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In this work a Thermoelastic Stress Analysis (TSA) setup is implemented to investigates the Thermoelastic and Second Harmonic 
signals on a fatigue loaded Single Edge Notched Tension (SENT) specimen made of stainless steel AISI 304L. Three load ratios 
are in particular applied, R=-1, 0, 0.1. The thermoelastic signal is used to evaluate the Stress Intensity Factor via two approaches, 
the Stanley-Chan linear interpolation method and the over-deterministic least-square fitting (LSF) method using the Williams’ 
series expansion. Regarding least-square fitting, an iterative procedure is proposed to identify the optimal crack tip position in the 
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Williams’ series function, and the extent and position of the area used for data input. The study also investigates the Second 
Harmonic signal observed on the wake of the crack with varying load ratio R. An interpretation is proposed that considers the rise 
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© 2019 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Gruppo Italiano Frattura (IGF) ExCo. 

Keywords, Thermoelastic Stress Analysis, Least Square Fitting, Stress Intensity Factor, Crack Closure, T-Stress 

 

 
* Corresponding author. Tel.: +39 091 23897281. 

E-mail address: giuseppe.pitarresi@unipa.it 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Structural Integrity Procedia 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

2452-3216 © 2019 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Gruppo Italiano Frattura (IGF) ExCo.  

25th International Conference on Fracture and Structural Integrity 

Investigation of the crack tip stress field in a stainless steel SENT 
specimen by means of Thermoelastic Stress Analysis 

Giuseppe Pitarresia,*, Mauro Ricottab, Giovanni Meneghettib 
aUniversità degli Studi di Palermo, Department of Engineering, Viale delle Scienze, 90128 Palermo – Italy 

bUniversity of Padova, Department of Industrial Engineering, Via Venezia, 1, 35131 Padova – Italy  

Abstract 

In this work a Thermoelastic Stress Analysis (TSA) setup is implemented to investigates the Thermoelastic and Second Harmonic 
signals on a fatigue loaded Single Edge Notched Tension (SENT) specimen made of stainless steel AISI 304L. Three load ratios 
are in particular applied, R=-1, 0, 0.1. The thermoelastic signal is used to evaluate the Stress Intensity Factor via two approaches, 
the Stanley-Chan linear interpolation method and the over-deterministic least-square fitting (LSF) method using the Williams’ 
series expansion. Regarding least-square fitting, an iterative procedure is proposed to identify the optimal crack tip position in the 
thermoelastic maps. The SIF and T-Stress are then evaluated considering the influence of the number of terms (up to 20) in the 
Williams’ series function, and the extent and position of the area used for data input. The study also investigates the Second 
Harmonic signal observed on the wake of the crack with varying load ratio R. An interpretation is proposed that considers the rise 
of the Second Harmonic as the result of the modulation of the compression loads between the crack flanks, rather than dissipation 
phenomena. This interpretation enables the possibility to use this parameter to reveal the presence and extent of crack-closure. 
 
© 2019 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Gruppo Italiano Frattura (IGF) ExCo. 

Keywords, Thermoelastic Stress Analysis, Least Square Fitting, Stress Intensity Factor, Crack Closure, T-Stress 

 

 
* Corresponding author. Tel.: +39 091 23897281. 

E-mail address: giuseppe.pitarresi@unipa.it 

2 Author name / Structural Integrity Procedia  00 (2019) 000–000 

1. Introduction 

Thermoelastic Stress Analysis (TSA) is a full-field non-contact technique by means of which the in-plane stress 
field is correlated to temperature changes. These are measured on the surface of the body while this is subject to 
dynamic loading. The technique relies on the linear formulation of the Thermoelastic Effect,  

 o xx yyT T A I             (1) 

where T is the temperature change induced by the Thermoelastic Effect under adiabatic conditions and linear elastic 
material behavior. In Eq. (1) To is the initial body temperature,  a material specific thermoelastic constant and the 
stress term is the range of variation of the first stress invariant I (see Pitarresi and Patterson (2003)) for a more in-
depth review of the analytical derivation of Eq. (1)). If loading is modulated at a single frequency (cyclic sinusoidal 
loading), then T can be measured as the amplitude of the harmonic at the load frequency (or first harmonic). 
Therefore, the thermoelastic signal can be obtained from harmonic content filtering of the sampled temperature vs 
time. This is usually performed with lock-in digital cross-correlation, but alternative approaches are also Least Square 
Fitting and Discrete Fourier Transform (Pitarresi (2015)). 

TSA then provides a full field map of the sum of normal in-plane stresses (i.e. the first stress invariant). In presence 
of a crack, this information can be used to evaluate fracture mechanics parameters. In particular, several works have 
focused on the evaluation of the Stress Intensity Factor (SIF or K), proposing a number of approaches which have 
been mostly reviewed in Tomlinson and Olden (1999). An essential overview of the proposed methodologies identifies 
three general approaches, 

 
 Direct interpolation methods; 
 Methods based on the geometrical features of the cardioid isopachic contour; 
 Over-Deterministic Methods based on Least Square Fitting (LSF) of analytical stress functions providing the 

elastic stress field at a crack. 
 

Direct interpolation or extrapolation approaches are generally based on the Westergaard’s equations arrested to the 
singular stress term. They are then restricted to operate in the nearest vicinity of the crack tip, and have the advantage 
to extrapolate the SIF by simple linear regressions of the thermoelastic signal versus geometrical variables (Pukas 
(1987)). The Stanley-Chan approach, first proposed in Stanley and Chan (1986), is perhaps the most popular, for its 
straightforward implementation. It presents the significant advantage of not requiring the identification of the crack 
tip location. On the other end, the influence of the constant T-Stress term has to be neglected, see e.g. Stanley and 
Dulieu-Smith (1996).  

Methods based on the cardioid reconstruction have considered the T-Stress, but this has to be evaluated with 
specific data reduction procedures (Stanley and Dulieu-Smith (1996); Dulieu-Barton et al. (2000)).  

Over-Deterministic Methods (ODM) use series expansion formulations of the Airy stress function evaluating the 
crack tip stress field. The most popular series stress functions that have been employed are those ascribed to,  Williams 
(Lesniak and Boyce (1995); Ju et al. (1997); Zanganeh et al. (2008); Vieira et al. (2018)), Mushkelishvili (Tomlinson 
et al. (1997a); Díaz et al. (2004a); Diaz et al. (2004b)), Lekhnitskii (Lin et al. (1997); He and Rowlands (2004); 
Haj-Ali et al. (2008); Ju et al. (2010)). The Lekhnitskii’s solution extends the application to media with 
orthotropic behavior.  

Such formulations, all based on LSF, allow considering the influence of higher order coefficients, and then extend 
the zone ahead of the crack tip that can be effectively included for the least square fitting of experimental data. Once 
the stress function terms are obtained, another outcome of the analysis is the determination of single stress components 
(i.e. stress separation), which can be used for further analyses such as the evaluation of the J-Integral (Lin et al. (2015)). 
A common drawback of over-deterministic least-square fitting methods is the need to identify the crack tip location 
with good accuracy. One way to obtain a good estimation of the crack-tip is by picking the point that provides the 
minimal error or the best fit. This can be done by evaluating statistically based fitness parameters, or by including the 
crack tip position as a further unknown term to be determined with LSF (Diaz et al. (2004a); Vieira et al. (2018)). 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2019.08.173&domain=pdf
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Some authors have also proposed a direct crack tip identification from the phase map of the thermoelastic signal, 
exploiting some peculiar thermoelastic features characterising the fracture process zone. Generally, this provides a 
coarse localisation, that can be used as a seed point to more accurate recursive LSF algorithms (Diaz et al. (2004a); 
Díaz et al. (2004b)).   

Some more recent works have explored the use of the experimental SIF and crack tip localisation from TSA to 
characterise the full Paris’ law of the material, by a purely elastic approach (Jones et al. (2010); Bar and Seifert (2014); 
Ancona et al. (2016)), or a combined elastic-plastic analysis (Meneghetti et al. (2019)). The Thermoelastic phase and 
the Second Harmonic signal have been also investigated as potential indicators of damage onset and energy dissipation 
due to plastic work (Palumbo et al. (2017); Urbanek and Bär (2017)).  

The present work investigates the crack-tip stress field of a Single Edge Notched Tension (SENT) sample made of 
a stainless steel AISI 304L. Three different load ratios R=-1, 0, 0.1 have been applied to investigate the influence of 
crack-closure and crack compression on the thermoelastic maps. The SIF and the T-stress have been derived with the 
direct interpolation method of Stanley-Chan (Stanley and Chan (1986)) and with an over-deterministic LSF of the 
Williams’ series stress solution. Some noteworthy outputs of the performed investigation include, 

 
 The evaluation of an iterative procedure to localize the crack tip position from TSA maps, based on optimizing a 

coefficient of determination R2 of the LSF;  
 The analysis of the influence of the number of terms retained in the William’s solution (up to 20), and of the 

extent of the data input area, in the least-square fitting results of SIF and T-stress; 
 The evaluation of the influence of a negative R-ratio and crack-closure on the evaluation of the experimental SIF; 
 The analysis of the second harmonic signal as a parameter sensitive to crack-closure. An explanation is in 

particular proposed regarding the interpretation of the features of the second harmonic signal observed on the 
wake of the crack. 

2. Experimental set-up 

2.1. Sample preparation and plan of experiments 

The sample tested in this work is a Single Edge Notched Tension coupon with a machined 90° V-notch, made of 
stainless steel AISI 304L (dimensions are reported in Fig. 1). A natural crack starting from the V-notch was grown 
under fatigue loading, applying a sinusoidal cyclic load between 1 and 10 kN at 20 Hz. Fatigue propagation was 
allowed up to a crack length of about a/W=0.5 before stating the acquisition of temperature for TSA. The sample face 
exposed to the IR camera was painted with a matt black paint to enhance and uniform infrared emissivity. Each TSA 
acquisition had a duration of 30 sec, within which the sampled temperature was stored for the successive off-line 
processing.  

 

Fig. 1. Sketch of the tested SENT sample (dimensions in [mm]). 

Tests were performed on a servo-hydraulic MTS 810 testing machine, under load control. Sinusoidal cyclic loading 
was applied with three different load-ratios R, -1 (-4.5 to 4.5 kN); R=0 (0 to 9 KN); R=0.1 (1 to 10 kN). Each load 
ratio was applied in seven successive acquisitions, differing only for the loading frequency that was sequentially set 
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at 1,2,3,5,10,15,20 Hz, for a total number of 3×7=21 acquisitions. In order to control that no significant crack growth 
occurred during the 30 sec acquisitions, a reflex digital camera with a macro lens was used to measure the crack length 
from the sample face opposite to that stared by the IR camera. The photos of the optical camera, taken for each TSA 
acquisition, have a spatial resolution of 10 m/pixel, and were used to obtain a reference the crack-tip position. During 
the time occurred to acquire the 21 TSA sequences the cyclic loading was not stopped, in order to preserve the most 
self-similar conditions. This produced a slight growth of the crack, accumulated during this time. The a/W ratio 
measured in each of the three sets of acquisition was, 0.51 for R=-1, 0.52 for R=0 and 0.53 for R=0.1, with a total 
crack growth of about 0.5 mm. The maximum crack growth during a 30 sec acquisition was 0.11 mm (measured with 
R=0.1 and load frequency of 20 Hz).          

2.2. Thermographic setup and implementation of TSA 

The IR camera employed is a cooled sensor FLIR X6540sc. The model used in this work mounted a 50 mm focus 
f# 2.0 lens (allowing for a field-of-view of 10.97°×8.78°), positioned at a distance resulting in a geometric resolution 
(size of one pixel on the specimen or ifov) of 0.15 mm/px. In all the TSA acquisitions, the sampling frequency was 
set at 200 Hz and the integration time at 659 sec.  

During the registration of thermograms a reference sinusoidal signal, derived from the load signal generator of the 
testing machine digital controller, was fed into the lock-in input ingress of the IR camera. This allowed the .ptw files 
to be post-processed into FLIR THESA, evaluating the thermoelastic first and second harmonic maps. 

The same maps have been obtained by employing an in-house developed Matlab script which applies the Discrete 
Fourier Transform to the sampled frames (Pitarresi 2015). This allowed to evaluate the whole frequency content of 
the temperature signal at each point, and extract a self-reference signal for digital cross-correlation. Both the in-house 
DFT filtering and the THESA cross-correlation yielded the same quantitative results.   

The material thermoelastic constant  had been evaluated experimentally in a previous work (Meneghetti, Ricotta, 
and Atzori 2016), and results in =3.75ꞏ10−6 MPa−1. This was used here to rescale the measured temperature, which 
was available from the internal IR camera calibration, into stresses, according to Eq (1).  

3. Stress Intensity Factor calculation 

3.1. Stanley-Chan extrapolation procedure 

Stanley and Chan used the Westergaard’s solutions to derive an analytical expression correlating the maximum 
value of I=AT along a scanline parallel to the crack line, and y, i.e. the distance of the scanline from the crack-line. 
The final relationship can be written as, 

22

2
3 3

4
I xo

max
Ky T

A A




      
    (2) 

where A=(To  is the stress calibration thermoelastic constant. After neglecting the T-stress xo in Eq. (2), it is seen 
that KI can be derived from the slope of a linear regression between values of y versus (1/Tmax)2. Tmax is the maximum 
thermoelastic signal along a scanline y=cost., and is easily retrieved from the thermoelastic map. Moreover, only 
relative values of y matter in the calculation of the slope, so that the identification of the crack tip location is not 
needed. Therefore, the implementation of the Stanley-Chan procedure is rather straightforward, requiring only an 
estimation of the SIF dominated region of linear behavior, which is usually manually performed after looking at data 
plots such as the one in fig. 2a.     

3.2. Williams series stress function and least square fitting 

The Williams’ series expansion of stress components used for the least square fitting of experimental data has been 
implemented in several works and with different techniques, comprising also Photoelasticity or Digital Image 
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The final relationship can be written as, 
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where A=(To  is the stress calibration thermoelastic constant. After neglecting the T-stress xo in Eq. (2), it is seen 
that KI can be derived from the slope of a linear regression between values of y versus (1/Tmax)2. Tmax is the maximum 
thermoelastic signal along a scanline y=cost., and is easily retrieved from the thermoelastic map. Moreover, only 
relative values of y matter in the calculation of the slope, so that the identification of the crack tip location is not 
needed. Therefore, the implementation of the Stanley-Chan procedure is rather straightforward, requiring only an 
estimation of the SIF dominated region of linear behavior, which is usually manually performed after looking at data 
plots such as the one in fig. 2a.     

3.2. Williams series stress function and least square fitting 

The Williams’ series expansion of stress components used for the least square fitting of experimental data has been 
implemented in several works and with different techniques, comprising also Photoelasticity or Digital Image 
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Correlation (Ramesh et al. (2002)). The adaptation to the first stress invariant in TSA is straightforward, yielding the 
following expression for Mode I only,  
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where AIn indicates the unknown terms of the series. Arranging Eq. (3) as a matrix expression yields, 
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where i is the number of input data points, and the i×n matrix shows only the first four terms of Williams’ series, for 
clarity of representation. In this work, the linear matrix Eq. (4) is solved in Matlab by using the backslash ‘\’ operator 
(Alshaya and Rowlands (2017)). Arresting the Williams’ solution to the first two terms yields an expression that is 
formally similar to that of Westergaard, 
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Therefore, the SIF and T-stress are readily derived from the first two terms AI1 and AI2, as follows, 

1 22 ; 4I xo IK A A            (6) 

In this work, the input data considered in the least square fitting belong to an annulus sector area (or data input 
area) as shown in Fig. 2b. This is centered on the crack tip, has inner radius rmin and outer radius rmax, and an angular 
stretch from 22.5° to 157.5° (counterclockwise from the crack line). The influence of the data points on the SIF and 
T-stress is investigated by modifying the values of rmin and rmax, while the stretching angle is kept constant.  

In order to evaluate the effectiveness of fitting after changing the values of rmin and rmax and/or the number of terms 
in the Williams’ model, a fitness parameter is proposed that is the coefficient of determination, or R-squared, R2, as 
defined in linear regression fitting. This is computed by the following expression,    
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where RSS is the residual sum of squares, TSS the total sum of squares, Ti the measured value at point i, TWi the 
predicted value from Williams’ model and the mean(Ti) the overall mean of measurements.  

3.3. FEM evaluation 

In order to have a reference value for the Mode I Stress Intensity Factor (SIF) ranges, K=Kmax-Kmin, a finite element 
analysis was performed for the different crack lengths, taking advantage of the Peak Stress Method (Meneghetti and 
Lazzarin (2007)). In particular, linear elastic, two-dimensional, plane stress finite element analyses were performed 
by using the 4-node PLANE 182 element of ANSYS® commercial software and the “simple enhanced strain” element 
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formulation. To account for the machine grip effect in the numerical model, displacements were applied on the grip 
section (dotted lines in Figure 1). 
 

    

Fig. 2. (a) Experimental Stanley-Chan linear regression data plot (example taken from the SENT sample tested at R=0.1 and load frequency of 15 
Hz); (b) definition of the data input area used in the LSF.  

 

    

    

Fig. 3. Thermoelastic signal (a,b,c)  and thermoelastic phase (d,e,f) maps acquired with load ratios R of 0.1 (a,d), 0 (b,e) and -1 (c,f). The white 
dot in (a,b,c) indicates the crack-tip location as measured by the optical camera. The data shown come from tests at load frequency of 15 Hz.   
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4. Results and discussion 

4.1. Thermoelastic first-harmonic signals 

The thermoelastic signal is obtained from the temperature harmonic component at the loading frequency, here also 
referred to as first-harmonic. Such signal is characterized by a T range (i.e. twice the amplitude of the harmonic) 
and a phase. Figure 3 shows the thermoelastic signal maps obtained for the three load ratio cases of R=0.1, 0, -1.   

The maps in Fig. 3 indicate a significant difference between isopachic with R=-1 and isopachics with either R=0.1 
or 0, with only R≥0 giving rise to the typical cardioid shape. In the case of R=-1 a significant thermoelastic signal is 
developed on the wake of the crack, which vanishes progressively moving from the crack tip towards the notch tip. It 
is interesting how such compression progressively vanishes before reaching the notch tip. This could be due to 
plasticity induced crack-closure, hampering the crack flanks to press uniformly, and to close the crack completely.  

The phase maps also shows some different features along the crack flanks and ahead of the crack tip. It is finally 
noticed that in the case of R=0, in the zone immediately behind the crack tip, the phase signal shows some similarities 
to the case of R=-1, which might arise from an incipient crack closure.  

4.2. Evaluation of SIF by the Stanley-Chan linear regression 

The procedure outlined in Section 2.2, and graphically exemplified in Fig. 2a, was applied to evaluate K for each 
load ratio and each applied loading frequency. Results are collected in Table 1 and Figure 4. Furthermore, Figure 5 
reports a close-up image of the phase map at the crack tip, for the case R=0.1, and varying load frequency. In general, 
it is observed that load frequencies above 5 Hz yield a quasi-constant value of K, which can be taken as a proof of 
the onset of adiabaticity in each test. The relatively low threshold frequency is believed to be the effect of a relatively 
small heat diffusion constant for the tested steel. As the load frequency decreases, Fig. 5 shows that the zone with a 
significant phase shift at the crack tip increases. This confirms that such phase shifting is related to non-adiabatic 
phenomena, even if localized plasticity can also contribute. Since the load range is not varying, the plastic zone is 
expected to be self-similar in all tests of Fig. 5, therefore the significant increase of the phase-shifted zone is to be 
mainly ascribed to the progressively more difficult onset of adiabatic behavior with decreasing load frequency.     

   
        Table 1.Values of K in [MPa×m0.5] from the Stanley-Chan procedure. 

load 
frequency 1 Hz 2 Hz 3 Hz 5 Hz 10 Hz 15 Hz 20 Hz 

mean±st.dev  

(5,10,15,20 Hz) 

FEM 

R=0.1 23.34 25.17 26.9 26.56 27.78 26.96 27 27.08±0.5 22.64 

R=0 22.79 24.56 26.2 26.8 26.66 26.83 26.49 26.7±0.1 22.22 

R=-1 19.76 19.58 21.34 21.4 21.61 21.29 21.22 21.38±0.2 21.78 

 

 

Fig. 4. Plot of K with varying load frequency, from the Stanley-Chan procedure. 
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Results show also that there seem to be not a significant difference in K between R=0.1 and R=0. This is somewhat 
in contrast with the earlier postulated presence of some crack-closure at R=0. In fact, crack-closure should reduce the 
value of the effective K. The value of K at R=-1 is instead lower than that at R=0.1 of about 21 %. In this case, 
there is a significant effect of crack-closure induced by the half cycle compression load.  

From Table 1 it is also seen that the values of K obtained from the Stanley-Chan procedure in the case of R=0.1 
and 0 are about 23% higher than the FEM estimations. It is recalled here that the potential influence of the T-Stress is 
not taken into account in the Stanley-Chan linear fitting. To the authors’ knowledge, there is no work in the literature 
that has tried to quantify the impact of such omission. The plot of data in Fig. 2a evidences the presence of a mid-zone 
with a linear trend. Such a zone was clearly identified in all tests, and is apparently not eliminated by the presence of 
crack-closure and the application of negative load ratios. Also the omission of the T-Stress does not influence the 
linear trend of Eq. (2), since o is constant. It is observed here that the introduction of a negative T-Stress would 
have the effect of reducing the measured values of K. In particular, a value of o can be introduced in Eq. (2) that 
brings the experimental K to coincide with the FEM prediction. In the cases or R=0.1 and 0, such value of o is 
about -60 MPa. A numerical T-Stress solution for an edge cracked rectangular plate subject to tension is provided by 
Fett (1998). By considering the case of a long plate (H/W>1.5), the estimation of o provided by Fett for the present 
a/W values is about -22 MPa. Even if this value is about one third then the one estimated earlier, it is interesting to 
notice that the two estimations have both negative sign.      

 

 

Fig. 5. Close-ups of phase map with varying load frequency from the test at R=0.1. 

4.3. Evaluation of SIF by multipoint over-deterministic Least Square Fitting 

4.3.1. Identification of the crack tip location 
The LSF procedure is renowned to require an accurate estimation of the crack tip location, to compute reliable 

values of r and . In this work, an initial iterative procedure is performed to identify the crack tip. A coarse estimation 
is initially made by identifying the crack tip position from the thermoelastic phase, as proposed by (Díaz et al. 2004). 
This location is used as a seed point for the iterative procedure. A square subset of n×n points, centered on the seed 
point, is considered. Least-square is then performed iteratively, each time considering a pixel of the subset as the 
provisional crack tip. The definitive crack tip position is taken as the one yielding the higher value of R2, as defined 
by Eq. (7). From the above, it is then obvious that the proposed procedure cannot achieve a better accuracy than one 
pixel size. 

In the present work the subset side chosen is n=11 pixels. The data input area has a fixed value of rmax=25 px, which 
is the typical further y-distance from the crack chosen in the Stanley-Chan regressions of Section 2. The n×n iteration 
is repeated with values of rmin ranging between 1 px and 10 px, and for a number of Williams’ terms ranging between 
1 and 10, for a total number of least square evaluations of 11×11×10×10=12100, which are performed in Matlab in 
few seconds. The crack tips thus identified have been compared with the crack tip location measured by the optical 
camera, whose higher resolution provides a reliable reference.  Some results are reported in Table 1. It is found that 
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Results show also that there seem to be not a significant difference in K between R=0.1 and R=0. This is somewhat 
in contrast with the earlier postulated presence of some crack-closure at R=0. In fact, crack-closure should reduce the 
value of the effective K. The value of K at R=-1 is instead lower than that at R=0.1 of about 21 %. In this case, 
there is a significant effect of crack-closure induced by the half cycle compression load.  

From Table 1 it is also seen that the values of K obtained from the Stanley-Chan procedure in the case of R=0.1 
and 0 are about 23% higher than the FEM estimations. It is recalled here that the potential influence of the T-Stress is 
not taken into account in the Stanley-Chan linear fitting. To the authors’ knowledge, there is no work in the literature 
that has tried to quantify the impact of such omission. The plot of data in Fig. 2a evidences the presence of a mid-zone 
with a linear trend. Such a zone was clearly identified in all tests, and is apparently not eliminated by the presence of 
crack-closure and the application of negative load ratios. Also the omission of the T-Stress does not influence the 
linear trend of Eq. (2), since o is constant. It is observed here that the introduction of a negative T-Stress would 
have the effect of reducing the measured values of K. In particular, a value of o can be introduced in Eq. (2) that 
brings the experimental K to coincide with the FEM prediction. In the cases or R=0.1 and 0, such value of o is 
about -60 MPa. A numerical T-Stress solution for an edge cracked rectangular plate subject to tension is provided by 
Fett (1998). By considering the case of a long plate (H/W>1.5), the estimation of o provided by Fett for the present 
a/W values is about -22 MPa. Even if this value is about one third then the one estimated earlier, it is interesting to 
notice that the two estimations have both negative sign.      
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the higher error is usually occurring along the x coordinate, i.e. the vertical distance y between the optical and the 
calculated crack tips is generally zero. Regarding the cases of R=0 and R=0.1, it is seen that the maximum error is 
x=5 px, and it generally occurs for low values of rmin, probably due to the blunting effect of plasticization. The error 
increases also with a number of Williams’ terms above 6, probably due to the better ability of the model to adapt the 
plastic zone. Generally, though, when rmin becomes higher than 5 px the error is almost always null, or limited to one 
pixel, indicating that the proposed iterative crack-tip search is effective.      

Figure 6 shows close-ups of the crack-tip zone, with the position of the crack tip obtained from the iterative LSF 
algorithm, on both the T and phase maps, and for the three load ratios. With regards to the phase maps (Fig. 6d,e,f,  
it is generally found that the predicted crack tip falls within the zone of local negative phase, although its exact position 
does not coincide necessarily with the beginning of such zone, as often pointed out in the literature.    

 

     Table 2. Maximum error in pixels between the crack-tip predicted by the iterative LSF and that measured by the optical 
camera (rmax=25 px). 

Number of 
Williams’ terms 1 2 3 4 5 6 8 10 

rmin [px] 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 

R=0.1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 -3 0 -1 -2 0 -1 

R=0 0 0 0 0 1 0 0 1 0 0 0 0 -1 0 0 -5 0 0 -3 0 0 -3 -1 -1 

R=-1 5 5 5 5 5 5 2 5 5 1 2 5 1 1 5 0 1 5 -1 2 5 0 3 5 

 

     
 

       

Fig. 6. Close-up images of the crack-tip zone with indication of the crack tip position obtained with the iterative LSF procedure. 
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4.3.2. Evaluation of the SIF and T-Stress 
The investigation on the SIF and T-Stress is carried out by fixing the inner radius of the data input area to, rmin=5 

px and evaluating four values of rmax=18, 24, 43, 116 px, which correspond to dimensionless values of 0.15, 0.20, 
0.35, 0.95 if normalized by the ligament (distance between the crack tip and the straight edge, W-a). It is observed 
that the value of rmin=5 px follows from the previous analysis on the crack tip location, where such value of rmin handed 
out a good match between predicted and measured crack tip positions. Such value of rmin is also in good accordance 
with the value of y, around the crack tip, exhibiting non-linear behavior in the Stanley-Chan plot (e.g. see Fig. 2a). 
Moreover, the present evaluation is carried out on thermoelastic maps acquired with load frequencies above 10 Hz. 
From Section 4.2 and Fig. 5 it is seen that a radius of 5 px is already sufficient to avoid the near crack tip zone affected 
by a significant phase shift.  

The values of K and T-Stress variation o are reported in Tables 3,4,5 for R=0.1, 0, -1, respectively. Results are 
reported up to a number of Williams’ terms, NW, of 10. Higher values of Nw did not produce meaningful differences 
and Nw=10 can then be considered as a convergence value for the present application. The value of R2 from Eq. (7) is 
also reported for each evaluation. In general, the value of R2 is always higher than 0.95 with NW above 3 (see also Fig. 
7a). The value of R2 is computed considering only the data input area (see fig. 2b). Therefore, high values of R2 
indicate only a good fitness of the model to the experimental data limited to such confined area.    

Regarding the values of K, it is observed that they are significantly affected by both the number of Williams’ 
terms Nw used in the fitting and the outer extension of the data input area. In particular there is a constant increase of 
K with rmax for values of Nw higher than 3 (see Fig. 7b). It is useful to make a visual comparison of the contour plots 
of experimental and least-square fit isopachics as proposed in Fig. 8. A small rmax determines a rather bad matching 
of isopachics lower than I=350 MPa, as shown in Fig. 8a. As rmax increases, the matching gradually improves far from 
the crack tip (Fig. 8b,c) but worsens near the crack tip (Fig. d). The matching observed in Fig. 8c, relative to a wide 
data input area and high Nw, shows that the Williams’ model is able to reproduce fairly well the stress field far from 
the crack tip.      

     Table 3. Values of SIF and T-Stress for R=0.1 from the LSF method (rmin=5 px; rmax=18, 24, 43, 116 px). 

Number of 
Williams’ terms 1 2 3 4 5 6 8 10 12 FEM 

rmax/(W-a)=0.15; number of input data points=804 
R2 0.9811 0.9819 0.9835 0.9911 0.9911 0.9928 0.9928 0.9928 0.9928  
K  [MPa×m0.5] 25.13 24.49 23.75 21.13 21.16 19.88 20.26 20.73 20.73 22.64 

MPa 0.00 -9.91 -2.68 -107.06 -105.73 -190.92 -162.99 -115.47 -115.47  

rmax/(W-a)=0.20; number of input data points=1508 
R2 0.982 0.9826 0.9836 0.9907 0.9908 0.9914 0.9914 0.9914 0.9914  
K  [MPa×m0.5] 25.10 25.70 25.20 22.69 22.51 21.80 21.56 22.52 22.52 22.64 

MPa 0.00 8.28 14.69 -75.32 -83.41 -126.36 -144.09 -59.49 -59.49  

rmax/(W-a)=0.35; number of input data points=5005 
R2 0.971 0.9853 0.9863 0.9878 0.9881 0.9884 0.9887 0.9887 0.9887  
K  [MPa×m0.5] 24.11 27.10 27.45 26.28 25.90 25.47 24.49 24.80 25.36 22.64
MPa 0.00 32.69 26.55 -6.96 -20.73 -41.35 -96.06 -73.24 -27.71  

rmax/(W-a)=0.95; number of input data points=35093 
R2 0.8083 0.8655 0.9424 0.9549 0.9744 0.9826 0.9878 0.9887 0.9888  
K  [MPa×m0.5] 19.38 25.24 27.57 30.72 27.90 30.18 28.70 27.58 27.05 22.64 

MPa 0.00 41.40 2.75 64.89 0.61 72.85 26.53 -25.68 -55.44  

 
Regarding the values of K, it is observed that they are significantly affected by both the number of Williams’ 

terms Nw used in the fitting and the outer extension of the data input area. In particular there is a constant increase of 
K with rmax for values of Nw higher than 3 (see Fig. 7b). It is useful to make a visual comparison of the contour plots 
of experimental and least-square fit isopachics as proposed in Fig. 8. A small rmax determines a rather bad matching 
of isopachics lower than I=350 MPa, as shown in Fig. 8a. As rmax increases, the matching gradually improves far from 
the crack tip (Fig. 8b,c) but worsens near the crack tip (Fig. d). The matching observed in Fig. 8c, relative to a wide 
data input area and high Nw, shows that the Williams’ model is able to reproduce fairly well the stress field far from 
the crack tip.      
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the higher error is usually occurring along the x coordinate, i.e. the vertical distance y between the optical and the 
calculated crack tips is generally zero. Regarding the cases of R=0 and R=0.1, it is seen that the maximum error is 
x=5 px, and it generally occurs for low values of rmin, probably due to the blunting effect of plasticization. The error 
increases also with a number of Williams’ terms above 6, probably due to the better ability of the model to adapt the 
plastic zone. Generally, though, when rmin becomes higher than 5 px the error is almost always null, or limited to one 
pixel, indicating that the proposed iterative crack-tip search is effective.      

Figure 6 shows close-ups of the crack-tip zone, with the position of the crack tip obtained from the iterative LSF 
algorithm, on both the T and phase maps, and for the three load ratios. With regards to the phase maps (Fig. 6d,e,f,  
it is generally found that the predicted crack tip falls within the zone of local negative phase, although its exact position 
does not coincide necessarily with the beginning of such zone, as often pointed out in the literature.    

 

     Table 2. Maximum error in pixels between the crack-tip predicted by the iterative LSF and that measured by the optical 
camera (rmax=25 px). 

Number of 
Williams’ terms 1 2 3 4 5 6 8 10 

rmin [px] 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 

R=0.1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 -3 0 -1 -2 0 -1 

R=0 0 0 0 0 1 0 0 1 0 0 0 0 -1 0 0 -5 0 0 -3 0 0 -3 -1 -1 

R=-1 5 5 5 5 5 5 2 5 5 1 2 5 1 1 5 0 1 5 -1 2 5 0 3 5 

 

     
 

       

Fig. 6. Close-up images of the crack-tip zone with indication of the crack tip position obtained with the iterative LSF procedure. 
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4.3.2. Evaluation of the SIF and T-Stress 
The investigation on the SIF and T-Stress is carried out by fixing the inner radius of the data input area to, rmin=5 

px and evaluating four values of rmax=18, 24, 43, 116 px, which correspond to dimensionless values of 0.15, 0.20, 
0.35, 0.95 if normalized by the ligament (distance between the crack tip and the straight edge, W-a). It is observed 
that the value of rmin=5 px follows from the previous analysis on the crack tip location, where such value of rmin handed 
out a good match between predicted and measured crack tip positions. Such value of rmin is also in good accordance 
with the value of y, around the crack tip, exhibiting non-linear behavior in the Stanley-Chan plot (e.g. see Fig. 2a). 
Moreover, the present evaluation is carried out on thermoelastic maps acquired with load frequencies above 10 Hz. 
From Section 4.2 and Fig. 5 it is seen that a radius of 5 px is already sufficient to avoid the near crack tip zone affected 
by a significant phase shift.  

The values of K and T-Stress variation o are reported in Tables 3,4,5 for R=0.1, 0, -1, respectively. Results are 
reported up to a number of Williams’ terms, NW, of 10. Higher values of Nw did not produce meaningful differences 
and Nw=10 can then be considered as a convergence value for the present application. The value of R2 from Eq. (7) is 
also reported for each evaluation. In general, the value of R2 is always higher than 0.95 with NW above 3 (see also Fig. 
7a). The value of R2 is computed considering only the data input area (see fig. 2b). Therefore, high values of R2 
indicate only a good fitness of the model to the experimental data limited to such confined area.    

Regarding the values of K, it is observed that they are significantly affected by both the number of Williams’ 
terms Nw used in the fitting and the outer extension of the data input area. In particular there is a constant increase of 
K with rmax for values of Nw higher than 3 (see Fig. 7b). It is useful to make a visual comparison of the contour plots 
of experimental and least-square fit isopachics as proposed in Fig. 8. A small rmax determines a rather bad matching 
of isopachics lower than I=350 MPa, as shown in Fig. 8a. As rmax increases, the matching gradually improves far from 
the crack tip (Fig. 8b,c) but worsens near the crack tip (Fig. d). The matching observed in Fig. 8c, relative to a wide 
data input area and high Nw, shows that the Williams’ model is able to reproduce fairly well the stress field far from 
the crack tip.      

     Table 3. Values of SIF and T-Stress for R=0.1 from the LSF method (rmin=5 px; rmax=18, 24, 43, 116 px). 

Number of 
Williams’ terms 1 2 3 4 5 6 8 10 12 FEM 

rmax/(W-a)=0.15; number of input data points=804 
R2 0.9811 0.9819 0.9835 0.9911 0.9911 0.9928 0.9928 0.9928 0.9928  
K  [MPa×m0.5] 25.13 24.49 23.75 21.13 21.16 19.88 20.26 20.73 20.73 22.64 

MPa 0.00 -9.91 -2.68 -107.06 -105.73 -190.92 -162.99 -115.47 -115.47  

rmax/(W-a)=0.20; number of input data points=1508 
R2 0.982 0.9826 0.9836 0.9907 0.9908 0.9914 0.9914 0.9914 0.9914  
K  [MPa×m0.5] 25.10 25.70 25.20 22.69 22.51 21.80 21.56 22.52 22.52 22.64 

MPa 0.00 8.28 14.69 -75.32 -83.41 -126.36 -144.09 -59.49 -59.49  

rmax/(W-a)=0.35; number of input data points=5005 
R2 0.971 0.9853 0.9863 0.9878 0.9881 0.9884 0.9887 0.9887 0.9887  
K  [MPa×m0.5] 24.11 27.10 27.45 26.28 25.90 25.47 24.49 24.80 25.36 22.64
MPa 0.00 32.69 26.55 -6.96 -20.73 -41.35 -96.06 -73.24 -27.71  

rmax/(W-a)=0.95; number of input data points=35093 
R2 0.8083 0.8655 0.9424 0.9549 0.9744 0.9826 0.9878 0.9887 0.9888  
K  [MPa×m0.5] 19.38 25.24 27.57 30.72 27.90 30.18 28.70 27.58 27.05 22.64 

MPa 0.00 41.40 2.75 64.89 0.61 72.85 26.53 -25.68 -55.44  

 
Regarding the values of K, it is observed that they are significantly affected by both the number of Williams’ 

terms Nw used in the fitting and the outer extension of the data input area. In particular there is a constant increase of 
K with rmax for values of Nw higher than 3 (see Fig. 7b). It is useful to make a visual comparison of the contour plots 
of experimental and least-square fit isopachics as proposed in Fig. 8. A small rmax determines a rather bad matching 
of isopachics lower than I=350 MPa, as shown in Fig. 8a. As rmax increases, the matching gradually improves far from 
the crack tip (Fig. 8b,c) but worsens near the crack tip (Fig. d). The matching observed in Fig. 8c, relative to a wide 
data input area and high Nw, shows that the Williams’ model is able to reproduce fairly well the stress field far from 
the crack tip.      
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     Table 4. Values of SIF and T-Stress for R=0 from the LSF method (rmin=5 px; rmax=18, 24, 43, 116 px). 

Number of 
Williams’ terms 1 2 3 4 5 6 8 10 12 FEM 

rmax/(W-a)=0.15; number of input data points=804 
R2 0.9769 0.9813 0.9814 0.9902 0.9906 0.9927 0.9927 0.9928 0.9928  
K  [MPa×m0.5] 26.28 24.72 24.78 21.92 21.44 19.99 19.28 20.20 20.20 22.22 

MPa 0.00 -24.26 -24.83 -138.56 -162.82 -258.67 -313.88 -220.57 -220.57  

rmax/(W-a)=0.20; number of input data points=1508 
R2 0.9819 0.9819 0.982 0.9906 0.9912 0.9922 0.9924 0.9924 0.9924  
K  [MPa×m0.5] 26.17 26.05 26.16 23.35 22.80 21.82 20.90 21.01 21.01 22.22 

MPa 0.00 -1.61 -3.01 -103.83 -128.90 -187.81 -252.53 -241.65 -241.65  

rmax/(W-a)=0.35; number of input data points=5005 
R2 0.9719 0.983 0.9861 0.9886 0.9897 0.9901 0.9908 0.9909 0.9909  
K  [MPa×m0.5] 25.04 27.74 28.38 26.86 26.13 25.55 23.97 23.74 23.94 22.22 
MPa 0.00 29.52 18.28 -25.45 -51.63 -79.70 -167.54 -183.19 -166.40  

rmax/(W-a)=0.95; number of input data points=35093 
R2 0.8083 0.862 0.9388 0.9529 0.9766 0.9837 0.989 0.9902 0.9905  
K  [MPa×m0.5] 20.07 25.91 28.19 31.67 28.45 30.64 28.72 27.22 26.28 22.22 

MPa 0.00 40.71 -0.06 66.20 -10.37 57.88 -4.51 -73.59 -127.43  

     Table 5. Values of SIF and T-Stress for R=-1 from the LSF method (rmin=5 px; rmax=18, 24, 43, 116 px). 

Number of 
Williams’ terms 1 2 3 4 5 6 8 10 12 FEM 

rmax/(W-a)=0.15; number of input data points=804 
R2 -3.3424 0.3961 0.7913 0.9449 0.9449 0.9459 0.9464 0.9479 0.9479  
K  [MPa×m0.5] 19.31 5.00 8.74 4.95 4.95 5.28 5.62 7.59 7.59 21.78 

MPa 0.00 -223.20 -259.82 -410.38 -410.73 -388.71 -364.06 -172.11 -172.11  

rmax/(W-a)=0.20; number of input data points=1508 
R2 -1.5263 0.4641 0.8025 0.9581 0.9599 0.9606 0.9608 0.9618 0.9618  
K  [MPa×m0.5] 19.60 6.72 10.09 5.61 5.23 5.52 5.48 7.04 7.04 21.78 

MPa 0.00 -179.88 -223.27 -383.66 -400.90 -383.64 -388.59 -249.31 -249.31  

rmax/(W-a)=0.35; number of input data points=5005 
R2 0.1287 0.6116 0.8268 0.9462 0.9707 0.9712 0.9717 0.9719 0.9721  
K  [MPa×m0.5] 19.63 10.82 13.46 8.22 6.48 6.18 5.54 6.22 6.81 21.78 
MPa 0.00 -96.30 -142.12 -292.28 -355.26 -369.50 -405.67 -355.63 -307.70  

rmax/(W-a)=0.95; number of input data points=35093 
R2 0.677 0.6814 0.8419 0.8528 0.9612 0.9615 0.9802 0.9819 0.982  
K  [MPa×m0.5] 17.21 16.05 18.34 16.21 11.41 11.07 7.23 5.95 5.99 21.78 

MPa 0.00 -8.09 -49.14 -89.70 -203.65 -214.02 -347.86 -406.91 -403.32  

 
 
 

          

Fig. 7. (a) Evolution of R2 with rmax and Nw; (b) variation of K with rmax and Nw. Both plots are obtained for the case of R=0.1. The data input 
area has a constant rmin/(w-a)=0.04. 
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Fig. 8. Contour plot comparison between experimental and least-square fit isopachics for load ratio R=0.1 and various rmax and Nw. 

Comparing the values of K from R=0.1 and R=0 at equal rmax and Nw, there seems to be not a significant difference, 
confirming what already observed with the Stanley-Chan evaluation (section 4.2). A rather relevant difference is 
instead observed with the case of R=-1. In this case small values of rmax yield very low values of K, and in general, 
there is a much higher variation, ranging between 4 and 20 MPa×m0.5. The influence of the half cycle in compression 
on the isopachic contours, in particular the crack-closure on the wake of the crack, is evident already in Fig. 3c, and 
has a paramount influence on the least square fitting (see also Fig. 9). It is evident here that the case of fully reversed 
loading (and R<0 in general) needs further work regarding the possibility to correlate the isopachic data with the stress 
field and fracture parameters.  

Another noteworthy output of the LSF is the evaluation of the T-stress. From the results of Tables 3,4,5 it is seen 
that this parameter has a very wide range of variation with changing rmax and Nw. There are very few works in the 
literature which have reported the value of the T-Stress measured from the thermoelastic signal. In Pukas (1987) a 
theoretical value of xo=-0.42 with  the remote nominal tension, is indicated for the SENT specimen having H=W 
(with H distance between the grips) and with a relative crack length a/W=0.5. This is a similar case to the present one 
(see Fig. 1), and then it should indicate an expected xo of about -26 MPa for R>0. But such value is seldom matched 
in Tables 3, 4. In the work of Zanganeh et al. (2008) it is shown that the xo changes drastically when using 2 or 3 
terms in the Williams’ series. The same authors pointed out a strong influence of the crack tip location in the evaluation 
of xo. Although these authors did not explore higher number of Williams’ terms, and did not make an evaluation of 
the impact of the data input region, their results indicate that the T-stress is indeed very sensitive to the least-square 
fitting chosen parameters.    
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     Table 4. Values of SIF and T-Stress for R=0 from the LSF method (rmin=5 px; rmax=18, 24, 43, 116 px). 

Number of 
Williams’ terms 1 2 3 4 5 6 8 10 12 FEM 

rmax/(W-a)=0.15; number of input data points=804 
R2 0.9769 0.9813 0.9814 0.9902 0.9906 0.9927 0.9927 0.9928 0.9928  
K  [MPa×m0.5] 26.28 24.72 24.78 21.92 21.44 19.99 19.28 20.20 20.20 22.22 

MPa 0.00 -24.26 -24.83 -138.56 -162.82 -258.67 -313.88 -220.57 -220.57  
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K  [MPa×m0.5] 20.07 25.91 28.19 31.67 28.45 30.64 28.72 27.22 26.28 22.22 

MPa 0.00 40.71 -0.06 66.20 -10.37 57.88 -4.51 -73.59 -127.43  
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Fig. 7. (a) Evolution of R2 with rmax and Nw; (b) variation of K with rmax and Nw. Both plots are obtained for the case of R=0.1. The data input 
area has a constant rmin/(w-a)=0.04. 
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Fig. 8. Contour plot comparison between experimental and least-square fit isopachics for load ratio R=0.1 and various rmax and Nw. 

Comparing the values of K from R=0.1 and R=0 at equal rmax and Nw, there seems to be not a significant difference, 
confirming what already observed with the Stanley-Chan evaluation (section 4.2). A rather relevant difference is 
instead observed with the case of R=-1. In this case small values of rmax yield very low values of K, and in general, 
there is a much higher variation, ranging between 4 and 20 MPa×m0.5. The influence of the half cycle in compression 
on the isopachic contours, in particular the crack-closure on the wake of the crack, is evident already in Fig. 3c, and 
has a paramount influence on the least square fitting (see also Fig. 9). It is evident here that the case of fully reversed 
loading (and R<0 in general) needs further work regarding the possibility to correlate the isopachic data with the stress 
field and fracture parameters.  

Another noteworthy output of the LSF is the evaluation of the T-stress. From the results of Tables 3,4,5 it is seen 
that this parameter has a very wide range of variation with changing rmax and Nw. There are very few works in the 
literature which have reported the value of the T-Stress measured from the thermoelastic signal. In Pukas (1987) a 
theoretical value of xo=-0.42 with  the remote nominal tension, is indicated for the SENT specimen having H=W 
(with H distance between the grips) and with a relative crack length a/W=0.5. This is a similar case to the present one 
(see Fig. 1), and then it should indicate an expected xo of about -26 MPa for R>0. But such value is seldom matched 
in Tables 3, 4. In the work of Zanganeh et al. (2008) it is shown that the xo changes drastically when using 2 or 3 
terms in the Williams’ series. The same authors pointed out a strong influence of the crack tip location in the evaluation 
of xo. Although these authors did not explore higher number of Williams’ terms, and did not make an evaluation of 
the impact of the data input region, their results indicate that the T-stress is indeed very sensitive to the least-square 
fitting chosen parameters.    
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Fig. 9. Contour plot comparison between experimental and least-square fit isopachics for load ratio R=-1. 

4.4. Interpretation of the Second Harmonic maps 

Second harmonic is the denomination typically found in the literature for the harmonic temperature at twice the 
loading frequency. This can be easily obtained in terms of range and phase with the same signal processing approaches 
used for the first harmonic in TSA. A number of different explanations have been proposed to explain the rise of such 
second harmonic in some circumstances (Jones and Pitt (2006)). Three are in particular the most accredited,  
 The strong dependence of the material elastic and physical properties with temperature, which enables the so-

called Second Order theory of the Thermoelastic Effect. According to this more accurate formulation, a second 
harmonic modulation arises, still due to the material elastic volume change; 

 Intrinsic material dissipation. This is in particular encountered at incipient plasticity, or other forms of incipient 
damage. In this case the second harmonic originates by the irreversible heating that is generated twice per load 
cycle; 

 Friction effects between rubbing crack or delamination faces, generating an irreversible heating at each 
loading/unloading iteration.  
In the case of a crack subject to Mode I cyclic loading, a high second harmonic signal has been typically detected 

in front of the crack tip and in some circumstances along the crack flanks. Jones and Pitt (2006) in particular coupled 
the second order thermoelastic theory with the crack tip stress field equations and observed that the second harmonic 
response, as induced by elastic straining, is proportional to 1/r and not 1/√r, and therefore it is expected to generate a 
significant signal where the stress gradient is higher. This is possibly added to a plasticity-induced second harmonic. 

Regarding the second harmonic signal on the crack flanks, this typically occurs when the load ratio R is negative 
or near zero. Jones and Pitt (2006) have associated this to rubbing effects, while Bar and Seifert (2014) and Urbanek 
and Bär (2017) suggest also a correlation with material plasticization. In Ancona et al. (2016) it is also pointed out 
that the phase map of the second harmonic undergoes a 180° shift between the zones ahead and behind the crack.   

The second harmonic maps acquired in this work are reported in Fig. 10-11. At R=0.1 the range T is surprisingly 
small and closely localized at the crack tip, while is practically null elsewhere. At R=0 the signal is already more 
marked, prevalently right behind the crack tip (see also Fig. 11a). At R=-1 the signal is instead well pronounced and 
characterized by two peak zones, one ahead of the crack and one on the crack flanks. The two zones are also separated 
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Fig. 12. (a) Schematic representation of the loads acting on internal points (curve in blue) and points lying on the crack flanks (curve in red); (b) 

Power spectrum and (c) phase spectrum from the DFT of the blue and red loading curves. 

 

   
Fig. 13. (a) Areas selected for the plot (b) of average temperature versus time. 

By performing the Discrete Fourier Transform on the blue and red curves of Figure 12a, one obtains the power 
spectrum and phase spectrum shown in Figure 12b,c. It is in particular found that the red curve has three main 
harmonics at =20, 2=40 and 4=80 Hz, while the blue curve has only one harmonic at =20 Hz (the time scale is 
here assumed to be [sec]). Furthermore, the harmonic of the red curve at 20 Hz is in phase with the external load (blue 
dots in Fig. 12a), while the harmonic of the red curve at 40 Hz is shifted by 180 °. These harmonics at  and 2 act 
as two different external cyclic loads, applied simultaneously. For simplicity, from now on, the external load related 
to the blue curve is indicated as L, and the two loading components related to the red curve are indicated as L1 and L2.  

By transferring the above scheme into the case of Figure 10c,f and 11, it emerges that the first harmonic signal on 
the crack flanks is a thermoelastic signal induced by the L1 loading component, and the second harmonic signal on 
the crack flanks is still a thermoelastic signal but this time associated to the L2 loading component. The loading scheme 
of Fig. 12a explains also why the first harmonic signal is in phase with the signal ahead of the crack-tip (see Fig. 3f), 
while the second harmonic is opposite in phase. 

It is observed that the above behaviour is determined every time the crack flanks come into contact and press 
against each other, therefore the same features of the second harmonic can be associated also to the presence of crack-
closure, other than negative load ratios R. Indeed, in the case of R=0 in Fig. 11a, the presence of a significant second 
harmonic right behind the crack is most likely attributable to a localised crack-closure.  

The narrow band of null signal in the second harmonic map, separating the crack flanks from the ligament, has 
been interpreted by some authors as a zone with a lack of contact between the crack flanks (see e.g. Jones and Pitt 
(2006)). In this work instead, this null band is explained as the consequence of a gradual change in the phase shift 
from 180° to 0° (or vice versa, according the reference chosen for 0° phase), requiring the amplitude to pass from 
zero. 

A final proof that can further validate the above explanation is provided in Fig. 13. Here a rectangular area is taken 
across the crack flanks, in the second harmonic map. The average temperature from this area is then plotted versus 
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time in fig. 13b. The plot shows clearly how the temperature follows a similar modulation as the one given to the red 
load curve in Fig. 12a. The temperature also lies on the positive semi-plane, and is opposite in sign with the generating 
compression load.  

5. Conclusions 

In this work a Thermoelastic Stress Analysis setup has been implemented to evaluate the Thermoelastic and Second 
Harmonic signals from a Single Edge Notched Tension sample made of stainless steel AISI 304L, subject to fatigue 
cyclic loading with load ratios R=-1, 0, 0.1.  

The maps of the thermoelastic signal have been analyzed to evaluate the Stress Intensity Factor (SIF) and T-Stress. 
The Stanley-Chan linear fitting procedure has provided values of SIF higher than the FEM prediction for R-ratios of 
0 and 0.1. It is observed that considering the influence of a negative T-Stress, neglected in the Stanley-Chan 
interpolation, would yield smaller values of SIF. Results from the Stanley-Chan evaluation also showed a tendency 
of the SIF to diminish with decreasing load ratio R, which could be ascribed to the influence of crack closure and the 
onset of a reduced effective SIF.  

The least-square fitting based on the Williams’ stress function has indicated that there is a convergence of results 
for a number of terms higher than ten. A coefficient of determination R2 has been used to evaluate the quality of fitting. 
Using such parameter and iterating the least square fitting has allowed to select an optimized position of the crack tip 
on the thermoelastic maps, which agreed well with the evaluation made by accurate optical measures. Regarding the 
SIF and T-Stress results, these have been found to be significantly influenced by the extension and position of the area 
used as input data, and by the number of terms considered in the series function. It is observed in general that extending 
the data input area has an overall effect of improving the fitting, but the local fitting in the zones with steepest gradients 
near the crack tip is worsened. On the contrary, smaller data input areas, closer to the crack tip, improve the fitting 
near the crack tip but are not able to satisfactory model the isopachics further out. More work is needed to establish a 
criterion able to identify the optimal data input area extension and position in order to have the most reliable evaluation 
of the SIF and T-Stress. 

This study has also investigated the features of the Second Harmonic signal in terms of both amplitude and phase. 
In particular, a peculiar shape of the Second Harmonic amplitude has been identified with load ratios of R=-1 and 0, 
which has been correlated with the presence of crack closure. In particular, the high Second Harmonic signal on the 
wake of the crack has been explained as a thermoelastic signal component that happens to be modulated at twice the 
loading frequency. This occurs due to the peculiar wave shape of the compression load acting on the crack flanks. The 
arising compression load generates a local thermoelastic signal which is compatible with the amplitude and phase 
features shown by the Second Harmonic signal. This interpretation somewhat revises other explanations found in the 
literature, which associate the Second Harmonic signal to dissipation and frictional effects. Moreover, the given 
interpretation allows to propose the Second Harmonic as an effective parameter to reveal the presence and the extent 
of crack-closure. 
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time in fig. 13b. The plot shows clearly how the temperature follows a similar modulation as the one given to the red 
load curve in Fig. 12a. The temperature also lies on the positive semi-plane, and is opposite in sign with the generating 
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criterion able to identify the optimal data input area extension and position in order to have the most reliable evaluation 
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