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Abstract

1In-region location verification (IRLV) aims at verifying whether a user is inside a region of interest

(ROI). In wireless networks, IRLV can exploit the features of the channel between the user and a set of

trusted access points. In practice, the channel feature statistics is not available and we resort to machine

learning (ML) solutions for IRLV. We first show that solutions based on either neural networks (NNs)

or support vector machines (SVMs) and typical loss functions are Neyman-Pearson (N-P)-optimal at

learning convergence for sufficiently complex learning machines and large training datasets . Indeed, for

finite training, ML solutions are more accurate than the N-P test based on estimated channel statistics.

Then, as estimating channel features outside the ROI may be difficult, we consider one-class classifiers,

namely auto-encoders NNs and one-class SVMs, which however are not equivalent to the generalized

likelihood ratio test (GLRT), typically replacing the N-P test in the one-class problem. Numerical results

support the results in realistic wireless networks, with channel models including path-loss, shadowing,

and fading.

Index Terms

Auto-encoder, in-region location verification, machine learning, neural network, support vector

machine.

1This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which
this version may no longer be accessible
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I. INTRODUCTION

Location information without verification gives ample opportunities to attack a service granting

system (with applications in sensor networks [1], [2], [3], the Internet of things (IoT) [4], and

geo-specific encryption [5]). In fact, the location information can be easily manipulated either

by tampering the hardware/software reporting the location or by spoofing the global navigation

satellite system (GNSS) signal outside the user device. In this context, location verification

systems aim at verifying the position of mobile devices in a communication network. In order

to verify the location, the features of the wireless channel over which communications occur

can be exploited. An example is given by [6], where the received signal strength (RSS) is used

to estimate the distance between the user and other network nodes.

Location verification can be classified into two main sub-problems: single location verification

and in-region location verification (IRLV). The single location verification problem aims at

verifying if a user is in a specific point. A solution is obtained by comparing some channel

features of the user under test with those of a trusted user that was in the same location in the

past. In some works, this approach is used to verify if different messages come from the same

user, i.e., as a user authentication mechanism (see [7] for a survey): in [8], channel features are

affected by noise with known statistics; whereas, in [9], statistics are unknown and a learning

strategy is adopted. The IRLV aims at verifying if a user is inside a region of interest (ROI)

[1]. Solutions include distance bounding techniques with rapid exchanges of packets between

the verifier and the prover [10], [11], also in the context of vehicular ad-hoc networks [12].

Other solutions use radio-frequency and ultrasound signals [13], or anchor nodes and transmit

power variations [14]. More recently, a delay-based verification technique leveraging geometric

properties has been proposed in [15]. Some of the proposed techniques partially neglect wireless

propagation phenomena (such as shadowing and fading) that corrupt the distance estimates [10],

[13] and [14]. Other approaches assume specific channel statistics that may be not accurate due

to changing environment conditions [5]. Two types of attacks to IRLV have been considered

in the literature, where the attacker claims a false location [11], [12], [13] or tampers with the

signal power making it coherent with the fake claimed position [14], [16] and [6].

Focusing on IRLV, if the statistics of the channels to devices both inside and outside the

ROI is known to the network, the Neyman-Pearson (N-P) theorem [17] provides the most

powerful test for a given significance level. When the channel statistics is not available, a two-
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step solution would be to a) estimate the channel statistics and b) apply the N-P theorem on

the estimated statistics. However, as we also confirm in this paper, this approach may not be

accurate. Alternatively, machine learning (ML) techniques can be used. For example, in [18],

the single location verification problem is solved without assumptions on the channel model by

applying logistic regression. In [19], the objective is to determine the position of a user inside

a building by means of a multi-class support vector machine (SVM). Nevertheless, neither [18]

nor [19] compare the performance of their ML approaches with that of the N-P test.

In this paper, we remove the channel knowledge assumption and study two ML solutions

for IRLV based on neural networks (NNs) and SVM. In particular, we investigate multi-layer

perceptrons (MLPs) that use either the cross entropy (CE) or the mean squared error (MSE)

as loss functions, and the least-squares (LS) version of SVMs. We show that these approaches

are N-P-optimal for sufficiently complex machines and sufficiently large training datasets. The

obtained asymptotic results are applicable also to elaborate ML solutions, such as deep learning

NNs, that can still be seen as parametric functions, although more complex than shallow NNs.

Since it may be difficult to obtain training data from the space outside the ROI, as it can be

vast or not well defined, we explore the one-class classification problem under the knowledge of

legitimate channel statistics, and we conclude that conventional ML solutions based on both the

auto encoder (AE) and the one-class SVM do not coincide with the generalized likelihood ratio

test (GLRT), even for large training datasets. Numerical results support the theoretical results

in a realistic wireless network scenario, including path-loss, shadowing, and fading. We show

that in a simple scenario a shallow NN and a relatively small training dataset already provide

optimal performance. We also show that one-class IRLV achieves a performance comparable to

that of two-class IRLV.

The contributions of this paper are summarized hereby:

1) we propose physical-layer IRLV solutions based on ML techniques that are suitable to

operate with inaccurate estimates, even when their statistics are not known, thus being

model-less;

2) we show that, in asymptotic training and complexity conditions, NN and least squares

SVM (LS-SVM) at convergence achieve the error probabilities of the N-P test, which is

most powerful for a given significance level.

About point 1, shadowing and fading effects on IRLV have not been much considered in the
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literature: for example, in [14], RSS estimates are assumed to be perfect; in [13], agents are

assumed to communicate over an error-free channel (san assumption used for most distance-

bounding protocols [11], [12]). In [6] and [16], shadowing is taken into account, while fading

is neglected, and channel statistics is assumed to be known. All these simplifying assumptions

are not required by the ML models studied in this paper. Indeed, we also consider an accurate

wireless channel model (in Section II), but only in order to explain the complexity of the

techniques in the literature (including the N-P test) and, consequently, justify the use of ML.

Still, our solution and theoretical results can be applied on any channel statistics and various

features (see [1] for a survey), even including measurements from external sensors.

The paper is organized as follows: Section II introduces the system model for the IRLV

problem, with an example of wireless channel, and recall two reference IRLV techniques.

Section III describes the proposed ML solutions and presents the theoretical results on their

asymptotic performance. In Section IV, we propose the one-class classification approaches.

Numerical results are shown and discussed in Section V. Conclusions are outlined in Section VII.

The following notation is used throughout the paper: bold lowercase letters refer to vectors,

whereas bold uppercase letters refer to matrices, E[·] and P[·] denote the expectation and

probability operators, respectively, (·)T denotes the transpose operator, lnx, and log10 x denote

the natural-base and base-10 logarithms, respectively.

II. SYSTEM MODEL

We consider a wireless network with NAP access points (APs) covering the area A over a

plane. We propose a IRLV system to determine if a user device (UD) is transmitting from within

an authorized ROI A0 inside A, and we define A1 = A \A0 as its complementary region. The

verification process exploits the location dependency of the features of the channel between

the UD and the APs. For example, we consider as feature the channel power attenuation (of a

narrowband transmission), similarly to [6], [14] and [16]. Indeed, other features can be exploited,

such as the phase or the wideband impulse response (see [7] for a survey): our solutions readily

apply also to these cases, as we do not make special assumptions on the channel model for their

design and analysis.

We assume that the UD transmits a pilot signal with fixed power, known at the APs, from

which the APs can measure the received power and estimate the channel attenuation. We assume
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that the attenuation estimation is perfect, i.e., not affected by noise or interference, thanks to a

sufficiently long pilot signal.

A. Channel Model

We now describe a widely adopted wireless channel model to clarify the challenge faced by an

IRLV based on the attenuation estimate. In particular, we consider the general channel [20] model

that covers a large frequency range from 800 MHz to 2.5 GHz, suitable for wireless local area

networks (WLANs) and IoT, where IRLV is typically applied. Let a(n) be the attenuation incurred

over the channel between the UD and AP n, including the effects of path-loss, shadowing, and

fading. In particular, by assuming a Rayleigh model for fading we have

g(n) = (
√
a(n))−1 ∼ N

(
0, σ2

g,n

)
, (1)

where N (m,σ2) denotes a Gaussian random variable with mean m and variance σ2. Moreover,

due to shadowing we have

(σ2
a,n)dB = −10 log10 σ

2
g,n = P

(n)
PL + s, (2)

where P (n)
PL is the path-loss coefficient in dB, and s ∼ N (0, σ2

s,dB) is the shadowing component.

Shadowing components of two UDs at positions x1 and x2 have correlation σ2
s,dBe

−L(x1,x2)
dc ,

where dc is the shadowing decorrelation distance [21, Section 2.7].

Let us denote as x(n)
AP = (X

(n)
AP , Y

(n)
AP ) the position of AP n = 1, . . . , NAP. For a UD located at

xUD = (Xu, Yu), its distance from AP n is L(xUD,x
(n)
AP) =

√
||xUD − x(n)

AP||22. For the path-loss,

[20] provides two scenarios: line of sight (LOS) and non-LOS. For a LOS link, the path-loss in

dB is modelled as

PPL,LOS

(
L(xUD,x

(n)
AP)
)

= 10ν log10

(
f4πL(xUD,x

(n)
AP)

c

)
, (3)

where ν is the path-loss coefficient, f is the carrier frequency and c is the speed of light. For a

non-LOS link, the path-loss coefficient in dB is defined as

PPL,NLOS

(
L(xUD,x

(n)
AP)
)

= 40(1− 4 · 10−3h
(n)
AP) log10

(
L(xUD,x

(n)
AP)

103

)
+

− 18 log10 h
(n)
AP + 21 log10

(
f

106

)
+ 80,

(4)
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where hAP is the AP height. Path-loss and shadowing components (thus σ2
a,n) are assumed to

be time-invariant, while the fading (thus attenuation a(n)) is independent for each attenuation

estimate. Fading does not give information on the UD location; therefore it is a disturbance for

IRLV. However, by performing kf estimates of the attenuation in a short time a(n)
j , j = 1, . . . , kf ,

and averaging them, we obtain the new attenuation estimate

a
(n)
Σ =

1

kf

kf∑
j=1

a
(n)
j . (5)

B. IRLV With Known Channel Statistics

IRLV can be seen as a hypothesis testing problem between the two hypotheses (events):

• H0: the UD is transmitting from area A0;

• H1: the UD is transmitting from area A1.

This is also denoted as a two-class classification problem. Given vector a = [a(1), . . . , a(NAP)]

collecting the attenuation estimates at all the APs, we aim at determining the most likely

hypothesis, in order to perform IRLV. Let H ∈ {H0,H1} be the state of the UD, and

Ĥ ∈ {H0,H1} the decision taken by the APs. We have two possible errors: false alarms (FAs),

which occur when the UD is classified as outside the ROI, while being inside it, and mis-

detections (MDs), which occur when the UD is classified as inside the ROI, while being outside

of it. We indicate the FA probability as PFA = P(Ĥ = H1|H = H0), and the MD probability

as PMD = P(Ĥ = H0|H = H1). Let p(a|Hi) be the probability density function (PDF) of

observing the vector a given that H = Hi. The log likelihood-ratio (LLR) for the considered

hypothesis is defined as

M(a) = ln
p(a|H0)

p(a|H1)
. (6)

According to the N-P theorem, the most powerful test is obtained by comparing M(a) with a

threshold value Λ, i.e., obtaining the test function

f ∗(a) =

−1 if M(a) ≥ Λ,

1 if M(a) < Λ,
(7)

where f ∗(a) = −1 corresponds to Ĥ = H0 and f ∗(a) = 1 corresponds to Ĥ = H1. Parameter

Λ must be chosen to obtain a desired significance level, i.e., a desired FA probability. It can be
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Fig. 1. Simplified scenario with a single AP located at the center of a circular ROI.

set either by assessing the FA probability through simulations or by inverting, when available,

the expression of FA probability as a function of Λ [22, Section 3.3].

C. Example of N-P Test

As example of application of the N-P test we consider the scenario of Fig. 1, wherein area A is

a ring with smaller radius Rmin and larger radius Rout and ROI A0 is a ring concentric to A, with

larger radius Rin and smaller radius Rmin. A single AP (NAP = 1) is located at the ROI center

and a UD is transmitting from distance d0. We consider two models: a) uncorrelated fading

scenario, which includes LOS path-loss and spatially uncorrelated fading, and b) uncorrelated

shadowing scenario, which includes LOS path loss and spatially uncorrelated shadowing. In

both case, we consider the LOS model for path-loss. In order to compute 2 p(a|Hi), we first

observe that the PDF of incurring in attenuation a for a user located inside the ROI is (by the

total probability law)

p(a|H0) =

∫ Rin

Rmin

p (a|d0) p(d0|d0 ∈ A0) dd0, (8)

where p(d0|d0 ∈ A0) is the PDF of the UD transmitting from distance d0 inside the ROI.

Assuming that UD position is uniformly distributed in A, and letting ∆0 = R2
in − R2

min and

∆1 = R2
out − R2

in, we have p(d0|d0 ∈ A0) = 2d0
∆0

for d0 ∈ [Rmin, Rin], and p(d0|d0 ∈ A0) = 0

2Note that for a single AP vector a becomes the scalar a.

June 13, 2019 DRAFT



8

otherwise. A similar expression holds for p(d0|d0 ∈ A1). Closed-form expressions of the LLR

in the two scenarios are derived in Appendix A.

We can see that obtaining LLRs needs the computation of various integrals evein in this simple

case. Therefore, in general (e.g., with either multiple APs or correlated shadowing/fading), the

LLR can not be computed in closed-form, thus making N-P test problematic.

D. Estimated Distance Approach

We will compare our IRLV solutions with the estimated distance approach (EDA) of [6].

In EDA, first the estimate L̂(xUD,x
n
AP) of the UD-AP distance is obtained by inverting the

path-loss formula, and then the UD position is estimated as

x̂UD = arg min
x

NAP∑
n=1

(
L(x,x

(n)
AP)− L̂(xUD,x

(n)
AP)
)2

. (9)

Let B0 be the set of points of the border of A0, and let the estimated distance of the UD from

the border B0 dB = minx∈B0 ±||x̂UD−x||, where the sign is negative if x̂UD ∈ A0, and positive

otherwise. Lastly, dB is compared with a suitable threshold dδ, chosen in order to achieve a

desired FA probability, resulitng in ĤMMSE = H0, if dB < dδ, ĤMMSE = H1, otherwise.

Note that this approach requires the knowledge of the path-loss model (including knowledge of

LOS and non-LOS state), which is quite unrealistic. Moreover, the estimator (9) is not optimal,

since the position error is usually not a Gaussian variable.

III. IRLV BY MACHINE LEARNING APPROACHES

The application of the N-P theorem requires the knowledge of the conditional PDFs p(a|Hi)

at the APs, which can be hard to obtain also because a-priori assumptions on them may be quite

unrealistic. Therefore, we propose to use a supervised ML approach operating in two phases:

• Learning phase: the APs collect attenuation vectors from a trusted UD moving both inside

and outside the ROI, while the UD reports its position to the APs. In this way, the APs can

learn the behaviour of the attenuation in both regions A0 and A1.

• Exploitation phase: the APs verify the location of an un-trusted UD by the attenuation’s

estimate, using the data acquired in the learning phase.

The learning phase works as follows: for each training attenuation vector a(i), i = 1, . . . , S,

collected during the learning phase, there is an associated label ti, i = 1, . . . , S, where ti = −1 if
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the trusted UD is in region A0, and ti = 1 if the trusted UD is in region A1. Vector t = [t1, . . . , tS]

collects the labels of all the attenuation vectors in the training phase. Given these data, the AP

learns the function t̂ = f(a) ∈ {−1, 1} that provides the decision Ĥ for each attenuation vector

a. Then, in the exploitation phase, the IRLV algorithm computes t̂ = f(a) for a new attenuation

vector and takes the decision between the two hypotheses. Note that our solution does not

explicitly evaluate the PDF and the LLR, but rather directly implements the test function.

We stress the fact that the channel model of Section II-A provides a realistic communication

scenario, while the analysis that follows is general, as no specific channel statistics are assumed.

In the rest of this Section, we briefly review the MLP NN and the SVM, describe the

learning process and show that in asymptotic conditions (infinite training attenuation vectors,

sufficiently complex models, and proper learning phase convergence) both MLP and SVM

functions approximate the LLR function (6).

A. Neural Networks

A NN is a RN → RO function mapping a set of N real values into O real values. A NN

processes the input in Q stages, named layers, where the output of one layer is the input of the

next layer. Layer 0 with (column vector) input y(0) is denoted as input layer, layer Q− 1 with

(column vector) output y(Q) is denoted as output layer, while intermediate layers are denoted as

hidden layers. We denote as NL the number of hidden layers. Each layer ` = 0, . . . , Q− 1, has

N (`) outputs obtained by processing the inputs with N (`−1) functions named neurons. The output

of the nth neuron of layer ` is y(`+1)
n = ψ(`)

(
w

(`)
n y(`) + b

(`)
n

)
, where the mapping between the

input and the outputs is given by the activation function ψ(`)(·). The argument of the activation

function is a weighted linear combination, with (row vector) weights w(`)
n , of the outputs y(`) of

the previous layer plus a bias b(`)
n . We focus here on feedforward NNs, i.e., without loops between

neurons’ input and output, an architecture also known as MLP. For an in-depth description of NNs

refer for example to [23, Chapter 6]. Activation functions are typically chosen before training,

while vectors w(`)
n are adapted according to the NN learning algorithm in order to minimize the

loss function.

In our setting, the input of the NN is the attenuation vector a, N = NAP, and the output layer

has a single neuron (O = 1) providing as output the scalar y(Q)
1 . Let t̃(a) = y

(Q)
1 be the output
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of the NN corresponding to the attenuation vector input a. A threshold λ is used on the NN

output to obtain the test function

f(a) =

1 t̃(a) > λ,

−1 t̃(a) ≤ λ.
(10)

Parameter λ shall be chosen in order to obtain the required FA probability. The value of λ

which guarantees a certain FA probability can obtained by simulation, whereas it can not be

obtained by inverting the FA probability function. This is due to the fact that the ML framework

is applied when there is no knowledge of the distribution of the variables and hence we can not

compute a closed-form expression of the FA probability .3

Based on the loss function to be optimized during training NNs can solve different problems,

and we consider here two widely used loss functions: MSE and CE.

B. NN MSE Design

As optimal hypothesis testing is implemented via the N-P framework, which exploits the

knowledge of the LLR function, we aim at learning this function from data. This problem is

referred to as curve fitting and it can be solved by training a NN via the MSE loss function

[24]. According to the MSE design criterion, the MLP parameters are updated in the training

phase in order to minimize the MSE [24]

Γ =
S∑
i=1

|t̃(a(i))− ti|2. (11)

This is achieved by using the stochastic gradient descent algorithm [25, Section 3.1.3].

In order to prove the connection of NN classifier with MSE design with the N-P test, we first

recall the following theorem [26]

Theorem 1 (see [26]). Let g0(a) be the Bayes optimal discriminant function

g0(a) = P(H = H0|a)− P(H = H1|a). (12)

3Notice that usually, for zero-one loss function, literature assumes λ = 0.5. However, this choice provides the control of
neither FA nor MD probabilities.
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Then the MLP trained by backpropagation via (11) minimizes the error∑S
i=1

(
t̃(a(i))− g0(a(i))

)2
.

Hence, Theorem 1 proves that in the presence of i) perfect training, ii) an infinite number

of neurons, and iii) convergence of the learning algorithm to the minimum error, the function

implemented by MLP is the Bayes optimal discriminant function. Now we have the following

corollary.

Corollary 1. Consider an MLP with training converged to the global minimum of the MSE, by

using an infinite number of training points (S → ∞). Then the test function (10) provides the

N-P test, thus it is the most powerful test.

Proof. From the Bayes rule we have

g0(a) =
p(a|H0)P(H = H0)− p(a|H1)P(H = H1)

p(a|H0)P(H = H0) + p(a|H1)P(H = H1)
. (13)

Now, function (10) imposes a threshold λ on g0(a) and reorganizing terms we obtain f(a) = −1

when
p(a|H0)

p(a|H1)
>

1 + λ

1− λ
P(H = H1)

P(H = H0)
= λ∗, (14)

which is equivalent to the N-P criterion, except for a fixed scaling of the threshold.

Note that this result is quite general and can be applied to NNs with any number of layers

and neurons, and any parameter adaptation approach, as long as the target design function is

the MSE. Thus, Corollary 1 is suited also to describe the asymptotic behaviour of elaborate

solutions, such as deep learning NNs.

C. NN CE Design

Binary classification aims at assigning labels 0 or 1 to input vectors. In this case, the usual

choice for the loss function is the CE between the NN output and the true labels of the input

vector [25, Chapter 5.2]

χ = −
S∑
i=1

ti ln t̃(a
(i)) + (1− ti) ln(1− t̃(a(i))). (15)

We now prove the connection of CE design criterion with the N-P theorem.
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Theorem 2. Consider an MLP with training converged to the global minimum of the CE, by

using an infinite number of training points (S → ∞). Then the test function (10) provides the

N-P test, thus it is the most powerful test.

Proof. The probability of being in hypothesis H1 given the attenuation vector a satisfies P(H =

H1|a) = 1−P(H = H0|a). When training is performed with the CE loss function, the output of

the MLP is the minimum MSE approximation of the probability P(H0|a) of being in hypothesis

H0, given the attenuation vector a [25, Section 5.2], i.e., t̃(a) ≈ P(H = H0|a) , where the

approximation is in the MSE sense. An alternative proof of this is given by [27].

Now, by using the threshold function (10), we have P(H = H0|a) ≈ t̃(a) > λ, which can be

rewritten as (with λ̂ = 2λ− 1)

P(H = H0|a)− (1− P(H = H0|a)) & λ̂ (16)

P(H = H0|a)− P(H = H1|a) & λ̂. (17)

By using (10) on the output of the NN designed with the CE criterion, under the convergence

hypothesis, (17) coincides (except for a different threshold value) with (12), the function

implemented by the NN trained with the MSE criterion. Therefore, from Corollary 1 we conclude

that also the CE design criterion provides a test function equivalent the N-P test function.

D. Support Vector Machines

A SVM [25, Chapter 7] is a supervised learning model that can be used for classification

and regression. We focus here on binary classification to solve the IRLV problem. The SVM

implements the t̃(a) : RNAP → R function

t̃(a) = wTφ(a) + b, (18)

where φ : RNAP → RK is a feature-space transformation function, w ∈ RK is the weight column

vector and b is a bias parameter. The test function is again provided by (10), where now t̃(a) is

given by (18). Note that in the conventional SVM formulation, we have λ = 0, while here λ is

chosen according to the desired FA probability. While the feature-space transformation function

is chosen before training [25, Chapter 7], vector w must be properly learned from the data to

obtain the desired hypothesis testing.
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We consider the LS-SVM approach [28] for the optimization of the SVM parameters. Learning

for LS-SVM is performed by solving the following optimization problem

min
w,b

ω(w, b) ,
1

2
wTw + C

1

2

S∑
i=1

e2
i (19a)

ei = ti[w
Tφ(a(i)) + b]− 1 i = 1, . . . , S , (19b)

where C is not optimized by the learning algorithm, but must be tuned on training data using

a separate procedure, e.g., see [29]. In conventional SVM, variables ei, i = 1, . . . , S, are

constrained to be non-negative and appear in the objective function without squaring. Inequalities

in the constraints translate into a quadratic programming problem, while equalities constraints

in LS-SVM yield a linear system of equations in the optimization values. In [30], it is shown

that SVM and LS-SVM are equivalent under mild conditions. From constraints (19) and the fact

that ti = ±1 we have

e2
i = (1− tit̃(a(i)))2 = (ti − t̃(a(i)))2, (20)

that is the squared error between the soft output of the LS-SVM t̃(a(i)) and the correct training

label ti.

We now prove the equivalence between the LS-SVM and N-P classifiers. Let us first consider

the following lemma that establishes the convergence of the learning phase of SVM, as S →∞.

Lemma 1. For a large number of training samples a(i) taken with a given static probability

distribution from a finite alphabet C, i.e., for S → ∞, the vector w of the LS-SVM converges

in probability to a vector of finite norm ||w||2 = wTw.

Proof. See the Appendix B.

We can now prove the following theorem establishing the optimality of the SVM solution, as

it provides the most powerful N-P test for a given FA probability.

Theorem 3. Consider a LS-SVM with training converged to the global minimum of ω(w, b),

and using an infinite number of training points a(i) drawn from the finite alphabet C. Then the

test function (10) with (18) provides the N-P test, thus it is the most powerful test.
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Proof. From (19a) consider

lim
S→+∞

1

S
ω(w, b) =

C

2
lim

S→+∞

1

S

S∑
i=1

e2
i =

C

2
Et(w, b), (21)

where Et(w, b) = E [e2
i ] is the expected value computed with respect to the training points a(i),

as S goes to infinity. The first equality in (21) comes from Lemma 1: since w converges to a

finite norm, we can write limS→∞
1
S
wTw = 0. The last equality comes from the strong law of

large numbers. In the limit, the optimization problem (19) is equivalent to

min
w,b

Et(w, b), (22)

where we dropped constraints (19) by using (20). The optimization problem is the same as of NN

design and from [26], with the pair (w∗, b∗) minimizing (22) and parametrizing (18), we have

t̃(a(i)) ≈ P(H0|a(i))−P(H1|a(i)). Lastly, we exploit Corollary 1 to conclude the N-P-optimality

of LS-SVM.

In summary, we have proven that both NN (with CE and MSE design) and SVM (with

LS design) converge to the N-P test function as the training set size S goes to infinity,

thus establishing their asymptotic optimality and their relation to the theory of most powerful

hypothesis testing.

E. Computational Costs of ML Approaches

In this section, we briefly review the computational cost for i) training each machine and ii)

making a prediction on a new data point. Let η be the number of epochs (how many times each

training point is used) of a NN.

For a basic fully connected feed-forward NN, the backpropagation training algorithm is O(η ·

S ·NL ·N3
AP) when the number of neurons of each hidden layer is proportional to the input size,

while the prediction of a new unseen data point is O(NL ·N3
AP). For a more detailed analysis,

which takes into account also the cost of the choice of the activation function, see [31].

For a LS-SVM, the estimate of the vector w at training time is found by solving a linear

set of equations (instead of the traditional quadratic programming of SVM). In general, the

computational cost is O(S3); however, there are more efficient solutions that reduce this
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complexity to O(S2) (see [32]). At test time, the prediction is linear in the number of features

and the number of training points, i.e., O(NAP · S).

IV. IRLV BY ONE-CLASS CLASSIFICATION

In practice, collecting training points from region A1 may be difficult, since this region may

be large and not necessarily well defined (being simply the complement of A0). Therefore,

during the training phase, we collect attenuation vectors only from inside A0 and use them to

train a ML classifier to distinguish between vectors belonging to A0 and A1 in the testing phase.

This problem can also be denoted as one-class classification, since we have only samples taken

from one of the two classes of the problem to train the models.

In the following, we address the problem of one-class classification implemented via both NN

and SVM. Two approaches are considered: the AE, using a NN, and the one-class least-square

SVM (OCLSSVM).

Before proceeding, we consider the optimal approach when only the channel statistics from

within A0 are known a-priori. In this case the LLR (6) can not be used as discriminant function,

as p(a|H1) is not known. We can instead resort to the GLRT [22], which, although in general

sub-optimal, is a meaningful generalization of the N-P test, providing the test function

f ∗(a) =

−1 if p(a|H0) ≥ Λ

1 if p(a|H0) < Λ.
(23)

A. Auto Encoder NN

We consider the AE [33], i.e., a NN trained to copy the input to the output. It comprises

an encoder NN (with Ne layers), which transforms the N -dimensional input data into the M -

dimensional code, with M < N , and a decoder NN (with Nd layers), which reconstructs the

original high-dimensional data from the low-dimensional code. For an in-depth description of

the AE architecture, please refer to [23, Chapter 14]. When implementing AEs, it is convenient

to use linear activation functions at the last hidden layer of the decoder [23, Chapter 14]. Note

that the AE output is a vector of the same size of the AE input, and one-class classification is

obtained by computing the reconstruction error between the input and the output of the AE and

comparing its absolute value with a chosen threshold.
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For our IRLV problem, we train the AE with attenuation vectors a(i) taken only when the

trusted UD is in ROI A0. Then, by letting y(Q)(a) be the output vector of the AE for the

attenuation input a, the MSE is

Γ(AE) =
1

N

N∑
n=1

|an − y(Q)
n (a)|2. (24)

Finally, the IRLV test function is

f(a) =

1 if Γ(AE) ≥ λ(AE),

−1 if Γ(AE) < λ(AE),
(25)

where again λ(AE) must be chosen to achieve a desired FA probability.

As the AE attempts to copy the input to its output, in the testing phase only vectors with

features similar to those of the training set will be reconstructed with smaller MSE, whereas

input vectors with different features will be mapped to different vectors at the output, with large

MSE. Since training is based on vectors collected from area A0 and we want to verify users

located inside A0, by thresholding the MSE, we can obtain the desired classifier.

About the test power of the AE, we observe that it can be seen as the quantizer (or compression

process) of an N -dimensional signal into an M -dimensional signal. In order to minimize the

MSE of the reconstruction error, inputs with higher probability will have smaller quantization

regions. Moreover, as the number of quantization points goes to infinity (since the quantization

indices are in the continuous M -dimensional space) all points in the same quantization region

will have approximately the same probability. However, the quantization error for points within

each region will be different for each point; in particular, equal to zero for the quantization point

and greater than zero at the edges of the quantization region. Thus, we can conclude that the

AE can not provide as output the PDF of the input, even with infinite training and an infinite

number of neurons, as required by the GLRT decision rule (23). On the other hand, input points

with a smaller PDF belong to larger quantization regions for which the reconstruction error is on

average larger; therefore, the output provided by the AE is on average monotonically decreasing

with the PDF of the input point.
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B. One-Class LS-SVM

We can also resort to SVM to perform the one-class classification in IRLV: we focus in

particular on the OCLSSVM, first introduced in [34] as an extension of the one-class SVM

[35]. The only difference with respect to the SVM introduced in Section III is that the training

optimization problem is now

min
w,b

ω(w, b) ,
1

2
wTw +

C

2

S∑
i=1

e2
i + b (26a)

subject to − b−wTφ(a(i)) = ei, i = 1, . . . S. (26b)

Note that in the one-class case, the bias parameter b appears also in the objective function.

We observe that also for OCLSSVM we can not establish a correspondence with GLRT.

Nevertheless, by resorting to the Chernoff bound, we can conclude that by minimizing the MSE

we also minimize the upper bound of the FA probability; therefore, the optimization process

goes in the right direction although being not optimal.

V. NUMERICAL RESULTS

In this section, we present the performance of the proposed IRLV methods, obtained from

both experimental data and the channel models of Section II. We consider a unitary transmitting

power for each user and a carrier frequency of f0 = 2.12 GHz, and h(n)
AP = 15 m for all the APs,

unless differently specified. When spatial correlation of shadowing is assumed, we consider a

decorrelation distance of dc = 75 m according to the model of Section II. The training points

for the classification tasks are taken uniformly over the area A (A0).

For the LS-SVM we use a Gaussian kernel function [25, Chapter 6]. For the NN approach we

use fully connected networks. For the two-class classification problem, the activation function

of the input layer is the identity function, while the activation function of neurons in the hidden

and output layers is the sigmoid [23, Section 6.2.2.2]. NNs have been trained only for CE loss

function, as we have shown in Corollary 1 and Theorem 2 that with both MSE and CE loss

functions we achieve the same performance of the N-P test.

A. Two-class IRLV With Single AP

We start with a IRLV system using a single AP.
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Fig. 2. DET of IRLVs methods for LOS, uncorrelated fading/shadowing and various values of ν and σs,dB. Environment of
Section II-C.

Uncorrelated fading/shadowing: Firstly, we consider the environment of Section II-C

describing a small area. The channel model includes spatially uncorrelated fading or shadowing,

with Rout = 10 m, Rin = 2 m, and Rmin = 0.1 m. Moreover, LOS is assumed for path-

loss. For uncorrelated fading, we consider two path-loss coefficients, namely ν = 2 and 3; the

closed-form expression of the LLRs for the N-P test are given by (28) and (30). With spatially

uncorrelated shadowing, we set ν = 2, and three values of shadowing standard deviation, namely

σs,dB = 0.1 dB, 1.8 dB, and 6 dB; the closed-form expression of the LLRs for the N-P test is

given by (32). For the ML approaches, we consider S = 105 training points and a NN with

NL = 2 hidden layers, each layer with N (i) = 5 neurons in layer i = 1, 2.

Fig. 2 shows the FA probability versus the MD probability i.e., the detection error tradeoff

(DET), obtained with the N-P test, the NN, and LS-SVM classifiers. We notice that all models

achieve the same performance, confirming our theoretical results that both NN and LS-SVM

with sufficient training data and number of hidden layers are optimal as N-P. We observe

that fading has more impact on the performance than shadowing, yielding higher FA and MD

probabilities. Still, with fading, a higher path-loss coefficient provides better results, since the

attenuation increases more with the distance, thus easing classification. For spatially uncorrelated

shadowing, performance improves as σs,dB decreases, since in this case path-loss alone already

provides error-free decisions, thus the shadowing component is a disturbance in the decision

process.
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Fig. 3. Reference environment.

Fig. 4. Example of attenuation map including path-loss and shadowing, with the AP positioned at the center.

Spatially correlated shadowing: We now consider the spatially correlated shadowing

(σs,dB = 8 dB) of Section II. The simulation environment is shown in Fig. 3, using only AP1

at the street intersection (while all other APs are not used) and a square ROI with d1 = 50 m,

d2 = 50 m, and β1 = β2 = 150 m. The ROI is inside the south-west building, modelling

for example a scenario wherein privileged network resources are accessible only to users inside
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Fig. 5. DET of IRLV methods, with a NN having NL = 1 and two values of Nh. Environment of Fig. 3, with one AP located
at the street intersection, d1 = 50 m, d2 = 50 m, β1 = β2 = 150 and correlated shadowing (σs,dB = 8 dB).

an office. Along the streets, LOS propagation conditions hold (with ν = 2), while non-LOS

propagation conditions hold in the rest of the area. Fig. 4 shows a realization of the attenuation

map (including both path-loss and shadowing), highlighting the different propagation conditions.

Since no closed-form expression of the LLR is available in this scenario, we quantize the

attenuations collected in the learning phase with a large alphabet and estimate the sampled

PDF for the quantized attenuations. Lastly, we use the estimated PDF to compute the LLRs. We

use 4.46 · 106 training points in the area A and a uniform quantizer for the attenuation (within

the observed extreme values) with 300 quantization values. Only 103 points are used for training

both the MLP and SVM.

Fig. 5 shows the DET of N-P, NN, and LS-SVM, where for a given FA probability we report

the MD probability averaged over the shadowing attenuation maps. We notice that both NN and

LS-SVM outperform the N-P test. This means that, even for a very large number of samples

available to estimate the PDF, we still have a performance degradation with respect to N-P with

perfect knowledge of the statistics. On the other hand, with a small amount of training points the

ML methods outperform N-P, without knowing the channel model. Therefore, in the following

sections we drop the N-P method.
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B. Two-class IRLV With Multiple APs

We consider the environment of Fig. 3 with NAP = 10 APs used for IRLV, namely APi with

i = 2, . . . , 11. The channel model includes LOS and non-LOS path-loss, spatially correlated

shadowing (σs,dB = 8 dB), and fading, as described in Section II. We use a NN with L = 3

hidden layers, each layer having N (i) = 100 neurons, i = 1, 2, 3.

a) No fading average: We first feed the learning machine with attenuation estimates

obtained without fading average, i.e., kf = 1. ROI position is d1 = 50 m, d2 = 50 m, and

β1 = β2 = 150 m. Fig. 6 shows the DET for NN and LS-SVM IRLV methods and different

values of the training-set size S. We observe that, for a given FA probability, the average

MD probability decreases as the training-set size S increases. Both ML models have similar

performance with large training sets, confirming our result that they are both asymptotically

optimal. However, SVM converges faster than NN (i.e., with a smaller S) to the optimal DET.

Therefore, a careful design is needed for a practical implementation with finite training and

limited computational capabilities. Note that we obtain a more accurate classification with

multiple APs rather than using a single AP. Still, for security purposes, we would prefer even

lower FA and MD probabilities; this can be achieved, for example, by increasing the number of

APs or considering other channel features, e.g., its wideband impulse response.

We have also considered a different ROI layout, with d1 = 100 m, d2 = 255 m and β1 = β2 =

150 m. The ROI is still positioned in the south-west corner, but it includes both the crossroads

and AP8 (see Fig. 3). Channel parameters are the same of Fig. 6. Fig. 7 shows the resulting

DET, still obtained by averaging the MD probabilities over the shadowing maps. Including the

street inside the ROI, with its LOS path-loss, turns out to facilitate IRLV resulting in lower FA

and MD probabilities.

b) Effect of fading average: As discussed in Section II-A, for a given UD position, the

attenuation changes over time due to fading. By averaging kf realizations of attenuation in the

same position, the effect of fading on IRLV is mitigated. We consider the environment of Fig. 3

with NAP = 5 APs used for IRLV, namely APi with i = 1, . . . , 5, and the values of the channel

parameters are those of Fig. 6. For nx explored locations by the UD we obtain S = nx · kf
training attenuation vectors. Fig. 8 shows the DET for kf = 1 and 10, with nx = 2 · 104

for SVM and nx = 3.2 · 105 for NN. We also report the performance of EDA, assuming to

know the path-loss relation between the attenuation and the distance. We note that both MD
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Fig. 6. DET of IRLV methods for different values of training-set size S. Environment of Fig. 3, with NAP = 10, d1 = 50 m,
d2 = 50, β1 = β2 = 150 m, and σs,dB = 8 dB.
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Fig. 7. DET of IRLV methods for different values of training-set size S. Environment of Fig. 3, with NAP = 10, d1 = 100 m,
d2 = 225 m, β1 = β2 = 150, and σs,dB = 8 dB.

and FA probabilities can be significantly reduced by averaging fading, thus approaching the

performance on channels without fading. Indeed, an average of 10 fading realizations already

reduces the average MD probability from 10−1 to 10−2, for an FA probability of 2 · 10−1, while

we achieve an average MD probability of 4 · 10−4 without fading using a NN. We also notice

that, in absence of fading, SVM significantly outperforms NN even if NN uses a larger S. This

suggests that, in this scenario, the NN has not yet converged to the optimum, wherein potentially

very good performance can be achieved, due to limits in architecture, computational capabilities,
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Fig. 8. DET of IRLV methods for different averages of fading. Environment of Fig. 3, with NAP = 5, d1 = 50 m, d2 = 50 m,
β1 = β2 = 150 m, and σs,dB = 8 dB.
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Fig. 9. DET of IRLV methods for the experimental data.

and design algorithms. We should remember, in fact, that the number of parameters defining the

SVM grows with the training size, while the number of parameters of the NN is set a-priori.

Lastly, we observe that the proposed ML techniques (both with and without fading) outperform

EDA, whose performance has been obtained on channels without fading. This is due to the fact

that EDA is more severely affected by shadowing seen as disturbance in the derivation of the

distance, while ML solutions may exploit it in making the decision, while still not relying on

specific channel models.

June 13, 2019 DRAFT



24

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

Fig. 10. DET for one-class IRLVs for different training-set sizes. Environment of Fig 3 with NAP = 10, kf = 1, and AE with
NL = 7.

c) Results on experimental data: We have tested the proposed IRLV solutions on real data

collected by the MOMENTUM project [36] in a measurement campaign at Alexanderplatz in

Berlin (Germany). Attenuations at the frequency of the global system for mobile communications

(GSM) (that may refer to a cellular IoT scenario in our IRLV context) have been measured for

several APs in an area of 4500 m·4500 m, on a measurement grid of 50·50 m. We have considered

10 attenuation maps, corresponding to 10 AP positions (all in meters) x(1)
AP = [2500, 2500], x(2)

AP =

[500, 4000], x(3)
AP = [4000, 4000], x(4)

AP = [500, 500], x(5)
AP = [4000, 500], x(6)

AP = [100, 4500],

x
(7)
AP = [1000, 400], x(8)

AP = [4000, 500], x(9)
AP = [4300, 4000], and x(10)

AP = [4500, 500]. The ROI

has been positioned in the lower-right corner, corresponding to, following the same notation of

Fig 3, d1 = 3000 m, d2 = 1500 m, and β1 = β2 = 1000 m. In this case, we have a single

realization of any channel effect (path-loss, shadowing, fading, . . . ) per location, for a total of

8464 realizations, 5000 of which have been used for training and the rest for testing. For NN,

we set L = 3 and N (i) = 500, i = 1, 2, 3. Fig. 9 shows the DET for both NN and LS-SVM.

The performance is in line with the other figures obtained by simulation. Still, due to the small

size of the available training set, DETs are not smooth. Moreover, we notice that SVM and NN

achieve approximately the same performance. Note also that, in order to use EDA, we should

first know the path-loss to convert the attenuation estimates into distances, an information not

immediately available from the experimental data. Therefore we could not compare ML with

EDA in this case, further demonstrating the utility of ML model-less techniques for IRLV.
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C. One-Class IRLV With Multiple APs

We now focus on the one-class IRLV solutions, described in Section IV, where the training

points come only from the ROI A0. The AE has been designed according to [33], i.e., all

neurons use the logistic sigmoid as activation function except for those in the central hidden

layer, using linear activation functions. The AE has NL = 7 hidden layers with 7, 6, 3, 2, 3, 6,

and 7 neurons, respectively. Weights are initialized randomly. The channel model is described

in Section II, for the environment of Fig. 3 (with NAP = 10), and the parameters of Section V-B,

with d1 = 50 m, d2 = 50 m, and β1 = β2 = 150 m.

Here, we consider the effects of fading and the choice of the number of training points S. Fig.

10 shows the DET for one-class IRLV systems for kf = 1 and two values of S. We first notice

that both AE and OCLSSVM converge for S = 5 ·103, and the SVM-based solution outperforms

the NN-based solution, as already seen in the case of two-class classification. Fig. 11 shows the

DET for kf = 1 and 10, while nx = 2·104. We note that, for both ML techniques, averaging over

fading significantly improves the performance. We also report the performance of EDA obtained

without fading and assuming the knowledge of the path-loss relation between attenuation and

distance. Again, we note that the proposed ML techniques significantly outperform EDA (in the

absence of fading). In the figure we also report the performance of two-class SVM for channels

without fading: we can observe that, in the considered scenario, two-class IRLV outperforms the

one-class IRLV: the former achieves a lower PMD for the same PFA. This result is expected since

the two-class IRLV also exploits the (estimated) statistics of attenuation while under attacks.

VI. CONCLUSIONS

In this paper, we have proposed innovative solutions for IRLV in wireless networks that exploit

the features of the channels between the UD whose location must be verified by a trusted network

of APs. By observing that in typical situations the channel statistics are not available for IRLV,

we have proposed ML-based solutions, operating with both one- and two-class classification,

i.e., with and without a-priori assumptions on attack statistics. For two-class classification we

have proved that both NN and SVM solutions are the most powerful tests for a given sensitivity,

i.e., they are equivalent to the N-P test. Instead, for one-class classification both AE and SVM

solutions are not equivalent to the GLRT. We have also investigated how to collect the training

points in order to be robust against the channel fading.
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Fig. 11. DET of one-class IRLVs for different values of kf . Environment of Fig. 3 with NAP = 10, and nx = 2 · 104, AE
with NL = 7.

APPENDIX A

LLRS DERIVATION

1) Uncorrelated Fading scenario: Assuming spatially uncorrelated Rayleigh fading, without

shadowing (i.e., σs,dB = 0), given a UD located at distance d, the channel gain g = 1/a is

exponentially distributed with mean (in dB) PPL,LOS(d) given by (3). Letting

F (∆, R0, R1) =
2

∆

∫ R1

R0

10PPL,LOS(d0)/10 exp

(
−10PPL,LOS(d0)/10 1

a

)
d0 dd0, (27)

from the uniform UD distribution and (8) we have p(a|H0) = F (∆0, Rmin, Rin), whereas

p(a|H1) = F (∆1, Rin, Rout). By computing integrals for path-loss coefficient ν = 2, the LLR

is

M(a) = ln

(
R2 −R2

min

R2
in −R2

in

V(Rmin, a)− V(Rin, a)

V(Rin, a)− V(R, a)

)
, (28)

V(d0, a) = exp

(
−1

a

(
4πf0d0

c

)2
)(

1

a

(
4πf0d0

c

)2

+ 1

)
. (29)

Let Γ(γ, b) =
∫∞
b
tγ−1e−tdt be the incomplete gamma function, then for ν = 3 we have

instead

M(a) = ln

 R2 −R2
in

R2
in −R2

min

Γ
(

5
3
, 1
a

(
4πf0
c

)3
R3

min

)
− Γ

(
5
3
, 1
a

(
4πf0
c

)3
R3

in

)
Γ
(

5
3
, 1
a

(
4πf0
c

)3
R3

in

)
− Γ

(
5
3
, 1
a

(
4πf0
c

)3
R3
)
 , (30)
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2) Uncorrelated shadowing scenario: Assuming spatially uncorrelated shadowing, without

fading we have 10 log10 a
(n) = P

(n)
PL + s, i.e., the received power from a given location is

distributed in the logarithmic domain as a Gaussian random variable with mean value given by

the path-loss (3) and standard deviation σs,dB. Letting

G(∆, R0, R1) =
2

∆

∫ R1

R0

exp

(
−1

2

(
1
a

+ 10ν log10

(
4πf0d0

c

))2

σ2
s,dB

)
d0 dd0, (31)

from (8), the PDF of incurring an attenuation a in hypothesisH0 is p(a|H0) = G(∆0, Rmin, Rin),

and p(a|H1) = G(∆1, Rin, Rout). By solving the integral in (31) we obtain the LLR

M(a) = ln

(
R2

out

R2
in

T (Rin)− T (Rmin)

T (Rout)− T (Rin)

)
, (32)

where erf(x) = 2√
π

∫ x
0
e−t

2
dt is the error function and

T (d0) = erf

 100ν2

σ2
s,dB

ln d0 − ln2(10) +
1
a

10ν ln 10

2σ2
s,dB√

1/2σ2
s,dB10ν ln 10

 . (33)

APPENDIX B

PROOF OF THEOREM 3

Given a finite attenuation vector alphabet C = {α1, . . . ,αM} of M elements, with a(i) ∈ C,

we indicate with pa(i),ti(αj, t), with t ∈ {−1, 1}, the joint probability of input vector a(i) and

corresponding output ti, i = 1, . . . , S.

By the Glivenko–Cantelli theorem we have that with probability 1 as S → ∞ there are

Spa(i),ti(αj, t) training vectors αj with associated true label t in any training sequence. All these

training points will have the same error values εj , from (19b), that will appear Spa(i),ti(αj, t)

times in the sum
∑S

i=1 e
2
i . Note that in the training ensemble there could be two equal instances

a(m) = a(n) = αj , but with different labels tm 6= tn. Therefore, for a given αj we can have two

possible errors, depending on ti, and we denote them with εj,1 and εj,−1. This translates into

only 2M distinct constraints of type (19b). Asymptotically, for S →∞, problem (19) becomes

min
w,e

f ′l ,
1

2
wTw + CS

1

2

M∑
j=1

[pa(i),ti(αj, 1)ε2j,1 + pa(i),ti(αj,−1)ε2j,−1] (34)

June 13, 2019 DRAFT



28

subject to [wTφ(αj) + b] = 1 − εj,1 and −[wTφ(αj) + b] = 1 − εj,−1 j = 1, . . . ,M, whose

solution provides the convergence value (in probability) of vector w. We write the Lagrangian

L1 = f ′l −
M∑
j=1

vj
[
wTφ(αj) + b− 1 + εj,1

]
−

M∑
j=1

uj
[
−wTφ(αj)− b− 1 + εj,−1

]
, (35)

where {uk, vk}Mk=1 are the Lagrangian multipliers. By setting to zero the derivatives with respect

to {w, b, εj,1, εj,−1, vj, uj} we get the system of equations

M∑
k=1

(uk − vk)k(φ(αk,αj)) + b− 1 +
vj

CSpa(i),ti(αj, 1)
= 0 j = 1 . . .M, (36a)

−
M∑
k=1

(uk − vk)k(φ(αk,αj))− b− 1 +
vj

CSpa(i),ti(αj,−1)
= 0 j = 1, . . . ,M, (36b)

M∑
k=1

(uk − vk) = 0. (36c)

Note that (36) is a system with 2M+1 equations, linear in the 2M+1 unknowns {uk, vk, b}k=M
k=1

and therefore has finite solution. In particular, we have

wTw =
M∑
k=1

M∑
h=1

k(αk,αh)(vkvh + ukuh − 2vkuh), (37)

where we used the fact that the kernel function k(αk,αh) , φ(αk)φ(αh)
T is symmetric with

respect to its inputs. We conclude that w has a finite norm since the right hand side of (37) is

a finite sum.
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