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A B S T R A C T   

Quantitative models have gained momentum to drive the development of pharmaceutical processes. The 
assessment of the prediction fidelity of these models is key to provide interpretability of process phenomena and 
to enable decision-making. Evaluating parametric uncertainty is paramount when the focus is on systems models, 
which combine different sub-models together, and, thus, parameters related to previous units may strongly 
impact the prediction of one final output. A framework is proposed to assess reliability in model predictions, 
where the precision of parameter estimates is explicitly optimized to target pre-set tolerance requirements on 
process key performance indicators and product critical quality attributes. A direct compression systems model 
for the manufacturing of oral solid dosage products is used as a case study. Results show that the proposed 
methodology is effective at guaranteeing the target model fidelity and at quantifying the maximum acceptable 
uncertainty in the estimates of model parameters.   

1. Introduction 

Pharmaceutical manufacturing processes typically involve multiple 
unit operations, which are connected by material and energy streams, 
and can be suitably represented by a process flowsheet (Boukouvala 
et al., 2012). Mathematical models can be used to describe the evolution 
of physical and chemical phenomena along the manufacturing line as 
well as to predict the pharmacodynamic and pharmacokinetic behavior 
of the drug product in vivo or in vitro (Daryaee and Tonge, 2019). The 
overall model consisting of all sub-models (i.e., all mathematical equa-
tions describing the relevant phenomena occurring in a single unit 
operation, or in a single functional test unit to assess the effect of the 
drug product) is typically known as systems model (Avraam et al., 1998). 

Systems models describing pharmaceutical manufacturing and 
product performance are extremely useful to support process develop-
ment, drug design and decision making (Braakman et al., 2022; Destro 
and Barolo, 2022). Examples of systems modeling approaches for in-
dustrial applications have been presented in literature. Bano et al. 
(2022) streamlined the development of an industrial dry granulation 
process for immediate release (IR) tablets; Moreno-Benito et al. (2022) 
proposed an integrated model combining first-principles and 
data-driven approaches of a continuous direct compression (DC) 

manufacturing line for the production of IR tablets; White et al. (2022) 
presented a systems model of a pharmaceutical tablet manufacturing 
process to assess whether a given drug product be manufactured using 
dry granulation or DC. Systems models have been successfully used to 
support manufacturing of active pharmaceutical ingredient (API) in 
both continuous (Diab et al., 2022a) and batch (Diab et al., 2022b) 
modes. Monaco et al. (2023) adopted a systems approach to study the 
impact of operating conditions and material properties in wet granula-
tion manufacturing. 

Evaluating the prediction reliability with respect to model key per-
formance indicators (KPIs) and critical quality attributes (CQAs) – which 
here will be generically called key indicators (KIs) – is paramount in 
understanding whether the available model is suitable for the intended 
industrial purpose – where it may be used to predict CQAs that are 
important for the therapeutic efficacy of a drug and patient safety. The 
application of quantitative and statistical metrics for the assessment of 
model prediction uncertainty is fundamental to enhance the systematic 
use of (systems) models for process development and decision-making 
(Bai et al., 2019; Zineh, 2019). 

The accuracy of predictions of a (systems) model with respect to 
model KIs is also known as model fidelity (Geremia et al., 2023), and 
strongly depends on the precision of model parameter estimates. Not 
only does the prediction fidelity of a selected KI depend on the 
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parameters of the specific sub-model, but it is also affected by the pre-
cision of parameter estimates related to the previous sub-models 
impacting the KI of interest. For instance, let us consider the case of a 
pharmaceutical manufacturing process to produce oral solid dosage 
(OSD) products via direct compression (Wang et al., 2017). The API and 
excipients are first fed to a co-mill; lubricant is then added to improve 
flowability and to stop the powder from sticking to the tablet press die 
walls and punch; mixing occurs in a continuous blender to improve the 
homogeneity of the blend, which is finally fed to the tablet press unit. 

The prediction of tablet hardness is affected by the lubrication extent 
attained in the blender; therefore, it is expected that uncertainty in the 
parameters of the sub-models for the previous units will impact the 
prediction of the tablet hardness. 

Characterizing the fidelity of a model requires a quantification of the 
prediction uncertainty of model outputs. Methodologies based on Monte 
Carlo (MC) simulations (Fishman, 1995) have typically been exploited 
to evaluate the relationship between model parameters and model 
outputs. They need to simulate the process using a sufficiently high 

Nomenclature 

Acronyms 
API active pharmaceutical ingredient 
CI confidence interval 
CQA critical quality attribute 
DAE differential algebraic equations 
DC direct compression 
GSA global sensitivity analysis 
HPLC high performance liquid chromatography 
IR immediate release 
KI key indicator 
KPI key performance indicator 
MBDoE model-based design of experiments 
MC Monte Carlo 
OSD oral solid dosage 
PLS partial least squares 
SQP sequential quadratic programming 
USP Unites States Pharmacopeia 
UV ultraviolet 

Greek letters 
β total fraction of tensile strength that can be lost due to 

lubrication 
γ lubrication rate constant [dm− 1] 
δ Dirac delta function 
δ vector of pre-set tolerances on the prediction of K 
ε average porosity of the swollen product [–] 
ε set of parameter uncertainty of the whole systems model 
εi,max,b boundary maximum uncertainty of estimated parameter θi 

maximizing the objective function 
εi,max maximum uncertainty of estimated parameter θi 

maximizing the objective function 
εMi set of parameter uncertainty of sub-model Mi 
ϵ̇ tablet erosion rate [m s− 1] 
θ set of parameters of the whole systems model 
θMi set of parameters of sub-model Mi 
λ swelling rate [s− 1 ] 
μ liquid viscosity [Pa s] 
ξ set of relative uncertainty of model parameters θ 
ξi relative uncertainty of estimated parameter θi 
ξmax set of relative uncertainty of model parameters θ 

maximizing the objective function 
ρp density of particles [kg m− 3] 
τ total stress [MPa] 
τor average tablet tortuosity [–] 
ϕ shape factor of particles [–] 

Latin letters 
a1 parameter of extended Kushner model [MPa] 
a2 parameter of extended Kushner model [–] 
ah

i auxiliary variable in the optimization problem 
asf Kawakita model parameter [–] 

At tablet surface area [m2] 
b1 extended Kushner parameter [–] 
b2 extended Kushner parameter [–] 
BAPI rate of release of API [s− 1] 
bsf Kawakita model parameter [MPa− 1] 
C2 Peppas and Colombo parameter [MPa] 
C3 Peppas and Colombo parameter [MPa] 
cAPI bulk concentration of API [kg m− 3] 
csat saturation concentration of API [kg m− 3] 
dh tablet hydraulic diameter [m] 
E elastic constant (1) [–] 
E(⋅) expectation operation 
G0 elastic constant (2) [MPa] 
h stochastic scenario 
Hcoat thickness of the coating layer [m] 
K extent of lubrication [dm] 
kAPI mass transfer coefficient of API [(m3×kg− 1)

nAPI s− 1] 
K set of key indicators of the whole systems model 
K̄ vector of the target values of the whole systems model KIs 
KMi set of key indicators of sub-model Mi 

l particle size [–] 
l0,API particle size at the beginning of the process [m] 
LC percentage of label content [–] 
M number of sub-models of the systems model 
Mt tablet mass [kg] 
Mt,0 initial tablet mass [kg] 
n swelling parameter [–] 
N number of parameters combinations via MC simulations 
nAPI order of dissolution [–] 
NK number of model key indicators 
Nθ number of model parameters 
Ntot total number of stochastic scenarios 
P compaction pressure [MPa] 
pc capillary pressure [Pa] 
Pd water penetration depth [m] 
RAPI,l particle dissolution coefficient [m s− 1] 
Si first-order sensitivity index [–] 
Sp shape factor of pores [–] 
Si, TOT total effect sensitivity index [–] 
t time [s] 
tref reference t-value 
Tt/2 half tablet thickness [m] 
TS tensile strength [MPa] 
TS0 tensile strength at zero porosity [MPa] 
uMi vector of input variables of sub-model Mi 

V(KMi ) variance of model KI KMi 

Vc coating volume [m3] 
Vm liquid volume in the vessel [m3] 
wl liquid content in the tablet [–] 
xAPI mass fraction of API [–] 
xMi vector of state variables of sub-model Mi 
yMi 

vector of output measured variables of sub-model Mi  
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number of combinations of model parameters, which are typically 
pseudo-random or Sobol sequences (Kucherenko et al., 2015). To 
mention some recent examples, Briskot et al. (2019) assessed the pre-
diction fidelity of chromatography models by generating samples of 
parameters values using a Bayesian Markov Chain MC approach, while 
Demetriades et al. (2022) quantified in vitro cancer drug pharmacody-
namics via MC modeling. Recently, some approaches have been pro-
posed to evaluate regions of model reliability in terms of prediction 
error. Quaglio et al. (2018) used a decision function to evaluate the 
expected model reliability in unexplored regions of the experimental 
design space; Dasgupta et al. (2021) proposed a kriging interpolation 
technique to map the mean squared error of model prediction. Cenci 
et al. (2023) presented an explorative model-based design of experi-
ments (MBDoE) method to reduce model prediction uncertainty by 
using a mapping of model prediction variance. 

With specific reference to the pharmaceutical sector, a general pro-
cedure for the evaluation of the prediction fidelity of (systems) models 
was proposed by Geremia et al. (2023). The framework was successfully 
demonstrated to: (i) assess model prediction fidelity using standardized 
model evaluation methods, i.e., to quantify the impact of model 
parameter uncertainty on the selected model KIs, and (ii) optimize the 
experimental campaigns for the parameter estimation in quantitative 
(systems) models. The methodology relies on a linear partial 
least-squares (PLS) regression model, which is built considering the 
relationship between model parameters and outputs. Thus, if the orig-
inal model is strongly nonlinear with respect to the relationship between 
parameters and KIs, the uncertainty region may be represented 
ineffectively. 

In this work, we present an alternative approach for the quantifica-
tion of model parameter impact on the prediction fidelity of KIs. Spe-
cifically, we exploit the available systems model discussed in Geremia 
et al. (2023), and apply an optimization approach to explicitly quantify 
the required level of precision of parameter estimates that allows tar-
geting a pre-set fidelity on the prediction of model KIs. The proposed 
procedure relies on an optimization approach and does not introduce 
any linearization. 

The same DC systems model for manufacturing of OSD products 
considered in Geremia et al. (2023) will be used as a case study. The 
systems model comprises the following sub-models: (1) tablet press unit 
operation, (2) tablet disintegration test unit, and (3) in vitro dissolution 
test unit. 

The remainder of the article is organized as follows. In Section 2, we 
introduce the framework for the assessment of model prediction fidelity, 
and we briefly outline the general scope of each step of the procedure. In 
Section 3, we thoroughly describe the optimization approach to quantify 
the parameter impact on the prediction of model KIs. In Section 4, we 
give details regarding the case study, while in Section 5 we implement 
the methodology, and critically discuss the results that are obtained. 
Final remarks will conclude the study. 

2. Problem statement 

In mathematical terms, a generic systems model is comprised of a 
number (M) of sub-models representing the different sub-systems (M1, 
M2,… MM), and the relationship between the unit inputs and outputs 
can be described by a set of differential and algebraic equations (DAEs). 
Each sub-model i can be mathematically described by the following 
DAEs: 
⎧
⎨

⎩

f Mi
(xMi (t), ẋMi (t), (θMi ± εMi ), uMi (t), t) = 0

yMi
(t) = gMi

(xMi (t), ẋMi (t), (θMi ± εMi ), uMi (t), t)
KMi (t) = hMi (xMi (t), ẋMi (t), (θMi ± εMi ), uMi (t), t)

, (1)  

with i = 1, 2,…,M where xMi , uMi , and θMi , refer to sub-model i and are 
(respectively) the vector of state variables, the vector of input variables, 
and the vector of the model parameter estimates. εMi is the 

corresponding vector of absolute values of parameter uncertainties, 
which quantifies the uncertainty in the estimated values of model pa-
rameters; in other words, it is a measure of the absolute parameter un-
certainties due to incomplete/imperfect knowledge about the values of 
the estimates (Sin et al., 2009). If model parameters are estimated 
perfectly, the values of εMi are zero. Also note that here we assume that 
the model is the perfect representation of the actual system, and there-
fore uncertainty is only related to precision in the model parameters (i.e. 
there is no structural model mismatch). 

yMi 
and KMi are the vector of measured output variables and the 

vector of KIs for the sub-model i, respectively (vector field f Mi 
represents 

all other DAEs in sub-model i). We assume that the vector uMi of input 
variables can be manipulated to vary the KIs. A KI can be equal to output 
yj,Mi or be derived from combinations of outputs. With reference to the 
whole systems model, we will denote the set of all model parameter 
estimates, θ, the corresponding set of parameter uncertainty ε, and 
predicted model key indicators, K, as follows: 

θ =
[
θM1 , θM2 ,…, θMM

] T (2)  

ε =
[
εM1 , εM2 ,…, εMM

] T , (3)  

K =
[
KM1 , KM2 ,…, KMM

] T . (4) 

Assessing the fidelity of a given systems model requires quantifying 
how the contributions of all model parameters impact the prediction of 
the KIs, namely, to compute the maximum values of the elements in 
vector ε such that the pre-set accuracy on the prediction of model KIs is 
attained. It is worth highlighting that, in general, not only does model 
fidelity depend on the parameters of one specific sub-system model, but 
it also relies on the fidelities of the parameters of all sub-system models 
impacting the unit being investigated. 

The required fidelity on model KIs can be mathematically formulated 
as: 

(K − K̄)
2
≤ δ2, (5)  

where K̄ is the vector of the target values of model KIs, and δ is the vector 
of pre-set tolerances on the prediction of K, i.e., the maximum error in 
the prediction of K with respect to the target K̄. 

The presented work aims at computing the maximum values of ele-
ments in vector ε which guarantee that predicted model KIs fall within 
the range of pre-set tolerances, namely, determining the maximum un-
certainty of each model parameter, θi, which ensures the pre-set accu-
racy requirements. 

3. Methodology 

In this section, we thoroughly describe the novel optimization 
approach for the assessment of the parameter impact on the prediction 
of model KIs. It is worth highlighting that we aim at optimizing the 
precision on parameter estimates such that we ensure that the para-
metric uncertainty meets the pre-set tolerance requirements on model 
KIs. Thus, we purposely exclude a detailed study on preliminary steps, i. 
e., (i) model identifiability and parameter ranking, (ii) design and 
execution of experiments, and (iii) parameter estimation, for which the 
reader may refer to more general articles (e.g., McLean and McAuley 
2012, Braakman et al. 2022, Geremia et al. 2023). Techniques used in 
the presented methodology to fulfil model identifiability and parameters 
ranking are briefly discussed in Appendix A. 

3.1. Parameter impact on the fidelity of model predictions 

Let us first introduce the relative parameter uncertainty, ξi, as the 
ratio between the parameter uncertainty, εi, and the absolute value of 
the current estimated parameter, θi: 
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ξi =
εi

|θi|
. (6) 

This ensures that uncertainties have a common scale. The objective 
function is here defined as the product between all the relative param-
eter uncertainties: 

obj(ξ) =
∏n

i=1
ξi . (7) 

The optimization problem consists in maximizing obj(ξ), while 
satisfying the fidelity constraint imposed by Eq. (5): 

max(obj(ξ)) s.t. (K − K̄)
2
≤ δ2. (8) 

Values of ξ maximizing the objective function, which we will call 
ξmax, are computed through a nonlinear sequential quadratic program-
ming (SQP) optimization (Boggs and Tolle, 1995). Note that the 
formulation of the optimization problem requires setting upper bounds 
(UBs) for the maximum values of elements in ξ. When the relative 
maximum uncertainty, ξi for parameter θi hits the UB, (i.e., ξmax,i = UBi), 
here we assume that parameter θi is non-influential towards the pre-
diction of model KIs, and any level of uncertainty on that parameter is 
acceptable. 

εi,max, b = ξi, max |θi| is the maximum parameter uncertainty, where 
ξi, max is computed by solving the optimization problem (8), which en-
sures the pre-set requirement on the prediction fidelity of the KI, KMj (i. 
e., the pre-set tolerance δ2

j ). εi,max, b must be both subtracted and added 
to the current estimate of parameter θi in order to define the boundaries 
of parametric uncertainty, i.e., the lower and upper bounds within 
which the prediction fidelity is acceptable. Note that the relationship 
between model parameters and tolerance on KIs might be nonlinear, 
and, thus, real boundaries might be asymmetric. However, here we 
adopt a symmetric approach to conservatively compute εi,max, b as the 
minimum value between lower and upper uncertainties at boundaries 
with respect to the current estimate θi. This is also coherent with the way 
in which uncertainty in the estimated θi is typically evaluated, i.e., 
referring to the corresponding confidence interval (CIs), which repre-
sents the symmetric range of values with respect to the current estimate 
θi within which that parameter is expected to fall (Dekking et al., 2005).1 

When Nθ model parameters simultaneously affect the prediction fi-
delity of the KIs, parameter uncertainties can be combined in 2Nθ ways, 
based on the two possible signs (+ or − ) of the contribution εi,max,b to 
the current estimate of θi, i.e., the lower and upper bounds for each 
model parameter. Practically, 2Nθ scenarios must be evaluated during 
the optimization routine in Eq. (8). Let us consider one generic scenario 
(h) among the 2Nθ possibilities, with 1≤ h ≤ 2Nθ . Boundary values of 
each model parameter in scenario h, θh

i , can be expressed as: 

θh
i = θi

(
1+ ξiah

i

)
, (9)  

where ah
i is an auxiliary variable used to account for the two possible 

signs (+ or − ) of the contribution |εi,max,b| to the current estimate of θi: 

ah
i = {− 1;+1} s.t. ah ∕= ak∕=h, i = 1, 2,…,Nθ; h = 1, 2, …, 2Nθ . (10) 

If the relationship between model parameters and KIs is non- 
monotonic, the εi,max,b values that are computed by solving Eq. (8) may 
not represent the actual boundaries. Fig. 1 exemplifies such a condition, 
under the hypothesis that the prediction requirement of a certain model 
KI, KMj , depends on one parameter only (e.g., θi). Note that this is one- 
dimensional example is just shown for visualization, not a limitation 

of the method. 
To tackle this potential issue, we simulate the model for a number 

Ntot − 2Nθ of additional scenarios, where model parameter θi is still 
computed using Eq. (9), while auxiliary variables in Eq. (10) are rede-
fined as follows: 

ah
i =

{
{− 1;+1} if 1 ≤ h ≤ 2Nθ

uniform(− 1, 1) if 2Nθ < h ≤ Ntot
s.t. ah ∕= ak∕=h, (11)  

where uniform(− 1,+1) indicates a uniform distribution of values in the 
range [ − 1; + 1], and Ntot is the total number of scenarios which are 
evaluated. Ntot should be selected such that a sufficiently high number of 
scenarios are evaluated (Kucherenko et al., 2015); in this work, Ntot=

104. Practically, the evaluation of additional scenarios is aimed at 
checking that the constraints on KIs are satisfied for any scenario h such 
that θi − εi,max, b ≤ θh

i ≤ θi + εi,max, b ∀ i = 1, 2, …Nθ. If the constraints 
are not satisfied for at least one stochastic scenario, a new εi,max <

εi,max,b is set. This is selected as the maximum uncertainty obtained for 
the maximum scenario, h*, satisfying the tolerance requirements on 
model KIs for any value of parameter θh

i in the range θi − |ξiah*

i | ≤θh
i ≤

θi +
⃒
⃒ξiah*

i
⃒
⃒. 

From now on, we will generically indicate with εi,max the maximum 
allowable uncertainty for parameter θi.

3.2. Assessing the impact of parameter uncertainty on the fidelity of 
model predictions 

Model parameters are estimated using a maximum likelihood esti-
mator (Bard, 1974). To assess whether the current precision of model 
parameter estimates is sufficient to guarantee all the requirements on 
model KIs, we quantify uncertainty on parameter estimates by referring 
to their corresponding 95 % CIs, which is a threshold value commonly 
adopted to define the variability of an estimate (Dekking et al., 2005). 
Since the estimated value, θi, is the central value in the range defined by 
its CI, optimization results εi,max should be compared to the half of the 
corresponding CIs, i.e., (95 % Cli)/2. For clarity purpose, the flow dia-
gram in Fig. 2 shows the sub-steps used in the optimization approach to 
assess whether the current precision of parameter estimates is sufficient 
to attain the preset requirements on model KIs. 

As an example, let us consider the case in Fig. 3a, where the value of 
εi,max is lower than the (95 % Cli)/2 of parameter θi. Practically, the 
attained precision of parameter θi is not sufficient, and a new iteration of 
the procedure in Fig. 2 is required. The stop criterion is attained when 
the absolute value of εi,max is higher than the (95 % Cli)/2 for each model 
parameter estimate θi, and therefore no further experimental effort is 
needed (Fig. 3b). 

4. Case study 

In this work, we consider the same DC systems model presented by 
Geremia et al. (2023). All equations of the systems model are reported in 
Appendix B. The model is applied to assess how changes in process 
operation will impact product performance, i.e., how varying the extent 
of lubrication and tablet press operation will impact the tablet’s disin-
tegration time and API dissolution profile. Assumptions under which the 
systems model has been built are as follows.  

1. Consistent/perfect blending. Excipients and API powders are perfectly 
mixed. Therefore, the feeding and blending unit operations are not 
considered, and blend, content uniformity and tablet weight vari-
ability are not considered as KIs in this study.  

2. Dissolution test method. The analytical method used to measure the in 
vitro dissolution profile of the API is discriminatory, i.e., the method 
can capture changes in factors that could impact the dissolution 
performance (i.e., different input setpoints lead to different 

1 The implementation of an asymmetric approach is feasible, but requires 
doubling the number of optimization variables in order to associate each model 
parameter θi with two different maximum uncertainties at the boundaries 
(lower and upper). 
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dissolution profiles). This implies that an analytical method has been 
developed and calibrated for dissolution testing of the considered 
API, such as high-performance chromatography (HPLC) or ultravi-
olet (UV) spectroscopy. 

Based on these assumptions, the only sub-models that are considered 
are (i) the tablet press unit operation, (ii) the tablet disintegration test 
unit, and (iii) the in vitro dissolution test unit. Note that the tablet press 
unit operation is the only sub-system representing a unit operation in the 
manufacturing line. The other sub-systems concern experimental tests 
for the assessment of product CQAs, and require information from the 
tablet press sub-model, i.e., the lubrication extent K in the upstream 
powder blending, and the compaction pressure exerted by the press P, 
which are time-invariant variables. 

The framework is assessed by means of an in silico case study. The 

process is represented by the systems model with parameters at nominal 
values (Table 1) as retrieved from literature (Peppas and Colombo, 
1989; Nassar et al., 2021; Markl et al., 2017). The model is represented 
by the systems model with initial guesses for the parameters as in 
Table 1. Initial parameter guesses are randomly chosen inside a range 
equal to ±50 % their nominal values, and UBs of relative uncertainties ξi 
are set equal to 0.500. This is a clear simplification; however, the in-
formation needed for an exact description of parameters uncertainty is 
rarely available in industrial practice, and an approximate approach is 
often the only possible strategy. If more information is available on the 
actual distribution of parameter uncertainties, more rigorous ap-
proaches could be applied (Schenkendorf et al., 2018). 

Fig. 1. Maximum allowable parameter uncertainty εi,max on θi to satisfy the pre-set tolerance requirement on KMj in presence of a non-monotonic dependence 
between θi and KMj . 

Fig. 2. Sub-steps used in the optimization approach to assess whether the current precision of parameter estimates is sufficient. The dashed box represents the 
optimization procedure presented in this work. 
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4.1. Performance targets 

Three KIs are considered in this study, which correspond to each sub- 
model output: tablet tensile strength (which is predicted by the model 
equations and can be related to tablet hardness, which is often measured 
as part of in-process testing), tablet disintegration time, and API disso-
lution profile. Acceptability requirements on the KIs are defined as fol-
lows (Geremia et al., 2023):  

• we consider an IR tablet, with a target TS of 2 MPa. We set ±0.2 MPa 
as the admissible tolerance with respect to the TS target value (i.e., 
±10 % the target value), which is a typical acceptable specification 
range (Nassar et al., 2021);  

• the target disintegration time is assumed to be 4 min. According to 
the USP <701> (2011) disintegration test specifications, the time 
limit for the IR tablet to completely disintegrate is 5 min; therefore, 
we set ±1 min as the admissible tolerance with respect to the target 
value of the disintegration time;  

• the dissolution profile is monitored through the prediction of the 
percentage label content of the tablet (%LC), where %LC = 100 % 
means that all API within the tablet has dissolved into solution.%LC 

= 80 % at t = 25 min is a possible specification value for an IR tablet; 
however, the actual specification will depend on the specific product. 
We set − 15%LC as the admissible tolerance with respect to the 
target value; no overestimation is accepted for a conservative 
analysis. 

Different workflows can be implemented when the objective is to 
quantify the influence of model parameters on the prediction of the KIs 
of a systems model (Geremia et al., 2023). We will consider: (i) a 
modular approach, in which the KIs of all units are targeted sequentially, 
and model parameters are estimated on a sub-system basis; (ii) a global 
approach, in which the KIs of all units are targeted simultaneously, and 
the parameters of all sub-system models impacting the KIs are consid-
ered at the same time. 

4.2. Computational details 

All activities were performed on an Intel Core I7-11850H CPU@2.50 
GHz processor with 64.0 GB RAM. We used gPROMS v.7.0.7 for all tasks. 
Performance of the optimization routine is the most time-demanding 
step of the entire procedure, and depends on the model complexity 
and on the number of parameters that are considered. The required time 
to perform the optimization step using the modular approach was: (i) 
few seconds for the model for the tablet press unit operation, (ii) few 
minutes for the model for the tablet disintegration test unit, (iii) few 
minutes for the model for the in vitro dissolution test unit. The required 
time to perform the optimization step using the global approach was 
~15 min. Therefore, even if the modular approach consists of more it-
erations than the global one (14 vs. 8), its total computational time is 
shorter (~35 min vs. ~120 min). 

5. Results 

In this section, we discuss the results regarding the parameter impact 
on the fidelity of model predictions by applying the optimization 
approach described in Section 3. 

Results from preliminary model identifiability and parameters 
ranking using Sobol’s global sensitivity analysis (GSA) are summarized 
in Table 2; details on the criteria for identifying the most and least 
influential parameters are reported in Appendix A. 

Fig. 3. Comparison between maximum uncertainty εi,max allowable on parameter θi, and half of its 95% CI: (a) insufficient parameter precision, and (b) sufficient 
parameter precision. 

Table 1 
Nominal and initial guess values of model parameters.  

Parameter Units Nominal Initial guess 

Tablet press unit operation 
a1 MPa 11.04 14.81 
a2 – 1.091 1.433 
asf – 0.463 0.394 
b1 – − 8.202 − 6.287 
b2 – 0.326 0.242 
bsf MPa− 1 2.460 × 10− 2 1.710 × 10− 2 

γ dm− 1 1.211 × 10− 3 7.368 × 10− 4 

Tablet disintegration test unit 
C2 MPa 1.000 × 102 63.00 
C3 MPa 1.000 × 102 1.410 × 102 

ϵ̇ m s− 1 1.000 × 10− 3 1.300 × 10− 3 

n – 0.900 1.019 
SP – 0.524 0.688 

In vitro dissolution test 
unit    
kAPI (m3×kg− 1)

(nAPI) s− 1 2.300 ×
10− 12 

2.996 ×
10− 12 

nAPI – 1.00 0.762  
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5.1. Parameter impact on the fidelity of model predictions 

5.1.1. Modular approach 
All the KIs are targeted sequentially, while model parameters are 

estimated on a unit operation basis. 
We first focus on the model for the tablet press unit operation, where 

the KI of interest is TS. MBDoE (Franceschini and Macchietto, 2008) is 
first performed to organize the experimental campaign to maximize the 
information for the most relevant model parameters (i.e., asf and b1) by 
acting on the operating variables P and K. In this work, we use the 
A-optimal criterion, which minimizes the dimensions of the enclosing 
box around the joint confidence region. Optimal values of design vari-
ables are computed through a SQP optimization. Data of TS are then 
used to estimate all the parameters for the current unit. Estimated values 
of model parameters together with their 95 % CIs and t-values (5 % 
confidence level) – which are used for assessing the precision in their 
estimation – are reported in Table 3. 

To determine whether the current precision of model parameter es-
timates is sufficient to guarantee the fidelity requirements on TS, we 
refer to their corresponding (95 % CIs)/2 and compare the computed 
values with results of the optimization routine, as shown in Table 4. 
Recalling that the stopping criterium is attained if all (95 % CIi)/2 are 
lower than the absolute value of maximum uncertainties εi, max given by 
the optimizer, we observe that the precision of parameter γ is not suf-
ficient. This is quite an interesting result: parameter γ was demonstrated 
to have little influence on the KI (see Appendix A); however, the opti-
mization procedure shows that for the attained precision of the esti-
mates of the most influential parameters, an excessive uncertainty on γ 
would jeopardize quality of model predictions, which are not good 
enough to achieve the desired fidelity. Also, it is important to note that 
the maximum allowable uncertainty (e.g., εγ,max for parameter γ) de-
pends on the attained precision for all other parameters, and cannot be 
set a-priori. To meet the pre-set requirements on TS prediction, the 
iterative cycle of Fig. 2 is repeated; the MBDoE procedure is now per-
formed to maximize the experimental information needed to estimate 
parameter γ. 

Eight iterations are needed to reach the required model fidelity with 
respect to TS prediction, i.e., a total of eight experiments need to be 
performed for the tablet press unit operation. 

Estimated values of model parameters and statistics after the final 

iteration are collected in Table 5, while the successful assessment of the 
fidelity towards the TS prediction is presented in Table 6, where all (95 
%CIi)/2 are lower than the corresponding maximum uncertainties, 
εi, max. Note that higher parameter precision on the most influential 
parameters (i.e., asf , b1) leads to the relaxation of the precision re-
quirements on less influential ones, e.g., parameter γ. Moreover, it can 
be observed that the precision of parameter γ after the final iteration 
does not improve (Table 4 vs. Table 6). This may be due to numerical 
reasons or may suggest that there is some correlation between 
parameters. 

The next unit is the tablet disintegration test, where the KI of interest 
is the disintegration time. According to the general procedure in Fig. 2, 
MBDoE is first performed to organize the experimental campaign in 
order to maximize the information for the most relevant model param-
eters (i.e., n and SP) by acting on the operating variables P and K. 
Disintegration data are, then, used to estimate all the parameters for the 
current unit (Table 7). Results indicate a poor level of precision for 
parameters C2, C3, ϵ̇, and Sp – their t-values are lower than the reference 
value, and the correspondent 95 % CIs exceed ±50% the parameter 
nominal value. 

Results from the estimation activity are compared with the 
maximum uncertainties given by the optimizer (Table 8). It can be first 
read that the computed relative maximum uncertainty for parameters 
C2, C3, and ϵ̇ are equal to the UB, i.e., ξC2 , max = ξC1 , max = ξϵ̇, max = 0.500. 
The result suggests that in this case we do not need their precise esti-
mation to guarantee the pre-set requirements on the prediction of the 
tablet disintegration time, and confirms that full model identifiability 
may be unnecessary for the purpose of achieving high model fidelity, as 
large uncertainty on those parameters (which have been previously 
ranked as having low influence) does not produce large uncertainty on 
the prediction of the KI of interest. Therefore, we can exclude those 
parameters from the assessment of model fidelity, and consider their 
uncertainty to be equal to ±50 % of their current value. Conversely, 
parameters n and SP require higher precision. 

MBDoE is applied to increase the precision of parameters n and SP by 
acting on the design variables K and P. Disintegration time data are then 

Table 2 
Results from preliminary model identifiability and parameters ranking.  

Sub-model Most influential 
parameters 

Less influential 
Parameters 

Tablet press unit operation asf , b1 a2, γ 
Tablet disintegration test unit asf , b1, bsf , n, SP a2, γ, C2, C3, ϵ̇ 
In vitro dissolution test unit asf , b1, bsf , n, SP, kAPI a2, b2, γ, C2, C3, ϵ̇  

Table 3 
Tablet press unit operation. Estimated values of model parameters with their 95 
% CIs and t-values: first iteration.  

Parameter Units Nominal Estimated 95 % CI t-value 

a1 MPa 11.04 11.93 0.210 56.95 
a2 – 1.091 1.449 9.535 ×

10− 2 
15.19 

asf – 0.463 0.413 4.230 ×
10− 3 

97.61 

b1 – − 8.202 − 6.235 0.105 59.66 
b2 – 0.326 0.205 1.758 ×

10− 2 
11.67 

bsf MPa− 1 2.460 ×
10− 2 

1.890 ×
10− 2 

3.891 ×
10− 4 

48.56 

γ dm− 1 1.211 ×
10− 3 

7.365 ×
10− 3 

2.050 ×
10− 4 

3.59      

tref=1.943  

Table 4 
Tablet press unit operation. First estimation-optimization iteration: comparison 
between optimization results and current parameter uncertainties. Parameters 
which do not satisfy the stopping criteria are highlighted in boldface.  

Parameter Units ξi,max [–] εi,max (95 %CIi)/2 

a1 MPa 1.358 × 10− 2 0.162 0.105 
a2 – 6.046 × 10− 2 8.761 × 10− 2 4.768 × 10− 2 

asf – 6.230 × 10− 3 2.573 × 10− 3 2.115 × 10− 3 

b1 – 9.328 × 10− 3 5.816 × 10− 2 5.250 × 10− 2 

b2 – 9.834 × 10− 2 2.016 × 10− 2 8.790 × 10− 3 

bsf MPa− 1 1.363 × 10− 2 2.576 × 10− 4 1.946 × 10− 4 

γ dm− 1 5.536 × 10− 3 4.077 × 10− 5 1.025 × 10− 4  

Table 5 
Tablet press unit operation. Estimated values of model parameters with their 95 
% CIs and t-values: last (eight) iteration.  

Parameter Units Nominal Estimated 95 % CI t-value 

a1 MPa 11.04 11.09 0.179 62.08 
a2 – 1.091 1.088 0.110 9.85 
asf – 0.463 0.455 4.256 ×

10− 3 
1.068 ×
102 

b1 – − 8.202 − 7.961 0.103 59.89 
b2 – 0.326 0.321 1.454 ×

10− 2 
22.11 

bsf MPa− 1 2.460 ×
10− 2 

2.445 ×
10− 2 

3.772 ×
10− 4 

51.03 

γ dm− 1 1.211 ×
10− 3 

1.202 ×
10− 3 

3.118 ×
10− 4 

3.86      

tref=1.895  
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used to estimate all the parameters of the current unit – although C2, C3, 
and ϵ̇ are not impacting model fidelity. Five iterations, i.e., five experi-
ments for the current unit, are necessary to reach the required model 
fidelity with respect to the KI prediction. Results after the final iteration 
are collected in Table 9, from which it is verified that we do not require 
satisfactory statistical precision of parameters C2, C3, and ϵ̇ – the 
correspondent t-values are smaller than the reference, and CIs still 
exceed ±50 % of the values of parameter estimates. 

The successful assessment of the fidelity towards the prediction of 
the tablet disintegration time is reported in Table 10, where (95 %CIs)/2 

of both n and SP are lower than the corresponding maximum un-
certainties. Again, parameters C2, C3, and ϵ̇ are non-influential. 

We finally move to the in vitro dissolution test unit. MBDoE is applied 
to increase the precision of both parameters kAPI and nAPI. Data on API 
dissolution profile are used for the estimation activity; results are re-
ported in Table 11. One single iteration (i.e., one experiment for the 
current unit) is necessary to reach the required model fidelity with 
respect to the KI prediction, as shown in Table 12: (95 %CIs)/2 of both 
nAPI and kAPI are lower than the corresponding maximum uncertainties. 

5.1.2. Global approach 
In the global approach, all KIs are targeted simultaneously, and the 

parameters of all sub-models are considered at the same time. MBDoE is 
first applied to maximize the information of the most influential model 
parameters towards the prediction of all model KIs, i.e., asf , bsf , b1 (tablet 
press sub-model), n, SP (tablet disintegration sub-model), kAPI, and nAPI 
(in vitro dissolution sub-model). Design variables K and P are again used 
in the MBDoE problem. Measured data of TS, disintegration time, and 
API dissolution profile are used to estimate all the parameters of the 
systems model (Table 13). 

To assess whether the current precision of model parameter esti-
mates is sufficient to guarantee the fidelity requirements on all model 
KIs, we compare results of the optimized εi,max with the (95 % CIs)/2. 
Results in Table 14 show that the required tolerance is not met due to 
unsatisfactory precision in parameters γ (sub-model for the tablet press 
unit operation) and n (sub-model for the tablet disintegration test unit). 
Therefore, the iterative cycle of Fig. 2 is repeated; MBDoE procedure is 
performed to maximize the information of parameters γ and n. Design 

Table 6 
Tablet press unit operation. Final estimation-optimization iteration: comparison 
between optimization results and current parameter uncertainties.  

Parameter Units ξi,max [–] εi,max (95 %CIi)/2 

a1 MPa 9.468 × 10− 3 0.105 8.950 × 10− 2 

a2 – 5.076 × 10− 2 5.523 × 10− 2 5.500 × 10− 2 

asf – 4.678 × 10− 3 2.129 × 10− 3 2.128 × 10− 3 

b1 – 8.353 × 10− 3 6.650 × 10− 2 5.150 × 10− 2 

b2 – 2.738 × 10− 2 8.791 × 10− 3 7.270 × 10− 3 

bsf MPa− 1 9.796 × 10− 3 2.395 × 10− 4 1.886 × 10− 4 

γ dm− 1 0.135 1.623 × 10− 4 1.559 × 10− 4  

Table 7 
Tablet disintegration test unit. Estimated values of model parameters with their 
95 % CIs and t-values: first iteration. † = 95 % CI larger than ±50 % the 
parameter nominal value. * = precision is not statistically satisfactory.  

Parameter Units Nominal Estimated 95 % CI t-value 

C2 MPa 1.000 ×
102 

52.23 7.475 ×
105 †

6.987 × 10− 5 

* 
C3 MPa 1.000 ×

102 
99.93 4.195 ×

105†

6.060 × 10− 4 

* 
ϵ̇ m s− 1 1.000 ×

10− 3 
1.480 ×
10− 3 

0.373† 3.969 × 10− 3 

* 
n – 0.900 0.905 0.184 4.92 
SP – 0.524 0.535 0.547† 0.978 *      

tref=1.647  

Table 8 
Tablet disintegration test unit. First estimation-optimization iteration: compar-
ison between optimization results and current parameter uncertainties. ** =
maximum relative uncertainty equal to the upper bound (UB) of the preset range 
of variation. Parameters which do not satisfy the stopping criteria are high-
lighted in boldface.  

Parameter Units ξi,max [–] εi,max (95 %CIi)/2 

C2 ** MPa 0.500 26.12 3.738 × 105 

C3 ** MPa 0.500 49.97 2.098 × 105 

ϵ̇ ** m s− 1 0.500 7.402 × 10− 4 0.187 
n – 1.855 × 10− 2 1.679 × 10− 2 9.200 × 10− 2 

SP – 0.106 5.686 × 10− 2 0.274  

Table 9 
Tablet disintegration test unit. Estimated values of model parameters with their 
95 % CIs and t-values: final iteration. † = 95 % CI larger than ±50 % the 
parameter nominal value. * = precision is not statistically satisfactory.  

Parameter Units Nominal Estimated 95 % CI t-value 

C2 MPa 1.000 ×
102 

88.72 3.895 × 105 

†

2.278 ×
10− 3 * 

C3 MPa 1.000 ×
102 

99.17 2.174 × 103 

†

4.561 ×
10− 2 * 

ϵ̇ m 
s− 1 

1.000 ×
10− 3 

9.835 ×
10− 4 

6.964 ×

10− 2 †

1.412 ×
10− 2 * 

n – 0.900 0.903 3.491 ×

10− 2 
35.86 

SP – 0.524 0.533 0.110 4.853      
tref=1.652  

Table 10 
Tablet disintegration test unit. Final estimation-optimization iteration: com-
parison between optimization results and current parameter uncertainties. ** =
maximum relative uncertainty equal to the upper bound (UB) of the preset range 
of variation.  

Parameter Units ξi,max [–] εi,max (95 %CIi)/2 

C2 ** MPa 0.500 44.36 1.948 × 105 

C3 ** MPa 0.500 49.59 1.087 × 103 

ϵ̇ ** m s− 1 0.500 4.918 × 10− 4 3.482 × 10− 2 

n – 2.111 × 10− 2 1.906 × 10− 2 1.746 × 10− 2 

SP – 0.109 5.848 × 10− 2 5.500 × 10− 2  

Table 11 
In vitro dissolution test unit. Estimated values of model parameters with their 95 
% CIs and t-values: first iteration.  

Parameter Units Nominal Estimated 95 % 
CI 

t-value 

kAPI (m3×kg− 1)
(nAPI) s− 1 2.300 ×

10− 12 
2.226 ×
10− 12 

9.432 
×

10− 16 

2.360 ×
103 

nAPI – 1.00 1.10 1.521 
×

10− 3 

9.538 ×
102      

tref=1.652  

Table 12 
In vitro dissolution test unit. Final estimation-optimization iteration: comparison 
between optimization results and current parameter uncertainties.  

Parameter Units ξi,max [–] εi,max (95 %CIi)/2 

kAPI (m3×kg− 1)
nAPI s− 1 1.870 ×

10− 3 
4.163 ×
10− 15 

4.716 ×
10− 16 

nAPI – 4.951 ×
10− 3 

5.446 × 10− 3 7.605 × 10− 4  
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variables K and P are used in the MBDoE problem. For each iteration, 
three different experiments for the three units need to be simultaneously 
performed. Measured output variables TS, disintegration data, and API 
dissolution profile are used to re-estimate all model parameters. 

Eight iterations are needed to reach the required fidelity of the KIs, i. 
e., eight experimental runs would need to be performed for each unit 
simultaneously, i.e., 24 experiments altogether. Estimated values of 
model parameters after the final iteration are reported in Table 15, 

Table 13 
Global approach focusing on all KIs simultaneously. Estimated values of model parameters with their 95 % CIs and t-values: first iteration. † = 95 % CI larger than ±50 
% the parameter nominal value. * = precision is not statistically satisfactory.  

Parameter Units Nominal Estimated 95 % CI t-value 

a1 MPa 11.04 11.94 0.214 38.95 
a2 – 1.091 1.120 0.119 9.45 
asf – 0.463 0.453 3.524 × 10− 3 1.285 × 102 

b1 – − 8.202 − 7.862 0.105 56.87 
b2 – 0.326 0.314 1.596 × 10− 2 19.66 
bsf MPa− 1 2.460 × 10− 2 2.416 × 10− 2 3.878 × 10− 4 62.30 
γ dm− 1 1.211 × 10− 3 7.649 × 10− 4 3.124 × 10− 4 3.57      

tref=1.943 
C2 MPa 1.000 × 102 66.06 2.462 × 105 † 2.683 × 10− 4 * 
C3 MPa 1.000 × 102 1.071 × 102 5.712 × 104 † 1.874 × 10− 3 * 
ϵ̇ m s− 1 1.000 × 10− 3 1.451 × 10− 3 4.548 × 10− 2 † 3.189 × 10− 2 * 
n – 0.900 0.901 6.649 × 10− 2 13.54 
SP – 0.524 0.538 0.102 5.29      

tref=1.686 
kAPI (m3×kg− 1)

nAPI s− 1 2.300 × 10− 12 2.247 × 10− 12 9.512 × 10− 16 2.362 × 103 

nAPI – 1.00 1.07 1.152 × 10− 3 9.281 × 102      

tref=1.652  

Table 14 
Global approach focusing on all KIs simultaneously. First estimation-optimization iteration: comparison between optimization results and current parameter un-
certainties. ** = maximum relative uncertainty equal to the upper bound (UB) of the preset range of variation. Parameters which do not satisfy the stopping criteria are 
highlighted in boldface.  

Parameter Units ξi,max [–] εi,max (95 %CIi)/2 

a1 MPa 1.189 × 10− 2 0.142 0.107 
a2 – 7.601 × 10− 2 8.513 × 10− 2 5.950 × 10− 2 

asf – 5.709 × 10− 3 2.586 × 10− 3 1.762 × 10− 3 

b1 – 9.866 × 10− 3 7.757 × 10− 2 5.250 × 10− 2 

b2 – 4.516 × 10− 2 1.418 × 10− 2 7.980 × 10− 3 

bsf MPa− 1 8.647 × 10− 2 2.089 × 10− 4 1.939 × 10− 4 

γ dm− 1 7.968 × 10− 2 6.095 × 10− 5 1.562 × 10− 4      

C2** MPa 0.500 33.03 1.231 × 105 

C3** MPa 0.500 53.54 2.856 × 104 

ϵ̇** m s− 1 0.500 7.253 × 10− 4 2.274 × 10− 2 

n – 2.102 × 10− 2 1.894 × 10− 2 3.325 × 10− 2 

SP – 0.118 6.334 × 10− 2 5.100 × 10− 2      

kAPI (m3×kg− 1)
nAPI s− 1 1.853 × 10− 3 4.163 × 10− 15 4.756 × 10− 16 

nAPI – 4.982 × 10− 3 5.331 × 10− 3 5.760 × 10− 4  

Table 15 
Global approach focusing on all KIs simultaneously. Estimated values of model parameters with their 95 % CIs and t-values: last iteration. † = 95 % CI larger than ±50 
% the parameter nominal value. * = precision is not statistically satisfactory.  

Parameter Units Nominal Estimated 95 % CI t-value 

a1 MPa 11.04 11.05 0.161 82.74 
a2 – 1.091 1.078 8.811 × 10− 2 12.23 
asf – 0.463 0.457 3.332 × 10− 3 1.370 × 102 

b1 – − 8.202 − 8.097 0.108 74.68 
b2 – 0.326 0.326 1.023 × 10− 2 31.82 
bsf MPa− 1 2.460 × 10− 2 2.494 × 10− 2 3.772 × 10− 4 66.11 
γ dm− 1 1.211 × 10− 3 1.210 × 10− 3 1.172 × 10− 4 10.32      

tref=1.812 
C2 MPa 1.000 × 102 88.13 4.542 × 104 † 1.940 × 10− 3 * 
C3 MPa 1.000 × 102 1.406 × 102 6.918 × 103 † 2.032 × 10− 2 * 
ϵ̇ m s− 1 1.000 × 10− 3 9.075 × 10− 4 3.190 × 10− 2 † 2.884 × 10− 2 * 
n – 0.900 0.900 1.849 × 10− 2 48.67 
SP – 0.524 0.538 5.852 × 10− 2 9.20      

tref=1.664 
kAPI (m3×kg− 1)

nAPI s− 1 2.300 × 10− 12 2.278 × 10− 12 8.941 × 10− 16 3.923 × 103 

nAPI – 1.00 1.07 1.003 × 10− 3 9.993 × 102      

tref=1.521  
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together with their 95 % CIs and t-values. Observations regarding esti-
mated values of model parameters and their precision are similar to the 
case discussed in Section 5.1.1. The final iteration is presented in 
Table 16, where all (95 % CIi)/2 are lower than the corresponding 
maximum uncertainties, εi, max. 

5.2. Discussion 

The case study demonstrated the effectiveness of the proposed 
approach for systematic evaluation of pharmaceutical process systems 
models. Here are some additional observations: 

• The optimization method presented in this study relies on the orig-
inal mathematical (systems) model without any linearization of the 
relationship between parameters and KIs. The procedure is only 
based on optimization results, and can be implemented easily. 

• The number of experimental runs is equal to that obtained by Ger-
emia et al. (2023) for both modular and global approaches; this 
shows that the linearization introduced in the methodology proposed 
by Geremia et al. (2023) did not affect the results for the case study 
being investigated. The modular approach is more efficient than the 
global one as the total number of experimental runs that are needed 
to attain the required fidelity on model KIs is less (14 vs. 24) – 
however, no clear rule could be postulated, and the selection of the 
best strategy should be done on a case by case basis. Also note that 
the modular approach relies on the assumption that the parametric 
precision attained on a previous unit does not need to be improved in 
order to satisfy the KI fidelity targets that are required in subsequent 
units; this may not be true and therefore the global approach rep-
resents a more general procedure. 

• In case a large number of parameters need considering, the optimi-
zation problem discussed in this work may lead to numerical issues, 
long computational times, and results based on local rather than 
global optimality. The choice of the most effective optimization 
approach, which is beyond the scope of this work, may be crucial to 
find a solution.  

• The presented methodology relies on the assumption that the only 
mismatch between model and process depends on the parameter 
values (parametric mismatch); no structural mismatch has been 
considered. Moreover, we did not account for measurement noise or 
bias, which are typically encountered in a real-industrial environ-
ment. Accounting for these aspects may impact the capability of 
reducing parameter uncertainties up to the point that the preset fi-
delity may not be possible to attain. How structural mismatch and 
process noise/wrong measurements can be handled effectively is 
subject of further investigation. 

• Uniform parameter distribution is assumed for the given optimiza-
tion problem. Furthermore, the effect of parameter correlation on 

uncertainty representation is not accounted for. However, if suffi-
cient information is available more rigorous methods should be 
considered to characterize the regions of parameter uncertainty (e.g., 
Schenkendorf et al. 2018) and a different approach to optimization 
may be needed (for instance, a stochastic optimization formulation 
could be more effective to solve the problem). 

6. Conclusions 

Our study supports the use of standardized approaches for model 
evaluation, and aims at enhancing the systematic use of quantitative 
models for pharmaceutical process development, optimization, and 
decision-making. The proposed methodology is based on an optimiza-
tion framework, and allows the assessment of fidelity in model pre-
dictions by directly tackling uncertainty in model parameters. It can be 
exploited to ensure pre-set requirements on parameters towards model 
KIs in an explicit way. 

Results demonstrate the effectiveness of the method and its consis-
tency when compared to the evaluation framework presented by Ger-
emia et al. (2023). One clear advantage is that no simplification (i.e., 
linearization of the relationship between model parameters and pre-
dicted outputs) is introduced in the model structure. 

Future work will aim at testing the procedure experimentally, and at 
investigating model-process structural mismatch thoroughly. The effect 
of higher uncertainty in initial values of model parameters should also 
be further analyzed. 
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Table 16 
Global approach focusing on all KIs simultaneously. Final estimation-optimization iteration: comparison between optimization results and current parameter un-
certainties. ** = maximum relative uncertainty equal to the upper bound (UB) of the preset range of variation.  

Parameter Units ξi,max [–] εi,max (95 %CIi)/2 

a1 MPa 1.357 × 10− 2 0.150 8.050 × 10− 2 

a2 – 8.114 × 10− 2 8.747 × 10− 2 4.406 × 10− 2 

asf – 6.217 × 10− 3 2.841 × 10− 3 1.666 × 10− 3 

b1 – 1.059 × 10− 2 8.581 × 10− 2 5.400 × 10− 2 

b2 – 4.184 × 10− 2 1.364 × 10− 2 5.115 × 10− 3 

bsf MPa− 1 1.376 × 10− 2 3.432 × 10− 4 1.886 × 10− 4 

γ dm− 1 5.721 × 10− 2 6.408 × 10− 5 5.860 × 10− 5 

C2** MPa 0.500 44.07 2.271 × 104 

C3** MPa 0.500 70.32 3.459 × 103 

ϵ̇** m s− 1 0.500 4.538 × 10− 4 1.595 × 10− 2 

n – 2.101 × 10− 2 1.891 × 10− 2 9.245 × 10− 3 

SP – 0.118 6.345 × 10− 2 2.926 × 10− 3 

kAPI (m3×kg− 1)
nAPI s− 1 1.894 × 10− 3 4.314 × 10− 15 4.471 × 10− 16 

nAPI – 4.887 × 10− 3 5.229 × 10− 3 5.015 × 10− 4  
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Appendix A 

In this work, we rely on variance-based Sobol’s global sensitivity analysis (GSA) (Sobol, 1993) to study how the variance of one model output of 
interest depends on the input parameters that are affected by uncertainty. 

For a generic KI of sub-model Mj, KMj = hMj (θ), the finite variance decomposition is computed as: 

KMj (θ) = KMj , 0 +
∑Nθ

i=1
KMj , i(θi) +

∑

1<i<t<Nθ

KMj , it
(
θi, θj

)
+ … + KMj , 12

(
θ1, …, θNθ

)
, (A.1)  

where Nθ indicates the number of model parameters, and the partial functions are: 

KMj , 0 = E
(
KMj

)
, (A.2)  

KMj , p
(
θp
)
= Eθ∼p

(
KMj |θp

)
−

∑

s ⊂ p
KMj , s − KMj , 0, (A.3)  

with E(⋅) denoting the expectation operation, while ∼ p indicating the complementary subset of p. 
The orthogonal property of the function decomposition (i.e., 

∫
KMj , p(θp)KMj , v(θv)KMj , θ(θ)dθ = 0 with p ∕= v, p and v different subsets) allows to 

express the variance of the KI of interest V(KMj ) as: 

V
(
KMj

)
=

∑n

i = 1
Vi +

∑

1<i<t<Nθ

Vit + ... + V12..Nθ , (A.4)  

with 

Vp = Vθp

(
Eθ∼p

(
KMj

⃒
⃒θp
))

−
∑

s ⊂ p
Vs . (A.5) 

Vi, Vit, …, V123… Nθ are partial variances which describe the parameters effect on the variance of the response. 
According to Homma and Saltelli (1996), results from Sobol’s GSA can be collected in two different metrics, i.e., the first-order effect index Si, and 

the total effect index Si, TOT. The first-order effect index, Si, represents the direct effect contribution of each parameter i to the variance of the output: 
the higher Si value, the higher the influence of the ith parameter on the output. The total effect index, Si, TOT, accounts for the total contribution to the 
output variance of the ith parameter including both its individual contribution and all higher-order effects due to interactions with other factors. 

With respect to the KI of interest, KMj , they are defined as: 

Si =
Vθi

(
Eθ∼i

(
KMj

⃒
⃒θi
))

V
(
KMj

) , (A.6)  

Si,TOT = 1 −
Vθ∼i

(
Eθi

(
KMj

⃒
⃒θ∼i
))

V
(
KMj

) . (A.7) 

Sobol’s GSA is applied to assess the impact of model parameters on the prediction of model KIs, i.e., TS, disintegration time, and %LC attained in 
25 min. Uniform distributions for the model parameters are assumed. Bounds are chosen assuming initial parameter uncertainties equal to ±50 % of 
their nominal values that are reported in Table 1. Control variables u (i.e., the tablet press model inputs P and K, which are time-invariant operating 
conditions) are fixed so that the predicted KIs based on initial parameter values are equal to the targets (i.e., P = 200 MPa and K = 990 dm). Results 
are reported in Table A.1 (tablet press unit), Table A.2 (tablet disintegration test unit), and Table A.3 (in vitro dissolution test unit). 

Ranking of model parameters is coherent with results obtained adopting the procedure proposed by Geremia et al. (2023), where a methodology 
based on principal component analysis was implemented.  

Table A.1 
Sobol’s sensitivity indices for the parameters of the direct compression systems model with respect 
to the tensile strength. The most influential model parameters are in boldface.  

Parameter Units Si Si, TOT 

a1 MPa 3.309 × 10− 2 4.471 × 10− 2 

a2 – 9.319 × 10− 3 1.004 × 10− 2 

asf – 0.589 0.630 
b1 – 0.156 0.177 
b2 – 7.126 × 10− 2 9.631 × 10− 2 

bsf MPa− 1 8.124 × 10− 2 9.297 × 10− 2 

γ dm− 1 8.805 × 10− 3 9.628 × 10− 3   
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Table A.2 
Sobol’s sensitivity indices for the parameters of the direct compression systems model with respect to 
the disintegration time. The most influential model parameters are in boldface.  

Parameter Units Si Si, TOT 

a1 MPa 4.767 × 10− 4 1.925 × 10− 2 

a2 − 3.762 × 10− 4 5.478 × 10− 3 

asf − 8.425 × 10¡2 0.286 
b1 − 1.562 × 10¡3 5.431 × 10¡2 

b2 − 1.273 × 10− 4 1.634 × 10− 2 

bsf MPa− 1 2.245 × 10¡2 0.139 
γ dm− 1 2.332 × 10− 4 2.695 × 10− 4 

C2 MPa 2.815 × 10− 4 3.992 × 10− 3 

C3 MPa 2.209 × 10− 4 3.731 × 10− 3 

ϵ̇ m s− 1 3.603 × 10− 4 5.042 × 10− 4 

n − 0.641 0.881 
Sp − 1.312 × 10¡2 0.101   

Table A.3 
Sobol’s sensitivity indices for the parameters of the direct compression systems model with respect to the %LC 
attained in 25 min. The most influential model parameters are in boldface.  

Parameter Units Si Si, TOT 

a1 MPa 7.248 × 10− 3 9.525 × 10− 3 

a2 − 1.492 × 10− 3 1.893 × 10− 3 

asf − 3.253 × 10¡2 4.558 × 10¡2 

b1 − 1.127 × 10¡2 1.687 × 10¡2 

b2 − 5.504 × 10− 3 5.594 × 10− 4 

bsf MPa− 1 2.042 × 10¡2 3.774 × 10¡2 

γ dm− 1 4.320 × 10− 3 6.111 × 10− 3 

C2 MPa 4.201 × 10− 4 4.462 × 10− 4 

C3 MPa 2.677 × 10− 4 3.302 × 10− 4 

ϵ̇ m s− 1 1.785 × 10− 4 3.797 × 10− 4 

n − 0.529 0.678 
Sp − 2.220 × 10¡2 8.327 × 10¡2 

kAPI (m3×kg− 1)
nAPI s− 1 0.275 0.353 

nAPI − 1.165 × 10− 2 1.333 × 10− 2  

Appendix B 

Here we report the full set of equations of the direct compression (DC) systems model presented in Geremia et al. (2023). 

B.1. Model for the tablet press unit operation 

The model equations of the sub-model for the tablet press unit operation are listed in the following (Nassar et al., 2021). Variables appearing in the 
model equations for the tablet press unit operation are reported in Table B.1. 

sf =
asf
(
1 + bsf P

)

1 + asf bsf P
(B.1)  

TS = TS0((1 − β)+ βexp(− γK)), (B.2)  

TS0 = a1exp(b1(1 − sf )), (B.3)  

β = a2(1 − sf ) + b2 (B.4) 

Seven model parameters associated with the tablet press unit need to be estimated: asf [–], bsf [MPa− 1], γ [dm− 1], a1 [MPa], b1 [–], a2[–], b2 [–].  

Table B.1 
List of process operating variables, model variables, and model parameters to be estimated into the sub-model for 
the tablet press unit operation.   

Symbol Units 

Process operating variables   
Compaction pressure P MPa 
Lubrication extent K dm 
Model variables   
Tensile strength at zero porosity TS0 MPa 
Total fraction of tensile strength that can be lost due to lubrication β −

(continued on next page) 

M. Geremia et al.                                                                                                                                                                                                                               



Computers and Chemical Engineering 181 (2024) 108542

13

Table B.1 (continued )  

Symbol Units 

Model parameters to be estimated   
Extended Kushner parameter a1 MPa 
Extended Kushner parameter a2 −

Kawakita model parameter asf −

Extended Kushner parameter b1 −

Extended Kushner parameter b2 −

Kawakita model parameter bsf MPa− 1 

Lubrication rate constant γ dm− 1  

B.2. Model for the tablet disintegration test unit 

The model equations of the sub-model for the tablet disintegration test unit are listed in the following (Geremia et al., 2023). Variables appearing in 
the model equations for the tablet disintegration test unit are reported in Table B.2. 

Vc = (Hcoat − ε̇t)At, (B.5)  

dPd

dt
=

(
P

FL/At

)n(Tt/2 − Pd)/Tt/2
[

d2
hε

Spτ2
orμPd

]

pc, (B.6)  

τ = − TS + C2wl + C3
̅̅̅̅̅
wl

√
. (B.7)  

τ =

G0exp
(

− Eε
1− ε

)

λt

Tt/2
(B.8) 

Five model parameters associated with the disintegration test unit need to be estimated: C2 [MPa], C3 [MPa], ϵ̇ [m s− 1], n [–], Sp [–].  

Table B.2 
List of process operating variables, model variables, and model parameters to be 
estimated into the sub-model for the tablet disintegration test unit.   

Symbol Units 

Process operating variables   
Compaction pressure P MPa 
Model variables   
Coating volume Vc m3 

Thickness of the coating layer Hcoat m 
Time t s 
Tablet surface area At m2 

Water penetration depth Pd m 
Tablet hydraulic diameter dh m 
Average tablet tortuosity τor – 
Half tablet thickness Tt/2 m 
Average porosity of the swollen tablet ε – 
Total stress τ MPa 
Liquid content in the tablet wl – 
Swelling rate λ s− 1 

Elastic constant G0 MPa 
Elastic constant E – 
Liquid viscosity μ Pa s 
Capillary pressure pc Pa 
Model parameters to be estimated   
Peppas and Colombo parameter C2 MPa 
Peppas and Colombo parameter C3 MPa 
Erosion rate ϵ̇ m s− 1 

Swelling parameter n – 
Pore shape factor SP –  

B.3. Model for the in vitro dissolution test unit 

The model equations of the sub-model for the in vitro dissolution test unit are listed in the following (Bano et al., 2022; Geremia et al., 2023). 
Variables in the model equations for the in vitro dissolution test unit are reported in Table B.3. 

∂NAPI

∂t
= BAPIδ

(
l − l0, API

)
+ RAPI,l

∂NAPI

∂l
, (B.9)  

BAPI =
1
ρp

(
xAPI

ϕl3
0,API

)
dMt

dt
, (B.10) 
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RAPI,l = kAPI(csat − cAPI)
nAPI , (B.11)  

%LC = 100
cAPIVm

xAPIMt,0
. (B.12) 

Two model parameters need to be estimated for the in vitro tablet dissolution test unit: kAPI [(m3×kg− 1)
nAPI s− 1], and nAPI [–].  

Table B.3 
List of model variables and model parameters to be estimated into the sub-model for the in vitro 
dissolution test unit.   

Symbol Units 

Model variables   
Rate of release of API BAPI s− 1 

Particle size l m 
Particle dissolution coefficient RAPI,l m s− 1 

Dirac delta function δ – 
Mass fraction of API xAPI – 
Tablet mass Mt kg 
API bulk concentration cAPI kg m− 3 

Percentage of label content %LC – 
Initial mass of the tablet Mt,0 kg 
Liquid volume in the test vessel Vm m3 

Density of particles ρp kg m− 3 

Shape of particles ϕ – 
Particle size at the beginning l0, API m 
API saturation concentration csat kg m− 3    

Model parameters to be estimated   
Mass transfer coefficient of API kAPI (m3×kg− 1)

nAPI s− 1 

Order of dissolution nAPI –  
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