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Abstract

Future wireless networks would be responsible to integrate large number of

devices with variety of Quality of Service (QoS)/Quality of Experience (QoE) re-

quirements. The sheer volume of devices arises a need to anticipate the behaviour

of these devices so as to design a system capable of satisfying the QoS/QoE re-

quirements. Due to this reason, in the recent years, anticipatory networking

has become one of the core research fields in wireless communication. Anticipa-

tory Networking signifies the information that can be predicted, the techniques

that can be used to predict such information and the optimization techniques

that can potentially utilize such predictions to improve the performance of the

wireless network. However, designing anticipatory networking systems becomes

increasingly challenging when considering the variability in application scenarios

envisioned for future wireless networks. So, analysis of anticipatory networking

techniques taking into account the system wide performance for variety of wire-

less communication scenarios is very crucial. Hence, to obtain a complete view of

anticipatory networking in wireless networks, we present a brief overview of the

works partaken in the literature and then explain the multiple works undertaken

pertaining to the design and analysis of anticipatory networking techniques from

a system wide perspective at Physical, Network, Transport and Application Layers.
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Sommario

Le reti wireless del futuro dovranno integrare un gran numero di dispositivi

con diversi requisiti di qualità del servizio (QoS)/qualità dell’esperienza (QoE).

L’enorme quantità di dispositivi fa sorgere la necessità di anticiparne il comporta-

mento per progettare un sistema in grado di soddisfare i requisiti di QoS/QoE.

Per questo motivo, negli ultimi anni, l’anticipazione delle reti è diventata uno

dei principali campi di ricerca nel settore delle comunicazioni wireless. Per rete

anticipatrice si intendono le informazioni che possono essere previste, le tecniche

che possono essere utilizzate per prevedere tali informazioni e le tecniche di

ottimizzazione che possono potenzialmente utilizzare tali previsioni per miglio-

rare le prestazioni della rete wireless. Tuttavia, la progettazione di sistemi di

rete anticipatori diventa sempre più impegnativa se si considera la variabilità

degli scenari applicativi previsti per le future reti wireless. Pertanto, l’analisi

delle tecniche di rete anticipatrici che tengono conto delle prestazioni dell’intero

sistema per una varietà di scenari di comunicazione wireless è molto importante.

Per questo motivo, al fine di ottenere una visione completa della rete anticipatrice

nelle reti wireless, presentiamo una breve panoramica dei lavori presenti in let-

teratura e spieghiamo i molteplici lavori intrapresi per la progettazione e l’analisi

delle tecniche di rete anticipatrici da una prospettiva di sistema a livello fisico, di

rete, di trasporto e di applicazione.
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1Introduction

Design of next generation wireless networks needs to combine different com-

munication technologies for a variety of applications thereby leading to a high

number of devices needed to be integrated and handled efficiently. Hence, the

need for network optimization in next generation wireless networks, such as

Beyond 5G and 6G, has become very important to integrate a large number of

devices with different application requirements in conjunction with advanced re-

source management algorithms to maintain an appreciable quality of service and

quality of experience for all users. Satisfying these requirements with traditional

optimization schemes would result in high computational costs to find optimal

solutions for different types of applications. In order to handle the largely variable

requirements, prediction and estimation of wireless network state parameters,

such as channel state, user data requirement, user mobility, are necessary to

determine optimal network configurations for a certain application at certain

time for a certain user. Hence, to predict the network behaviour, the system must

continuously track the network and device specific parameters, such as Channel

State Information (CSI), user mobility, etc.

These network and device specific parameter predictions in wireless networks,

however, are a huge challenge, due to the inherent randomness of the wireless

systems. Additionally, the goal of network parameter prediction is to devise net-

working scenarios while accounting for the different moving parts of a wide and

complex system and optimizing a particular function by exploiting information

coming from other parts of the system.

This basic idea of system wide focus for optimization can be explored in a variety

of different ways. Hence, in this thesis, we provide a brief overview of the works

that have been explored in such directions for different wireless communication

scenarios. We then highlight the possibility of improving the performance of a

wireless communication system by exploiting exogenous information, such as

the channel state information and geographical position of the wireless nodes

as well as network specific information, such as available capacity. We consider

such information to jointly optimize communication performance for novel spa-

tial access schemes such as Rate Splitting, for dynamic networking scenarios

such as Unmanned Aerial Vehicle (UAV) networks and novel communication
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scenarios such as tactile internet and autonomous driving which have to account

for available communication resources to satisfy the overall Quality of Service

(QoS)/Quality of Experience (QoE) requirements of the system.

Hence, the goal of the thesis is to introduce the concept of anticipatory net-

working and the different facets such as anticipatory information, anticipatory

techniques and anticipatory optimisation and then to provide a detailed descrip-

tion of works undertaken in anticipatory networking from the physical layer

to the application layer. So, the rest of the thesis is structured as follows. In

Chapter 2, we provide a detail overview of different works partaken in antici-

patory networking. We present the different works that highlight anticipatory

information obtainable in wireless networks, associated techniques that can be

used to obtain such information and works that present the usage of anticipa-

tory techniques at different layers. In Chapter 3, we presents a physical layer

clustering mechanism for Joint Spatial Division Multiplexing (JSDM) in wireless

networks. The clustering mechanism determines optimal clusters that maximises

the spatial performance obtained for each user in the area while significantly

reducing computational complexity with respect to the state of the art. Chap-

ters 4, 5 and 6 highlights the different works undertaken for communication in

Flying Ad-Hoc Networks (FANETs). FANETs refer to a network of UAVs that are

deployed to accomplish a specific task or function. In these works, we focus on

application of FANETs for tracking and monitoring in military and disaster related

scenarios. In Chapter 4, we provide a background of FANETs and present a brief

literature review regarding communication design for FANETs for tracking and

monitoring applications and the related challenges in FANETs. In Chapter 5, we

present works regarding route establishment, reliability and stability that take

into account mobility prediction of the UAVs for tracking applications in FANETs.

In Chapter 6, we extend the works in 5 by introducing beamforming design for

routing in FANETs thereby providing a joint beamforming and routing design

based on mobility prediction of UAVs. We highlight different works that design

beamforming and routing based on mobility prediction of the UAVs to maximise

the overall performance over the communication route. In Chapter 7, we shift the

focus to a novel information scheduling problem that needs to take into account

the predicted network capacity to maximise the QoE for future applications such

as tactile internet and autonomous driving. Lastly, Chapter 8 provides an overall

conclusion for the thesis.

2 Chapter 1 Introduction



2Anticipatory Techniques for Wireless

Network Optimization

Next generation wireless networks attempt to combine different types of devices

with varying QoS/QoE requirements. To satisfy these requirements, there is a

need to anticipate different types of information that can be gathered from the

wireless network and define optimisation techniques to satisfy the application

requirements. In this chapter, we present the contextual information obtainable

in wireless networks and the anticipatory techniques that can harness such

information to define optimisation techniques for various applications across the

different layers.

2.1 Contextual Information for Wireless Networks

Wireless Networks incorporate a ton of contextual information which can be very

useful for their optimization. User information such as position and mobility as

well as Received Signal Strength Indicator (RSSI) and Channel State Information

(CSI) provide essential information which can be used by the wireless systems to

allocate resources and improve performance of the wireless network.

2.1.1 Geographical Context

Geographical context refers to the user information related to the physical envi-

ronment. Prominently geographical context includes the position and mobility

information regarding the users in the network, and also their trajectories. The

difference between mobility and trajectory is that mobility refers to the prediction

of the next position of the user, while trajectory refers to the prediction of the

whole path of the mobile user. This information is essential while determining the

configuration of the network and the requirements of the users so as to provide

maximum QoS and QoE to the users.

2.1.1.1 Position Prediction

Position and mobility information is one of the most important contextual in-

formation to configure and manage a wireless system. Traditionally, the users

periodically communicate their position information to the network infrastruc-

ture. But, with increase in the number of devices in the future wireless networks,

3



these periodic updates may become difficult and may lead to loss in performance

for the users. Also, the performance of the system depends on the accuracy of

the position updates as well. To accommodate the increase in the number of

devices as well as the accuracy of the position updates, the research has focussed

on predicting the future position of the users, and on developing mobility models

so as to predict the movement of the users in the network.

To predict positions, multiple different methods have been proposed, from tra-

ditional algorithms such as Kalman filter based prediction schemes, to novel

data driven models such as machine learning, deep learning and reinforcement

learning based prediction schemes. In [1], a Deep Reinforcement Learning (DRL)

algorithm for unsupervised location prediction is presented. The algorithm mod-

els the position of the Internet of Things (IoT) devices as a Markov Decision

Process (MDP) and trains a DRL agent using RSSI gathered from the IoT devices

to predict unknown position of the devices. In [2], the position of users is deter-

mined based on the phase, time of arrival, angle of arrival and signal strength

of the mmWave signals. It also presents an idea of using a machine learning

algorithm to learn the signal strength, time of arrival and angle of arrival values

and predict the location of the users. Following that, in [3], a map based position

estimation mechanism is presented based on the attributes similar to those used

in the previous work, i.e., angle of arrival and time of arrival, but also adds a

multipath component which exploits the multipath nature of mmWave signals

in the environment. Based on these information, a map of the environment is

created by the system and the location of the user is determined based on the

values obtained for the considered attributes. In [4], the authors use a temporal

convolutional networks to determine the position estimates based on mmWave

beam tracking. The temporal convolutional networks takes into account the

mmWave beam signals from the user over a period of time and provides position

estimates based on the previous position and trajectory. In [5], each node cal-

culates an area of coverage based on the probability of existence for the node

to be in its coverage range. In [6], the authors created a dataset based on the

RSSI and a random mobility model and trained a deep neural network to predict

the future position of the users based on the RSSI. In [7], a dual Hidden Markov

Model (HMM) is proposed. The first HMM predicts the position based on the

WiFi RSSI and provides that as an input to the second HMM to determine the

optimal Access Point (AP) based on the position estimate. Other approaches for

the position and location prediction in different types of networks can be found

in the surveys [8, 9].
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2.1.1.2 Mobility and Trajectory Prediction

Mobility and Trajectory prediction enables the system to determine future posi-

tions of the user and optimize the system based on this information. To determine

trajectory information about a user, the system has to take into account past

positions over a period of time and predict the trajectory based on those positions.

In [10], the position estimates are provided using Kalman filters to determine

the position and trajectory of the vehicles in the network and find the optimal

next hop for routing. In [11], a Gaussian Mixed Model (GMM) is proposed which

takes into account the position information over time from Global Positioning

System (GPS) coordinates and determines the trajectory. It also incorporates the

noise in the position information by modeling the position with a Gaussian Distri-

bution. A maximum likelihood algorithm is used to estimate the motion based

on the position information and a Gaussian Process Regression (GPR) is used to

predict the trajectory of the vehicle based on the trajectory data. In [12], two

Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) and Echo

State Network (ESN), are used to determine the trajectory for predicting resource

allocation. In [13], user movement is predicted based on the GPS coordinates

and timestamps collected from Twitter and training an ESN based on the position

to determine the trajectory of the users. In [14], a LSTM is proposed to predict

future position and using dead reckoning method to predict the trajectory based

on the predicted position.

2.1.1.3 Uncertainties in Predictions

Prediction algorithms discussed previously are not always 100 % accurate, i.e.,

uncertainties exist in the prediction algorithms. These uncertainties are impor-

tant to take into account, as large uncertainties in the predictions make them

impossible to be used meaningfully for network optimizations. So it is important

to take that into account, especially when prediction accuracy can be very crucial

for optimizing the network. In [10], the location prediction is determined by

Kalman filter. But Kalman filter predictions have uncertainty. To tackle that, a

mean squared error is calculated to determine the quality of the prediction. In

[15], the uncertainty is predicted using deep neural networks in wireless finger-

printing based on dead reckoning. In [16], the uncertainty in three dimensional

localization, based on RSSI, Time of Arrival (TOA), Time Difference of Arrival

(TDOA), Angle of Arrival (AoA) and Symmetric Double Sided Two Way Rang-

ing (SDS-TWR), is calculated based on sensitivity factor determined by partial

differential equations. Based on the uncertainty calculated, the propagation of

uncertainty in the position from each of the factors is determined.
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2.1.2 Communication Link Context

Communication Link Context refers to the contextual information regarding the

physical and abstract attributes of the wireless medium. Primarily, communication

link refers to the channel over which the communication takes place, which is

a physical attribute, as well as the quality of the channel or link, which is an

abstract attribute based on the physical attribute. The link context information

is crucial in wireless communication due to highly dynamic nature of wireless

channels which leads to performance variations that are critical in a network

containing a large number of devices.

2.1.2.1 Channel State Prediction

To determine the channel state, the system needs to gather continuous CSI

updates from the user. But continuous updates increase the overhead especially

for a network containing a large number of devices. In [17], the CSI is obtained

for the uplink channel and then used to predict the state in the downlink channel.

To this end, a deep neural network called SCNet is proposed which takes into

account the uplink channel state for a Frequency Division Duplexing (FDD)

Multiple Input, Multiple Output (MIMO) system and predicts the downlink

channel state. In [18], an LSTM is proposed to predict the next CSI based

on the previous CSI. The LSTM structure is trained on the dataset created by

gathering CSI obtained from a Rayleigh fading channel and then used to predict

the next channel states based on previous channel states in a rolling prediction

fashion (previous predictions are used to determine the next predictions). In

[19], a combination of Convolutional Neural Network (CNN) and LSTM called

OCEAN is used to predict CSI. A combination of frequency band, location, time,

temperature, humidity, and weather conditions is used to train the network offline

(historical data) and online (current data) and provides an online prediction

for the channel state. In [20], a combination of Feed Forward Neural Network

(FNN) and Radial Basis Function Neural Network (RBF-NN) is used to predict

the channel parameters. The network is trained using an input of Transmitter

(Tx) and Receiver (Rx) coordinates, Tx-Rx distance and carrier frequency, which

are determined using real time measurements and a Geometry based Stochastic

Model (GBSM). In [21], an LSTM is used to predict the channel state. The

training dataset for the LSTM model is gathered by using the IEEE802.11p in-

phase and quadrature-phase signals to gather the channel information using

algorithms such as down sampling, frame detection, symbol alignment, frequency

offset correction and training sequence extraction. The LSTM model is trained
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using the channel information obtained and then used to predict channel quality

in vehicular networks.

2.1.2.2 Link State Prediction

Link State is an abstract attribute that is computed by Layers 2 and above to

incorporate the quality of the physical channel in system design for different

applications. Hence, link state prediction is crucial especially when determining

the link quality to calculate metrics for data transmission so as to achieve an

optimal network performance. In [22], a routing metric is proposed based on

link quality estimation based on RSSI and Average Link Quality (ALQ), which is

determined based on past measurements. Based on the link estimation, the next

hop is chosen for routing in vehicular ad-hoc networks. In [23], the physical link

is modelled based on the transmission energy consumption and a Mixed Integer

Programming (MIP) optimization problem is presented which is solved by a deep

neural network. In [24], a prediction algorithm is presented that anticipates

link quality metric such as Expected Transmission Count (ETX) and Expected

Transmission Time (ETT) to optimise the Optimized Link State Routing (OLSR)

protocol. The link quality metric is predicted based on signal strength, which in

turn is predicted based on linear regression. In [25], the Cross-layer Interference

and Delay Aware Metric (CL-IDA) is estimated using multiple different machine

learning techniques, such as multiple linear regression, support vector regression

and Gaussian regression, and used as a metric for OLSR. In [26], a link quality

state model is presented and based on the link quality model, a Kalman filter

based link reliability prediction algorithm called Radio Link Reliability Prediction

(RLRP) is presented which predicts the bounds of the reliability of existence of

the link for the network.

2.1.3 Traffic Context

Traffic Context refers to the data traffic that is encountered in the wireless

networks. Accurately predicting traffic demands in the network can be really

crucial to satisfy the QoS and QoE requirements of the users, especially in a

network containing a large number of devices.

2.1.3.1 Traffic Prediction

In [27], a traffic prediction algorithm called Coca-Predict based on traffic correla-

tion and causality is presented. The algorithm uses correlation between traffic

flows over time and over different cells in the area as well as traffic flows due

to mobility and social events to predict the traffic at a particular place and time.

The algorithm uses Auto Regression Integrated Moving Average (ARIMA), Deep

Neural Network (DNN), Gradient Boosting Decision Tree (GBDT) and LightGBM
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[28]. In [29], an exponential smoothing is used to predict the traffic generated

by the nodes in each duty cycle in Wireless Sensor Network (WSN). In [30], a

Deep Belief Network and Gaussian Model (DBNG) is used to predict the traffic.

The DBNG is used to predict the network traffic, which is modelled based on

the previous traffic information and fluctuations in a Wireless Mesh Network

(WMN). In [31], a Spatial-Temporal Cross-domain Neural Network (STC-Net) is

presented which is trained via transfer learning, by using traffic information from

clusters in the cellular network. In [32], a combination of a CNN and a parameter

estimator is used to predict city-wide traffic. The parameter estimator is based

on the distance between two cells in the cellular network of the city. In [33], a

Gaussian Process based predictor is presented, which takes live data from the

radio access networks and predicts traffic for a load-aware management tasks.

2.1.3.2 Performance Analysis based on Traffic Analysis

Traffic prediction is not the only thing that can be considered to improve the

system. Prediction of the performance for a certain type of traffic is also necessary.

Performance prediction provides a good indication of the network configurations

for a certain type of traffic. This helps in determining the network configurations

that can be used in different scenarios. In [34], throughput is predicted based on

the maximisation of the local and global optimization problems, which address

the traffic local to the user and as a whole in the network respectively. The

throughput prediction is used to devise a scheduling based on Carrier Sense

Multiple Access (CSMA) threshold. In [35], a channel throughput predictor is

devised, which takes into account the video streaming demand of the users in

the cellular network and caches information at the nearest edge to obtain the

required QoE. The predictor is devised as a optimization problem that takes into

account channel utilization and buffer occupancy of the user to calculate the

maximum throughput. In [36], a throughput predictor is designed based on

device level data such as application and Operating System (OS) information and

network level data such as channel quality and cell load in cellular network. The

throughput predictor is designed using three different machine and deep learning

techniques namely random forest, Support Vector Machine (SVM) and LSTM.

In [37], a machine learning based prediction algorithm is presented to predict

average throughput for video streaming applications. To predict the average

throughput, the RSRP, RSRQ values for primary and neighbouring cell and SNR

and CQI. In [38], the throughput prediction is designed for IEEE 802.11 networks.

The predictor takes into account the relationship between two metrics which

is devised from interference offered by multiple access points using directional

antennas and omni-directional antennas.
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2.1.4 Social Context

Social Context refers to the social information about the user in the wireless

network. Social information contains the information regarding user interests

and content preferences, mobility trends for the users and concentration of

user-defined content in the network.

2.1.4.1 Social Context based caching

Caching refers to the temporary storage of content at the edge of the network so

as to reduce load on the core networks for multiple redundant requests of the

same content. Social context-based caching is necessary as it stores information

locally, based on the user interests and other geographical and network specific

aspects such as location and mobility of the users in the network. In [39],

Proactive Caching-based Mobility Prediction (PCMP) is proposed, which predicts

the nearest Road Side Unit (RSU) for caching information based on user content

requests and mobility in Vehicular Ad-Hoc Networks (VANETs). The predictor

is designed using an LSTM that takes into account the mobility information

and predicts the next RSU and proactively caches information requested by the

user. In [40], a logical topology is defined by combining mobile users based on

their behaviours so as to create a mobile ad-hoc cloud network and optimize

the network delay for computing operations. In [41], a Reinforcement Learning

(RL) scheme is proposed to take into account the mobility in VANET. A deep Q

algorithm is used to devise the optimal caching and computing allocation scheme

based on the mobility of the users in the network. In [42], a social prediction

algorithm using HMM based on user behaviour in social network is presented.

Based on the user behaviour predictions, local cache is defined which stores the

content based on the popularity predicted on the user behaviours.

2.1.4.2 Social Context based Mobility Prediction

Sometimes the system is not able to obtain mobility information from the users.

To address such cases, a social context, such as previous interactions of the users

with the system can be used to devise the mobility of the users. In [43], a Short

Message Service (SMS) based mobility prediction scheme is defined by using

SMS data to determine the location of the user and predict the mobility using

two different algorithms, a Multi-Connectivity (MC) model and Naive Bayes (NB)

model. In [39], as discussed earlier, an LSTM based mobility prediction scheme

is proposed. The proposed Proactive Caching-based Mobility Prediction (PCMP)

predicts the nearest RSU for caching information based on user content requests

and mobility in VANETs. Additionally, in [44], a survey of different mobility

prediction models based on social interaction in urban areas is presented.
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2.1.4.3 Social Context based Access Control

Social context can be considered to devise efficient access control and resource

allocation schemes. Information such as social mobility in the network can

be used to determine demand at different times of the day and year, so as to

efficiently optimize the system. In [41], as discussed previously, an RL scheme

is proposed to take into account the mobility in VANET. A deep Q algorithm

is used to devise the optimal caching and computing allocation schemes based

on the mobility of the users in the network. In [45], an ARIMA model is used

to take into account user behaviour in device-to-device (D2D) networks and

predict an optimal resource allocation strategy. It also takes into account the

social correlations between users so as to optimize the overall network utility in a

social community, i.e., a pool of users who have similar interests and behaviours.

Additionally, in [46], an overall survey of socially aware resource allocation

scheme in D2D networks is presented.

2.2 Anticipatory Techniques

The different types of information discussed in the previous section leads to

design of different types of anticipatory techniques for such information. This

section will provide information and discuss the recent works on anticipatory

networking, which apply different techniques to forecast further networking

information based on contextual information obtained from network.

We have divided these techniques into three main categories and discussed them

in details. These categories include: 1) time series prediction, that predict future

values based on previously observed values; 2) Probabilistic forecasting methods,

that make statements about the likelihood of the future events, based on available

information; 3) Data-driven approaches, such as clustering, classification and

regression that learn to make predictions by only relaying on data. In the

following subsections, we discussed these methods and their applications in

anticipatory networking.

2.2.1 Time Series Prediction

The complex varying nature of wireless channel has been a subject of study of

researchers for many years. Knowing how the channel behave can provide plen-

tiful competitive advantages in terms of radio resource management, allowing

for instance network operators to expand services for more users with the same

amount of network resources, while also maintaining strict QoS. Power control,

resource blocks allocation, coding rate, transmit antennas, precoding codeword

and constellation size are examples of transmission parameters that can be ad-
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justed according to the prior knowledge of the channel condition, especially for

applications that demand critical network requirements, such as Industry 4.0,

tactile communication and IoT.

To achieve this potential, we need to transmit signals in a closed-loop man-

ner, receiving the CSI as a feedback from the receiver. This information can

be understood as a time series that represents an estimation of the channel

condition, describing the combined effect of, for instance, scattering, fading,

and power decay. Nevertheless, this estimation might not be always precise.

Either in frequency-division duplex (FDD) or time-division duplex (TDD) systems,

problems of estimation accuracy are still raised, especially in high mobility or

high frequency scenarios. This can be a serious shortcoming, notably when it

comes beyond 5G and 6G network requirements, which are expected to increas-

ingly explore the use of millimetre waves under high speed scenarios, such as

autonomous vehicles and aerial navigation systems.

As precisely summarized in [47] and [48], many authors have been extensively

demonstrating the impact of CSI inaccuracy over a wide variety of adaptive

transmissions techniques, such as MIMO systems [49, 50, 51], beam-forming [52,

53], antenna selection [54], mobility management [55, 56], precoding [57],

interference coordination [58, 59] and relaying [60, 61].

In this regard, many authors have been proposing solutions to cope outdated CSI

issues [48], which can be mostly categorized into three different classes:

1. sub-optimal methods [62], where imperfect CSI is assumed and only part

of the full performance potential can be achieved;

2. passive methods [63], in which wireless resources (frequency, power, time,

etc) are used to passively compensate the performance loss;

3. channel prediction methods [64], in which the main idea is trying to forecast

the channel behavior in advance (future CSI values), without using any

additional wireless resource.

In the past few years, prediction methods have been gaining increasingly more

attention from researchers due to their impact on performance and efficient use of

radio resources [47]. More in details we can distinguish the prediction methods

according to two different models: autoregressive (AR) [65] and parametric

(PR) [66]. Both represent classical approaches to establish a statistical modeling

of the wireless channel. The PR models rely on estimating fading channel

parameters (e.g., Doppler shift, delay spread, angles of arrival, etc), which is a

process that can demand high computational complexity and be vulnerable to
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changes at the scenario. The AR models, in turn, are based on an autoregressive

process to extrapolate future CSI values by linearly combining past and current

CSI measures. Besides its simplicity compared to the PR approach, the AR models

are very susceptible to additive noise [67] and not really deployed in practice.

More recently, an alternative methodology using Machine Learning (ML) has

been raising as a promising candidate to enhance prediction methods [47]. Its

biggest advantage is that the data-driven nature of ML can replace statistical

modeling of the channel, thus avoiding all the drawbacks involving parameters

estimation and additive noise handling. In this regard, many authors have been

exploring ML techniques in different prediction tasks. In [68] and [69], the

authors applied LSTM networks to tackle classical channel estimation problems,

including high speed scenarios. In [70], the authors propose a CNN, a technique

typically used in computer vision tasks, to extract complex CSI features from

the channel and predicting CSI aging. A solution for MIMO channel prediction

problem was proposed by the authors in [71] and [72] using RNNs. The authors

in [73] propose a novel CSI prediction scheme for improving the performance of

massive MIMO, Non-Orthogonal Multiple Access (NOMA), Coordinated Multi-

point (CoMP), and physical layer security by applying multi-hidden layer neural

network. The work proposed by the authors in [74] provides a very insightful

application of LSTM and CNN models for predicting the CSI values in downlink

channel by using information from uplink channel. Likewise, the authors in [75]

extrapolates the downlink CSI values from observed uplink CSI information, but

also considering both Single-Input Single-Output (SISO) and MIMO scenarios.

This new proposed scheme actually outperforms the classic Wiener filter-based

approach.

2.2.2 Probabilistic Forecasting

Probabilistic forecasting methods employ available information of system to make

statements about the likelihood of the future events. In the following subsections

we introduce two well-known statistical methods for probabilistic forecasting:

Markovian Models and Bayesian inference.

2.2.2.1 Markovian Models

A Markov model is a stochastic model used to represent random changing systems

in which future states only depend on the current state. This section will provide

information about MC, and its applications in anticipatory networking.
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A (Discrete-time) MC is a sequence of random variables X1, X2, X3, ..., where,

probability of moving to the next state, is independent from the previous states

and only depends on the current state (Markov property):

P (Xn+1 = x♣X1 = x1, X2 = x2, ..., Xn = xn) = P (Xn+1 = x♣Xn = xn). (2.1)

MCs can be represented by a state-flow diagram, i.e., a directed graph in which

the nodes indicate the states and the edges specify the probability of moving from

one state to another. Figure 2.1 shows a classical example of MC that models

the "weather" process with three possible states: {Sunny, Rainy, Snowy}. As an

example consider the observed state in the present time step is Sunny, then the

probability that MC takes value Sunny, Rainy, Snowy, in the next time step, is

0.8, 0.19 and 0.01, respectively. The sum of all probability values of the outward

edges from any state is equal to 1.

Sunny Rainy

Snowy

0.8

0.01

0.19

0.7

0.2

0.1

0.7

0.2

0.1

Figure 2.1: Example of state flow diagram of a MC.

Having the Markov transition probabilities, and the stationary distribution of the

MC states could help to predict the behavior and the state of the system in future

time steps. Markov modes have already been applied in wireless communication

networks, mostly for user and vehicle positioning and mobility forecasting.

Several MC-based approaches have been proposed to predict the mobility and

trajectory of locations of vehicles [76] and users [77, 78] in VANETs [76], Het-

erogeneous Cloud Radio Access Networks (HCRANs) [79], and WSNs [80],

employing different models such as Hidden Markov Model (HMM) [81], second-
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order Markov [82], and temporal Markov models [83]. The predicted mobility

information can be used for different purposes like access point or service node

selection [84, 85], routing in VANETs [86] or WSNs [80, 87] and traffic manage-

ment [88]. To achieve more accurate results, some works have jointly applied

Markov models with other techniques such as classification [89] and LSTM [90].

The Spatio-temporal correlation that existed in users’ mobility patterns has also

been investigated in some literature [91, 92, 93]. The method in [91] takes

into account the non-Gaussian characteristics and Spatio-temporal correlation

of real human mobility data to present a Markov model for the human mobility

prediction.

The authors of [92] proposed a hybrid MC model that can adaptively apply first

or second-order MC to predict the future location of users, based on the quality of

the mobility traces. They further presented the Zone of Interest discovery scheme

in urban areas, utilizing the Spatio-temporal analysis. A HMM-based mechanism,

namely CityTracker, is presented in [93]. It predicts the individual’s trajectory

and analyzes the representative citywide crowd mobility. The proposed algorithm

can achieve a representative crowd mobility visualization in the target area by

integrating individual trajectories. Markov models have also been applied in

prediction of other networking parameters like as signal fading [94], energy [95],

node status in WSNs [96] and indoor positioning [45]. A distributed probabilistic

approach based on Hidden Gaussian Markov Model (HGMM) presented in [97],

to predict sensor failure in WSNs.

2.2.2.2 Bayesian Inference

Bayesian inference is a statistical method that applies the Bayes theorem to

update the probability of a hypothesis given new information. In fact, the

Bayesian inference derives the posterior probability, given the prior probability of

hypothesis and a likelihood function, applying the Bayes’ theorem:

p(θ ♣ y) =
p(y ♣ θ) · p(θ)

p(y)
, (2.2)

where y and θ represent the data and the hypothesis whose probability may be

affected by data. p(θ) indicates the prior probability (probability of θ before y

data is observed). p(θ♣y) is the posterior probability (probability of θ, given y).

p(y♣θ), called likelihood, represents the probability of y given θ.

Recently, Bayesian inferences have been applied to predict different networking

parameters from mobility [98] to channel gain [99] and reliability [100]. The

work in [98] employed Bayesian inference to devise a mobility prediction model

for WSN. The authors of [101] presented a feature-based Bayesian method for

14 Chapter 2 Anticipatory Techniques for Wireless Network Optimization



content requests and popularity prediction in edge-caching networks. The authors

of [100] proposed a service prediction model and applied the Bayesian network

method to learn and predict the reliability of the mobile wireless network. A

channel gain prediction method for mobile users that exploits the Spatio-temporal

correlation in a Bayesian framework is presented in [99]. Traffic prediction is

another application that has been considered in some recent works. A prediction

algorithm is proposed in [102] based on the Bayesian Spatio-temporal model

to predict the spatial distribution of traffic in the cellular network at different

moments. In [103], a wireless traffic prediction is presented based on Bayesian

seasonal adjustment.

2.2.3 Clustering, classiĄcation, and Regression

Clustering, classification, and regression are three of the most frequently used

techniques for extracting useful information and predicting incidents in different

applications. In this subsection, we discuss a few selected methods in two main

categories: similarity-based approaches and regression analysis.

2.2.3.1 Similarity-Based Approaches

The main goal in similarity-based approaches is to learn a similarity function

between objects to reveal the similar latent structures in a dataset. They have

a great variety of use cases in different applications, including ranking, recom-

mendation systems, face verification, and speaker verification. These techniques

have also been applied to anticipatory networking literature, which will be briefly

discussed in the following, with reference to three main categories.

Collaborative Filtering (CF)

In collaborative filtering, which has been widely applied to recommendation

systems, the underlying assumption is that if two people have the same opinion

on an issue, they are more likely to have similar opinions on other issues. Based

on this assumption, the CF techniques try to predict a user’s opinion on an issue

that is not rated by the user, given the preferences of other users.

Since there are a few comprehensive surveys on CF [104, 105, 106], we briefly

introduce the concepts of CF, related to anticipatory networking in this section.

In CF techniques, we usually have a matrix of size nu × nc in which nu is the

number of users, and nc is the number of contents. The goal is to predict the

missing values in this matrix.

There are two major categories of CF techniques: memory-based and model-

based. In the memory-based methods, similar users are identified using similarity

metrics like cosine similarity or Pearson correlation, and then the missing values

are predicted using a weighted average over the ratings of the similar users on
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the contents. Model-based approaches are another broad group of methods for

CF in which machine learning algorithms including K-Nearest Neighbors (KNN),

Singular Value Decomposition (SVD), Matrix Factorization (MF) and Artificial

Neural Network (ANN) are used to estimate the ratings of the unrated contents

in the matrix.

Network caching is one of the critical concepts in ensuring QoE to the users.

In [107], the authors have recently published a thorough survey on caching

strategies and techniques on mobile edge, in which several techniques have

used different types of collaborative filtering. Another comprehensive survey

on caching-enabled networks from a popularity-based video caching perspective

have also published [108]. In this survey, there are a few works on neural-

network-based CF. Another work in [109] proposes a collaborative multicast

beamforming approach for content delivery in cache-enabled networks in which

the popularity of contents are estimated and, based on that, users are served using

the cached content in Small Base Stations (SBSs). Similar to popularity-based

content caching, several works have proposed approaches to use users’ locations

to provide them with the proper content [110].

Clustering

Clustering is a broad group of unsupervised machine learning techniques that

aims to identify different subsets of objects in a dataset in the way that the objects

inside a group are similar to each other.
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Figure 2.2: Example of k-means algorithm on a synthetic dataset after six steps with k
equals to 4.
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Here, we briefly introduce the k-means clustering algorithm as one of the most

frequently used clustering algorithms in anticipatory networking. We are given

a dataset x(1), ..., x(m) with m points. Each of these points has a feature vector

x(i) ∈ Rn of dimension n. The goal is to assign group labels ci =, 1, 2, ..., K, to

each point in the dataset in such a way that the points in the same group are

close with respect to a distance metric defined over the feature space.

The k-means algorithm is described in Algo. 1, and a step by step visualization of

the algorithm on a synthetic dataset with k = 4 is shown in Figure 2.2.

Algorithm 1 K-means Clustering Algorithm
Require: cluster centroids µ1, µ2, ..., µk ∈ Rn intialized randomly

while the centroids are not stabilized do

for every i, set ci := arg max
j

♣♣x(i) − µj♣♣2

for each j, set µj := (1/♣♣cj♣♣)
♣♣cj ♣♣
∑︁

i=1
xi,

where ♣♣cj♣♣ represents the number of data points in the jth cluster

end while

Different clustering algorithms, including k-means, have been applied to a broad

range of cases in anticipatory networking. Optimizing the energy consumption

in WSNs is one of the challenging problems for which a few clustering-based

approaches have been proposed [111, 112].

Vehicular scenarios is another field in which clustering techniques play a sig-

nificant role. To guarantee the stability of the self-organized communication

structure in multimedia communication on the Internet of Vehicles (IOV), the

authors in [113] propose a content-aware model. In another work in the vehic-

ular domain, [114], the authors introduce a hierarchical clustering protocol to

optimize the resource utilization in the network and increase the overall life-

time. Aligned with the previous work, MCA-V2I [115] is a multi-hub clustering

mechanism aiming to decrease the number of control messages and increase the

stability by using a master/slave paradigm in IOV.

Decision Tree-Based ClassiĄcation

Decision tree learning approaches are simple yet powerful models in ML either

for classification or for regression tasks. They have a tree-like structure consisting

of decision nodes and leaves. Decision nodes direct the data toward a proper

leave, and the leaves are the labels of the classification task.

This simple ML method has been applied to a vast number of problems, and

anticipatory networking is not an exception. Decision tree-based methods play an
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essential role in localization and positioning systems using Radio Frequency(RF)

signals. The authors in [116] have studied different decision tree-based methods

in indoor positioning systems. Another group of researchers has proposed a

Non-Line-of-Sight (NLoS) location tracking system based on decision trees that

use Ultra Wide Band (UWB) technology[117].

Decision trees have also been considered for device type classification in WSNs

[118], multi-object detection and classification in outdoor scenarios [119], and

relay selection for dual-hop wireless communications [120].

2.2.3.2 Regression Analysis

Regression analysis is a powerful statistical tool for examining the relationship

between a few independent variables with a dependent variable of interest. In

anticipatory networking, a great variety of papers have used regression analysis

for different tasks. Hence, here, we introduce two of the most useful regression

techniques and their use cases in anticipatory networking.

Support Vector Machine

SVM [121] is a discriminative classifier defined by a decision hyperplane sep-

arating instances of different classes with the maximum margin. There is a

regression version of SVM named Support Vector Regression (SVR) sharing the

same principles with SVM but for regression tasks. Here, we briefly introduce

SVMs and overview recently published works in anticipatory networking using

SVM and SVR.

We explain SVM in a binary classification scenario which can be extended to

multiple classes classification tasks too. Imagine we have a training dataset

¶(xi, yi)♣xi ∈ Rn, yi ∈ ¶−1, 1♢, i = 1, 2, ..., M♢, where xi is the ith training sample

in an n dimensional space, yi is the corresponding label for that sample, and M

is the total number of training samples.

We assume that the samples are linearly separable, thus there is a hyperplane

w · x − b = 0 (where W · x is the inner product of W and x), which separates

those two classes of samples. The optimization problem that yields decision

hyperplane with the largest distance from the support vectors (the closest vectors

to the decision hyperplane) is:

min
w,b

1

2
♣♣w♣♣2

s.t. yi(w
T xi + b) ≥ 1, i = 1, 2, ..., M.

(2.3)

This optimization problem is not able to find an optimal hyperplane for non-linear

decision boundaries. To solve this problem, kernel methods have been proposed.

In kernel-based SVM instead of using the original input attributes x, we can
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transform the original input using a feature mapping function Φ and then apply

the SVM. Since the Eq. (2.3) can be entirely written in terms of the inner product

xi · xj, we can simply replace xi · xj with Φ(xi) · Φ(xj). The linear model in the

new space corresponds to a non-linear model in the original space.
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Figure 2.3: Examples of applying the SVM classifier with a linear and Gaussian kernels
on a linearly non-separable synthetic dataset.

One of the most frequently used kernels in the literature is the Gaussian kernel:

exp (− ♣♣xi−xj ♣♣2

2σ2 ). An example of applying a linear and Gaussian kernel-based SVM

classifier on a non-linear synthetic data is shown in Figure 2.3. When we apply

the Gaussian kernel, the data become linearly separable in a space with more

dimensions which is equal to a non-linear decision boundary in the original space.

In [122], a recent and comprehensive survey on SVMs and their applications is

proposed. Additionally, SVM attempts to find a decision boundary for the given

supervised set while SVR attempts to find a curve that fits the supervised set.

The authors in [123] proposed a machine learning-based context prediction

system to boost vehicle-to-cloud communication. In this work, they have used SVR

to predict the data rate by feeding three sets of features: mobility context, channel

context, and application context to the model. Another group of researchers

has applied a non-linear SVR to cancel the self-interfering signal in full-duplex

communication systems [124]. They have used two separate SVR models for

predicting the real and the imaginary parts of the interfering signal. Coverage

area detection [125] and network quality prediction [126, 127, 128] have also

benefited from SVRs for building a coverage map and predicting the data rate in

vehicular scenarios to improve the resource efficiency and the network reliability,

respectively.
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ArtiĄcial Neural Networks (ANN)

ANNs are universal function approximators consisting of neurons grouped in

multiple layers (input, hidden, and output layers). ANNs can be used for different

tasks including clustering, classification and regression. Each neuron receives the

input vector X from the previous layer, multiplies them by a vector of weights W ,

applies a summation over them, adds a bias term b, and finally uses an activation

function (Sigmoid, Tanh, ReLU, ELU, etc.) g to introduce non-linearity:

ŷ = g(W T · X + b). (2.4)

To train an ANN, the forward and a backward pass is used. In the forward pass, a

chain rule is applied to determine the gradient and in the backward pass, a back

propagation mechanism is used to adjust the weights and biases of the layers

by using an optimizer such as Adam, RMSProb, Gradient Descent, Momentum,

etc. Using this technique, we try to minimize the loss function to update learning

parameters of the network. A loss function is dependent on the optimization

problem to be solved and the dataset used for training the ANN. With the advance

of computational resources like Graphics Processing Units (GPUs) and Tensor

Processing Units (TPUs) and abundance of data, especially in networking, ANNs

have increasingly gained attention in the literature.

CSI estimation is one of the key challenges in wireless communications. OCEAN[19]

is an online neural network model that uses CNN and LSTM to predict CSI in 5G

wireless communication systems. SCNet [17] is another ANN model that aims to

predict the downlink CSI in Base Station (BS) of a FDD MIMO communication

system using an autoencoder-like design which not only reduces the redunduncy

of data but also makes it more robust to noise.

Additionally, Milimeter Wave (mmWave) communication is a relevant component

of 5G and beyond. Beam selection and blockage prediction are two of the most

important challenges in these systems. The authors in [129] have proposed a

deep learning-based approach to tackle these challenges using ResNet18[130]

architecture.

Context-aware wireless communication optimization is another direction to which

a few ANN-based approaches have been applied. The authors in [131] have

proposed a deep learning model using CNN to extract fine-grained features and

the applied SVM classifier to classify the applications in a wireless network to

improve QoE. Also, authors in [132] have used ANNs as well as other classifiers

like SVMs for classifying the Wireless Local Area Network (WLAN) traffic to

reduce the power consumption.
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2.3 Anticipatory Optimization Techniques in Wireless Networks

Anticipatory techniques and information defined in the previous sections can

hence be used for design of optimization techniques in different wireless networks

which can been used to optimize the system for a variety of applications across

different layers. In this section, we discuss the application of such optimization

techniques based on anticipatory information from the wireless network.

2.3.1 Physical Layer

Physical layer functionalities such as beamforming design directly impacts the

instantaneous performance of the wireless systems. In the current literature,

we can find numerous optimization techniques applied at physical layer. In

[133], the authors investigate the problem of how to maximize the sum rate

of a 2-user uplink mm-wave-NOMA system, proposing a sub-optimal solution

where the original problem is divided into two sub-problems: one is a power

control and beam gain allocation problem, and the other is a beamforming

problem under the constant-modulus (CM) constraint. The authors in [134]

propose a centralized as well as a distributed power control algorithm, aiming to

maximize the capacity of a D2D network. They consider a scenario of licensed

and unlicensed spectrum, showing by simulations that the proposed approach

could increase the throughput of the D2D networks compared with current state-

of-the-art methodologies. In [135], the authors address the energy efficiency

optimisation problem of a NOMA 5G wireless network. The proposed idea is based

on improving energy efficiency of 5G terminals while satisfying the constraints on

maximum transmit power budget, minimum data rate, and minimum harvested

energy per terminal. The proposed scheme is compared with an exhaustive

search method, showing convergence to a stable optimal value. The authors in

[136] propose a new approach for multiple access in the fifth generation (5G) of

cellular networks called power domain sparse code multiple access (PSMA). They

compare the PSMA with other proposed NOMA strategies from the perspective of

receiver complexity and system performance, showing that PSMA significantly

outperforms other NOMA techniques while imposing a reasonable increase in

complexity to the system, considering both aspects of transmitter and receiver.

We can check in [137] a flexible mechanism for Discontinuous Reception (DRX)

proposed for 5G networks, where the goal is to minimize the energy usage of user

devices for applications of video streaming while preventing buffer underflows.

The authors show that the proposed approach can provide an energy reduction

usage by up to 60% compared to static DRX setups. The work in [138] proposes

a novel channel state feedback scheme, where the minimum number of feedback
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bits is calculated with respect to the channel reconstruction error. The authors

compare the proposed approach with other traditional feedback schemes, showing

analytically and numerically the advantages of the proposed solution, especially in

conditions of low SNR. A pilot placement optimization problem is proposed by the

authors in [139] for the radio access in 5G vehicle-to-everything communications

to support Internet of Vehicles applications. The authors formulate the problem

as a MDP, aiming to find enhanced pilot patterns for assisting OFDM technology.

Simulation results show that the proposed scheme was able to effectively track fast

time-varying vehicular channels. In [140], the authors provide an optimization

algorithm for calculating the joint maximum-likelihood estimation of channel

and clipping level at the receiver side of IoT-based OFDM networks. These

network scenarios are typically characterized for having lots of low-cost low-

power transmitters and more complex receiver nodes, such as a base station.

Numerical evaluations show that the proposed estimator was capable to achieve

almost the same performance of a perfect estimator, where both channel and

clipping level are perfectly known.

2.3.2 MAC Layer

In MAC layer, a main focus has been on applying optimization techniques for

radio resource allocation and error correction. In [141], the authors propose

a novel scheduling framework that is able to select different scheduling poli-

cies according to the states of the scheduler by using RL principles. The main

goal is minimizing packet delay and packet loss rates for attending the strict

5G network requirements. Simulation results show that the proposed scheme

outperforms traditional packet schedulers. Likewise, the authors in [142] also

propose a scheduling framework based on a RL strategy. Their idea is to optimize

QoS provision management for heterogeneous traffic. The proposed scheme is

capable of maximizing the average scheduling time when heterogeneous QoS

requirements are met for diverse traffic classes, achieving a performance up to

50% higher than state-of-the-art solutions. The work proposed in [143] pro-

vides a solution for the ultra-reliable low-latency communications (URLLC) and

enhanced mobile broadband (eMBB) coexistence on the same radio spectrum.

The authors introduce a novel scheduler framework that aims at optimizing

a cross-objective function, where the critical URLLC QoS is guaranteed while

extracting the maximum possible eMBB ergodic capacity. Simulation results show

that the proposed scheme guarantees instant scheduling for sporadic URLLC

traffic, and with minimal impact on the overall ergodic capacity, overcoming

state-of-the-art scheduling proposals from both industry and academia. In [144],
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the authors optimize the hybrid automatic repeat request (HARQ) operation of

5G URLLC networks. The problem is formulated according to a non-convex and

mixed integer programming, which is analytically intractable. The authors came

up with a solution based on optimizing a repetition coding scheme, and showing,

by simulation results, minimization o the required bandwidth to achieve URLLC

traffic requirements. Likewise, the authors in [145] also propose a solution for

optimizing HARQ operation in order to achieve URLLC requirements. The pro-

posed scheme applies the queuing delay model based on the Pollaczek-Khinchine

(P-K) formula, aiming to optimize bandwidth considering HARQ of 5G URLLC

communication. Analytical and simulation results show that the proposed mecha-

nism was able to reduce bandwidth requirements by up to 64.8% compared to

traditional approaches. The work established in [146] utilizes Tennessee Eastman

(TE) process model to create a novel concept for communication-edge-computing

(CEC) loop, introducing an optimization problem for achieving the defined CEC

efficiency with focus on industrial IoT applications. The authors derive a new

uplink (UL)-based communication protocol, that was able to outperform typical

HARQ performance in terms of latency, reliability, and bandwidth efficiency.

2.3.3 Network Layer

In Network Layer, the optimization techniques are mainly applied to routing

problems. In [10], a location error resilient routing scheme is proposed for

VANETs. It predicts the location of the vehicles in the network using Kalman filter

and creates a routing directory to decide the next forwarding node in the network.

The protocol is designed to optimize the selection of the next forwarding node to

maximise the throughput and minimise the routing load in the network. In [147],

a Genetic algorithm-based energy-efficient clustering and routing algorithm

(GECR) is presented which takes into account the location of the nodes and

devise routing and clustering strategies in WSN. The cluster head selection and

next hop forwarding node is devised by modelling the optimization problem and

solving it using a genetic algorithm. The algorithm aims to maximise the network

time and minimise the energy consumption in the network. Similarly in [148], a

multi objective pareto optimization approach is proposed to solve the problem

of clustering and routing while taking into account energy efficiency, reliability

and scalability. In [149], an optimization problem called minimum broadcast

power is discussed and is solved using a hybrid particle swarm optimization

algorithm (H-PSO). The H-PSO aims at minimising the transmission power so as

to conserve energy in broadcast mode of transmission in wireless ad-hoc network.

In [150], a non supervised deep learning based routing algorithm is proposed

2.3 Anticipatory Optimization Techniques in Wireless Networks 23



to optimize traffic load in wireless Software-Defined Networkings (SDNs). The

SDN controller trains CNN to take into account traffic information and network

performance such as path delay and make routing decisions based on these

experiences. In [151], a multihop routing scheme based on classification using

machine learning techniques for Mobile Ad-Hoc Networks (MANETs) is presented.

In this scheme, the algorithm takes into account the battery power utilization and

internal storage of a node to determine the next hop and eventually the whole

route. To do so, each neighbouring node is classified using three classification

techniques namely Maximum-local-rate (MLR), SVM and KNN are used.

2.3.4 Application Layer

In Application Layer, the optimization techniques are generally applied to perfor-

mance predictions over wireless network for applications. In [35], an adaptive

HTTP video streaming approach is discussed which takes into account the perfor-

mance variations due to the dynamic nature of wireless networks. The system

predicts the channel throughput and maximises the average download segment

level or video quality while taking into account the channel utilization and end

user buffer. Similarly, in [37], a throughput prediction scheme is proposed which

also takes into account channel information to optimize and improve the video

streaming quality. In [152], a multi-stage ML is presented by combining an unsu-

pervised feature extraction with a supervised classifier to extract the quality-rate

characteristic of unknown videos that can be used in QoE-aware video admission

controls and resource management. In [153], a flow rate allocation algorithm

over Multipath TCP (MPTCP) is defined called Energy Distortion Aware MPTCP.

The protocol aims to minimising the energy consumption while maximising video

quality. The optimization problem takes into account the channel quality, delay,

and video streaming requirement to provide an optimized flow allocation and

energy consumption. In [154], a cross layer UDP based protocol which takes

into account the wireless links to provide a guaranteed performance. It basically

optimizes functions such as in order delivery, forward error correction and flow

control so as to minimise delay and overhead in the wireless network.

2.4 Conclusion

In this chapter, we highlighted the different anticipatory information and tech-

niques along with system-wide optimization schemes for different applications

over the entire protocol stack technologies and considering different wireless

network scenarios and applications. Primarily, the chapter shows works on an-

ticipatory information that can be garnered from the wireless networks, the
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anticipatory techniques that can be designed using the information available,

and the optimization techniques that can be designed for applications at the

Physical, Medium Access, Networking, and Application Layers, thereby giving

a comprehensive overview of anticipatory networking that is applied in current

wireless networks. Hence, the usage of anticipatory networking across all the lay-

ers provides a good motivation to devise optimisation techniques using different

anticipatory techniques at all layers. So, in the following chapters, we present the

works undertaken to design and analyse different communication systems using

anticipatory networking in physical, network, transport and application layers.
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3Group Clustering Mechanism for Joint

Spatial Division Multiplexing (JSDM)

3.1 Introduction

Multi-antenna radio technologies have shown to enhance spectral efficiency

while ensuring connectivity to a large number of devices. Different encoding

schemes such as Dirty Paper Coding (DPC) have been designed to achieve the

multi-antenna channel capacity [155]. However, due to the high computational

complexity as well as the need for precise CSI, there has been much focus of

research on sub-optimal solutions which combine Superposition Coding (SC) and

spatial processing such as NOMA[156]. Additionally, as these mechanisms tend

to fully decode interference, the uncertainty over CSI directly affects interference

cancellation among different users. Hence, the authors of [157] have recently

proposed Rate Splitting Multiple Access (RSMA) as a non-orthogonal transmission

scheme that partially decodes interference and partially treats it as noise thus

further improving multiplexing gains. For 1-layer Rate Splitting (RS), the message

intended to each user is divided into a common (sc) and private (sp) parts encoded

separately. In order for this transmission scheme to work, it is necessary to ensure

that every user perfectly decodes the common message. This is often tackled by

allocating a larger fraction of the total power to the common message. In the

presence of a large number of receivers, this condition limits the total rate by the

minimal common rate achieved in the whole system1. Hence, in the presence of

several users, the power assigned to each sp is reduced, leading to a degradation

in communication rate.

In these conditions, relying on multiple common streams (generalised rate split-

ting) leads to higher multiplexing gains, but at the cost of high complexity at the

decoder caused by the several layers of Successive Interference Cancellation (SIC)

[157]. To tackle the increasing complexity of generalised RS while having small

loss in multiplexing, the authors in [158] consider a 2-layer Hierarchical Rate

Splitting (HRS) transmission mechanism. In this scenario, users are considered

to be divided into G groups and required to decode three messages: two common

messages and a private message. One of the common messages (outer common -

1This happens regardless of the number of antennas at the transmitter. Instead, this is a
consequence of power allocation to reduce interference among different users.
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soc) is encoded using a codebook shared among all the user while the other one

(inner common - sic,g) is encoded by a codebook share only among users in a

specific group. But when the groups are orthogonal, i.e. the users are sufficiently

separated spatially, optimal communication happens when inter-group and intra-

group interference are reduced to a level that it can be completely distinguished

from the intended signals.

But, to minimise the interference and maximise the rate using HRS, the Base

Station (BS) is required to know what can be referred to as the optimal clustering

scheme, i.e., the one that maximises the total communication rate. Unfortunately,

finding this optimal clustering scheme is an NP hard problem which often requires

an exhaustive search. Thus, it becomes extremely hard to come up with an

optimisation mechanism that maximises the communication rate using HRS

while also considering the clustering options as an optimisation variable. Hence,

in this chapter, we briefly describe a predictive clustering technique that is capable

of directly learning (or approximating) the optimal clustering option from the

imperfect CSI, thereby, essentially predicting the optimal clustering to maximise

the performance at each user.

3.2 System Model

Consider a downlink transmission scenario where N single-antenna user equip-

ment (UEs) receive messages from a base station (BS) over a spatially correlated

Rayleigh-fading channel. We further assume this BS to be equipped with an an-

tenna with M isotropic antenna elements. Moreover, let these UEs be partitioned

into G ≥ 1 disjoint clusters. So, the signal y ∈ CN received by all the users is

given by,

y = HHx + n, (3.1)

where, H = [h1, . . . , hN ]T ∈ CM×N contains the stacked channels of all the

k = ¶1, . . . , N♢ UEs, n ∼ NC(0, IN) is an additive white Gaussian noise vector

and x ∈ CM is the combined signal given by,

x =
√

pocwocsoc +
G
∑︂

g=1

Bg

(︂√
pic,gwic,gsic,g +

√
pgkWgsg

)︂

, (3.2)

where poc, pic,g and pgk are the power allocated to the outer common message

soc ∈ C, inner common messages sic ∈ CG and the private messages sg ∈ CNg ,

respectively. Bg ∈ CM×bg is the group outer precoder designed from the gth group

channel’s second order statistics and dependent on the integer design parameters

bg rank of the channel covariance matrix. By knowing the UEs that belong to
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the gth cluster, the matrix Hg = [hg,1, . . . , hg,Ng
]T ∈ CM×Ng contains the stacked

channels of all the Ng UEs that belong to the gth cluster. The downlink fading

channel hg,k ∈ CM associated to the kth user of the gth class can be factored out

as,

hg,k = R
1
2
g g = UgΛ

1
2
g gk, (3.3)

where Rg ∈ CM×M is the channel correlation matrix, Ug ∈ CM×M a unitary matrix

containing its eigenvectors, Λg ∈ CM×M a diagonal matrix with its associated

eigenvalues and gk ∈ CM has Gaussian independent and identically distributed

(i.i.d.) entries with zero mean and unit variance which describe the complex path

gains.

In principle, the covariance matrices are directly dependent on the angular

response of the channels [156]. Unfortunately, in a more realistic environment,

due to limited feedback, the BS only observes an imperfect estimation of the

channel. Following [159], we model this imperfection as the sum of a channel

and a noise generated from the same subspace, given by,

ĥg,k = UgΛ
1
2
g ĝk = UgΛ

1
2
g

(︂√
1 − τ 2gk + τzk

)︂

, (3.4)

where zk has i.i.d entries and τ ∈ [0, 1] indicates the quality of the instantaneous

channel. For instance, τ = 0 leads to a perfect channel estimation, i.e., ĥg,k =

R
1
2
g gk while τ = 1 leads to an uncorrelated channel in the subspace spanned by

Ug, i.e., ĥg,k = R
1
2
g zk for uncorrelated gk and zk.

3.2.1 HRS Transmission Mechanism

HRS transmission design is defined based on the combined transmission signal x

from (3.2). To determine the transmission signal x, we obtain the precoder Bg

following [159, 158], so that the group effective channel H̃
H

g = Ĥ
H

g Bg ∈ Cbg×Ng

represents the projection of Ĥg onto the bg±dimensional subspace orthogonal

to the r∗ =
∑︁G

l ̸=g rg singular vectors associated to the rg largest singular values

of each of the interference groups. In order to distinguish all the Ng users

in the group we must have Ng ≤ bg, i.e., enough degrees of freedom in the

bg±dimensional subspace. Unfortunately, it is not possible to choose bg and rg

indiscriminately large as one constrains the growth of the other. Specifically, as

there exists at most M singular vectors at each group, we have that Ng ≤ bg ≤
M − r∗. Consequently, a large number of groups leads to less freedom on the

choice of both bg and rg.

Moreover, woc, wic,g and wgk = [Wg]k are the unit norm precoders associated to

the instantaneous outer common, inner common and private messages, respec-
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tively. We can design Wg = ξg

(︂

H̃gH̃
H

g + εIbg

)︂−1
H̃g, given a total transmission

power P , as a Regularized Zero Forcing (RZF) precoder to allow distinguishing

between the Ng users within the gth group by reducing the interference among

the private messages in this group [159]. The parameter ξg is the power nor-

malisation factor which normalizes ♣♣Wg♣♣2 to the unit. Likewise, ε is also a

normalisation parameter. Similarly, wic,g = ξic,g

∑︁Ng

k=1 wgk is the equally weighted

Matched Beamforming (MBF) built as a linear combination of the private pre-

coders of the gth group where ξic,g is a normalisation parameter. Finally, the outer

common precoder woc = ξoc

∑︁G
g=1

∑︁Ng

k=1 Bgh̃gk is also designed as a weighted MBF,

but to handle inter-group power leakage where ξoc is a normalisation paramater.

Notice that it is essential to reduce inter-group interference in order to guaran-

tee communication. Specifically, when group leakage is completely nulled out,

there is no need for woc and communication happens over G parallel 1-layer RS

streams.

To allocate power among the different messages, we further design two param-

eters α, β ∈ (0, 1]. The first one α represents the fraction of the total power

P allocated to the outer common message. And the latter, the fraction of the

remaining power allocated to the inner common message. Combining these, we

have poc = αP , pic,g = (1−α)βP

G
and pgk = (1−α)(1−β)P

Ng
. In this work we perform a

brute force search to find the optimal α and β for every channel realisation.

As mentioned above, at the receiver side, the kth user associated to the gth group

decodes its message in a 2-step successive interference cancellation fashion. In the

first step, the user decodes the outer common message (soc) and removes it from

the received signal. The group’s inner common codeword is then decoded after

applying SIC. After successfully decoding both common messages, each private

message is extracted by considering all other private messages as interference.

As a result, the Signal-to-Interference Plus-Noise Ratio (SINR) to each of these

messages is written as,

γoc
gk =

poc♣hH
gkwoc♣2

1 + Igk

, (3.5)

γic
gk =

pic♣hH
gkwic,g♣2

1 + Igk − pic♣hH
gkwic,g♣2 , (3.6)

γp
gk =

pgk♣hH
gkwgk♣2

1 + Igk −
(︂

pic♣hH
gkwic,g♣2 + pgk♣hH

gkwgk♣2
)︂ , (3.7)
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where,

Igk =
G
∑︂

l=1

pic,l♣hH
gkBlwic,l♣2 +

G
∑︂

l=1

Ng
∑︂

k=1

plk♣hH
gkBlwlk♣2 (3.8)

is the combination of all interference leaked from other users and groups. Finally,

we can describe the achievable rate as the combination of the smallest achievable

outer common rate among all users Roc = min
gk

log2(1 + γoc
gk), the minimal inner

common rate per group Ric =
∑︁G

g=1 min
k

(︂

log2(1 + γic
gk)
)︂

and the sum of the rate

achievable at all private messages Rp =
∑︁G

g=1

∑︁Ng

k=1 log2(1 + γp
gk). Then the total

rate is the sum of these components, i.e, R = Roc + Ric + Rp.

3.3 User Clustering and Dataset DeĄnition

As it becomes evident from the discussion above, and further supported in our

results, choosing an appropriate clustering is crucial to take full advantage of two-

tier precoding mechanisms, such as HRS [159, 158]. One can rely on extensive

search in order to find the optimal clustering mechanism. However, this is an NP

hard task as the number of ways that a set can be partitioned into nonempty sets

is given by the Bell number which grows almost exponentially with N , i.e., the

number of elements in the set. Moreover, in our scenario, many of these partitions

lead to vanishing communication rates due to high interference. Therefore, in

this work, we rely on (possible suboptimal) clustering options obtained from an

agglomerative hierarchical clustering mechanism [160].

3.3.1 User Clustering

To devise the clustering mechanism, we define a bottom up approach where

the objective is to combine clusters (groups of users in the wireless network)

according to their similarity. Initially, each user is associated to a singleton cluster.

At each step of the hierarchical clustering algorithm, the pair of users/clusters

with highest similarity (according to a criterion discussed later) is then merged.

As a result, after each merge we obtain a new clustering option and evaluate

the rate achieved considering this new option. This process continues until we

have evaluated all levels in the hierarchy. Notice that in this agglomerative

mechanism there exist only N + 1 (total number of users plus one) possible

clustering options, one for each level in the hierarchy. These, however, are

often relevant clustering options as each cluster only contains elements that are

particularly similar to each other. We consider the similarity measure between

two channel matrices based on how close the principle angles of the subspaces
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spanned by their column-spaces are. Specifically, for two clusters of size Nk and

Nj, we take the projection-Frobenius (PF) similarity

sk,j =
tr(P̂kP̂j)

min(Nk, Nj)
, (3.9)

where P̂j is the projection matrix given by,

P̂j = Ĥj(Ĥ
H

j Ĥj)
−1Ĥ

H

j , (3.10)

which describes the first Nj left singular vectors of the kth group of channels.

Moreover, to improve clustering results for Nj ̸= Nk, we follow a statistical

analysis of the quantity in (3.9) and further define the normalised similarity

measure

ŝk,j =
sk,j − ηk,j

σk,j

(3.11)

based on its asymptotic mean ηk,j and variances σ2
k,j defined as in [160]. However,

this normalisation step is only possible for M > Nj + Nk, otherwise, we follow

the projection-Frobenius similarity described in (3.9).

3.3.2 Dataset DeĄnition

We design the dataset used for this work by devising channel matrices from

(3.4) and clustering them according to the scheme described above. We consider

four possible covariance matrices to which channels are randomly associated.

Consequently, for different samples, we might obtain a different number of users

associated to a specific covariance matrix. Notice that, this is not a cluster

assignment, but merely a way to generate random channels. These covariance

matrices are obtained by considering the azimuth angles θg = −π
2

+ π
3
(g − 1) and

the constant angular spread ∆g = π
6
. Moreover, we further assume the BS to be

equipped with a Uniform Circular Array antenna.

Concretely, we design 3 different configurations based on the choices of the

number of antennas at the BS: 1) N > M , 2) N = M and 3) N < M . Moreover,

we evaluate these configurations for two different system loads, based on the

number of users N ∈ ¶8, 12♢. Specifically, we have M ∈ ¶6, 8, 12♢ for N = 8 and

M ∈ ¶6, 12, 16♢ for N = 12. As a result, we have 6 different scenarios. For each

these we generate S = 10.000 random samples, each sample containing both

imperfect and perfect CSIT of equal size N × M and the clustering scheme that

maximises the rate based on the hierarchical clustering mechanism. As a result

of this randomness, for each scenario we obtain more than G∗ = 200 possible
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clustering options, thus, leading to very imbalanced datasets. To diminish this

effect, for each scenario, we sub-sample the data such that only relevant classes

are left, i.e., we discard classes that achieve less than 25% of the average rate

of the scenario and have less than 50 samples. Moreover, to further balance the

data, we crop the maximum number of samples in each class to be at most to

200. As a result, for each scenario, we still obtain an imbalanced dataset with

approximately G∗ = 50 classes, each containing at least 50 samples and at most

200 samples.

Finally, to compensate for this drop in the number of samples, we further augment

the dataset of each configuration by randomly shuffling users that belong to the

same cluster. This is a natural extension of this dataset as clustering should be

indifferent to the ordering of the users.

3.4 Machine learning model and training

We solve the classification problem presented in the previous section by designing

a shallow neural network. We used the Keras library, so we describe the layers

with their notation [161]. For each scenario, we divide our dataset into training,

validation and test sets in a proportion of 80/10/10. During the training pro-

cedure, we use the validation set to tune the corresponding hyper-parameters.

Our model is defined as a shallow neural network following the parameters from

Table 3.1. The output layer consists of G∗ neurons with a softmax activation that

correspond to each cluster where G∗ is the total number of classes in the scenario.

The softmax function in the output layer is used to obtain the probability of a

user belonging to a specific cluster and it is given by,

σ(Z)g =
ezg

∑︁G
j=1 ezj

, (3.12)

where Z is the input vector from the previous hidden layer, zg the g-th element

and the denominator sum is the normalisation factor to ensure the output is into

the range of [0, 1]. Then, by selecting the maximum, we can obtain the highest

probability that users are clustered in a particular way. For the training procedure,

we use the Adam optimiser with a learning rate of 10−3, we train for 50 epochs

and use a batch size of 128 samples. For our multi-class classification task, we

aim to minimise the categorical cross-entropy loss [162] given by,

L(yg, ŷg) = −
G∗

∑︂

g=1

yg log ŷg, (3.13)
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Simulation Parameter Simulation Value
Antenna Configuration Uniform Circular Array
Angular Spread (∆g) π/6
Number of Unique Distributions 4
Channel Quality (τ 2) 0.4
Dominant Eigenvectors (bg = rg) ⌊M/G⌋
Channel Quality (rg) 0.4
Number Shuffling 10
Number of Neurons in NN ¶256, 128♢
NN Learning Rate 10−3

NN Training Epochs 50
NN Training Batch Size 128
NN Input Layer Activation Function ReLu Function
NN Hidden Layer Activation Function ReLu Function
NN Output Layer Activation Function Softmax Function
NN Loss Function Categorical Cross-entropy Loss

Table 3.1: Parameters of the Simulations

where yg and ŷg are the ground truth and NN score for each class. This loss is a

very good measure of how distinguishable two discrete probability distributions

are from each other. In this context, the vector ŷ = [ŷ1, . . . , ŷg] ∈ RG∗

has entries

which represent the probability that users are clustered in a specific manner and

the sum of all entries is one. The accuracy of a model is often defined in terms

of the entry with highest probability, this is often, called top-1 accuracy. In our

scenario, there exist several options which achieve the (close to) maximum rate.

Therefore, it is also interesting to analyse the top-k accuracy of our model, i.e., if

the desired clustering option is among the k most probable outputs.

Finally, we emphasise that we are applying a shallow neural network which

contains only a small number of learnable parameters. This is designed as a

consequence of our devised dataset. Recall that we have specifically defined it

to be imbalanced and with a small number of samples to each class ([50, 200]).

Nonetheless, as we present below, this network is capable of learning the rela-

tionship between the different channel matrices and directly output the desired

clustering option that maximises transmission using HRS.

3.5 Performance Analysis

In this section, we evaluate the performance of the presented Neural Network

(NN) method in comparison to RS under different scenario configurations. These

numerical simulations are carried out in a MATLAB environment. The necessary

configuration parameters are defined in Table 3.1.
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Figure 3.1: Spectral efficiency (bps/Hz) achieved for clustering mechanisms using HRS.

In order to validate the learning of the NN, we compare the rate achieved using

the NN predicted classes and different RS clustering options. To perform a

complete evaluation, we determine the rate achieved by the following solutions,

• Hierarchical Clustering - Hierarchical Rate Splitting (HC): The users are

clustered according to the clustering mechanism defined in Sec. 3.3, the

group with higher communication performance is selected;

• Neural Network - Hierarchical Rate Splitting (NN): Proposed NN based

clustering;

• Universal Cluster (UNI): All users are clustered into one single cluster;

• Singleton Cluster (SING): Each cluster contains only single user.

As mentioned above, we consider three scenarios to evaluate the clustering

solutions

1. M < N ,
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2. M = N and

3. M > N .

Hence, for N = 8, we determine the rate achieved for M ∈ ¶4, 8, 12♢ and for

N = 12, we determine the rate achieved for M ∈ ¶6, 12, 16♢. Then, we compare

the different clustering techniques mentioned before based on the rate achieved.

Figure 3.1 shows the rate achieved for all four clustering techniques for the

different values of M and N . Each box plot shows the rate obtained for different

realisations of the channel. The median rate is presented by a horizontal line

through box and the top and bottom of the box are the 75th and 25th percentile

rate (i.e. rate achieved by 75% and 25% of the scenarios). Lastly, the extremities

of the boxplot refer to the 1% and 99% and the red plus indicators in the boxplot

denote the outlier rate values. Notice that the rate achieved by HC-HRS and

NN-HRS is approximately similar while both clustering techniques outperform

UNI and SING. This is due to the fact that with a noisy channel, it is really difficult

to generate accurate precoders that can maximise the rate achieved and minimise

the inter-group and intra-group interferences. Additionally, the NN-HRS only

receives the instantaneous noisy channel as an input and determines its clustering

solution while HC-HRS needs to iteratively determine the similarity between

different channels making it considerably slower when compared to the NN

solution. Moreover, for SING, the choice of parameters bg and rg seems to harm

the performance. We recall that both parameters are integers thus are susceptible

to the trade-off between M and G. For instance, for G = N = 8 and M = 12,

there exist only one viable option of rg, i.e., rg = ⌊M/G⌋ = 1. Alternatively, we

could select four (mod(M, G)) groups to have rg = 2, but this requires further

processing on the choice of these groups. As a consequence, we obtain similar

rates for N = 8 users served with M = 8 or M = 12. Similar consequences are

obtained for N = 12. Moreover, for G = N > M , we have rg = mod(M/N) = 0

what makes impossible to derive meaningful precoders Figures 3.1(a)-(b). In

contrast to that, the other three techniques, which consider clustering, do not

suffer from this trade-off between G, rg and M . Instead, even for N > M we still

achieve reasonable spectral efficiency.

Finally, we analyse the capability of the shallow NN to learn the grouping clas-

sification task as described above. To do so, we first analyse the accuracy of

the network for class prediction. Recall that, here, a class represents a different

clustering option. Table 3.2 presents, in percentage, the results obtained by

training different NN according to the configuration parameters in Table 3.1

for different number of users (N) and antennas in the BS (M). The validation
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N / M
Validation

(top-1)

Test
(top-1)

Test
(top-3)

Test
(top-5)

Test
Relative Rate

8 / 4 65.38% 65.37% 85.22% 90.48% 94.12%
8 / 8 98.3% 92.0% 96.3% 97.7% 99.0%

8 / 12 96.9% 92.2% 97.0% 98.2% 99.5%
12 / 6 71.45% 35.6% 65.62% 77.75% 89.99%
12 / 12 98.7% 86.2% 96.8% 98.9% 93.5%
12 / 16 99.18% 95.62% 98.32% 93.32% 99.77%

Table 3.2: Summary of Results

column contains the final classification accuracy in the validation dataset and

indicates some learning capability in untrained data. During our experiments

we noticed that different points of the same dendrogram might result in similar

communication rates, i.e., there might exist different clustering options which

achieve the same rate. Therefore, for the test dataset, we show the top-1, top-3

and top-5 classification accuracy. Despite the fact that performance in top-1 accu-

racy might be considered poor, the top-5 results are, often, above 90%. Finally,

the last row compares the communication rate decay (in %) if using the top-1

option from the NN. Results show that, except in the cases where N > M , on

average, the rate drops 2.5% which is an acceptable loss when compared to the

complexity of the original problem. Moreover, we can infer from these results

that the NN is capable of learning the maximum clustering option or clusters that

approximate this option. In other words, it is capable to learn the relationship

between different users directly from their channel matrices and cluster the users

with a high degree of accuracy for most scenarios and finally achieve a rate

comparable to more complicated similarity-based HC-HRS.

3.6 Conclusion

In this chapter, we have proposed NN based anticipatory optimization technique

that learns and clusters users based on instantaneous noisy channel to maximise

the rate achieved using Hierarchical Rate Splitting mechanism. The proposed

technique is defined based on a shallow NN architecture thereby making it

extremely quick to learn and cluster the users based on the instantaneous noisy

channel. The proposed technique is able to achieve a rate comparable with current

works while being less complex compared to other techniques. Furthermore, this

also helps to investigate further complex NN structures such as Graph NN which

can learn covariances between different users to define clustering.
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4FANETs- Introduction and Challenges

4.1 Introduction

Unmanned Aerial Vehicles (UAVs) are used in a wide range of applications,

from tracking and monitoring animals in remote areas[163] to military applica-

tions[164]. In general, drones are used to search, identify and monitor interesting

events over massive and/or inaccessible areas. In order to effectively accomplish

the task, multiple UAVs are deployed in a certain area and are expected to coor-

dinate actions in an autonomous fashion or execute direct instructions from a

control center.

In many scenarios, the UAVs need to exchange a relatively large amount of data

among themselves and/or with the control station to support a given service.

For example, distributed area monitoring/patrolling applications may require

the UAVs to stream high definition video or thermal camera recordings to the

control station, which demands wideband communication technologies (e.g.,

mmWave) that typically have limited coverage range. Therefore, providing such

services over wide areas may require multi-hop data connections, where the UAVs

themselves can act as relays for other nodes in the network.

On the other hand, UAVs and the control station also need to exchange light

control traffic, which usually has strict latency and reliability constraints, but

low transmission speed requirements. This traffic can be carried by low-rate

long-range communication technologies, such as LoRa, so as to realize direct

links between the UAVs and the control center. For example, this control channel

can be used by the UAVs to send periodic tracking updates to the control center,

which can use these messages to track the UAVs position [165, 166, 167]. In

these scenarios, UAVs and the control center can use different technologies to

carry information and signaling traffic, physically separating the data and control

planes. However, the randomness in the drones’ movements makes the design of

a multihop routing protocol for the data plane a challenging problem.

4.2 Literature Review

FANETs are similar to Mobile Ad-Hoc Networks (MANETs), but can have a higher

node density and higher mobility. Hence, routing protocols for FANETs have

to take into account this node density and mobility to devise routes. While
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traditional routing protocols for MANETs, such as Ad-Hoc On Demand Distance

Vector Routing (AODV)[168] and the OLSR [169], solve the issue by flooding, we

should consider any information on the future position of nodes and the available

tracking data so as to improve communication reliability. In this section, we

provide a brief overview of the state of the art in the field, focusing on position-

and link existence-based routing protocols.

4.2.1 Position-based routing protocols

Since UAV position tracking models are themselves a relatively new research

topic [170], there have been few attempts to use this information for routing.

Disseminating the trajectory information throughout the FANET in a timely

manner is another important issue, as routing is typically distributed and updates

need to be frequent.

Some of the protocols for FANETs in the literature are direct extensions of

well-known MANET routing protocols: the On-Demand Routing With Boids of

Reynolds Protocol (BR-AODV)[171] introduces an AODV-like protocol based

on mobility management of UAVs. In this, a technique is presented to restrict

and model position and mobility in order to prolong the existence of a link

between UAVs when it is active, i.e., when data is being transferred on the link,

thereby maintaining communication for a comparatively long time. The mobility

restriction messages are incorporated in the HELLO message of the AODV protocol

to minimize the signaling overhead. An extension of OLSR based on Prediction

of Mobility and Delay (OLSR-PMD)[172] uses GPS position information to make

mobility prediction, applying a Kalman filter on the position and velocity of nodes.

Following that, Multi-Point Relays (MPRs) are chosen based on maximizing link

lifetime and the number of next hop nodes, i.e., the reachability of the destination.

Other protocols are designed from scratch. In the Predictive Routing for Dynamic

UAV Networks (PR-DUAV)[173], a trajectory prediction model is presented using

Durbin’s curve. The location and mobility of the neighboring nodes are predicted

using Kalman filtering at each node, and the error occurring in the predictions

is modeled as a standard normal distribution. Using the location estimates

provided by the trajectory predictions, a shortest delay path is chosen for data

transfer. Delay estimates are calculated for current locations of the node, while

path selection for further data transfer is chosen based on location estimates of

neighboring nodes. The Mobility Prediction-based Geographic Routing (MPGR)

protocol [174] is a geographical routing protocol based on mobility prediction.

The mobility prediction is made by modeling the future position of each UAV as a

Gaussian distribution, which is consistent with Kalman-based tracking systems.
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The distance between nodes is defined based on the location estimates obtained

from the mobility predictions. Routing is then performed in a greedy way so

as to maximise the one hop distance to the destination. If the greedy link fails,

the routing protocol finds the next hop on the perimeter which is closest to the

destination and thereby finds a route to the destination. A similar mobility pre-

diction system is exploited by the Geographic Position Mobility-Oriented Routing

Protocol (GPMOR)[175], which uses a Gaussian Markov Model to calculate the

distance between nodes. Based on this distance calculations, a metric is defined

which determines if the neighbor is in range of the destination. The path with

lowest delay is chosen for routing. In GPSR-Adaptive Beacon and Position Pre-

diction (GPSR-ABPP)[176], the protocol performs a linear regression analysis to

predict the future position of each node. In order to reduce routing overhead, the

location updates are transmitted dynamically based on the location predictions.

This position information is then used for geographical routing.

4.2.2 Link Existence-Based Routing Protocols

Some protocols in the literature try to explicitly estimate the link existence

probability, either enhancing the classic AODV and OLSR or designing new

mechanisms.

OLSR With Expected Transmission Count (OLSR-ETX)[177] presents a improved

Optimized Link State Routing[178] for ocean UAV networks. An additional metric

called Expected Transmission Count, which calculates the link expiration time

based on GPS positions of the nodes, is introduced in OLSR. In Link Stability

Estimation-based Preemptive Routing protocol for Flying Ad Hoc Networks[179],

a link stability estimation is calculated based on three parameters namely Link

Quality, Safety Degree and Mobility. Link Quality is determined by successful

packet transmission in any direction. Safety Degree is defined as the distance

between the nodes based on GPS and AODV HELLO messages[168]. Mobility

is defined as the instantaneous relative speed of the nodes with respect to each

other. Using these parameters, routes are defined with a link stability threshold

for each route so that the protocol switches proactively to other paths when

one route goes below the particular link stability threshold. Predictive OLSR

(P-OLSR)[180] also presents a similar routing protocol metric as Link Stability

Estimation-based Preemptive Routing protocol for Flying Ad Hoc Networks[179].

The only difference is that the protocol metric is used in OLSR. Also, Improved

OLSR (i-OLSR)[181] presents a routing metric similar to Link Stability Estimation-

based Preemptive Routing protocol for Flying Ad Hoc Networks[179]. It also

introduces a pursuit mobility model that calculates the position estimates based
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on old position and node acceleration in a certain direction, scaled by a random

offset vector.

In Robust and Reliable Predictive Routing (RRPR)[182], link connection time

are estimated based on node velocity vector. Based on this link estimates, the

routing path metric is defined as the combination of intermediate link connection

times, hop count and risk, i.e. the residual energy and location of the node and

the path with smallest routing path metric is chosen as the route. Directional

communication can be performed using the position information of the nodes.

This directional communication cone size depends on the distance between the

two nodes. As the routing path is approaching its expiration time, the protocol

proactively sets alternate routes up to maintain communication. The Optimized-

Hybrid Wireless Mesh Protocol[183] is a hybrid mechanism for routing for mobile

nodes where some nodes are assigned as Relay Nodes which are connected to

control center. The routing between the relay nodes is proactively defined by

the control center. The nodes other than the Relay Nodes, setup routes to the

control center by reactively finding routes to the nearest relay nodes using Ra-

diometric AODV (RM-AODV). In the Topology-Aware Routing Choosing Scheme

(TARCS)[184], the topology of the whole network is maintained by exchanging

information between neighboring nodes. The system then chooses between mul-

tiple routing protocols based on the node mobility and topology changes. The

Geolocation-Based Multi-Hop Routing Protocol (GLMHRP) [185] is a location and

velocity-based greedy routing protocol in which location predictions are based on

periodic updates from neighboring nodes. Finally, a recent work [186] presents

a bio-inspired routing protocol using bee optimization, in which the routing

tasks are categorised for three tasks: namely, scouting, route determination, and

resource foraging, i.e., data transfer. The protocol has a relatively small overhead

compared to other standard FANET protocols.

4.3 Challenges

Hence, a FANET design differentiates from the more classical MANET, featuring

different wireless communication technologies with almost orthogonal properties

that have to be jointly managed in order to fully exploit the potential of the

network. Using the SDN Paradigm, the control center, which can get the most

complete view of the state of the network, can determine and propagate routes

in a centralized fashion through the low data rate long range control channel

[187]. Nonetheless, routing in FANETs is complex even if the control center

knows each UAV’s position at a given instant, as the dynamic, three-dimensional

nature of a swarm makes maintaining stable routes a difficult problem. Most
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routing protocols for FANETs as shown in the previous sections is an extension to

the traditional MANET protocols such as AODV and OLSR. Moreover, the need for

higher data rates in next generation wireless networks leads to incorporation of

high bandwidth mmWave technologies, which comes at the cost of a significantly

higher path loss, reducing the effective range of communication. To mitigate this

issue, mmWave systems often use beamforming techniques that can direct the

signal towards the receiver, wasting less power on other directions and reducing

interference. However, accurate beamforming requires accurate knowledge of

the transmitter’s and receiver’s positions, which can be very challenging in a

FANET because the UAVs are moving, often at relatively high speed, and can only

rely on imperfect sensors to measure their position. The usage of beamforming

with imperfect information in conjunction with uncertainty in position introduces

significant challenges such as if the distance between two UAVs is small, the effect

of the positioning error on the beamforming angle is proportionally larger. Hence,

the communication challenges introduced due to UAV mobility as well as usage

of mmWave technologies provides a very interesting research problem.
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5Routing Techniques to Improve Route

Stability and Robustness in FANETs

5.1 Introduction

Routing design in FANETs has had a considerable amount of work on position-

and link existence-based routing; the literature review presented in the Chapter 4

does not cover the whole field, and for a more in-depth review of the literature

on FANET routing protocols, please refer to the surveys [188, 189]. However,

random position modeling has rarely been considered, as the GPS and mobility

information was almost always considered correct by the algorithms. The routing

protocol should deal with the inevitable estimation error and the relatively low

frequency of position updates, or it will not be able to follow the fast dynamics of

UAVs. Another factor that should be taken into account is that links involving a

common node are not independent: OLSR-PMD [172] and MPGR [174] are the

only protocols to jointly consider successive hops. Finally, RRPR [182] was the

only protocol to consider additional backup routes to increase the reliability of

data transfer. Though, RRPR only uses backup routes when the path expiration

is near, i.e., when the weakest link between the intermediate nodes is about

to expire. Hence, in this chapter, we propose a system which chooses multiple

routes, avoiding single points of failure as much as possible, as this possibility

has not yet been explored in FANETs [188].

5.2 Route Existence Design

We model a FANET as a time-varying graph G(t) = (V, E(t)), where V is the set

of UAVs in the network and E(t) is the set of existing links at time t. Each drone

i is characterized by its position xi(t) = (xi(t), yi(t), zi(t)) in the 3D space. We

define the distance dij(t) = ♣♣xi(t) − xj(t)♣♣2 as the Euclidean distance between

the two drones. In the following, we consider a link eij(t) as part of E(t) if the

distance between drones i and j is lower than the communication range D (which

depends on the communication technology used): E(t) = ¶eij(t) : dij(t) ≤ D♢.

This simple assumption is justified by the fact that the drones will be in line of

sight of each other in most practical applications; however, the model can be

extended to more complex scenarios.
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In the following, we omit the time notation for readability; the operations

described below need to be repeated at each time step, as the nodes in the

network move and updated position information becomes available: as such,

each routing decision is static, but routes are re-evaluated over time. We assume

that the real position xi of each UAV is not known by the control station, which

keeps an estimate of its Probability Distribution Function (PDF) p(x̂i = x) instead.

We can now define the link existence probability P (eij) as:

P (eij) = PD(dij ≤ D) =
∫︂

BD(0)
p(xi − xj = x)dx, (5.1)

where BD(x) is the sphere with radius D and center x. Let e denote a path from

a source (s) to a destination (d), and Esd is the set all such routes. We then define

the optimal route e∗ from s to d as the vector of links that maximize the overall

route existence probability:

e∗ = arg max
e∈Esd

P (e), (5.2)

If all links were independent as typically assumed in the literature, we would have

P (e) =
√︃

e∈e P (e). Note that, loops are always avoided, as a route with a loop

always has a lower or equal probability of existence than the same route without

the loop. In this paper, furthermore, we model the joint existence probability of

adjacent links, which slightly complicates the expression of P (e), as explained

later. Once we have found the optimal route e∗, we can define its optimal backup

as the route b(e∗) that maximizes the success probability when the first route

fails (an event denoted by ē∗):

b(e∗) = arg max
b∈Esd♣ē∗

P (b♣ē∗). (5.3)

where Esd♣ē∗ indicates the set of a viable paths from source s to destination d,

given that the primary path e∗ is disrupted. We can generalize the notion of

backup route to compute the optimal backup to a set of existing routes, consider-

ing the best route if the existing ones all fail. In the following subsections, we

report the derivation of the route existence probability, along with the Stochastic

Multipath Routing for FANETs (SMURF) algorithm to calculate the primary and

backup routes.
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5.2.1 Link existence probability

We now assume that the estimated position distribution for each node is a

multivariate Gaussian distribution, x̂i ∼ N (µi, Σi). This assumption is justified if

the tracking system uses Kalman filtering, as is common in the literature [167].

We also assume that the positions of the UAVs are mutually independent. Note

that, the covariance matrix Σi is not necessarily diagonal, as we expect a higher

error in the direction of movement of UAVs. The PDF of the position for the node

i is given by:

pi(x) =
1

2π
√︂

♣Σi♣
e(− 1

2
(x−µi)

T Σ−1
i

(xi−µi)). (5.4)

Hence, the link existence probability as expressed in (5.1) is given by:

P (eij) =
∫︂

BR(0)

e(− 1
2

(x−(µi−j))T Σ−1
i−j

(x−µi−j))

2π
√︂

♣Σi−j♣
dx, (5.5)

where µi−j = µi − µj and Σi−j = Σi + Σj, as the difference of two independent

multivariate Gaussian random variables is itself multivariate Gaussian with those

parameters. This integral cannot be solved analytically, but it can be computed

efficiently using numerical methods.

We now consider the existence probability P (eij, ejk) of the two-hop path (eij, ejk).

The two links are correlated because they share the intermediate node j. Given

that the positions xi and xk are mutually independent, the links’ existence proba-

bilities become independent when conditioned on xj. Hence, applying the total

probability law, we get:

P (eij, ejk) =
∫︂

R3
P (eij♣xj = x)P (ejk♣xj = x)pj(x)dx, (5.6)

where P (eij♣xj = x) is given by:

P (eij♣xj = x) =
∫︂

BR(x)
pi(y)dy. (5.7)

All the computations above are so reduced to the calculation of multivariate

Gaussian integrals, which can be performed efficiently with well-known numerical

methods [190, 191]. Since the routing algorithm is executed by the control

station, which should have sufficient computational power, there are no issues

with the limited battery and computational capabilities of the UAVs.
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5.2.2 Routing Metric Calculation

In order to compute the existence probability of a route, we need to consider

all of its links jointly. In the following, we simplify the probability calculation

by assuming that links that do not share nodes are independent, so that we can

write:

P (e) = P (e12)P (e23♣e12) . . . P (en−1,n♣en−2,n−1). (5.8)

This simplification is justified by the fact that each UAV’s movement is assumed to

be independent, so that it is reasonable to expect that the mutual dependence of

links that do not share nodes is negligible. Considering more faithful approxima-

tions is possible, but left to future work. By considering only the dependence on

the immediately previous link, we can efficiently build a spanning tree by using

the negative logarithm of the link existence probability as a routing metric:

W (ejk♣eij) = − log10(P (ejk♣eij)). (5.9)

In this way, links with a higher existence probability are chosen by the routing

algorithm.

5.2.3 Backup Routes Calculation

In a dynamic scenario, the primary route, which by definition is the route with

highest probability of existence, can still fail. To mitigate the impact of the failure

on communication and increase the reliability of the transmission, we devise a

set of backup routes, which can be selected in case the primary one fails. The

increase in reliability of the transmission is majorly dependent on the density of

the FANET. If the FANET is dense enough, there will be multiple viable routes

to the destination. So, in order to calculate the optimal backup, we consider

single-link failures and define the conditional path existence probability, given

the link between nodes i and j is down, as follows:

bi,j(e
∗) = arg max

b∈E♣ē∗

i,j

P (b♣ē∗
i,j). (5.10)

where ē∗
i,j denotes the event where the link between ith and jth nodes does not

exist. Considering the event ē∗
i,j, we can compute the conditional joint position

PDF of nodes i and j, as:

p((x̂i, x̂j) = (x, y)♣ēi,j) =

⎧

⋁︂

⨄︂

⋁︂

⋃︂

pi(x̂)pj(ŷ)

1−p(ei,j)
, ŷ ∈ BR(x̂);

0, ŷ /∈ BR(x̂);
(5.11)
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where, p(ei,j) is the link existence probability between nodes i and j. We can then

adjust other links’ existence probabilities with such a conditional PDF and rebuild

the spanning tree to find the backup route. After computing the optimal backup

bi(e
∗) for each link failure, we compare them by considering the probability of

the link failing. The optimal backup route is then given by:

b̃(e∗) = arg max
b∈¶b1,...,bN(e

∗)−1♢

P (b♣ē∗
i,j)(1 − p(ei,j)), (5.12)

where N(e∗) is the number of nodes in route e∗. We compute successive backups

by considering single broken links in the primary route to simplify the calculation,

even though the result is slightly suboptimal. The calculation of the backup

routes can be extended to longer time horizons in the same way we outlined for

the primary route.

5.2.4 Route information propagation and data plane

In our model, routing calculations are performed by the central control station,

which collects tracking information using LoRaWAN [167] and computes the

routes. This centralized strategy provides two key benefits: first, the information

collection and decision-making is in one place, so that the routing protocol

inherently avoids loops and does not operate on contradictory information.

Second, UAVs are spared from the computational load to perform numerical

integration and calculate the route existence probability. The central node is not

so constrained, and can even offload computation to the cloud.

The propagation of the routes to UAVs can be performed via SDN [192]: this

paradigm involves a central controller gathering information and sending simple

instructions to switch nodes, and it has already been proposed and tested in

FANETs [193]. SDN also gives UAVs the possibility to send data over multiple

interfaces, so the routing protocol could be implemented in an entirely trans-

parent way, without requiring changes to the applications transmitting the data.

Furthermore, SDN has been widely deployed in wired networks, and all major

operating systems now support it by default.

The use of backup routes can increase the reliability of the transmission, but there

is a trade-off: if packets are sent over multiple routes by multicast, this requires

additional energy consumption and increases the load on the network. Choosing

the optimal point in this trade-off is beyond the scope of this work, but the choice

can be performed by tuning the number of backup routes that the nodes can use,

which we choose as a system parameter in our analysis.
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Parameter Value
Number of Nodes Poisson Point Process
PPP Density λ [UAVs/km2] 150
Number of Scenarios 100
Number of Realizations per Scenario 100
Communication Range [m] 100

Table 5.1: Parameters of the Simulations

Naturally, this static procedure needs to be repeated over time as the UAVs

move and new information about their position becomes available. The speed of

the position information propagation should be large enough to limit the delay

between the generation of the positioning update and the routing decision: route

quality degrades if the controller uses outdated information, particularly if the

UAVs are fast.

5.2.5 Simulation and Results

Simulation Analysis is performed in MATLAB environment. We define a Monte

Carlo based simulation, where we generate 100 different network scenarios,

which correspond to 100 possible combinations of different number and estimated

positions of UAVs in the system. The routing algorithm computes the route for

each scenario, and we consider 100 different realizations of the graph: each

realization denotes a particular set of node positions, and can be considered as

a different possible evolution of the network for the given tracking information

scenario. Routing decisions taken at instant t are then evaluated over the next

timestep t + 1. Due to this difference, not all network realizations are fully

connected, and even perfect routing cannot achieve full reliability. The routing

reliability in a given scenario is then measured as the fraction of realizations in

which at least one of the chosen set of routes exists between node 1 as source

and randomly chosen destination.

We consider a communication range D = 100 m, which is realistic for UAV line of

sight mmWave propagation in urban scenarios [194]. For each scenario, the num-

ber and average positions (i.e. the means of multivariate Gaussian distribution

that describe the positions across different realizations) of the nodes is generated

by a spatial Poisson Point Process (PPP). The elements of the covariance matrices

of the Gaussian distributions, instead, are drawn from a uniform distribution in

[0,1], using rejection sampling to ensure the matrix is symmetric semidefinite

positive. The covariance matrix is then multiplied by D2. Table 5.1 shows the

parameters used to generate the simulation environment. We also consider two

other protocols for comparative analysis, namely,
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• Mobility based Geographic Routing Protocol (MPGR) - Protocol from [174]

that computes routes based on mobility of the UAVs;

• Distance - Distance based routing protocol that uses the tracking information

obtained from the Kalman Filter to compute routes.

Additionally, we also considered the theoretical oracle routing protocol, which

operates with perfect information about the UAVs’ positions and, consequently,

the existence of the routes.

To evaluate all the protocols, we compute Packet Delivery Ratio (PDR) by con-

sidering the existence of paths between all the nodes in primary and/or backup

routes. If at least one of the selected routes exists for a particular realization of the

distribution, we consider the packet to be delivered correctly, while when none

of the selected paths exists, the packet delivery fails. Additionally, the packets are

multicasted over the primary and backup routes so as to avoid additional energy

consumption due to duplication of packets on links shared by such routes. Finally,

we have assumed that there is no radio interference between the packets sent on

multiple routes. We evaluate the delivery for every realization in every scenario

and plot it as a boxplot. Figure 5.1 shows the PDR when incorporating multiple

routes from source to destination, with a density λ = 150 UAVs/km2.

The boxplot shows the empirical distribution of the PDR for the given scenario.

The average PDR for SMURF is significantly higher even when considering a

single path: while the distance-based protocol has an average PDR of 85% and

MPGR is below 40%, SMURF can achieve 93%. MPGR performs even worse

than the distance-based metric, as shown in the figure. Furthermore, the lower

quartile edge of the boxplot shows that the distance-based protocol performs far

worse in the worst cases, with 25% of possible network graphs having a PDR

of 70% or lower, while single-path SMURF achieves an 88% PDR for the 25th

percentile graph. This gain comes from the fact that SMURF computes the route

existence probability accounting for the inter-dependency of adjacent links. The

gains become even more significant when considering multiple routes: using 2

paths improves the average PDR to about 98%, and 3-path SMURF already has a

performance very similar to the oracle routing protocol i.e. maximum achievable

routing performance when all positions are accurately known by the control

center. This justifies the need for backup routes, but also limits the algorithm to a

small number of alternative paths, which helps reduce the overhead due to packet

replication. We also tested the protocol performance for different scenarios,

changing the rate parameter of the PPP to observe the effect of node density on

the performance of the protocol. Figure 5.2 shows the average PDR obtained by
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Figure 5.1: Comparison between MPGR, Distance Based Single Path Algorithm and
SMURF with different number of paths
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Figure 5.2: Average PDR as a function of the node density λ
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Figure 5.3: 25th Percentile PDR as a function of the node density λ

the distance-based single-path algorithm, single-path SMURF and 3-path SMURF,

as a function of the parameter λ, which represents the node density.

As shown in Figure 5.2, SMURF’s average PDR increases with increasing node

density, and 3-path SMURF does significantly better than the single-path version.

However, SMURF’s PDR is already above 89% even when λ = 100 UAVs/km2,

and the gain from using backup routes increases as node density decreases: the

chances of the primary route being interrupted are much higher, and the backups

can help more. The distance-based algorithm performs far worse, both for very

high and very low densities: if the density is high, it makes many more hops,

increasing the chances that one link will not be available, while if the density is

low, its less accurate characterization leads it to make more mistakes. The plot

also shows the confidence interval for each algorithm: SMURF’s performance is

better than the distance-based routing algorithm’s by more than 2 standard devi-

ations for λ ≥ 120 UAVs/km2, so the gains are statistically significant. However,

the confidence intervals for distance-based single-path routing and single-path

SMURF have significant overlap for lower variables of λ, and the advantage of

SMURF in this scenario is mainly its better predictability, i.e., having a more

consistent PDR in different realizations. Figure 5.3 shows the PDR in the 25th

percentile graph for different node densities. In this case, the trend is similar for

5.2 Route Existence Design 53



SMURF 1-P
ath

SMURF 1-P
ath 0.8 Sensitiv

ity

SMURF 1-P
ath 0.9 Sensitiv

ity

SMURF 1-P
ath 1.1 Sensitiv

ity

SMURF 1-P
ath 1.2 Sensitiv

ity

0.4

0.5

0.6

0.7

0.8

0.9

1
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all the considered algorithms: the dominating factor is the existence of at least

one route, as we are considering worst-case scenarios.

As shown in the Figure 5.3, even in worst case scenarios with least density i.e.

λ = 100 UAVs/km2, SMURF outperforms the single path algorithm by almost

8% for single path and almost 15% for three paths. A common issue in Kalman-

based systems is the estimation error, as the Gaussian predictions derived from

the filter can over- or underestimate the variance. To understand the effect

of such estimation errors, we performed a sensitivity analysis of the protocol

for different over- and underestimations of the variance. Figure 5.4 shows the

sensitivity analysis of SMURF when the protocol uses a variance shifted by -20%,

-10%, 10%, and 20%. Performance losses are very small even in the case of

significant variance of the estimation errors. Hence, SMURF is tolerant of such

errors occurring in Kalman filter predictions.

5.3 Route Stability Design

The SMURF routing protocol discussed in the previous subsection is shown to

be useful for single timestep routing decisions. But, it is crucial to evaluate the

performance of the protocol over an entire flight duration of the UAVs. To do

so, we extend the SMURF routing protocol defined by introducing a continuous
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gradual mobility of the UAVs in the FANET. To introduce the effect of uncertainty

due to UAV mobility, we consider the uncertainty in Kalman filter predictions

defined in Sec. 5.2 as a function of time specifically dependent on the last tracking

update received from the UAVs i.e. the uncertainty in the Kalman filter predictions

is smallest in the next timestep after receiving the update and it increases based

on the speed and estimated direction of travel till a new update is received. We

reuse the definitions of position and link existence probabilities from Sec. 5.2

and compute them over each timestep t thereby obtaining the link existence

probability over the entire mobility duration of the UAVs. For reader’s ease, we

denote the link existence probability over each timestep with subscript t notation.

5.3.1 Routing Metric Calculation

In order to compute the route existence probability for each timestep, we consider

the same assumptions as before, i.e., links that do not share nodes are indepen-

dent. For simplicity, we numbered the UAVs from source s to destination d in a

sequential order. Therefore, for a path e = [e1,2, e2,3, . . . , en−2,n−1, en−1,n], taking

into account the link existence probability computed in Sec. 5.2 for timestep t,

we can write:

Pt(e) ≃ pt(e1,2)pt(e2,3♣e1,2) . . . pt(en−1,n♣en−2,n−1). (5.13)

Note that, the calculations above refer to a single timestep, but the Kalman

filter-based location prediction can be extended to the next T timesteps. We can

then extend the prediction to a vector:

p
(T )
t (ei,j) = ¶pt(ei,j), pt+1(ei,j), . . . , pt+T −1(ei,j)♢ . (5.14)

In the same way, we can compute P
(T )
t (e) for any route as a vector of Pt(e) for

[t, t + T − 1] timesteps. Naturally, this is a slight simplification, as the error on

the position of the nodes is not independent over time, but accumulates, so there

is a positive correlation between the existence probability at one step and the

next. However, in the interest of computational simplicity, we make this further

simplification.

To compute the routing metric, we could consider any function of the vector

P
(T )
t (e), but we take the average over the time horizon for simplicity’s sake. Since

the route existence probability at any given timestep is computed considering

only the dependence on the immediately previous link, we can efficiently build a
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spanning tree by using the negative logarithm of the link existence probability as

a routing metric to minimize:

W(ej,k♣ei,j) = − log

(︄

∑︁t+T −1
τ=t pτ (ej,k♣ei,j)

T

)︄

. (5.15)

In this way, links with a higher existence probability over the whole timeframe

are chosen by the routing algorithm. Additionally, the calculation of the backup

routes computed in Sec. 5.2 can be extended to longer time horizons in the same

way we outlined for the primary route.

5.3.2 Route information propagation and data plane

As discussed in Sec. 5.2, in our system model, routing computations are carried

out by the central control station, which receives tracking information over long

distance low bit rate channel such as LoRa [167] and defines the routes.

Also, depending on the frequency of the updates and the mobility patterns

devised from the updates, the central controller can adapt the frequency of

routing updates to the UAVs. However, the speed and frequency of the position

information propagation and the routing updates should be sufficient to limit the

delay between the generation of the positioning update and the routing decision

as route quality can potentially degrade very fast if the controller uses outdated

information, particularly if the UAVs move fast.

5.3.3 Simulation and Results

The simulation environment is set up in Python. The UAVs are autonomously

moving in the area, i.e. they are not explicity controlled by the control center,

which only tracks their position through the LoRa updates. UAV positions are

determined based on the unscented Kalman filter predictions. Two additional

protocols, namely, AODV and Distance-based SDN routing, are considered for the

sake of comparison against SMURF. The AODV simulation is performed under

the assumption that each UAV has perfect information regarding the positions of

all other UAVs in the network at the time of network route computation. This

assumption is not entirely realistic and leads to an upper bound to that a practical

implementation of AODV would achieve in this scenario. In the evaluation, we

consider two variants of position aware AODV protocol, namely,

• AODV-L - AODV with Long Route Timeout, which calculates the route every

N timesteps (N is equivalent to the prediction window of SMURF);
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Simulation Parameter Simulation Value
Map size [m] 200 × 200 × 20
Density of UAVs [UAVs/km3] {20k-60k}
UAV motion model CTRA 3D [167]
UAV tracking model Unscented Kalman Filter
Transmission range (D) [m] 75
Prediction window [s] {1,5,10}
Number of simulated networks 100

Table 5.2: Parameters of the Simulations

• AODV-S - AODV with Short Route Timeout, which calculates the route at

each timestep. This improves the reliability but involves a large cost in

terms of control traffic to update the routing tables.

We remark again that both versions of AODV are idealized, i.e., have information

that UAVs in an actual network would not have, and provide an upper bound to

the achievable performance.

In addition, we consider the distance-based SDN routing, henceforth referred to

as Distance, which gets regular position updates from the UAVs and calculates

the shortest routes based on the Kalman filter predictions of the UAV positions.

We also consider a simple disk model for the communication, since the UAVs are

in free space and the path loss is a direct function of the distance: if the distance

between two UAVs is lower than the communication range, the link can be used.

Additionally, we determine a general upper bound to the achievable performance,

henceforth referred to as Upper Bound, computed via Monte Carlo simulation

(the mobility of the UAVs makes it very difficult to compute the performance

analytically). The upper bound is computed by considering perfect causal position

information, so that the controller knows both where the UAVs are and where

they will move in the future. The simulation parameters are given in Tab. 5.2.

To examine the performance of the protocols, we use two different metrics, Route

Availability Ratio (RAR) and Route Establishment Overhead (REO):

RAR =
Route Availability Time
Total Simulation Time

;

REO =
Number of Routing Packets

Number of UAVs × Total Simulation Time
.

The RAR metric is used to determine the availability of at least one path between

source and destination, while the REO gives the overall number of routing packets

exchanged per timestep for any network size, and hence provides a measure of

the protocol overhead.
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The simulation results, hence, are divided in two subsections. In the first subsec-

tion, the protocols are evaluated using the defined metrics for different network

densities and for different sizes of the prediction window, while in the second

section, we focus only on the impact of backup routes on the RAR metric, as REO,

which is SDN route control information sent over LORA is the same for single

path and multipath transmissions.

5.3.3.1 Route Availability and Route Overhead Comparison

In this evaluation, we determine the performance achieved for all the protocols

using the two metrics defined before. To do so, we set a route expiration timer

of AODV-S to 1 second, ensuring that AODV-S will update the route at every

second. Routing decisions, hence, are made very often for AODV-S, while we

vary the prediction window of the other protocols. The route expiration time

for AODV-L is set equal to the prediction window of SMURF and Distance. We

recall that SMURF and Distance need to rely on location updates from the UAVs

to determine routes and, between updates, they evolve the mobility model in

open loop (i.e., blindly). AODV-L and AODV-S are also assumed to have perfect

knowledge of the position and mobility of the UAVs in the current timestep, i.e.,

both the protocols exactly know which links are disconnected, which is an ideal

assumption as, in reality, this information can only be known by the protocols

when a transmission fails. To provide a fair comparison with the other algorithms,

SMURF will only use the primary path. In these simulations, we also control the

density of the nodes over the simulation space, which will determine the possible

routes. Figure 5.5 provides the RAR of all different routes from one source

for the density of 40000 UAVs/km3. Note that in our scenario, such a density

translates to approximately 10 nodes in the 200 m × 200 m × 20 m simulation

area, representing a moderately dense network. As visible from Figure 5.5, the

median RAR obtained by SMURF for prediction window of one and five seconds

is significantly higher than the corresponding RAR obtained by AODV-L and

AODV-S while its comparable to RAR obtained by Distance. For the 10 second

prediction, instead, the median RAR of SMURF is lower than AODV-S, but still

higher than the median RAR obtained by AODV-L and Distance. This shows that,

as the information gets older, the routes become stale and need to be recalculated

based on new location updates from the UAVs. SMURF is then very good at

evaluating the routes, as long as the prediction window is relatively short and

routes are updated frequently.

We can then look at the effect of the density of the nodes on the reliability of the

three algorithms, as shown in Figures 5.6, 5.7 and 5.8. The three figures show

58 Chapter 5 Routing Techniques to Improve Route Stability and Robustness in FANETs



1 Second 5 Seconds 10 Seconds
Duration of Prediction

0.0

0.2

0.4

0.6

0.8

1.0

RA
R

Upper Bound
SMURF
AODV-L
AODV-S
Distance

Figure 5.5: RAR comparison for different duration of predictions for a density of
40000 UAVs/km3.
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Figure 5.6: RAR as a function of the UAV density for different protocols for the prediction
window of 1 s.

the mean RAR as a function of the network density for prediction windows of 1 s,

5 s, and 10 s.

As visible from Figure 5.6, the RAR for SMURF outperforms AODV-S and AODV-

L and is equivalent to that of Distance. The reason the pure distance-based

prediction performs as well as SMURF is due to the small uncertainty in the

UAVs’ future positions for the prediction window of 1s. This uncertainty in the

position increases when the prediction window is increased to 5s. As visible from
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Figure 5.7: RAR as a function of the UAV density for different protocols for the prediction
window of 5 s.
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Figure 5.8: RAR as a function of the UAV density for different protocols for the prediction
window of 10 s.

Figure 5.7, the RAR of SMURF outperforms all the other protocols at all densities

even approaching perfect reliability at higher densities.

On the other hand, SMURF performs worse than AODV-S if the prediction window

is 10s, as shown in Figure 5.8. The only case in which SMURF outperforms AODV-

S is when the density is very high, reaching 60000 UAVs/km3. The reason is

that with higher densities of UAVs, the SMURF protocol can choose the lowest-

uncertainty route, thereby increasing the overall RAR. Additionally, to determine

60 Chapter 5 Routing Techniques to Improve Route Stability and Robustness in FANETs



20000 30000 40000 50000 60000
Density of Nodes (UAVs/km3)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

RE
O

Normalized Routing Overhead
SMURF Distance AODV-L AODV-S

Figure 5.9: REO over different densities for the prediction window of 10 s.

the cost incurred while setting up these routes, we evaluate the metric of REO.

Figure 5.9 shows the REO with respect to the different UAV densities.

As visible from Figure 5.9, the REOs for SMURF, Distance and AODV-L are much

smaller than that of AODV-S. This is due to the fact that AODV-S has to send

route requests and receive route replies at every time the route expires which in

this case is every 1 s. This leads to high REO compared to SMURF, Distance and

AODV-L. So, even if the RAR obtained by SMURF and AODV-S is similar for a

prediction window of 10s, the REO for AODV-S is significantly larger compared

to SMURF. Also, note that, AODV-S preemptively knows which links have failed

and devises the trajectories which is an ideal case.

Additionally, the REO is constant across all densities for SMURF, Distance and

AODV-S while it slightly increases for AODV-L with increasing densities. This

shows that even though AODV-L has a smaller REO compared to SMURF, Distance

and AODV-S, the RAR achieved is significantly lower for AODV-L. SMURF, on

the other hand, has a slightly higher REO compared to AODV-L but provides a

significant performance gain in RAR compared to that of AODV-L. Also, note

that, AODV-L has preemptive knowledge regarding the links that have failed and

devises routes accordingly which is an ideal case for AODV as the protocol can

only detect link failures if a transmission fails. Hence, the simulation results show

that SMURF can significantly improve the RAR while still maintaining a relatively

low REO.
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Figure 5.10: RAR for one path to five paths and for different duration of the prediction
window and density of 40000 UAVs/km3

5.3.3.2 Primary and Backup Path Availability Comparison

In this evaluation, we determined the effect of backup routes for the primary

route defined by SMURF. Figure 5.10 shows the RAR for different durations of

prediction, for a density of 40000 UAVs/km3, i.e., approximately 10 nodes in the

volume of 200 m × 200 m × 20 m which is a moderately dense network. For

the prediction window of 1 s, the RAR is same from one to five paths, i.e., the

backups do not provide any additional gain in terms of route availability. For the

prediction window of 5 s, the backups provide a slight gain in mean RAR, i.e.,

approximately 2%, but in the worst 25th percentiles, the backups do not provide

any significant improvement. This, however, changes for a prediction window

of 10 s. The backups improve the mean RAR and the worst 25th percentiles by

approximately 10%. This denotes that the impact of backup routes increases as

the prediction window increases. However as the prediction window increases,

the primary and backup routes become stale and thereby the RAR, even with

backup routes, goes down. This indicates that the frequency of position updates

from the UAVs to the central station can be reduced to a certain extent to update

stale routes proactively and maintain similar performance while reducing the

number of route computations at the central station as well as frequency of route

updates from the central station to the UAVs.
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5.4 Conclusion

In this chapter, we briefly describe the routing strategies based on position and

mobility predictions that maximise route existence and stability in FANETs. We

provide a statistical analysis of a FANET with tracking information, and derive

the conditional existence probability for both single links and entire routes for

a single timestep and multiple time prediction window. Also, we propose the

SMURF protocol, a multipath routing protocol that computes a primary route

(i.e., the route with the highest existence probability) and a series of backup

routes that allow the transmission to succeed even if a link in the primary route is

broken. Through simulations, we compute the system wide performance obtained

for different performance indicators which show that SMURF can outperform

baseline protocols for different time prediction windows.

Also, we also show that another interesting avenue of further research is to

consider realistic propagation models and beamforming designs which can im-

prove the system wide performance while taking into account physical channel

attributes.
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6Joint optimization of beamforming and

routing strategies in FANETs

6.1 Introduction

Routing, as shown in Chapter 5, is a complex problem in FANETs: even if

the control center knows each UAV’s position at a given instant, the dynamic,

three-dimensional nature of a swarm makes maintaining stable routes a difficult

problem. Moreover, usage of mmWave technologies for providing high data

rates for UAV networks [195]. But, the usage of mmWave technologies, even

with its high bandwidth availability, comes at the cost of a significantly higher

path loss, reducing the effective range of communication. To mitigate this

issue, mmWave systems often use beamforming techniques that can direct the

signal towards the receiver, wasting less power on other directions and reducing

interference. However, accurate beamforming requires an accurate knowledge

of the transmitter’s and receiver’s positions, which is not always possible in a

FANET as the UAVs are moving, often at relatively high speed, and can only rely

on imperfect sensors to measure their position. Additionally, sharing positioning

information requires some signaling [167], which can be performed over long-

range and low-bitrate technologies.

The use of beamforming with imperfect information (caused due to errors in

predictive tracking) introduces another challenge when making routing decisions,

as UAVs at a shorter distance might have a higher probability of remaining in

range, but also suffer more from beamforming errors: if the distance between

two nodes is small, the effect of the positioning error on the beamforming angle

is proportionally larger. So, in this chapter, we propose the works that jointly

define routing and beamforming based on the position uncertainty.

6.2 Fixed Beamforming for Routing Design

We again describe the connectivity in a FANET as a time-varying graph G =

(K, E(t)), where K represents the set of UAVs in the network and E(t) the set

of active links at time t. Each drone moves independently from the rest and

has its attitude characterized by a 5-tuple: the coordinates in space xk(t) =
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(xk(t), yk(t), zk(t)) and the yaw and pitch angles. So, the quality of the link

between a pair of drones (i, j) depends on their Euclidean distance [196]:

dij(t) = ∥xi(t) − xj(t)∥2.

Since UAVs fly high from the ground, the space between them is assumed to

be free, i.e., without obstacles or reflections. We can then consider that there

is predominantly Line of Sight (LoS) communication [197]. Thus, the pathloss

between two UAVs is described by

PL(dij) =

(︄

c

4πf0dij

)︄γ

, (6.1)

where f0 is the carrier frequency, c is the speed of light, and γ is the path loss

exponent. As a result, if two UAVs are nearby, then there exists a link between

them. Otherwise, communication becomes impractical due to low SNR. More

formally, we can describe the set of active links by

E(t) = ¶eij(t) : dij < D♢, (6.2)

where the choice of D often depends on the environment and the wireless

technology used for communication [198]. Unfortunately, in more realistic

scenarios, the real position of all drones is unknown, but the central controllers

maintain estimators to predict the UAVs’ positions based on current and previous

location updates [167]. Hence, the position estimate is defined as:

x̂k(t) = xk(t) + nk(t), (6.3)

where the noise nk(t) ∼ N (0, Σk) is associated to the kth user where Σk refers

to the uncertainty covariance in the three coordinates. Hence, Σk is a symmetric

matrix. Note that, even if Σk is a symmetric matrix, it is not an identity matrix,

i.e. the error in estimate is not equal in all three coordinates. This is due to the

fact that the error in estimate will be larger in the direction of movement for the

UAV and smaller in other directions. In order to account for this uncertainty, one

can also re-write (6.18) in terms of the probability that the two endpoints are

within a sphere of radius D. As a result, the link existence probability can be

defined as

Ê(t) = ¶(i, j) : i ̸= j; Pij(t)♢ (6.4)
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Figure 6.1: 2-D representation of the angular separation between UAVs i and j for
perfect knowledge of position and attitude.

where the probability Pij(t) that the link between i and j is active at time t is

given by:

Pij(t) =
∫︂

BD(0)

e− 1
2

(x−∆x̂ij(t))T(Σij(t))−1(x−∆x̂ij(t))

2π♣Σij(t)♣
1
2

dx. (6.5)

Here, we have defined ∆x̂ij(t) = x̂i(t) − x̂j(t), Σij(t) = Σi(t) + Σj(t) and BD(0)

as the sphere with radius D and center in the origin.

To introduce beamforming into the system, we consider each UAV to be equipped

with an Uniform Planar antenna Array (UPA) of dimension M = MH × MV,

where antennas are spaced dH (horizontally) and dV (vertically) wavelengths

from one another [199]. This allows each drone to communicate with other

devices in the same altitude, as well as, with drones at different heights. As

discussed above, due to the nature of the open environment, we assume that

there is predominantly LoS communication. In this scenario, the UAVs can also

apply beamforming to improve the Signal to Interference plus Noise Ratio (SINR)

by increasing antenna gain. To determine the steering vector for beamforming,

we need to determine the angular separation between the corresponding UAVs.

Figure 6.1 shows the 2-D representation of the angular separation, i.e. azimuth

angle, between the UAVs i and j for perfect knowledge of position and attitude.

Since x̂i(t) and x̂j(t) are imperfect estimates, the angle between the estimated

position x̂j(t) of UAV j with respect to x̂i(t) of UAV i is itself a random variable.

In the following, we omit the time index t for simplicity. Hence, the steering
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vector is defined based on the estimated azimuth ∆ϕ̂ij and elevation ∆θ̂ij angles

between the jth and ith UAVs, respectively, described by,

∆ϕ̂ij = π1(x̂j − x̂i) + arctan

(︄

ŷj − ŷi

x̂j − x̂i

)︄

− ϕ̂i; (6.6)

∆θ̂ij = arctan

⎛

∐︂

ẑj − ẑi
√︂

(x̂j − x̂i)2 + (ŷj − ŷi)
2

⎞

ˆ︁− θ̂i, (6.7)

where 1(x) is the step function, equal to 1 if x > 0 and 0 otherwise and ϕ̂i and θ̂i

refers to the estimated yaw and pitch angles of the UAV. We can then compute

the beamforming gain due to uncertainty in position information as a function of

∆ϕ̂ij and ∆θ̂ij:

g(∆ϕ̂ij, ∆θ̂ij) =
1

MHMV

1

∆xij

hRxhT x, (6.8)

where,

hT x = ♣a(∆ϕ̂ij, ∆θ̂ij)
HwT x♣, (6.9)

hRx = ♣a(π + ∆ϕ̂ij, π + ∆θ̂ij)
HwRx♣, (6.10)

where wT x/wRx ∈ CM×1 denotes the beamforming vector used for transmis-

sion/reception and

a(ϕ, θ) =
[︂

ejκT(ϕ,θ)u1 , . . . , ejκT(ϕ,θ)uM

]︂T
, (6.11)

is the steering vector matrix associated to the azimuth (ϕ) and elevation (θ)

angles. Also, note that, the azimuth for the jth UAV with respect to ith UAV is

opposite of the angles of ith UAV with respect to jth UAV, i.e., these angles are

supplementary due to the central controller devising the directions the UAVs have

to orient themselves for transmission/reception. The same analogy is valid for

the elevation angles between these UAVs. For simplicity, we have also defined

κ(α, θ) as the wave vector for a planar wave impinging with angles ϕ and θ, λ

is the wavelength and um is the 3D spatial location of the mth element of the

antenna array. Specifically, for UPA, um = [0, i(m)dHλ, j(m)dV λ]T where we also

consider the auxiliary functions i(l) = mod(l − 1, MH) and j(l) = ⌊(l − 1)/MV⌋.

We can then compute the expected received power P
(r)
ij over link (i, j) as:

P
(r)
ij =

PTx♣g(∆ϕ̂ij, ∆θ̂ij)♣2
PL(dij)

. (6.12)
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The received power only depends on the transmission power PTx, the beamform-

ing gain for the transmission and reception, and the distance dij. Note that, the

central controller devises the transmit and receive beamforming vector wRx based

on the estimated positions of the UAVs and thereby determines the expected

received power at the receiver. By using the Shannon rate formula, we can then

get the expected capacity Cij(t) under interference

Cij(t) = B log2

⎛

ˆ︂

ˆ︂

∐︂

1 +
P

(r)
ij (t)

∑︁

ℓ̸=i
P

(r)
ℓj (t) + N0B

⎞

ˆ︃

ˆ︃

ˆ︁

, (6.13)

where N0 is the noise power spectral density and B the bandwidth of the channel.

Naturally, the distribution of this capacity is extremely complex, as it is a highly

nonlinear function of the estimated positions and attitudes in the swarm. As such,

it is extremely hard to estimate directly, but we can use a Monte Carlo sampling

method to draw the real state of the swarm from the belief distribution, which

can approximate the real distribution when given enough samples.

6.2.1 Analog Beamforming Design

The design of the beamforming vectors wT x and wRx directly influences the

behaviour of the power response P
(r)
ij . For a fixed transmitter to simultaneously

communicate with multiple receivers, it is essential to design a beamforming

that directs the emitted signal towards these receivers while keeping the interfer-

ence from other receivers as low as possible. For instance, when the CSI of all

receivers is perfectly known at the transmitter, one can design wT x and wRx as a

zero-forcing beamformers [199]. This type of beamforming design is primarily

applicable for traditional fixed-transmitter communication systems. Our scenario,

however, differs in at least three aspects from this traditional scheme. Firstly, each

UAV is only interested in communicating with a single receiver at a particular

time based on the route devised by the routing protocol. Secondly, the control

station does not have the current CSI for each of the UAVs. In fact, keeping

track of all CSIs among the different UAVs in this scenario is a hard task due

to high mobility of the UAVs. Finally and the most important characteristic of

the scenario is the mobility of the transmitter. In our scenario, UAVs are mobile

transmitters which can easily be rotated towards a desired direction. Thus, in

our devised scenario, alignment happens by rotating pairs of UAVs towards each

other.

Moreover, due to the characteristics mentioned above, designing wT x and wRx

for our communication scheme boils down to choosing a narrow or wide beam.
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Notice that, in the former, a narrow beam potentially reduces the amount of inter-

ference leaked towards other UAVs, but requires knowledge over the true position

xk. In contrast, designing a wide beam can compensate for the uncertainty over

the desired location while potentially increasing interference among different

UAVs. We simulate this behaviour by turning on/off the last rows or columns of

the UPA of each UAV. To simulate this idea, let us consider the logical matrix W

with entries ¶0, 1♢ and dimension MH × MV . We can design the beamforming

vector w by stacking the columns of matrix W, i.e.,

w =

⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

W1

W2

...

WV

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

(6.14)

where Wk denotes the kth column of the logical matrix.

Then choosing a wide beam translates into setting the last rows/columns of the

matrix W to zero and the remaining entries to one. For instance, to have a

omnidirectional transmission, it is sufficient to have a single active antenna [200].

Opposite to that, setting all entries of W to one results in the narrow beam pattern.

Using this idea we derive wider and narrower beams during our simulations.

Moreover, we assume every transmitter to use the same beamformer over the

entire route.

Finally, we also assume that there is no interference between the routes, that

have common UAVs as their intermediate relays, by defining a simplified Time

Division Multiple Access (TDMA) mechanism which divides the total time of com-

munication equally among all different routes for the common UAV. This TDMA

mechanism is defined by the control station, which knows all the concurrent

routes in the network at a particular time.

6.2.2 Position Uncertainty Based Beamformed Routing

Using the beamforming vectors defined in the previous section, we define the

Beam Aware Stochastic Multihop Routing for FANETs (BAR) protocol. In this

protocol, the edge weight êij ∈ Ê(t) represents the average expected capacity of

the link between UAVs i and j, denoted by Cij(t). Hence, we design this routing

problem as a standard maximum capacity route problem [201] over the graph

Ĝ = (K, Ê(t)), which can be solved by determining the maximum spanning tree

using the link capacities, weighted by the source load, as a weighting metric for

the graph edges. So, for a given beamformer, we apply a maximum spanning
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Simulation Parameter Simulation Value
Map Size [m] 200 × 200 × 10
Density of UAVs [UAVs/km3] {25k-75k}
UAV Position Model Unscented Kalman Filter
Maximum Transmission Distance [m] 100
MIMO Antenna Uniform Planar Array (UPA)
Antenna Configurations for the UAVs ¶1, 4, 8, 16, 32, 64♢
Transmission Power [W] 1
Number of Simulated Networks 240
Bandwidth (MHz) 100

Table 6.1: Parameters of the Simulations

tree on the network graph G to determine the route with maximum achievable

capacity.

Hence, using (6.13), we devise the routes that maximize the minimum expected

capacity. We assume that each UAV i is occupied in transmitting or receiving

cross-traffic for a fraction ρi of the time i.e. ρi = [0, 1], which must be subtracted

to determine the available capacity of the link for UAV i. As transmission is

not full-duplex, we also assume that each node can spend at most half the time

transmitting. So, the expected capacity of each link can be approximated by

Monte Carlo sampling, and we can build a graph, knowing that the capacity of a

route r is given by:

C(r) = min
(i,j)∈r

(1 − ρi)Ci,j

2
. (6.15)

The entire routing algorithm is devised at the central controller which tracks the

positions of all the UAVs [167]. This, however, limits the beamforming adaptabil-

ity over a single route, i.e., all the UAVs in the route follow the same beamforming

pattern. In this work, the central controller devises the beamforming patterns for

all the UAVs in the entire route based on the estimated position of the receiver

UAV with respect to transmitter UAV, i.e., the central controllers designs the

beamsteering vector shown in (6.11). In principle, it might seem sub-optimal to

fix the beamforming pattern and only design the beamsteering vector (i.e., deploy

analog beamforming), but to devise beamformed routes, the central controller

needs to have a perfect instantaneous knowledge of the channel (i.e., deploy

digital beamforming), which is difficult in the current scenario.

6.2.3 Simulation Results

In order to numerically evaluate the effects of position uncertainty and beamform-

ing in routing protocols, we deploy a Monte Carlo simulation in MATLAB where
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the protocols are evaluated over randomly generated networks. The simulation

parameters for the system are described in Table 6.1. The protocols evaluated in

the Monte Carlo simulation are:

1. Distance-Based Routing (DBR): A purely distance-based protocol, which

does not consider positioning uncertainty;

2. SMURF: our scheme from [196], limited to a single path, which considers

positioning uncertainty but does not include beamforming in the probability

calculation;

3. BAR: the proposed scheme, which takes into account the position uncer-

tainty and beamforming.

These protocols are evaluated for both the ideal and tracked position. We indicate

the former by attaching ª-Iº to the end of the respective protocol name, and the

latter by attaching ª-T’. Moreover, the tracked position information is obtained

from the output of the Kalman filter at the central controller. Hence, the perfor-

mance of the protocols evaluated in this scenario is the performance achieved

based on the available tracked information of the UAVs. By taking into account

the true position of the UAVs, we can determine the ideal performance of the pro-

tocol, which represents an upper bound to the practically achievable performance.

Additionally, each UAV is equipped with the same UPA antenna configuration and

is able to communicate with other drones using the beamforming design defined

in the previous section. To accurately determine the performance achieved for all

the protocols, we carry out simulations with different antenna configurations and

different densities. Figure 6.2 compares the average throughput of all the proto-

cols applied in a network with density of 50000 UAVs/km3 (which corresponds to

about 20 drones in network) and for the antenna configuration of MH = MV = 4,

i.e., M = 16 elements in the antenna. Firstly, it is easy to see that the most

important factor is the availability of the true position: the real protocols, which

operate on uncertain information, have a throughput that is lower by about

10% than the one obtained by their respective ideal versions. However, BAR

outperforms both SMURF and DBR for both true and tracked positions. This

indicates that the routes chosen by BAR are able to provide median as well as

the worst case throughput (i.e., 25th percentile) higher than SMURF and DBR for

both tracked and true scenarios. Hence, BAR is able to outperform the other two

protocols by about 5% even with a static beamforming scheme. A similar behavior

is observed when comparing all the protocols considering different UAV densities.

Considering the same antenna configuration as above, Figure 6.3 illustrates this
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Figure 6.2: Boxplot of the average throughput obtained for all the protocols in different
experiments with a network density of 50000 UAVs/km3 and M = 16 antenna
elements.
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Figure 6.3: Average throughput obtained by the protocols for different UAV densities
with M = 16 antenna elements.

density comparison. Both SMURF and the enhanced BAR version can exploit

high-density network to find better routes, i.e., routes with high link existence

probability (for SMURF) and high minimum expected capacity (for BAR). On

the other hand, DBR’s throughput does not increase with increasing density, as

the protocol only takes into account the distance between the tracked positions,

without considering the uncertainty: consequently, it will not choose safer routes,
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Figure 6.4: Average throughput obtained by the protocols for different UAVs antenna
configurations for a network density of 50000 UAVs/km3.

which are available if the density of the network increases. It is also evident from

the figure that BAR outperforms both SMURF and DBR for all densities and for

both the tracked and true position information, thanks to its joint consideration

of the position uncertainty and beamforming pattern. Additionally, considering

the beamforming design can allow the system to potentially reduce interference

to other established routes, as well as allowing for more efficient power allocation

for the transmission towards the receiver UAV. Another interesting evaluation

is the impact of different antenna configurations, i.e., different beamforming

patterns, assuming a fixed power allocation for the antenna. Figure 6.4 shows the

performance achieved by all the protocols for different antenna configurations in

a network with a density of 50000 UAVs/km3. The performance of the protocols

when taking into account true positions of the UAVs in the network is similar

for all different antenna configurations. This shows that beamforming does not

impact the performance when the true positions are known by the protocols, as

the transmitter UAV is able to beamform the signal in the correct direction. How-

ever, when considering the tracked position information, beamforming becomes

a problem: as the number of elements in the antenna increases, the transmitted

beam narrows, leading to a stronger impact of the position uncertainty, and

consequently, to a lower throughput. Note that, we consider analog beamforming

design i.e. the controller can only devise steering vector for the UAVs antennas.

The loss in performance is due to the fact that the central controller does not

know the true position of the UAVs and it devises the beamsteering vector al(ϕ, θ)
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Figure 6.5: Average interference incurred for different UAVs antenna configurations.

based on the expected position of the UAVs: the narrower the beam gets, the

larger the impact of pointing errors becomes. When the number of elements is

1, the performance of all the protocols is similar for tracked and true position

information, since the antenna is omnidirectional. Additionally, BAR outperforms

SMURF and DBR both when considering perfect information for the protocols

and in the more realistic setting for all the antenna configurations. This highlights

the importance of incorporating beamforming information to determine routes

in FANETs. While the average throughput for the considered route is higher

when choosing a single antenna element (i.e., an omnidirectional antenna), the

downside of this configuration is the high interference to neighboring UAVs, as

shown in Figure 6.5: an omnidirectional transmission will have an increased

impact on other transmissions. When the network is interference-limited, the

use of narrow beamforming design to reduce the neighbourhood interference is

beneficial: the lower received power due to pointing errors is compensated by

the lower interference. On the other hand, when the network is noise-limited,

the use of wide beamforming is beneficial, as it can reduce the impact of UAV

positioning uncertainty. Our results also show that the need for adaptive beam-

forming for each UAV is crucial, as having the same beamforming design for the

entire network can reduce the overall performance achieved by the network.

6.3 Adaptive Beamforming for Routing Design

The use of fixed beamforming invariably hinders the performance as shown

in Sec. 6.2 when considering imperfect information for routing decisions. For

example, if UAVs employ narrow beamforming at a shorter distance, they might

have a higher probability to suffer more from beamforming errors: the Signal-to-
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Noise ratio (SNR) drop due to small positioning error will be very high. Hence,

the effect of the positioning error on the beamforming angle is proportionally

larger. In order to compensate, we define the beamformers in this section in

an adaptive way, i.e., considering the estimation error in the angular deviation

perceived by the transmitter UAV with respect to receiver UAV.

6.3.1 System Model

We again describe the connectivity in a FANET as a time-varying graph G =

(K, E(t)), where K represents the set of UAVs in the network and E(t) the set

of active links at time t. Each drone moves independently from the rest and

has its attitude characterized by a 5-tuple: the coordinates in space xk(t) =

(xk(t), yk(t), zk(t)) and the yaw and pitch angles. So, the quality of the link

between a pair of drones (i, j) depends on their Euclidean distance [196]:

dij(t) = ∥xi(t) − xj(t)∥2. (6.16)

Since UAVs fly high from the ground, the space between them is assumed to

be free, i.e., without obstacles or reflections. For simplicity, we consider zk(t)

to be constant for all UAVs, i.e. the height of all the UAVs is constant. We can

then consider that there is predominantly LoS communication [197]. Thus, the

pathloss between two UAVs is described by

PL(dij) =

(︄

c

4πf0dij

)︄γ

, (6.17)

where f0 is the carrier frequency, c is the speed of light, and γ is the path loss

exponent. As a result, if two UAVs are nearby, then there exists a link between

them. Otherwise, communication becomes impractical due to low SNR. More

formally, we can describe the set of active links by

E(t) = ¶eij(t) : dij < D♢, (6.18)

where the choice of D often depends on the environment and the wireless

technology used for communication [198].

As mentioned in the previous section, in more realistic scenarios, the real position

of all drones is unknown, but the central controllers maintain estimators to

predict the UAVs’ positions based on current and previous location updates [167]

and are described by

x̂k(t) = xk(t) + nk(t), (6.19)
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where the noise nk(t) ∼ N (0, Σk) is associated to the kth UAV and Σk ∈ R4 is the

covariance matrix that relates the uncertainties in both x and y coordinates. Note

that, Σk is not an identity matrix, i.e. the error in estimate is often not equal

nor proportional in x and y coordinates. This is due to the fact that the error in

estimate will be larger in the direction of movement of the UAV and smaller in

other directions. Hence the uncertainty in position of kth UAV can be denoted as,

x̂k =

⋃︁

⨄︁

x̂k

ŷk

⋂︁

⋀︁ ∼ N (µk, Σk), (6.20)

and the uncertainty in deviation of kth UAV with respect to lth UAV is denoted by,

x̂kl = x̂k − x̂l =

⋃︁

⨄︁

x̂kl

ŷkl

⋂︁

⋀︁ ∼ N (µkl, Σkl), (6.21)

where xkl represents entries in x-axis and ykl in the y-axis. For simplicity, we have

also defined

µkl = µk − µl =

⋃︁

⨄︁

µxkl

µykl

⋂︁

⋀︁ (6.22)

and

Σkl = Σk + Σl =

⋃︁

⨄︁

σ2
xkl

2ρklσxkl
σykl

2ρklσxkl
σykl

σ2
ykl

⋂︁

⋀︁ (6.23)

for a given scale correlation parameter ρkl ∈ [0, 1]. For instance, if ρkl = 0, the

x̂kl and ŷkl are uncorrelated. To determine the beam direction and width, we

compute the angular deviation between x̂k and x̂l by considering the random

variable x̂kl. We first note that, the random variable x̂kl can also be represented

in the complex space (using Euler’s formula) by ẑkl = r̂kle
jθ̂kl, where r̂kl and θ̂kl

are the envelope and phase of the complex random variable ẑkl. Then from [202],

we obtain that the joint PDF of r̂kl and θ̂kl is given by

P(r̂kl, θ̂kl) =
1

2πσxkl
σykl

√︂

1 − ρ2
kl

× exp

[︄

−
(︄

µ2
xkl

2σ2
xkl

(1 − ρ2
kl)

+
µ2

ykl

2σ2
ykl

(1 − ρ2
kl)

− ρklµxkl
µykl

σxkl
σykl

(1 − ρ2
kl)

)︄⟨︂

× r̂kl exp
[︂

−r̂2
klA(θ̂kl) + r̂klB(θ̂kl)

]︂

, (6.24)
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where,

A(θ̂kl) =

⎛

∐︂

cos2 θ̂kl

2σ2
xkl

(1 − ρ2
kl)

+
sin2 θ̂ykl

2σ2
ykl

(1 − ρ2
kl)

− ρkl sin θ̂kl cos θ̂kl

σxkl
σykl

(1 − ρ2
kl)

⎞

ˆ︁ ,

(6.25)

B(θ̂kl) =

∮︂

1

σxkl
(1 − ρ2

kl)

[︄

µxkl

σxkl

− ρklµykl

σykl

⟨︂

cos θ̂kl

+
1

σykl
(1 − ρ2

kl)

[︄

µykl

σykl

− ρklµxkl

σxkl

⟨︂

sin θ̂kl

⨀︁

. (6.26)

Additionally, the PDF of angular deviation θ̂kl can be given as,

P(θ̂kl) =
1

2πσxkl
σykl

√︂

1 − ρ2
kl

× exp

[︄

−
(︄

µ2
xkl

2σ2
xkl

(1 − ρ2
kl)

+
µ2

ykl

2σ2
ykl

(1 − ρ2
kl)

− ρklµxkl
µykl

σxkl
σykl

(1 − ρ2
kl)

)︄⟨︂

× 1

2A(θ̂)

⎧

⨄︂

⋃︂

1 +

√
πB(θ̂)

2
√︂

A(θ̂)
exp

⋃︁

⨄︁

B2(θ̂)

4A(θ̂)

⋂︁

⋀︁ erfc

⎛

∐︂− B(θ̂)

2
√︂

A(θ̂)

⎞

ˆ︁

⎫

⋀︂

⋂︂

, (6.27)

where erfc(z) =
2√
π

√︄∞

z
exp (−x2) dx.

6.3.2 Adaptive Beamforming Design: Accounting for Uncertainty

To define an adaptive beamforming design, we consider the angle estimates θ̂kl

from the kth source to the lth receiver. Moreover, we assume all UAVs to be

equipped with two Uniform Linear Array (ULA) with M elements elements each.

These antennas are placed parallel to each other at opposite sides of the UAV and,

depending on the angular deviation between the transmitter and receiver UAVs,

the controller instructs the UAV to activate one antenna or another. The goal of

having two parallel antennas is to avoid the rotation of the transmitter/receiver

UAV towards another receiver/transmitter as assumed in previous section. More-

over, at no time, one UAV has the pair of antennas simultaneously activated for

a single task (i.e., transmit or receive). Hence, each antenna is independent of

each other and the the relationship between the M elements of each of these

antennas is fully described by estimated angular deviation θ̂kl. Specifically, at

each antenna this relationship is determined by the covariance matrix

Rkl =
∫︂ π

−π
a(θ̂kl)a(θ̂kl)

HP(θ̂kl)dθ̂kl, (6.28)
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where a(θ̂kl) is the steering vector in the estimated angle θ̂kl and is given by

a(θ̂kl) =
[︂

e−jπ sin(θ̂kl), e−j2π sin(θ̂kl) . . . , e−j(M−1)π sin(θ̂kl)
]︂T

. (6.29)

To account for the uncertainty over θ̂kl, we are interested in maximizing the power

throughout a desired angular range δkl that ideally encloses this uncertainty. We

do so by reducing the energy transmitted outside this desired angular space, i.e.,

by designing the beamformer

ŵkl(δkl) = w(θ̂kl, δkl) =
R̃

−1

kl a(θ̂kl)

a(θ̂kl)HR̃
−1

kl a(θ̂kl)
, (6.30)

where R̃kl is the complementary covariance matrix which is given by,

R̃kl =
∫︂ θ̂kl−δkl

−π
a(θkl)a(θkl)

HP(θkl)dθkl +
∫︂ π

θ̂kl+δkl

a(θkl)a(θkl)
HP(θkl)dθkl. (6.31)

Finally, we obtain the gain at the angular deviation θkl using the designed beam-

former ŵkl(δ) given by

gkl(δ) = g(θkl, θ̂kl, δ) = ♣a(θkl)
Hŵkl(δ)♣2 (6.32)

where δ is a pre-defined beamwidth. For simplicity we also denote ĝkl(δ) =

g(θ̂kl, θ̂kl, δ) as the gain obtained in the noise direction.

6.3.3 Routing Design

In general, depending on the application, FANETs might need to fulfill differ-

ent requirements. For instance, applications that generate data bursts such as

emergency information often require the highest communication rate possible

for quick data transfer. Opposite to that, video monitoring systems often requires

a minimal and constant rate over the entire route. To account for these differ-

ent needs in FANETs we devise two routing protocols with different objectives,

namely,

• Expected Capacity Maximisation: the goal is to select sequential links

(between UAVs) so that they maximise the minimum expected capacity over

the entire route, i.e. it finds routes which maximises the bottleneck capacity.

This approach is potentially useful for our first example scenario, where the

communication over the route necessitates higher data rates over a short

period of time.
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• Minimal Capacity Guarantee: the routing protocol maximises the proba-

bility of achieving a minimum capacity. This approach is potentially useful

when the communication over the route is constant, such as video stream,

over a period of time thereby needing a minimum capacity for data transfer.

In the following we describe two routing protocols that satisfy each of these

objectives while taking into account the position uncertainty of the UAVs in a

fleet.

6.3.3.1 Expected Capacity Maximisation (Joint Beamforming and Routing in

FANETs (JBR)-E)

Let us start by noticing that the expected capacity in the link ekl between the kth

and lth UAV pair can be computed by the double integral

Ĉkl =
∫︂ ∞

0

∫︂ π

−π
P(rkl, θkl)C(rkl, θkl)dθkldrkl, (6.33)

where we have used the (k, l)−link capacity definition

C(rkl, θkl) = B log2

⎛

∐︂1 +
ptx

kl gkl(δ)

PL(rkl)σ2

⎞

ˆ︁, (6.34)

for a fixed transmission power (ptx
kl) and noise power (σ2). Likewise, the ex-

pected capacity throughout a route Esd is determined by its bottleneck link and is

obtained by

C̄sd = min
ekl∈Esd

Ĉkl. (6.35)

In the context of FANETs, the minimal capacity in a route translates in the link

with the highest positional uncertainties for transmitter and receiver UAVs and

largest distance between them. Moreover, due to the nature FANETs, there

might exist several paths/routes that lead from a source s to a destination d. As

described above, we are interested in the route EE
sd that maximise the minimal

expected capacity over the entire route. To do so, we take advantage of modeling

the connectivity of the network as graph with each node representing an UAV

and edges Ĉkl, ∀k, l. Then, it becomes intuitive to find the path with maximum

expected capacity EE
sd using the maximum spanning tree [203] over the defined

graph, which is given by,

EE
sd = arg max

Esd∈Γsd

C̄sd, (6.36)

where Γsd represents all the possible routes from source s to destination d.
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6.3.3.2 Minimal Capacity Guarantee (JBR-P)

In the second routing design, we take into account the probability that a link has

expected capacity higher than a certain minimum value Cmin. This probability

can be computed by

P(Ĉkl ≥ Cmin) =
∫︂ ∞

0

∫︂ π

−π
P(rkl, θkl) I (C(rkl, θkl) ≥ Cmin) dθkl drkl (6.37)

where, I is an indicator function. Our objective is to find the route EP
sd that

maximize this probability for every link in the route, i.e., we are interested in the

route, that maximizes the joint probability,

EP
sd = arg max

Esd∈Γsd

∏︂

ekl∈Esd

P(Ĉkl ≥ Cmin), (6.38)

where Γsd represents all the possible routes from source s to destination d. De-

pending on the length of the route, this product might cause numerical instability.

Hence, we rely on the monotonous characteristic of log functions and re-write

the above maximization problem as a minimization problem, given by

EP
sd = arg min

Esd∈Γsd

∑︂

ekl∈Esd

− log10 P(Ĉkl ≥ Cmin). (6.39)

Finally, we note that, ideally, P(C̃23 ≥ Cmin) should be dependent on P(C̃12 ≥
Cmin). Unfortunately, in this case, the computational complexity increases ex-

ponentially as the number of hops increase rendering the problem complex to

solve. So, in this scenario, we relax the problem an consider P(C̃kl ≥ Cmin) to be

independent for each (k, l) UAV link.

6.3.3.3 Quantization for Optimal Beamwidth

Up until now, we have formalised the our two proposed routing protocols (JBR-E

and JBR-P) as continuous optimizations based on maximising expected capacity

(6.33) and maximising probability of the guaranteed capacity (6.37). Unfortu-

nately, solving such optimizations turn out to be computationally complex due

to the continuity over the beamwidth parameter δ. Hence, instead of trying to

consider δ as an optimisation parameter, we quantize it and define a set of L

equally spaced beamwidths ∆L = ¶δ1, . . . , δL♣δk = kπ
2L

♢. To further ease the com-

putational costs, we consider a similar quantization for the angle-of-departure

ΩK = ¶θ1, . . . , θK ♣θk = kπ
2K

♢. Now, in this new quantization scenario, depending

on the protocol, the controller has to chose an optimal beamwidth δ∗
kl ∈ ∆L and

a direction θ∗
kl ∈ ΩK for each (k, l)−link. One of the advantages of considering

this quantized scenario is that it allows us to perform an exhaustive search whose
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Figure 6.6: Choice of Beamwidth for identical UAV position uncertainties for variable
distance

Figure 6.7: (a): Probability of UAV position. (b) Link expected capacity as in (6.33).

size can be controlled based on the choice of L and K. Figure 6.6 shows the

quantized beamwidth change with respect to different distances for a constant

position uncertainty and Figure 6.7 provides a visualization of P (rkl, θkl) and its

corresponding Ĉkl for a specific beamforming codebook. Here, a beamforming

codebook is built of several possible pointing directions (x-axis) and beam widths

options (y-axis). In the z-axis we have the expected capacity as defined in (6.33).

In this case, our search space contains K = 36 possible pointing directions equally

spaced 10◦ apart and L = 10 possible beam widths.

6.3.4 Results

In order to numerically evaluate the effects of position uncertainty and beam-

forming in routing protocols, we deploy a Monte Carlo simulation in MATLAB

where the protocols are evaluated over randomly generated networks. The sim-

ulation parameters for the system are described in Table 6.2. To compare the

efficacy of our proposed two approaches, JBR-E and JBR-P, we take into account

the three other protocols: Distance-Based Routing (DBR), Stochastic Multipath

Routing for FANETs (SMURF), Beam Aware Stochastic Multihop Routing for

FANETs (BAR) that are defined in the previous sections. To ensure fairness in

computing the capacity for the DBR and SMURF as they inherently do not include

the beamforming design, we compute the beamformers for DBR and SMURF

which maximise the capacity for the individual links in the route. With respect to

capacity computation in BAR, we compute the capacities by considering a fixed
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Simulation Parameter Simulation Value
Map Size [m] 100 × 100

Density of UAVs [UAVs/km2] ¶500 − 2500♢
UAV Position Model Unscented Kalman Filter

Maximum Transmission Distance [m] 100
Operating Frequency [GHz] 26

Path loss exponent 2
MIMO Antenna Uniform Linear Array (ULA)

Antenna Configurations for the UAVs ¶2, 4, 8, 16, 32♢
Transmission Power [W] 1

Number of Simulated Networks 100
Bandwidth (MHz) 100

Minimum Capacity (Cmin) (Gbps) 3

Table 6.2: Parameters of the Simulations
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Figure 6.8: Median Throughput Performance for different number of antenna elements
at a density of 1500 UAVs/km2

beamforming design as defined in the previous section. To evaluate the protocols,

we determine the performance obtained, i.e., throughput achieved, for different

densities and different number of antenna elements.

Figure 6.8 shows the performance obtained for all the protocols for UAV density

of 1500 UAVs/km2 (note that, 1500 UAVs/km2 for the map size considered in

the simulation is around 15 UAVs in the area). As visible from the figure, the

performance obtained for JBR-E and BAR are dependent on the number of

antenna elements in the UAVs. This dependency is due to fact that both the
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Figure 6.9: Average Link Distance for JBR-E and JBR-P for different number of antenna
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Figure 6.10: Average Beamwidth for JBR-E and JBR-P for different number of antenna
elements at a density of 1500 UAVs/km2

protocols try to maximize the minimum capacity achieved over the entire route.

To do so, the protocols choose beamwidth as narrow as possible while taking

into account next hop distance and uncertainty in the position. This causes the

protocols to choose narrow beamwidth when available to be design i.e. for larger
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number of antenna elements in the UAVs. Specifically, JBR-E tries to maximise

the minimum expected capacity and thereby chooses narrow beamwidth with

larger next hop distances. But this also increase the chance that the beam might

not be correctly oriented due to the uncertainty in the position of the receiver

UAV thereby reducing the capacity achieved at the receiver UAV. This chance is

significantly reduced in JBR-P as the protocol only tries to satisfy a particular

minimum capacity Cmin instead maximizing the minimum capacity achieved. This

allows the protocol to choose wider beamwidths and shorter next hops even when

antenna allows for narrow beams as long as the expected capacity is higher than

Cmin. Hence, the performance achieved by JBR-P is almost constant for different

number of antenna elements. To clearly visualize the difference between JBR-E

and JBR-P, we plot the average link distance and the average beamwidth v/s

number of antenna elements used by JBR-E and JBR-P in Figures 6.9 and 6.10.

As visible from the figures, JBR-P chooses links with similar average distances

and varies the beamwidths to achieve the minimum capacity while JBR-E chooses

shorter links when only wider beamwidths can be designed but chooses longer

links when narrow beamwidths are available. This hurts the performance of

JBR-E as longer links with narrow beamforming are more susceptible to sharp

drop in performance due to uncertainties in position. Additionally, as visible

from the Figure 6.8, for DBR and SMURF which are distance based protocols

dependent on density of the UAVs, the performance remains constant as the

density is constant thereby showing that beamforming designs do not show any

improvement when used in conjunction with distance based protocols. This is

interesting when considering different densities. Figures 6.11a, and 6.11b show

the median performance obtained for all the protocols with different densities for

2 and 32 antenna elements. The figures also show the median absolute deviation

in the performance obtained, thereby, denoting the variability in the performance

obtained for all protocols. For 2 antenna elements, JBR-E and BAR outperforms

JBR-P as JBR-E maximises the minimum capacity while considering long range,

narrow beamforming designs. Also, JBR-E outperforms all other protocols due to

the fact that JBR-E chooses short links when wide beamforming design is only

available. Additionally, the performance improves when density is increased for

both protocols. This is due to the fact that higher densities provides more relay

UAVs thereby increasing the chance of achieving the expected capacity. But, even

if the performance obtained for JBR-P is lower than JBR-E and BAR, the variance

in the performance for JBR-P is smaller than JBR-E and BAR. Also, increasing the

density reduces the variance in performance for all the protocols. This is actually

interesting when considering the performance achieved for DBR and SMURF. For
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Figure 6.11: Median Throughput Performance for different densities of UAVs

DBR and SMURF, the variance decreases as expected but the median performance

also decreases. This is due to the fact that the median performance is dependent

on the beamforming design which has to be designed with respect to uncertainty

to reduce the chance of beam missing the receiver UAV. This is also be seen in

the performance obtained for 32 antenna elements in Figure 6.11b, with the

difference being, the median performance achieved for JBR-E and BAR reduces
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Figure 6.12: 5th Percentile Throughput Performance for different number of antenna
elements at a density of 1500 UAVs/km2

as number of antenna elements is increased for all densities concurrent with

performance achieved in Figure 6.8. There is another interesting observation for

performance obtained for JBR-E in contrast with BAR for 32 antenna elements.

The performance remains almost constant for JBR-E while it decreases for BAR.

This is due to the fact that JBR-E devises beamforming for each individual link

while BAR has a fixed beamforming design over the entire route. Also, note

that, the median performance of JBR-P remains almost constant for different

densities and different number of antenna elements. This shows that JBR-P is

more resilient to different network configurations and antenna design compared

to median performance obtained for JBR-E which is dependent on the density of

the UAVs and number of antenna elements.

Also, it is necessary to evaluate the protocols in worst case networking scenar-

ios so as to determine the minimum performance obtained in any networking

scenario. So, to evaluate the protocols in the worst case scenarios, we take into

account the 5th percentile performance obtained by the protocols. Figure 6.12

show the 5th percentile performance for all the protocols for UAV density of

1500 UAVs/km2. In coherence with the median throughput performance, the

performance achieved by JBR-E and BAR is almost similar. But the most sig-

nificant factor is the performance obtained by JBR-P in worst case scenarios is

much higher than both JBR-E and BAR. This shows that JBR-P is applicable in

6.3 Adaptive Beamforming for Routing Design 87



500 1000 1500 2000 2500

Density (UAVs/km
2
)

2.75

2.8

2.85

2.9

2.95

3

3.05

5
th

 P
e
rc

e
n
ti
le

 T
h
ro

u
g
h
p
u
t 
(G

b
/s

)

JBR-E JBR-P DBR BAR SMURF

(a) 2 antenna elements

500 1000 1500 2000 2500

Density (UAVs/km
2
)

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

5
th

 P
e
rc

e
n
ti
le

 T
h
ro

u
g
h
p
u
t 
(G

b
/s

)

JBR-E JBR-P DBR BAR SMURF

(b) 32 antenna elements

Figure 6.13: 5th Percentile Throughput Performance for different densities of UAVs

worst case scenarios i.e. scenarios where the uncertainty is higher thereby having

higher chances of failing to achieve the maximum expected capacity. This also

shows that JBR-P is much more robust with respect to scenario definition and

can still provide an acceptable performance in worst case scenarios. This can be

attested even further by incorporating variations in UAV density.
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Figures 6.13a and 6.13b show the 5th percentile performance for all the protocols

with varying UAV densities and 2 and 32 antenna elements respectively. In all

the figures, one common trend that is visible is the increase in 5th percentile

performance for increasing UAV densities. This is due to the fact that in worst

case scenarios, all the protocols are aided by higher densities and thereby more

routing options. But the critical part is, for UAVs with 2 antenna elements, the

performance for JBR-E, JBR-P and BAR is almost equal. This signifies that in

worst case scenarios, lack of narrow beamforming design due to small number of

antennas causes the performance to be almost similar. The difference between

JBR-P and JBR-E becomes very significant when the antenna elements are in-

creased to 32 as visible from Figure 6.13b. In this case, JBR-P outperforms all the

protocols including JBR-E. This shows that JBR-P is applicable to boost the worst

case performance of the system at any density for higher number of elements.

So, finally, both JBR-E and JBR-P can be used for different application scenarios.

For applications that need quick data transfer for data bursts, i.e., where the

maximum possible capacity needs to be achieved using UAVs with small antenna

design in sparse density FANET, JBR-E can be useful, while, for applications that

have constant bit rate data stream, i.e., where capacity should be consistent over

the entire route irrespective of UAVs’ antenna design and the FANET density,

then JBR-P is much more applicable. JBR-P is also applicable in scenarios where

acceptable worst case performance is necessary.

6.4 Conclusion

In this chapter, we briefly describe the works related to joint optimization of

routing and beamforming based on position predictions in FANETs. We provide a

statistical analysis of a FANET with tracked position information and beamform-

ing design, and derive the minimum expected capacity for both single links and

entire routes. We then present the BAR and JBR protocols that computes the

route with to either maximize the expected capacity or maximise the probability

to achieve a minimum capacity. Through simulations, we show that the proto-

cols outperform the baselines for different application requirements in realistic

network conditions.

Also, an interesting avenue of further research is to define beamforming opti-

mization scenarios for multiple different data-rate and delay requirements while

taking into account the tracking information available for each UAV in the net-

works, thereby, jointly optimizing communication for multiple different data

streams and the routing process based on the UAVs’ tracked positions and the

estimation uncertainty.
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7QUIC Scheduling and Transmission

Scheme to Maximize VoI with

Correlated Data Flows

7.1 Introduction

Next generation networks are expected to support new, challenging interactive

applications that, besides the freedom of movement given by wireless connectivity,

generally require the timely and synchronized delivery of a multitude of sensor

data and commands to guarantee interactivity and control effectiveness [204].

For example, haptic communication allows users to interact with remote environ-

ments using haptic sensors and actuators that exchange kinesthetic and tactile

information. In the case of closed-loop bilateral teleoperation systems, kinesthetic

data is time-sensitive. Although stability control mechanisms can be employed to

compensate for end-to-end delays that can perturb the stability of such systems,

this approach may deteriorate the transparency of the service, i.e., the feeling of

interactivity and, hence, the quality of telepresence [205]. A more transparent

way to decrease the end-to-end delay, instead, consists in reducing the sensor

data to be transmitted according to human perception models, but at the cost

of a less accurate reconstruction of the signal at the receiver [206]. Somehow

similarly, connected vehicles can exchange data generated by on-board sensors

via Vehicle-to-Everything (V2X) communications, in order to collaboratively build

a richer context awareness and coordinate driving decisions. However, dissemi-

nating the sensors’ observations is expected to increase data traffic in vehicular

networks by multiple orders of magnitude, thus potentially leading to congestion,

so that proper data transmission schemes are needed [207]. Other applications

that generate streams of correlated data are, e.g., remote control of swarms

of mobile robots, tele-monitoring of industrial processes, immersive interactive

virtual reality.

In order to operate effectively, these applications need flow control strategies

to avoid delays and packet losses caused by congestion, as well as recovery

mechanisms to protect particularly valuable data. The most common transmission

protocols, namely, the Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP), offer complementary services that, however, are not adequate
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for the purpose. By using TCP, applications can delegate congestion control and

packet retransmissions to the transport layer, which provides a simple and well-

tested interface with standardized behavior. However, most congestion control

mechanisms can create significant latency issues. tThe TCP in-order delivery

constraint can cause the head-of-line blocking problem when all the data streams

are multiplexed into the same TCP connection. Indeed, if a packet from any of

the sensors is lost, successive packets from all other sensors are buffered at the

receiver and released to the application only after that the previously lost packet

is successfully recovered. Conversely, UDP offers full flexibility to the applications,

but leaves the burden of managing congestion and retransmissions to them.

In order to overcome the issues of these protocols, in this chapter, we propose

QUIC-Enabled Scheduling and Transmission (QUIC-EST). QUIC is a recently

developed transport protocol that allows data to be sent in parallel and logically

independent streams, thus avoiding the head-of-line blocking problem among

different streams. This reduces unnecessary delays in the reception of the data,

particularly when the number of independent data flows is large. QUIC-EST

combines the features of QUIC with a multi-stream scheduling scheme that biases

data transmissions as a function of the Value of Information (VoI) provided by the

application. Here, the VoI is considered as a scalar value quantifying the utility of

the data for the receiver [208]. The VoI takes into consideration the potential

correlation of the information flows in time and across different sensors, as well

as their intrinsic value. To better illustrate the proposed methodology, we apply it

to two relevant use cases, namely autonomous driving and haptic communication,

and we show that our approach guarantees better utility compared to traditional

transport schemes.

7.2 Adapting QUIC for Time-Sensitive Multi-Sensory Applications

The QUIC protocol [209] was designed by Google to solve some of the latency

issues that TCP typically causes with Internet traffic. Indeed, TCP offers a single

in-order byte-streaming service, leaving the task of separating application-level

objects to the application itself. To guarantee in-order delivery, TCP blocks the

delivery to the upper layer of any data that has been received out of order,

even if logically independent of the lost/delayed packet. QUIC addresses this

head-of-line blocking problem by adopting a solution previously implemented

by the older Stream Control Transmission Protocol (SCTP) [210], i.e., defining

separate streams of data within the same connection. Each stream is treated

by the protocol as a logically separate data flow with in-order reliable delivery,

independent of the other streams. Figure 7.1 shows an example of how QUIC
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TCP in-order delivery

QUIC stream multiplexing

Figure 7.1: The head-of-line blocking problem and the stream-based solution.

handles multiple streams: while the loss of the blue packet also blocks the orange

and green packets in TCP, the logical separation between the streams allows

QUIC to deliver the data.

QUIC was designed for Web traffic consisting of a potentially large number of

logically independent objects to be delivered with the lowest possible latency.

However, its features are also suitable to support interactive multi-sensory ap-

plications that need to transmit data from multiple sensors, potentially with

low delay, to preserve the user’s QoE. Nonetheless, unlike Web traffic, sensing

data traffic is typically redundant, so that applications do not usually require

to receive all the data. This makes the head-of-line blocking issue even more

pressing, since the undelivered data might not even be necessary for successful

operation. We hence propose the QUIC-EST scheme as a way of adapting QUIC

to the multi-sensory application requirements.

In QUIC-EST, each sensory reading can be considered as a separate object.

As sensors produce several readings per second, we propose to use not just a

different stream for each sensor, but a different stream for each object. Whenever

all packets sent into a stream are acknowledged, the stream can be reused for a

new object. On the contrary, if a stream gets blocked by a packet loss and the

data become stale, the sender will transmit a RESET_STREAM control frame (which

is not bound by in-order delivery constraints) to tell the receiver to discard any

existing out-of-order data received from that stream and start again, as suggested

in [211].
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7.3 Value of Information-Based Scheduling

While the use of streams allows QUIC to transmit data from different sensors

independently, the capacity of the connection might not be sufficient to deliver

the data from all sensors within the required time. In this case, the choice of

which sensor data should be transmitted and in which order becomes a central

problem. Since the QUIC protocol does not specify any scheduler, we propose to

implement a priority-based mechanism.

We then define a scheduling algorithm that aims at maximizing the effective

VoI at the receiver, while avoiding congestion in the connection. To this end,

the algorithm needs to be fed with four types of information, namely: (i) the

(estimated) available capacity of the connection, (ii) the size of the data, (iii)

the intrinsic VoI of the data, and (iv) the correlation between the data generated

by different sensors (which impacts the effective VoI of the transmitted data).

We assume that these input variables are passed to the scheduler using specific

interfaces, whose definition is out of the scope of this work. In the following, we

provide a more formal description of the variables, and describe their meaning

and use.

Let N be the number of objects generated in a batch by an application. Hence,

the scheduler is provided with the following inputs.

• The available capacity C along the path, defined as the product of the

bottleneck capacity and the minimum Round Trip Time (RTT). These values

are estimated directly by the recent bottleneck bandwidth and round-trip

propagation time (BBR) congestion control algorithm [212], and can be

obtained indirectly when using other latency-aware mechanisms such as

the classic Vegas algorithm (which, however, tends to underestimate the

capacity in volatile scenarios). In our implementation, we consider the

estimate provided by BBR, but note that QUIC natively supports both Vegas

and BBR.

• The size vector s ∈ NN , which contains the sizes of the objects, in bits. This

information is used to check that the amount of data scheduled for trans-

mission does not exceed the connection capacity C, to avoid congestion.

• The weight vector v ∈ [0; 1]N , which contains the intrinsic value of the

objects, i.e., the VoI when considering only that source. The intrinsic VoI

can depend on a number of factors, such as the position of the sensor (e.g.,

front sensors in an autonomous vehicle are generally more informative

than side sensors for driving decisions, or the finger sensors in a haptic
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application are more informative than wrist sensors), and the current state

of the process (e.g., the presence of an object in a camera’s Field-of-View

(FoV), or the detection of a sudden gesture in haptic applications). The

intrinsic VoI can also depend on the time correlation of the sampling process.

If the process is slow-varying, consecutive readings from the same sensor

can be highly correlated and, hence, easily predictable by the receiver.

Although the relation between the time since the last update from a sensor

and the correlation with the new reading is highly application-dependent,

it is often assumed to follow an exponential decrease [208]. Some control

applications have inbuilt compensation mechanisms for delay, which do not

require new measurements until a certain time has passed, so the correlation

for these cases can be modeled as a step function. A sigmoid function can

then be used to model an imperfect compensation mechanism with a gentler

degradation curve. Given the specificities of the different applications, we

assume that the intrinsic VoI is determined by the application itself, and

passed to the scheduling algorithm in the form of the weight vector. In the

next section we will provide examples of how these values can be computed

in the two considered use cases.

• The cross-sensor correlation matrix W ∈ [0; 1]N×N , which contains the corre-

lation between objects. Indeed, if the application relies on multiple sensors,

there is often a significant amount of redundancy in their information. For

example, multiple cameras might have partially overlapping FoVs, or scalar

sensors might be measuring correlated quantities. Therefore, the intrinsic

VoI of some data may need to be discounted to account for the cross-sensor

correlation, because the effective VoI of two correlated measurements can

be lower than the sum of the VoIs of the two individual measurements.

The scheduling problem consists in selecting the sensor measurements that pro-

vide the maximum VoI at the receiver, while respecting the capacity constraint,

i.e., having a total size that is lower than the bandwidth-delay product of the con-

nection. Computing the VoI for all possible scheduling patterns is a combinatorial

problem, which soom becomes unfeasible. However, if we limit the analysis to

couples of objects, i.e., we do not consider the effects of triplets of correlated

objects, this is an instance of the Quadratic Knapsack Problem (QKP) [213],

which is NP-hard, but for which there are efficient heuristic solutions.

Figure 7.2 shows the basic structure of the proposed scheduling framework:

multiple sensors write data with a given VoI to a QUIC socket, and the application

supplies the cross-sensor correlation matrix W. The available capacity is read
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Figure 7.2: Basic components of the framework and main data exchanges. In the figure,
the data from sensors 1 and 5 is discarded, while the data from sensors 2, 3,
and 4 is sent in that order.

from the BBR estimate, and the scheduler finds the optimal set of objects that can

be delivered before the next sensor update, sending them through the connection

as fast as congestion control allows. If the connection is lossy or time-varying,

scheduling decisions can be revised based on what was already sent, recomputing

the solution to the problem.

To the best of our knowledge, transport layer scheduling of multi-sensory data

is an open research problem, which requires the study of the application and

sensor features and the estimation of end-to-end capacity dynamics. QUIC-EST

forgets the problem by considering correlated measurements in time and across

multiple sensors and using congestion control to estimate the path capacity. The

scheduling framework is relatively simple, but it can support a wide range of

applications, guaranteeing reliability and maximizing the delivered VoI.

7.4 Use-case Scenarios for QUIC-EST

The methodology we propose can be applied to any type of application that

generates correlated data streams, whose relative importance can be represented

in the form of a VoI matrix. In the following, we give two examples of such

applications, namely, autonomous driving and haptic communication.

In our scheduler, data transmission is discriminated based on the VoI provided

by the application layer, which depends on the intrinsic characteristics of the

different sensors and on the time correlation of consecutive observations. We
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Figure 7.3: Scheduling input parameters for the autonomous driving (left) and haptic
communication (right) scenarios.

remark that determining the VoI is not the main focus of this contribution. For the

sake of completeness, however, we consider a simple and intuitive definition of

the VoI, based on expert knowledge about the relative importance of the different

information sources and of their temporal obsolescence. The same empirical ap-

proach is used to determine the cross-sensor correlation matrix, which evaluates

the degree of correlation among the different sensors. Clearly, more sophisticated

strategies may yield different values for the VoI and the correlation matrix that,

once fed into QUIC-EST, may result in different transmission strategies. Nonethe-

less, the values considered in this study are reasonable and apt to illustrate the

rationale of the proposed scheme.

7.4.1 QUIC-EST for Autonomous Driving

Size vector. The size vector depends on the type of automotive sensor that is

considered, the rate at which observations are made, and their resolution. For

example, Light Detection and Ranging (LIDAR) sensors can generate data flows

with a rate from about 50 kbps to 30 Mbps, depending on the sensor resolution.

Similarly, the data rate for camera images ranges from 10 Mbps to 500 Mbps,

depending on the image resolution [214], even though compression can reduce

the image size by several orders of magnitude. In this work, we consider N = 5

sensors: two cameras on the vehicles’ top left (lft) and top right (rgt) corners,

one on the front (f) and one on the rear side (r), and one LIDAR on the rooftop

of the car (L). The sizes of the sensor observations are calculated based on the

nuScenes dataset [215], which contains a full autonomous vehicle sensor suite,
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assuming a 1 Byte pixel encoding and JPG compression for the camera images:

we consider a size for the front/rear cameras of 180 KB, for the lateral cameras

of 140 KB, and for the LIDAR of 1300 KB, as depicted in Figure 7.3 (left).

Intrinsic VoI. We reasonably expect that the LIDAR would be more valuable com-

pared to automotive cameras because it can provide a three-dimensional (rather

than bi-dimensional) representation of the environment, and can work efficiently

in different weather/time conditions. Also, we assume that the importance of the

images taken by the cameras depends on the characteristics of the environment

in which the vehicles move (e.g., in the highway scenario lateral cameras will

likely make background observations with little marginal information, while

frontal/rear cameras might provide more valuable information). Based on these

assumptions, we empirically define the correlation vector v ∈ [0, 1]N as shown in

Figure 7.3 (left). Moreover, following the method suggested in [208], we account

for the temporal obsolescence of the information by means of an exponential

function that depends on the relative age of information, i.e., the time between

the generation and reception of the information, with a temporal decay parameter

that is proportional to the delay sensitivity of the observation, i.e., the temporal

horizon over which that piece of information is considered valuable.

Cross-sensor correlation. We assume that the correlation between images taken by

different cameras is proportional to the overlapping of their FoVs. Therefore, the

rear camera’s images are uncorrelated with those of any other camera. The images

taken by lateral cameras are slightly cross-correlated, while higher correlation

can be assumed between the frontal and lateral cameras. On the other hand, the

LIDAR sensor operates through 360-degree rotations and its observations can be

highly correlated/redundant with those of the cameras. The correlation matrix is

hence structured as displayed in Figure 7.3 (left).

7.4.2 QUIC-EST for Haptic Communication

Size vector. In this scenario, the size vector should depend on the number of sen-

sors and actuators integrated on the haptic devices. The CyberGrasp [216] device

combines a haptic glove that can sense orientation and movement of the hand

and an exoskeleton with five kinesthetic actuators for providing force feedback

to the user. Since each haptic glove has 22 movement sensors, considering two

hands we have in total N = 44 sources of sensor data. Each sensor transmits one

floating-point value (i.e., typically 32 bits using the IEEE 754 standard) with a

1 kHz sampling rate, resulting in a 1.4 Mbps total data rate, as represented in

Figure 7.3 (right).
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Intrinsic VoI. In order to determine the VoI of each data sample generated by

the haptic device’s sensors, we rely on the psycho-physical aspects of human

perception. More specifically, we can use Weber’s law of Just Noticeable Dif-

ference (JND), as in the deadband transmission algorithm in [217], which can

be applied in position, velocity and force data. The VoI is then given by the

difference between the last transmitted sample from that sensor and the current

value, which can be easily computed by the sending application and given to

the scheduler. Sensors have the same inherent VoI, but the actual value of the

information depends on how novel it is with respect to the one currently available

to the receiver. This definition implicitly includes the time correlation between

samples, as the difference between consecutive samples will usually be small, but

then grow with time consistently with the age of the data.

Cross-sensor correlation. In the haptic communication case, the flexibility of a

robotic hand makes the relation between different sensors strongly dependent

on their position. If the hand is grasping an object, the correlation between

sensors will be different from when it is at rest. Consequently, we cannot give a

constant cross-sensor correlation matrix based on the sensors’ positions, like we

did in the vehicular case. Ideally, the application should be able to compute the

instantaneous correlation between sensors in real time and pass the correlation

vector to the scheduler. As a simpler (and likely suboptimal) alternative, here we

consider the measurements to be independent.

7.5 Performance Evaluation

In this section, we present a performance evaluation of QUIC-EST, comparing

it with other scheduling algorithms in the two scenarios presented in Sec. 7.4,

with extremely different features. While realistic, the assumptions about the two

scenarios are arbitrary, and their purpose is to illustrate the methodology from a

qualitative perspective, rather than giving a complete quantitative assessment of

the scheme. The autonomous vehicle in the first scenario transmits only 10 frames

per second but with a maximum rate of 155.2 Mbps; on the other hand, haptic

communication has a maximum rate of just 1.4 Mbps, but its sampling frequency

is 100 times higher, i.e., 1 kHz. Furthermore, while the haptic communication

scenario has 44 different sensors that need to be scheduled, the autonomous

driving scenario only has 5.

In both scenarios, we study the average VoI as a function of the available (con-

stant) connection capacity. We consider three other schedulers:
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• First In First Out (FIFO). This is the default QUIC scheduler, which transmits

pieces of data in the same order they were received from the application. It

limits transmission to the achievable send rate, discarding any objects that

would exceed the connection’s capacity. We consider this as a baseline, as

its behavior is similar to TCP, without the head-of-line blocking.

• VoI-based. This scheduler considers the VoI as the decision factor for trans-

mitting objects that fit the transmission capacity. It is an instance of the

classic knapsack problem, as it does not consider cross-sensor correlation

or even temporal correlation between values, but only the intrinsic value of

each sensor.

• Cross-sensor VoI. This scheduler considers cross-sensor correlation, but

neglects the temporal correlation. It is equivalent to the optimal scheduler

if subsequent measurements from the same sensor are independent, and

to the VoI-based scheduler if the measurements are independent between

different sensors as well.

• QUIC-EST. The scheduler considers VoI as well as time and cross-sensor

correlation. The scheduling is obtained by using existing solvers for the

QKP. This scheduler gives the best performance if we consider the full

application model.

The performance analysis is based on MATLAB simulations, and the code has

been made publicly available.1

In Figure 7.4 we report the normalized VoI achieved by the different schedulers

when varying the connection capacities in the autonomous driving scenario. The

normalized VoI value is defined as the ratio between the average VoI achieved by

each scheduler for a certain channel capacity over the VoI obtained with infinite

capacity (which is the same for all the considered schedulers). As expected, the

performance grows with the channel capacity for all schedulers, but cross-sensor

VoI and QUIC-EST, which account for the cross-sensor correlation, exhibit a clear

advantage over the others. As Figure 7.5 shows, this stark difference is due to the

frequency at which the schedulers pick LIDAR frames, which are large and highly

correlated with data from the cameras. When the channel capacity is limited,

the schedulers that consider cross-correlation among the sensor data flows will

limit the number of transmitted LIDAR frames, which are highly correlated, thus

leaving more space from camera frames that, with the considered setting, have a

higher joint value.

1https://github.com/Anay191/Scheduling_Policies_QUIC

100 Chapter 7 QUIC Scheduling and Transmission Scheme to Maximize VoI with

https://github.com/Anay191/Scheduling_Policies_QUIC


20 30 40 50 60 70 80 90 100 110 120
0

0.2

0.4

0.6

0.8

1

Capacity (Mbps)

N
or

m
al

iz
ed

Vo
I

FIFO VoI-based Cross-sensor VoI QUIC-EST

Figure 7.4: Normalized VoI for the different schedulers when varying the connection
capacity, in the autonomous driving scenario.
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Figure 7.5: Average update frequency for the different schedulers in the autonomous
driving scenario, with C = 100 Mbps.

For the haptic communication scenario, we consider the VoI as a logistic function

of the difference between the current sample and the last transmitted one. We

used realistic haptic traffic model parameters from [218] and cautiously selected

a JND value of 5% of the dynamic range of the sensors. Accordingly, we simulate

each sensor as an independent Gauss-Markov process, setting σ = 2.15% of
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Figure 7.6: Comparison between schedulers in the haptic communication scenario in
terms of the normalized QoE as a function of capacity.

the dynamic range to fit the empirical model from the paper. The VoI is then

given by a logistic function with center x0 = 1.65σ and sharpness k = 10. These

values ensure that all sensor measurements that differ for more than the JND are

prioritized, while the remaining data are sent only in case of residual capacity.

As mentioned, in the haptic communication scenario we neglect the cross-sensor

correlation, and all sensors have the same intrinsic VoI, so that the FIFO, VoI-

based, and cross-sensor VoI schedulers are all equivalent.

Figure 7.6 shows the normalized QoE, defined as the overall fraction of time

sensors are under the JND threshold, when varying the channel capacity. We can

observe that the QUIC-EST scheme can achieve almost perfect QoE even at less

than a third of the capacity needed to send all packets. In this case, the time

correlation is critical: the schedulers that do not use a JND-based value, indeed,

achieve a lower performance. To be noted that the availability of cross-sensor cor-

relation estimates could further improve the QUIC-EST performance, decreasing

the amount of transmission resources needed to support the application.

7.6 Conclusions

In this chapter, we have presented QUIC-EST, a flexible transmission scheme

obtained by combining the emerging QUIC protocol and a VoI-based scheduling

strategy that consider capacity predictions and defines scheduling to maximise

VoI at the receiver for multi-sensory applications with time-sensitive data. We

showed that this scheme can be adapted to widely different applications with
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good results, using autonomous driving and haptic communication as our Future

Internet use cases.

At the moment, the design of general transport frameworks for multiple parallel

streams of correlated data is still an open research area, whose importance

is rising with the popularity of this kind of applications. The combination of

such new transport protocols with network slicing techniques is another research

avenue of great interest, given the potential to provide applications with reliability

guarantees, which can be fundamental for safety-critical services.
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8Conclusions

Next generation networks have shown the necessity to analyse different types of

information and design systems based on anticipating user and network parame-

ters that can be exploited to optimize the performance of the wireless networks.

On that note, this thesis provided a brief overview in design and analysis of

system-wide optimization schemes based on anticipatory techniques for various

different networking scenarios from MIMO cellular networks to FANETs and

considering different future wireless network scenarios and applications such as

Tactile Internet. Primarily, the thesis showed works on the Physical, Networking,

Transport and Application Layers and hence gives a comprehensive understanding

of system-wide optimization schemes that can be applied for different networking

scenarios.

For physical layer optimization schemes, the thesis provided a brief definition of

a novel Spatial Division Multiple Access (SDMA) scheme called Rate Splitting

[219], specifically Hierarchical Rate Splitting (HRS) which needs to cluster the

users together to maximise the rate achieved for each user while minimising the

interference between the users. It highlights the predictive clustering scheme

which use NN to cluster users based on CSI which reducing the complexity

compared to hierarchical clustering mechanisms. Hence, the clustering schemes

defines fast user clusters such that the rate achieved is maximised for each user.

Additionally, for network layer optimisation schemes, the thesis analyses the

next generation networks such as FANETs which have been considered critical

in 6G networks especially for providing connectivity in disaster/remote areas

[220]. It highlights the routing design with respect to mobility of the UAVs while

taking into account high capacity mmWave wireless links. First, it provides a

brief analysis of route stability with respect uncertainties in position of the UAVs

due to high mobility and then provides a brief analysis of routing scenario for

mmWave beamforming designs. Hence, the thesis provides a brief analysis for

system wide routing schemes for FANETs.

Also, for transport and application layer optimisation schemes, the thesis con-

siders the next generation network scenario of tactile internet for haptic com-

munication and autonomous driving [221]. The thesis highlights a Value of

Information (VoI) based scheduling mechanism based on QUIC. It highlights
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the work that takes capacity predictions for the wireless network and provides

scheduling design that maximises VoI at the receiver end for haptic communi-

cation and autonomous driving scenarios. Hence, the thesis provides a brief

analysis of application level scheduling schemes that maximises the QoE for the

users.

Lastly, the thesis also enhances the fact that the divide-et-impera approach, which

consists in splitting a highly complex problem in a number of more manage-

able sub-problems that are then solved independently, may actually prevent

the exploitation of some synergies among different parts of the system or hide

interactions among the parts resulting in suboptimal system performance. On the

other hand, optimizing a complex system by accounting for all possible aspects

is an extremely challenging problem, with obvious scaling issues. The thesis

shows an intermediate approach, which consists in focusing on specific aspects of

the system, to limit the complexity, but without losing a more general vision of

the system, in order to exploit synergies and avoid pitfalls. How to express this

basic principle in practice, however, depends strongly on the characteristics of

the problem addressed and the scenario considered, so it is virtually impossible

to identify a well-defined methodology for pursuing system-level optimization

beyond the works highlighted above and exemplified in the studies reported in

this thesis.

Finally, moving forward, the concept of anticipatory networking has provided an

interesting avenue of research in design of system wide optimization techniques.

As highlighted in the thesis, it is shown to be useful in multiple different facets in

a wireless communication system and, thereby, proving to be interesting research

field for system design in next generation wireless networks.
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