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Abstract— The integration of electric motors into various
industrial and automotive applications emphasizes the critical
necessity for reliable performance and operational efficiency.
The advent of advanced digital technologies offers opportuni-
ties for predictive maintenance strategies. Digital twins (DTs),
mathematical models simulating a system’s physical behavior
in real-time, present a transformative approach to enhance
real-time monitoring of critical quantities, which is imperative to
improve operational efficiency and minimize downtime. In this
article, we explore the feasibility and efficacy of deploying real-
time physics-based DTs for condition monitoring in electric
motor applications. Particularly, we focus on employing on-the-
edge DTs, implemented on low-power on-board microprocessors,
ensuring continuous communication with the physical asset for
reliable real-time monitoring. The study applies DT technology
to a high-voltage high-density electric vehicle (EV) motor, assess-
ing its predictive capabilities in a real-world scenario. Results
showcase the potential of DTs in revolutionizing condition moni-
toring, thereby meeting the evolving operational and maintenance
requirements of contemporary electric motor systems.

Index Terms— Automotive, digital twin (DT), electric motors,
electric vehicle (EV), fault detection, predictive maintenance, real
time.

I. INTRODUCTION

THE increasing integration of electric motors in vari-
ous industrial and automotive applications underscores

the critical need for reliable performance and operational
efficiency. As electric motors become pivotal components
in modern systems, ensuring their continuous operation
while minimizing downtime due to faults has emerged as a
paramount concern [1], [2], [3], [4].

In traditional approaches, fault detection and diagnosis
in electric motors have predominantly relied on postfault
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analysis or rudimentary monitoring techniques, often leading
to reactive maintenance practices and unexpected downtime.
However, with the advent of advanced digital technologies
and the growing demand for predictive maintenance strategies,
there arises an opportunity to revolutionize the way we monitor
and manage electric motors [5], [6].

The evolution of electric motor applications demands a
paradigm shift in operational and maintenance strategies
to meet contemporary requirements efficiently. Conventional
approaches in material research and hardware design, although
effective to a certain extent, are no longer adequate in address-
ing the evolving operation and maintenance (O&M) needs of
electric motor systems. The prevailing industrial practice often
involves overengineering components and collecting extensive
data, resulting in unsustainable costs and diminished profit
margins [7].

Amidst these challenges, the emergence of digital twins
(DTs), characterized as mathematical models capable of
real-time simulation of a system’s physical behavior, presents
a promising solution to revolutionize condition monitoring and
fault detection in electric motor systems [8], [9]. Analogous
to their application in power electronics [10], [11], DTs offer
a transformative approach to enhancing operational efficiency
and minimizing downtime by enabling proactive maintenance
strategies [12], [13]. The concept involves creating a virtual
model of the electric motor physical attributes and operational
characteristics within the motor control unit (MCU). This
DT emulates the motor behavior under various operating
conditions and load scenarios in real time [2].

The significance of such a digital replica lies not only in its
ability to accurately simulate the motor performance but also
in its integration with sophisticated condition monitoring and
fault detection algorithms. By placing virtual sensors at critical
points within the motor, including rotor magnets, windings,
and bearings, the DT enables continuous monitoring of key
parameters indicative of impending faults or performance
degradation [1], [14].

One of the primary areas where DT technology can revo-
lutionize electric motor applications lies in thermal manage-
ment [15], [16], [17]. Temperature, particularly within critical
components, such as rotor magnets, windings, and bearings,
significantly influences motor performance, safety, and lifes-
pan. However, traditional thermal management techniques
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often rely on sensors placed away from the crucial com-
ponents, leading to latency and imprecise observations of
temperature dynamics [18].

Moreover, the state of the art, which is characterized by
oversensing, thermal network models with poor resolution
for real-time execution, and oversized control safety margins,
cannot meet the current market demand for high power
density applications, particularly prevalent in the automotive
sector [19], [20]. The reliance on these outdated methodologies
hampers the ability to achieve optimal performance and effi-
ciency, limiting the competitiveness of electric motor systems
in the rapidly evolving automotive market.

In this article, we aim to analyze the feasibility and efficacy
of deploying real-time physics-based digital replicas for con-
dition monitoring. In contrast to the prevailing approach found
in most existing literature, which utilizes in-cloud DTs, this
article focuses on employing on-the-edge DTs [1], [9]. In this
article, DTs are implemented on the low-power MCU already
available on-board. This approach ensures the continuous com-
munication of the DT with its corresponding physical asset,
a crucial aspect when monitoring critical quantities in real
time. This shift in methodology holds significant importance as
it guarantees reliable and uninterrupted data exchange between
the DT and its associated physical asset, enhancing the efficacy
of real-time monitoring processes.

The remainder of this article is organized as follows.
In Section II, the problem is discussed, and in Section III,
the high power density EV motor is described, along with
the test bench adopted for the experiments. Section IV pro-
vides a thorough description of the DT generation workflow,
beginning with the construction of the finite element method
(FEM)-based high fidelity model and its augmentation with
state observers. Then, in Section V, emphasis is placed on
avoiding the drift of the DT w.r.t. the manufactured physical
asset by augmenting the physics-based model with data-
driven artificial intelligence (AI)-based approaches. Finally,
Section VI presents and discusses the results of the developed
on-the-edge DT in terms of accuracy and computational cost,
while conclusion is drawn in Section VII.

II. PROBLEM STATEMENT

The relentless pursuit of higher power densities and cost
reductions in electric motor design to meet the ever-growing
demand presents a formidable challenge: the complexity of
thermal management. Overheating emerges as a critical issue,
often leading to electric motor failures. Such overheating can
stem from various factors, including insufficient cooling sys-
tems, elevated ambient temperatures, or prolonged operation
under heavy loads. This thermal stress not only compromises
the immediate performance of rare earth elements, resulting
in significant efficiency loss over time but also accelerates the
degradation of crucial component materials like the insulation
film, potentially leading to short circuits or other electrical
faults within the motor [21].

In addition, age and wear are inevitable factors in elec-
tromechanical devices, with high-voltage electric motors
experiencing gradual performance decline over time [22].

Fig. 1. EV motor rendering and sensor locations.

Addressing these challenges necessitates advancements in
control systems and temperature monitoring techniques. How-
ever, current state-of-the-art approaches rely on physical
sensors that cannot be feasibly implemented in critical areas,
such as rotor magnets and bearings. Moreover, existing
temperature estimation methods, typically based on ther-
mal network models, lack the spatial resolution necessary
for components with complicated thermal behavior. Incor-
porating nonlinearities, uncertainties in boundary conditions,
time-varying parameters, and thermal exchange with fluids
into thermal networks presents significant challenges. Indeed,
although it is possible to add equivalent parameters in thermal
networks, doing so while maintaining a coherent physical
interpretation without resorting to a multiphysics model is
particularly complex, especially in contexts such as liquid
cooling systems for automotive motors [23].

The implementation of DT technology emerges as a promis-
ing solution to tackle these complex challenges. In this
study, it has been applied this cutting-edge technology to a
high-voltage electric vehicle (EV) motor. Utilizing a special-
ized prototype sample and test bench setup, we have rigorously
assessed the performance of the DT. The aim is to demonstrate
its predictive capabilities in a real-world scenario.

III. TEST BENCH AND EV MOTOR PROTOTYPE SAMPLE

To objectively and experimentally validate the methodology
applied to the electric motor case, it was necessary to develop
a special prototype of a sensorized motor with thermocouples
integrated into the rotor at various depths. Specifically, the
rotor was axially and radially drilled, and the thermocouples
were located on the internal magnets, in the rotor iron core, and
on the shaft. A wireless transducer was designed and attached
to the shaft to acquire the measurements. It collects and trans-
fers the real-time data required for model validation. Other
thermocouples were attached to the stator iron, the casing,
the windings, and the two stator end windings. In Fig. 1, the
positioning of four specific thermocouples can be observed:
two are in the end-windings, one is in the magnets, and one
is in the rotor iron. The test bench is composed in this way
to validate the model over a wide operating range, verifying
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Fig. 2. Test bench provided for the study.

the performance at various speeds, load points in max torque
per ampere (MTPA) and flux weakening (FW), and different
flow rates and coolant temperatures. It consists of the motor
under test, a master motor that can be controlled in torque (in
which case it acts as a brake) or imposes a speed (thus acting
as a motor), a torque meter that measures the torque at the
mechanical coupling between the two motors, two inverters
with separate control, and a cooling circuit regulated by a
chiller that controls the flow rates and temperature of the
coolant (water–glycol mixture) leaving it. In Fig. 2, the test
bench just described can be observed, which was used for all
the tests analyzed subsequently in this article.

IV. TWIN GENERATION WORKFLOW

A. High Fidelity Model

The model of the EV motor has an intrinsically multiphysics
nature since electromagnetic (EM), thermal, and fluid dynamic
effects must be considered to define the overall behavior of
the device. With the final objective of generating an on-the-
edge DT of the device for the real-time monitoring of critical
temperatures, dedicated modeling strategies have been used
to consider these three physics. In the following, these three
models are described.

1) Power Loss Model: As in [24] and [25], an established
approach for analyzing power losses in electrical machines
employs the EM finite element analysis (FEA). This technique
involves creating a detailed 2-D/3-D model that captures the
geometry of the machine stator and rotor pole pair, alongside
an accurate representation of EM material properties. By solv-
ing Maxwell’s equations numerically, it is possible to carry out
multiple EM simulations across the electrical period at differ-
ent rated frequencies, thereby obtaining the field distribution.
Subsequent postprocessing of these EM solutions allows for
the estimation of fundamental losses in the copper windings,
stator iron, rotor iron, and magnets using various numerical

Fig. 3. Schematic losses structure of the EM model.

Fig. 4. Winding losses versus speed at 20 ◦C and 160 ◦C.

methods. These losses can be cataloged across a spectrum of
operating conditions to generate look-up tables (LUTs). The
tables account for variables, such as the amplitude and phase
of current, rotational speed, and temperature across the full
operational range of the electrical machines. Fig. 3 shows the
loss structure developed for this study, while Figs. 4–6 show
the losses related to different speed, temperatures of the copper
windings and permanent magnets, and torque values.

As depicted in Fig. 3, the power loss model consists of a
set of 4-D LUTs that depend on the load angle, the phase
current, the rotational speed, and the average temperature of
the stator, rotor, magnets, and windings. The load angle, phase
current, and rotational speed will serve as inputs for the final
DT model. Meanwhile, the temperatures will be generated by
the DT itself and utilized as feedback for the power loss model.

Concerning the computational cost to extract the LUTs from
EM simulations, they required about 1 h for a single point and
about 2 days of overall computation time.

2) Thermal Model: The thermal model of the EV motor
must be capable of providing the dynamic evolution of the
temperature in the critical points shown in Fig. 1.
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Fig. 5. Total losses computed at 20 ◦C.

Fig. 6. Total losses computed at 160 ◦C.

The inputs of the thermal model are the power losses
obtained from the EM model described in Section IV-A1 and
the velocity field of the coolant provided by the fluid dynamic
model described in Section IV-A3. The thermal model is
described by the following well-known equation, i.e.,

ρcp
∂T
∂t

+ ρcpv · ∇T − ∇ · k∇T = q (1)

where ρ is the density, cp is the heat capacity at constant
pressure, T is the temperature, k is the thermal conductivity,
q is the power density, and v is the velocity field (which is
not zero only in the fluid region). The dependence w.r.t. the
position has been neglected for simplicity. Equation (1) is then
complemented by a convective boundary condition which is
valid on the border of the model (∂�), i.e.,

n · k∇T = h(Text − T ) (2)

where n is the normal versor of the boundary of the motor, h is
the convective coefficient, and Text is the external temperature.

TABLE I
MATERIAL THERMAL PROPERTIES

The cooling conditions (i.e., the flow rate φ and the inlet
temperature Tinlet of the coolant fluid) may change during
the operation of the e-motor. Such dependence should be
considered in the model. However, this would require the fluid
velocity map, v, to be time-varying. Although theoretically
possible, as thoroughly discussed in Section IV-A3, it may
result in a complex model, challenging to integrate on the
edge for real-time execution. Therefore, the advection term
associated with the heat exchange between the EV motor
and the coolant fluid has been removed and replaced with
a time-varying equivalent convective condition, i.e.,

n · k∇T = hfluid(φ)(Tfluid(φ, Tinlet) − T ) (3)

where hfluid is the equivalent heat transfer coefficient which
depends on φ, and Tfluid is the temperature map of the fluid
which depends on φ and Tinlet.

To generate a dynamic numeric model of (1)–(3), FEM is
applied for the discretization. Thus, a computational model
of the EV motor is generated, and a tetrahedral mesh is
constructed (see Fig. 7).

Since the FEM model must be manipulated to apply model
order reduction (MOR) techniques (as will be described in
Section IV-B), a proprietary FEM code has been used. The
model consists of about N = 1.2 × 106 mesh elements. Thus,
the final discretized model can be written as follows:

M
dx
dt

+ (K + H + Hf)x = Qpp + QcText + QfTfluid (4)

where x is the array of nodal temperature of dimension N ,
M is the mass matrix, K is the stiffness matrix, H and Hf
are the stiffness matrices related to the convective boundary
conditions, p is the power loss array of dimension Np storing
the losses (in [W]) for each domain (see Section IV-A1), Qp is
the N × Np matrix which maps p into the rhs of the thermal
model, and Qc and Qf are the array mapping Text and Tfluid,
respectively, into the right-hand side (rhs) of the thermal model
related to the convective boundary conditions.

The values of the material properties (i.e., density, heat
capacity, and thermal conductivity) have been taken from data
sheets and data reported in the literature. Table I shows such
values.

Concerning the thermal model of the air gap, to account
for the effect of the rotation speed on the heat exchange
between stator and rotor through the air gap, as proposed
by several works in the literature [26], an equivalent heat
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Fig. 7. Mesh of the 3-D FEM model. (a) Frontal view and (b) axial view of the motor. (c) 3-D view including the cooling system.

Fig. 8. Temperature distribution on windings and magnets. Values are in
degree celsius.

transfer coefficient (which depends on the rotor speed) can
be introduced, i.e.,

hair gap =
Nu · k

Dh
(5)

where Nu is the Nusselt number, Dh is the hydraulic diame-
ter [26], and k is the thermal conductivity of the air. Then,
since the air gap is considered as a meshed domain in
the thermal model, an equivalent, speed-dependent, thermal
conductivity can be obtained from (5). However, this approach
leads to a parametric model that, although compatible with
the MOR strategies discussed in Section IV-B, would be too
computationally intensive for real-time on-the-edge execution
since one should handle a model with time-varying param-
eters. Therefore, an average value of the equivalent thermal
air-gap conductivity has been selected, and its dependency on
rotational speed is accounted for as discussed in Section V.

Concerning the computational cost, the computation time to
solve (11) at each time step is approximately 5 min by using
an algebraic multigrid solver with tolerance 10−6.

Fig. 8 shows a snapshot (steady-state solution) of the
temperature distribution on windings and magnets for the case
of Calibration Set 2 (48 000:end) (see Table II).

3) Fluid Dynamics: The exchange of heat with the coolant
fluid strongly affects the thermal behavior of the system. When
it comes to modeling this phenomenon within the framework
of electric machines, at least two strategies emerge as viable
options, each with its advantages and limitations.

1) Using computational fluid dynamics (CFD) simulations
to obtain the velocity map v which is then inserted
in (1), resulting in the advection term. This approach
allows for high accuracy and physics realism. However,
solving CFD simulations is computationally complex,
and the insertion of the advection term in (1) make
its solution particularly challenging from the numer-
ical point of view: even fine meshes lead to Peclet
number Pe > 1, which results in large node-to-node
oscillations. To remove such oscillations, standard sta-
bilization techniques (e.g., based on streamline upwind
Petrov–Galerkin (SUPG) [27]) can be adopted.

2) Replacing the fluid with an equivalent convective bound-
ary condition, i.e., (3). At the cost of sacrificing some
physics realism, this solution significantly reduces the
computational complexity of the model.

In this work, since the final model has to be compatible
with on-the-edge implementation and real-time execution,
the second approach was adopted in the final model but a
simulation campaign with CFD simulations based on the first
approach has been conducted to infer hfluid(φ) and Tfluid(φ) to
be used in (3). For the CFD simulations, the k − ω Reynolds-
averaged (RANS) turbulence model (where k is the kinetic
energy and ω is the specific dissipation rate) has been used

ρ
∂k
∂t

+ ρ(v · ∇k) = Pk − ρβ∗kω + ∇ · (µσ ∗µT )∇k

ρ
∂ω

∂t
+ ρ(v · ∇ω) = α

ω

k
Pk − ρβω2

+ ∇ · (µσµT )∇ω.

(6)
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The full definition of symbols in (6) is given in [28]. By solv-
ing (6) for several flow rate conditions (i.e., by varying φ), the
velocity map as a function of the flow rate was obtained i.e.,
v = v(φ).

From the simulation campaign, the following models for
hfluid and Tinlet have been synthesized as a trade-off between
accuracy and computational complexity

hfluid ≈ 9725
(

φ

φnom

)0.65

W/(m2
· K) (7)

Tfluid ≈ Tinlet
◦C (8)

where φnom is the nominal flow rate. To avoid dealing with a
model with time-varying parameters, (7) has been replaced
with an average value, i.e., hfluid = 9725 W/(m2K), this
introduces an approximation that is treated in Section IV-C.

Concerning the computational cost, the number of DoFs was
about 106 and the computation time required to solve the CFD
problem was about 3 h.

B. Model Order Reduction

The primary feature distinguishing a DT from a high-fidelity
model lies in its ability to be deployed either in the cloud or
on-edge hardware, facilitating real-time or even faster than
real-time execution. This enables a seamless data exchange
between the physical asset and its corresponding DT. In this
article, the DT is specifically designed for real-time monitoring
of critical parameters. Relying solely on in-cloud implemen-
tations may prove unreliable due to inevitable communication
delays. However, recent advancements in microprocessor tech-
nology offer a solution through on-chip DTs, where digital
replicas are directly integrated into the available hardware on
board.

Obviously, due to its large dimension, the high-fidelity ther-
mal model described in Section IV-A is not directly compatible
with the on-chip implementation. To solve this problem, MOR
techniques can be used [29], [30].

For the real-time monitoring of critical temperatures, the
FEM thermal model, i.e., (4), must be solved in real-time.
Thus, its dimension must be significantly reduced to allow
on-chip implementation. To do that, MOR strategies based
on, e.g., balanced truncation, moment matching, or proper
orthogonal decomposition can be used. The interested reader
is referred to, see [31] for more details about different MOR
strategies, which can be applied to both continuous and
discrete models. Regardless of the adopted technique, MOR
allows for projecting the original full order model (FOM) (4)
into a reduced order space, i.e.,

Ê
dx̂
dt

= Âx̂ + B̂u

y = Ĉx̂ (9)

where Ê, Â, B̂, and Ĉ have been obtained by writing (4) in
(descriptor) state space form and then projecting the corre-
sponding FOM matrices into the reduced order space. In (9),
x̂ is the reduced order state, i.e., x ≈ Vx̂, where V is the
projection basis function constructed by the adopted MOR
strategy. The projection matrix V has dimension N × Nr ,

where Nr is the dimension of the reduced order space and
Nr ≪ N . y is instead the vector that stores the temperature of
interest. Since V has in general a limited number of columns
(i.e., a small reduced order space is sufficient to accurately
represent the dynamic of the quantity of interest stored in y),
the computational cost of solving the reduced order model
(ROM) (9) is much smaller than the one required to solve the
FOM, making it compatible with on-the-edge implementation.
The ROM of the EV motor has been constructed by using
moment matching techniques [32], [33], leading to a ROM of
dimension Nr = 22.

Finally, (9) is discretized in time by applying a backward
Euler scheme and it is written in (descriptor) state space form,
i.e.,

Êdxk = Âdxk−1 + B̂duk−1

yk = Ĉdx̂k (10)

where d indicates that the matrices are the ones of the model
discretized in time and k indicates the time instant t = k1t ,
with k = 0, . . . , NT , and 1t = 100 ms.

It is worth noting that more advanced time-stepping tech-
niques may be applied to discretize (9). However, advanced
time-stepping techniques may not be compatible with the
final on-chip implementation of the DT. The backward Euler
scheme is instead simple enough to be implemented in a
standard microprocessor and, by choosing a small enough
value of 1t , a good level of accuracy can be guaranteed.

C. State Observer

One of the key features of the DT is its real-time imple-
mentation. This allows the model to interact bidirectionally
with the actual device through measurements from real sensors
Tmeas implemented in the system (i.e., T winding B in Fig. 1)
and control actions from the electric drive implemented in
the MCU. This enables the implementation of state-space
observers such as the Kalman filter, moving horizon estimator,
and particle filter, which are tasked with mitigating model
uncertainties based on a priori information about the confi-
dence given to both the model itself and the measurement
system [2], [34].

In the specific case of the EV motor under test, an aug-
mented Kalman filter (AKF) was applied to the system in the
form of discrete reduced state space. Specifically, the reduced
state was augmented with one new state variable: the inlet
temperature Tinlet of the coolant fluid. The reason for this
choice is primarily due to the prior information that this vari-
able is time-varying in the real system, and its measurement
is generally imprecise or sometimes absent. However, this is
an extremely important input variable for modeling the heat
exchange of the EV motor with the coolant fluid, as presented
in the previous sections. Furthermore, by acting on the value
of Tinlet it is even possible to compensate for uncertainties on
the value of flow rate φ that is also a time-varying quantity.

Therefore, the final augmented state system, which also
integrates the observer to be implemented in real-time, can
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still be rewritten in discrete-time state-space form as follows:

Xk = AaugXk−1 + BaugUk

yk = CaugXk (11)

whereX = [x; Tinlet], U = [u; Tmeas], and Aaug, Baug, and Caug

see [35] for the algebraic manipulations details.

V. FROM MODEL-AS-DESIGNED TO
MODEL-AS-MANUFACTURED

A. Limitations of a Pure Physic-Based as Designed Model

This section serves as one of the cornerstones regarding the
novelty of this research work because the concept of trans-
forming from an as-designed model to an as-manufactured
model is key to completing the definition of a DT [36].
A model, no matter how complex and comprehensive, remains
a simplification and an approximate representation of reality
for the following main reasons in the specific case of the EV
motor under test.

1) Approximated geometry due to the bottleneck of mesh
size.

2) The partial differential equations of heat equation and
Navier–Stokes for the fluid require numerical methods
such as finite elements and finite volumes analysis to be
solved with a certain degree of approximation.

3) The parameters of these equations, i.e., material proper-
ties, are inherently affected by uncertainty.

4) MOR techniques cause approximation and are effective
only for linear or mildly nonlinear problems; hence,
some physical phenomena such as radiation are not
considered in the initial equations.

5) The uncertainty and variability of boundary conditions
make them difficult to model, leading to a significant
source of approximation.

6) Manufacturing errors, e.g., welding and stacking of
stator and rotor stacks, leave the motor unique finger-
print, introducing a degree of uniqueness such that it
is unthinkable to have a single model based solely on
physics capable of accurately representing all samples
of motor production.

7) Aging, wear, and degradation make material property
parameters time-varying, but the temporal evolution
functions to model these effects are unknown.

These inherent complexities highlight the need for a com-
prehensive approach that bridges the gap between the idealized
as-designed model and the reality of the as-manufactured
system, thereby embodying the essence of the DT concept
in addressing the intricacies of real-world electric motor
applications.

The proposed methodology for transforming an as-designed
model into an as-manufactured model is based on the utiliza-
tion of data, coupling a physical model with a data-driven
model capable of mitigating the uncertainties and approxi-
mations just mentioned. This hybrid architecture, combining
physics-based and data-driven approaches, aims to address the
inherent complexities of real-world electric motor systems.
By integrating such models within the MCU, this hybrid
approach becomes the standard for implementing real-time

Fig. 9. Hybrid model architecture (physics-based and AI data-driven-based).

models, providing enhanced accuracy and robustness in mon-
itoring and controlling electric motor systems.

B. Model Architecture

The topology proposed in Fig. 9 to mitigate various sources
of uncertainty and approximation involves the final reduced
model obtained through the procedures described above and
two feed forward neural networks (FFNNs) [37]. The first
FFNN is used to correct potential uncertainties in the model
inputs, such as incorrect distribution of losses in various
domains of the stator, windings, rotor, and magnets, as well as
potential uncertainties in boundary conditions such as external
ambient temperature. Meanwhile, the second FFNN directly
corrects the model output of interest, thus mitigating all those
intrinsic errors of the physics-based model listed from items
1 to 4 in Section V-A. The FFNNs take as input the power
losses generated by the power loss models and the temper-
atures estimated by the state space model. Then, they were
trained from the mean-squared error loss computed against
the measured temperatures and the estimated ones provided
by the DT. It is important to note that the temperature inputs
of the FFNN that acts on the inputs of the state space model
are time-delayed. In essence, this FFNN adjusts the state
space model input by using the DT output from the previous
time step, which is known before the execution of the state
space model. The final model architecture is calibrated using
a substantially reduced experimental dataset, as much of the
system dynamics are already present as intrinsic information
from the physics-based model and do not need to be inferred.
In addition, thanks to the presence of the physics-based model,
the number of layers and the dimensionality of the FFNNs
can be substantially reduced compared with a fully data-driven
approach, thus maintaining a structure and computational com-
plexity suitable for real-time integration on a microcontroller.
The choice of the specific FFNNs is derived after a series of
studies on different architectures, including recurrent neural
networks (RNNs). These models were compared against the
results obtained with unseen data during the validation phase.
Other more complex architectures did not yield significant
performance improvements to justify the increased complex-
ity introduced by those models, in terms of both memory
usage and computation time. Therefore, we decided to use
FFNNs, with the final architecture parameterized as outlined



3294 IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. 11, NO. 1, FEBRUARY 2025

in Section VI, achieving a favorable balance between accuracy
and complexity.

C. Calibration

Training FFNNs involves optimizing model parameters and
selecting methods to enhance predictive performance. Com-
mon techniques include gradient-based optimization such as
stochastic gradient descent (SGD) and Adam algorithm [38],
along with backpropagation for efficient gradient computation.
Regularization methods like L1- and L2-regularization, and
dropout are employed to prevent overfitting. PyTorch and
TensorFlow are prominent libraries for FFNN development.
PyTorch, known for its flexibility and dynamic computa-
tion graph, offers extensive support for model building [39].
TensorFlow, backed by Google Brain, provides a high-level
API and tools for deployment. Keras, integrated into Tensor-
Flow, remains a popular choice for its user-friendly interface.
Training and calibrating FFNNs require careful selection and
application of optimization algorithms, regularization tech-
niques, and appropriate libraries. PyTorch and TensorFlow
stand out as leading frameworks due to their rich features,
active communities, and widespread adoption in both research
and industry.

Concerning the training of the FFNNs, the experimental
dataset has been obtained from the test bench described in
Section III. The dataset comprises a sequence of experiments
performed under several operating conditions. We then split
those experiments into two subsets. The former, with approx-
imately 80% of the available data collected, was used to train
the model. The remaining data were used after the training
to ensure the optimized model could well generalize the
correction needed under different scenarios.

D. Validation

Generalization of the final model architecture is crucial
for ensuring robust and reliable performance in real-world
applications. This is particularly significant when integrating
physics-based models with FFNNs, as it allows the model to
capture underlying physical principles while leveraging the
flexibility of neural networks for complex pattern recognition.
Integrating physics-based models into FFNN architectures
enhances the interpretability and physical plausibility of the
model predictions. By incorporating domain knowledge and
fundamental principles, these models provide constraints that
guide the learning process, promoting better generalization to
unseen data. Maintaining a certain degree of physicality in
the model architecture is essential to prevent overfitting and
increase reliability. Overfitting occurs when the model learns
to memorize training data rather than capturing underlying
patterns, leading to poor generalization. By incorporating
physics-based constraints, the model is less likely to extrap-
olate erroneously and more capable of making accurate
predictions in diverse operating scenarios. To evaluate the
generalization capability of the final model architecture, it is
crucial to test its performance in operating scenarios never
seen during the training phase. This ensures that the model can
effectively extrapolate beyond the training data and provides
confidence in its reliability for real-world applications.

Fig. 10. Execution time measurement.

TABLE II
CONTINUOUS OPERATING CONDITIONS

VI. RESULTS, DISCUSSION, AND ADDED VALUE

In this section, the results obtained from the calibration of
the DT described earlier and the validation tests to demonstrate
its reliability and accuracy are presented. The final DT consists
of the power loss model (i.e., LUTs), the thermal model (a
state space model), the AKF, and the FFNNs. Thus, the inputs
of the power loss model are also the inputs of the final DT, i.e.,
the phase current (amplitude and load angle) and the rotational
speed. Note that the temperatures needed to extract the losses
from the LUTs are generated by the DT itself, thus they are
internal states and outputs of the DT. The thermal sensor
(Tmeas) exploited by the AKF to infer Tinlet is also considered
as input of the DT.

The final state-space model has 22 degrees of freedom
(DoFs), resulting in a state matrix A of size 22 × 22. The
two FFNNs each have 419 parameters, with three intermediate
hidden layers consisting of 8, 12, and 8 neurons, respectively,
and their weight optimization took approximately 2 h con-
sidering both the calibration and validation phase. The entire
model architecture is executed on an STM32-based evaluation
board with an execution time of 256.4 µs, as observed from
the real-time feasibility test depicted in Fig. 10. In Table II,
the different operating points of the various tests are shown.
As can be observed, various conditions were tested in terms of
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Fig. 11. Calibration and validation sets. (a) Calibration Set 1. (b) Calibration Set 2. (c) Calibration Set 3. (d) Validation set.

torque and speed to observe different thermal loads in terms
of absolute value and distribution of losses in the various com-
ponents, e.g., stator, rotor, and windings. The first three sets of
data recorded with the special prototype sample and used in
the calibration phase for the hybrid physics-based-data-driven
model architecture are shown in Fig. 11(a)–(c), respectively.
The post-calibration error is less than 1.5 ◦C across the entire
explored dynamics. A notable difference in dynamics can be
observed between the stator (liquid-cooled with a water–glycol
cooling circuit with a flow rate of 10 L/min and a temperature
of 50 ◦C) and the rotor insulated from air at the air gap, which
has a significantly larger thermal time constant compared

to the stator. The validation test performed and shown in
Fig. 11(d) yields very accurate results, with a maximum error
of 2.5 ◦C across the entire range of tests conducted at a
working point never analyzed during training. This makes the
model extremely reliable throughout the machine’s operational
range, allowing it to be used for control purposes, espe-
cially for managing power derating while considering magnet
temperature faithfully, thereby avoiding local demagnetiza-
tion and minimizing safety margins to maximize machine
functionality.

Another very important case study, especially for automo-
tive applications, is the peak torque tests, crucial for one



3296 IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. 11, NO. 1, FEBRUARY 2025

Fig. 12. Peak torque calibration set. Note that, for the sake of conciseness,
five different tests are reported in this figure.

Fig. 13. Peak torque validation set. Note that, for the sake of conciseness,
only two different tests are reported in this figure.

of the most important key performance indicators (KPIs)
in automotive, namely, acceleration from 0 to 100 km/h.
These stress tests require a high current value on the stator,
operating at predefined Id and Iq working points depending
on the set rotor speed. They are short-duration tests, less
than 100 s, to verify the maximum duration of the peak
torque that the motor can achieve and the consequent thermal
loads it can withstand. Fig. 12 shows the tests used by the
model training algorithm to integrate extreme operating points
and learn their dynamics. In particular, five tests at different
currents and speeds were used during calibration, the details
of the operating conditions of which are reported in Table III.

TABLE III
PEAK TORQUE OPERATING CONDITIONS

Regarding the validation of the model, the operating points of
maximum current were used precisely to verify the reliability
and degree of generalization obtained from the final model
architecture. In Fig. 13, it is possible to observe the real-time
estimation performance obtained, where once again the metric
on the maximum acceptable error (±2.5 ◦C) has been met.
We can especially notice in these tests the difference in stator
and rotor dynamics, suggesting that, especially for random
ON/OFF applications like automotive, without a reliable model
estimating the rotor temperature, the control is completely
blind. This is the main reason why this technology can enhance
the control performance of electric machines, significantly
reducing the overly cautious safety margins previously used
in the state-of-the-art due to concerns about overheating the
rotor and irreversibly compromising the machine’s efficiency.

Finally, it is worth remarking that the online monitoring of
temperature in critical points of the EV motor also unlocks the
possibility of monitoring the remaining useful life (RUL) of
the device. For instance, as described in [22] and [40], the RUL
of the insulation directly depends on the temperature. Thus,
an accurate and continuous knowledge of the temperature can
be used to predict the RUL of the insulation, allowing for
predictive maintenance and preventing faults.

VII. CONCLUSION

This article demonstrates the feasibility and effectiveness of
employing physics-based DTs to monitor critical temperatures
in high-power density EV motors in real time. We extensively
discuss the workflow for generating the physics-based model,
emphasizing efforts to reduce computational complexity with-
out compromising fidelity to enable real-time execution and
on-the-edge implementation. This facilitates seamless data
exchange between the physical asset and its corresponding DT.
We leverage state observers and AI data-driven augmentation
to mitigate DT drifting, ensuring high accuracy during real-
time operation.

Experimental results validate the model accuracy under
realistic conditions, including peak torque tests, where errors
smaller than 2.5 ◦C are achieved. Future research will explore
leveraging DTs to implement advanced and informed control
strategies. Future works will explore different approaches to
construct the DT, such as different MOR strategies, different
schemes to join the physics-based and data-driven models,
and different AI techniques. Moreover, comparison in terms
of accuracy, computational effort, and automatization of the
whole approach will also be carried out in dedicated studies.
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