIFFI algorithm are often above the "casual" feature ranking, stressing the
fact that it is able to detect consistently the feature that contribute the most
in defining if a sample is an outlier or not. Moreover we can observe that in
datasets like annthyroid, wine, breastw and pendigits ExIFFI is one of the best
feature selection strategies.

9.5.4 Scoremap

As in the results on synthetic dataset presented at the beginning of this Section,
also on in the case of real datasets shown in Figure 71 the score map of ExIFFI
has much less artifacts with respect to DIFFI. This is particularly evident in
Figure 71d where we present the scoremaps of 4 different datasets showing the
two most important features highlighted by DIFFI and ExIFFI. As in Section
9.5.2 we can observe how much the ExIFFI is able to generalize the importance
in each point of the space, instead the DIFFI method is very biased both on
the specific dataset of training and on the direction orthogonal to the principal
dimensions.
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(a) DIFFI (b) ExIFFI

(c) RF (d) Feature Selection

Figure 69: Consistency of the feature importance and feature selection applied to the
shuttle dataset

9.6 �����������

Anomaly detection is the unsupervised machine learning task to detect unusual
patterns or behaviors in complex datasets and systems. However, simply
identifying anomalous data is often not sufficient in real-world applications. It
can be beneficial for users to understand the reasons behind the predictions, as
this can help with root cause analysis and increase trust in the model.

This Chapter introduces ExIFFI, a model-specific algorithm for providing
both local and global interpretability for the Extended Isolation Forest (EIF).
This unsupervised anomaly detection model addresses the training artifacts
often present in Isolation Forest (IF). Drawing inspiration from DIFFI, a model-
specific interpretability algorithm designed for IF, ExIFFI aims to improve
upon it by generating explanations that are more similar to those provided by
supervised proxies, such as feature importance computed by a Random Forest.

Future works should explore how to take advantage of the information
encoded in the splitting nodes in other ways. Indeed, uncertainty often arises
when multiple variables compete for the role of the most relevant feature rather
than a single variable. This topic is a direction for further research.

Moreover, an additional research direction could be to further assess the
usage of ExIFFI for feature selection. XAI approaches for feature selection
have been employed in few works in the literature (for example in [90]), but the
task of feature selection in unsupervised AD settings is even more complex:
typically unsupervised feature selection techniques completely discard the task
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(a) DIFFI (b) ExIFFI

(c) RF (d) Feature selection

Figure 70: Consistency of the feature importance and feature selection applied to the
wine dataset

at hand in their mechanisms [198], which can potentially lead to suboptimal
choices. While the potential of ExIFFI for feature selection have been showed
here, focused research activities should be carried out in the future.
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(a) annthyroid

(b) pima

(c) shuttle

(d) wine

Figure 71: Scoremaps of the importance value of the two most important features,
according the RF feature ranking, in the space that surrounds the data
distribution. Representation of the data with the inliers in form of a circle
and the outliers in form of a star.





10
D O M A I N A DA P TAT I O N F O R A NO M A LY D E T E C T I O N

Despite the huge success of data-driven technologies, ML-based solutions
present many scalability issues [94], especially in production environments
where multiple similar systems are deployed. Even if the goal is to apply the
same model to every system, this is rarely achievable because ML-solutions
are very tied to the specific system they are trained on and do not easily scale to
similar systems. This forces the developer to train multiple dedicated models,
resulting in wasted resources.

In recent years new approaches are being developed to tackle this problem.
Domain Adaptation (DA), that is a branch of Transfer Learning, is the research
area that studies how to transfer knowledge between different but related tasks.
It has been demonstrated DA utility in developing models that can adapt to
different systems (for example, in the industrial context, to different machines),
without the need to completely re-sample data from new system that needs a
detector.

In this Chapter, the goal is to transfer some knowledge in the form of data
samples between different but related systems. This allows to train a new
detector that requires less data and therefore it can be deployed in a faster and
cheaper way, enabling scalability of AD solutions.

10.1 ������������

As said before, Anomaly detection (AD) is a very compelling task in appli-
cations where high dimensional processes need to be monitored. In recent
years, many methods have been developed to automatically detect data having
an unusual behaviour, allowing the AD problem to be solved. These methods
learn from data adapting to the specific process they are asked to observe but
usually require a large amount of training samples that might not be always
available. When there is no sufficient data to train a model, it might be useful
to transfer some knowledge from a different but related process.

An inspiring example for this scenario was the following: a newly installed
industrial machine (a new multiphase flow meter for example) typically has no
available data describing its behaviour; on the other hand, similar machines
could have already being installed in the past and data related to their functioning
could be available. In such scenario, the simplest idea might be to train a model
on data collected from other machines and directly applying it to the new one:
unfortunately due to different sensor calibration, the performance of the model
applied to the old and new instrument might be very different. Even after
tuning, the performances might be different due to different manufacturers,
environmental conditions and sampling process. A strategy that might be
worth to try is to adapt data coming from the old machine, to the new one,

181
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and this is known in literature as Domain Adaptation (DA) [148]. Both of
the machine types (old ones and new) can be mathematically represented
by two distributions, namely the source distribution for the oldest and best
sampled machine, and the target distribution for the newest one. The final goal
is to create a model able to detect anomalies in the target domain, using the
knowledge acquired in the source and a small dataset coming from the target
distribution. To transfer the data from the source to the target distribution, it
is necessary to previously learn a map between the two domains, and this is
the main problem discussed in this Chapter. Once the samples from the old
machine are mapped in the new machine domain, it is possible to train a new
model in the new dataset enriched by the transported source samples.

10.1.1 Problem settings and transport problem

�������� Let ⌦B and ⌦C ⇢ R3 denote the source and target domains
respectively and Y = {�, Ä} be the set of labels indicating the presence or
absence of anomaly, where � is used for the inlier class and Ä corresponds to
the outlier class. Given the source and target datasets denoted as Xs = {xB8 }

=B
8=Ä

and Xt = {xC8 }
=C
8=Ä, `B and `C are the marginal distributions of the source and

target datasets defined as:

`B =
=B’
8=Ä

<
8
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XG
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8
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=C’
9=Ä

<
9

C
X
G
C
9

where XG8 is the Dirac delta function at the location G8 and <8 is the mass
associated with that point

Õ
=B
8=Ä <

8

B
= <B and

Õ
=C
9=Ä <

9

C
= <C .

���������� ������� To make the transfer learning problem meaningful,
the source and the target distributions are assumed to be different but somehow
related to each other, i.e., sharing some kind of structure. However the target
domain is assumed to contain fewer operating conditions (i.e. classes): in this
context, common techniques like standardization and normalization are not
applicable and even more refined techniques are hard to be applied.

Following the same assumption made in [58], the domain drift is assumed
to be due to an unknown map of the input space ) : ⌦B ! ⌦C . This map may
have a physical interpretation such as thermal noise, change in acquisition
conditions or even sensor drifts. This map ) , known as push-forward operator
or transport map, is assumed to preserve the conditional distribution:

PB (H |G
B

) = PC (H |) (G
B

))

meaning that the probability of a sample to be an outlier in the two domains
does not depend on the map ) . Applying the transport ) to the measure ` is it
possible to obtain the image measure )#` that satisfies the following property.

The push-forward operator ) applied to the measure `B satisfies the inequal-
ity:

)#`B (G) � `C (G), 8G 2 ⌦C , (59)



10.2 ���������� 183

which traduces the fact that the source data are fully sampled, in the sense that
the source data have been acquired under all existing conditions, contrary to
the target data that are less numerous and acquired under specific conditions; a
pictorial representation of such scenario is reported in Figure 72. Note that
(59) induces a potential loss of mass from the source to the target datasets.

Figure 72: A simple example of the addressed problem. Source data are depicted in
blue, while the available target data in orange. Between the two distributions
there is a simple translation but the target is under sampled in the sense it
was not sampled in every condition and misses a cluster. As the data are
unlabelled, it is difficult to know a priori which source structure should
match the available target.

���� ���� Following the same steps described in [58], the subspace
mapping problem can be formalized as follows:

1. find a transport map ) from `B to `C satisfying the previously discussed
assumptions.

2. use the estimated map ) to transport samples Xs from ⌦B to ⌦C

3. train an anomaly detection model on ⌦C , using Xt and the transported
samples ) (Xs).

The core of the problem lies in Step 1, while Step 2 only consists in the
application of a map to the source dataset, and Step 3 requires to apply a
generic anomaly detector model to the transported samples. That said, this
work will focus in the solution of Step 1 i.e. in the estimation of the transport
map between the source samples and the available target set. The background
of the proposed solution will be discussed in Section 10.2, while the main
idea concerning Step 1 will be described in Section 10.3. Then in Section 10.4
similar approaches will be compared on both synthetic and real dataset and in
Section 10.5 conclusions will be drawn.

10.2 ����������

����� ����������� Among all the possible transformations ) , one
may look for the one that minimizes a transportation cost subjected to some
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regularization terms and some constraints, like the mass conservation that
avoids the mass to be lost during the transportation. More precisely, the Monge
formulation is looking for the transformation) that minimizes the cost function
[83, 192]:

⇠ ()) =
π
⌦B

2(G,) (G))3`B (G)

where 2 : ⌦B ⇥⌦C ! R+ is a distance that can be viewed as the energy to
move a mass from G to ) (G), subjected to the mass conservation equation.
Unfortunately the aforementioned problem does not always have a solution,
e.g., when the total source and target masses are different.

����������� ����������� Kantorovitch formulation relaxes the
Monge problem by looking at a general probabilistic coupling % between ⌦B

and ⌦C such that:

%� = argmin
%

π
⌦B⇥⌦C

2(G
B

, G
C

) 3%(G
B

, G
C

),

that transports all the samples of the source to the target and still satisfies the
mass conservation. In a discrete setting, the Kantorovitch formulation can be
reduced to:

V� = argmin
V
hI, Vi,

where each entry of I denoted as ⇠8 9 represents the cost to move the mass
%8 9 from the source 8 to the target 9 and V is an nt ⇥ ns matrix containing
all the couplings %8 9 . This problem is constrained by the mass conservation
equations:

V1nt = <B,

V
)1ns = <C ,

where 1nt and 1ns are vectors of ones of sizes nt ⇥Ä and ns ⇥Ä. These constraints
impose no loss or creation of mass during the transport. After computing the
optimal coupling V, it is possible to map the samples from ⌦B to ⌦C . This can
be done by using the barycentric mapping, which can be written as follows
(when using a squared Euclidean cost 2 between pairs of source and target
points) [192]:

X̂s = diag(V1nt)
�Ä
V Xt (60)

In this way, each source sample is mapped into the convex hull of the target
dataset. Unfortunately, computing these barycenters is not equivalent to estimate
the previously discussed transport map ) since the barycentric mapping
(Equation (60)) only applies to the samples used to compute the coupling and
) should be much more general and applicable to any point in the source
domain.
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������� ���������� A solution proposed in [192] to solve this problem
is to jointly learn the coupling and the transport map by means of a new cost
function:

��
) (Xs) � X̂s(V)

��Å
F
,

where k·kF indicates the Frobenius norm.
When the (probability) masses of the two distributions are different, it is

not possible to directly apply the tools previously discussed; indeed, in such
cases the mass conservation constraints are no longer applicable. The present
work introduces a new solution by learning the transport map in an unbalanced
setting, i.e., when source and target share only some operating conditions and
the mass cannot be preserved during the coupling as the two distributions may
not show corresponding concepts, as represents in Figure 72. In that simple
example source and available target, even if related, do not contain the same
amount of information: the available target is not only shifted but it was only
sampled in one condition. Without knowledge of the missing information, in
unsupervised scenarios, any approach that maps the source to the available
target risks to estimate the wrong transport map.

10.3 �������� �������� �������� �������� ��� ������� ����

10.3.1 Transport map estimation

Given the ideas discussed so far, the loss to be minimized jointly learns
the coupling and the transport map in the so-called unbalanced scenario
(corresponding to masses not preserved during transport) and it is defined as
follows:

argmin
V,)

5 (V,)) = argmin
V,)

6(V) + ⌘(V,)) (61)

6(V) =
_%

max(I)
hI, ViF +

⇥
h,B,ms �V1nti + h,C ,mt �V

)1nsi
⇤

(62)

⌘(V,)) =
Ä

ns dt

��[) (Xs) � X̂s(V)] W
��Å
F
+
_)

ds dt
'()) (63)

with:
V1nt  <B

V
)1ns  <C

This loss is composed of many terms that will be analysed in detail in the
next paragraphs, and are named coupling term, mass destruction term, map
estimation term and the last, regularization term.

�������� ���� The first part of the coupling term 6 in Equation (62)
results from from the standard Kantorovitch formulation of the optimal transport
problem. It is defined as the Frobenius scalar product between the cost matrix I
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and the coupling matrix V. Each entry ⇠8 9 of I expresses the cost to transport
a unit of mass from the source position GB

8
to the target GC

9
, while %8 9 shows how

much mass flows from the source 8 to the target 9 . In the standard Kantorovitch
formulation, mass conservation equations V1nt = <B and V

)1ns = <C are
introduced, meaning that the full (probability) mass is transferred between the
source and target domains. This work relaxes this constraint to avoid couplings
between samples that do not correspond to the same situation, e.g. operating
conditions seen by the source machine but not the target or anomalies in the
source dataset that are not necessarily present in the target dataset. This means
only some source samples share their mass with the target samples: these
samples will be referred to as transported vectors because they support the
transport mapping described in the following paragraphs.

���� ����������� The relaxation on the mass preservation constraint
has to be counterbalanced by a penalization term that avoids all the mass
is destructed during coupling. Many different divergences can be found in
literature to solve this issue [48, 214]. The mass destruction term considered
in this work defined in 6 (second addend in Equation (62)) simply weights the
mass that has not been coupled by a cost _8 associated with the 8th sample of
the source or target database. The higher this cost, the more difficult the 8-th
sample is removed from the optimization process. The penalization vectors
,B = (_Ä, ..., _ns)

) and ,C = (_Ä, ..., _nt)
) can be adjusted manually or learnt

automatically using some datasets: in the former strategy, a general rule might
be to set the cost to delete a target sample higher than the source sample
to take into account the small number of target samples. To avoid complex
hyper-parameter tuning, it was decided to rely on uniform deletion costs for
each source and target point. In principle, these costs might also encode some
prior knowledge on the samples, e.g., anomalous source points should be
cheaper to delete with respect to inliers. However, assigning a different cost to
each source point may be a difficult task. An alternative is to estimate these
costs by training an anomaly detector on the source dataset and to assign to
each point a cost proportional to its anomaly score, as suggested in [186]. In
this case, anomalous points are easy to delete and tend not to be mapped on
the target, whereas inlier source points are more likely to be mapped in the
target domain.

The 6 term can be rewritten as:

6(V) = hÎ, ViF + const.

Î =
_%

max(I)
I � [,B1

)

nt + 1ns,
)

C
]

defining a new cost matrix Î that takes into account the mass destruction
penalty term.

��� ���������� The map estimation term (Equation (63)) allows the
transport map ) to be estimated based on the estimated coupling V [192]. Note
that ) (Xs) is the transport map applied to the source data, while X̂s(V) is the
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barycentric mapping of the source data on the target samples. As a consequence,
minimizing the map estimation term tends to reduce the discrepancy between
these two terms that ideally should be identical. Estimating a correct transport
map is the primary goal to develop an effective detector for the target machine.
Once the transport map has been computed between the source and target
transported vectors, this map can be applied to every source sample enriching
the target domain not only with the source inliers but also with the source
outliers and the unmatched operating conditions. The form of the map )
can be arbitrary, depending on the complexity of the relationship between
the source and target databases. This work considers linear transformations
) (Xs) = Xs R that have the advantage to be simple to compute and to avoid
overfitting issues. Moreover, in case of adaptation between machines that
differ in size, neglecting small nonlinearities, linear maps seems to be the
most reasonable transformations. In the following, the biased and the unbiased
choices for the ! matrix will be tested. An additional weighting matrix W is
also introduced to account for the discrepancy between the source samples
mapped with the barycentric function and the transported source samples. One
possibility could be to weight it by the deletion cost (W = diag(_B)), enforcing
a strong prior on the solution. A more natural approach that is indeed used in
our formulation is to introduce weights defined using the masses of the coupled
points, i.e., W = diag(V1nt), allowing only transported vectors to contribute
to the estimation.

�������������� ���� The penalization term (second part addend of
Equation (63)) is intended to regularize the transport map estimation problem.
This work relies on the same regularization investigated in [192], that tries to
ensure samples are not moved in too far locations. This regularization term is
controlled by the hyper-parameter _) .

If W = diag(V1nt) the ⌘ term can be rewritten in this form:

⌘(V,)) =
Ä

ns dt

��[Xs R � diag(P1nt)
-1
V Xt] diag(P1nt)

��Å
F

+
_)

ds dt
kR � Ok

Å

F

) (Xs) = Xs R

X̂s(V) = diag(P1nt)
-1
V Xt

W = diag(P1nt)

'()) = kR � Ok
Å

F

10.3.2 Optimization using Franke-Wolfe and Block-Coordinate Descent

The optimization problem described in Equation 61 is solved using the
Block-Coordinate Descent (BCD) algorithm as in [193]. The BCD algorithm
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recursively estimates V for a fixed ) and vice versa. These two steps are
detailed in the next sections.

Solving for V with ) fixed

The optimization problem is a constrained quadratic problem and is solved
by means of the Frank Wolfe algorithm [87], that reaches the solution solving
iteratively the linearized problem. Indeed this algorithm is based on two main
steps:

1. Direction finding: given an initial solution V: , find Y: that satisfies
the constrains and minimises Y

)
r 5 (V:). This step allows to find the

direction in V: that minimises the function 5 inside the space of possible
solutions. This step can be solved by means of a linear program solver.

2. Step size determination: find the step size U: that minimizes the function
along the direction Y: , therefore U: = argmin 5 (V: + U: (Y: � V:)).

Then, the solution is updated V:+Ä = V: +U: (Y: � V:) and the cycle continues.
Applying the first step to our problem requires to compute the gradient w.r.t.

V. To compute this algorithm, the gradient w.r.t. V is necessary:

rV 5 (V, R) = rV 6(V) + rV ⌘(V, R)

rR 5 (V, R) = rR ⌘(V, R)

and:

rV 6(V) = Î

rV ⌘(V, R) =
Å

ns dt

⇥
diag

⇣
diag�Ä

⇣
Xs RR

) Xs
)

⌘⌘
V1nt1

)

nt

� diag�Ä
⇣
V Xt R

) Xs
)

⌘
1)nt

� diag(V1nt) Xs R Xt
)

+ V Xt Xt
)
⇤

Solving for ) with V fixed

This step is the simplest, indeed it simply involves a matrix inversion.

rR 5 (R, V) =Å
⇥ Ä

ns dt
Xs

) diag(V1nt)
Å Xs +

_)

ds dt
O
⇤
R+

� Å
⇥ Ä

ns dt
Xs

) diag(V1nt)V Xt +
_)

ds dt
O
⇤

10.4 �����������

Due to the lack of datasets describing two similar machines that are both suited
for anomaly detection task, i.e. that are labelled with inlier/outlier class, we
decided to resort to a different (more qualitative) approach.
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The goal is to test different strategies to train an anomaly detector in presence
of few target samples. The specific anomaly detection model is not important
but in the following discussion we rely on One Class SVM because it is
conceptually simple and has a decision function easy to visualize. To assess the
performance of the training we will compare two decision boundaries: the one
obtained with the full target dataset (that is assumed not be available) and the
one obtained with partial information. Looking at the proximity between these
two boundaries we will qualitatively understand the best adaptation strategy
among the tested. We tested two main training choices, that are:

• training on raw data without adaptation.

• adapting source data to target data and then training the model on the
adapted data T(Xs).

Concerning the first option, the three choices are training on the source Xs,
training on the available target Xt and training on the union between these two
basic datasets Xs [Xt. Concerning the adaptation option, we tested 6 adaptation
strategies that can be grouped into 3: baseline strategies (like standardization
and normalization), balanced and unbalanced Optimal Transport strategies
(shortly B-OT and U-OT). Learning the transport map we tested the biased
estimation choice, and the unbiased.

10.4.1 Synthetic dataset experiments

Five synthetic datasets were generated to validate the discussed methodology,
three of which are made up of clusters that clearly define different classes
or operating conditions while the last two showing a more challenging and
less discrete cases. The available target data lacks one cluster or a portion of
operating area making impossible for traditional adaptation stategies to recover
the correct map and transfer the information of the missing data.

The simplest of the toy datasets tested in this Chapter is depicted in Figure
73: the source is composed of two clusters while the available target contains
only a portion of all the target conditions, i.e. it only shows the upper cluster.
Between the source and the target domain there is only a simple shift of
coordinates. It is easy to see that only the U-OT allowed to estimate the bias
vector is able to correctly reconstruct the transport. The other methods fail
by construction or because they look for a match that saves the dataset mass
or because they are not allowed to learn the shift like in U-OT without bias
estimation.

Two slightly more complex datasets are depicted in Figures 74,75 where
a structure made up of three clusters is shifted and rotated. Here the missing
information that is asked to transport between the two domains is a cluster
in the corner of the triangle. As in Figure 73, also in Figure 74 the baselines
and B-OT map the source in the convex hull of the available target leading to
wrong adaptations, while U-OT with bias estimation is able to map the correct
cluster in missing position. On the other hand Figure 75 shows a more complex
scenario where training the detection algorithm directly on the union of source
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(a) Data and baseline models.

(b) Baseline adaptations.

(c) Balanced OT adaptations.

(d) Unbalanced OT adaptations.

Figure 73: Shifted double cluster. Blue dots are source samples, orange are the
available target and gray are the full target dataset that unfortunately is
hidden to the learner. The lines corresponds to models trained using source
data (blue line), available target data (orange line), full target data (gray
line), source and available target (purple dashed line), transported source
data (green line)
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and available target might be a competitive choice against the training on the
adapted source due to the similarity between source and target. However in
this case the best performing adaptation algorithm is the U-OT that is allowed
to estimate the rotation only.

At this point, two more complex toy datasets are presented, where the
missing information is not a discrete class but a continuous area of the space.
The first example is the made up of a line that is horizontal in the source
domain, and rotated in the target domain (Figure 76). The difficulty here lies in
the target sampling process that avoided the acquisition of half of the rotated
line. As expected, even if U-OT with bias and B-OT without bias get close
results, the only method that accurately reconstructs the rotated and broken
line is U-OT without bias estimation.

The last fully synthetic dataset is an adaptation of the banana dataset
shown in [260]. In the cited paper the goal was to transfer the support vectors
obtained in a source dataset with a banana shape, to a new target banana that
is less sampled, slightly rotated and translated. In the context of this work
an interesting adaptation is shown in Figure 77 where the target banana is
assumed to be sampled in a much smaller area, a half of the full area. In this
settings, to reconstruct the correct transformation between source and target is
a much more challenging problem and requires the algorithm to automatically
learn which is the portion of the datataset that has to be matched and where is
the information that has to be transferred between the two domains. Also in
this case U-OT performs significantly better than the other approaches.

A transition between synthetic datasets and real ones is the Iris dataset [72]
where the popular dataset has been sub-sampled in order to get the source
and the target set, then the target has been rotated and deprived of a flower
specie associated to the class 0. This test is important because it shows the
presented approach does not work only in low dimensional cases like the 2D
example in Figure 78, but it also works on the full set of features whose results
are shown in Figure 79. Intuitively, the best approach maps source points
belonging to a class, to target points of the corresponding class, therefore the
pairwise distance of adapted source and target points belonging to the same
class is a good proxy of the adaptation performances. In fact, Figures 78 and
79 show the barplots of the pairwise distances between points belonging to
each class, computed using the tested approaches. Here it is easy to see U-OT
is able to reduce the classes mismatch, in particular the mismatch concerning
the missing information.

10.4.2 Real dataset experiments

In the following, test of the unbalanced transport on real datasets (related to
different domains, biology and industry) will be reported.

Firstly, it has been tested on the Palmer penguins datasets [115] describing
three species of penguins living in three different islands, both male and female.
In the present work the male penguins were used as source dataset, the female
as target and one specie of penguin (class 2) was masked to simulate the
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(a) Data and baseline models.

(b) Baseline adaptations.

(c) Balanced OT adaptations.

(d) Unbalanced OT adaptations.

Figure 74: Shifted clusters’ triangle.
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(a) Data and baseline models.

(b) Baseline adaptations.

(c) Balanced OT adaptations.

(d) Unbalanced OT adaptations.

Figure 75: Rotated clusters’ triangle.
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(a) Data and baseline models.

(b) Baseline adaptations.

(c) Balanced OT adaptations.

(d) Unbalanced OT adaptations.

Figure 76: Rotated line.
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(a) Data and baseline models.

(b) Baseline adaptations.

(c) Balanced OT adaptations.

(d) Unbalanced OT adaptations.

Figure 77: Banana dataset adapted from [260].
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(a) Data and baseline models.

(b) Baseline adaptations.

(c) Balanced OT adaptations.

(d) Unbalanced OT adaptations.

(e) Distances

Figure 78: Rotated 2d Iris dataset
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Figure 79: Rotated multidimensional Iris dataset

lacking of information in the target dataset (Figure 80). Figure 80e confirms
what is visually clear in Figure 80d i.e. only U-OT is able to correctly map the
missing class on the target domain.

The same problem has been tested over the dataset containing the full set of
features, obtaining even more clear results (Figure 81).

The adaptation strategy has been tested also over real data coming from
industry, the primary objective of this work. The first case presented in Figure 82
shows data coming from an experimental campaign where two Multiphase Flow
Meters have been tested on about the same working conditions, in particular
the two features describe the density and the conductivity of a mixture of
oil, gas and water. The two meters are similar as they measure the same
quantities but they differ in size and in sensors’ manufactures. As previously,
the target dataset was undersampled to simulate the lack of knowledge of the
whole production parameter space. As expected U-OT is able to recognise the
missing information, however U-OT with bias estimation maps some data out
of correct region, risking to train a detector with high false negatives, while
U-OT without bias estimation maps the missing corner in a slighly wrong way.

The second case showing an industrial adaptation scenario is depicted in
Figure 83 where data coming from gas sensors, retrieved in the UCI Machine
Learning repository [72, 84], show the measurements of two similar gas
sensors exposed to 4 different gases. The assumption made in Figure 83 is
that sensors measure the same quantities, but the target has measured less
kind of gases. Two configurations were tested: the results of the adaptation on
only two features is presented in Figure 83, while the reuslts on the full set of
features is shown in Figure 84; on both the configurations the missing class is
the fourth. It is easy to see that U-OT is perfectly able to estimate the correct
sensor calibration between the two boards.

However, looking at the distances between points of corresponding classes
(Figures 83e and 84) it is less evident that the unbalanced transport is the best.
Even if it closer matches the missing information, the first class is matched
slightly worse than using other approaches. Presumably, allowing the model to
learn a non linear map, this small dis-alignment would be solved but we leave
this experiment as future work as it opens a new set of challenges.
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(a) Data and baseline models.

(b) Baseline adaptations.

(c) Balanced OT adaptations.

(d) Unbalanced OT adaptations.

(e) Distances

Figure 80: 2D penguin dataset
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Figure 81: Multidimensional penguin dataset

10.5 �����������

In this Chapter it has been explored the topic of adaptation between two
different domains like the measurements coming from two similar but different
machines. The goal was to train an anomaly detection model on a machine
whose data are too few to train a reliable detector, so the training algorithm
relies on previous information coming from a similar machine. The idea was
to rely on Optimal Transport tools in order to transfer the knowledge between
the better known machine and the new one. However existing approaches are
only able to reconstruct a map between the two domains if the two datasets
are somehow balanced and contain the same amount of information. To solve
this issue it was proposed a new approach able to match the two domains in
this more complex unbalanced scenario. As shown in the previous Section,
the proposed approach beats both the baseline adaptations and other strategies
based on balanced Optimal Transport in most of the tested scenarios. Possible
limitations of this approach may arise when the map that links the two domains
is too complex or when the similarity between the two domains is too small.
Future works will address the possibility to learn nonlinear transformations
and the application of this method to classification tasks.
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(a) Data and baseline models.

(b) Baseline adaptations.

(c) Balanced OT adaptations.

(d) Unbalanced OT adaptations.

Figure 82: Multiphase flow meter
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(a) Data and baseline models.

(b) Baseline adaptations.

(c) Balanced OT adaptations.

(d) Unbalanced OT adaptations.

(e) Distances

Figure 83: Gas meter
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Figure 84: Multidimensional gas dataset



11
C O N C LU S I O N

In the present work we have explored and developed new Machine Learning
algorithms in order to enhance the reliability of industrial devices. The main
use case we were inspired by is the Multiphase Flow Meter, a device able to
measure the individual flow rates of oil, water and gas coming from an oil field.
This instrument indeed shows many interesting challenges this thesis tried to
solve, and that are applicable in many other industrial scenarios. The practical
problems posed by the MPFM were described in detail in Chapter 2 and then
addressed from a more theoretical point of view in the following Chapters.

Firstly the focus was on Soft Sensing techniques able to provide not only
the expected estimate but also to give a confidence interval that measures
its uncertainty. Results shown in Chapter 3 were in accordance with domain
experts, in particular the estimated uncertainty was able to correlate with the
presence of complex flow patterns.

Then, an extensive literature review concerning tree-based algorithms on
anomaly detection tasks has been presented in Chapter 4, where the different
models have been compared on detection strategy and performance.

In Chapter 5 an anomaly detection framework has been developed in order to
apply static algorithms to an always evolving process, and to detect anomalies
on the instrument behaviour more than the measured process. In this scenario
it was possible to select a light algorithm that accurately looks for possible
instrument malfunctions and is cheap to compute and interpret. Future studies
should focus on approaches that reduce the dependence of the model on feature
alignment and normalization.

Some very recent research areas have been addressed in conjunction with
anomaly detection in Chapters 6,7,8,9 and 10.

The problem of computing anomaly detection models on the device has
been developed in the context of Tiny Machine Learning in Chapter 6 where a
procedure was proposed to compress the most useful information contained in a
forest, in order to allow the model to be deployed on a micro controller. Further
investigations should measure the robustness of the compression algorithm,
potentially exploiting the available labels in a different way.

On the other hand Chapters 7 and 8 presented a way to introduce iteratively
limited supervision in an unsupervised model in order to enhance the detection
performances and to push the algorithm towards the user expected anomaly
definitions. Alternative formulations of the model might improve even more
the detection of anomalies and the user satisfaction.

Chapter 9 addressed the problem of explainable anomaly detection, providing
a way to get interpretations on why an algorithm highlights a point as a potential
anomaly. In this context, we suggest undertaking further research into the
development of performance metrics to measure the goodness of proposed
interpretations.

203
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Finally, in Chapter 10 the problem of the model scalability between different
machines has been addressed by means of Domain Adaptation techniques. In
particular the goal was to transfer information between differently sampled
machines with the aid of appropriately modified Optimal Transport tools.
Further works needs to be done to improve the robustness of these approaches.

It is important to stress that even if most of the algorithms that were developed
in this thesis are based on Isolation Forest, they can be easily adapted to other
variants of the original algorithm like Extended Isolation Forest, Robust
Random Cut Forest or Mondrian Forests. This could help achieve even better
detection performance by adding new features to the target model.

As obtaining labels in industrial scenarios can be very expensive, future work
should focus on Active Learning strategies to reduce the number of labelled
data needed to train Soft Sensing algorithms. We suggest also that further
research should be undertaken in the Online Learning and Domain Adaptation
areas. The first, to allow online and continuous training on the devices that
might be installed remotely but need to adapt to specific working environments,
while the second to transfer the solutions between similar products without
the need to make a new experimental campaign every time a new product is
developed.
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