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Abstract

Contactless perception of human activity holds the potential to revolutionize the ways we interact
with technology and our surroundings, enabling completely new remote, unobtrusive monitoring
systems. In this context, the use of Millimeter-Wave (mmWave) reflected radio signals to detect,
track, and analyze the movement of people leveraging the Radio Detection and Ranging (RADAR)
principle has sparked great interest from academia and the industry alike. This is motivated by
the high sensitivity and robustness of such frequencies in perceiving and identifying small-scale
movement of the human body parts while being less privacy-invasive than widely adopted camera
systems as no visual representation of the scene is captured.

However, despite its promising features, mmWave human sensing poses several challenges. The
high sensitivity of mmWaves makes the mathematical modeling of the reflections on the human
body extremely complex, while the high attenuation occurring at such frequencies raises the ques-
tion of what kind of transceivers should be used, how to deploy them to provide good coverage,
and how to combine the obtained information with other sensors. Leveraging the channel estima-
tion process of wireless communication devices to endow them with RADAR-like capabilities holds
great potential to solve these problems. Future wireless networks are expected to be extremely
dense, with billions of connected devices continuously exchanging signals which could be reused
to obtain information on the surroundings at almost zero cost.

This thesis makes substantial contributions to the field of mmWave human sensing by advanc-
ing the state-of-the-art along two research lines. First, we focus on pure sensing, exploring the
potential of dedicated mmWave RADAR devices for indoor people tracking and identification. We
develop algorithms that can exploit the reflected signal properties to obtain the position in space
of multiple subjects, and extract Doppler-related features of their gait (i.e., their individual way
of walking) to recognize their identities. Then, we utilize such algorithms to solve the important
and timely problem of unobtrusive crowd monitoring in indoor environments, proposing a sensor
fusion method to combine thermal images with mmWave RADAR gait signatures. Second, we
leverage mmWave RADAR signal processing methods to address Integrated Sensing And Commu-
nication (ISAC), proposing the first approach to retrofit next-generation mmWave Wi-Fi Access
Points (APs) into multipurpose devices that, in addition to providing connectivity, can also detect,
track, and recognize the movements of people in their surroundings. To this end, we leverage the
properties of the mmWave channel to reconstruct human movement features from irregular and
sparse communication packets, thus fully reusing them for sensing purposes.

The methodology adopted in this thesis is to integrate and jointly develop standard signal
processing techniques and data-driven machine learning algorithms. Our claims are backed by ex-
tensive on-field experimentation with cutting-edge mmWave RADAR and ISAC research testbeds.
This approach represents the most promising way to develop future mmWave sensing systems and
to achieve the envisioned goal of pervasive, human-oriented remote perception technology.
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1
Introduction

Contactless perception of the surroundings is a key human capability. We heavily rely on our visual
system to gather information about the environment and other people at distance, to obtain ac-
tionable insights to guide our decisions. This has been reproduced to some extent in camera-based
sensor systems, which are nowadays a fundamental building block of a wide range of technologies.
However, visual systems are limited to capturing the optical spectrum of electromagnetic waves,
and thus are subject to performance degradation in the dark, with adverse weather conditions, or
in presence of smoke.

For these reasons, in several applications other sensors have been developed that can remotely
sense the environment using different frequency ranges, e.g., microwaves, which span frequencies
from 300 MHz to 300 GHz. This is the case of Radio Detection and Ranging (RADAR), which has
been used for several decades in military and civilian applications for detecting and tracking targets
of interest. Thanks to the longer wavelength of microwaves with respect to visible light, RADAR
devices work independently of lighting conditions and are regarded as all-weather sensors, meaning
they do not suffer from significant performance degradation in adverse weather conditions.

In recent years, RADAR has found novel application in the form of highly accurate, short-range
sensors for indoor and outdoor human movement sensing. This is due to recent development in
Radio Frequency (RF) transmitter-receivers (transceivers) along two lines. On the one hand, in
the wireless communication networks field, efficient RF front-ends have been designed to transmit
in the Millimeter-Wave (mmWave) frequency range (30-300 GHz). The mmWave band includes
much higher frequencies than those traditionally used for communication, thus granting available
space for wideband channels capable of supporting the ever-increasing demand for higher data
rates. On the other hand, antennas working at mmWaves can a have much smaller form factor, as
this is intrinsically related to the wavelength of the transmitted signal, thus allowing the design of
Multiple Input Multiple Output (MIMO) transceivers featuring large antenna arrays. In wireless
communication, these technological advances represent disruptive elements that have put forward
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3rd Generation Partnership Project (3GPP) Fifth Generation (5G) cellular networks and the so-
called Wi-Gig standards IEEE 802.11ad/ay for Gigabit Wireless Local Area Networks (WLANs).

From the RADAR perspective, the combination of mmWave and MIMO allows (i) unprece-
dented accuracy in measuring distances between objects (ranging), (ii) high sensitivity to the
Doppler effect, and (iii) the capability of measuring the Angle of Arrival (AoA) of the signal
reflections, which can be used to infer the spatial location of the targets. Point (i) stems from the
fact that the RADAR ranging accuracy improves by using wider signal bandwidth, of which there
is large availability at mmWaves, while point (ii) is due to the usage of high carrier frequencies.
Point (iii) instead derives from the spatial diversity granted by using MIMO antenna arrays, as
small signal phase differences at the different antennas can be used to compute the direction of
arrival of the incoming waveform. Thanks to these properties, in the past few years compact and
low-cost MIMO mmWave RADAR devices have been produced and used by researchers in the most
diverse highly accurate human sensing applications, such as fine-grained tracking of respiratory
activity and heartbeat [1], advanced gesture recognition [2]–[4], and gait-based person identity
recognition [5]–[7].

In the first part of this thesis, consisting of Chapter 2 and Chapter 3, we focus on the latter
problem of exploiting RADAR reflections to distinguish between different individuals based on
their gait. This could have potentially disruptive applications in surveillance systems, individually-
tailored smart home services, and automated patient monitoring in hospitals or remote healthcare.
Gait features are encoded in the RADAR return signal as it is reflected back from a person’s body
during walking. Indeed, the small-scale micro-Doppler (µD) effect caused by the movement of the
limbs induces a detectable frequency modulation on the reflection. However, reliably extracting
these features from highly noisy and cluttered mmWave signals using standard mathematical
analysis is infeasible, as available tractable models oversimplify the underlying human movement
patterns and the complex mmWave propagation. To solve this challenge, in Chapter 2 we propose
tightly integrated RADAR signal processing and machine learning algorithms that can detect,
track, and identify multiple subjects concurrently moving in an indoor space. In this sense, our
main contribution is showing that, on the one hand, tracking the movement trajectories of subjects
helps in separating their movement features. On the other hand, identifying subjects can be useful
to correct mistakes of the tracking process, enhancing its reliability and accuracy. In Chapter 2
we move beyond the person identification task, and we investigate the integration of mmWave
RADAR and infrared thermal imaging, developing new sensor fusion approaches. Our aim is
to design a joint body temperature screening and interpersonal distance monitoring method for
preventing the spread of contagious diseases. In this respect, we leverage the mmWave RADAR
people tracking capabilities to measure distances between people in real-time. At the same time,
their gait features are extracted and used to perform contact tracing across different rooms by
recognizing subjects from their way of walking. This is done using a novel combination of learning
algorithms that work on-the-fly, on subjects that were not seen during the training phase of the
system. In addition, a new sensor fusion algorithm to associate the temperature readings with the
correct RADAR targets is presented.

Despite providing promising results in human sensing tasks, mmWave MIMO RADAR also
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mmWave MIMO RADAR
+ Accurate micro-Doppler and spatial sensing
‐ Cost of deployment, no communication

mmWave Integrated Sensing and Communication
+ Pervasive deployment and communication «for free»
+ Potential for radar-like accuracy
‐ More challenging sensing algorithm design
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• Tracking

• Identification

• Sensor fusion

Figure 1.1: The two human sensing paradigms studied in this thesis: mmWave MIMO RADAR (left) and
mmWave ISAC (right).

presents evident drawbacks in terms of cost and ease of deployment. Commercial devices have a
limited range (up to 6-8 m) [8] and are subject to occlusion due to the limited penetration capa-
bilities of mmWaves. Covering medium to-large indoor spaces thus requires multiple, networked
RADAR sensors, increasing the overall deployment cost and complexity. Moreover, RADAR de-
vices are dedicated sensors, meaning they entail spectrum occupancy and energy consumption
for the sole sensing purpose. This limitation, together with the ubiquitous deployment of Wi-Fi
and cellular communication devices have sparked research interest towards developing Integrated
Sensing And Communication (ISAC) technology, to avoid the cost of installing dedicated hard-
ware while at the same time benefiting from communication capabilities. This recent trend has
led to the identification of sensing as a key feature of next generation Sixth Generation (6G)
mobile networks [9] and the creation of the IEEE 802.11bf standardization group [10], aimed at
integrating sensing techniques into Wi-Fi Access Points (APs). In the second part of the thesis
(Chapter 4 and Chapter 5) we address the ISAC problem, proposing ways of repurposing commu-
nication devices by endowing them with additional environment sensing capabilities. Our focus
is on the Wi-Gig technology, as standardized by the IEEE 802.11ay group, which works in the
unlicensed 60 GHz band of the mmWave spectrum. This technology represents the next generation
of Wi-Fi systems, targeting high bitrate applications in WLANs, such as augmented or virtual
reality. First, in Chapter 4, we demonstrate how it is possible to perform simultaneous tracking,
activity recognition, and identification of people concurrently moving in a room, using the reflec-
tions of standard-compliant waveforms used for channel estimation. We do so by proposing the
first approach to extract µD signatures from IEEE 802.11ay packets, validating our method on
real measurements obtained with a Software-Defined Radio (SDR) testbed. Then, in Chapter 5,
we address an even deeper integration of sensing and communication, in which the underlying
communication traffic is assumed to be sparse and irregular as in real Wi-Fi traces. This poses
several challenges for the µD extraction, that we solve by introducing a novel sparse reconstruc-
tion method based on the intrinsic sparsity of the mmWave channel. Our approach effectively
reduces both the overhead and the channel occupation caused by the additional sensing task by
several times, while obtaining the same, or even better, sensing accuracy. The mmWave RADAR
human sensing and ISAC fields are schematized in Fig. 1.1 and detailed in the remaining part of
this introduction (Section 1.1 and Section 1.2). This will briefly present the necessary background
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material for the technical discussion given in the following chapters.

1.1 Sensing with mmWave MIMO RADAR devices
The basic RADAR working principle is to transmit a microwave pulse and collect the signal
copies that are reflected back by obstacles in the environment. Typically, the receiver applies
amplification, down-conversion, and analog-to-digital conversion to enable subsequent processing.
In a second phase, signal processing algorithms are applied to separate the desired targets from
the spurious reflections coming from background objects, termed clutter. Next, the estimation of
distance (range), velocity, angular position, and other properties of the targets is carried out. A
key feature of RADAR is its ability to measure the Doppler effect, which causes a frequency shift
in the reflected radio waves due to the movement of the target in space. This is exploited in many
RADAR systems for the estimation of the velocity of the target, as this is proportional to the
frequency shift. In the following, we introduce Frequency-Modulated Continuous-Wave (FMCW)
RADAR systems, which will be used extensively in the first part of the thesis, and the person
identification problem based on gait features extracted from RADAR reflections.

Frequency Modulated Continuous Wave RADAR

Many RADAR systems that enable the joint estimation of range and Doppler effect of the target
follow the so-called pulse-Doppler principle. The transmitted signal is a short sinusoidal pulse,
which allows computing the range measuring the time needed for the reflection to reach the receiver,
and obtaining the velocity of the target from the measured frequency shift. However, such systems
are often expensive and difficult to manufacture as they have a high peak-to-average power ratio,
and they require costly circuitry to accurately measure very short return time differences. To
provide cheap RADAR devices to be deployed indoors and outdoors for human movement sensing,
these drawbacks have to be solved. One possible way of doing so is to use FMCW systems.
In this kind of RADAR, short sinusoidal pulses are replaced by longer chirp waveforms, whose
frequency is linearly swept over a pre-defined interval. This mitigates the peak-to-average power
ratio problem and enables measuring range from the frequency difference between the transmitted
and the received signals rather than from time differences, lifting the high accuracy requirements
on the receiver circuitry. For these reasons FMCW RADAR devices have been widely used in
recent indoor monitoring and automotive applications [5], [11], [12]. Commercial devices can use
a chirp bandwidth of up to 4− 5 GHz, reaching centimeter-level ranging accuracy.

FMCW chirps are typically transmitted in frames of L elements, followed by a waiting period.
We refer to the chirp repetition period inside a frame as T , while the frame repetition period
is denoted by Trep. At the receiver, the incoming signal is mixed (i.e., multiplied) with the
transmitted one yielding a narrowband Intermediate Frequency (IF) signal from which the targets’
parameters can be estimated. After sampling, the IF signals coming from the different chirps are
arranged in a two-dimensional matrix in which samples from the same chirp are arranged as
column vectors and stacked together. The resulting matrix has dimension N ×L, where N is the
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number of samples taken from a single chirp. In a MIMO RADAR system, such processing is
performed at each of the M receiver antennas, resulting in a so-called RADAR cube of dimension
N ×L×M . As described in detail in Chapter 2, the target properties of interest can be extracted
via 3D spectrum analysis of the RADAR cube.

micro-Doppler signatures

In this thesis we focus on new applications of RADAR that touch on our day-to-day living, in-
volving the study of how human movement features are embedded in RADAR return signals. A
large body of research in the last few years has shown how these features can be accurately re-
constructed from the micro-Doppler (µD) signature of the movement, computed through spectral
analysis of the reflected signal. The µD concept was introduced in the seminal work of Chen [13],
[14], that showed how targets involving multiple moving parts cause a complex Doppler frequency
modulation on the waveform, rather than a simple shift. In humans different body parts, each with
its own velocity, are involved in all common daily activities, like walking, running, sitting down,
etc. This is reflected in the µD modulation of the RADAR reflection, which is different for dif-
ferent activities, individuals, and gestures. To enable accurate analysis of the movement features
contained in such signature, a fine-grained perception of the Doppler effect is key. mmWave sig-
nals perfectly fit this requirement as they have higher carrier frequency, and consequently shorter
wavelength, than sub-6 GHz systems, thus being much more sensitive to the frequency shifts and
enabling higher velocity resolution. In [13] it is shown that the amplitude of the µD modulation is
inversely proportional to the wavelength, so using mmWaves amplifies the capability of perceiving
µD features with a RADAR device. This aspect is dealt with in more detail throughout the thesis
and will be of fundamental importance in addressing the ISAC problem, in which we leverage
communication waveforms for sensing, comparing the performance of mmWave and sub-6 GHz
systems.

Despite the high appeal of µD effects, direct mathematical analysis of human movement-induced
signatures is often infeasible, due to the complexity of the underlying motion and of the reflective
properties of the human body. Indeed, a common approach consists in approximating the human
body with a number of rigid objects with known geometry (e.g., cylinders or ellipsoids), modeling
them as single scatterers moving according to the human gait pattern. Even in such a simplified
approximation, which does not fully account for the complexity of the human body and its reflec-
tive properties, modeling the complex µD signature is highly non-trivial. For this reason, in many
research works the tools of choice for µD feature extraction and processing are data-driven Ma-
chine Learning (ML) or Deep Learning (DL) algorithms. These have been shown to significantly
outperform handcrafted feature extraction approaches in several tasks, e.g., activity recognition
[3], [4]. Moreover, the powerful feature learning capabilities of deep Neural Networks (NNs) have
enabled new applications that require even more fine-grained analysis of µD signatures, such as
distinguishing person-specific movement patterns to map the RADAR reflected signal to a per-
son’s identity. In the next section, we introduce this aspect, which will be further investigated in
Chapter 2 and Chapter 3.
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Person identification from gait features using mmWave RADAR

Human gait has been classified as a soft biometric [15], meaning it is unique for each person.
Differently from hard biometrics, however, such as fingerprints or DNA, it can not be used in
high-stakes settings or to uniquely identify subjects among very large groups, e.g., more than
100 − 1, 000 people. Despite this, gait is difficult to fake, and it can be effectively analyzed even
at distance and without requiring the subjects to collaborate. Several camera-based systems have
been proposed to analyze human gait from videos, extracting features that embed the individual
way of walking of a person and allow distinguishing her/him from others. mmWave RADAR-based
gait recognition can be a good option to identify subjects in scenarios such as surveillance systems
or individually-tailored smart home applications, where the number of people involved is in the
order of a few tens, replacing or augmenting traditional camera systems.

Several characteristics make RADAR even more appealing than cameras in this sense. First,
RADAR is immune to lighting conditions and weather, thus, differently from cameras, it can
work in the dark or in the presence of smoke without any performance degradation. This is very
important in security systems and search and rescue applications, where cameras often fail. Second,
RADAR allows accurately reconstructing distances and µD features related to the movement
velocity of each body part. On the contrary, distance measurements and 3D perception are not
straightforward in vision systems, which only provide a bi-dimensional projection of the movement.
Third, the use of radio waves opens interesting applications in contexts where the privacy of the
users has to be preserved. The different nature of the information captured by RADAR sensing
makes it less invasive than cameras, as only the movement-related information is retained.

Person identification from mmWave RADAR signatures is the connecting line of the works
presented in the first part of this thesis. In Chapter 2, we propose and validate a multi-person
tracking and identification system based on the integration between standard RADAR signal
processing and DL. Our previous work [5] was the first one to perform simultaneous tracking
and identification of multiple subjects concurrently moving in the same environment using µD
signatures of gait. However, as is the case with many single-person approaches in the literature,
e.g., [7] the overall system requires processing the full RADAR raw data cube to obtain highly
detailed µD features. Our approach is different, as we explore the possibility of preprocessing the
RADAR cube to extract a sparse point-cloud embedding low-resolution µD signatures together
with 3D spatial information about the reflecting points. This makes the overall system lightweight
and amenable to deployment on commercial edge computing devices. However, the reduced quality
of the gait-related features makes the identification task much more challenging. The sparsity of
radar point-cloud data can be a source of inaccuracy and prevents the direct use of standard DL
convolutional architectures for the identification task, as point-clouds are unordered sets of points
rather than structured inputs such as images. Therefore, the key challenges we solve are (i) the
design of a suitable DL classifier that can process sparse RADAR point-clouds to provide accurate
person identification, (ii) the integration of such classifier into the multi-person tracking system,
to boost the tracking accuracy by utilizing the additional information on the person’s identity, and
(iii) solving challenges (i) and (ii) with a fast and lightweight system that can be implemented on
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commercial edge computers. Our solution is evaluated on a publicly available dataset of RADAR
point clouds featuring 30 subjects, and on our own data including up to 8 subjects, obtained with
a 77 GHz MIMO RADAR.

In Chapter 3, we leverage the system presented in Chapter 2 to jointly address the three tasks
of body temperature screening, interpersonal distance monitoring, and contact tracing. This work
stems from the timely need to accurately monitor indoor environments to counter contagious
diseases, enabling the reconstruction of the chain of contacts in case of a contagion outbreak.
Existing work has treated the three problems separately, often suffering from severe limitations in
terms of usability and accuracy. We jointly address these challenges by (i) devising a novel method
to fuse the information provided by an infrared thermal camera and a mmWave RADAR, and (ii)
adapting our RADAR-based multi-person identification system from Chapter 2 to recognize people
as they move across the rooms of an indoor space. The latter problem is much more complex than
standard person identification, as people have to be recognized on-the-fly from only a few seconds
of measurements, without having been previously observed by the system at training time. A
similar task is known in the computer vision field as person re-identification (Re-Id) [16], [17].
We evaluate the proposed system on an extensive experimental campaign involving more than
20 subjects and joint infrared and mmWave measurements. An in-depth comparison to existing
methods that separately perform interpersonal distance monitoring or temperature screening is
provided, showing the superiority of our approach.

1.2 Integrated Sensing and Communication
RADAR and wireless communication systems have been progressing along independent, yet par-
allel tracks for several decades. However, the two share fundamental similarities, as any wire-
less communication device estimates the parameters of the surrounding propagation environment
(channel) through probe RF signals, that are used to obtain the Channel Impulse Response (CIR).
This is needed to mitigate the disruptive effects of so-called multipath reflections on buildings and
objects. The channel estimation process can be considered as a sensing operation, as it allows
perceiving some physical properties of the surroundings and inferring actionable insights about
the context. This is the same underlying principle used in RADAR to localize and track targets
of interest. However, RADAR systems are dedicated sensors, meaning they require ad-hoc costly
deployment and the creation of supporting data processing infrastructure. Conversely, wireless
networks count, as of 2021, more than 14 billion connected mobile devices already in place, contin-
uously exchanging signals according to many standards, including the IEEE 802.11 (Wi-Fi) and
3GPP Fourth Generation (4G) and 5G New Radio (NR), across various licensed and unlicensed
frequency bands [18]. In several scenarios (e.g., smart homes/buildings, offices, etc.), retrofitting
standard communication devices with human and environment sensing capabilities is of great value
to increase the scalability and ease of deployment of sensing systems. Thanks to their ubiquity,
and their channel estimation capabilities, wireless communication systems hold the potential to
become an unprecedentedly widespread, cheap, and pervasive sensing technology by applying the
RADAR principle to communication signals. The ubiquitous deployment of such communication
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devices has sparked research interest towards developing ISAC technology, to avoid the cost of
installing dedicated hardware while at the same time benefiting from communication capabilities.

Among the different standards and frequency bands, the most promising to be endowed with
ISAC features are those working in the mmWave and the sub-Terahertz (sub-THz, 300−1000 GHz)
bands, among which are 3GPP 5G-NR, IEEE 802.11ad/, and the envisioned 3GPP 6G. This de-
rives from the fact that RADAR can achieve higher resolution by transmitting signals having
wider bandwidth. Therefore, the dominant trend of increasing wireless communication bandwidth
to achieve higher data rates, by moving to higher and less crowded regions of the spectrum, could
also enhance sensing capabilities. This has led to the identification of sensing as a key feature
of next-generation 6G mobile networks and the creation of the IEEE 802.11bf standardization
group [10], aimed at enabling sensing features in WLANs. While legacy Wi-Fi technology based
on IEEE 802.11n and IEEE 802.11ac standards, working in the sub-6 GHz band, provides a viable
means for environment and human sensing [19], and Human Activity Recognition (HAR) [20],
[21], it suffers from intrinsic limitations due to its relatively low bandwidth. This prevents highly
accurate distance measurements and multi-person localization and tracking in realistic scenar-
ios. Conversely, by exploiting the available GHz-wide channels used in mmWave communication,
ISAC can potentially sense objects’ locations and movements with below centimeter-level accuracy,
paving the way for countless applications in healthcare, security, navigation, autonomous driving,
and many others [22].

In the second part of this thesis, we are concerned with the design of pervasive radio sensing
systems that will extend the capabilities of upcoming Wi-Fi technology operating in the 60 GHz
spectrum. Our target is to retrofit IEEE 802.11ay Physical Layer (PHY) to natively offer human
and environment sensing services to end users. Most emerging systems, such as the ones presented
in Chapters 2 and 3, are based on dedicated mmWave RADAR devices. These analyze the µD
effect induced by human motion with high accuracy via specifically designed bursts of phase-
coherent chirp signals [7], [23]. However, the extraction of µD signatures is difficult using standard
communication devices and protocols, due to the lack of specifically designed waveforms and
transmission modes. Extracting Doppler information from sequences of subsequent packets, as
done in RADAR, is highly non-trivial due to the random and time-varying phase offsets between
the transmitter and the receiver [24]. These offsets destroy the phase coherence across different
packets, preventing the extraction of µD signatures which require a phase analysis across long
sequences of subsequently transmitted signals. Moreover, communication traffic exhibits irregular
and sparse patterns, which are not suitable for standard time-frequency analysis to extract µD
signatures.

In Chapter 4, we propose the first way to effectively retrofit the IEEE 802.11ay standard to
perform RADAR-like people tracking and µD signature extraction. Due to the high attenuation
occurring at mmWaves, IEEE 802.11ay uses highly directional antennas for communication. For
this reason, beam-alignment strategies have to be devised to find the best pair of beams to be used
by the transmitter and the receiver to grant reliable communication. In IEEE 802.11ay, this is done
via efficient in-packet beam training and tracking procedures [25], based on training (TRN) fields
consisting of repetitions of complementary Golay sequences [26]. These fields are transmitted
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with different beam patterns, which allow determining which of the beam patterns is best for
communication. Our main insight is that Golay sequences can be repurposed as RADAR pulses.
Thanks to the 1.76 GHz channels used in IEEE 802.11ay, the resulting ranging accuracy allows
reliable localization ad tracking of humans even in relatively crowded situations. In addition, the
phase variations across reflections of subsequent packets can be used to extract the µD features of
human movement. Note that these operations can be carried out without modifying the underlying
standard. To do this, we propose to leverage the beam training process to track the position of
each subject of interest, thanks to the possibility of switching beam patterns within the same
communication packet. Conversely, the in-packet beam tracking is leveraged to reconstruct the
µD spectrum. We implement the proposed method on a Field Programmable Gate Array (FPGA)-
based SDR platform transmitting standard-compliant packets, and we address the tasks of multi-
person tracking, HAR, and person identification. To enable comparison with widely studied sub-6
GHz sensing systems, a vast experimental campaign is conducted capturing RF data with our
platform (mmWave) and a sub-6 GHz system based on IEEE 802.11ac routers. We show that our
system significantly outperforms sub-6 GHz sensing and achieves performance comparable to a
mmWave RADAR.

The main drawback of the framework presented in Chapter 4 is the need for continuous and
dense sampling of the CIR. This requirement is imposed by the extraction of the human µD
spectrum through conventional Short Time Fourier Transform (STFT), which requires uniform
spacing between the samples of the analyzed signal. Our method shares this limitation with
other approaches that perform target tracking or imaging [9], [27], [28]. The only practical way
to make these systems coexist with communication is to alternate communication and sensing
phases according to a time-division scheme, where regularly spaced, RADAR-like transmissions
are performed during dedicated sensing periods. This is needed, in our system, to perceive the fine-
grained µD effect of human motion, for which dense and regular sampling of the CIR is required,
causing significant overhead and channel occupation. To solve this problem, in Chapter 5, we focus
on enabling ISAC in realistic mmWave communication systems, by reusing existing communication
traffic for sensing as much as possible and thus introducing only a minimal number of additional
overhead and channel occupation. To this end, we propose the first mmWave ISAC system that
reconstructs human µD signatures from irregular and sparse CIR samples obtained from realistic
traffic patterns. The main idea behind this work stems from the observation that the high ranging
accuracy of mmWaves, combined with the sparsity of the multipath environment at such high
frequencies, causes the reflected signal to be sparse in the Doppler domain. Leveraging this fact,
the number of packets that have to be collected to compute the µD spectrum can be significantly
reduced by applying sparse reconstruction techniques such as Compressive Sensing (CS) [29], and
the extraction can be made robust to irregular inter-packet time duration. This can be leveraged
to exploit normal communication traffic for sensing purposes, reducing the need for injecting
additional waveforms in the channel to the minimum. We evaluate this new, improved system using
the same experimental setup used in Chapter 4, showing that the proposed sparse reconstruction
technique can bring huge gains in terms of overhead and channel occupation reduction, while at
the same time improving the quality of the resulting µD signatures.
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1.3 Thesis outline
In the following chapters, we first delve into the analysis of mmWave RADAR-based human sensing
algorithms design and validation, then we address the ISAC problem, leveraging a RADAR signal
processing approach to solve communication-specific challenges.

In Chapter 2 we present the work in [6], that tackles computationally cheap simultaneous multi-
person tracking and identification from sparse mmWave RADAR point-clouds. Chapter 3 instead
refers to [30], where we addressed several challenges regarding the sensor fusion between mmWave
RADAR and thermal cameras and the re-identification on-the-fly of unseen subjects using gait
features from RADAR return signals.

Secondly, we turn to the problem of ISAC. Chapter 4 presents the first method to retrofit the
IEEE 802.11ay beam training and tracking mechanisms to extract human µD signatures from
communication packets, referring to [31]. In Chapter 5, we refer to [32], which extends the ISAC
method in [31] to solve the problem of reusing sparse and irregular communication traffic for µD
extraction, thus enabling much lower overhead and channel occupation for the sensing operations.

In Chapter 6, we draw some concluding remarks and propose future research directions stem-
ming from the present work.

We conclude this introduction with a note on terminology. The acronym RADAR has become
so widespread that often the word ”radar” is used for denoting a RADAR device or system. In
this thesis, the two are used interchangeably.
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2
Real-time People Tracking and Identification from

Sparse mm-Wave Radar Point-clouds

2.1 Introduction

In this chapter, we begin our discussion on the use of mmWave radars for human sensing, focus-
ing on the multi-person tracking and identification problem. Differently from existing solutions,
our approach will be driven by practical considerations regarding computational complexity and
real-time implementation. Our aim is to design and validate a real-time multi-target tracking
and identification system running on constrained edge-computing devices∗ equipped with hard-
ware accelerators (last generation Graphical Processing Units (GPUs)). Instead of working on the
raw data obtained from the backscattered mmWave signal, as commonly done in the literature,
we use sparse point-clouds. This makes it possible to implement our system on resource limited
edge-computing devices. Point-clouds carry information about the three-dimensional spatial co-
ordinates of the reflecting points, their velocity and the reflected power, and are obtained by
employing detection algorithms at the radar processing unit, thus avoiding the need for transfer-
ring the full raw data from the radar to the edge computer. Due to their much lower data size,
they bring advantages in terms of communication and computation at the connected processing
device. Nonetheless, these advantages entail a more challenging person identification task: the
sparsity of radar point-cloud data can be a source of inaccuracy and standard DL architectures are
inapt for learning from them, as they rely on the reciprocal ordering of their input elements [33].
As a solution, we present a novel DL classifier, called Temporal Convolution Point-Cloud Network
(TCPCN), which allows extracting meaningful order-invariant features from sparse point-cloud
data.

∗As an example, see the NVIDIA Jetson series.
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The proposed system sequentially performs person tracking and identification, estimating the
positions and the identities of humans as they freely move in an indoor space. For that, we use a
low-cost Texas Instruments IWR1843BOOST mmWave, FMCW, MIMO radar and implement the
required processing functions in real-time on a commercial edge-computing node (NVIDIA Jetson
series). To carry out the person identification task, we combine standard tracking techniques,
i.e., Kalman filter, with DL methods. This combined use of filtering and DL makes it possible
to effectively capture the time evolution of the point-cloud representing each subject. Our main
contributions are:

1. We build an end-to-end tracking and identification system that reliably operates in real-time
at over 15 fps on a commercial edge-computing device paired with a low-cost mmWave radar.
The approach reaches an accuracy of 91.62% in identifying up to three subjects (among a
group of eight) freely and concurrently moving in a new indoor space, i.e., not seen at
training time.

2. We propose a novel DL classifier, called TCPCN, that is tailored on mmWave radar point-
cloud sequences and that is both accurate and fast. TCPCN contains a feature extraction
block that obtains global information from the radar output at each time-frame and a block
that exploits causal dilated convolutions [34] to recognize meaningful patterns in the tem-
poral evolution of the features. Our model significantly outperforms state-of-the-art neural
networks in this field in terms of classification accuracy and inference time.

3. The tracking phase of our system employs a Converted-Measurements Kalman Filter (CM-
KF) that, in addition to estimating the position of the targets in Cartesian coordinates,
also estimates the extension of the subject in the horizontal plane (x − y), considering
him/her as an extended object rather than an ideal point-shaped reflector. This provides
useful additional information that could be exploited by, e.g., occupancy or proximity based
applications. In fact, knowing the extension of the subjects would be valuable for (i) smart-
home applications that perform occupancy detection in certain areas, (ii) security systems
in industrial settings, to estimate how close a person is to some dangerous area or machinery,
(iii) detection systems (e.g., for automatic gates) that could quickly discern between cars,
adults, kids or pets from their size. To the best of our knowledge, no earlier work uses
Extended Object Tracking (EOT) within a point-cloud based tracking and identification
system.

The novelty of the proposed solution stems from the following main points: the design and
implementation of a novel DL-based neural network classifier working on time sequences of sparse
point-cloud data, that is at the same time highly accurate and fast, the integration of tracking
and identification phases, that in the literature on the subject are usually dealt with separately,
the implementation and validation of the solution on a commercially available edge-computing
platform with limited capacity.

The rest of the chapter is structured as follows. In Section 2.2, the literature on person iden-
tification using mmWave radars is reviewed, underlining the novel aspects in our approach. In
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Section 2.3, the FMCW MIMO radar signal model is outlined, by also describing the procedure
to extract the point-clouds. Our proposed framework is presented in Section 2.4. In Section 2.5,
experimental results are shown, while concluding remarks are given in Section 2.6.

2.2 Related Work
In the last few years, person identification from backscattered mmWave radio signals has attracted
a considerable and growing interest. Most of the research attention has been paid to processing
human µD signatures as a means to distinguish among subjects, usually employing deep learning
classifiers, applied to the µD spectrogram [7], [35]–[41]. Although this approach is robust and
accurate, it presents some drawbacks. First, the extraction of µD signatures in case of multiple
targets is a rather complex endeavor, and most of the above referenced solutions only work for a
single-subject. In very few works, e.g., [41], the authors devised methods to single-out the contri-
bution from multiple concurrent targets, obtaining the individual µD signatures. However, in the
interest of obtaining highly accurate signatures, these previous algorithms dealt with non-sparse
radar Range-Doppler-Azimuth (RDA) maps that require a large communication bandwidth to
transfer the raw radio data from the radar to the processing device, preventing their implementa-
tion on low-cost embedded boards.

Only a few works so far have considered point-clouds obtained from a low-cost mmWave MIMO
radar device. The sparsity of radar point-cloud data makes the identification task more challenging,
as the specific features that identify each subject are more difficult to extract, and more sensitive to
external disturbances. In [8], a recurrent neural network with Long Short-Term Memory (LSTM)
cells is used for the identification. The overall accuracy obtained for 12 subjects is around 89%,
and evidence that the system is able to distinguish between two concurrently walking subjects is
provided. However, no evaluation of the accuracy is conducted when more than 2 subjects share
the same physical space, nor by testing it in a different indoor environment (e.g., a new room)
after its training. In addition, the point-cloud nature of the radar data is not fully exploited: the
velocity and the received power are not used, and the classifier network requires the input data to
be mapped onto a 3D voxel representation, which is inefficient and computationally expensive. The
authors of [12] proposed a deep learning model that outperforms the bi-directional LSTM in [8]
on their dataset. Two radar devices are used, transmitting and receiving simultaneously, leading
to an increased field of view in case of blockage. However, robust methods are neither provided
for tracking multiple subjects, e.g., Kalman or particle filtering [42], nor to reliably associate the
detections (user identities) with trajectories. This seriously impacts the identification performance
when multiple targets freely move in the monitored environment. In [12], it is in fact reported
that the accuracy drops to 45% in a multi-target setting.

With the present chapter, we fill a literature gap, by designing a system that performs accurate
tracking of multiple subjects from their point-clouds. Extended object tracking based on Kalman
filtering is exploited in conjunction with a fast and novel domain-specific deep learning classifier.
A tight integration of the tracking and identification modules is sought, towards enhancing the
identification robustness and avoiding wrong identity associations and trajectory swaps. Moreover,
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and to the best of our knowledge, we are the first to provide an empirical study on the feasibility of
operating the system in real-time on commercial edge-computing devices, and low-cost mmWave
radars.

2.3 mmWave Radar Signal Processing
A Frequency-Modulated Continuous-Wave (FMCW) radar allows the joint estimation of the dis-
tance and the radial velocity of the target with respect to the radar device. This is achieved
by transmitting sequences of linear chirps, i.e., sinusoidal waves with frequency that is linearly
increased over time, and measuring the frequency shift of the reflected signal at the receiver. The
frequency of the transmitted chirp signal is increased from a base value fo to a maximum f1 in
T seconds. Defining the bandwidth of the chirp as B = f1 − fo, bandwidth B and chirp dura-
tion T are related through ζ = B/T , and the instantaneous frequency of the transmitted signal is
expressed as

f(t) = fo +
ζ

2
t, 0 ≤ t ≤ T. (2.1)

The phase of the transmitted signal is related to the instantaneous frequency by the following
relation

1

2π

dφ(t)

dt
= f(t), (2.2)

so it can be derived as
φ(t) = 2π

∫ t

0

f(t′)dt′ = 2π

(
fot+

ζ

2
t2
)
. (2.3)

Using Eq. (2.3), we can write the expression of the transmitted signal as

s(t) = exp (jφ(t)) = exp

[
j2π

(
fo +

ζ

2
t

)
t

]
, 0 ≤ t ≤ T. (2.4)

The chirps are transmitted every Trep seconds in sequences of L chirps each, so that the total
duration of a transmitted (TX) sequence is LTrep. A full sequence, termed radar frame, is re-
peated with period ∆t. At the receiver, a mixer combines the received signal (RX) with the one
transmitted, generating the IF signal, i.e., a sinusoid whose instantaneous frequency corresponds
to the difference between those of the TX and RX signals. Each chirp is sampled with sampling
period Tf (referred to as fast time sampling) obtaining M points, while L samples, one per chirp
from adjacent chirps, are taken with period Trep (slow time sampling).

The use of MIMO radar devices allows the additional estimation of the AoA of the reflections, by
computing the phase shifts between the receiver antenna elements due to their different positions
(i.e., their different distances from the target). This is referred to as spatial sampling, and enables
the localization of the targets in the physical space. The radar device used in this chapter has
NTX = 3 transmitter and NRX = 4 receiver antennas, that are equivalent to a virtual receiver
array of NTXNRX = 12 antennas. The transmitting elements are arranged along two spatial
dimensions, which we refer to as azimuth (AZ) and elevation (EL), and are used to transmit
the chirp sequences according to a Time-Division Multiplexing (TDM) scheme. This enables the
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estimation of the EL and AZ angles of the reflecting points. In Section 2.3.1, we first consider
one of the receiver elements, referring to it as reference antenna, and describe how the range
and velocity of the subjects are estimated. In Section 2.3.2, we extend the discussion to multiple
receiver antennas, showing how the AZ and EL AoAs are computed.

2.3.1 Range and Doppler information
Next, we show how to extract the range and velocity information from the received signal, fo-
cusing on the reference antenna. The signal reflected by a target is an attenuated version of the
transmitted waveform with a delay τ that depends on the distance between the target and the
radar and on their relative radial velocity.

Denoting by c the speed of light, and letting R and v respectively be the range and velocity of
the target with respect to the radar device, the reflected signal delay is

τ =
2(R+ vt)

c
. (2.5)

After mixing and sampling, the IF signal is expressed as [11]

y(m, l) = α exp [jφIF(m, l)] + w(m, l), (2.6)

where m and l represent the sampling indices along the fast and slow time, respectively, α is a
coefficient accounting for the attenuation effects due to the antenna gains, path loss and Radar
Cross-Section (RCS) of the target and w(m, l) is a Gaussian noise term. The phase φIF(m, l)

depends on the fast time and slow time sampling indices. By neglecting the terms giving a small
contribution, an approximate expression for φIF(m, l) is written by introducing the quantities
fd = 2fov/c and fb = 2ζR/c, which respectively represent the Doppler frequency and the beat
frequency of the reflected signal,

φIF(m, l) ≈ 2π

[
2foR

c
+ fdlTrep + (fd + fb)mTf

]
. (2.7)

Samples of y(m, l) can be arranged into an M × L matrix containing all the information provided
by a single antenna for a given time frame. The frequency shifts of interest, which reveal the range
and velocity of each reflector, can be extracted after applying a bi-dimensional Discrete Fourier
Transform (DFT) along the fast time and slow time dimensions, followed by taking the square
magnitude of each obtained complex value. The result of this process is often referred to as radar
Range-Doppler (RD), and represents the received power distribution along the range of distances
and velocities of interest.

The detection of the main reflecting points is performed using the Cell-Averaging Constant False
Alarm Rate (CA-CFAR) algorithm on the range-Doppler maps [43], which consists in applying a
dynamic threshold on each RD value (or bin), depending on the power of nearby training values.
The use of an adaptive threshold introduces sparsity in the resulting set of detected points, as a
point is retained (i.e., selected) only if its power is sufficiently larger than the average power of its
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neighbors.

In addition, a processing step is required to remove the reflections from static objects, i.e., the
clutter. This operation is performed using a Moving Target Indication (MTI) high pass filter that
removes the reflections with Doppler frequency values close to zero [43].

The detection and MTI processing steps return a sparse RD map containing Ndet detected
reflecting points: the position of each value along the fast time reveals the corresponding frequency
in the IF signal fd + fb ≈ fb, while the peak along the slow time reveals the Doppler frequency fd.
For each detected point, the observed desired quantities are then expressed as follows (we indicate
with the symbol ∆ the corresponding resolution)

R̃ =
fbc

2ζ
, ∆R̃ =

c

2B
, (2.8)

ṽ =
fdc

2fo
, ∆ṽ =

c

2foLTrepNTX
. (2.9)

Additionally, from the RD map we obtain the reflected, received power from each detection, de-
noted by PRX.

2.3.2 Azimuth and Elevation angles estimation

The complex-valued RD map of the radar illuminated range, before taking the square magnitude,
is computed at all the receiving antenna elements, and presents a different phase shift at each
antenna, due to its different distance from the target. This fact is referred to as spatial diversity
of the receiver array, and can be exploited to estimate the azimuth and elevation angles of the
targets.

Denote by d the distance between two subsequent antennas along the azimuth and elevation di-
mensions and by ψAZ and ψEL the corresponding experienced phase shifts, respectively. Moreover,
let θ and ϕ be the AZ and EL angles of a reflecting point, while λ = c/fo is the base wavelength
of the transmitted chirps. The following relations hold

ψAZ ≈
2π

λ
d cosϕ sin θ,

ψEL ≈
2π

λ
d sinϕ.

(2.10)

To compute the phase shift values, two DFTs across the samples taken at the azimuth and
elevation antennas in the virtual receiver array are computed, extracting the peak positions sim-
ilarly to what described in Section 2.3.1 for beat and Doppler frequency. Finally, the Cartesian
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Figure 2.1: Block diagram of the proposed signal processing workflow: the raw radar data is processed on the
radar device, extracting the sparse point-cloud representation of the environment, i.e., points pr, then (1) a
clustering module groups the points pr into the contributions from the different targets and estimates their
position and extension, (2-3) tracking, data association and identification are jointly performed through an
identification algorithm.

coordinates of each detected point are obtained using Eq. (2.10) as

x̃ = R̃ cosϕ sin θ = R̃
λψAZ

2πd
,

ỹ =

√
R̃

2 − x̃2 − z̃2,

z̃ = R̃ sinϕ = R̃
λψEL

2πd
.

(2.11)

The vector describing a single detected reflecting point, pr, r = 1, . . . , Ndet, has five components,
containing the information on its Cartesian coordinates, its velocity and the reflected power:
pr =

[
x̃r, ỹr, z̃r, ṽr, P

RX
r

]T .
2.4 System Design
The proposed system operates on discrete time steps, indicized by variable k, whose duration
corresponds to the radar inter frame time ∆t. At each frame, a set of Ndet

k reflecting points pr

are obtained through the signal processing steps of Section 2.3. Our system sequentially performs
the following operations on such points, see Fig. 2.1.

1. Clustering and extension observation: a density-based clustering algorithm is used
to group the points detected by CA-CFAR into several clusters, each corresponding to a
different subject present in the environment, see Section 2.4.1. The points associated with the
different targets are then used to obtain observations of the subject’s state, which according
to our design includes his/her Cartesian position and extension in the horizontal plane (x−y).
The extension is modeled as an ellipse, that is determined by the spread (covariance) of the
points in each cluster, Section 2.4.2.

2. Tracking and data association: a CM-KF [44] is used to estimate the position, velocity
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and extension of the subjects in a Multi-Target Tracking (MTT) framework, processing
the observations outputted by the previous step, Section 2.4.3. A set of trajectories, each
corresponding to a human subject, are maintained and sequentially updated. The MTT
association between new observations and trajectories is achieved using an approximation
of the Nearest-Neighbors Joint Probabilistic Data Association (NN-JPDA) algorithm, see
Section 2.4.4.

3. Identification: a deep NN classifier is applied to a temporal sequence of K subsequent
point-clouds associated with each trajectory, with the objective of discerning among a set of
Q pre-defined subject identities. The employed NN is called TCPCN, and is inspired by the
popular PointNet architecture used for 3D point-cloud classification and segmentation [33].
TCPCN extends PointNet to the radar domain, by adding the velocity and received power
information to the input and accounting for an additional block that handles the extraction
of temporal features. Also, TCPCN is used in conjunction with an identification algorithm,
which includes an exponential moving-average smoother and the Hungarian method, to
jointly output a unique label for each trajectory: this combined use greatly improves the
identification accuracy of the framework.

2.4.1 Point-cloud clustering – DBSCAN

Density-based clustering algorithms, as opposed to distance-based ones, group input samples ac-
cording to their local density. One of the most widely used algorithms belonging to this category
is Density-Based Spatial Clustering for Applications with Noise (DBSCAN) [45], which has been
successfully applied to cluster radar point clouds in [8], [12], [41], [46]. The algorithm operates a
sequential scanning of all the data points, expanding a cluster until a certain density connectivity
condition is no longer met. The algorithm takes two input parameters, ε and mpts, respectively
representing a radius around each point and the minimum number of other points that must be
inside such radius to meet the density condition. DBSCAN is only applied to the x−y components
of the detected points pr, namely, the Cartesian coordinates on the horizontal plane, as the differ-
ent body parts of a subject can have very different velocity and reflected power values. We denote
by {Zn

k}n=1,...,Dk
the Dk clusters obtained at time step k by grouping the Ndet

k detected points.
In principle, there should be a distinct cluster for each human subject present in the environment,
but due to several phenomena such as noise, imperfect clutter cancellation and blockage of the
signal, a subject can go undetected even for several consecutive frames. DBSCAN was chosen
for the following reasons: it is an unsupervised algorithm, i.e., the number of clusters (subjects)
does not have to be known beforehand, it has a noise rejection quality that, together with its
density-based clustering mechanism, allows a reliable and automatic separation of the reflections
from distinct subjects, it has a low computational complexity, of about O

(
Ndet

k logNdet
k

)
.
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2.4.2 Subject Position and Extension Observations

Due to the high spatial resolution of mmWave radars, human subjects are detected as clusters
containing tens of reflecting points. In the literature, the typical approach to their tracking has
been to ignore the spatial extension of the targets, considering them as ideal point-shaped reflectors.
In the present chapter, given a cluster of points Zn

k selected by the DBSCAN clustering algorithm
at time k, we instead obtain an estimate of the extension of the subject in the x− y plane. As
a first step, we define p̃r = [x̃r, ỹr]

T and we normalize the received power values, PRX
r , of the

detected points in [0, 1]. The spread of the points within each cluster around the cluster centroid
provides a measure of the subject’s extension. The centroid represents a noisy observation of the
true position of the person, and is obtained as

µn
k =

∑
r:p̃r∈Zn

k

PRX
r p̃r, (2.12)

where µn
k = [µn

x,k, µ
n
y,k]

T and the received normalized powers PRX
r act as weights. The covariance

matrix, Σn
k , contains information on the dimensions of the ellipse representing the extension of

cluster n, and is obtained through the weighted sample covariance estimator,

Σn
k =

∑
r:p̃r∈Zn

k

PRX
r (p̃r − µn

k ) (p̃r − µn
k )

T
. (2.13)

The norms of the eigenvectors of matrix Σn
k , denoted by ℓ̃nk and w̃n

k provide the axes lengths of
the ellipse, while the orientation, ξ̃nk , has the same direction of the eigenvector corresponding to
the largest eigenvalue of Σn

k .

2.4.3 Extended Object Tracking – Converted Measurements Kalman
Filter

With the tracking step, we perform a sequential estimation of the state of the subjects present in
the environment from their observed positions and extensions. To this end, we use a set of CM-
KFs to establish a so-called track for each subject. A new Kalman Filter (KF) model is initialized
for each detected cluster in the first frame received by the radar, while in successive frames, the
tracks are maintained through the KF predict-update steps [42]. We denote by T t

k the track with
index t at time k, by Tk the set of currently maintained tracks, i.e., Tk = {T t

k }t=1,...,Tk
, and by

Tk its cardinality. We define the state of T t
k as xtk =

[
xtk, y

t
k, ẋ

t
k, ẏ

t
k, ℓ

t
k, w

t
k, ξ

t
k

]T , which contains
the true (and unknown) user’s position (xtk and ytk), velocity (ẋtk and ẏtk), extension (ℓtk and wt

k)
and orientation angle (ξtk). Each track is then defined as a tuple, T t

k =
(
x̂tk,P

t
k,Z

t
k−K+1:k, Itk

)
,

containing respectively the current state estimate, x̂tk, the associated error covariance matrix as
computed by the KF, Pt

k, the collection of the last K clusters associated with the track, Zt
k−K+1:k,

to be fed to the NN classifier, and an integer Itk representing an estimate of the identity of
the associated subject, at time k. The observation vector for a detected target n at time k is
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znk =
[
µn
x,k, µ

n
y,k, ℓ̃

n

k , w̃
n
k , ξ̃

n

k

]T
.

The matching between any given cluster n and a corresponding track t (n ↔ t) is carried out
using a specific procedure that will be detailed shortly in Section 2.4.4. For the sake of a concise
notation, for the remainder of this section we drop the indices n and t, as the procedure that we
describe next is carried out independently for each track (subject) once the matching n ↔ t is
performed.

Given the sequence of all collected measurements for a track up to time k, z1:k, the state esti-
mation is carried out using the CM-KF. This approach assumes a posterior Gaussian distribution
of the state given the sequence of measurements, i.e., p(xk|z1:k) = N (x̂k,Pk). To update x̂k and
Pk, a KF recursion [42] is applied using the measurements transformed in Cartesian coordinates
from Section 2.4.2.

The model of motion that is used by the Kalman filtering block is defined by two matrices, F
and H. F is the transition matrix, connecting the system state at time k, xk, to that at time
k− 1, xk−1. H is the observation matrix, which relates the observation vector zk to the true state
xk. Referring to uk ∼ N (0,Q) and rk ∼ N (0,Rk) as the process noise and observation noise,
respectively, a dynamic model of the system is

xk = Fxk−1 + uk, (2.14)

zk = Hxk + rk. (2.15)

Denoting by blkdiag[A,B] the block diagonal matrix with blocks given by matrices A and B, we
have

F = blkdiag

[[
1 ∆t

0 1

]
⊗ I2, I3

]
, (2.16)

and

H =

[
I2 02×2 02×3

03×2 03×2 I3

]
, (2.17)

where In is an n × n identity matrix, 0n×m is an n × m all-zero matrix and ⊗ refers to the
Kronecker product between matrices.

We assume the process noise uk is due to a random acceleration ak that follows a Gaussian
distribution with 0 mean and variance σ2

a, i.e., ak ∼ N (0, σ2
a), leading to uk = gak with g =[

∆t2/2,∆t
]T . The process noise covariance matrix is obtained as

Q = blkdiag
[
σ2
agg

T ⊗ I2, diag
(
σ2
ℓ , σ

2
w, σ

2
ξ

)]
, (2.18)

with σ2
ℓ , σ

2
w, σ

2
ξ being the constant process noise variances on the extension- and orientation-related

coordinates of the state. The observation noise has covariance matrix given by

Rk = blkdiag
[
R′(xk), diag

(
σ2
ℓ̃
, σ2

w̃, σ
2
ξ̃

)]
, (2.19)

with σ2
ℓ̃
, σ2

w̃, σ
2
ξ̃
being the constant observation noise variances on the extension- and orientation-related
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coordinates of the state. For what concerns R′, as radar measurements are obtained in polar coor-
dinates, and then converted to the Cartesian space using Eq. (2.11), the measurement covariance
matrix is time-varying as it depends on the current target’s position. The sub-matrix R′ accounts
for the uncertainty in the Cartesian position observations, reflecting that an error on the AoA
causes a higher uncertainty in Cartesian coordinates as the distance of the subject increases, due
to the non-linear mapping between polar and Cartesian coordinates. In setting the uncertainty
parameters for the measurements, we use a constant measurement covariance in polar coordinates,
Rpol = diag

(
σ2
R, σ

2
θ

)
, where R and θ are the distance and azimuth AoA, respectively introduced

in Section 2.3.1 and Section 2.3.2. Hence, we use the transform R′(xk) = J|xk
RpolJ

T
|xk

, where J|xk

is the Jacobian matrix of the conversion between polar and Cartesian coordinates, computed using
the polar representation of the true subject state, xk, which we approximate with xk ≈ Hx̂k−1.
Although it can be seen that our conversion to Cartesian coordinates is biased, we remark that
employing the unbiased conversion proposed in [47] did not lead to significant improvements. Note
that, by the structure of the model matrices in Eq. (2.16) and Eq. (2.17), the kinematic part of
the subject state and the extension part are entirely decoupled and do not interact during the
CM-KF operations.

As a final remark about the KF model, with our approach the extension of the subject is
explicitly accounted for as part of the state, fitting the point-clouds with ellipses, similarly to [48].
Although other approaches exist, such as using random matrices [49], [50], we found that our
method leads to more accurate and meaningful extension estimates of the target’s shape, due to
the fast variability of radar point-clouds.

2.4.4 Data Association – NN-CJPDA

The association between new observations and tracks is needed (i) to correctly update the tracks
with the observations generated by the corresponding subjects in a multi-target scenario, (ii) to
correctly collect the sequence of the past K point-clouds associated with each subject, Zt

k−K+1:k.
To match tracks t to clusters n (n ↔ t), we use the NN-JPDA scheme. This method consists

in computing the probability of each possible association between the Dk new clusters and the
previous Tk tracks. These probabilities are then arranged into a Dk × Tk−1 matrix of scores,
Γ, and the final assignment is done considering the association leading to the maximum overall
probability, computed using the Hungarian algorithm [51]. The Hungarian algorithm uses the
score matrix as input and solves the problem of pairing each track with only one cluster while
maximizing the total score, entailing an overall complexity O((Tk−1Dk)

3).
To compute the probability of each match, i.e., the elements of matrix Γ, we consider the widely

adopted JPDA logic, using the approximate version of [52] called Cheap Joint Probabilistic Data
Association (CJPDA). Exploiting the fact that the kinematic, extension and orientation parts
of the state are decoupled in our framework, we apply CJPDA only using the kinematic state,
as extension and orientation are more unreliable and could lead to association errors. Hence, in
the following we refer to the kinematic part of the KF vectors and matrices only, i.e., to the
components related to the Cartesian position and velocity of the targets.
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The score matrix Γ is computed as follows (the time index k is omitted for a simpler nota-
tion). First, for all track-detection pairs the quantity Gnt is computed, which is proportional
to the Gaussian function expressing the likelihood that observation n is produced by the subject
corresponding to track t

Gnt =
1√

detSnt

exp

[
−1

2
νT
nt (Snt)

−1
νnt

]
, (2.20)

where νnt = x̂t −Hzn is the innovation brought by measurement zn to the kinematic state of
track t, x̂t, and Snt = HPtHT +R is its covariance matrix, obtained as part of the KF recursion.
Second, the association probabilities for each track-detection pair are computed following [52], as

Γnt =
Gnt∑Tk−1

t=1 Gnt +
∑Dk

n=1Gnt −Gnt + β
, (2.21)

where the bias term β accounts for the possibility that no measurement is a good match for a
specific track and is connected with the probability of missed detection. In this chapter, β is
empirically set to β = 0.01, preventing the association of track-detection pairs with a low Gnt

score.

2.4.5 Track management
The proposed system is robust to subjects that randomly appear on and disappear from the
monitored space: these events may happen due to blockage of the radar signal at any point in
time, or because the subject has moved in or out of the radio range. Blockage is a frequent
problem in mmWave propagation and it happens frequently in multi-target scenarios, as users
may block the radio signal with their own body. To deal with undetected subjects and new
cluster detections which cannot be reliably associated with any existing track, while keeping the
complexity of the system as low as possible, we follow a so-called m/n logic. In detail, a track is
maintained if it received a match with any of the clusters detected by DBSCAN for at least m out
of the last n frames. Similarly, cluster detections that are not associated with any existing track
are initialized as new trajectories if they are detected for at least m out of the last n frames. In
addition, to avoid tracks to merge when the subjects move too close to one another, the inter-track
proximity is monitored. If the estimated Euclidean distance† between any two tracks T t

k and T t′

k

becomes smaller than the DBSCAN radius parameter, ε, we remove the track having the largest
determinant of the estimated error covariance, i.e., argmaxj∈{t,t′}(detP

j
k).

2.4.6 Point-cloud pre-processing
The point cloud sequence Zt

k−K+1:k obtained from each CM-KF track is pre-processed before being
sent to the NN classifier. The features of the points are standardized by subtracting their mean
value and dividing by their empirical standard deviation. Moreover, the point-clouds must contain

†Obtained as d(T t
k , T t′

k ) = ((xt
k − xt′

k )
2 + (yt

k − yt′
k )2)1/2.
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Figure 2.2: TCPCN – proposed DL-based classifier for subject identification: (i) a point-cloud block is applied
to each individual time step to extract a feature vector, (ii) causal dilated convolutions are used to learn the
temporal patterns in the sequence of feature vectors.

a fixed number of points before being sent to the TCPCN, as the latter is a feed forward neural
network processing fixed size input vectors. We chose to limit the maximum number of points for
a single time step to nmax = 100. In case the number of points is greater than such maximum
value, we randomly sample nmax points from the point-cloud without repetitions, in case there
are fewer points than nmax, some of the points are randomly repeated to reach the maximum
value. The choice of nmax was made by analyzing the distribution of the number of detected
points for different human subjects and empirically picking a suitable value: the selected nmax

suffices to contain the point-clouds of all users in almost every frame in our experiments. Also,
due to blockage and clutter, a subject may go undetected, especially in a multi-target scenario. If
this occurs, the point-cloud data for the current frame is not collected for the blocked user and,
in turn, is not sent to the NN classifier. A missed detection persisting over multiple radio frames
may make the sequence of temporal features extracted for a subject by the NN less representative
of his/her movement, and may ultimately degrade the identification performance of the algorithm.
To ameliorate this, we propose an identification algorithm that jointly considers the outputs of
the tracking block and of the classifier, as detailed in Section 2.4.9.

Considering that the TCPCN classifier is applied consistently to every track t at every time
step k, in the following we simplify the notation denoting the pre-processed input point-cloud
sequence Zt

k−K+1:k, of length K, by Z1:K .

2.4.7 Identification – Temporal Convolution Point-Cloud Network

The proposed classifier is designed to extract meaningful features from a temporal sequence of
point-clouds, which is obtained as a result of the detection and tracking steps. The proposed
architecture includes two processing blocks, termed Point-Cloud (PC) block and Temporal Convo-
lution (TConv) block, and we refer to the full neural network as Temporal Convolution Point-Cloud
Network (TCPCN), see Fig. 2.2.
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Point-cloud Block

A number K of identical (same weights) feature extraction blocks is applied to the standardized
input point-clouds, Zi, i = 1, . . . ,K, of size nmax×5, i.e., each composed of nmax reflecting points
pr (see Section 2.3.2). Each of such blocks implements a function fW(·), obtained as the cascade
of a Multi-Layer Perceptron (MLP) [53] followed by a global average pooling operation, where W

is a set of weights to be learned. Each reflecting point pr in point-cloud Zi (a vector of size 1×5),
is fed to the first MLP layer and is independently processed from all the other nmax points in Zi,
by one of nmax parallel branches. The MLPs located at the same depth share the same weights
across all the points: there are 3 Fully-Connected (FC) layers with 96 units followed by 2 FC
layers with 192 units. Each FC layer applies a linear transformation of the input followed by an
Exponential-Linear Unit (ELU) activation function [54]. Batch normalization is used after each
linear transformation [55] and right before the following non-linearity (ELU). The output feature
vector from the last MLP layer from each branch has size 1×192. Global average pooling reduces
this set of features to a single feature vector, oi = fW (Zi), of size 1× 192, by taking the average
of each element across all the 100 parallel branches. The structure of function fW(·) is loosely
inspired by the popular PointNet [33]. The key aspect of fW(·) is that it uses functions that are
invariant to the ordering of the input points, by sharing the weights of the MLP and using suitable
pooling operations. This ensures robustness and generality, because point-clouds that only differ
in how the points are ordered will result in the same output. We underline that our TCPCN
significantly differs from PointNet as the latter is designed to perform end-to-end classification
and segmentation of dense 3D point clouds, whereas our fW(·) performs feature extraction from
sparse 5D point-clouds.

Temporal Convolution Block

The sequence of feature vectors o1:K = {fW (Zi)}i=1:K , each of dimension 192, is then fed to
the PC block, which operates along the temporal dimension applying a function hU(·), where
U is another set of weights. To extract temporal features efficiently, hU(·) contains temporal
convolutions, which are a type of Convolutional Neural Network (CNN) layer [53] where the
input is convolved with a uni-dimensional filter (or kernel) of learned weights in order to recognize
temporal patterns. The output of the filters is organized into so-called feature maps, which become
more and more complex and abstract with the depth of the layer. In TCPCN we use causal dilated
convolutions [34], [56]. This technique consists (i) in masking the filters in such a way that neurons
corresponding to a certain time step only depend on neurons corresponding to past time steps, i.e.,
they can not use future information, as done in [34], and (ii) in applying the convolution filters
skipping blocks of δ − 1 samples in the input, where δ is the so-called dilation rate. Formally,
denoting a feature map as m and the filter as k, the output of a dilated convolution, ∗δ, between
m and k is [56],

(m ∗δ k) (s) =
∑

i+δj=s

m(i)k(j). (2.22)
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The standard discrete convolution is obtained for δ = 1. In the proposed TCPCN we employ
3 temporal convolution layers with filters of dimension 3 (also called kernel dimension) and di-
lation rates of 1, 2 and 4, respectively. The applied filters are repeated along the feature vector
components of the input, obtaining 32, 64 and 128 feature maps at each layer, respectively.

The last layer of TCPCN is a temporal convolution layer that maps the extracted temporal
features onto Q feature maps, each corresponding to one of the output classes. It applies a
standard convolution with a kernel size of 3 and it is followed by a global average pooling to
group the information from each feature map and obtain a single vector of dimension Q. Finally,
a SoftMax function is applied, defined for a generic vector x as SoftMax(x)i = exi/

∑
j e

xj . The
vector outputted by this last layer is denoted by ŷ = SoftMax(hU (o1:K)) = TCPCN(Z1:K) and
its q-th elements represents the probability that the input point-cloud sequence belongs to class
q.

2.4.8 Classifier Training and Inference

Loss Function

The loss function used is the categorical Cross-Entropy (CE), which is a standard choice in clas-
sification problems [53]. The CE compares the output of the last layer ŷ with the ground-truth
identities of the subjects expressed in one-of-Q representation, y: L (ŷ,y) = −

∑Q
q=1 yq log(ŷq).

Training

To train TCPCN, we used the Adam optimizer with learning rate η = 10−4 [53]. The process is
stopped once the loss function computed on a validation set of data stops decreasing, a technique
called early stopping. Overfitting is a severe problem in the context of radar point-clouds: the
high randomness of the detected points and the sensitivity to different environments make the
learning task challenging, especially when generalization to unseen environments is required. To
reduce overfitting, several strategies were utilized: dropout [57] was applied to the output of the
PC blocks, randomly dropping components of the feature vectors with probability pdrop = 0.5,
an L2 regularization cost [53] on all network weights was considered, with parameter λL2 = 10−4.
The selection of the hyperparameters was carried out using a greedy search procedure.

Inference

During the inference (or prediction) step, TCPCN is used to obtain classification probabilities
for each maintained track, T t

k ∈ Tk, in the current time step k. We denote by ỹt
k ∈ [0, 1]Q the

vector that collects these probabilities. The prediction is carried out on a batch of Tk point-
cloud sequences in parallel with a single pass of the data through the network, jointly obtaining{
ỹt
k

}
T t
k∈Tk

. Moreover, we apply weight quantization, [58], to 8 bit integer values to reduce even
further the inference time and the memory cost of the model. It is worth noting that, due to
the use of convolutions, TCPCN has a low number of parameters: in the PC block the weights
are shared among the nmax parallel branches, while the PC block is a fully convolutional neural
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network, with no fully connected layers. Fully convolutional networks are typically very fast in
terms of training and inference time compared to fully connected or recurrent neural networks
and have fewer parameters (further analysis is carried out in Section 2.5.8).

2.4.9 Identification algorithm
After obtaining the output probabilities for each track from TCPCN, several problems still have
to be tackled: (i) obtaining stable classifications, robust to the fact that subjects may turn or
move in unpredicted ways which do not carry their typical movement signature, (ii) finding a
method to compensate for the missing frames when subjects go undetected, which can cause
classification errors, (iii) dealing with the uniqueness of the subject identities, as classifying the
subjects independently and solely based on ỹt

k may lead to assigning the same identity to multiple
targets. To address these problems, we devised the procedure detailed in Alg. 2.1, which uses both
the output of the tracking procedure and the classification probabilities provided by TCPCN to
estimate the identities of the subjects in a stable and reliable way. The procedure acts as follows.

1. At the first time step k = 1, a vector yt
1 of size Q is initialized for each track T t

1 ∈ T1, with
all components equal to 1/Q. yt

1 represents a stabilized vector of probabilities for each track.

2. At the generic time step k > 1, yt
k is updated using Alg. 2.1, according to one of the two

following rules:

(a) if track T t
k was detected in the most recent K/2 time-steps (line 1), TCPCN is applied

to the corresponding sequence of point-clouds, obtaining the probability vector ỹt
k (line

2). Hence, an exponentially weighted moving average procedure (line 6) is applied to
mediate between the previous stable estimate yt

k−1 and the newly computed one ỹt
k,

obtaining a new stable estimate yt
k (normalized so that its elements sum to one, see

line 7).

(b) if track T t
k was not detected in at least one of the most recent K/2 time steps (line 8),

yt
k is obtained as γyt

k−1 with γ < 1 (line 9). In this way, we maintain the last reliable
identification, but we progressively lower the confidence that we put on it over time.
Note that after this step yt

k does not longer resemble a probability distribution, as the
sum of its elements is smaller than one.

3. To assign identities to subjects without repetitions, we build a matrix of scores Yk with
all vectors yt

k belonging to each track (line 11). We compute the best assignment of the
identities using the Hungarian algorithm on Yk, which guarantees that the joint maximum
score is attained with a one-to-one mapping (line 13).

To avoid associating a label to a track if the corresponding probability is very low, in the identi-
fication process we use a slightly modified version of the Hungarian algorithm, which behaves as
follows: first, we compute the associations using the standard Hungarian algorithm. Hence, if the
probability of a certain association is below pconf = 0.1, we set the identity of the considered track
to unknown. In Alg. 2.1, this modified Hungarian algorithm is indicated as Hungarian(Yk, pconf)
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Algorithm 2.1 Joint identification at time step k.
Input: Current set of tracks, Tk, smoothing parameter, ρ, decay parameter, γ.
Output: Identities Itk, ∀T t

k ∈ Tk.
1: Set T (s)

k = {T t
k ∈ Tk s.t. T t

k det. in the last K/2 frames}
2:

{
ỹt
k

}
T t
k∈T (s)

k

← TCPCN
({

Zt
k−K+1:k

}
T t
k∈T (s)

k

)
3: Initialize Yk = 0Tk×Q

4: for T t
k ∈ Tk

5: if T t
k ∈ T

(s)
k

6: yt
k ← (1− ρ) ỹt

k + ρyt
k−1

7: normalize yt
k

8: else
9: yt

k ← γyt
k−1

10: end if
11: (Yk)t,: ← yt

k

12: end for
13: Itk ← Hungarian(Yk, pconf), ∀ T t

k ∈ Tk

Algorithm 2.2 Tracking error correction at time step k.
Input: Current set of tracks Tk.
Output: Updated set of tracks T ′

k .
1: for T t

k ∈ Tk
2: if Itk ̸= Itk−1

3: initialize new track T j
k using xtk,P

t
k and Itk

4: T ′
k ← {Tk \ T t

k } ∪ {T
j
k }

5: end if
6: end for

to highlight that the result is a function of the score matrix Yk and of the confidence threshold
pconf .

With Alg. 2.1, we jointly exploit the information from the classifier (vector ỹt
k) and the tracking

step (T (s)
k ) to improve the identification performance.

Alg. 2.2 deals with errors in the tracking procedure, using the identity information available
for each track. Tracking or association errors may happen during a blockage event involving two
subjects (blocker and blocked in the following): for example a blocked subject may be erroneously
associated when he/she becomes detectable again while being close to the blocker. These errors
are dynamically corrected by analyzing the output of Alg. 2.1. Specifically, when the identity of a
track T t

k changes, we assume that this is an indication of a tracking error of the above-mentioned
type (see line 2 of Alg. 2.2). In this case, this track is removed from the set of tracks that are
maintained (line 4). At the same time, a new track T j

k is initialized using the new identity Itk, a
new track index j (not yet used) and the current variables (state and covariance) associated with
the old track T t

k at time k (line 3). The new track T j
k is then added to the set of maintained

tracks (line 4). Note that, the memory Zt
k−K+1:k (past frames) is not attached to the new track,

which is started anew.
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(a) Jetson board (left) and radar
(right).

(b) The mounted setup
in the test room.

(c) Three subjects walking in the test room.

Figure 2.3: Overview of the experimental setup.

2.5 Experimental results
In this section, we present results obtained by evaluating our tracking and identification method
on

1. the mmGait dataset described in [12], available at https://github.com/mmGait/people-gait
(Section 2.5.1).

2. Our own dataset, featuring 8 subjects (Section 2.5.2). This dataset was collected from
our own measurements, implementing the proposed system on an NVIDIA Jetson TX2‡

board paired with a Texas Instruments IWR1843BOOST mmWave radar§ operating in the
77− 81 GHz band.

The Jetson board mounts an NVIDIA Tegra X2 GPU accelerator, the radar device is connected to
it via USB and the communication is performed via Universal Asynchronous Receiver-Transmitter
(UART) ports, as shown in Fig. 2.3a. A camera was used to collect a video of the scene during
the measurements and to label the dataset with the correct identities of the subjects. This setup
poses some severe limitations on the amount of data that can be transferred in real-time to the
NVIDIA processing device. Note that a more advanced solution such as an Ethernet connection
would require additional hardware at an extra cost¶. The full system has been implemented in
Python, using the TensorFlow library for the neural network classifiers. In Tab. 2.2, the system
parameters used in the evaluation are summarized.

2.5.1 Evaluation on the mmGait dataset
To assess the capabilities of TCPCN to effectively extract human gait features from point-cloud
sequences, we test it on the publicly available mmGait dataset [12], which contains measurements
from two different evaluation rooms, room_1 and room_2, including respectively 23 and 31 different

‡https://developer.nvidia.com/embedded/jetson-tx2
§https://www.ti.com/tool/IWR1843BOOST
¶https://www.ti.com/tool/DCA1000EVM
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Setup TCPCN (ours) mmGaitNet [12]
Room # subj. linear free linear free
room_1 10 92.07 70.31 90.0 45.0
room_1 15 86.21 68.36 − −
room_1 20 83.37 63.97 80.0 −
room_2 30/29 89.34 64.73 − −

Table 2.1: Evaluation results on the mmGait dataset [12]. We report the accuracy (%) obtained by mmGaitNet
according to the original paper [12] and the accuracy of our TCPCN, highlighting the best performance with
a bold font. In the table, two columns show the results for linear and unconstrained motion. The dataset
contains 29 subjects for room_2 in the free motion case, and 30 in the linear motion case. The symbol “−” is
used for those cases for which no accuracy value is provided in [12].

subjects. The dataset contains sequences where subjects are constrained to walk along straight
lines in front of the radar, and other sequences where they walk freely.

Next, we present a comparison between our neural network classifier, TCPCN, and the CNN
proposed by the authors of mmGait, denoted by mmGaitNet [12]. The accuracy results obtained
by TCPCN on a superset of the tests conducted by the authors in [12] are shown in Tab. 2.1. We
stress that, for the sake of a fair comparison, for these results we just compared TCPCN with
the CNN of [12], without using our algorithms Alg. 2.1 and Alg. 2.2, as they would provide an
additional performance increase.

For the results in Tab. 2.1, we consider the mmGait traces recorded by a single TI IWR6843‖

radar working in the 60 − 64 GHz frequency band. The measurements for each subject are split
according to a 80%− 20% proportion to obtain training and test sets, as done in [12].

TCPCN outperforms mmGaitNet in all the considered cases. The gap is particularly large
in case the subjects walk freely: in this case, mmGaitNet reaches an accuracy of 45% on 10

subjects, as compared to an accuracy of 70.31% for TCPCN. This difference is due to the high
variety of patterns that occur in the presence of unconstrained motion. TCPCN is more robust
to such variability thanks to its invariance to the ordering of the points in the data cloud. The
obtained performance on 30 subjects is encouraging, leading to identification accuracies as high as
89.34% and 64.73% for linear and unconstrained motion, respectively. This shows that gait-based
identification systems employing mmWave radar sensors hold the potential of scaling to scenarios
where the number of users is in the order of a few tens. Finally, we point out that the accuracy
with 30 subjects being higher than that with 15 and 20 is probably due to the fact that room_2
contains subjects who are more easily distinguishable than those from room_1.

2.5.2 Proposed dataset description

To further validate the proposed system, we built our own dataset using four different rooms:
three to collect training data and one for testing purposes. This arrangement of data and rooms

‖https://www.ti.com/tool/IWR6843ISK
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System parameters
Antenna el. spacing d 1.948 mm
Number of TX antennas NTX 3
Number of RX antennas NRX 4
Start frequency fo 77 GHz
Chirp bandwidth B 3.072 GHz
Chirp duration T 60 µs
Chirp repetition time Trep 68 µs
No. samples per chirp M 256
No. chirps per seq. L 64
Frame rate 1/∆t 14.92 fps
ADC sampling frequency 1/Tf 5 MHz
Range resolution ∆R̃ 4.88 cm
Velocity resolution ∆ṽ 14.9 cm/s
DBSCAN radius ε 0.4 m
DBSCAN min. cluster dim. mpts 10

Meas. range std σR 0.03 m
Meas. az. angle std σθ π/24 rad
Meas. ext. std σℓ̃, σw̃ 0.05 m
Meas. orient. std σξ̃ π/6 m
Process noise std σa 8 m/s2
Process ext. std σℓ, σw 0.001 m
Process orient. std σξ π/24 m
CJPDA bias term β 0.01
m/n logic parameters m/n 10/30

Max point-cloud dim. nmax 100
Input time-steps K 30
Moving avg. parameter ρ 0.99
Decay parameter γ 0.999

Dropout probability pdrop 0.5
Regularization parameter λL2

10−4

Learning rate η 10−4

Table 2.2: Summary of the parameters of the proposed system.

was intentionally adopted to asses the generalization capabilities of the proposed system. Eight
subjects were involved in the measurements, see Tab. 2.3.

Training: the training rooms are two research laboratories, of size 8 × 8 meters and 8 × 3

meters, respectively, containing desks, furniture and technical equipment, and a furnished living
room of size 8×5 meters. In the first room, due to space limitations, the area used for the training
measurements is a rectangular space of size 3× 5 meters. To collect the training data, one subject
at a time walked freely for an amount of time ranging from 1 to 5 minutes. Note that, in all our
measurements the subjects are allowed to cover a distance of up to 6 m from the radar, within its
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Subject Age Height [m] Sex ℓ [cm] w [cm] Frames
0 26 1.63 F 43 22 33, 339
1 26 1.76 M 52 23 33, 514
2 25 1.85 M 52 24 36, 126
3 26 1.72 M 46 16 18, 668
4 28 1.69 M 45 22 19, 035
5 25 1.61 F 43 20 27, 674
6 63 1.77 M 50 24 22, 039
7 63 1.58 F 41 20 16, 925

Table 2.3: Details on the subjects involved in the measurements.
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Figure 2.4: Tracking system evaluation.

field-of-view of ±60◦.
The measurement campaign was repeated across different days, acquiring from 20 to 40 minutes

of data per subject. Taking into account different days, we aimed at reducing the effect of clothing
or daily patterns in the way of walking. Prior to the actual training phase, the point-clouds data
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were pre-processed as described in Section 2.4.6 and grouped into sequences of K = 30 consecu-
tive frames, leaving an overlap of 20 frames between different sequences. To reduce overfitting,
we artificially augmented the training data by applying random shuffling of the points in each
point-cloud and adding random noise to each point, drawn from a uniform distribution in the
interval [−0.1, 0.1]. To select the neural network hyperparameters, a portion of the training data
(one sequence of approximately 2, 250 frames per target) was used as a validation set.

Test: the test room is a 7 × 4 meters research laboratory, whose measurement area is free of
furniture (see Fig. 2.3). We stress that, while training is performed on up to 8 single subjects,
all our test sequences include multiple targets concurrently moving in the test environment. This
leads to blockage events, i.e., when a subject occludes the line-of-sight (LoS) between the radar
and another target, resulting in bursts of frames where the blocked subject goes undetected.

The measurement sequences contained in the test dataset are split as follows:

1. 10 sequences of 80 seconds (1, 200 frames) with 3 subjects. These are further split into
5 sequences where the subjects were constrained to walk following a linear movement at
their preferred speed (back and forth across predefined linear paths), and 5 sequences where
they could walk freely, following any trajectory in the available space, as shown in Fig. 2.3c.
This leads to unpredictable trajectories that can cover the whole field-of-view of the radar
sensor (±60◦) and distances up to 6 m. Moreover, in all our experiments user trajectories
intersect frequently, leading to ambiguities in the data association, and making tracking
more challenging.

2. 10 sequences of 80 seconds with 2 subjects, split into 5 sequences with a linear walking
movement, and 5 sequences where the subjects walk freely.

2.5.3 Tracking phase evaluation

In Fig. 2.4a, we show example trajectories followed by the three targets in one of the test sequences.
In this experiment, the CM-KF succeded in identifying and reconstructing the trajectory of each
target, even in the presence of complex and strongly non-linear movement. The NN-CJPDA data
association logic was found to be very robust, as long as the targets are correctly separated by
DBSCAN into disjoint point-cloud clusters.

In all the test measurements the main difficulty faced by the system was that of handling
blockage events that span over a large number of frames, e.g., more than 2− 3 second long. The
number of such events increases significantly when more subjects are added to the monitored
environment. We empirically assessed that, using a single radar sensor with the resolution and
communication capabilities considered in this chapter, going beyond three freely moving subjects
at a time in such a small indoor environment leads to insufficient tracking and identification
accuracy due to blockage. This is coherent with the findings in the literature, e.g. [12], where two
radars placed in different locations were used to compensate for these facts.

Fig. 2.4b shows the results of the extension estimation across a full test sequence for all subjects.
The expected shape enclosing a human target is correctly estimated: the ellipse axes are coherent
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Figure 2.5: Proposed identification algorithm (a - b - c) compared to a standalone tracking approach (d - e -
f) on the x− y plane. Subject 0 (S0) is lost at time k = 669 and tracked again at time k = 700. By joint use
of tracking and identification algorithms, the new track 3 is correctly re-associated with S0 (c), i.e., track 3 is
mapped back onto track 0. Instead, the sole use of tracking would lead to the initialization of a new track for
the same subject (f), causing a mismatch.

with typical shoulder widths, ℓ, and thorax widths along the sagittal plane, w. The estimated
value varies depending on the position of the target with respect to the radar: this is due to the
fact that the received point-clouds contain a smaller number of points as the distance increases,
due to propagation losses. Despite this fact, the average values are still proportional to the true
subjects’ extensions, as it can be checked by comparing Fig. 2.4b with Tab. 2.3.

To evaluate the capability of the proposed system towards tracking human subjects and the
improvement brought by combining tracking and identification algorithms, we use the popular
MOTA metric [59]. The MOTA conveniently summarizes the ratio of missed targets (miss), false
positives (fp) and track mismatches (mm), over the number of ground truth targets (gt) in each
time frame k of the test sequence, formally,

MOTA = 1−
∑

k (missk + fpk +mmk)∑
k gtk

. (2.23)

The value of gtk was obtained from a reference video, as mentioned at the beginning of Section 2.5.
In Fig. 2.4c, we show the MOTA obtained for different values of the DBSCAN radius, ε, for

the NN-JPDA algorithm and our method, where NN-JPDA is used in conjunction with Alg. 2.1
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Test 2 sub. train 3 Test 3 sub. train 3 Test 3 sub. train 8
linear free linear free linear free

[%] Id. acc. Id. acc. MOTA Id. acc. Id. acc. MOTA Id. acc. Id. acc. MOTA

Seq. 1 98.67 99.61 98.71 100 99.67 99.06 96.95 92.35 99.06
Seq. 2 100 99.75 98.71 100 99.91 84.14 99.81 96.17 84.14
Seq. 3 95.26 96.91 86.42 100 91.79 94.11 100 88.14 90.19
Seq. 4 99.54 100 99.62 90.43 100 76.36 90.43 89.46 76.36
Seq. 5 99.34 100 97.96 99.37 92.44 72.61 97.04 92.02 72.61

Average 98.56 98.98 96.28 97.96 96.76 85.26 96.85 91.62 84.47

Table 2.4: Accuracy and MOTA obtained with 2 and 3 subjects moving in the test room. We report the results
both when the subjects follow linear trajectories (“linear”) and when they move freely (“free”). With “Test x
sub. train y” we denote the fact that the TCPCN used for the identification was trained on the single-target
measurements of y subjects and tested on multi-target sequences containing x subjects simultaneously.

and Alg. 2.2 (subject identification and label correction). Note that, with the standard NN-JPDA
tracking algorithm, when a track is deleted and re-initialized, it is counted as a mismatch in
Eq. (2.23), significantly lowering the MOTA. Moreover, data association errors can lead to track
swaps when the trajectories of two subjects intersect. The MOTA obtained in this case is plotted
as a blue curve in Fig. 2.4c. The red curve instead represents the improved MOTA, obtained by
(i) merging together all the tracks associated with the same subject’s identity, as described in
Section 2.4.9, and (ii) correcting track swaps using Alg. 2.2. For the sake of clarity, in Fig. 2.5 we
exemplify step (i), which significantly improves the results by mitigating the effect of losing and
re-initializing tracks.

From Fig. 2.4c, we see that for the optimal value ε = 0.4 m, the integration of tracking and
identification provides an improvement of almost 20% in terms of MOTA. Remarkably, this is
obtained at almost no additional complexity, by just feeding back the identity information to the
tracking block.

2.5.4 Accuracy results

In Tab. 2.4, we report the person identification accuracy obtained with the proposed method on
the test sequences described in Section 2.5.2. For the unconstrained walks, we also report the
corresponding MOTA. The per-subject identification accuracy is computed using the time-steps
in which the subject is correctly tracked, and is defined as the fraction of time-steps where a
subject, besides being tracked, is also correctly identified. The final accuracy on a test sequence is
obtained by taking the average accuracy on each subject, weighted by the total number of frames
in which he/she is detected and tracked by the system.

In our tests, the number of subjects used for training is set as either 3 or 8 to assess how the
system performs with an increasing number of targets. In Tab. 2.4, this is indicated with “Test x
sub. train y”, where x and y respectively refer to the number of subjects in the training set and
those who are simultaneously present in the test data. The accuracy ranges from a maximum of
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Figure 2.6: Accuracy of the proposed identification algorithm.

98.98% down to 91.62%, with the latter achieved for the most challenging case where 3 concurrent
subjects have to be identified among a set of 8.

Differently from the results on mmGait (see Section 2.5.1), there are no significant deviations
in the identification performance between linear and unconstrained motion. This is due to the
proposed identification algorithm, which lowers the effect of turns and non-linear movements that
are likely to impact the classification accuracy. The MOTA is instead significantly lower with
three targets, because of the more frequent blockage events (more misses and mismatches).

Fig. 2.6 shows the average accuracy obtained over the free-walking test sequences by (i) using
the proposed solution (Alg. 2.1 and Alg. 2.2), (ii) using Alg. 2.1 only, (iii) using Alg. 2.1 without
the Hungarian method, and (iv) identifying each subject at each time step k by solely using the
point-cloud data at time k, and estimating the identity as argmax ỹt

k. For this evaluation the
TCPCN was trained on 3 subjects. Note that with 2 subjects (i) and (ii) lead to about the same
performance, but Alg. 2.2 leads to a slight improvement with 3 subjects, as tracking errors caused
by track swaps due to blockage are more frequent in this case.

2.5.5 Impact of temporal filtering parameters

Now, we analyze the impact of K and ρ, i.e., the number of input time steps and the moving
average smoothing parameter, respectively. These parameters are intimately connected, as they
both control the dependence of the current output on past frames. In Fig. 2.7, we show the average
accuracy computed on 10 different trainings of TCPCN with Q = 3 subjects, when tested on 3

subjects moving freely. The shaded areas represent 95% confidence intervals. In the abscissa, we
vary K, plotting a different curve for several selected values of ρ. Lower values of ρ, e.g., 0.8 or 0.9,
lead to a lower performance, as the memory of the moving average filter in these cases is too short
to introduce stability in the classification (it corresponds to 5 and 10 time steps for ρ = 0.8 and
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Figure 2.7: Effect of varying K and ρ on the identification accuracy.

0.9, respectively) and high values of K are required to get an accuracy beyond 80%. Increasing
ρ has the effect of moving the point of maximum accuracy towards lower values of K. From our
results, we recommend using K = 30 (two seconds of radar readings) and ρ = 0.99, as these values
lead to the best average accuracy while keeping the system sufficiently reactive, with a moving
average memory of approximately 100 time steps (between 6 and 7 seconds).

2.5.6 Importance of point-cloud features
In Tab. 2.5 we show the accuracy results of the sole TCPCN (no Alg. 2.1 and Alg. 2.2) considering
8 single targets, by leaving out some of the point-cloud features in pr. Specifically, we trained
and tested the NN by selectively leaving out the received power (no-P ), the velocity (no-v), the
z coordinate (no-z) or the x − y coordinates (no-xy). This evaluation provides insights on the
importance of each of these features towards identifying the subjects. In particular, removing the
velocity, x − y or z coordinates led to the largest reduction in accuracy, suggesting that these
carry the most useful information. In addition, Tab. 2.5 proves that our method mostly relies on
movement-related features rather than on the reflectivity of the target (related to the received
power). We remark that this is key to gain robustness to reflectivity changes due to different
clothing or other environmental factors, and the lower importance of certain features is enforced
by the learning procedure, which has automatically learned it by processing data from the same
subjects across different days (wearing different clothes, etc.) and environments.

2.5.7 Real-time implementation requirements
Operating the proposed system in real-time poses constraints on the execution time of each pro-
cessing block, and on the choice of the size and structure of the NN classifier. We measured the
computation time needed by each block, respectively denoting by tp the time needed to run the
point-cloud extraction module running on the radar device (including the chirp sequence trans-
mission, three DFTs along the fast time, slow time and angular dimension and the CA-CFAR
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all no−P no−v no−z no−xy
Acc. [%] 82.08 79.66 65.89 66.53 65.52

Table 2.5: TCPCN accuracy (no Alg. 2.1 and Alg. 2.2) on 8 single targets using: all the point-cloud features
in pr (all), selectively leaving out the received power information (no-P ), the velocity (no-v), the z coordinate
(no-z) or the x− y coordinates (no-xy)
.

Model Training time [min] No. of parameters
TCPCN (Ours) 13 153, 711

PN + Gated Recurrent Unit (GRU) 19 218, 115
mm-GaitNet [12] 32 178, 595

bi-LSTM [8] 63 3, 237, 379

Table 2.6: Comparison between TCPCN and other models from the literature in terms of training time and
number of parameters.

detector), by tc the time to transmit the data using the UART port, by tt the execution time
of the DBSCAN clustering algorithm, the CM-KF tracking step and the data association, and
by ti the inference time of the classifier. We found that while tp is stable and strictly lower
than 10 ms, tc is highly variable, mostly because of the variable number of detected points in
the scene, and ranges between 0 ms (when no points are detected) and 25 ms (with 3 subjects).
The clustering and tracking take on average tt = 12 ms with 3 subjects, with very low vari-
ance. Being the radar frame duration ∆t ≈ 67 ms, the identification step has meet the inequality
ti < ∆t−max tp −max tc − tt ≈ 20 ms. In the next section, we present a comparison between
the proposed approach and two works from the literature in terms of accuracy and inference time,
taking these considerations into account.

2.5.8 Comparison with state-of-the-art solutions
Out of the two other approaches from the literature (see Section 2.2), [12], does not obtain good
results when subjects move freely, as neither a robust tracking method is implemented nor the
identification information is used to improve the tracking performance, while [8] performs the
identification in an offline fashion. In addition, they use different datasets. For these reasons, we
chose to implement the classifiers from [12] and [8] and evaluate them on our multi-target test
dataset using K = 30 input time steps and the same training data. As a baseline, we consider
a model similar to TCPCN, but using a Recurrent Neural Network (RNN) instead of temporal
convolutions after the point-cloud feature extraction block. We refer to this model as PN + GRU
in the following, as it is obtained combining a feature extraction block similar to PointNet with a
GRU layer [60], which is capable of learning long-term dependencies. GRU cells maintain a hidden
state across time, processing it together with the current input vector to learn temporal features
in the input sequence (see [60] for a detailed description of GRU cells). In our implementation,
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Figure 2.8: Performance comparison of the proposed TCPCN model against mm-GaitNet [12] and the bidi-
rectional LSTM from [8]. As a baseline, we also evaluate a network similar to TCPCN that uses a GRU layer
(PN + GRU) instead of temporal convolutions.

we use a GRU layer with 128 hidden units.

In Tab. 2.6, we compare the learning models in terms of training time and number of parameters.
This evaluation has been conducted on an NVIDIA RTX 2080 GPU for all the models. The training
time is affected by the processing speed of each NN model and by the convergence time of the
training process (number of training epochs). We note that the processing time of convolutional
models (TCPCN and mm-GaitNet) is lower than that of recurrent ones (PN + GRU and bi-LSTM).
However, training is significantly faster for the two models featuring the proposed point-cloud
feature extractor (TCPCN and PN + GRU) due to faster convergence.

A comparison of accuracy and inference time, measured on the NVIDIA Jetson board, is pre-
sented in Fig. 2.8. The most accurate models in identifying the subjects are our TCPCN and PN +
GRU. This shows the superiority of using a point-cloud feature extractor, due to its invariance to
the ordering of the input points. TCPCN proves to be slightly better than PN + GRU, meaning
that dilated temporal convolutions do not only improve the inference and training times but are
also more effective in extracting temporal features. Through a vertical dashed line, we mark the
maximum inference time for the algorithms to run in real-time on the Jetson device, i.e., 20 ms
(see Section 2.5.7): only two models satisfy this constraint, namely the proposed TCPCN and
mm-GaitNet [12], which both exploit convolutions, as opposed to the RNN-based PN + GRU
and bi-LSTM. In particular, TCPCN is the fastest model in making predictions, with an average
inference time of 9.21± 2.12 ms.
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2.6 Concluding remarks
In this chapter, we proposed a novel system that performs real-time person tracking and iden-
tification on an edge computing device using sparse point-cloud data obtained from a low-cost
mmWave radar sensor. The raw signal undergoes several processing steps, including detection,
clustering and Kalman filtering for position and subject extension estimation in the x − y plane,
followed by a fast neural network classifier based on a point-cloud specific feature extractor and
dilated temporal convolutions. Our system significantly outperforms previous solutions from the
literature, both in terms of accuracy and inference time, being able to reliably run in real-time at
15 fps on an NVIDIA Jetson TX2 board, identifying up to three subject among a group of eight
with an accuracy of almost 92%, while simultaneously moving in an unseen indoor environment.
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3
Contact Tracing and Temperature Screening via

mmWave and Infrared Sensing

3.1 Introduction

This chapter moves beyond pure mmWave radar sensing, to show how person tracking and identi-
fication using RF signals can be paired with other sensing devices to provide diverse information.
We tackle the problem of jointly performing unobtrusive elevated skin temperature screening and
privacy preserving contact tracing in indoor environments.

Lately, social distancing has become a primary strategy to counteract the COVID-19 infection.
Many research works [61], [62] have shown that it is an effective non-pharmacological approach and
an important inhibitor for limiting the transmission of many contagious diseases such as H1N1,
SARS, and COVID-19. Along with social distancing, elevated skin temperature detection and
contact tracing have proven to be key to effectively contain the pandemic [63]. However, available
methods to enforce these countermeasures often rely on RGB cameras and/or apps that need
to be installed and continuously run on people’s smartphones, often rising privacy concerns [64].
Moreover, currently adopted methods to screen people’s temperature require individuals to stand
in front of a thermal sensor, which may be impractical in heavily frequented public places. To this
end, we propose milliTRACE-IR, a joint mmWave radar and infrared imaging sensing system that
performs privacy preserving human body temperature screening and contact tracing in indoor
spaces (see Fig. 3.1). Its main components are discussed next, emphasizing their novel aspects
and the joint processing of the acquired sensor data.

On the one hand, the radar analyzes the reflections of a transmitted mmWave signal off the
individuals that move in the monitored environment, returning sparse point-clouds that carry
information about the subjects’ locations and the velocity of their body parts. A novel point-
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Figure 3.1: milliTRACE-IR performs body temperature screening and interpersonal distance estimation via
sensor fusion of an infra-red thermal camera and mmWave radars. Individual gait features contained in the
mmWave reflections enable contact tracing across different rooms.

cloud clustering method is designed, combining Gaussian Mixtures (GMs) [65] and DBSCAN [45],
to distinguish the mmWave radio reflections from the subjects, as they move as close as 0.2 m to
one another. The so obtained point-cloud clusters are used to track the subjects’ positions in the
physical space by means of a KF [42], and to obtain their gait-related features through a deep-
learning based feature extractor. Finally, a novel person re-identification algorithm is proposed
by exploiting Weighted Extreme Learning Machines (WELM).

On the other hand, the infrared imaging system, or Thermal Camera (TC), returns images
whose pixels contain information on the temperature of the objects in the TC Field-of-View (FoV).
To measure the subjects’ temperature, at first, You Only Look Once v3 (YOLOv3) [66] is used to
perform face detection in the TC images, by bounding those areas containing a human face. Hence,
the obtained bounding boxes are tracked through an Extended Kalman Filter (EKF) [67] and the
subjects’ temperature is estimated by accumulating readings for each EKF track, according to a
dedicated estimation and correction procedure. Through the EKF, the subject’s distance from
the TC is also estimated from the size of the corresponding bounding box by considering the
non-linear part of the EKF, which is approximated by fitting a function over a set of experimental
data points.

Tracks in the radar reference systems are associated with those in the TC image plane via an
original algorithm that finds optimal matches for the readings taken by the two sensors, through
their joint analysis. This makes it possible to take temperature measurements from a subject and
reliably associate them with the highly precise tracking of his/her movement performed by the
radar. In addition, the joint analysis of radar and TC data allows refining the temperature esti-
mated through the TC: to mitigate the influence of the distance on the temperature readings [68],
a regression function that provides temperature correction coefficients is fit from training data.
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The final temperatures are obtained using such function with the accurate distances retrieved from
the radar.

Hence, once a subject’s temperature is measured, it is associated with the corresponding radar
track and the subjects’ movements and contacts inside the building are accurately monitored,
by re-identifying the subjects as they move across the FoV of different radar devices. To the
best of the author’s knowledge, milliTRACE-IR is the first system that achieves temperature
screening and human tracking through the joint analysis of radar and TC signals. Furthermore, it
concurrently performs body temperature screening and contact tracing, while these aspects have
been previously dealt with separately. A sensible usage model for the system is as follows: the TCs
shall be deployed in strategic locations to allow an effective temperature screening, such as facing
the building/room entrance, to ensure that people’s faces are seen frontally for a reasonable amount
of time, and that their TC images are only taken when they enter or leave the building/room. On
the other hand, the radar can be utilized to track the subjects while moving inside the monitored
indoor space. This ensures higher privacy with respect to RGB cameras.

The main contributions presented in this chapter are:

1. milliTRACE-IR, a joint mmWave radar and infrared imaging sensing system that performs
unobtrusive and privacy preserving human body temperature screening and contact tracing
in indoor spaces is designed and validated through an extensive experimental campaign.

2. A novel data association method is put forward to robustly associate tracks obtained from
the mmWave radar and from the TC, where the radar returns the people coordinates in the
physical space and the TC identifies people’s faces in the thermal image space. The achieved
precision and recall in the associations are as high as 97%.

3. An original clustering algorithm for mmWave point-clouds is devised, making it possible to
resolve the radar reflections from subjects as close as 0.2 m.

4. A new WELM based person re-identification procedure is presented. The WELM is trained
at runtime on previously unseen subjects, achieving an accuracy of 95% over six subjects
with only 3 minutes of training data.

5. A novel method is designed to perform elevated skin temperature screening as people move
freely within the FoV of the TC, without requiring them to stop and stand in front of the
thermal sensor. For this, a dedicated approach is presented to mitigate the distortion in
the TC temperature readings as a function of the distance, by also leveraging the accurate
distance measures from the radar. Through this method, worst-case errors of 0.5 °C are
obtained.

The chapter is organized as follows. In Section 3.2, the related work is discussed. Section 3.3
introduces some basic concepts about mmWave radars and thermal imaging systems, while in
Section 3.4 the proposed approach is thoroughly presented. In Section 3.5.1, the implementation
of milliTRACE-IR is described, while Section 3.5 contains an in depth evaluation of milliTRACE-
IR on a real experimentation setup. Concluding remarks are provided in Section 3.6.

43



3.2 Related Work
In the literature, almost no work has focused on a joint approach to social distancing and people’s
body temperature monitoring which preserves the privacy of the users. Here, several prior works
in related areas are discussed, highlighting the differences with respect to the proposed system.
Social distancing monitoring: Social distancing has been one of the most widely employed
countermeasures to contagious diseases outbreaks [61]. Real-time monitoring of the distance
between people in workplaces or public buildings is key for risk assessment and to prevent the for-
mation of crowds. Existing approaches use either wireless technology like Bluetooth or Wi-Fi [69],
[70], which require the users to carry a mobile device, or camera-based systems [71], which are
privacy invasive. Other approaches use the Received Signal Strength Indication (RSSI) from cellu-
lar communication protocols [61] or wearables [72], although these are often inaccurate, especially
when used in crowded places [61]. A lot of effort has been put into designing person detection
and tracking algorithms for crowd monitoring and people counting [73] by using fixed surveillance
cameras and mobile robots [74]. The main drawbacks of these methods are the intrinsic difficulty
in estimating the distance between people from images or videos, along with the fact that the
users have to be continuously filmed during their daily lives, which raises privacy concerns.

Concurrently, a large body of work has focused on Ultra Wide-Band (UWB) transmission for
people tracking [8], [75], e.g., using mmWave radars, as these naturally allow measuring distances
with decimeter-level accuracy. However, none of these works has tackled the problem of estimating
interpersonal distances when people are very close to one another for extended periods of time;
this is especially difficult with radio signals, as the separation of the reflections from different
subjects becomes challenging.
Passive temperature screening: Infrared thermography is widely adopted for non-contact tem-
perature screening of people in public places [76]. Due to the COVID-19 pandemic, there has been
a growing interest in developing screening methods to measure the temperature of multiple sub-
jects simultaneously, without requiring them to collaborate and/or to carry dedicated devices [77].
Approaches that involve the use of RGB cameras, e.g., [78], share the aforementioned privacy-
related limitations.

The authors of [68] developed a Bayesian framework to measure the body temperature of
multiple users using low-cost passive infrared sensors. The distance from the sensors and the
number of subjects is also obtained. However, the working range of this system is very short
(around 1.5 m for precise temperature estimation), so it is deemed inapt for monitoring a large
indoor area.
Radar-thermal imaging association and fusion: Sensor fusion between radars and RGB cam-
eras has been extensively investigated, see, e.g., [79], [80], while the joint processing of mmWave
radar data and infrared thermal images was marginally treated [81]. In addition, the last pa-
per only deals with the detection of humans using thermal imaging and does not address body
temperature screening.

The present chapter is focused on the data association between a thermal camera and a mmWave
radar over short periods of time, using the accurate radar distance estimates to refine the temper-
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ature reading. This makes it possible to consider scenarios where the thermal camera only covers
a small portion of the environment (e.g., the entrance) so as to preserve the subjects’ privacy,
while a mmWave radar network can effectively monitor the whole indoor space.
mmWave radar person re-identification (Re-Id): RF based person Re-Id is a recent research
topic. So far, many works have focused on person identification [7], [12], where the subjects to
identify have been previously seen by the system, typically via a preliminary training phase. Re-
Id is more challenging, as it addresses the recognition of unseen subjects, for which only a few
radio samples are collected during system operation. Differently from camera image based Re-
Id methods [16], RF approaches need to profile the users across time intervals of a few seconds,
to extract robust person specific features [82]. To the best of the author’s knowledge, only two
works have proposed solutions to this problems [82], [83]. In both cases, a deep learning method
trained on a large set of users is used to extract features from the human gait. At test time,
the features obtained from the subjects to be re-identified are compared against those of a set of
known individuals using distance-based similarity scores. This approach entirely depends on the
feature extraction process, and the classifier does not learn to refine its decisions at runtime, as new
samples become available. This is a weakness, as the gait features extracted from mmWave radars
are known to be variable, e.g., across different days [6]. Conversely, milliTRACE-IR combines
deep feature extraction with fast classifiers which are continuously trained and refined as new
data is collected; this improves the robustness of the identification task.

3.3 Preliminaries
In this section we briefly recall the mmWave radar person detection method developed in the
previous chapter, which we will reuse as the basic building block for our subsequent sensor fusion
algorithms. Moreover, the main working principles of infrared thermal cameras are presented.

3.3.1 mmWave FMCW Radar

As thoroughly discussed in Chapter 2, a MIMO FMCW radar allows the joint estimation of the
distance, the radial velocity and the angular position of the targets with respect to the radar
device [11]. It works by transmitting sequences of chirp signals, linearly sweeping a bandwidth B,
and analyzing their copies, which are reflected back from the environment. A full chirp sequence,
termed radar frame, is repeated with period ∆ seconds.

Distance, velocity and angle estimation

By computing the frequency shift induced by the delay of each reflection, the radar allows obtaining
the distance and velocity of the targets with high accuracy. The use of multiple receiving antennas,
organized in a planar array, allows obtaining the AoA of the reflections along the azimuth and the
elevation dimensions, leveraging the different frequency shifts measured by the different antenna
elements. This enables the localization of the targets in the physical space.
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Figure 3.2: milliTRACE-IR signal processing workflow.

Radar detection

The raw output of the radar is typically high dimensional for mmWave devices, due to the high
resolution. To sparsify the signal and perform a detection of the main reflecting points, a typical
approach is the Constant False Alarm Rate (CFAR) algorithm [43], which consists of applying
a dynamic threshold on the power spectrum of the output signal. A further processing step is
required to remove the reflections from static objects, i.e., the clutter. This operation is performed
using a MTI high pass filter that removes the reflections with Doppler frequency values close to
zero [43].

Radar point-clouds

After the detection phase, a human presence in the environment typically generates a large number
of detected points. This set of points, usually termed radar point-cloud, can be transformed into
the 3-dimensional Cartesian space (x − y − z) using the distance, azimuth and elevation angles
information of the multiple body parts. In addition, the velocity of each point is also retrieved,
along with the strength of the corresponding signal reflection.

In the following, the point-cloud outputted by the radar at frame k is referred to as Pk,
containing a variable number of reflecting points. Each point, p ∈ Pk, is described by vector
p =

[
x, y, z, v, PRX

]T , including its coordinates x, y, z, its velocity v and reflected power PRX.

3.3.2 Infrared Thermal Cameras
Infrared thermal imaging deals with detecting radiation in the long-infrared range of the electro-
magnetic spectrum (∼ 8− 15 µm) and producing images of that radiation, called thermograms.
According to the Planck’s Law, infrared radiation is emitted by all objects with temperature
T > 0 K [84]. Since the radiation energy emitted by an object is positively correlated to its
temperature, from the analysis of the received radiation it is possible to measure the object’s
temperature.

A thermographic camera, or thermal camera, is a device that is capable of creating images of
the detected infrared radiation. The operating principle is quite similar to that of a standard
camera, and the same relations described by the so-called pinhole camera model hold [85]. Within
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this approximation, the coordinates of a point a = [ax, ay, az]
T in the three-dimensional space

are projected onto the image plane of an ideal pinhole camera through a very small aperture.
Mathematically, this operation is described as aproj = Ψa, where aproj is the projected point and
Ψ is the intrinsic matrix of the camera that contains information about its focal lengths, pixel
dimensions and position of the image plane. However, when dealing with a real thermal camera,
this approximation may be insufficient and the radial and/or tangential distortions introduced by
the use of a lens and by inaccuracies in the manufacturing process may additionally have to be
accounted for. On the image plane, an array of infrared detectors is responsible for measuring the
received radiation, which is sampled and quantized to produce digital information. The pixels of
the final image that is returned by a thermal camera contain information about the temperature
of the corresponding body/object part, encoded into the pixel intensity.

3.4 Proposed Approach
This chapter considers the problem of monitoring an indoor environment covered by multiple
mmWave radar sensors, which span over different rooms and corridors. A few infrared thermal
cameras are placed at strategic locations to perform accurate temperature screening of the people
in the indoor space without compromising their privacy, e.g., at the building’s entrance.

From a high-level perspective, milliTRACE-IR performs the following operations.
(1) Person detection and temperature measurement: When people enter the monitored
indoor space, the system concurrently performs face detection from the infrared images captured
by the thermal camera and person detection using the mmWave radar point clouds.

1. From the Thermal Camera (TC) images, a face detector is used to obtain bounding boxes
enclosing the faces of the detected subjects, (Section 3.4.2). A measure of their body tem-
perature is obtained from the intensity of the thermal image pixels in the bounding box,
see Section 3.4.3. While milliTRACE-IR works independently of the specific face detector
architecture used, in the implementation YOLOv3 is used [66].

2. Concurrently, radar signal processing is used to detect and group the point-clouds from
different subjects and estimate their positions (Section 3.4.4). A novel clustering algorithm
based on DBSCAN and GM models is put forward to separate the contributions of closeby
subjects (Section 3.4.5).

(2) Radar-TC person tracking: a KF is independently applied to the TC images and to
the radar point-clouds, following the approach presented in Chapter 2, to respectively track the
subjects’ movements within the thermal images and in the indoor Cartesian space. Standard KF
based tracking in the thermal image plane is here modified to achieve a coarse estimation of the
distance of the subjects, based on the dimension of their face bounding box Section 3.4.2. In this
phase, each subject track is associated with a unique numerical identifier.
(3) Radar-TC track association: As a subject exits the FoV of the TC, his/her body tem-
perature is associated with the corresponding trajectory from the mmWave radar, by performing
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a track-to-track association between TC tracks and radar tracks. This association algorithm is
based on the subjects’ distances from the TC, and on the radar estimated positions of the subjects,
projected onto the thermal image plane (Section 3.4.6). After the association, the temperature
measurement is corrected accounting for the distance of each person from the TC, using the more
precise distance estimates provided by the radar, Section 3.4.3.
(4) Radar-based person re-identification: During the radar tracking process, the point-cloud
sequences generated by each subject are collected and fed to a deep neural network that performs
gait feature extraction (Section 3.4.8). The resulting gait features are organized into a labeled
training set, where labels are obtained from the track identifiers. When a subject exits the FoV
of a radar and enters that of another radar placed in a different room or corridor, a WELM based
classifier [86] is trained on-the-fly and used to re-identify the subject at runtime (Section 3.4.10).
This robust and lightweight person Re-Id process, based on the gait features extracted from the
radar point-clouds, enables contact tracing across large indoor environments.

3.4.1 Notation

The system operates at discrete time-steps, k = 1, 2, . . . , each with fixed duration of ∆ seconds,
also referred to as frame in the following. Boldface, capital letters refer to matrices, e.g., X,
with elements Xij , whereas boldface lowercase letters refer to vectors, e.g., x. X−1 denotes the
inverse of matrix X, and xT denotes the transpose of vector x. xk refers to vector x at time k,
xj refers to element j of x and (xk)j is element j of xk. N (µ, σ2) indicates a Gaussian random
variable with mean µ and variance σ2. Notation ||x||2 indicates the Euclidean norm of vector x,
while ||x||Γ=

√
xTΓx denotes the norm induced by matrix Γ. The diagonal matrix with elements

x1, x2, . . . , xn is denoted by diag [x1, x2, . . . , xn]. |X | indicates the cardinality of set X while log(·)
denotes the natural logarithm.

3.4.2 Thermal Camera: Face Detection and Tracking

The detection of the subjects in the thermal camera images is performed by means of a face
detector that computes rectangular bounding boxes delimiting the faces of the people within
the FoV. The bounding boxes are used to track the positions of the subjects in the subsequent
instants and to identify a Region Of Interest (ROI) from which the temperature of the targets
is obtained. milliTRACE-IR is independent of the particular face detector used, provided that it
outputs bounding boxes enclosing the faces of the subjects. In the implementation, YOLOv3 [66]
is used due to its excellent performance in terms of accuracy and speed.

To track the faces of the subjects in the image plane, an EKF is employed [67]. Define the
state vector of a target subject at time k, as xk = [xck, y

c
k, ẋ

c
k, ẏ

c
k, hk, dk, ḋk]

T , where xck, yck are the
true coordinates of the center of his/her face in the thermal image, ẋck, ẏck its velocities along the
vertical and horizontal directions, hk is the true height of the bounding box enclosing the subject’s
face, dk, the distance of the target from the camera in the physical space, and ḋk its time derivative
(rate of variation).
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The observation vector obtained from the YOLOv3 face detector, denoted by zk = [x̃ck, ỹ
c
k, h̃k]

T ,
contains noisy measurements of the face position and height (represented by the height of the
bounding box), which are distinguished from their true values by the superscript “˜”. Denote the
observation noise by vector rk ∼ N (0,R), with R = diag

(
σ2
x̃c , σ2

ỹc , σ2
h̃

)
, with diagonal elements

representing the (constant) observation noise variances of x̃ck, ỹck and h̃k, respectively. In the
implementation σ2

x̃c = σ2
ỹc = 0.01 and σ2

h̃
= 20 are used.

The EKF state transition model is defined as xk+1 = f (xk,uk), where f(·) is the transition
function, connecting the system state at time k, xk, to that at time k + 1, xk+1, and vector
uk ∼ N (0,Q) represents the process noise. In the model used in this chapter, the process noise
includes 4 independent components, representing two random accelerations of the bounding-box
center coordinates, uxk, u

y
k, a random noise term for the bounding-box dimension, uhk , and a random

acceleration for the subject’s distance, udk. Therefore, it can be written uk =
[
uxk, u

y
k, u

h
k , u

d
k

]T
with covariance matrix Q = diag

[
σ2
x, σ

2
y, σ

2
h, σ

2
d

]
. In the implementation, σ2

x = σ2
y = σ2

d = 5 and
σh = 5.148 are used (see Section 3.4.2).

Assuming that the target moves according to a constant velocity (CV) model, from the state
definition it follows that

f (xk,uk) =



xk +∆ẋk + uxk∆
2/2

yk +∆ẏk + uyk∆
2/2

ẋk + uxk∆

ẏk + uyk∆

g
(
dk +∆ḋk + udk∆

2/2
)
+ uhk

dk +∆ḋk + udk∆
2/2

ḋk + udk∆


, (3.1)

where the only non-linear term is function g(·), which relates the subject’s distance extracted by
the thermal camera to the height hk of the bounding-box enclosing his/her face. The proposed
approach consists in (i) obtaining an estimate for g(·) in an offline fashion using training data,
and (ii) using such estimate in the EKF model. These two steps are detailed next.

Estimation of function g(·)

Function g(·) maps the distance of the target from the thermal camera dk, at time k, onto the
corresponding height of the bounding box, hk, as follows,

hk = g(dk) + uhk . (3.2)

Using Nt training samples {hi, di}Nt
i=1 containing the true distances of the target, di, and the

measured bounding box height, hi, g(·) is obtained solving an offline non-linear least-squares (LS)
problem of the form

argmin
g

Nt∑
i=1

(hi − g(di))2 . (3.3)
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From the equations of the pinhole camera model [85], g(·) is restricted to the family of hyperbolic
functions with shape g(di) = b0/(di + b1) + b2, reducing the problem to that of estimating the
parameters b0, b1, and b2, i.e.,

argmin
b0,b1,b2

Nt∑
i=1

(
hi −

b0
di + b1

+ b2

)2

. (3.4)

This optimization problem is here solved using the Levenberg-Marquardt algorithm [87] for non-
linear LS fitting: with the experimental setup used in this chapter, b0 = 162.04, b1 = 0.61, b2 =

−14.79 are obtained.
Note that the process noise acts on the bounding-box dimension in two ways, inside the function

g(·), modeling the uncertainty in the subject’s distance due to the random acceleration, and
through the additive term uhk , modeling the imperfect estimation of g(·) itself. The variance of uhk
can be estimated from the residuals, after fitting the training measurements with function g(·).

Using g(·) in the EKF

Due to the non-linear dependence of the state xk on the process noise uk, in the EKF operations
the following transformed process noise covariance matrix is used [88]

Q′
k = LkQLT

k , with Lk =
∂f (xk,uk)

∂uk

∣∣∣∣
x̂k|k

, (3.5)

where matrix Lk is the Jacobian of function f(·) with respect to the process noise vector, evaluated
for the current state estimate. Using the above system model, the system state estimate at time k,
x̂k, is recursively obtained along with the corresponding error covariance matrix, Pk. By definition
of the EKF state, this allows us to get a coarse estimate of the distance of the subjects from the
TC, which is exploited in the radar-TC data association step, see Section 3.4.6.

3.4.3 Thermal Camera: Subject Temperature Estimation

The body temperature is obtained from the thermal camera readings in the bounding-boxes con-
tained in x̂k, for each subject, and for all the time steps in which they are tracked by the EKF.
At any given time k, a single (noisy) temperature measurement, T̃ k, is extracted by taking the
maximum value across all the pixels in the current bounding box. Denoting by Bk the 2-D re-
gion of the image enclosed by the bounding box, and by Bki the intensity of its pixel i, it holds
T̃ k = maxiBki.

3.4.4 mmWave Radar: People Detection and Tracking

As presented in Chapter 2, our approach to multiperson tracking from sparse mmWave radar point
clouds includes
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(a) (b)

(c) (d)

Figure 3.3: Illustration of the proposed clustering method. In (a) the point-clouds belonging to 2 subjects
are well separated and DBSCAN outputs the correct clustering. In the next time-step, (b), DBSCAN fails
and merges the two clusters into one. The proposed method selects the points to re-cluster using the tracks
positions together with Eq. (3.6) and Eq. (3.7), as shown in (c), and outputs the correct result using GM on
the selected points with nG = 2, see (d).

(i) detection: using density-based clustering to separate the points generated by the subjects
from clutter and noise;
(ii) tracking: applying Kalman filtering techniques [42] on each cluster centroid to track the
movement trajectory of each subject in space.

In the following, we assume that the same processing pipeline as in Chapter 2 is used, specifically
applying DBSCAN [45], and KF based tracking. In the KF tracker, the state of each subject
at time k is defined as sk = [xk, yk, ẋk, ẏk]

T , containing the x − y subject’s coordinates and the
corresponding velocities. The state evolution is assumed to obey sk = Ask−1, where the transition
matrix A represents a Constant Velocity (CV) model [46]. The KF computes an estimate of the
state for a target subject at time k, denoted by ŝk, by sequentially updating the predictions from
the CV model with the new observations. The association between the new observations (time
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k) and the previous states (time k − 1) exploits the Nearest-Neighbors Cheap Joint Probabilistic
Data Association (NN-CJPDA) [46], [89].

We stress that DBSCAN has proven to be robust and accurate as long as the subjects do not
come too close to one another [8], [12], [46], see also Fig. 3.3a. When this occurs (Fig. 3.3b), the
algorithm often fails to distinguish between adjacent subjects, merging their contributions into a
single cluster [90]. For this reason, milliTRACE-IR improves the previous DBSCAN and KF based
signal processing pipeline with a novel clustering procedure to better resolve the point-clouds of
subjects that are close to one another. The designed solution to enhance the tracking accuracy in
such cases is a major contribution of the present chapter and is detailed next.

3.4.5 mmWave Radar: Highly Accurate Clustering

As a possible solution to DBSCAN drawbacks, one may adjust the parameters ε and mpts so as
to correctly resolve the clustering ambiguity, even for closely spaced targets. However, ε and mpts

interact in a complex and often unpredictable way, making the design of such adaptation rule
difficult.

milliTRACE-IR adopts a different approach, which combines (i) the standard DBSCAN algo-
rithm with fixed ε and mpts, (ii) the spatial locations of the subjects, available from the tracking
procedure, and (iii) the Gaussian Mixture (GM) clustering algorithm [65]. The designed algo-
rithm, reported in Alg. 3.1 and exemplified in Fig. 3.3, proceeds as follows. At first, the DBSCAN
algorithm is applied to obtain an estimate of the clusters and a reasonable separation between the
noise points and those belonging to actual subjects, using ε = 0.4 m and mpts = 10. DBSCAN
outputs a cluster label for each point p ∈ Pk, denoted by ℓp. Clusters are denoted by Cn, and
their centroids by c̄n, with n = 1, . . . , nk.

The next step is to identify which of the tracked subjects get closer than a critical distance dth
from one another. The clusters provided by standard DBSCAN for these subjects are expected to
be incorrect, as the point-cloud data from these would be merged into a single cluster. To pinpoint
these subjects, their KF state is leveraged, which corresponds to a filtered representation of their
trajectories. Consider track t at time k, its coordinates are predicted as ŝtk = Aŝtk−1 (see line 2−3

in Alg. 3.1). For any two subjects with associated tracks t and t′, milliTRACE-IR checks whether
||ŝtk− ŝt

′

k ||2< dth. If this occurs, as shown in the example of Fig. 3.3b for tracks t = 0 and t′ = 1, t
and t′ are termed nearby subjects. Hence, define G as the set of subjects that are mutually within
a radius of dth from one another. A group G can be constructed starting from any subject and
recursively adding all the subjects who are closer than dth from any of the set members. If a subject
has no other subjects within distance dth, it will be the only member of his group. Collecting all
the disjoint groups, constructed from the maintained tracks at time k, set Gk(dth) is obtained,
containing all the nearby subjects groups. Once the nearby groups are identified, the ambiguities
inside each group G containing more than one member are resolved by recomputing the clustering
labels as follows. Consider a single group G. To delimit the region where the clustering has to
be refined, the following additional regions are defined. The sample covariance matrix of the last
cluster associated with track t is denoted by Σt

n, and contains information about the shape of the
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Algorithm 3.1 Clustering refinement method.
Input: States of the targets at time k − 1, observed point-cloud at time k, Pk.
Output: Labels ℓp, ∀p ∈ Pk.
1: {ℓp}p∈Pk

, {Cn}nk

n=1 ← DBSCAN(ε,mpts,Pk)

2: ŝtk ← Aŝtk−1 all maintained tracks t
3: Find groups of nearby subjects Gk(dth)
4: for each G ∈ Gk(dth)
5: nG ← |G|
6: if nG > 1
7: R(G)←

⋃
t∈G(Rc(t) ∩Rs(t))

8: S ← {p ∈ Cn such that c̄n ∈ R(G)}
9: discard ℓp, ∀p ∈ S

10: {ℓp}p∈S , {πq}
nG
q=1 ← GM(nG ,S)

11: discard cluster q if πq < πthr
12: end if
13: end for

subject’s cluster. The regions of the plane containing the points that are within a radius of dth
from ŝtk, can be written as

Rc(t) =
{
x ∈ R2 s.t.

∣∣∣∣x− ŝtk
∣∣∣∣
2
< dth

}
, (3.6)

and the regions of points with a squared Mahalanobis distance smaller than γ are

Rs(t) =
{
x ∈ R2 s.t.

∣∣∣∣x− ŝtk
∣∣∣∣2
(Σt

n)
−1 < γ

}
. (3.7)

In the implementation, dth = 1.2 m and γ = 9.21 were used.∗ Then, the labels assigned by
DBSCAN to all the points belonging to a cluster whose centroid falls inside region R(G) =

∪t∈G(Rc(t) ∩Rs(t)), are discarded (lines 7− 9 in Alg. 3.1).† This set of points is denoted by S.
Then, the GM algorithm is applied to the points belonging to set S to refine the clusters within

this region, see the green points in Fig. 3.3c. As GM requires the number of clusters to be specified
in advance, it is set to be equal to the number of subjects in the group, i.e., nG = |G|. The GM
algorithm outputs the labels ℓp for each point p ∈ S and the weight of the Gaussian component
associated with each GM cluster, πq ∈ [0, 1], q = 1, . . . , nG , with

∑
q πq = 1. The new labels are

used to replace the ones previously found by DBSCAN (Fig. 3.3d), unless the GM clusters have
very small weights, i.e., the new clusters having πq < πthr are discarded and treated as noise
points. The threshold value used in the implementation is πthr = 0.1/nG .

The proposed method effectively solves the problem faced by DBSCAN in resolving subjects
close to one another. The cost of this improvement is that an additional GM algorithm has to be
applied to a subset of the point-cloud, however, at each time k the number of points in this subset
is typically much smaller than that in the full point-cloud Pk.

∗The value of γ corresponds to a probability of 99% of falling inside the region, assuming that the
points in the cluster are distributed on the plane according to a Gaussian distribution around ŝtk.

†Discarding a label corresponds to setting it equal to that used by DBSCAN to represent noise points.
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Figure 3.4: Example of distance (a) and horizontal projection (b) estimates from a track. The shaded areas
represent the standard deviations. The corresponding values for Ad and Ax are shown above.

3.4.6 Radar and Thermal Camera Data Association

Upon tracking the subjects in the TC image plane and in the physical space, respectively using
the measurements from the TC and from the mmWave radar sensor, a track-to-track association
method is applied to link the movement trajectory of each person to his/her body temperature.

Assume that, at time k, the system has access to N rad
k tracks from the radar sensor and N tc

k

tracks from the thermal camera, indicized by i and j, respectively. The data association strategy
used in milliTRACE-IR consists in (i) computing a cost for each association (i↔ j), and (ii)
solving the resulting combinatorial cost minimization problem to associate the best matching
track pairs. The main challenge in the association of radar and thermal camera tracks is the
design of a cost function that grants robustness in the presence of multiple targets, which may
enter the monitored area in unpredictable ways. The key point is to gauge the similarity of the
tracks by comparing them in terms of common quantities, which can be estimated from both
devices.

Assume also that the two sensors are located in the same position and with the same orientation
(co-located). In this setup, (i) the distance between the subjects and the sensors is the same,
so its estimate should match for tracks representing the same subjects, and (ii) the radar KF
states containing the coordinates of the subjects’ positions can be projected onto the TC image
plane; after this operation, the horizontal component of the radar projections and the horizontal
component of the TC bounding boxes position should match for correctly associated tracks. To
reliably associate radar and TC tracks, milliTRACE-IR uses a cost function consisting of the
following components, see also Fig. 3.5
Estimated distance cost. Denote by dik the estimated distance of radar track i, and by djk the
estimated distance of TC track j. Recalling that ŝik is the position of subject i at time k, dik is
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computed using Pythagora’s formula as dik =

√(
ŝik

)2

1
+

(
ŝik

)2

2
. Distance djk, instead, is retrieved

directly from the tracking state of the TC. Considering K subsequent time steps where radar track
i and TC track j are both available, the estimated distance cost is defined as

Ad(i, j) =
1

K

K∑
k=1

(dik − d
j
k)

2

σ2
di
k

+ σ2
dj
k

, (3.8)

where σ2
di
k
and σ2

dj
k

represent the variances of the two distance estimates. An illustrative example
is shown in Fig. 3.4a.
Projected horizontal component cost. The horizontal components of the radar state pro-
jection and of the TC bounding box center are respectively denoted by xik and xjk. The radar
positions provided by the KF state have only two dimensions, x and y (the first and second
components of the state vector). However, three-dimensional vectors are needed for their proper
projection onto the TC image plane. For this reason, a 0-valued z component is artificially added,
under the assumption that the subjects’ position at height 0 is the one being tracked. For this,
an augmented subject’s position vector, aik = [(ŝik)1,

(
ŝik

)
2
, 0]T , is defined. xik is computed by

projecting the radar coordinates aik onto the TC image plane, as ai,projk = Ψaik (see Section 3.3.2),
applying to it a radial distortion based on the estimated distortion coefficients and retaining only
the x-axis component. Projection xjk corresponds to the x coordinate of the TC tracked state.
The projected horizontal component cost is defined, for K subsequent time steps of radar track i
and TC track j, as

Ax(i, j) =
1

K

K∑
k=1

(xik − x
j
k)

2

σ2
xi
k

+ σ2
xj
k

, (3.9)

where σ2
xi
k
and σ2

xj
k

are the variances of the two estimates. An illustrative example is shown in
Fig. 3.4b.
Track length coefficient. Recalling that ∆ is the (constant) sampling interval, the proposed
cost function accounts for the length K of the tracks that are to be associated, favoring longer
tracks. To this aim, the following coefficient is defined,

ρ(K) =
1

log(K∆)
. (3.10)

Note that ρ(K) is a weight factor for a cost (see the later Eq. (3.11)), which decreases with the
track length K. This means that a smaller cost is implied when the associated tracks i and j are
longer. Also, in the implementation, it holds K > 1/∆, so ρ(K) is always positive.
Association cost function for radar and TC tracks. The association cost A(i, j) for the
tracks pair (i, j) (i refers to a radar track and j to a TC track) is obtained summing Eq. (3.8) and
Eq. (3.9), to gauge how well the two tracks match in terms of their estimated distance across time,
and estimated position on the horizontal projected axis on the TC image plane, respectively. The
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Figure 3.5: Block diagram of the sensor fusion step.

sum is then weighted by the coefficient of Eq. (3.10). Formally, A(i, j) is given by

A(i, j) = ρ(K) [Ad(i, j) +Ax(i, j)] . (3.11)

Costs A(i, j), i = 1, . . . , N rad
k , j = 1, . . . , N tc

k , are arranged into an N rad
k ×N tc

k matrix, and the
optimal association of tracks is obtained by minimizing the overall cost, computed through the
Hungarian algorithm [51]. The Hungarian algorithm takes the cost matrix as input and solves the
problem of pairing each radar track with a single TC track (by minimizing the total cost), with
an overall complexity of O((N rad

k N tc
k )3).

In general, the radar and the TC would be deployed at different spatial locations. However,
knowing their relative position and orientation, a roto-translation matrix Φ can be obtained to
geometrically transform the data into a new coordinate system where the TC and the radar
sensors are co-located, as described above. In this chapter, the TC position and orientation are
selected as the reference coordinate system, and the positions estimated from the radar sensor are
transformed into it.

3.4.7 Temperature Correction

In line with [68], the direct reading of each subject’s temperature , T̃ k, is subject to a scaling
factor, α(dk), with respect to the true temperature T , where α(dk) depends on the distance from
the TC, i.e.,

T = α(dk)T̃ k. (3.12)

For an accurate temperature screening, the scaling factor α(dk) is estimated from the training
data, considering a linear model of the form

α(dk) = a0 + a1dk. (3.13)
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Table 3.1: Summary of the architecture and training parameters of the NN used for gait feature extraction.

Architecture
Layer/block Size

PC features [6] 3 + 2 shared MLPs, (98, 196)
Temporal conv. [6] 3 Conv. (3× 3), 32, 64, 128 filt.
Temporal conv. [6] 3 Conv. (3× 3), 256, 128, 32 filt.
Global average pooling 32
Fully connected 32
L2 normalization 32
Fully connected 16

Training parameters
Learning rate 10−4

Optimizer Adam [53]
Number of epochs 250
Lcen weight, ω 0.5
L2-regularization parameter 8× 10−5

Dropout rate 0.4
Triplet margin, µ 1

Using N ′

t training measurements {T̃ i, di, T}
N

′
t

i=1, the fitting coefficients a0, a1 are obtained by solv-
ing

argmin
a0,a1

N
′
t∑

i=1

(
T − α(di)T̃ i

)2

. (3.14)

From the above optimization problem, in this chapter the above parameters are set to a0 = 1.116,
a1 = 0.013. At system operation time, denoting by M the number of time-steps for which the
subject is correctly tracked by the EKF, his/her true temperature at time k is finally estimated
as

T̂ k =
1

M

k∑
j=k−M+1

α(d̂j)T̃ j , (3.15)

where α(·) is defined in Eq. (3.13), using the parameters obtained from Eq. (3.14), while d̂j is
an estimate of the distance obtained by the system at time-step j. To improve the temperature
estimates, milliTRACE-IR performs sensor fusion by exploiting the association between the TC
face tracks and the mmWave radar tracks (see Section 3.4.6). In Eq. (3.15), the coefficients α(d̂j)
are computed using the distances estimated by the mmWave radar device, as these are much more
accurate than those obtained from the TC. The impact of combining the temperature information
from the TC and the accurate distance estimation capabilities of the radar is investigated in
Section 3.5.3. The block diagram for the temperature correction step is shown in Fig. 3.5.
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Figure 3.6: Block diagram of the NN feature extractor.

3.4.8 Extraction of Feature Vectors from mmWave Point-Clouds
To extract the gait features of the subjects, the NN proposed in [6], which was originally developed
for person identification, is here adapted. The network uses a point-cloud feature extraction block
inspired by PointNet [33], and followed by temporal dilated convolutions [34] to capture features
related to the movement evolution in time. The proposed NN takes as input a radar point-cloud
sequence, denoted by Z, and outputs the corresponding feature vector v = F(Z). Fig. 3.6 shows
the block diagram of the NN. First, the network is expanded with respect to [6], using augmented
point-cloud feature extraction blocks composed of 3 shared MLPs of size 98 and 2 MLPs of
size 196, yielding point cloud features of size 196 × 1. Then, 2 temporal convolution blocks are
used, containing 3, 3 × 3, convolutional layers each, with (32, 64, 128) and (256, 128, 32) filters,
respectively, for the two blocks, and dilation rates of 1, 2, 4 for the 3 layers in each block. Then,
after applying the same global average pooling operation of [6], a fully connected layer [53] is
introduced before the classification output, which produces a vector ṽ of dimension 32. The final
feature vector is obtained using L2-normalization on ṽ, i.e., v = ṽ/||ṽ||2. A summary of the NN
layers and their parameters is provided in Tab. 3.1.

Training

The NN is trained to produce representative feature vectors, v, containing information on the way
of walking of the subjects. This requires that the network generalizes well to subjects not seen
at training time, as the performance of the re-identification mechanism strongly depends on the
quality of the extracted features. To this end, in this chapter the NN is trained using a weighted
combination of the cross-entropy loss [53], denoted by Lce, the center loss [91], Lcnt, and the triplet
loss [92], Ltri.

The cross-entropy is the most widely used loss for classification purposes in deep learning, and
here it is used to train the network to distinguish among the different subjects [53]. However, just
training the NN on a classification problem does not lead to sufficiently discriminative features
for the re-identification mechanism. The center loss is adopted to additionally force the feature
representations belonging to the same class to be close in the feature space, in terms of Euclidean
distance. Specifically, denoting by cl the centroid of the feature vectors belonging to class l, the
center loss is

Lcen(v, l) = ||v − cl||22, (3.16)

where the centroids are learned as part of the training process via the back-propagation algo-
rithm [91].
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The triplet loss is used to push apart the feature representations of inputs belonging to different
classes. For this, triplets of input samples are selected from the training set, two of them from the
same class, leading to feature vectors va and vb, and one belonging to a different class, leading
to a third feature vector vc. For further details on the triplet selection process, see Section 3.2

of [92]. The triplet loss is written as

Ltri(va,vb,vc) = max
{
||va − vb||22−||va − vc||22+µ, 0

}
, (3.17)

where µ is a margin hyperparameter, set to 1. Hence, the feature extractor is trained with the
following total loss function

L = Lce + Ltri + ωLcen, (3.18)

where the parameter ω = 0.5 weighs the relative importance of the center loss. In the implemen-
tation, a training dataset containing mmWave radar point-clouds from 16 subjects is used. It was
collected in different indoor environments to increase the generalization capabilities of the NN.
The optimization is carried out using Adam [53] with learning rate 10−4 and an L2 regularization
rate of 8 × 10−5 for 250 epochs, as summarized in Tab. 3.1. Hyperparameters tuning was car-
ried out using a greedy search procedure, optimizing the value of the loss L on a validation set
containing a randomly selected subset (20%) of the training data.

Feature extraction

At inference time, i.e., during the system operation, the NN is used to compute feature vectors
that are representative of the subjects’ gait. Specifically, 45 steps (3 seconds) long sequences of
radar point-clouds are collected for each tracked subject. The point-cloud sequences are denote
by Z in the following. The inner representation v = F(Z), after L2-normalization, is used as the
feature vector for the following re-identification mechanism.

3.4.9 Weighted Extreme Learning Machine (WELM)
The WELM [86] is a particular kind of single-layer feedforward neural network in which the weights
of the hidden nodes are chosen randomly, while the parameters of the output layer are computed
analytically. Consider an ncls-class classification problem, a training set V = ∪ncls

n=1Vn of input
feature vectors v (see Section 3.4.8), each with an associated one-hot encoded label y ∈ {0, 1}ncls ,
where Vn is the set containing the vectors from class n = 1, . . . , ncls. For any v ∈ V , the WELM
computes the matrix of hidden feature vectors H ∈ R|V|×L, with rows h(v), where L is the
number of WELM hidden units and h(·) is a non-linear activation function. milliTRACE-IR
uses h(v) = ReLU(Wv + b) where ReLU is the rectified linear unit [53] (ReLU(x) = max(x, 0))
and W,b are the weights and biases of the Extreme Learning Machines (ELM) hidden layer,
respectively. The elements of W and b are here generated from N (0, 0.1). The WELM learning
process amounts to computing, for each class n, the optimal values of an output weight vector βn

that minimizes the weighted LS L2-regularized quadratic cost function ||Hβn − yn||2Ω+λ||βn||22,
where λ is a regularization parameter and Ω is a diagonal weighting matrix used to boost the
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importance of those samples belonging to under-represented classes. This compensates for the
tendency of the standard ELM to favor over-represented classes at inference time [86]. In the
analyzed scenario, the individuals move freely in the environment across different rooms, so the
number of feature vectors collected from each of them is not only unknown in advance, but highly
variable. Hence, the training set usually contains unbalanced classes, and milliTRACE-IR uses

Ωi,i = 1/|Vni
|, i = 1, . . . , |V|, (3.19)

where ni = argmaxn(yi)n denotes the class of the i-th vector. Stacking all the βn into a single
matrix B ∈ RL×ncls and the labels into matrix Y ∈ {0, 1}|V|×ncls , the WELM output weights B

can be computed in closed-form using one of the following equivalent expressions

B = HT
(
λI+ΩHHT

)−1
ΩY, or (3.20)

B =
(
λI+HTΩH

)−1
HTΩY. (3.21)

Due to the dimension of the matrix to be inverted, if |V|> L, it is more convenient to use Eq. (3.21),
while if |V|≤ L Eq. (3.20) has to be preferred. The output classification for a vector v is then
computed as argmaxi

(
h(v)TB

)
i
, where h(v)TB is a vector of WELM scores for each class.

3.4.10 WELM based Person Re-Identification

To enable person re-identification based on the feature vectors v extracted by the NN, milliTRACE-
IR uses the WELM multiclass classifier of Section 3.4.9, which is trained at runtime only when
the system has to re-identify a previously seen subject. This is done by sequentially collecting
feature vectors from all the subjects seen by the system at operation time, and storing them into
the training set V.

Note that, although an online sequential version of the ELM training process has been proposed
in [93], the WELM is trained every time a person has to be re-identified using a batch implemen-
tation and including in the training set V all the subjects seen up to the current time-step k. This
is because in the online training procedure of [93] the number of classes has to be fixed in advance,
while in the considered setup the number of subjects seen by the system may change in time and
the Re-Id procedure must be flexible to the addition of new individuals to the training set V. The
WELM training and re-identification phases are detailed next and in Alg. 3.2.

Training

The training process is performed at runtime as explained in Section 3.4.9, using L = 1, 024 and
λ = 0.1. During the normal system operation, the feature vectors obtained from each track are
continuously added to set V, storing the corresponding one-hot encoded vectors containing the
subjects’ identities into matrixY. To reduce the computational burden, the feature extraction step
is executed every 5 time-steps. This is reasonable, as the input sequences to the NN contain 45 time-
steps overall and extracting the features at every time-step would lead to highly correlated, and
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Algorithm 3.2 Re-identification mechanism at time k.
Input: Training set V, track to be re-identified tid.
Output: Re-id label of tid.
1: H←

[
hT (v), ∀v ∈ V

]
2: Y ← labels of V
3: Ω← Eq. (3.19)
4: B← Eq. (3.21) or Eq. (3.20) depending on |V|≶ L
5: ξ0 ← 0
6: for j = 1, . . . ,W
7: vid

j ← F (Zj)

8: ξj ←
[
hT (vid

j )B+ jξj−1

]
/(j + 1)

9: end for
10: label ← argmaxi(ξW )i

therefore less informative feature vectors, in addition to entailing a higher computation cost. At
time-step k, if a subject has to be re-identified, the training procedure of Section 3.4.9 is executed
(lines 1− 4): the WELM feature vectors H are computed by applying the activation function h(·)
to each training vector and the weight matrix Ω is obtained from Eq. (3.19) (lines 1 − 3). The
WELM output matrix B, is computed using Eq. (3.20) or Eq. (3.21) depending on |V| (line 4).

Re-identification

The Re-Id procedure is used to recognize subjects that have been seen by the system and associate
them with their temperature measurement and their past movement history in the monitored area.
Denoting by tid the track to be re-identified, the trained WELM processes the NN features of this
user, vid, as follows: h(vid)TB. Due to the high variability of human movement, rather than
considering a single feature vector, milliTRACE-IR computes the cumulative average WELM
scores over a time window of length W , where the average score at time j = 1, . . . ,W is referred
to as ξj (lines 6 − 9). The identity label corresponds to the index of the largest element of ξW
(line 10).

3.5 Experimental Results
In this section, the experimental results obtained by testing the system in different indoor envi-
ronments are presented.

3.5.1 Implementation
Hardware. milliTRACE-IR has been implemented on an NVIDIA Jetson TX2 edge computing
device‡, with 8 GB of RAM and a NVIDIA Pascal GPU. The Jetson TX2 has been connected via
Universal Serial Bus (USB) to a Texas Instruments IWR1843BOOST mmWave radar§, operating

‡https://developer.nvidia.com/embedded/jetson-tx2
§https://www.ti.com/tool/IWR1843BOOST
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Figure 3.7: Experimental setup for the data association.

in the 77− 81 GHz band, and via Ethernet to a FLIR A65 thermal camera¶, as shown in Fig. 3.7.
The experiments have been performed in real-time at a frame rate of 1/∆ = 15 Hz.
The radar device operates in FMCW mode, using a chirp bandwidth B = 3.07 GHz, which leads
to a range resolution of c/2B = 4.88 cm, and 64 chirps per sequence, obtaining a maximum mea-
surable velocity of 4.77 m/s and velocity resolution of 14.92 cm/s.
The thermal camera has a 640× 512 Focal Plane Array (FPA), a spectral range of [7.5, 13] µm, a
temperature range of [−25, 135]◦C, a measurement uncertainty of ±5◦C, and a Noise Equivalent
Temperature Difference (NETD) of 50 mK.
Software. The system has been developed in Python, using the NumPy, SciPy and OpenCV
libraries for the implementation of the tracking phases (for radar and thermal camera) and the
proposed data association (Section 3.4.6), clustering (Section 3.4.5) and re-identification (Sec-
tion 3.4.10) algorithms. Tensorflow and Keras libraries have been used to implement the feature
extraction NN (Section 3.4.8). The pre-trained face detector for the thermal images (Section 3.4.2)
has been taken from the open-source YOLOFace‖ implementation.

3.5.2 TC and Radar Tracks Association

To assess the performance of the radar-TC track association method, experimental tests were
conducted in a 7× 4 m research laboratory. A motion tracking system including 10 cameras was
used to gather Ground Truth (GT) data about the locations of the subjects, by placing markers
atop their heads. This camera based tracking system provides 3D localization with millimiter-level
precision, for all markers, at a rate of 100 Hz. The radar and the TC were placed as shown in
Fig. 3.7. 5 measurement sequences with 2 subjects and 9 sequences with 3 subjects, all freely

¶https://www.flir.it/products/a65/
‖https://github.com/sthanhng/yoloface
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With ρ(K) Without ρ(K)

Pr [%] Rec [%] Pr [%] Rec [%]
Ax +Ad 97.3 97.3 91.9 91.9
Ax only 91.9 89.2 89.7 94.6
Ad only 92.1 94.6 86.8 89.2

Table 3.2: Impact of the components of the cost function. Row labels Ax, Ad, and Ax +Ad indicate,
respectively, that only costs Ax, Ad or the sum of the two were used in the evaluation. Label “With ρ(K)”
indicate that the corrective term, ρ(K), was used, while label “Without ρ(K)” means ρ(K) = 1.

entering the room, were collected. The roto-translation matrix Φ was estimated using a set
of markers applied to the devices, while the TC intrinsic matrix Ψ (see Section 3.4.6) and the
radial distortion coefficients were obtained through the Zhang’s method [94], using a sun-heated
checkerboard pattern.

An association is defined as a specific pairing i ↔ j of a track i from the radar with a track
j from the TC, and a correct association as an association for which the two tracks correspond
to the same subject. Given a set of tracks, the set of all the correct associations performed by
the algorithm is denoted by ATP (true positives), the set of all the associations performed by the
algorithm as AP (positives), and the set of all the associations that the algorithm should have
performed, based on the GT, as AR (relevant).

To quantify the association performance of the system, define the precision, Pr = |ATP|/|AP|,
and the recall, Rec = |ATP|/|AR|. Using these metrics, the proposed track association method
is evaluated by assessing the contribution of each cost component in A(i, j) (see Eq. (3.11)). The
results are reported in Tab. 3.2, where the row labels Ax, Ad, and Ax +Ad indicate the cost
function used. The table also shows the impact of adding the correction coefficient ρ(K) (see
Eq. (3.10)): for the case “Without ρ(K)”, ρ(K) is set to 1.

As shown, the proposed track association method reliably associates the radar and TC tracks,
reaching precision and recall both higher than 97%. The joint use of Ax, Ad and ρ(K) leads to
improvements of up to 11% and 8% for the precision and recall metrics, respectively.

3.5.3 Temperature Screening

Remarkably, the proposed temperature screening method does not require people to stand in front
of the TC sensor, but estimates their temperature as they move within the FoV of the TC. In order
for the method to return accurate temperature measurements, the subject’ frontal face should be
captured by the TC for a minimum time duration. For this reason, it is advisable to place the
TC near a point of passage, e.g., in proximity of an entrance. The temperature screening method
was tested on 4 − 7 sequences of ∼ 10 s each were collected from 4 different individuals moving
within 3.5 m from the TC. Each subject was tested at a different time of the day, to gauge the
effects of the changing (thermal) environmental conditions, and of a possible concept drift (e.g.,
heating) of the TC after a long period of operation. Furthermore, as explained in Section 3.4.3, a
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Figure 3.8: Results of the temperature screening.

Mean [°C] ± std [°C] True temp. [°C] Error [°C]
Target 0 36.8 0.340 36.7 0.104
Target 1 36.6 0.155 36.6 0.004
Target 2 36.8 0.485 36.9 −0.062
Target 3 37.0 0.294 36.5 0.507

Table 3.3: Results of the temperature estimation and comparison with respect to the true values for the 4
targets. The worst cases are highlighted.

linear function α(·) was fit to compensate for the influence of the distance on the measures.
To evaluate the benefit brought by the correction based on the targets’ distance, in Fig. 3.8a, the

results obtained with (Corr. temp.) and without (Raw temp.) the correction are compared. Since
the TC is intrinsically subject to a bias, to facilitate the comparison of the measures, in the Raw
temp. case only this bias is corrected, assuming a constant target distance of 2 m and multiplying
each measured temperature by α(2) = a0 + 2a1. The full method (Corr. temp.), instead, uses the
rescaled average estimate, as per Eq. (3.15). The box-plot shows that the range of the corrected
temperatures is significantly reduced (for these experiments, the true temperature is constant),
demonstrating the efficacy of the proposed correction plus averaging approach. As an illustrative
example, Fig. 3.9 shows the impact of the distance-based correction on data measurements from
a subject moving in front of the TC.

Fig. 3.8b compares the temperature estimates from milliTRACE-IR and the true temperatures
measured with a contact thermometer. The numerical results are reported in Tab. 3.3, where
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Figure 3.9: Temperature measurements from a subject moving in front of the TC with (Corr. temp.) and
without (Raw temp.) distance-based correction.

the worst cases are reported in bold fonts. Mean temperatures are estimated with a maximum
standard deviation from the mean smaller than 0.5 °C and a maximum absolute error with respect
to the true temperature of about 0.5 °C. Note that only one of the subjects in Fig. 3.8b exhibits this
maximum error (subject 3), while the absolute error for the others remains within 0.1 °C. These
errors descend from the fact that the environmental conditions and the heating of the thermal
camera affect the measurements in an unpredictable way, modifying the bias of the fitting function.
Notwithstanding, the thermal screening capability of milliTRACE-IR is significantly better than
that of existing approaches, see Section 3.5.7. Also, some improvements are possible by, e.g.,
applying a correction based on an external reference, such as a piece of material instrumented
with a contact thermometer and located within the field of view of the TC, or monitoring the
statistics of the people’s temperature (mean µ and standard deviation σ) to detect anomalous
samples within such empirical distribution. For instance, an alarm could be raised for those
subjects whose temperature is greater than µ+ c× σ, for a user-defined threshold c. This would
allow the system to continuously and autonomously adapt to different operating conditions.

3.5.4 Positioning and Social Distance Monitoring
To evaluate the performance of the radar tracking system in estimating the position of the targets
and the inter-subject’s distance, tests were conducted in the 7×4 m research laboratory described
in Section 3.5.2. A total of 7 sequences of duration 10− 15 s were collected, each with 3 subjects
moving freely in the room, along with their GT locations obtained from the motion tracking
system. The Root Mean Squared Error (RMSE) between the mmWave radar estimated locations
and the GT is used as a performance metric. Moreover, the inter-subject distances were measured,
considering all the possible combinations of the three subjects and leading to a total of 21 inter-
subject distances across all the recorded sequences.

The Cumulative Distribution Function (CDF) of the absolute error between the ground truth
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Figure 3.10: CDF of the absolute error between the true (ground truth) and the estimated subject’s position
/ inter-subject’s distance, as measured by the radar tracking system. The dashed lines denote the mean error.

Mean [m] ± std [m] Frames Time [s]
Position RMSE 0.216 0.115 1448 97
Subj. distance RMSE 0.161 0.112 1153 77

Table 3.4: RMSE of the subject’s position and of the inter-subject’s distance estimated by the radar sensor,
computed against the GT.

milliTRACE-IR DBSCAN
rcl [%] corr. tracked rcl [%] corr. tracked

2 sub. parallel 90.7 ✓ 46.5 ×
2 sub. crossing 87.9 ✓ 59.6 ×
2 sub. close 89.9 ✓ 69.7 ✓
3 sub. parallel 92.3 ✓ 65.3 ✓
3 sub. crossing 83.7 ✓ 73.5 ×

Table 3.5: Ratio rcl between the number of frames in which the different subjects are correctly separated and
the total number of frames, using the proposed method and DBSCAN. Symbols “✓” and “×” denote success
and failure of the tracking step, respectively.

and the estimated subject’s position/inter-subject distance, as measured by the radar tracking
system, is shown in Fig. 3.10, along with the corresponding mean values. The numerical results
are provided in Tab. 3.4. The radar system achieves an absolute positioning error within 0.3 m
in 80% of the cases. For the inter-subject distance, the error remains within 0.25 m in 80% of the
cases.

3.5.5 Effectiveness of the Improved Clustering Technique

To evaluate the improvement brought by the proposed clustering method over the standard DB-
SCAN, both algorithms were tested on specific measurement sequences with subjects moving
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(a) 1 min. training data.
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Figure 3.11: Re-identification accuracy results. In (a) and (b) the re-identification algorithm is used with
1 and 3 minutes of training data per subject, respectively. In (c), 1 minute of training data was used for a
randomly selected subset containing half of the subjects, while 4 minutes were used for the remaining half.
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within 1 m from one another. To quantify the clustering performance, the correct clustering ra-
tio, rcl, is used. This metric represents the fraction of frames in which the clusters belonging to
the different subjects are correctly separated. The results of this evaluation are summarized in
Tab. 3.5. The evaluation is conducted on sequences with 2 and 3 individuals (i) walking along
parallel paths with the same velocity and at a distance between 0.5 m and 0.8 m (parallel), (ii)
walking along crossing paths, with subjects coming as close as 0.2 m from one another (crossing)
and (iii) staying still and moving arms at an inter-subject distance of approximately 0.8 m (close).
The proposed clustering algorithm led to a large improvement (up to 44 %) in terms of rcl metric
with respect to DBSCAN. In addition, for 3 of the 5 test sequences, DBSCAN led to failures in
the tracking process, either merging the tracks of different subjects, or failing to detect some of
them, while milliTRACE-IR correctly tracked all the subjects in all cases.

3.5.6 Person Re-Identification

The proposed WELM based Re-Id algorithm was evaluated on a set of mmWave radar measure-
ments from 6 individuals who were not included among the 16 subjects used to train the feature
extraction NN. The tests were conducted in a 12 × 3 m research lab, with furniture that made
the evaluation challenging. The training data contains 4 minutes of measurements (3, 600 radar
frames) while over 1 minute of measurements per subject (1, 000 frames) was used as test data. In
both the training and the test data, the individuals walked freely in the room. The radar position
was changed for each test to gauge the impact of varying the radar point-of-view.
Re-Id accuracy. The Re-Id accuracy as a function of W (see Alg. 3.2) is shown in Fig. 3.11a
and Fig. 3.11b. The curves of these plots are obtained averaging the results of 20 different WELM
initializations, and all the possible combinations of the considered number of subjects (from 2 to
6) over the 6 total individuals. As expected, the Re-Id performance increases with an increasing
inference time (larger W ) and with the length of the training sequences: the accuracy gain is
about 10% by going from 1-minute (Fig. 3.11a) to 3 minutes (Fig. 3.11b) long training sequences.
Also, milliTRACE-IR reaches high Re-Id accuracy using W ≥ 15 s and the detrimental effect of
increasing number of subjects to be classified is greatly reduced using larger values of W , as
accumulating the WELM scores over longer time windows increases the robustness of the WELM
decision. Overall, the accuracy of the proposed method is higher than 95% in all cases, only using
3 minutes of training data per subject and W = 20 s, which are reasonable in practice. The worst-
case (3 minutes of training data for 6 subjects) WELM training time, on the ARM Cortex-A57
processor of the Jetson TX2 device, took 2.98± 0.015 s.
Impact of imbalanced training data. As shown in Fig. 3.11c, the effect of imbalanced training
data is successfully mitigated by the sample weighting strategy of Eq. (3.19). In this evaluation,
the WELM was trained with 1 minute of data for a randomly selected subset containing half of
the subjects and 4 minutes for the remaining half.
Improvement over a baseline. Tab. 3.6 compares the WELM to a baseline classification
method widely used in camera-based person Re-Id [16] that, unlike milliTRACE-IR, does not
learn a similarity score based on the actual distribution of the feature vectors at operation time.
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WELM Cos. sim. baseline
1 min. 4 min. imb. 1 min. 4 min. imb.

W = 0 s 53.8 60.9 58.3 44.6 49.5 51.6
W = 10 s 80.0 86.8 84.2 63.9 77.7 80.6
W = 20 s 88.6 95.3 90.8 72.2 88.8 86.9

Table 3.6: Re-Id accuracies obtained by the WELM and the CS baseline on 6 subjects using 1 and 4 minutes
balanced training sets, and an imbalanced training set. The cumulative average window W is set to 0 s (a
single test feature vector is used), 10 s or 20 s.

milliTRACE-IR Ulrich [81] Savazzi [68]

Positioning range RMSE [m] 0.19 × 0.45
Interpersonal dist. RMSE [m] 0.17 × 0.5*
Positioning angle RMSE [°] 3.1 × 7.0
Thermal screening RMSE [◦C] 0.13 × 0.45
Thermal screening range [m] 3.5 × 1.1
Per-frame assoc. Pr [%] 98.6 25.2 n.a.
Per-frame assoc. Rec [%] 98.5 78.4 n.a.
Re-identification acc. [%] ≈ 90 × ×

Table 3.7: Comparison of milliTRACE-IR with the works from Ülrich et al. [81] and Savazzi et al. [68].
Symbols “×” and “n.a.” denote, respectively, that the task is not tackled or that there is no available result
for the considered quantity in the original papers. The symbol “*” is used to highlight that the value is not an
RMSE value but the minimum interpersonal distance threshold considered in [68].

The baseline algorithm collects the training feature vectors along with the corresponding labels
and computes the centroid of each class m in the NN feature space, denoted by cm. To re-identify
a subject, the cosine similarity between his/her feature vectors, v, and the centroid of each class
m is computed, obtaining a similarity score sm = cTmv/(||cm||2×||v||2), and the classification is
performed taking argmaxm sm. The WELM outperforms the baseline scheme in all the tests, see
Tab. 3.6. The performance gap is significant for little training data (up to 16% improvement),
small windows and imbalanced training sets.

3.5.7 Comparison with existing approaches

In this section a comparison between milliTRACE-IR and available methods from the literature
is provided. To the best of the authors’ knowledge, only two works exploit both mmWave radars
and thermal cameras to perform human sensing and/or temperature screening, namely, the works
from Ülrich et al. [81] and Savazzi et al. [68]. Since none of the two tackles all the points that
milliTRACE-IR addresses, they are here considered, separately, to compare different aspects. The
data association strategy is compared with that proposed in [81], while [68] is used to compare
the positioning, distance monitoring, and temperature screening parts. In Tab. 3.7, symbols “×”
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and “n.a.” denote, respectively, that the task is not tackled or that no specific result is provided
in the corresponding work.
Data association. In [81] (Ülrich et al.), people are detected in thermal images by applying the
Viola and Jones algorithm [95] to detect the upper bodies of the subjects in the environment. The
distance between the TC and each subject is roughly retrieved from the dimension of the bounding
box enclosing the upper body of each person, similarly to what milliTRACE-IR does with faces.
The TC detections are then associated, on a frame basis, with range measurements obtained with a
mmWave radar by minimizing a Gaussian-shaped association cost. This cost provides an estimate
of the probability that the corresponding association is correct, based on the difference between
the distance estimates by the TC and by the mmWave radar. This data association method has
been implemented and tested on the dataset of Section 3.5.2, comparing it to the data association
strategy of milliTRACE-IR. For a fair comparison, the YOLOv3 detector has been used in place of
the Viola and Jones algorithm, as, besides providing superior performance, it is the same detector
used by milliTRACE-IR. This guarantees that any difference in the data association results is only
due to the data association strategy. At every time frame, each bounding box has been associated
with the radar detection yielding the highest association probability, which corresponds to the
smallest difference in the two distance estimates. The main differences between the approach
in [81] and that of milliTRACE-IR are that, in [81]: (i) the association is per-frame and not per-
track, (ii) the estimated distance from the TC is the only feature considered for the association,
and (iii) the Hungarian algorithm is not used, so different bounding boxes can be, erroneously,
associated with the same radar detection. Numerical results for the precision (“Pr”) and recall
(“Rec”) metrics are presented in Tab. 3.7. Since the association technique of [81] performs a
per-frame association, the table shows the per-frame performance of milliTRACE-IR, computed
by counting the number of frames that are correctly classified using milliTRACE-IR’s per-track
association algorithm. From these results, it can be seen that milliTRACE-IR performs notably
better in associating mmWave radar with TC human detections. The largest improvement is
brought by the combination of milliTRACE-IR per-track association paradigm with the Hungarian
algorithm, which effectively filters out ghost tracks and spurious detections which often occur in
real world scenarios, significantly boosting the robustness of the scheme.
Positioning, distancing, and temperature screening. In [68] (Savazzi et al.), people lo-
calization, interpersonal distance monitoring, and temperature screening are addressed using
thermopiles and mmWave radars. Since in [68] the data association strategy is not disclosed,
a comparison is here provided only for the previously mentioned tasks. In the paper, positioning
performance is evaluated in terms of range (radial distance) and angular RMSEs. Numerical values
for these metrics are given in Tab. 3.7 considering the dataset of Section 3.5.4 for milliTRACE-IR
and the (average) values from Tab. II of [68] for their algorithm.

In the same work, interpersonal distance monitoring is obtained by dividing the monitored
area into a regular grid, whose cells have a side length of 0.5 m. The system is able to distinguish
subjects occupying adjacent cells, which are considered to be violating the minimum interpersonal
distance of 1 m, thus raising an alarm. For this reason, the resolution of the method of [68] is 0.5 m
in the best case (a lower bound for the interpersonal distance estimation error). In Tab. 3.7, this
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value is reported alongside the RMSE of milliTRACE-IR in measuring interpersonal distances,
marking the former with a “*” symbol, to highlight that it is not an RMSE.

Thermal screening performance comparisons are also presented in Tab. 3.7, where “Ther-
mal screening range [m]” refers to the maximum distance at which the tests were carried out.
milliTRACE-IR performs better than [68] in all the considered tasks, showing a larger monitoring
range and more accurate body temperature estimates. In addition, milliTRACE-IR combines
these monitoring capabilities with a robust data association strategy and with the capability to
re-identify subjects when moving through different areas.

3.6 Concluding Remarks
This chapter presents the design and implementation of milliTRACE-IR, the first system com-
bining high resolution mmWave radar devices and infrared cameras to perform non-invasive joint
temperature screening and contact tracing in indoor spaces. This system uses thermal cameras to
infer the temperature of the subjects, achieving measurement errors within 0.5 °C, and mmWave
radars to infer their spatial coordinates, by successfully locating and tracking subjects that are as
close as 0.2 m apart. This is possible thanks to improvements along several lines, such as the asso-
ciation of the thermal camera and radar tracks from the same subject, along with a novel clustering
algorithm combining density-based and Gaussian mixture methods to separate the radar reflec-
tions coming from different subjects as they move close to one another. Moreover, milliTRACE-IR
performs contact tracing: a person with high body temperature is reliably detected by the thermal
camera sensor and subsequently traced across a large indoor area in a non-invasive way by the
radars. When entering a new room, this subject is re-identified among several other individuals
with high accuracy (95%), by computing gait-related features from the radar reflections through a
deep neural network and using a weighted extreme learning machine as the final re-identification
tool.
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4
Retrofitting IEEE 802.11ay Access Points for

Indoor Human Detection and Sensing

4.1 Introduction

In this chapter we move on to the integration of mmWave radar sensing techniques in communica-
tion systems. Specifically, we propose RAPID, an ISAC platform that performs radar-like sensing
of human movement based on the next generation IEEE 802.11ay Wi-Fi standard in the 60 GHz
band. Previous works based on the precursor standard IEEE 802.11ad exploit the CIR estimation
procedure for localizing people [28], [96], but they are not fully compliant with the communication
packet structure specified by the standard and cannot match the sensing accuracy of radars, as no
µD information is captured. In contrast, RAPID works without modifying the packet structure
by leveraging the in-packet beam training and beam tracking features of IEEE 802.11ay. This
leads to very low implementation and deployment cost, and allows for a highly accurate extraction
of human movement information from the radio signals. IEEE 802.11ay uses highly directional
antennas for communication. It specifies efficient in-packet beam training and tracking procedures
[25], based on training (TRN) fields consisting of repetitions of complementary Golay sequences
[26]. These fields are transmitted with different beam patterns, which allow determining which
of the beam patterns is best for communication. By exploiting beam training packets, RAPID
can accurately localize multiple human subjects within the same indoor space. Then, the µD
signature associated with the movement of each subject is extracted by relying on the TRN units
embedded in the data packets used for beam tracking, analyzing the phase differences of the CIR
across subsequent packets that are reflected back by the environment. For such radar-like opera-
tion, RAPID IEEE 802.11ay APs have to enable their transmit and receive chains simultaneously,
avoiding the problem of random phase offsets as transmitter and receiver share the same local
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oscillator. However, note that this does not require complex self-interference cancellation for full-
duplex communication, since the receiver needs to only detect the highly robust Golay sequences of
the TRN fields. Thanks to its unique design, RAPID is the first system that successfully extracts
the µD from multiple subjects using standard Wi-Fi transmission technology, achieving radar-
level accuracy. This is challenging, as it involves (i) striking a good balance between the packet
transmission rate and the Doppler frequency resolution required to capture the µD of human
movement, while (ii) ensuring sufficient phase coherence across adjacent packets. The obtained
µD spectrograms are processed using a deep learning classifier to carry out continuous HAR and
person identification.

Furthermore, we show that, thanks to the intrinsic superior ranging resolution of the mmWave
spectrum, RAPID outperforms state of the art human sensing technology based on sub-6 GHz
systems. Multiple moving subjects can be individually tracked, separating their signal reflections
and, in turn, obtaining large improvements in terms of accuracy, robustness and generalization
across environments and subjects. In addition, multiple RAPID-APs can be seamlessly integrated
to boost detection and tracking performance. This also increases HAR and person identification
accuracy by combining the information from different viewpoints. In this chapter, RAPID-APs
were implemented using an FPGA-based SDR platform equipped with phased antenna arrays,
which transmits IEEE 802.11ay-compliant packets and operates in a full-duplex fashion.

The main contributions of this chapter are:

1. We design and implement RAPID, a fully standard compliant multi-AP ISAC system that
exploits IEEE 802.11ay TRN fields to achieve radar-like human sensing, including simulta-
neous multi-person tracking, HAR and person identification. RAPID reuses existing fields
in the communication packets and avoids the need for a dedicated sensing infrastructure. In
addition, it can also combine information from multiple APs for improved performance.

2. We propose a novel method to extract µD signatures of human movement from IEEE 802.11ay
CIR estimates obtained from a sequence of packets, exploiting the Golay sequences specified
in the standard. To the best of our knowledge, this is the first work to do so from 60 GHz
communication waveforms.

3. We implement RAPID on a FPGA-based testbed including multiple IEEE 802.11ay-compliant
APs which support full-duplex operation, so that each AP can listen to its own transmitted
signal and act as a monostatic ISAC device.

4. We conduct an extensive measurement campaign in an indoor space to evaluate the proposed
system and compare it to sub-6 GHz Wi-Fi systems. To this end, we build a unique dataset
including simultaneous IEEE 802.11ay and IEEE 802.11ac CIR estimates. RAPID achieves
continuous tracking of up to 5 concurrently moving subjects, with HAR accuracy of 94%
and person identification accuracy of 90%. Moreover, it outperforms state of the art sub-
6 GHz Wi-Fi sensing, showing superior accuracy and robustness to different environments
and subjects.

74



The chapter is organized as follows. The related work is summarized in Section 4.2. RAPID is
introduced in Section 4.3, presenting its constituent processing blocks. A brief summary of how
IEEE 802.11ay can be used for environment sensing is given in Section 4.4, while in Section 4.5
the implementation of RAPID on FPGA hardware is discussed. A thorough performance analysis
of RAPID on real measurements is presented in Section 4.6. Concluding remarks are presented in
Section 4.7.

4.2 Related work
Sub-6 GHz sensing. Legacy Wi-Fi technologies such as IEEE 802.11n and IEEE 802.11ac,
respectively working at 2.4 or 5 GHz, have been extensively used for human sensing, including
activity/gesture recognition [20], [21], [97], [98], vital sign monitoring [99] and person identifica-
tion [100].

Due to the rich multipath environment at lower frequencies, existing approaches have reached
good accuracies by leveraging Orthogonal Frequency Division Multiplexing (OFDM) transmission
and analyzing the CIR amplitude obtained at the different subcarriers, as done in [20]. The
performance of such systems can be further improved by exploiting the phase components of the
CIR [97], [98], but this entails using complex algorithms for the removal of random phase offsets.

Although there is a large body of work that exploits these technologies, they have two main
drawbacks: either (i) they are effective for single-person scenarios, as the small available bandwidth
only allows for coarse localization and tracking of the subjects, or (ii) they are highly sensitive
to changes in the environment and hardly generalize to new scenarios (never seen at system
calibration/training time), which can significantly worsen their performance. Addressing problem
(i), in [100], multi-person identification using IEEE 802.11n is achieved in a through-the-wall
setting, but the subjects still need to be well separated in space (e.g., by at least 20◦ in azimuth
angle at a distance of several meters). To mitigate the dependence on the environment, more
elaborate deep learning and optimization approaches have been proposed in [98], [101], [102].

mmWave frequencies offer a natural solution to the above issues, by providing decimeter-level
accuracy in distance measurements and high sensitivity to the µD effect, due to their small trans-
mission wavelength. In addition, due to the sparsity of the mmWave channel, higher robustness
to environmental changes is achieved.
mmWave radar. mmWave radars have been intensively studied in the past few years as an
effective means to achieve fine-grained environment sensing [103]. Typical operating frequencies
for these devices are the 60 or the 77 GHz bands. Centimeter-level accuracy in measuring distances
is achieved thanks to the use of very large transmission bandwidths, up to 4 GHz, as dedicated
radar devices are not constrained by communication requirements. Radars allow accurate HAR [3],
[4] and have been used to perform person identification on small to medium-sized groups of people
(up to a few tens), due to their very high resolution in obtaining the µD signatures of the subjects
[6], [12]. In these works, the separation of the reflections from subjects concurrently moving in the
environment is achieved through MIMO radars, which enable high angular resolution and allow
tracking the users with errors below 0.2 m even in realistic scenarios where people walk and move
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freely [8]. However, these results are obtained within relatively small distances from the radar
device, ranging from 4 [8] to 6− 7 m [12].

Despite the advanced sensing capabilities, mmWave radars entail high deployment costs to cover
large indoor areas, even more considering their limited working range. For this reason, multi-
radar networks to cover wider areas and avoid occlusions are seldom considered in the literature.
Reusing existing mmWave communication links, as we do in this chapter, allows avoiding the costly
deployment of additional hardware, while maintaining radar-like human sensing and detection
performance.

802.11ad 60 GHz sensing. Commodity 60 GHz radios have been utilized for client device
localization [104], people tracking [96], fine-grained human gesture recognition [105], [106], vital
sign monitoring [107] and RF imaging [28]. All the works addressing human sensing are based
on the IEEE 802.11ad standard and leverage the CIR estimation to obtain information about the
environment. However, they typically do not address the problem of joint communication and
sensing, which requires to reuse the packet structure specified by the communication standard.
[105] and [106] address fine-grained hand gesture tracking. In [105], pulsed radar-like operations
are performed to detect and track a human hand, reconstructing handwriting with centimeter-level
accuracy. Notably, [106] performs similar processing using the IEEE 802.11ad CIR estimated by a
mobile device for gesture classification. In [28], a commodity 60 GHz radio equipped with a 6× 6

antenna array is used to obtain the silhouette of a person moving directly in front of the device.
This is achieved with an angular super-resolution algorithm derived from MUSIC [108]. However,
the device needs to be operated in a radar mode for transmission, which may not comply with the
communication standard.

In [96], the estimated CIR amplitude is used along with receiver beamforming to localize and
track multiple people, achieving a median localization error of 9.9 cm. This work does not exploit
the phase of the CIR to extract the µD signature of the subjects, which is necessary to carry out
HAR and person identification tasks. Moreover, the extension to the case of multiple APs is not
considered.

Dedicated mmWave technology has been successfully exploited for human sensing, and new
platforms are appearing regularly. However, to the best of our knowledge, RAPID is the first
system that extracts radar-like µD signatures of human movement from IEEE 802.11ay APs, by
retrofitting them with channel sensing and Doppler extraction capabilities. This is obtained by
preserving the IEEE 802.11ay packet structure, obtaining a joint radar-communication platform
that is fully standard compliant.

4.3 RAPID design

RAPID enables indoor human sensing in IEEE 802.11ay networks, by leveraging the network’s
in-packet beam training and beam tracking structure.
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Figure 4.1: Overview of the RAPID system.

4.3.1 System overview

From a high-level perspective, the system performs the following operations, as shown in Fig. 4.1.
(1) IEEE 802.11ay CIR estimation: 802.11ay specifies the transmission of a variable number
of TRN units for in-packet beam training, each using a (possibly) different Beam Pattern (BP).
From the CIR, which is estimated from each TRN unit (see Section 4.4), RAPID obtains a scan
of the whole angular FoV, which contains accurate information about all the surrounding objects
and people.
(2) People localization and tracking: the individuals are detected by performing background
subtraction from the CIR amplitude and applying a thresholding algorithm to detect candidate
reflection paths from humans, see Section 4.3.3 and Section 4.3.3, respectively. Subsequently, a
correlation based algorithm is utilized to estimate the angular position of the subjects, as described
in Section 4.3.3, and an EKF is exploited to sequentially track and refine the positions of the
individuals across time (Section 4.3.3). By combining more than one AP, RAPID can boost its
human detection capabilities, while effectively coping with occlusion problems, as quantified in
Section 4.6.2.
(3) µD spectrum extraction: here, the µD spectrum of each detected person is extracted.
This is implemented by utilizing the CIR model as a radar return signal, and using the estimated
positions from point (2) to single out the CIR portions (the paths and the BPs) containing the
contributions of each subject, see Section 4.3.4. The µD signature of each individual’s movement
is then extracted by computing the power spectrum of the corresponding complex-valued portion
of the CIR over windows of suitable length, employing Time-Frequency (TF) analysis.
(4) HAR and person identification: the spectrograms from step (3) are fed to a deep learning
classifier based on a residual CNN [109] for HAR. Thanks to the separation of the CIR, and
to the subsequent computation of the µD for each individual, RAPID is capable of recognizing
the different activities performed by multiple subjects within the same indoor space. Moreover,
through a second CNN module, it is also able to identify a person, by extracting and analyzing
their gait features from the µD signature. With multiple APs, the classifications are refined by
selecting the best AP to make the decision, according to the confidence of the classifier output.

In this chapter, we aim at localizing and tracking people within a given physical space, by
identifying which person is performing which activity. This requires person identification, tracking
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and HAR capabilities. The person identification task is carried out by extracting and analyzing
the µD associated with the human gait, as this is an effective (soft) biometric signature, which
has been successfully used in many works [15]. Hence, we first detect when a person is walking,
then we get his/her identity from the µD gait signature and, finally, we keep tracking the person
by also recognizing their activities. This also works the other way around, i.e., if a person is at
first sitting and doing other activities, and then starts walking later on; as long as tracking works,
we can later determine who was sitting earlier on. This also explains why tracking a person is
critical, so that it is still clear which person is where, even when he/she performs other activities
than walking.

We now present in detail each RAPID processing function, following the workflow of Fig. 4.1.

4.3.2 CIR model

CIR estimation is a key component of most communication systems and is used to obtain infor-
mation about the environmental reflections of the signal, such as their associated angle of arrival
and delay at the receiver. A key aspect to our design is that the large transmission bandwidth
of mmWave systems leads to CIR containing fine-grained information about the environment. In
our system, the transmitter and the receiver units are co-located: the signal sent by the former,
after bouncing off nearby reflectors (objects or humans), is collected at the receiver that retrieves
information for each reflector, such as its distance and angle from the receiver, its velocity and
micro-Doppler.

We consider a multipath propagation environment with a time-varying number of reflectors,
P (t). These cause physical signal propagation paths that can be separated in the CIR according
to a finite ranging resolution, i.e., the capability of the system to resolve the distance of the
reflectors causing different signal paths. This is given by ∆d = c/2B, where B is the transmitted
signal bandwidth and c the speed of light. Thus, the CIR contains the complex channel gains for
a discrete grid of possible signal paths (or distance bins), with indices ℓ = 0, . . . , L − 1. These
are obtained by correlating the received signal with pre-defined Golay sequences. Each path is
associated with a specific distance from the AP, according to the relation dℓ = cτℓ/2, with τℓ being
the delay associated with path ℓ. The vector containing all the distances of interest is defined
as d = [d0, d1, . . . , dL−1]

T . If multiple CIR estimations are performed over a single packet, using
different BPs, the reflections from the environments are amplified differently. This is due to the
different BP shapes, as each BP steers the transmission signal towards a specific direction (beam
steering). Therefore, the CIR depends on the specific BP used during the transmission, denoted
by b = 0, . . . , NBP − 1. For carrier frequency fo, the CIR along ℓ, using BP b at time t is

hℓ,b(t) =

Pℓ(t)∑
p=1

apℓ,b(t) exp

{
−j2π 2fo

c

[
dℓ +

∫ t

0

vpℓ (x)dx

]}
. (4.1)

In Eq. (4.1), Pℓ(t) is the number of physical reflectors whose contributions overlap in the ℓ-th
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CIR path, as their distances are within dℓ ±∆d/2, while vpℓ is the radial velocity∗ of reflector p.
The quantity apℓ,b(t) is the complex gain due to the joint effect of the transmitter BP, the object
reflectivity and the signal attenuation. For the sake of the content presented in this chapter, we can
for the moment neglect the multiple propagation paths that overlap in a single distance bin, and
assume that the summation in Eq. (4.1) contains only one term. This is a good approximation in
mmWave systems, due to their high ranging resolution given by the high transmission bandwidth.
Nevertheless, we will relax this assumption in Chapter 5, where we will consider and arbitrary
Pℓ(t) and show its impact on the µD extraction process. For this reason, in the following we refer
to path ℓ as the single propagation path that can be detected in the ℓ-th CIR bin.

Eq. (4.1) is a continuous-time expression. In practice, the CIR estimation is repeated at discrete
time instants that coincide with the reception of each packet, indicized by variable k. This can
be seen as sampling the CIR in time, with sampling period corresponding to the inter-packet
transmission time Tc. The expression of the ℓ-th path of the CIR obtained using beam-pattern b
at time kTc (packet k) is

hℓ,b(kTc) = aℓ,b(kTc) exp

{
−j2π 2fo

c
[dℓ + vpℓ (kTc)kTc]

}
= aℓ,b(kTc)e

jϕℓ(kTc), (4.2)

where aℓ,b(kTc) and ϕℓ(kTc) are the complex gain of path ℓ at time kTc and its phase, respectively.
The path gain depends on the contribution of the BP used for the transmission and on the
reflectivity of the target, whereas the phase depends on the delay τℓ = dℓ + vpℓ (kTc)kTc. The
movement speed of the reflector is considered to be time-varying, in Eq. (4.2), for the sake of
presenting the most general CIR model.

4.3.3 People localization and tracking

CIR estimation is followed by people localization and tracking. This can be further split into (i)
background subtraction, to remove the reflected paths due to static objects, (ii) the estimation of
the subjects’ distances, (iii) the estimation of the angular positions of the subjects with respect to
the device, and (iv) their joint processing using a Kalman filter to track each person’s trajectory
across time.

HAR and identification require CIR readings at a rate 1/Tc, whereas localization and tracking
use a time granularity of ∆t > Tc seconds, where index r denotes the localization/tracking time-
steps. The choice of setting ∆t > Tc stems from the fact that performing localization and tracking
for every transmitted packet is unnecessary, as the packet transmission rate 1/Tc is much larger
than the speed of human motion. So, the system computes estimates at different rates, according
to the specific resolution that is required by each. This allows for an additional flexibility in
the selection of the type of BPs that are used for each packet: as we explain shortly below in
Section 4.4 and Section 4.5, we can modulate how many TRN units are included in a packet
according to the type of sensing function that is being performed, i.e., localization/tracking versus
activity/identity recognition.

∗By convention, vpℓ has a positive sign when the reflector moves away from the AP.
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Background subtraction

To infer the positions of the subjects it is key to remove the reflections due to static (background)
objects, as these typically have a much higher intensity than those generated by humans and may
impact the localization accuracy. The background-related CIR is estimated by computing the
time average of the CIR amplitude within a window of Kstatic samples, as static reflections are
constant across time,

h̄ℓ,b =
1

Kstatic

Kstatic−1∑
k=0

|hℓ,b(kTc)|. (4.3)

Then, the foreground CIR amplitude component is obtained as |h̃ℓ,b(r)|= max
(
|hℓ,b(r)|−h̄ℓ,b, 0

)
,

i.e., removing the amplitude of the static paths and setting to zero the amplitude of those paths
that would be present in the reference background CIR, but that are shielded by the presence of
a person. We remark that, through different BP, we perform beam steering at the transmitter.
Hence, the peaks in |h̃ℓ,b| correspond to the strongest propagation paths, as seen at the receiver
when beam-pattern p is used at the TX side. Changing the BP p allows scanning the environment
by varying the transmission angle and, in turn, sweeping the whole field of view. We use this to
infer the distance and the angular position of each individual, as described next.

Distance estimation

The distance of each subject is obtained by applying a threshold on |h̃ℓ,b| (the time index is
omitted for better readability), selecting the strongest paths across all the used BPs. First, for
each reflected path ℓ, we consider vector

hℓ =
[
|h̃ℓ,0|, |h̃ℓ,1|, . . . , |h̃ℓ,NBP−1|

]T
, (4.4)

containing the CIR values of path ℓ for each of the NBP BPs that are used at the transmitter. We
collect the L2-norms of hℓ, with ℓ = 0, 1, . . . , L− 1, obtaining a new vector h, as

h = [||h0||2, ||h1||2, . . . , ||hL−1||2]T , (4.5)

containing the strengths of each path at the receiver. We locate the local maxima in h, denoting
them by h′0, h

′
1, . . . , h

′
npeaks−1. Hence, we discard those peaks with amplitude smaller than a

dynamic threshold Ath computed from the maximum and average power of the paths in the
current CIR. We introduce the following coefficients αmax, αmean and αabs, and compute the
threshold value Ath, as

Ath = max
{
αmax ·max

i
h′i, αmean · h̄

′
, αabs

}
, (4.6)

with h̄
′
=

∑
i h

′
i/npeaks. We empirically assessed that suitable values for the coefficients are

αmax = 0.25, αmean = 2 and αabs = 2.5 · 10−3. With Eq. (4.6) the threshold is computed
dynamically, proportionally to the maximum between the average and the maximum value of the

80



CIR, while αabs represents the minimum value we allow Ath to assume. The peaks that exceed the
threshold are selected as candidate targets of interest and used for the subsequent AoA estimation.
Denoting by ℓ1, ℓ2, . . . , ℓNs the indices of the selected (candidate) paths (0 ≤ ℓj ≤ L − 1), the
corresponding distances are obtained as dℓj = cτℓj/2.

Angular position estimation

The following procedure is applied to each of the Ns candidate paths. Let vector sℓj ∈ RNBP

contain the squared CIR amplitudes from one of such paths, ℓj , for all used beam patterns, i.e.,
sℓj =

[
|h̃ℓj ,0|2, |h̃ℓj ,1|2, . . . , |h̃ℓj ,Np−1|2

]T
. sℓj is normalized by dividing it by its L2-norm ||sℓj ||2,

then a correlation measure is used to estimate the angular position of the target by exploiting the
gains of each beam pattern along the azimuth angular FoV θ. Specifically, denoting by gb(θ) ∈ [0, 1]

the normalized gain of beam pattern p along direction θ (see Fig. 4.5b), the angular position for
candidate path ℓj is estimated as

θℓj = argmax
θ

NBP−1∑
b=0

gb(θ)
|h̃ℓj ,b|2

||sℓj ||2
. (4.7)

The rationale behind Eq. (4.7) is that if |h̃ℓj ,b| originates from the signal reflected off a subject,
the corresponding angular direction is the one leading to the highest correlation between the CIR
squared amplitude and the set of beam pattern gains. This is because each BP amplifies path ℓj
differently, depending on the beam pointing direction.

Upon obtaining the distance and the angle estimates, an Extended Kalman filter is utilized to
track the subjects’ positions over time.

People tracking - extended Kalman filter

After the localization step, the candidate positions of the subjects are known in polar coordi-
nates, and constitute our observations of the positions of the subjects, which we denote by
zjr = [dℓj , θℓj ]

T , ∀j = 1, 2, . . . , Ns. We employ an EKF [67] to track the physical position of
each individual in the Cartesian space. Specifically, we define the true state of subject j at time
r as vector xj

r =
[
xjr, y

j
r , ẋ

j
r, ẏ

j
r

]T , containing the coordinates along the x − y horizontal plane
and the movement velocity components along the same axes. We approximate the motion of the
subjects with a constant velocity (CV) model [110]. As the observations zjr become available, we
apply the predict and update steps of the EKF to follow the movement trajectories of the subjects
[67]. The association between the observations from time r+1 and the states from time r is done
using the nearest-neighbors joint probabilistic data association algorithm (NN-JPDA) [89].

Using the EKF estimates x̂j
r of each person’s state across subsequent time steps allows retrieving

the path and the BPs in the CIR which contain his/her µD signature.
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4.3.4 micro-Doppler extraction

CIR phase model

The CIR model in Eq. (4.2) is here expanded and related to radar theory [11]. Using a typical radar
terminology, we refer to the CIR samples ℓ = 0, 1, . . . , L− 1 as the fast-time sampling dimension,
as they are obtained at the highest available sampling rate. The CIR samples collected across
different packets are instead referred to as the slow-time samples, indicized by variable k as in
Section 4.3.2.

Next, we consider a moving object within the monitored indoor space; the transmitted signal is
reflected off the object and the corresponding contribution is retrieved at the receiver in the ℓ-th
path of the CIR. To extract the µD effect caused by the movement of this object, we analyze the
phase of the ℓ-th path across time. The time-dependent phase term in Eq. (4.2) can be expressed
as follows

ϕℓ(kTc) = −2πfo
2 (dℓ − vℓ(kTc)kTc)

c
≈ −2πfoτ̄ ℓ + 4πfo

vℓ
c
kTc. (4.8)

Here, τ̄ ℓ is the delay of the ℓ-th path due to the distance of the corresponding reflector from the
device. vℓ is the radial velocity of the reflector with respect to the device, which is here assumed
to be slowly time-varying, i.e, we can consider approximate it as constant during a µD spectrum
processing interval (see Section 4.3.4). From Eq. (4.8) it can be seen that the velocity of the
object at distance dℓ, if greater than zero, modulates CIR phase across the slow time dimension.
Following a common convention [11], in this chapter objects moving away from the transmitter
(AP) have positive velocity, while incoming objects have negative velocity.

The human body contains multiple moving parts that have different velocities and follow dif-
ferent trajectories. Thanks to the small wavelength of mmWave, in the µD we can observe these
different contributions via TF analysis, as detailed in the next Section 4.3.4.

micro-Doppler spectrum

Human movement causes a frequency modulation on the reflected signal due to the small-scale
Doppler effect produced by the different body parts. Using TF analysis of the received signal, it is
possible to distinguish between different actions performed by a person or identify the individual
based on his/her way of walking (gait) [7], [23]. mmWave radios are particularly suited for this,
as their frequencies are sensitive to the µD effect due to their small wavelengths.

From Eq. (4.8), the µD effect of human movement can be extracted from subsequent estimates
of the CIR, computed every Tc seconds. Specifically, one can compute the STFT of hℓ,b(kTc),
across slow-time, for each path ℓ and each beam pattern p as

Hℓ,b(m, i) =

W−1∑
l=0

hℓ,p(l +mδ)w(m)e−j2π il
W , (4.9)

where m is the time index, i = 0, 1, . . . , ND − 1 is the frequency index, W is the (fixed) window
length, w is a Hann window of dimensionW and δ is the time granularity of the STFT. In Eq. (4.9)
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we omitted the sampling time Tc for readability, as it is constant ove the whole window. The power
spectrum of hℓ,b(kTc), computed as µℓ,b(m, i) = |Hℓ,b(m, i)|2, contains information on the phase
modulation due to the velocity vℓ, and can be used to analyze its evolution across subsequent
windows.

Eq. (4.9) can not be used directly to extract the µD signature of a moving human in our setup,
as it refers to a single fast time bin (a single path in the CIR) and a single BP, while people can be
located in different positions across time. In addition, it would be inefficient to compute the STFT
for all the paths and all the BPs. Instead, the computation should only be performed for those
physical locations where a person is detected. In the following, we leverage the localization and
tracking process described in Section 4.3.3 to only extract the CIR portions that contain useful
µD information.

µD separation

Assume that we want to extract the µD of a person that was detected and located by the previous
algorithms at a certain distance and angle with respect to the device. Hence, we extract the CIR
samples from the most useful BP, i.e., the one that points in the direction of the person and that,
in turn, emphasizes the most the reflection from this target.

From the estimated state of this person (Section 4.3.3), his/her angular position is obtained as
θ̂ = arctan (ŷr/x̂r) and his/her distance from the device, as R̂ =

√
x̂2r + ŷ2r. The BP approximately

pointing in the direction of this person, denoted by b∗, is thus selected as the BP having the highest
gain along θ̂, that is

b∗ = argmax
p

gb(θ̂). (4.10)

Moreover, due to the high ranging accuracy of mmWave, humans typically produce reflections
that influence more than a single CIR path. The CIR paths of interest are those that correspond
to a neighbourhood of R̂. In our analysis, we take the size of this neighborhood constant across all
subjects, denoting it by Q. Specifically, we first select the path ℓ∗ that best matches the subject’s
distance R̂

ℓ∗ = argmin
ℓ
|dℓ − R̂|. (4.11)

Then, from the original complex-valued CIR, we extract a window containing Q samples along the
fast-time dimension, centered on ℓ∗. For convenience, we assume Q to be an odd integer, as this
makes the following processing steps symmetric with respect to a central CIR path (corresponding
to the torso), but the same steps can be applied for Q being even. We aggregate the spectra
obtained from the path caused by the torso, ℓ∗, with the ⌊Q/2⌋ distance bins preceding ℓ∗ and the
⌊Q/2⌋ subsequent distance bins, as they may contain the contributions of the other body parts.
The expression of the i-th µD spectrum component is

Di(m) =

ℓ∗+⌊Q/2⌋∑
ℓ=ℓ∗−⌊Q/2⌋

|Hℓ,b∗(m, i)|2 , i = 0, 1, . . . , ND − 1, (4.12)
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Figure 4.2: Example 4 s long µD spectrograms obtained by RAPID from 4 subjects. The yellow and blue
colors respectively represent high and low power in the corresponding Doppler velocity bins (y axis).

while the total spectrum is represented by vector D(m) = [D1(m), D1(m), . . . , DND−1(m)]
T To

capture the human movement evolution across time, we compute the µD vectors for a window
of NµD subsequent time-steps and concatenate them into a spectrogram representing the µD
signature of the target up to time m, as

Υm = [D(m−NµD + 1),D(m−NµD + 2), . . . ,D(m)] . (4.13)

The procedure described in this section is repeated for all the detected subjects.

Human µD range and resolution

During everyday movement, the limbs of a person usually have velocities of up to 3 − 4 m/s
[7], [23]. To fully capture the µD signature of the subjects, we must ensure that our systems
achieves a sufficient resolution. Recalling Eq. (4.8), we know that the Doppler frequency shift
induced by a moving object on the ℓ-th path is fDℓ = 2fovℓ/c. Using TF analysis to estimate the
Doppler spectrum as in Eq. (4.9), the resolution that can be obtained on the Doppler frequency is
∆fD = 1/(WTc). The maximum measurable Doppler frequency is instead fDmax = 1/(2Tc). These
quantities can be mapped onto the velocity estimate resolution and the maximum measurable
velocity as

∆v =
c

2foWTc
, vmax =

c

4foTc
. (4.14)

Given that we sample the CIR on a per-packet basis, to capture the µD effect of human motion
we must ensure that the time Tc between the packets used in the µD estimation allows capturing
the range of velocities of interest. See also Section 4.6 for the chosen values of W and Tc.

4.3.5 Activity recognition and person identification
The µD signature, obtained as in Eq. (4.13), contains information about the type of movement
performed by the person.

To perform HAR and person identification, we use a deep neural network to classify each
spectrogram. Specifically, once the µD signatures of each person have been separated, RAPID
performs the following tasks: (i) it classifies the activity carried out by the subject into walking
(A0), running (A1), sitting down (A2), waving hands (A3) and standing still (A4) and (ii) it
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recognizes the subject’s identity during a walking phase, among a known set of individuals, denoted
by S0, S1, etc. In Fig. 4.2, we show µD signature examples for activities A0 − 3, concurrently
performed by 4 subjects within the same environment.

As human µD is highly variable across different subjects, and we seek robustness to different
environment conditions and noise, we employ deep learning to classify the µD signatures. Refer-
ring to a single subject, the µD spectrum Υm is represented as an image and processed by two
separate CNN for HAR and person identification, respectively. The two classifiers share the same
architecture, as shown in Fig. 4.3, but are trained separately and have different weights as they
perform different tasks. As the subjects are continuously tracked over time, we adopt a sliding
window approach, selecting µD spectrograms with NµD µD spectrum samples for each window
(matrix Υm). Subsequent windows partially overlap to increase the reactivity of RAPID in ob-
taining predictions. Both CNN are trained to extract features from the µD spectrograms and to
classify the activity performed by or identity of the person, by learning a function F(·) that maps
a µD window, Υm, of size ND ×NµD, onto a vector cn containing the HAR (identification) class
probabilities, i.e., cm = F(Υm). The dimension of the final probability vector cm is different
in case of HAR or identification depending on the dimension of the classification problem. The
second CNN, used for person identification, is only trained on walking spectrograms, as human
gait is well known to be a soft biometric identifier [15]. Hence, during the system operation, the
identification classifier is only applied on the input µD spectrogram when the activity is classified
as “walking” by the HAR classifier, see Fig. 4.3.

µD spectrogram pre-processing

Prior to feeding it to the CNN classifier, the µD spectrogram is pre-processed by removing the
contributions from static reflections and normalizing it.
Static reflection removal. A customary step when processing human µD signatures is the
removal of static reflections, which appear as a strong power peak around the 0 m/s velocity bin.
This can be done by either applying a high-pass filter to the signal or, if deep learning methods are
used for classification, by directly removing the Doppler bins containing unwanted contributions,
as done in [5], [7]. We adopt the latter method to remove the Doppler bins corresponding to the
velocities in the interval [−0.28, 0.28] m/s, as they contain very low, non-informative velocities.
Normalization. To compensate for differences in the strength of the reflections when subjects
are far from the APs, we normalize each column of Υm, D(j), j = 0, 1, . . . , NµD − 1 in the range
[0, 1],

D(j)← D(j)−mini Di(j)

maxi Di(j)−mini Di(j)
. (4.15)

Deep learning classifier

We use the same CNN architecture, based on deep residual networks [109], for HAR and person
identification, with the only difference being the dimension of the last classification layer. This
network consists of 4 consecutive residual blocks. Each residual block has two convolutional layers
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Figure 4.3: Block diagram of the CNN classifiers used by RAPID for HAR and person identification.

[53], the first of which includes a down-sampling by a factor of 2 (stride). Each convolution is
followed by an ELU activation function [54] and batch normalization [55]. The output of the
convolution is summed to the input (skip connection) and passed through another ELU activation
and batch normalization. The 4 residual blocks use 8, 16, 32 and 64 filters, respectively, all having
a kernel of size 3× 3. After the last residual block, we apply Dropout [57] with a ratio of 0.5, and
a fully-connected (or dense) layer with 64 units, then, a second Dropout operation with ratio of
0.2. Finally, the classification probabilities for HAR or person identification are computed via a
Softmax activation function [53]. The network architecture is shown in Fig. 4.3.

Combining multiple APs

Using the different points of view provided by the different APs, RAPID can improve its HAR and
person identification performance. Assume that a person is independently detected and tracked
by 2 or more APs concurrently. A slightly different µD signature of the person is obtained by each
AP, according to the angular position and the distance of the device with respect to the person.
At each time instant m, we adopt a simple decision fusion scheme including the following steps:
(i) if a single AP detects the person, the decision made by the classifier on the corresponding µD
signature is used, i.e., argmaxj cm,j , where cm,j is element j of vector cm, (ii) if multiple APs
detect the person, denote by cam the probability vector predicted by AP a. The final decision
is made by the AP that is most confident about its classification, i.e., the one that assigns the
highest probability to the predicted class: argmaxj

{
maxa c

a
m,j

}
.

4.4 Enabling sensing in IEEE 802.11ay
The high bandwidth of IEEE 802.11ay [111] not only provides high data throughput but also offers
excellent accuracy for sensing applications. RAPID is able to extract highly accurate range, angle
and µD information from CIR measurements. For this, we take advantage of the beam training
and beam tracking mechanisms of IEEE 802.11ay systems.

Range and angle information are extracted from the CIR obtained via the Channel Estimation
Field (CEF) of standard beacon frames that are frequently sent by the AP or the beam training
frames sent during a Sector Level Sweep (SLS). The SLS is a two-step procedure: first, one device
sends training frames using the available antenna configurations, while the second device listens
using a quasi omnidirectional BP. Then, the devices exchange their roles to train the other device.
After sending feedback, the devices can select the best combination of BP on both sides of the
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Figure 4.4: IEEE 802.11ay in-packet TRN fields.

link. IEEE 802.11ay also introduces the concept of in-packet beam tracking [25], where different
antenna configurations can be tested within a single packet, allowing for much quicker BP changes.
This is done by appending a TRN field to the packet as shown in Fig. 4.4. A TRN field is composed
of multiple (variable) TRN units formed by 6 complementary Golay sequences of type a (“Ga”)
and b (“Gb”) with length 128 samples each:

{+Ga128; -Gb128; +Ga128; +Gb128; +Ga128; -Gb128} . (4.16)

The excellent autocorrelation properties of the complementary Golay sequences and the availabil-
ity fast hardware structures for the correlation [112] make them ideal for CIR estimation [26].
Indeed, the sum of the autocorrelation sequences of a pair of complementary Golay sequences,
{Ga128; Gb128} gives exactly a Kronecker delta function, without sidelobes [113]. This makes
them suitable for channel estimation in multipath environments such as indoor scenarios. The
high bandwidth (1.76 GHz) of the IEEE 802.11ay channels results in a range resolution of ∼ 8.5 cm
directly from the CIR estimate. Denoting by ℓ a delay bin, by hix,ℓ the CIR for the i-th pair of
complementary Golay sequences with x ∈ {a, b}, by R the TRN field of the received packet, we
have

hix,ℓ =

127∑
n=0

R(ℓ+ n)Gx∗128(n). (4.17)

Then, the final CIR estimate is obtained summing the complementary pairs and averaging over
all the repetitions contained in a TRN field as

hℓ =

3∑
i=1

hia,ℓ + hib,ℓ. (4.18)

The above equations are used to estimate the CIR for every TRN field, thus we omitted the
indices referring to the packet index (time), k, and to the BP, b. When referring to a specific k
and b, Eq. (4.18) represents the CIR modeled in Eq. (4.2). Considering the different BP shapes
used during beam training, possible targets located in the FoV of the devices are illuminated by
the respective BPs that focus energy in that direction and they appear as multi-path components
in the CIR (Fig. 4.5d). Furthermore, we take advantage of the different amplification factors in
the multi-path components (given by the different BPs) to estimate the angular positions of the
subjects. For this purpose, we apply the correlation based approach explained in Section 4.3.3 to
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the different channel multi-path components in the channel. Considering the common speed of
human motion, carrying out beaconing or a beam training procedure every, e.g., 100 ms allows
accurately locating human targets in the FoV of the AP. Note that, as we show in Section 4.6, a
full beam training, that scans all the available BP, is in fact not needed, and we may use a much
smaller subset of BP.

Extracting µD signatures from the CIR requires fine-grained frequency resolution, as detailed
in Section 4.3.4. This cannot be achieved with the CIR estimates obtained from beacons or
beam training packets only, as sampling the CIR with Tc = 100 ms would lead to an insufficient
maximum measurable Doppler velocity of 6.25 · 10−3 m/s (see Eq. (4.14)). We address this by
exploiting the beam tracking procedure defined in the standard [111]. It allows to add a configurable
number of TRN units to data packets to test different BP configurations to quickly correct possible
misalignment without requiring a full beam training procedure.

After identifying the subjects’ ranges and angles using beam training packets, we include a TRN
field in data packets with a sufficient number of TRN units to illuminate all the subjects in the
scene; each TRN unit uses a suitable BP that specifically points in the direction of a person. This
steers the energy of the transmitted signal so as to best capture the µD signatures of the subjects.
Considering that data packets are sent much more frequently than beam training packets, our
approach can sample the CIR with a sufficiently low Tc to capture the desired range of frequencies
for human movement analysis.

4.5 Implementation
The available mmWave Commercial-Off-The-Shelf (COTS) devices support IEEE 802.11ad and
offer very limited access to physical layer information [114]. To the best of the authors’ knowledge,
there are no COTS solutions for the new IEEE 802.11ay standard available yet. To address the
lack of hardware, we turn a mmWave SDR system into a ISAC experimentation platform. Here
we cover the design decisions made to implement RAPID on such platform.

4.5.1 Hardware components

As a baseline to implement a RAPID AP, we use the mm-FLEX experimental platform [115]. This
open platform is composed of a baseband processor including a Xilinx Kintex Ultrascale FPGA
plus high-speed AD/DA converters and DDR memory banks. Besides, it is connected through a
PCIe interface to a Core i7 processor card co-located within the same hosting chassis. The latter
implements configuration and control tasks not only for the FPGA and converters, but also for
the RF front-end.

The baseband processor is configured to fulfill the bandwidth requirements of IEEE 802.11ad/ay
standards (1.76 GHz), using a sampling frequency of 3.52 GSPS for both AD/DA converters, with
2 samples per symbol.

The RF front-end includes a 60 GHz up/down converter and phased antenna arrays from Sivers
[116]. The device is able to operate on all the channels defined in the IEEE 802.11ad/ay standards
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Figure 4.5: RAPID implementation.

[111], [117]. As shown in Fig. 4.5a, the device integrates two independent 16-element linear antenna
arrays, one used for transmission and one for reception. The codebook of BP for both arrays can
be freely configured. The system is controlled in real-time using USB and SPI interfaces, as well
as GPIO pulses for the quick BP changes required for beam training and tracking.
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4.5.2 Full-duplex operation
To bring radar capabilities to the experimentation platform, it is necessary to support simultaneous
operation of the TX and RX chains. This is achieved by concurrently enabling transmit and receive
sub-systems in the RF front-end, and by enhancing the functionality of the baseband processor.

The 60 GHz front-ends used in this chapter [116] are laboratory equipment designed for early
stage proof-of-concept communication systems. The carrier frequency is generated from a 45 MHz
clock, which introduces significant Carrier Frequency Offset (CFO) and destroys the phase co-
herence between the CIR estimates obtained from consecutive packets. This would make the
extraction of µD signatures infeasible with two independent co-located antennas. Instead, by us-
ing both transmit and receive arrays from the same RF front-end (see Fig. 4.5a), up and down
conversion sub-systems are fed by the same local oscillator which keeps CFO levels in the range
of [−40, 40] Hz, as shown in Fig. 4.5c. Although transmit and receive arrays are directly next
to each other, no complex analog or digital self-interference cancellation techniques are required.
Thanks to the directional BPs and the robustness of the Golay Sequences of the TRN units, the
system only requires some transmit power control to avoid saturating the receiver antennas and
down-conversion stages. In Fig. 4.5d, we show the CIR measurements obtained from multiple
BPs within a packet, by marking the self interference path and the reflections from the test room,
where the different amplitudes correspond to the different BP shapes towards the direction of the
reflectors.

In the baseband processor, we implement a state-machine on the FPGA logic which controls
the transmitter and receiver data-paths. Specifically, it handles the DDR memory that stores the
transmitted frames, performs multiple real-time antenna re-configurations over the TRN field of
the packet, triggers the DDR memory on the receiver data-path, and sets the inter-frame spacing
between multiple transmitted packets. While here we focus on an AP-centric design, the same
procedure can be applied to implement RAPID on any station in the network.

Since our RAPID AP operates in a mono-static configuration, we perform CIR extraction with-
out requiring the use of packet detection and synchronization circuits. To do this, it is important
to ensure deterministic latency between the transmitter and receiver data-paths. Considering that
transmit and receive data-paths have their own independent clock structure, we use clock-domain
crossing techniques to send the state machine signals across transmit and receive domains. Be-
sides, latencies in the DDR controllers are variable, which requires the use of FIFO queues at
the output/input of the TX/RX DDRs. Together, these solutions help to achieve the desired
deterministic latency.

4.5.3 Multi-AP system
Since IEEE 802.11ay networks typically involve many AP and dense deployments, we extend the
aforementioned testbed capabilities to handle multi-AP scenarios. To this end, we integrate a
second baseband processor in the hosting chassis which is connected to an independent 60 GHz
front-end. The FPGAs from both processors have their own clocking structure, i.e., they are not
synchronized. Each AP can be freely configured with its own parameters. For the sake of simpli-
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fying the system management, we use different communication channels (58.32 and 60.48 GHz)
for each RF front-end, avoiding cross interference. It is worth mentioning that the channels can
be freely configured, making it possible to operate the two RAPID APs so that they share the
same frequency band, by implementing carrier sensing mechanisms.

4.6 Experimental results

In this section, we discuss the results of our extensive measurement campaign. Motivated by the
discussion in Section 4.3.4 and Section 4.4, for the µD estimation we consider data packets (with
TRN fields) spaced by Tc = 0.27ms. This allows capturing velocities in the range [−4.62, 4.62]m/s
and leads to a resolution of ∆v = 0.14 m/s when using a window of W = 64 samples in the DFT
computation, see Eq. (4.14). These values are comparable to the ones achieved with radar devices
[5], [7], [8]. Note that the even spacing of packets is just for convenience but is not a requirement,
i.e., estimation can be done with random bursts of data packets with sufficiently small spacing.
Moreover, we set to Q = 9 the size of the fast time window used to capture the contribution of the
subjects in the CIR (see Section 4.3.4). The EKF time-step duration is set to ∆t = 32Tc, which
is also the time-granularity at which we obtain µD spectrum vectors. To extract range and angle
information, we use in-packet beam training frames with 12 TRN units, using antenna beams
covering a FoV range from −45◦ to 45◦. With this configuration we achieve a mean accuracy of
2◦ for the angular position of a person standing in the room. We verify that this allows tracking
multiple subjects reliably and with low localization error, as detailed in the following. In order
to implement the angle estimation method from Section 4.3.3, we measured the BP shapes from
the codebook using a motorized pan-tilt platform. In Fig. 4.5b, we show the 12 BPs we used to
perform the experiments.

4.6.1 Experiment setup

We test RAPID in two different rooms, as shown in Fig. 4.7. The two environments are research
laboratories, denoted by E1, of dimensions 6.1 × 7.7 m and E2, of dimensions 6 × 10.7 m (E2),
and containing whiteboards, windows, tables, computers and equipment, making them challenging
multi-path environments with a number of potential reflectors. Most of our experiments, including
the collection of the training data for the NN classifier, have been carried out in E1, while we
used E2 to assess the robustness of the proposed method to unknown environments. For the
tests involving multiple AP, we deploy two RAPID APs as shown in Fig. 4.5a close to the wall,
separated by 1.8 m.

To test the localization and tracking capabilities of RAPID, we mark specific known positions
across E1 to determine the ground truth location as shown in Fig. 4.6, and perform our tests by
having subjects move across these positions. The markers are denoted by Px, with x ranging from
1 to 8, while APs are represented as blue triangles. The room walls are represented with a black
dashed line.
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Figure 4.8: Subject walking trajectory (left) and a portion of the corresponding µD signature (right) extracted
by RAPID.

4.6.2 Baseline experiments

We first report the results obtained in two simple baseline experiments to verify the capability of
RAPID to extract the µD signature of a moving person in an indoor scene. Here, we only use
AP 1 and a single subject, performing different activities at different locations in E1.

Fig. 4.8 shows the EKF estimated trajectory of the subject walking along the trajectory P2-P3-
P4-P5-P8-P6 together with the corresponding µD spectrogram. The light grey points represent
the raw measurements (observations) obtained as explained in Section 4.3.3, using Cartesian
coordinates. The trajectory is correctly reconstructed with remarkable accuracy. The µD signature
is extracted successfully and shows the different contributions of the torso and the limbs. The
former reflects more power and follows a slightly oscillating motion, which is coherent with the
direction changes in the walking trajectory, while the latter are responsible for the higher velocity
peaks.

Next, we test RAPID on a subject sitting down at the marker P2, as shown in Fig. 4.9. Also in
this case, RAPID correctly estimates the location of the subject, and the µD spectrum is coherent
with the sitting down activity. This is non-trivial, given that P2 is located at the edge of the
experiment room. The empirical CDF of the positioning error of the subject in Fig. 4.10 shows
that we achieve a good localization accuracy. In this analysis, we included around 2000 position
estimates made by the EKF. The median error is 26 cm, and the probability of the error being
lower than 40 cm is close to 1. We stress that the subject in this case is not static, as the person
alternates between sitting down and standing up. This causes the estimated position to change
slightly across time-steps, increasing the localization error.

4.6.3 Multi-person multi-AP tracking scenario

In this section, we extend the scenario to analyze the impact of multiple subjects present on the
scene, which we tackle using multiple APs. Here, all measurements are performed using AP1 and
AP2 in E1. We first consider the results obtained solely by AP1, and then we combine AP1 and
AP2. Several experiments are carried out with 2 to 5 subjects, performing different activities. In
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Figure 4.9: Estimated position of a subject sitting down (left) and a portion of the corresponding µD signature
(right) extracted by RAPID.
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Figure 4.10: Empirical CDF of the positioning error for a subject sitting down in correspondence of marker
P2.

total, we collect 28 such sequences each with duration ∼ 10 s, of which 13 include 2 subjects, 5
include 3 subjects, 6 include 4 subjects and 4 include 5 subjects.
Presence of multiple subjects. Fig. 4.12 shows some example trajectories estimated by the
EKF using the measurements from AP1. RAPID is able to successfully track the users with
considerable accuracy in most cases, even for 5 subjects (see Fig. 4.12d). Note that this setup
is extremely challenging, especially when more than 3 subjects are present, due to the small
dimensions of the environment that lead to a high probability of occlusion happening, i.e., one
subject covers the Line-of-Sight (LOS) path between the AP and another individual. mmWave
signals do not propagate through the human body, and occlusion may cause missed detection and
tracking errors. On the other hand, in real-life scenarios occlusion may happen frequently, and
the system must be robust to these events. In Fig. 4.11, we report a quantitative analysis of the
effect of increasing the number of subjects in terms of the percentage of subjects that are correctly
detected and tracked by RAPID. Using only AP1 we observe that, despite achieving adequate
tracking performance, the system capability of detecting the subjects decreases significantly as
their number increases. In particular, on average one subject goes undetected when 5 individuals
are present.
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Figure 4.11: Rate of detection with a varying number of subjects using only AP1 and the combination of AP1
and AP2.

Improvement with multiple APs. Combining the FoV of AP1 and AP2 effectively decreases
the probability of occlusion events happening, as when the LOS between an AP and a subject
is blocked, the other AP can exploit its own LOS path to detect the person. In Fig. 4.13 we
report a qualitative example of this, by showing how combining the 2 APs, RAPID can recover
from an occlusion event (in this case, 3 subjects are present in the environment). The EKF
estimated trajectories from AP1 are shown in Fig. 4.13a: subjects S1 and S2 are successfully
detected and tracked, while S3, who is waving hands in P3, is not. This is due to a combination of
the occlusion caused by S1 and the fact that P3 is placed at the edge of the FoV of AP1. However,
the position of AP2 enables it to detect S3 successfully, while the trajectory of S1 can only be
partially reconstructed. Considering the trajectories estimated by both APs, RAPID can detect
and track all subjects, successfully extracting their µD signatures, which are reported in Fig. 4.14.

The subject detection rate is also significantly improved by using multiple APs, as shown in
the blue curve in Fig. 4.11. Despite AP1 and AP2 being placed along the same axis (x), and only
1.8 m apart, this is sufficient to increase subject detection probability by 11%, 16%, 16% and 11%

for the cases of 2, 3, 4 and 5 subjects, respectively.

Finally, we show the impact of averaging the positions estimated by the two different APs, see
Fig. 4.15. We repeat the experiment described in Section 4.6.2 with a single subject sitting down in
position P2. Even using this simple fusion method, RAPID achieves a significant gain in the tail of
the localization error distribution. A subject positioned in P2 represents a worst-case for this kind
of analysis in our setting, as the locations of the APs with respect to this point are very similar in
terms of distance and angle. The same experiment is repeated for position P4, showing a larger
improvement from combining the APs. In this case, RAPID goes from an average localization
error of 0.35 m using the single APs independently, down to an error of 0.08 m by averaging their
estimates. This is due to the more favorable positions from which P4 is illuminated by the APs.
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Figure 4.12: EKF trajectories obtained in the multiperson scenario. Here a single AP is used (AP1). We show
four successful cases in which RAPID is able to reconstruct the movement trajectories of 2 (a), 3 (b), 4 (c)
and 5 (d) people moving the the room.

4.6.4 Human activity recognition

Next, we evaluate the HAR performance of RAPID, comparing it to legacy sub-6 GHz Wi-Fi
systems. For all the experiments in this section, unless stated otherwise, we used a unique labeled
training dataset of simultaneous IEEE 802.11ay CIR (at 60 GHz) and IEEE 802.11ac Channel
Frequency Response (CFR) (at 5 GHz) sequences, which we collected in E1, with a single subject
performing the 5 different activities A0 − 4. We used a single RAPID AP and a pair of trans-
mitter/receiver IEEE 802.11ac routers with 4 antenna elements (ASUS RT-AC86U implementing
the Nexmon-CSI firmware modifications [118]). The estimates are obtained with the two systems
operating (i) concurrently, i.e., each training/testing sequence for the same activity of the subject
is collected with both the RAPID mmWave AP and the sub-6 GHz system, and (ii) with the
same µD frequency range and resolution. The latter is achieved by tuning the IEEE 802.11ac
system inter-packet transmission time using a slight modification of Eq. (4.14) for the case of non
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(a) AP1 estimated trajectories.
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(b) AP2 estimated trajectories.

Figure 4.13: Impact of using multiple APs on the occlusion problem. Here, AP1 fails to detect and track
S3, while AP2 can only partially reconstruct the trajectory of S1. The combination of the 2 APs successfully
detects and tracks all subjects.
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(a) S1 running.
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(b) S2 sitting down.
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(c) S3 waving.

Figure 4.14: Extracted µD signatures of the subjects in Fig. 4.13.
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Figure 4.15: Localization error CDFs for a subject sitting dwon in P2 (left) and in P4 (right). Combining
multiple APs brings the largest improvement when their point-of-view on the subject is the most diverse.

co-located transmitter and receiver, i.e., ∆v = c/(faco MT ac
c ) with faco = 5 GHz. Therefore, the

IEEE 802.11ac inter-packet transmission time is computed as T ac
c = 2Tcfo/f

ac
o ≈ 6 ms. The data

are obtained in sequences of approximately 10 s, for a total of around 6 minutes of CIR/CFR
measurements per activity. Next, the µD spectrograms are obtained from the collected data. To
do this in the sub-6 GHz system, we adopt the pre-processing steps proposed in [119], to which
we refer for additional details.
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Figure 4.16: Walking spectrogram concurrently obtained with RAPID at 60 GHz (left) and with sub-6 GHz
sensing (right).

The resulting µD spectrograms are split into partially overlapping windows of 1.728 s, which
are the input to the CNN. For RAPID, we use windows containing NµD = 200 time-steps while
for the sub-6 GHz setup each window consists of 287 samples. In Fig. 4.16 we show an example of
the µD signatures obtained by RAPID and by the sub-6 GHz system for the same measurement
sequence of a walking person. We use the CNN model detailed in Section 4.3.5 for both mmWave
and sub-6 GHz spectrograms. The CNN is trained using the cross-entropy loss function [53] and
the Adam optimizer [120], with learning rate 10−4, until convergence of the loss function on a
subset of the training data, used as validation set. We evaluate the performance of the classifier
with a weighted average of the per-class F1-score metric, based on the number of samples per
class. The F1-score is defined as tp/[tp + 0.5(fp + fn)], where tp, fp and fn are the predicted
true positives, false positives and false negatives, respectively.
Single person, single AP scenario. In Tab. 4.1 we report the confusion matrix and per-class
F1-scores obtained by RAPID (grey rows) and by the IEEE 802.11ac system (white rows) on
test sequences containing data from the same subject present in the training set, collected in E1.
This evaluation is also referred to as our baseline HAR experiment in the following. Comparing
the two systems, one can see that RAPID accurately classifies all activities, only showing slightly
lower performance on A2, sitting down, as this mostly involves body movements directed along
an orthogonal direction with respect to the receiver (along the vertical axis). Indeed, the motion-
induced µD phase displacement is only measurable in the radial direction as we rely on the direct
path between the subject and the AP. Sub-6 GHz, instead, benefits from a richer multipath
environment and better recognizes A2, but confuses the other activities, especially walking with
running and standing still. This is due, in part, to the low resolution of the µD obtained at 5 GHz,
which contains coarser-grained information (see Fig. 4.16).
Impact of unknown environment and subject. Next, we further evaluate the HAR robust-
ness of the two systems in more complex settings, involving a different room than the one used
for the training data collection (E2), and a different subject performing the activities. Fig. 4.17
reports the weighted average of the per-class F1-scores obtained with RAPID and the sub-6 GHz
system: (a) in the baseline scenario, (b) in a different room, E2, on the same subject (c) with
a different subject, in the same environment (E1) and (d) in a different environment (E2) and
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Table 4.1: Confusion matrix and F1-scores for the baseline case. Grey/white rows refer to RAPID and sub-
6 GHz, respectively.

Predictions [%]

True [%] Walking Running S. down Waving Still

Walking 97.7 0 2.3 0 0
61.4 18.3 0 0 20.3

Running 0 100 0 0 0
0.6 87.1 0 0 12.3

S. down 0 0 95.9 0 4.1
0 0 100 0 0

Waving 0 0 0 100 0
0 0 0.1 85.9 14.0

Still 0 0 0 0 100
0 0 0 0 100

F1-score [%]
98.8 100 96.3 100 98.4
75.8 91.2 99.9 92.4 85.4

on a different subject. The results show that RAPID outperforms the sub-6 GHz counterpart
in generalizing to new environments and subjects, showing much lower performance degradation
when moving to an unknown room or testing on a different person. In scenario (d) the sub-6 GHz
HAR system completely fails, obtaining a very low F1-score, due to the challenging combination
of a different room and a different subject. Conversely, RAPID still achieves good performance.
We stress that here the training data contain measurements from only one subject. Therefore,
the CNN classifier must possess great generalization capabilities to correctly classify the activities
performed by another person, as they may have slightly different features.

In addition, we test the two systems under interference from another subject in one of the
activities of the training set, as shown in Tab. 4.2. For this, we use the same setting as in the
baseline, but we replace the training data for A3, waving hands, with new measurements where
another person, termed interfering subject, is present in the room besides the subject performing
A3. The interfering subject performs a different, randomly selected, activity in each measurement
sequence, in a position close to the intended subject, thus possibly disturbing the useful signal
reflections. RAPID, thanks to the separation between different subjects enabled by the high
ranging accuracy of mmWaves and the tracking process, is highly robust to the presence of other
people. Sub-6 GHz sensing, instead, suffers from its low ranging resolution (∼ 4 m) and is greatly
affected by the interference.
Multi-person, multi-AP scenario. Next, we evaluate RAPID’s HAR performance degradation
when multiple subjects are concurrently present in the environment, each performing, in general,
a different activity. The aim here is to assess the effectiveness of RAPID in the separation of µD
signatures associated with different targets. In this evaluation, we do not consider the sub-6 GHz
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Table 4.2: HAR performance under interference from another subject in the training dataset.

F1-score [%] Walking Running S. down Waving Still
RAPID 98.5 99.9 93.2 100 96.6
Sub-6 GHz 72.2 92.4 97.8 58.0 77.8
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Figure 4.17: Comparison between the HAR F1-score obtained by RAPID and by standard IEEE 802.11ac
sensing at 5 GHz for various scenarios.

system, as the intrinsic limits in terms of ranging (∼ 4 m) and angular (∼ 20◦) resolutions prevent
people tracking in crowded indoor scenarios such as the ones under study [100], thus making the
separation of the multiple subjects infeasible.

We collect a labeled training dataset including 6 subjects performing the 5 different activities
A0− 4 using a single RAPID-AP. The data are obtained in sequences of approximately 10 s, and
the resulting µD spectrograms are split into windows of 1.728 s as in the single target case. In
total, this dataset contains around 2 minutes per activity per subject. By training on different
subjects, we aim at mitigating the HAR performance reduction due to the difficulty of generalizing
to different people, to better gauge the sole effect of µD separation. We test the trained model
on the same multi-person sequences used in Section 4.6.3, adding 6 additional sequences with a
single subject, for a total of 34 sequences. We use the RAPID processing steps to extract the µD
signatures of each subject’s movement; when using 2 APs, we use the decision fusion scheme from
Section 4.3.5.

Tab. 4.3 shows the F1-score of RAPID for a varying number of people in the scene, and the
gain obtained by combining the 2 APs with respect to using only AP1. In addition, we also report
the corresponding detection rate, previously shown in Fig. 4.11, for completeness. We observe
that the F1-score only slightly decreases when moving from 2 to 5 subjects. This shows that the
proposed µD extraction process can reliably separate the contributions of the different individuals.
In addition, combining multiple APs can bring a slight improvement in some cases, by exploiting
the different illumination angles of the devices.
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Table 4.3: HAR F1-score and detection rate vs. no. of concurrent users.

APs Metric 1 subj. 2 subj. 3 subj. 4 subj. 5 subj.

1
F1 99.9 99.3 97.9 95.3 94.4

Det. rate 100 86.1 82.9 81.3 80.0

1 & 2
F1 100 99.4 99.4 95.4 94.4

Det. rate 100 96.7 95.5 94.5 89.2

4.6.5 Person identification

In this section we test the performance of RAPID on person identification, by building a dataset
including the gait µD spectrograms of 7 subjects, collected in E1. We collect from 3 to 5 minutes
of training data per subject. The input samples for the classifier are obtained using µD windows of
the same length as for HAR, i.e., 1.728 s. The CNN classifier is trained using the same parameters
and loss function used for HAR.

Person identification accuracy. First, we evaluate the accuracy of person identification on
a varying number of subjects to recognize. In Tab. 4.4 we report the accuracy values obtained
by RAPID when increasing the number of subjects from 2 to 7. The obtained values are not
significantly lower from those obtained with mmWave radars, and in some cases even superior,
e.g., the 79% on 5 subjects in [7], the 98% with 4 subjects in [5] or the 89% with 12 subjects in
[8]. This is even more valuable considering the few available training data and the short duration
of the observation window used, compared to the windows used in the mentioned papers which
vary between 2 and 3 s.

Continuous HAR and person identification. Finally, we show that RAPID is capable of
simultaneously (i) tracking subjects, (ii) recognizing their activities, and (iii) identifying who is
performing each activity from their gait. We perform several tests in which 2 subjects, concurrently
present in the room, perform various activities sequentially, e.g., walking then sitting, etc. In this
scenario, people tracking is of key importance to collect the temporal evolution of each subject’s
µD, so that all the activities performed by a person can be associated to that person’s identity,
obtained by RAPID when he/she is walking.

In Fig. 4.18 we show the results obtained by RAPID with 2 subjects, S0 and S1, behaving as
follows. S0 enters the scene walking, then after approximately 3.5 s S0 stops and starts waving
hands, while S2 is sitting down and then starts walking after 3.5 s. We report the µD signature
extracted after successfully tracking the subjects, along with the predicted activity using our
moving window approach. We observe that RAPID detects the change in the activity performed
by each subject; moreover, by applying the identification CNN to the spectrogram portion where
the subjects are walking, it successfully identifies them as S0 and S1 among the 7 subjects in the
training set.
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Table 4.4: Identification accuracy vs. number of subjects.

2 subj. 3 subj. 4 subj. 5 subj. 6 subj. 7 subj.
Acc. [%] 97.8 95.9 94.6 94.1 92.7 90.0
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(a) S1 walking-waving.
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(b) S0 sitting down-walking.

Figure 4.18: µD signature and corresponding CNN output when subject 0 is sitting down (A2), then starts
walking (A0), while subject 1 is walking and then starts waving hands (A3).

4.6.6 Overhead considerations

The sensing operations performed by RAPID add a certain level of overhead to the communication
process, due to appending TRN units to the communication packets. We can asses the overhead
of RAPID by comparing the PHY layer packet size in IEEE 802.11ay to the size of TRN fields
used for sensing. As shown in Fig. 4.4, physical layer Protocol Data Unit (PDU) include the Short
Training Field (STF), the CEF and the PHY layer header, including STFl = 2176, CEFl = 1152

and PHYl = 1024 samples, respectively [111]. Each TRN field includes 6 complementary Golay
sequences, for a total of TRNl = 768 samples. Therefore, the overhead introduced by appending
ξ TRN fields to a packet is

O =
TRNl · ξ

STFl +CEFl + PHYl +DATAl +TRNl · ξ
, (4.19)

where DATAl is the length of the data portion of the packet. We recall that, with RAPID, it is
sufficient to illuminate a person with one BP to apply the extraction of the µD spectrum, and that
we can use one BP per TRN field, so ξ can be selected equal to the number of subjects tracked by
RAPID. In order to reduce the inefficiency of the MAC layer and achieve Gigabit data rates, in
IEEE 802.11ay large packet aggregation is permitted, allowing PHY layer PDU to contain up to
4 MB of data. For this, multiple MAC layer PDU of 1.5 kB are encapsulated into a single PHY
layer packet. Compared to these large packet sizes, the TRN fields used by RAPID add a limited
amount of overhead. To see this, consider that, e.g. Modulation and Coding Scheme (MCS) 8 is
used, and that the data size is 20 kB. We get DATAl = 126784 samples (due to the MCS used)
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[111], leading to O = 0.6 · ξ%.

4.7 Concluding remarks
In this chapter, we have designed and implemented RAPID, the first mmWave ISAC system per-
forming high resolution sensing of human µD signatures through standard-compliant IEEE 802.11ay
packets. RAPID uses the in-packet TRN fields, as specified by the 802.11ay standard, to estimate
the channel impulse response. This makes it possible to perform joint tracking and localization
of multiple people freely moving in an indoor environment. In addition, their µD signatures are
extracted by analyzing the phase difference between subsequent packets, which allows RAPID to
perform advanced sensing tasks such as continuous HAR and person identification, with radar-
level accuracy. RAPID successfully combines the high resolution sensing capabilities of mmWave
radars with the scalability and ease of deployment of existing communication hardware, allowing
the seamless integration of multiple APs. We implemented two RAPID APs with full-duplex
capabilities on an FPGA-based SDR platform equipped with phased antenna arrays, and we have
thoroughly evaluated the system performance through an extensive measurement campaign. Our
results show that 2 combined RAPID-APs can track up to 5 subjects concurrently moving in
an indoor environment, achieving accuracies of up to 94% and 90% for HAR and person iden-
tification, respectively. Moreover, in HAR, RAPID performs significantly better than standard
sub-6 GHz sensing, showing better capability of distinguishing similar activities and generalizing
to new environments and unkwnown subjects.
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5
A Sparse Recovery Approach for Integrated

Communication and Human Sensing in mmWave
Systems

5.1 Introduction

In this chapter, we address the problem of enabling ISAC in realistic mmWave communication
systems. Our aim is to reuse existing communication traffic for sensing as much as possible, thus
introducing only a minimal amount of additional overhead. To this end, we propose SPARCS,
the first mmWave ISAC system that reconstructs human µD signatures from irregular and sparse
CIR samples obtained from realistic traffic patterns. The main insight of SPARCS is to leverage
the intrinsic sparsity of the reflections in the mmWave channel to pose the µD reconstruction
as a sparse recovery problem. Indeed, mmWave CIR estimation can naturally separate signal
propagation paths with < 10 cm resolution, leading to a sparse multi-path environment and
consequently a sparse CIR in the Doppler domain. This allows obtaining highly accurate µD
signatures from only a small, randomly distributed fraction of the CIR samples that are currently
needed by existing ISAC methods. To do so, SPARCS first performs CIR resampling to construct
a regular grid of CIR samples with missing vales due to the irregularity of the sampling process
in time. Next, a sparse reconstruction method is used to obtain the µD spectrum, decoupling
different propagation paths to leverage their sparsity property. Lastly, whenever communication
traffic is absent or insufficient for the µD extraction, SPARCS supports a dynamic injection of
very short CIR estimation fields into the (idle) channel. Given its sparse recovery capabilities,
only a few additional CIR sensing units are needed to retrieve the µD, thus entailing a negligible
overhead to the communication rate.
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SPARCS is compatible with any mmWave system that supports transmit beamforming for
directional communication and CIR estimation. This is the case, for example, for IEEE 802.11ay
WLANs at 60 GHz, which provide in-packet CIR estimation for beam tracking purposes, and for
3GPP 5G-NR, where base stations can send frequent downlink CSI-Reference Signal (CSI-RS) to
estimate the channel using different BPs.

To evaluate SPARCS’ performance, we implement it on a 60 GHz IEEE 802.11ay SDR exper-
imentation platform, the same used in Chapter 4. We then test it on sparse and irregular CIR
samples derived from standard-compliant traces, both for synthetic traffic and traffic patterns ob-
tained from datasets of operational real-world Wi-Fi APs deployments [121]. To assess the quality
of the reconstructed µD signatures, we use them as input for a typical downstream task such
as HAR, which classifies human movement detected by the captured µD into different possible
activities. The main contributions of this chapter are summarized next.

1. We propose SPARCS, an ISAC method for mmWave systems that can reconstruct high-
quality µD signatures of human movement from irregular and sparse CIR estimation samples.
SPARCS reuses training fields appended to communication packets as sensing units, and
injects additional sensing units if necessary, adapting to the underlying communication traffic
and minimizing the sensing overhead.

2. We provide an original formulation of the µD extraction in communication systems as a
sparse recovery problem, leveraging the intrinsic high distance resolution and sparsity prop-
erties of the mmWave channel. As a side effect, this also improves the quality of the resulting
spectrograms, making them more robust to noise and interference.

3. We design and validate an algorithm to perform the injection of additional sensing units
when communication traffic is insufficient. The process is dynamic, requires no knowledge
about future packet transmissions, and incurs minimal overall overhead.

4. We evaluate SPARCS by implementing it on an IEEE 802.11ay-compliant 60 GHz SDR
platform and testing it on CIR measurements collected with realistic Wi-Fi traffic patterns.
For the common HAR task, the µD signatures reconstructed by SPARCS achieve better F1
scores than existing methods, while reducing sensing overhead by a factor of 7.

The chapter is organized as follows. In Section 5.2 we recall some key concepts from Chapter
4 regarding mmWave human µD sensing using CIR, discussing their generalization to a generic
mmWave system. SPARCS is introduced and explained in detail in Section 5.3, describing the
sparse recovery problem formulation and the involved processing steps. In Section 5.4 we discuss
the implementation of SPARCS on an SDR platform, and Section 5.5 provides an evaluation of
the system on real measurement traces, comparing it to RAPID (see Chapter 4). We summarize
the related work in Section 5.6 and give concluding remarks in Section 5.7.
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5.2 Primer on mmWave sensing
In this section we give a brief description of the CIR model for mmWave communication systems
that we use for sensing. We then describe a baseline approach that allows tracking the movement of
people in the environment and extract their µD signatures using regularly sampled CIR information.
This forms the basis of our SPARCS design, which entirely eliminates the requirement of fixed
Inter-Frame Spacing (IFS) and enables ultra low-overhead ISAC.

5.2.1 Sensing in mmWave systems
Capturing the movement features of humans in the environment requires an analysis of the re-
flections of the transmitted signal from their bodies, which is usually carried out applying signal
processing techniques to the CIR. Due to the high path loss occurring at mmWave frequencies, di-
rectional communication is employed by means of transmitter and receiver beamforming, typically
using phased antenna arrays. The transmitter and the receiver use suitable BP configurations of
their antenna arrays to maximize the signal strength [111], [117], [122]. To successfully sense with
a mmWave system, at least one of the BPs has to illuminate the subjects of interest, as only in this
case the reflected signal carries detectable information about the movement signature. To this end,
similarly to what we did in Chapter 4, we consider a setup where an AP transmits packets and is
able to collect the reflections of its own signal, after being reflected by objects (including humans).
This reflection is collected by the receiver array of the AP itself using a quasi-omnidirectional
BP. This requires full-duplex capabilities, as is common in ISAC scenarios [123], which in the
simplest form can be achieved with a MIMO system in a mixed configuration with one RF chain
as transmitter and another as receiver. The CIR estimation fields used for sensing, which we
denote by sensing units, can either be piggybacked by appending them as a trailer to the PHY
communication packets or transmitted independently (injected). mmWave standards implement
beam training mechanisms that help to establish a communication link by testing different BP
combinations and then selecting the best one. Such functionality is supported by all mmWave
standards. For example, 5G-NR [122], use Synchronization Signal Block (SSB) and CSI-RS for
beam management, while WLAN systems adopting the IEEE 802.11ad/ay standards [111], [117]
use channel estimation and training fields (CEF and TRN, respectively) to obtain accurate CIR in-
formation. Our framework to extract sensing information from CIR measurements can be applied
regardless of the specifics of the standards.

5.2.2 mmWave CIR model
Due to the large transmission bandwidth of mmWave systems, channel measurements contain fine-
grained information about the environment [9], [28], [31]. Depending on the communication system
we consider, sensing could be performed using the 5G-NR OFDM Channel State Information
(CSI), which contains the channel gains for each OFDM subcarrier, or the IEEE 802.11ad/ay
Single Carrier (SC) CIR. Both communication schemes are suitable for human sensing: (i) in 5G-
NR, the base stations can send frequent downlink CSI-RS to estimate the channel using different
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BPs, while (ii) in IEEE 802.11ay in-packet beam tracking is enabled, so that specific fields called
training fields (TRN), each using a different BP, can be appended to communication packets. In
the following, we focus on SC CIR, and show how to extract the µD effect of human movement.
However, previous works have demonstrated that similar processing can be performed with OFDM
CSI [9], [98], and SPARCS is general enough to be applied in both cases.

As the SC CIR model, we use the one presented in Chapter 4, in Eq. (4.1). However, differently
from what we did in the previous chapter, here we do not simplify Eq. (4.1) considering a single
propagation path per CIR bin, but we rather address the possibility of having the contributions
of Pℓ(t) paths overlapping in bin ℓ (see Section 5.3.2).

5.2.3 micro-Doppler extraction

The extraction of the µD spectrum from multiple, concurrently moving subjects requires tracking
the position of each person in the physical space, in order to separate their individual contributions
to the CIR. For this we employ the methods described in the previous chapter, specifically in
Section 4.3.3, Section 4.3.3, and Section 4.3.3.

Then, spectral analysis over different CIR samples, as described in Section 4.3.4 yields the
desired µD signature [31], [100]. As shown in Chapter 4, one of the most computationally efficient
methods to perform such spectral analysis is to apply a STFT to the CIR along the slow-time
dimension. This kind of processing requires a window of W subsequent estimates of the CIR with
a fixed CIR sampling interval of Tc seconds, provided that the time spanned by the window is short
enough to consider the movement velocity of the reflectors constant for its whole duration. Note
that this operation allows detecting and separating the velocities of the Pℓ(t) reflectors, whose
contributions overlap in path ℓ when considering a single estimate of the CIR. The choice of Tc
impacts the frequency resolution of the STFT, ∆fd = 1/(WTc), and its maximum measurable
frequency, fdmax = 1/(2Tc). Using the relationship between the Doppler frequency and the corre-
sponding velocity, one can obtain the velocity resolution and the maximum observable velocity as
∆v = c/(2foWTc) and vmax = c/(4foTc). To fully capture the range of velocities of interest for
human movement, the typical approach is to select Tc such that vmax is sufficiently high that is
covers the velocities that can occur in the human activities of interest, which may vary depending
on the application [4], [7], [31].

In Chapter 4 we assumed that the constraint of a fixed Tc is met, which does not hold in realistic
communication scenarios, where packet transmissions are scheduled according to the needs of the
communication protocols rather than sensing accuracy. Traffic patterns are typically bursty and
irregular and thus cannot be used by existing methods for human sensing. Instead, dedicated
time slots need to be reserved for the transmission of sensing units, which is incompatible with
the random access CSMA/CA MAC commonly used in IEEE 802.11. Conversely, SPARCS is
the first approach that does not require any specific pattern in the transmission of the sensing
units, enabling true ISAC by exploiting communication packets for sensing whenever possible, and
introducing minimal additional overhead when necessary.
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Figure 5.1: Comparison between the traditional CIR-based human sensing and SPARCS.

5.3 SPARCS methodology

We now present the SPARCS algorithm to recover the µD spectrum from irregular and sparse CIR
sampling patterns. The processing steps of SPARCS compared to traditional CIR-based sensing
methods are shown in Fig. 5.1.

(1) CIR resampling: after CIR estimation and people tracking, for which we adopt the stan-
dard Joint Probabilistic Data Association Filter (JPDAF) technique [89], we apply a resampling
strategy to approximate the irregularly spaced CIR values with a regular sequence whose sampling
interval is chosen according to the desired µD resolution (Section 5.3.1). Due to irregularity of
the original sampling process, the approximated regular sequence may contain missing values that
need to be filled in the subsequent processing steps.

(2) Sparse µD recovery: we formulate the recovery of the µD spectrum from the incomplete
CIR measurements as a sparse recovery problem. For this, we leverage two key aspects. On the
one hand, the intrinsic sparsity of the mmWave channel leads to a few signal reflections from
the human body that carry information about different body parts. On the other hand, the
high distance resolution of mmWave systems makes the reflections from the different body parts
separable. The combined effect of these two properties is that the resulting CIR is highly sparse
in the Doppler frequency domain, as detailed in Section 5.3.2 We then solve the sparse recovery
problem using the Iterative Hard Thresholding (IHT) algorithm for each CIR path (Section 5.3.3),
and aggregate the results to obtain the final µD spectrum (Section 5.3.4).

(3) Sensing unit injection: when communication traffic is absent or too scarce to obtain
an accurate reconstruction, our system can inject short sensing units into the (idle) channel to
overcome the problem, as described in Section 5.3.5. Thanks to the sparse reconstruction of point
(2), the amount of units that need to be injected is minimal and can be tuned to trade off between
overhead and sensing accuracy.
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5.3.1 CIR resampling

Our system samples the CIR at time instants ti, which coincide with the reception of the reflections
from the i-th transmitted packet. To reconstruct the µD spectrum from CIR samples which are
randomly distributed in the time domain, we first resample the CIR to obtain regularly spaced
samples with a fixed granularity Tc, where possible. To do so, we resort to the slotted resampling
technique, which allows approximating a sequence of randomly spaced samples into a regular grid
with missing values [124]. We consider Ns consecutive samples obtained at the time instants
t0, t1, . . . , tNs

and denote by 0, Tc, 2Tc, . . . , (K − 1)Tc the regular grid with step size Tc. Slotted
resampling constructs a new CIR sample sequence hℓ,b(kTc) where the CIR values are obtained
from the original sequence hℓ,b(ti) as follows. Time bins (or intervals) of length Tc are centered
on each time instant of the regular grid, i.e., bin k is βk = [kTc − Tc/2, kTc + Tc/2), with center
kTc. Then, the value of the CIR corresponding to the k-th grid value is either (i) selected among
the values of the original sequence whose sampling times fall inside bin k, taking the one whose
sampling time is the closest to the bin center, or (ii) considered as a missing value if no samples
of the original sequence fall inside bin k. Specifically,

hℓ,b(kTc) =

{
0 if {ti|ti ∈ βk} = ∅,

hℓ,b(tk) otherwise,
(5.1)

where the 0 values represent missing samples and

tk = argmin
τ∈{ti|ti∈βk}

|kTc − τ |. (5.2)

The resulting, regularly spaced sequence of CIR samples is used to reconstruct the µD spectrum
of the subject. However, due to the missing samples which are set to 0, a plain application of the
STFT (as described in Section 5.2.3) would lead to a corrupted spectrum. In the next section we
detail our solution to this problem, which is based on sparse recovery techniques.

5.3.2 Sparse µD recovery problem formulation

Several methods exist to tackle the problem of computing the power spectrum of non-uniformly
sampled signals [124]. Our approach belongs to the category of sparsity-based approaches, in which
the sparsity of the signal in the frequency domain is leveraged to drastically reduce the number
of measurements needed for an accurate reconstruction of the spectrum. We select windows of
length W samples (window size) every δ samples from the sequence hℓ,b(kTc), choosing δ = W/2.
In the following we consider W = ND, which means that the number of frequency components
that we extract from the signal is the same as the length of the time window, i.e., we do not apply
padding. Due to the slotted resampling process, each window may contain missing samples. We
denote by Um the set of indices of the available samples contained in the m-th window. Then,
we define vector hℓ,b(m) ∈ C|Um|, containing the available CIR samples in the m-th window,
and vector h̃ℓ,b(m) ∈ CW , representing the complete m-th CIR window, which is only partially
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known due to the missing samples. We also denote by Finv the inverse Fourier matrix, whose
element in position (g, l) is given by (Finv)gl = (1/

√
W ) exp (j2πgl/W ) , g, l = 0, . . . ,W − 1 while

Um =
[
uT
i

]
, ∀i ∈ Um is the matrix that selects the rows of Finv whose indices are in Um. ui is

the vector of all zeros but the i-th component, which equals 1.

The following relation holds between the incomplete CIR window, hℓ,b(m), and the Fourier
Transform (FT) of the full CIR window, Hℓ,b(m) ∈ CW , which we aim to recover in order to
compute the µD spectrum,

hℓ,b(m) = Umh̃ℓ,b(m) = UmFinvHℓ,b(m) = ΨmHℓ,b(m), (5.3)

where in the last step we use matrix Ψm = UmFinv as a shorthand notation. Given Eq. (5.3),
our aim is to recover Hℓ,b(m) from the incomplete measurement vector hℓ,b(m), which is a typical
sparse recovery or compressed sensing problem [29]. In this framework, it has been proven that
recovering the FT of the desired signal is possible if the latter is sparse in the frequency domain, i.e.,
the FT only contains a low fraction of non-zero elements. To verify that this sparsity assumption
holds in our case, we rewrite Eq. (4.1) after the resampling and windowing operations, so that the
i-th sample of the complete m-th window is given by

[
h̃ℓ,b(m)

]
i
=

Pℓ(m)∑
p=1

apℓ,b(m) exp

{
−j4πfo

c

[
dpℓ + (mδ + i)Tcv

p
ℓ,m

]}
, (5.4)

where vpℓ,m is the radial velocity of the p-th reflector in path ℓ during windowm, and dpℓ its distance
from the AP. Here, we use the assumption from Section 5.2.3 that the velocity of each reflector
can be considered constant during a window. In addition, we also consider that the reflective
coefficients and the number of reflectors are constant. This is reasonable for the considered setup,
where the reflectors are parts of the human body, which typically move slowly compared to the
duration of a window WTc (see also Section 5.4).

From Eq. (5.4), one can see that as long as Pℓ(m) ≪ W , the FT of h̃ℓ,b(m) is indeed sparse,
as it is composed of Pℓ(m) spectral lines located at frequencies 2fov

p
ℓ,m/c. Given the excellent

distance resolution due to the high bandwidth of mmWave systems and the intrinsic sparsity and
directionality of the channel, the different parts of the subject’s body tend to contribute to the
µD spectrum in different CIR paths as shown in Fig. 5.2. Therefore, Pℓ(m) is generally close, if
not equal, to 1. Sometimes the number of reflectors in a single path can be larger than 1, due
to different body parts being closer than the distance resolution of the system, but this number
is still much lower than W . This even holds for multiple subjects. Assume that two subjects
with labels 1 and 2 are present in the monitored physical space, and denote by (ℓ1, b1) and (ℓ2, b2)

their CIR path-BP pairs. According to Eq. (5.4), the sparsity assumption must hold for each
pair independently, and this is verified as long as the subjects occupy different spatial positions.
Specifically, (i) if ℓ1 ̸= ℓ2 the CIRs along BPs b1 and b2 are the combination of Pℓ1(m) ≪ W

and Pℓ2(m) ≪ W complex exponentials each, and (ii) if ℓ1 = ℓ2, but b1 ̸= b2, the attenuation
coefficient of b1 will mostly remove the reflection from subject 2 in h̃ℓ1,b1 and vice versa, making
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Figure 5.2: Visual representation of the µD spectrum computed using SPARCS on 2 different CIR paths, one
containing the reflection from a person’s torso, the other capturing the µD signature of the leg. The total µD
is obtained summing together these contributions.

Algorithm 5.1 Single path sparse recovery.
Input: hℓ,b∗(m), η, nmax,Ω, ξ.
Output: Hℓ,b∗(m).
1: Collect the set of available samples indices Um.
2: Build matrices Um =

[
uT
i

]
, ∀i ∈ Um and Finv

3: Compute Ψm = UmFinv.
4: Set Ĥ(0)

= 0, n = 0, γ(0) to any value > ξ.
5: while n < nmax and γ(n) > ξ

6: Ĥ
(n+1)

← Eq. (5.7)
7: γ(n+1) ← ||Ĥ

(n+1)
− Ĥ

(n)
||2

8: n← n+ 1
9: end while

10: return Ĥ
(n)

the contributions from the subjects separable. The contributions from different subjects overlap
only if they occupy the same CIR path and share the same BP, which is very unlikely to occur in
real cases due to the high distance (∼ 8 cm) and angular (as low as 2◦) resolutions of the mmWave
CIR [31]. Therefore, the sparsity assumption in SPARCS still holds even if multiple subjects are
present in the environment. Due to this, we can assume that Pℓ(m)≪ W holds, and that sparse
recovery techniques can be used to recover Hℓ,b(m), as detailed in the next section.

5.3.3 Single-path sparse recovery

Given the model from Eq. (5.3), the reconstruction of the CIR FT along each path can be
posed as a sparse recovery problem. Specifically, we seek a vector Hℓ,b(m) which is a solution to
Eq. (5.3) while being as sparse as possible, coherent with the above discussion. Considering the
BP b∗ pointing in the direction of the target, the desired FT of h̃ℓ,b∗(m) is the solution of the
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optimization problem

Hℓ,b∗(m) = argmin
H
||H||0 s.t. ||hℓ,b∗(m)−ΨmH||2≤ ε, (5.5)

where ||·||0 denotes the ℓ0-norm of a vector, i.e., the number of its non-zero components. The
constant ε > 0 can be estimated from the noise in the CIR, using a training dataset.

An approximate local solution to Eq. (5.5) can be found using fast greedy algorithms [29]. We
adopt the IHT, which solves

Hℓ,b∗(m) = argmin
H
||hℓ,b∗(m)−ΨmH||22 s.t. ||H||0≤ Ω, (5.6)

where Ω is a pre-defined sparsity level parameter. The algorithm involves an iterative gradient
descent step on the quadratic term in Eq. (5.6), followed by a thresholding operation:

Ĥ
(n+1)

← TΩ
[
Ĥ

(n)
+ ηΨT

m

(
hℓ,b∗(m)−ΨmĤ

(n)
)]
, (5.7)

where n is the iteration index and TΩ is the hard-thresholding operator, which sets to 0 all the
components of the argument vector except the Ω largest ones in terms of the Euclidean norm. η is
a learning rate parameter which can be tuned to improve the convergence properties. The iterative
process is stopped whenever ||Ĥ(n+1)

−Ĥ
(n)
||2< ξ or when a maximum number of iterations, nmax,

is reached. In SPARCS, Ω is a key parameter, which is strictly related to the number of reflectors
Pℓ(m): as IHT reconstructs a vector which has at most Ω non-zero elements, Ω is an upper bound
for Pℓ(m), and it can be thought of as the maximum number of reflectors per path that we allow
reconstructing. Ω can be tuned in order to obtain better µD reconstruction (see Section 5.5.5).
The sparse recovery algorithm is summarized in Alg. 5.1. According to the compressive sensing
theory [125], the reconstruction performance of IHT (and in general of any recovery algorithm)
degrades as the number of available measurements, |Um|, decreases. Theoretical results show
that the minimum number of measurements needed to reconstruct Hℓ,b∗(m) is O(Ω log(W/Ω))

[125], although the exact number has to be estimated empirically as it also depends on the level
of noise present in the signal. In Section 5.5, we show that SPARCS can achieve excellent µD
reconstruction with as few as W/8 measurements per window, thanks to the high sparsity of the
mmWave CIR.

5.3.4 Multi-path aggregation

The moving body of a person causes several reflections that affect more than one CIR path, as
discussed in Section 5.3.2. Using the procedure described in the previous sections, SPARCS is
able to retrieve the contribution of each path Hℓ,b∗(m) to the µD. Since the different body parts
contribute to the µD in different paths, to fully capture human movement we need to combine the
information from the different paths. Denote by Q the number of distance bins we aggregate to
obtain the µD spectrum. For convenience, we assume Q to be an odd integer, as this makes the
following processing steps symmetric with respect to a central CIR path (corresponding to the
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torso), but the same steps can be applied for Q being even. We aggregate the spectra obtained
from the path caused by the torso, ℓ∗, with the ⌊Q/2⌋ distance bins preceding ℓ∗ and the ⌊Q/2⌋
subsequent distance bins, as they may contain the contributions of the other body parts. Using
vector notation, the expression of the total µD spectrum in Eq. (4.12) is

D(m) =

ℓ∗+⌊Q/2⌋∑
ℓ=ℓ∗−⌊Q/2⌋

|Hℓ,b∗(m)|2 , (5.8)

where the squared magnitude is applied element-wise. We then apply the same min-max nor-
malization in Eq. (4.15). Note that Eq. (5.8) entails solving Q optimization problems of the form
in Eq. (5.6), however, the Q problems can be parallelized as they are completely independent.
Decomposing the full µD spectrum reconstruction problem into Q subproblems effectively allows
applying sparse recovery techniques, which in turn leads to a significant reduction of the number
of measurements that are needed.

The value of Q is selected according to physical considerations and validated in practice, as
described in Section 5.5. The µD vectors from Eq. (5.8) can be collected in sequences, one every δ
slots, forming µD spectrograms of arbitrary length, depending on the specific application that is
being performed, e.g., activity recognition, fall detection, gait segmentation, etc. In the following,
we refer to the number of µD vectors considered in such spectrograms as Λ.

5.3.5 Sensing unit injection

SPARCS can exploit the sensing units in sparsely distributed communication packets to recover
the µD spectrum of human movement. However, during communication between the AP and one
or more terminals it may happen that the AP remains silent for longer than the duration of a
processing window, WTc, or that the received packets are fewer than the minimum number of
measurements required for an accurate µD reconstruction. In these cases, the sparse recovery
algorithm can not recover Hℓ,b(m) as the available sensing units are insufficient. To tackle this
problem, we allow our system to inject sensing units into the channel whenever the number
of communication packets is not sufficient for Alg. 5.1 to work. Different from existing ISAC
frameworks, our sparse recovery approach allows us to introduce a minimal amount of overhead,
as the µD spectrum can be recovered from a number of CIR samples which is much lower than the
full length of the windowW . Note that for the injection of a sensing unit it is sufficient to transmit
the necessary CIR estimation fields, without any preamble and header as used in conventional
packets, since the unit is only received at the AP itself and contains a known waveform.

Basis of the injection algorithm

In the following, we present the proposed injection procedure assuming that both communication
packets and sensing units are transmitted at times that lie on a uniform grid with spacing Tc. This
simplification is valid due to the fact that the slotted resampling process described in Section 5.3.1
is used. Therefore, we can describe the injection process in terms of windows of size W , where
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Algorithm 5.2 Injection of sensing units in window m.
Input: Ms.
1: # P1 - observation phase
2: Na(m) ← no. of sensing units received in the first half of the window (either from reflected

communications packets or injected).
3: # P2 - scheduling phase
4: Nw(m)← max(Ms −Na(m), 0).
5: Schedule Sm =

{
s1, . . . , sNw(m)

}
.

6: # P3 - transmission phase
7: for q = mW/2, . . . , (m+ 1)W/2− 1
8: if q ∈ Sm
9: if no reflected comm. packet received

10: Transmit the sensing unit.
11: Sm ← Sm \ {q}.
12: else
13: Use the sensing unit from the comm. packet
14: Sm ← Sm \ {q}.
15: end if
16: else
17: if reflected comm. packet received
18: Use the sensing unit from the comm. packet
19: Sm ← Sm \ {mins∈Sm

s}.
20: end if
21: end if
22: end for

each value in the window occupies a slot which is a multiple of Tc. Due to slotted resampling, the
slots can be empty if no packet was transmitted sufficiently close to it.

Our approach consists in setting a minimum number of sensing units per window, termed Ms,
that allows a sufficiently accurate reconstruction of the µD signatures. We then transmit additional
units whenever the number of reflections of communication packets in the window is not sufficient
to meet this minimum requirement. The proposed method only requires the knowledge of whether
a reflected communication packet is received in the current slot, i.e., no information about the
future traffic pattern is needed.

Algorithm description

The algorithm, summarized in Alg. 5.2, operates in three phases, namely observation (P1),
scheduling (P2) and transmission (P3). Recall that the µD extraction described in Section 5.3.2
follows a window-based approach, with subsequent windows overlapping by half of their length,
as shown in Fig. 5.3. Consider a time instant between the end of window m − 1 and the start
of window m + 1. This coincides with the half of window m, which is between slots mW/2 − 1

and mW/2. In this time instant we can observe how many reflected communication packets were
received in the first half of window m, which spans the indices from (m − 1)W/2 to mW/2 − 1

(P1, line 2 in Alg. 5.2). We denote this number as Na(m). The injection algorithm is executed
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Figure 5.3: Example injection procedure with Ms = 8,W = 16. 4 sensing units are scheduled after P1 and
P2. Then, as three reflected communication packets are received, we reuse them and the first three scheduled
sensing units are not transmitted. The fourth sensing unit is instead injected in the last slot.

on a half-window basis at the time when window m− 1 has ended and window m+ 1 has not yet
started, as this allows reasoning on the sole current window m. Based on Na(m), we can compute
how many sensing units we would need in the remaining half of window m in order to meet the
requirement of at least Ms units, which we denote by Nw(m) = max(Ms − Na(m), 0). However,
the sensing process has no knowledge of when future communication packets will be received, so
the best we can do is schedule the transmission of Nw(m) sensing units in the next half-window.
The slots in which these packets are scheduled can be selected according to a deterministic rule
or a probability distribution. We call Sm =

{
s1, . . . , sNw(m)

}
the set of indices of the slots in

which we schedule the additional sensing units for the next half-window (P2, lines 4-5 in Alg. 5.2).
While P1 and P2 are performed in a single time slot, before the second half of window m starts,
P3 (lines 7-23 of Alg. 5.2) is a dynamic process that spans the whole second half of window m.
The indices of the slots considered in this part of the algorithm are q = mW/2, . . . , (m+1)W/2−1.
Note that some communication packets, of which we have no knowledge, may be received in this
second half-window. The procedure iterates over the slots and in each of them checks if a sensing
unit was scheduled for that slot, i.e., if q ∈ Sm. There are four possible cases:
(1) q ∈ Sm and no communication packet was received in this slot. In this case we transmit the
sensing unit, then remove q from Sm.
(2) q ∈ Sm and a communication packet (or more) was received in this slot. In this case we reuse
the sensing unit in the communication packet and remove q from Sm.
(3) q /∈ Sm and no communication packet was received in this slot. In this case we just move to
the next slot without taking action.
(4) q /∈ Sm and a communication packet (or more) was received in this slot. In this case we reuse
the sensing unit in the communication packet, then we remove the next sensing unit from the
scheduled ones, i.e., we set Sm ← Sm \ {mins∈Sm

s}.
Note that, despite operating on a half-window basis, due to the overlap of adjacent windows,

our algorithm only poses a constraint on the minimum number of packets sent per full window.
This means that half a window can be empty as long as enough sensing units are received in the
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other half.

Scheduling the sensing units

While the scheduling of the sensing units in P2 can be done with any arbitrary policy that guaran-
tees that exactly Nw(m) packets are scheduled in the next half window, we want to maximize the
number of sensing units that can be piggybacked on communication packets, rather than using
a dedicated transmission. From P3 in Alg. 5.2, one can see that scheduling the sensing units to-
wards the end of the half-window leaves more time for possible communication packets to become
available and thus be reused instead of injecting a new sensing unit. Consequently, in SPARCS
we schedule the sensing units for the second half of window m as a burst of packets spaced by Tc,
which occupy the last Nw(m) slots of the window.

5.4 Implementation
In this section we describe the implementation of SPARCS on the mmWave SDR platform in-
troduced in Section 4.5 of Chapter 4, basing our implementation on the IEEE 802.11ay Wi-Fi
protocol, as it operates in the unlicensed 60 GHz band and supports CIR estimation for different
BPs.
Testbed. As in RAPID, we use the FPGA-based baseband processor to generate, capture and
process (custom or standard compliant) frames with up to 1.76 GHz of bandwidth. In the re-
mainder of this chapter we use the same 60 GHz RF front-end used in RAPID. This simplifies
experimentation as this is an unlicensed band, but we note that simply by changing the RF
front-end, SPARCS can operate in a different band, e.g., for 5G-NR compatibility. The baseband
processor supports various front-ends to operate in different frequency bands, e.g., at 28 GHz or
60 GHz [126]. To support the variable IFS extracted from real (or artificially generated) traces,
we include a block RAM memory (BRAM) in the FPGA logic that stores the IFS that will be
used in the experiments. The SM reads these values sequentially, introducing a delay in the sys-
tem according to the value read from memory. The variable IFS functionality can be disabled
at runtime to configure a fixed IFS. We remark that since we simultaneously use the up/down
conversion stages from the same mmWave development kit, the Tx/Rx sub-systems are fed by the
same local oscillator and thus the CFO is very low (< 100 Hz), which enables the extraction of
the µD values required by SPARCS.
IEEE 802.11ay CIR estimation details. In IEEE 802.11ay, in-packet beam tracking [25]
is introduced, where the CIR is estimated using different BPs within a single packet. This is
implemented by appending a given number of training (TRN) fields to the packet. A TRN field
is composed of 6 TRN units formed by complementary Golay sequences of 128 BPSK modulated
samples, for a total of 768 samples [111]. In our implementation, we use nTRN TRN fields as the
SPARCS sensing unit, where each TRN field employs a different BP, and nTRN is the number
of subjects being tracked by the system, as a single TRN field per subject suffices. Considering
the typical number of people that are to be simultaneously tracked in human sensing systems,
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Figure 5.4: SPARCS implementation block diagram.

Table 5.1: Summary of the SPARCS implementation parameters. The suggested values based on experimental
results are shown in bold.

System parameters
Grid step Tc 0.27 ms
Window length W 64
Window shift δ 32
Sparsity parameter Ω {1, 2,3, 4, 5, 6, 7}
No. aggregated paths Q {1, 3, 5, 7,9, 11, 13, 15}
Min. no. measurements Ms {4,8, 16, 24, 32, 64}
IHT learning rate η 1
IHT convergence threshold ξ 10−4

IHT maximum iteration number nmax 200

reasonable nTRN values range from 1 to 10. The CIR estimates obtained from the TRN fields are
then used as the input to SPARCS sparse recovery algorithm.
System parameters. In Tab. 5.1 we summarize the system parameters used in the implemen-
tation. We set Tc = 0.27 ms and W = 64, which lead to (i) a velocity resolution of ∆v =

c/(2foWTc) ≈ 0.14 m/s and (ii) aliasing-free velocity measurements up to vmax = ±c/(4foTc) ≈
±4.48 m/s. These values are not critical to the functioning of our system, and can be modified
according to specific implementation requirements. However, for reliable µD extraction without
aliasing, it is advisable to adjust Tc to a value that allows capturing the range of velocities typ-
ically covered by human movement, e.g., approximately ±2 − 3 m/s for a walking person, and
up to ±5 m/s for running or other fast movements [7]. Note that suitable values of Tc can also
be obtained in 5G-NR systems, where a base station can transmit downlink CSI-RS frames with
a periodicity between 0.3125 ms and 80 ms. For a 5G-NR carrier frequency of 28 GHz, using
Tc = 0.3125 ms leads to vmax ≈ ±8.57 m/s, which is enough to capture fast human movement.

For people tracking, we use periodically transmitted in-packet beam training frames with 12

TRN units and antenna beams covering a FoV range from −45◦ to 45◦. Then, we utilize the
distance and AoA estimation procedure described in Section 4.3.3, as proposed in [31], to which
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(e) 1/4 sparse ( SPARCS).
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Figure 5.5: Walking µD spectrograms and RMSE for different levels of sparsity, obtained by uniformly removing
samples for each window.

we refer for further details. We experimented with different values of Ms,Ω and Q, as reported in
Tab. 5.1 and described in Section 5.5.3 and Section 5.5.5, while for the IHT algorithm we selected
the parameters that led to the most accurate convergence results on our experiments, i.e., η = 1,
ξ = 10−4 and nmax = 200.

5.5 Experimental results
We now present the experimental results obtained with our SPARCS testbed implementation.
The experiments were performed in a laboratory of 6 × 7 meters with a complex multi-path
environment due to additional reflections caused by furniture, computers, screens, and a wide
whiteboard.

5.5.1 Results on synthetic traces
As a first qualitative result we show the µD spectrograms obtained by SPARCS on randomly
sampled CIRs of a walking subject (see Fig. 5.5). For this, we use synthetic traces, generated
by measuring the CIR using a uniform sampling interval equal to Tc, and then setting to 0 a
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Table 5.2: Details of the 3 sequences of the pdx/vwave dataset.

Trace Environment No. frames Duration
psu cs University CS dept. 260326 1 : 00 h
library Public library 1300671 4 : 00 h
ug Coffee shop 895721 2 : 34 h

variable number of uniformly distributed values per window to simulate missing samples. This is
a simplified case, as (i) the available (not removed) packets lie on a regular grid with spacing Tc,
therefore no approximation error is introduced by slotted resampling, and (ii) samples are removed
on a per-window basis, so a minimum number of packets in each window is guaranteed. Still, this
evaluation is useful to highlight the impact of increasing the sparsity level of the measurements
for SPARCS compared to standard STFT [5]. In the results presented in this section, no packet
injection is performed, as we aim to assess the impact of the number of measurements per window
on the reconstructed µD. In Fig. 5.5b we show the baseline walking spectrogram obtained using
the standard STFT using the full window of 64 samples, as done in [31]. The spectrogram shows a
typical walking µD modulation, with the contribution of the static clutter (the strong component
at 0 velocity), of the torso (the strong oscillating component around ±1.5 m/s and the limbs
(the faint contributions around the torso component). Moreover, a certain amount of noise and
interference is present, as shown by the non-zero background level and the horizontal lines at
around ±2 m/s and ±3.7 m/s. In Fig. 5.5c, the same method is applied to windows with only
16 out of 64 the samples retained, while the rest is set to 0. The impact is very strong as it
completely corrupts the useful structure in the µD signature. From Fig. 5.5d to Fig. 5.5f we
show the results obtained by SPARCS, on the same sequence, with 64, 16 and 4 samples out of
64, respectively. At the top of each figure, we report the Root Mean-Squared Error (RMSE) of
the µD with respect to a ground truth spectrogram, shown in Fig. 5.5a. This ground truth was
obtained from the STFT output with full measurement windows (Fig. 5.5b), by manually isolating
the useful µD spectrum containing the gait information and setting to 0 any background noise and
interference lines. We observe two interesting aspects. On the one hand, the SPARCS algorithm
can successfully recover the µD spectrum even when a large fraction of the samples is missing,
and the quality of the result decreases gracefully with the sparsity of the available measurements.
Unlike standard STFT, SPARCS almost completely eliminates the noise and interference in the
estimated µD spectrogram. Such improvement is made possible by the sparsity constraint in
Eq. (5.6), which allows for a lower RMSE than STFT operating on full measurement windows.
This is the main reason why SPARCS not only reduces the overhead needed for human sensing,
but also improves its accuracy.

5.5.2 Realistic traces: the pdx/vwave dataset
Next, we evaluate the performance of SPARCS on realistic Wi-Fi AP traces. This poses an
experimental challenge, because commercial devices implementing the IEEE 802.11ay standard
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Figure 5.6: Example traffic patterns from the pdx/vwave dataset.

are not yet available, and no public datasets containing real traffic traces for the PHY layer of
mmWave Wi-Fi (IEEE 802.11ay/ad) exist, to the best of our knowledge. For this reason, we used
the pdx/vwave dataset, containing real traffic traces captured in different real environments from
Wi-Fi APs employing a legacy (sub-6 GHz) Wi-Fi protocol [121]. Specifically, we use 3, over 1

hour long, traces from this dataset, called psu cs, library and ug, respectively. We select traces
collected in different environments to represent different kinds of traffic patterns (see Tab. 5.2).

The pdx/vwave dataset includes information about the transmission instants and packet sizes
of all packets outgoing from the considered AP. Exploiting this information, we perform our
measurements transmitting packets according to these time patterns (see Section 5.5.3), using
the BRAM in the FPGA to store the desired transmission instants (see Section 5.4). On top of
the existing pdx/vwave communication patterns we use the injection algorithm (Alg. 5.2) to send
additional sensing units when needed.

Even though the pdx/vwave dataset is based on a legacy sub-6 GHz Wi-Fi protocol, we argue
that it is still reasonable to use it to obtain realistic packet transmission patterns. While in
the pdx/vwave dataset the maximum physical layer PDU size is PPDUpdx = 1.5 kB (without
packet aggregation), in IEEE 802.11ay three main transmission modes are defined, namely High
Throughput (HT), Directional Multi Gigabit (DMG) and Very High Throughput (VHT), with
maximum physical layer PDU sizes, PPDUay, of 65 kB, 262 kB and 4692 kB, respectively [111],
[117]. With the increase in the packet sizes, the data rates of mmWave systems have increased
accordingly, and in IEEE 802.11ay they will range from 0.3 Gbps to several Gbps. As a numerical
example, the traffic patterns in pdx/vwave with a typical bitrate of 4 Mbps would correspond to
a bitrate of 0.7 Gbps in DMG IEEE 802.11ay when using an aggregated packet size of 262 kB
instead of 1.5 kB. Note that traces with a larger number of packets and smaller PDU sizes (as
will likely be the case in real deployments) will simply increase the sensing accuracy and further
reduce the overhead.
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5.5.3 Human activity recognition results

To evaluate the quality of the µD spectrograms extracted by SPARCS, we use them as the input
to a HAR method. Specifically, we follow a standard approach, training a deep neural network
on a dataset of Λ ×W dimensional µD spectrograms, with Λ = 200 (equivalent to ≈ 1.76 s), in
order to classify the movement performed by the person during that time. In order to provide
a comparison with other IEEE 802.11ay HAR methods based on regular CIR sampling, such as
our RAPID [31], presented in Chapter 4, we consider the 4 following activities: walking, running,
sitting and waving hands. For HAR, we use a standard CNN architecture, composed of 4 inception
modules [127] performing 1×1, 3×3 and 5×5 convolutions. The number of filters used is 8, 16, 32
and 64 for the 4 modules, respectively. The convolutional blocks are followed by a fully-connected
layer with 64 neurons, to which we apply Dropout [57], and a final Softmax layer with 4 outputs
[53]. We use the exponential-linear unit activation function after each layer [54].

Training data

We collected a training dataset involving 6 different subjects performing the 4 activities, for a
total duration of about 12 minutes each. This leads to over 400 partially overlapping, 1.76 s long,
µD sequences per activity, which we then augmented as described shortly. Note that the training
data only includes uniformly sampled CIR traces with sampling period Tc = 0.27 ms. The CNN
training is done for 80 epochs, using a learning rate of 10−4, the Adam optimizer and the cross-
entropy loss function [53]. In order to enhance the robustness of the CNN, we apply an ad-hoc
data augmentation strategy: we randomly remove some of the CIR samples in each window of
the training dataset, and then apply SPARCS’ IHT algorithm to reconstruct the spectrograms
(see Section 5.5.1). We repeat the process using a sparsity level of 1/8, 1/4 and 1/2, enlarging the
training dataset to 4 times its original size, for a total of approximately 1600 µD spectrograms per
activity. A randomly selected subset of the training data (around 10 %) was used as a validation
set to tune the CNN hyperparameters.

Test data

We test the CNN on the µD spectrograms obtained from CIR samples collected using the pdx/vwave
packet traces described in Section 5.5.2. We collect four, randomly selected, 20 s long traces (one
per activity) for each of the 3 sequences types (psu cs, library and ug). We repeat the experi-
ments for different values of the minimum number of sensing units per window,Ms = 4, 8, 16, 32, 64,
for a total of 60 test sequences. The test data involves a single subject, which was not included in
the training set.

HAR F1 score

We evaluate the performance of the CNN with the per-class F1 score metric [128], which effec-
tively summarizes the precision and recall and preserves the class-specific results. Fig. 5.7 shows
the total average per-class F1 score over the 60 sequences, for different values of the minimum
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Figure 5.7: Per-class F1 scores obtained by SPARCS (for different values of Ms) and RAPID on our test
dataset [31].

number of sensing units per window, Ms. As a baseline for comparison, we also report the F1
score obtained by the RAPID algorithm from [31], which extracts the µD signatures by regularly
sampling the CIR. Our results show that SPARCS can reach over 0.9 F1 scores on all activities
with Ms = 8 already, which corresponds to only 1/8 of the full measurements window. Notably,
with Ms = 4, the low number of measurements per window affects significantly only the ’Sit-
ting’ and ’Waving hands’ activities, which involve fine-grained movements and are therefore more
difficult to classify. Finally, we compare the results from SPARCS and RAPID [31]. For a fair
comparison, we implemented RAPID’s STFT to extract the µD and trained the CNN on the
resulting spectrograms without enlarging the dataset using different levels of sparsity described in
the previous section. Instead, we directly use the training procedure of [31], since we found that
the sparsity-based data augmentation slightly reduced RAPID’s performance. It can be seen that
SPARCS’ sparse recovery problem formulation (Section 5.3.2) and enforcing a sparsity constraint
on the individual paths is beneficial to HAR performance. The gap is particularly significant for
’Sitting’ and ’Waving hands’ as they involve lower energy traces in the spectrograms; these are
more easily corrupted by noise and interference, that SPARCS is mostly able to reject (see, again,
the comparison between Fig. 5.5b and Fig. 5.5d).

5.5.4 Overhead analysis
Increasing Ms to improve the HAR performance also increases the overhead of SPARCS. A first
general measure of this can be obtained comparing the maximum size of a PPDU in IEEE 802.11ay
to the size of a sensing unit. Recalling the three different modes introduced in Section 5.5.2 and
the size of an IEEE 802.11ay TRN field (768 bits), we obtain that a sensing unit, with nTRN = 1,
is 0.1%, 0.03% and 0.002% of a PPDU in HT, DMG and VHT, respectively. Moreover, the channel
occupation time for a sensing unit with nTRN = 1 is 436 ns [111], which is a negligible fraction
(0.16%) of a slot of duration Tc.

Next, to evaluate the overhead of SPARCS on a realistic communication scenario, we use the
traces of the pdx/vwave dataset. In this way, we can also assess the impact of injecting sensing
units, as they are not useful to the communication process. Denote by ci the number of bits in
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Figure 5.8: Overhead of SPARCS for different values of Ms in the three traces of the pdx/vwave dataset
(left). Overhead vs. average HAR F1 score for different values of Ms (right).

the i-th communication packet transmitted in the trace. As the number of bits transmitted in
each trace refers to a legacy, lower bitrate, Wi-Fi protocol, we rescaled the packet sizes according
to the maximum PHY layer packet size in IEEE 802.11ay. We rescaled the size of packet i in
each trace as c̃i = (PPDUay/PPDUpdx) × ci, with PPDUay = 262 kB. We call nc the number of
transmitted communication packets in a trace, by TRNlen the length, in bits, of a piggybacked or
injected TRN field, ninj the number of injected sensing units and nTRN the number of TRN fields
used in every sensing operation (we consider it fixed, whereas in reality it is determined by the
number of subjects in the environment). We define the overhead as a function of ninj as

OH(ninj) =
nTRN (nC + ninj)TRNlen∑nc

i=1 c̃i
. (5.9)

In Fig. 5.8, left, we show the overhead obtained on each of the three pdx/vwave traces, using
nTRN = 1. The overhead for different values of nTRN can be obtained by using it as a multiplicative
factor on the values in Fig. 5.8. We see that the overhead scales almost linearly as Ms is increased
from 4 to 64. For values of Ms < 32, the entailed overhead is less than 4%, falling below 1% for
Ms = 8 As a reference, we report the overhead forMs = 64, which is the value obtained by injecting
sensing units continuously into the channel, piggybacking them eventually on communication
packets if possible. Note that existing approaches requiring uniform CIR sampling, like RAPID
[31], would require an even higher overhead, as not only do they need 64 samples per window, but
these samples have to be regularly spaced as no resampling procedure is carried out. This means
they would have to take precedence over potential data packets so that they are sent exactly at
the right sampling time.

From Fig. 5.8, right, one can see that SPARCS can achieve an F1 score of over 0.9 for every
activity for a minimum ofMs = 8 sensing units per window, resulting in a sensing overhead of less
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than 1%. With this configuration, SPARCS achieves a better F1 score than existing approaches,
while reducing overhead by a factor of 7 and being compatible with random access MAC protocols.

5.5.5 Sensitivity to the choice of the parameters

In Fig. 5.9, we show the effect of varying parameters Q, representing the number of paths ag-
gregated around the person’s position (see Eq. (5.8)), and Ω, which is the maximum number of
resolvable Doppler components, equal to the sparsity parameter in the IHT algorithm. We com-
puted the HAR per-class F1 score using a random subset of the 60 test sequences. The values
adopted in our experiments are reported in Tab. 5.1.

Impact of changing Q

Our results show that SPARCS is robust to almost any value of Q when considering walking
and running, whereas sitting and waving hands are negatively affected by reducing Q below 7.
This is due to the fact that while walking and running are, in most cases, distinguishable even
from the sole contribution of the torso, this is not true for sitting and waving hands that require
including the reflection paths coming from the limbs. Computational complexity considerations
are also in order for high values of Q, as it leads to solving Q times Eq. (5.6) at each µD extraction
process. As the problems are independent, they can be solved in parallel, and thus a reasonable
approach is to tune Q according to a trade-off between µD reconstruction accuracy and hardware
resource availability for parallelization. In the following, we use Q = 9. Considering that we
use B = 1.76 GHz transmission bandwidth (1 IEEE 802.11ay channel), the range resolution of
SPARCS is c/2B = 8.5 cm. This means that summing the contribution of ⌊Q/2⌋ distance bins
before and after the one corresponding to the torso, we include in the spectrum a region of ±34 cm
around the person’s position, which is a reasonable value considering typical body sizes and that
the subjects are moving.

Impact of changing Ω

Fixing Q = 9, in Fig. 5.9 (right), we show that the best values for Ω are 2 and 3 for all the activities.
This is because using Ω = 1 often leads to only reconstructing the 0 Doppler component in the
spectrogram, losing the information on the person’s movement. On the other hand, choosing Ω too
high makes the IHT reconstruction imprecise, as with a low number of measurements per window
enforcing more sparsity is beneficial to restrict the number of possible solutions to Eq. (5.6).

5.6 Related work
Dedicated mmWave radars. The high sensitivity of mmWaves to micro-Doppler shifts, together
with DL methods for spectrogram analysis and classification, have been widely exploited to enable
applications such as activity recognition [3], [4], person identification [5], [12] and bio-mechanical
gait analysis [23]. The typical approach in these works is to transmit sequences of large bandwidth
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Figure 5.9: Per-class F1 scores aggregating a different number of paths Q (left) and changing Ω, the IHT
sparsity parameter (right).

signals (of 2 to 4 GHz), with a rate dictated by the desired sensing resolution [11]. Thus, mmWave
radar sensors have two main drawbacks:
(i) they are specifically tailored to sensing and cannot perform communication. Moreover, their
deployment cost is relatively high as one single sensor can reliably cover a range of at most
8 − 10 m due to the radial distortion and occlusion problems [90]. For this reason, ad-hoc radar
sensor networks would need to be deployed in practical scenarios. Our method, in contrast, fully
exploits existing mmWave communication systems with no modifications to the CIR estimation
process or packet structures.
(ii) The fixed chirp transmission interval, which is related to the µD resolution, requires regular
transmissions with continuous channel occupation. Some works have explored the possibility of
randomly subsampling the chirp transmission intervals using compressive sensing [29] to either
save computational resources [129] or reduce the effect of unwanted interference [130]. However,
these works are based on a radar framework, where the transmission instants can be freely chosen
and optimized. SPARCS, instead, reuses the given underlying communication traffic as much as
possible and only injects small additional sensing units when necessary.
60 GHz Wi-Fi sensing. Research interest towards sensing with Wi-Fi devices working in
the mmWave band has mostly focused on the 60 GHz IEEE 802.11ad/ay standards [28], [31], [96].
These works target various applications, such as person tracking and gesture recognition, exploiting
CIR estimation to detect humans in the environment. However, they require dedicated and regular
sensing signal transmissions in order to function properly, entailing a significant overhead and
channel utilization for sensing.

In this chapter we significantly improve over the above-mentioned studies by enabling the reuse
of randomly distributed communication packets via sparse recovery, whenever possible. This is of
key importance to integrate sensing capabilities in communication devices while maintaining low
overhead and complexity.
Integrated sensing and communication. A number of technical works address ISAC systems
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in next generation 5G/6G cellular networks [9], [27] and WLANs [10], [31]. Many of those target
the joint communication and sensing waveform design [131] and are mostly oriented to automo-
tive applications to measure distance and velocity of nearby vehicles. In contrast, few works focus
on human sensing [27], which is the aim of the present chapter. All the above approaches alter-
nate communication and sensing phases according to a time-division scheme, causing significant
overhead and channel occupation. SPARCS instead, provides a full ISAC scheme, as it passively
exploits communication traffic while dynamically injecting sensing units to cover silent periods.
As a result, our method significantly reduces sensing overhead while at the same time improving
the sensing accuracy.

5.7 Concluding remarks
In this chapter, we have designed and implemented SPARCS, the first mmWave ISAC system that
can sense human µD signatures from irregular and sparse CIR estimates. These are obtained in a
standard compliant way by both reusing optional CIR estimation fields appended to communica-
tion packets and sporadically injecting sensing packets whenever communication traffic is absent.
Differently from the existing ISAC methods, SPARCS is based on a sparse recovery approach
to the µD reconstruction, which is theoretically grounded in the intrinsic sparse multi-path en-
vironment of the mmWave channel. This enables an accurate µD extraction from a significantly
lower number of randomly distributed CIR samples, thus drastically reducing the sensing over-
head. After a CIR resampling step along the time domain, SPARCS performs an iterative sparse
reconstruction in the frequency domain, decoupling different propagation paths at first, to leverage
their sparsity property, and then combining them to obtain the final µD spectrum.

While SPARCS is compatible with different mmWave systems (e.g., 3GPP 5G-NR, and IEEE
60 GHz WLANs), for our implementation we used an IEEE 802.11ay SDR platform working in
the 60 GHz band. We tested our system on a large set of standard-compliant CIR traces matching
the traffic patterns of real Wi-Fi access points, performing a typical downstream application such
as HAR. Our results show that SPARCS entails over 7 times lower overhead compared to prior
methods, while achieving better performance.
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6
Concluding remarks

Remote, unobtrusive sensing of human activity through RF signals holds the potential to become
a key enabler for a variety of applications in healthcare, security, and monitoring of indoor and
outdoor spaces. Two parallel approaches to the problem have been proposed by researchers. On the
one hand, mmWave MIMO radar devices have been adopted to detect, track, and classify human
activity in monitoring systems. The use of mmWaves provides fine-grained accuracy in capturing
the features of human movement embedded in the reflected waveforms. However, radar sensors
require ad-hoc installation and can only provide sensing functionalities, entailing high deployment
costs. On the other hand, a large body of work has focused on Wi-Fi-based human activity
sensing using commercial routers working in the sub-6 GHz band, to reuse existing communication
hardware and avoid costly dedicated radar sensors. The downside of these systems is that they
typically provide much lower accuracy than mmWave radars, due to their relatively low bandwidth
and carrier frequency.

In this thesis, we made our contribution toward striking a balance between these two approaches.
In Chapters 2 and 3, we focused on advanced mmWave radar sensing techniques to extract and
recognize gait features from subjects walking in the environment. At first, we developed an
integrated signal processing and deep learning method to recognize the identity of a person from
their individual way of walking, proposing a solution that is both accurate, fast, and deployable
on commercial edge computers. Secondly, we studied methods to improve the system, making
it capable of (i) recognizing people on the fly with only a few seconds of observation time, and
(ii) fusing the radar information with that obtained from a thermal camera, enabling joint body
temperature screening, interpersonal distance monitoring, and contact tracing.

In the second part of the thesis, Chapters 4 and 5, we tackled the problem of Integrated
Sensing And Communication (ISAC), exploring the use of mmWave communication networks as
an appealing trade-off between mmWave radars and sub-6 GHz Wi-Fi sensing. In this sense,
we presented an effective way to repurpose mmWave Wi-Fi, i.e., Wi-Gig, to perform radar-like
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sensing of human movement in indoor environments. The resulting system is capable of tracking
multiple subjects at the same time while recognizing the activities they are performing, and
their identity from gait characteristics. Then, we improved this system to fully integrate sensing
with communication, proposing the first method to extract fine-grained micro-Doppler features
of human movement from sparse and random communication traffic. For this, we leveraged the
sparsity of the mmWave channel to reduce the sensing overhead and channel utilization, taking a
step toward fully integrating sensing and communication.

In the following, we discuss future research directions stemming from the present work.

6.1 Future research directions
We identify three main research directions that require further development.

Networked sensing. The extension of the sensing paradigm to multiple, networked RF de-
vices, can be an effective way to deal with the frequent blockage events that can happen at
mmWave frequencies, especially when multiple subjects move in the same physical environment.
This would allow covering bigger spaces, while also getting better results in the presence of occlu-
sions. The networking aspect has to be explored for both ad-hoc radar devices and ISAC systems,
which offer intrinsic communication capabilities. In this context, it is key to develop data fusion
and collaborative sensing algorithms for sensors with overlapping fields of view, towards providing
improved resilience to occlusions and better human tracking performance.

Multi-band ISAC. Future communication systems are expected to dynamically switch among
different frequency bands to cope with deep mmWave channel fades and guarantee minimal com-
munication service. A promising future direction is the design of novel strategies for ISAC that
jointly leverage radio signals at different frequencies, i.e., on the sub-6 GHz and the mmWave
bands of the radio spectrum. This allows combining sensing data with different characteristics,
thus obtaining more detailed information on the surrounding environment that can be used to
enhance system reliability and robustness. Specifically, high frequencies are very promising for
sensing as they allow reaching high resolution by transmitting signals with wide bandwidth. How-
ever, such radio waves are blocked by obstacles in the propagation environment. In this case,
signals at lower frequencies can help as they propagate through obstacles allowing one to still
perform sensing, although at a lower resolution (due to the limited bandwidth).

Medium access control for ISAC. While there is a great research interest in PHY layer
design for ISAC systems, little has been done yet to handle the competing needs of sensing and
communication to access the same underlying radio channel. For this reason, we envision that an
important challenge in the next few years will be the design of efficient and, possibly, distributed
medium access control protocols that guarantee a fair and optimized sharing of the radio channel.
In particular, the integration of beam management strategies that account for sensing metrics
into communication protocols will be a key aspect to reach a full integration between sensing and
communication.
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