
Citation: Moro, F.; Codecasa, L. A

Hybrid CM-BEM Formulation for

Solving Large-Scale 3D Eddy-Current

Problems Based onH-Matrices and

Randomized Singular Value

Decomposition for BEM Matrix

Compression. Mathematics 2023, 11,

1324. https://doi.org/10.3390/

math11061324

Academic Editors: Theodore E.

Simos and Charampos Tsitouras

Received: 3 February 2023

Revised: 26 February 2023

Accepted: 1 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Hybrid CM-BEM Formulation for Solving Large-Scale 3D
Eddy-Current Problems Based on H-Matrices and Randomized
Singular Value Decomposition for BEM Matrix Compression
Federico Moro 1,* and Lorenzo Codecasa 2

1 Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, 35131 Padova, Italy
2 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
* Correspondence: federico.moro@unipd.it

Abstract: We present a novel a, v-q hybrid method for solving large-scale time-harmonic eddy-current
problems. This method combines a hybrid unsymmetric formulation based on the cell method and the
boundary element method with a hierarchical matrix-compression technique based on randomized
singular value decomposition. The main advantage is that the memory requirements are strongly
reduced compared to the corresponding hybrid method without matrix compression while retaining
the same robust solution strategy consisting of a simple construction of the preconditioner. In
addition, the matrix-compression accuracy and efficiency are enhanced compared to traditional
compression methods, such as adaptive cross approximation. The numerical results show that the
proposed hybrid approach can also be effectively used to analyze large-scale eddy-current problems
of engineering interest.

Keywords: hybrid method; cell method; boundary element method; eddy currents; matrix compression;
adaptive cross approximation; randomized singular value decomposition; unbounded domain
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1. Introduction

Hybrid methods combining, e.g., the finite element method (FEM) and the boundary
element method (BEM), can be very effective when solving electromagnetic problems since
an air–region mesh is not needed and post-processing is much easier than pure FEM. They
allow for an analytical computation of the magnetic field generated by sources, such as
coils, which can be useful to reduce the model complexity. Moreover, hybrid approaches
avoid the so-called truncation error, which is introduced in standard FEM by the use of an
air domain of finite extent on which boundary conditions are applied. For the discretization
of the magnetostatic problem in the unbounded exterior region, the BEM is used, whereas
for the discretization of the field problem in the interior region, the FEM is typically used.

The cell method (CM), introduced by Tonti in [1], was proposed in [2] as an alternative
to the FEM when devising hybrid formulations. The CM is a numerical method for solving
boundary value problems (BVPs), which offers the following advantages: (1) equations are
formulated directly in algebraic form suitable for numerical computations, (2) the continuity
of tangent and normal field components between finite elements is naturally enforced by
using integral variables (termed degrees of freedom, DOFs); (3) by using piecewise constant
bases, as proposed in [3] for tetrahedral meshes and in [4] for general polyhedral meshes,
the assembly of linear system matrices is completely Jacobian-free with great benefits in
terms of the computation time and ease of implementation.

These peculiarities make the CM suitable for hybrid methods, where the continuity
of field components at the interface between interior and exterior regions is enforced to
couple differential and integral equation methods. Starting from these bases, a CM–BEM
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hybrid method for three-dimensional (3D) magnetostatic problems was proposed in [5].
As a main feature, a final symmetric linear system, amenable to the fast minimal residual
method (MINRES) iterative solution, was obtained. This hybrid method was extended
in [6] to the analysis of 3D time–harmonic electrothermal problems, leading to a final
symmetric (complex valued) linear system, which could be solved by a fast transpose free
quasi-minimal residual (TFQMR) solver. Both hybrid methods were formulated in terms of
a variables (i.e., line integrals of the magnetic vector potential) in the interior region, and
in terms of ϕ variables (i.e., magnetic scalar potentials) in the unbounded exterior region,
yielding the so-called a-ϕ formulation.

Its main advantage is to minimize the number of DOFs used to represent the eddy-
current problem, which is particularly convenient when using the BEM leading to dense
matrices with huge memory occupation. On the other hand, due to the adoption of a scalar
potential as a working variable, numerical analyses were limited to models geometries
with simply-connected domains (e.g., without holes or handles). This limitation was
removed in [7], where the a-ϕ formulation was extended to the most general case of
multiply-connected domains.

More recently, a unified framework for devising hybrid formulations was proposed
in [8]. Based on the concept of an augmented dual grid [9], i.e., a novel geometric setting
for the CM, topological operators were introduced to consistently couple CM and BEM.
This led to hybrid formulations with a final symmetric linear system amenable to fast
TFQMR iterative solution. As a main outcome, direct and indirect hybrid formulations
with comparable numerical performance and accuracy were obtained.

The main limitation to the applicability of hybrid methods to large-scale problems
is represented by the high computation time and memory requirements implied in the
assembly and storage of dense BEM matrices. The efficient treatment of matrices arising,
e.g., from the finite element discretization of integral operators requires special compression
techniques [10]. Among different approaches for matrix compression, the adaptive cross ap-
proximation (ACA) is know to be, by far, the most simple approach, and it is well-behaved
in the low-frequency limit since O(n log n) computational complexity is attained [11].

By using the so-calledH-matrix format, dense BEM matrices are stored in a hierarchical
tree of leaves (i.e., submatrices), where admissible leaves are approximated as low-rank
matrices by using ACA, and inadmissible leaves are stored as they are without compression.
In this way, off-diagonal blocks of a BEM matrix can be dramatically compressed via a
low-rank approximation, and solution methods that scale up to millions of elements can be
obtained.

Most of the papers in the literature concerning the solution of large-scale problems
with dense matrix approximation deal with pure integral equation methods, such as the
volume integral method (VIM) [12], the method of moment (MoM) [13], or the BEM [14],
whereas only a few examples have been reported for hybrid methods. In [15],H-matrices
were used to provide a sparse representation of BEM dense matrices for a hybrid FEM–BEM
approach for large-scale micromagnetic simulations.

In [16], a larger compression ratio was obtained by using hierarchical matrices of
H2 type, i.e., an improved variant of H-matrices exploiting an algebraic recompression
technique. In such a way, test cases with more than one million DOFs were treated with
negligible loss of accuracy compared to the uncompressed hybrid approach, and almost
linear scaling in terms of allocated memory was attained. In [17], a direct FEM–BEM
was combined with aH-matrix-compression technique for the solution of magnetostatic
problems. The final system of non-linear equations was solved by using a preconditioned
generalized minimal residual (GMRES) Krylov subspace method.

To the authors’ knowledge, no hybrid approach to solve large-scale eddy current
problems has been presented to date. This is likely due to the difficulty in finding a good
preconditioner and an efficient iterative solver relying on H-matrix algebra and also in
finding a good compression technique for the BEM double-layer matrix. In particular, the
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a-ϕ direct and indirect formulations proposed in [8] are unsuited for matrix compression
since they are based on matrix inversion to construct the discrete Steklov–Poincaré operator.

The main outcomes of this work are: (i) a novel hybrid formulation suitable for matrix
compression that leads to a final linear system amenable to a fast TFQMR iterative solution
and (ii) a novel H-matrix-compression algorithm based on randomized singular value
decomposition (R-SVD), which is more robust and faster than traditional ACA. The novel
a, v-q hybrid formulation relies on the use of v variables (i.e., time-integrals of electric scalar
potentials at mesh nodes in the conductive parts of the model) and q variables (i.e., fictitious
magnetic charges on mesh triangles at the interface between interior and exterior regions).

The paper is structured as follows. The eddy current formulation, subdivided into
interior and exterior field problems, is presented in a continuous setting in Section 2. The
discretization of interior and exterior problems by using CM and BEM, respectively, is
presented in Section 3, where the final unsymmetric linear system is derived. Section 4
presents a novel compression algorithm based on the use of R-SVD. The hybrid method is
finally validated in Section 5, where both accuracy and compression performances of ACA
and R-SVD algorithms are compared.

2. Eddy Current Problem

The computational domain of the hybrid formulation is unbounded, which is different
from typical FEM formulations, and is subdivided into two different regions. The interior
region contains conductive and/or magnetic materials, and is defined as the union of n
open bounded and possibly multiply-connected subdomains Ωk ⊂ R3, k = 1, . . . , n—that
is, Ω =

⋃n
k=1 Ωk. In this way, Ω can be made of handles and/or holes. The interior region

can be partitioned into a conductive region ΩC, with non-trivial electric conductivity, and
an insulating region ΩI = Ω \ΩC. The complement of the interior region is the exterior
region Ωe = R3 \Ω, where the bar notation indicates the set closure. Ωe is assumed to
be insulating (i.e., made of air only), unbounded, and possibly multiply-connected. This
means that there exists a loop in Ωe, which cannot be shrunk to a point while remaining in
Ωe [18]. The interface between Ω and Ωe coincides with the boundary of Ω, i.e., Γ = ∂Ω.

2.1. Interior Field Problem

The magnetic diffusion equation in Ω is formulated in terms of the magnetic vector
potential A and the time-integral of the electric scalar potential V. The eddy current model
is governed by Maxwell’s equations at low frequency, where the displacement current is
neglected. By assuming linear media, i.e., piecewise locally constant material parameters
(the electric conductivity σ and the magnetic reluctivity ν), and AC current-driven sources
at constant angular frequency ω > 0, these can be expressed in the frequency domain as:

∇×E + ı ω B = 0, (1)

∇×H = J, (2)

J = σ E, (3)

H = ν B, (4)

where ı is the imaginary unit. In Maxwell’s equations, E is the electric field, B is the
magnetic flux density, H is the magnetic field, and J is the induced current density. By
noting from (1) that B is div-free, the magnetic vector potential can be introduced as:

B = ∇×A. (5)

By inserting (5) in (1), the field E + ı ω B results as curl-free, and thus an electric scalar
potential can be introduced as:

E = −ı ω (A +∇V), (6)
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which is equivalent to (1). By inserting (6) in (3) and by substituting (5) in (4), (2) can be
rephrased as the so-called magnetic diffusion equation:

∇× ν∇×A + ı ω σ (A +∇V) = 0, (7)

describing the magnetic field diffusion inside Ω. By imposing the div-free condition
∇ · J = 0 resulting from (2), the electric scalar potential is constrained in ΩC as:

−ı ω∇ · σ(A +∇V) = 0. (8)

In this way, the electric vector potential is undefined in ΩI , where σ = 0.

2.2. Exterior Field Problem

The magnetic field in Ωe is governed by the equation of magnetostatics:

∇×H = J0, (9)

∇ · B = 0, (10)

B = µ0 H. (11)

The source current density J0 is assumed to be known at any point of the source region
Ω0 ⊆ Ωe and represents magnetic field sources at low frequency, such as current-driven
coils. In particular, the skin-effect in Ω0 is neglected, which is reasonable for stranded coils.

As proposed in [7], the magnetic field in Ωe can be obtained from the reduced magnetic
scalar potential ϕ by solving the Exterior Neumann problem (ENP), which is defined as
follows. The source magnetic field can be analytically computed by Biot–Savart’s law as:

H0(x) =
∫

Ω0

J0(y)× (x− y)
‖x− y‖3 dy, for any x ∈ R3 \Ω0. (12)

By using (9) and noting that∇×H0 = J0, the reduced field Hr = H−H0 is found to be
curl-free. From homological algebra, it is known that any curl-free field is a representative
of the first de Rham cohomology group H1

dR(Ωe) [19]. This group is finitely generated by a
vector basis [hk], k = 1, . . . , β1, where hk are representatives of the cohomology group, i.e.,
the so-called cohomology generators, and the square bracket notation denotes cosets. Due to
de Rham’s theorem, i.e., H1

dR(Ωe) ∼= H1(Ωe), and Alexander duality, i.e., H1(Ωe) ∼= H1(Ω),
the dimension of the de Rham cohomology group is equal to that of the first homology
group H1(Ω), which is defined as the first Betti number β1 [20].

By noting that [Hr] ∈ H1
dR(Ωe), the magnetic field in Ωe can be expanded as:

H = H0 −∇ϕ +
β1

∑
k=1

Ik hk, (13)

where Ik, k = 1, . . . , β1, are complex coefficients. It is proven in [7] that these have true
physical meaning, i.e., Ik are eddy currents through an independent cut set Σk of Ω. As
described in [21], any cut surface Σk is in one-to-one correspondence to a non-bounding
loop in Ω, γk, i.e., a generator of H1(Ω). Cohomology generators in (13) can be built, for
instance, from Biot–Savart’s law as [20]:

hk(x) =
∫

γk

tk(y)× (x− y)
‖x− y‖3 dγy, for any x ∈ Ωe, (14)

where tk is the unit vector tangent to γk.
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Additional degrees of freedom required for representing the magnetic field in (13) are
enforced by using the following topological constraints [7]:∫

Ωe
hk · (B−∇×A) dΩ = 0, k = 1, . . . , β1. (15)

By inserting (13) in (11), and by noting that H0 and hk are div-free fields, from (10),
the following Laplace’s equation is obtained:

∇ · (−µ0∇ϕ) = 0. (16)

The ENP is formed by taking (16), the radiation condition ϕ(x) = O(|x|−1) for
|x| → ∞ and the Neumann boundary condition on Γ:

∂n ϕ = −Br,n, (17)

where ∂n indicates the normal derivative along the unit normal vector n (pointing outward
from Ω), and Br,n = µ0 Hr · n is the normal component of the magnetic flux density.
Equation (16) can be solved, for instance, by using an indirect approach, which introduces a
fictitious unknown. According to the method of layer potentials, the ENP is transformed
into an equivalent Fredholm integral equation [22]:

µ0 c(x) q(x) + T ∗[q](x) = Br,n(x), for a.a. x ∈ Γ, (18)

to be solved in terms of an equivalent charge distribution q on Γ. The coefficient c = α/(4π)
is a geometric factor, where α is the solid angle approaching Γ from Ωe. The second term
in (18) is the adjoint double–layer integral operator [22]:

T ∗[q](x) = −µ0

∫
Γ

q(y)
∂Φ(x, y)

∂nx
dσy, (19)

where Φ(x, y) = (4π|x− y|)−1 is the fundamental solution for the 3D Laplacian, and ∂/∂nx
is the normal derivative evaluated with respect to the x variable. Finally, once (18) has
been solved, ϕ can be reconstructed in the whole region Ωe from q by using the single-layer
integral operator with moment q:

ϕ(x) = K[q](x) =
∫

Γ
Φ(x, y) q(y) dσy. (20)

2.3. Transmission Conditions

The interior and exterior field problems are coupled by enforcing transmission con-
ditions through Γ. After defining the trace operators for Dirichlet (D) and Neumann (N)
conditions for any smooth field U defined on Γ:

γDU = (n×U)× n, (21)

γNU = (∇×U)× n, (22)

the continuity of the normal component of B and of the tangent component of H can be
expressed as:

γ−DA = γ+
DA, (23)

ν γ−NA = ν0 γ+
NA, (24)

where ν0 is the air reluctivity, and ± indicate the positive and negative sides of Γ (e.g., with
+ the interface is approached from outside along the direction orthogonal to the interface).
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3. Hybrid Formulation

The hybrid formulation is constructed by using the discretization framework described
in [8] and briefly summarized here. The magnetic diffusion Equation (7) describing eddy
currents in the interior region is discretized by using the CM, whereas the Fredholm
integral Equation (18) is approximated by using the collocation BEM. Finally, discretized
interior and exterior problems are coupled by means of transmission conditions, i.e., the
conservation of both magnetic fluxes and magnetomotive forces at the interface.

3.1. Discrete Interior Problem

The interior region is meshed into tetrahedral cells that yield the so-called primal grid
GΩ. The corresponding dual grid G̃Ω is obtained from the barycentric dual complex related
to GΩ. Primal and dual grids for subdomains ΩC and ΩI are obtained in the same way.
Therefore the primal grid GΩC is a subset of GΩ, and the corresponding dual grid G̃ΩC is
a subset of G̃Ω. For coupling interior and exterior field problems at the discrete level, the
interface primal grid GΓ and the corresponding dual grid G̃Γ are also introduced.

Any physical field is locally approximated by using linear combinations of piecewise
constant bases defined in [3]. The coefficients of these combinations are related to geometric
entities of either primal or dual grids (i.e., potential on nodes, line integrals, and fluxes
through faces) and can be assembled into an array of DOFs—namely, discrete fields globally
representing physical fields. Differential operators are approximated as incidence matrices,
made up of 0,±1 coefficients. Constitutive relationships are approximated as positive-
definite matrices due to the energy preserving property of piecewise constant bases. A
linear system is finally obtained from topological and constitutive relationships in matrix
form. From the linear system solution, the physical field can be locally reconstructed by
using linear combinations of piecewise constant bases.

The time-harmonic eddy-current problem in Ω is formulated in terms of line integrals
of the magnetic vector potential, i.e., the array aΩ = (ae)e∈GΩ with ae =

∫
e A · dl integral

along edge e. By integrating (6) along each primal edge, electromotive forces (EMFs)
become:

eΩ = −ı ω (aΩ + GΩvΩ), (25)

where vΩ = (V(xn))n∈GΩ is the array of electric scalar potentials evaluated at primal nodes
xn, and GΩ is the edge-to-node incidence matrix of GΩ or primal gradient matrix. By
integrating (5) over each primal face and by using Stokes’ theorem, magnetic fluxes become:

bΩ = CΩ aΩ, (26)

where CΩ is the face-to-edge incidence matrix of GΩ or primal curl matrix. Local consti-
tutive equations are discretized by means of piecewise constant basis functions (namely,
edge we and face w f elements), which yield the conductance matrix Mσ,Ω = (mσ,ee′)e,e′∈GΩ
and the reluctance matrix Mν,Ω = (mν, f f ′) f , f ′∈GΩ

, where mσ,ee′ =
∫

Ω σ we
e(x) ·we

e′(x) dx

and mν, f f ′ =
∫

Ω ν w f
f (x) ·w f

f ′(x) dx. The local electric (3) and magnetic (4) constitutive
relationships, after discretization on GΩ, become:

j̃Ω = Mσ,Ω eΩ, (27)

h̃Ω = Mν,Ω bΩ, (28)

where j̃Ω = (j f̃ ) f̃∈G̃Ω
is the array of currents j f̃ =

∫
f̃ J · ds through faces f̃ of G̃Ω and

h̃Ω = (hẽ)ẽ∈G̃Ω
is the array of magnetomotive forces (MMFs) hẽ =

∫
ẽ H · dl along any edge

ẽ of G̃Ω. Coefficients of Mσ,Ω are non-zero only in correspondence of primal edges of GΩC .
By integrating (2) over each dual face and by using Stokes’ theorem, (2) can be discretized
over G̃Ω as:

C̃Ω h̃Ω + C̃ΩΓ h̃Γ = j̃Ω, (29)
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where C̃Ω = CT
Ω is the face-to-edge incidence matrix of G̃Ω or dual curl matrix, and

C̃ΩΓ is the surface curl matrix, i.e., the transpose of the selection matrix (made up of
0, 1 coefficients), which extracts edges of GΓ from those of GΩ. Coefficients of h̃Γ are MMFs
computed along the edges of G̃Γ and are useful for coupling the interior (CM) and the
exterior (BEM) field problems. Note that currents in (29) are due only to electromagnetic
induction, i.e., they are eddy currents, because magnetic field sources are assumed to be in
the exterior region.

The discrete diffusion equation is obtained by letting (27) and (28) in (29) and by
expressing EMFs and magnetic fluxes in terms of potentials by (25) and (26). One obtains:(

CT
ΩMν,ΩCΩ + ı ω Mσ,Ω

)
aΩ + ı ω Mσ,ΩGΩvΩ + C̃ΩΓ h̃Γ = 0. (30)

By integrating (8) on each cell of G̃Ω and by using Stokes’ theorem, the electric conser-
vation equation at the discrete level becomes:

−ı ω D̃Ω Mσ,Ω(aΩ + GΩ vΩ) = 0, (31)

where D̃Ω = −GT
Ω is the cell-to-face incidence matrix of G̃Ω. Equation (31) provides

additional constraints required for introducing the electric scalar potential in Ω.

3.2. Discrete Exterior Problem

The Fredholm Equation (18) is approximated by using collocation BEM. The reduced
magnetic flux through any primal face f of the primal interface grid GΓ, i.e., the boundary
of GΩ is obtained as:

br, f =
∫

f
Br,n(x) dσx =

∫
f

µ0 c(x) q(x) + T ∗[q](x) dσx, (32)

which can be approximated by assuming a linear variation of Br,n on f , as:

br, f ≈ | f | Br,n(x̃ f ) =
µ0 | f |

2
q f − µ0 f ·∑ f ′∈GΓ

(∫
f ′
∇xΦ(x̃ f , y) dσy

)
q f ′ , (33)

where Br,n is evaluated at the face center x̃ f , | f | is the face area, f is the face vector of f , and
q f ′ is the magnetic charge on the source face f ′. The sum in (33) is performed over the faces
of GΓ, and the operator ∇x indicates the gradient evaluated with respect to the x variable
only. Equation (33) can be assembled over the whole interface grid as:

br,Γ = VΓ qΓ, (34)

where br,Γ = (br, f ) f∈GΓ and qΓ = (q f ) f∈GΓ are the arrays of reduced magnetic fluxes and
charges on interface primal faces, respectively. The double-layer matrix VΓ = (v f , f ′) f , f ′∈GΓ
is defined as:

v f f ′ =
µ0 | f |

2
δ f f ′ − µ0 f ·

∫
f ′
∇xΦ(x̃ f , y) dσy, (35)

where δ f f ′ is the Kronecker delta, i.e., if source and induced face coincide ( f = f ′), then
δ f f ′ = 1, and zero otherwise. On the other hand, by evaluating the scalar potential at dual
nodes x̃ f according to the collocation method, (20) can be approximated as:

ϕ(x̃ f ) =
∫

Γ
Φ(x̃ f , y) q(y) dσy. (36)

Equation (36) assembled over the entire grid GΓ becomes:

ϕ̃Γ = KΓ qΓ, (37)
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where ϕ̃Γ = (ϕ(x̃ f )) f∈GΓ is the array of reduced magnetic potentials evaluated at dual
nodes x̃ f ) of G̃Γ, i.e., the centers of primal faces of GΓ, and the single-layer matrix
KΓ = (k f , f ′) f , f ′∈GΓ

has the coefficients:

k f f ′ =
∫

f ′
Φ(x̃ f , y) dσy. (38)

3.3. Coupled Problem

For coupling the discrete interior and exterior field problems, transmission conditions
at the interface grid are used. By integrating (23) through faces of GΓ and (24) along the
edges of G̃Γ, respectively, and by using the magnetic field decomposition (13), the arrays of
magnetic fluxes and MMFs of GΓ are obtained:

bΓ = b0,Γ + br,Γ +
β1

∑
k=1

Ik bk,Γ, (39)

h̃Γ = h̃0,Γ + h̃r,Γ +
β1

∑
k=1

Ik h̃k,Γ. (40)

The arrays of the total magnetic fluxes bΓ, source magnetic fluxes b0,Γ, and topological
magnetic fluxes bk,Γ in (39) can be expressed all in same way by using Stokes’ theorem, e.g.,

bΓ = CΓ aΓ, (41)

where CΓ is the face-to-edge incidence matrix related to GΓ. Terms related to virtual loops
ak,Γ and h̃k,Γ are computed by taking the line integrals of the virtual magnetic vector
potential ak(x) =

∫
γk

tk(y)/‖x− y‖ dy and the virtual magnetic field (14) along the primal

edges and dual edges at the interface, respectively. a0,Γ and h̃0,Γ are computed from the
source current density by a numerical quadrature of Biot–Savart’s law. The reduced MMFs
are expressed as a function of magnetic potentials on dual nodes as:

h̃r,Γ = G̃Γ ϕ̃Γ, (42)

where G̃Γ = CT
Γ is the dual edge-node incidence matrix of G̃Γ. Boundary DOFs can be

extracted from bulk ones by using a selection matrix, as aΓ = C̃T
ΩΓ aΩ. By letting (34) in (39)

and (37) in (40), transmission conditions become:

CΓ C̃T
ΩΓ aΩ = CΓ a0,Γ + VΓ qΓ + CΓ

β1

∑
k=1

Ik ak,Γ, (43)

h̃Γ = h̃0,Γ + G̃Γ KΓ qΓ +
β1

∑
k=1

Ik h̃k,Γ. (44)

By defining topological matrices

AΓ =
[
a1,Γ, . . . , aβ1,Γ

]
, (45)

H̃Γ =
[
h̃1,Γ, . . . , h̃β1,Γ

]
, (46)

and the array of virtual currents Iγ =
[
I1, . . . , Iβ1

]T, transmission conditions can be rewrit-
ten more compactly as:

CΓ C̃T
ΩΓ aΩ = CΓ a0,Γ + VΓ qΓ + CΓ AΓ Iγ, (47)

h̃Γ = h̃0,Γ + G̃Γ KΓ qΓ + H̃Γ Iγ. (48)
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Additional constraints required to account for topology are obtained from the discretiza-
tion of (15) with edge elements. Topological relationships for Iγ are (for details, see [7]):

h̃T
k,Γ aΓ − aT

k,Γ h̃r,Γ −
β1

∑
j=1

(
aT

k,Γ h̃j,Γ

)
Ij = h̃T

0,Γ ak,Γ + a0,γk , k = 1, . . . , β1, (49)

where the coefficients a0,γk , k = 1, . . . , β1(Ω) are the line integral (numerically computed)
of the source magnetic vector potential along virtual loops γk. By using the definitions
of topological matrices and by letting (37) and (42) in (49), topological constraints can be
assembled into a unique matrix equation as:

H̃T
Γ C̃T

ΩΓ aΩ −AT
Γ G̃Γ KΓ qΓ −AT

Γ H̃Γ Iγ = AT
Γ h̃0,Γ + a0,γ. (50)

By inserting (48) in (30) and by using (31), (47), and (50), the final (unsymmetric and
complex valued) linear system for the hybrid formulation is obtained:

K11 K12 K13 K14
K21 K22 0 0
K31 0 K33 K34
K41 0 K43 K44




aΩ
vΩ
qΓ
Iγ

 =


f1
0
f3
f4

, (51)

where

K11 = CT
Ω Mν,Ω CΩ + ı ω Mσ,Ω,

K12 = ı ω Mσ,ΩGΩ,

K13 = C̃ΩΓ G̃Γ KΓ,

K14 = C̃ΩΓ H̃Γ,

K22 = GT
ΩMσ,ΩGΩ,

K31 = G̃T
Γ C̃T

ΩΓ,

K33 = −Vγ,

K34 = CΓAΓ,

K43 = −AT
Γ G̃Γ KΓ,

K44 = −AT
Γ H̃Γ,

f1 = −C̃ΩΓ h̃0,Γ,

f3 = CΓa0,Γ,

f4 = AT
Γh̃0,Γ + aγ,

and K21 = KT
12, K41 = KT

14. It has to be noted that (51) cannot be explicitly computed, without
resorting to matrix-compression techniques because the blocks K13, K33, and K43 in (51) are
dense and cannot be explicitly computed in the case of large-scale problems due to the huge
amount of memory occupation and the high computation time needed for assembly.

4. Matrix-Compression Algorithms

The use of matrix-compression techniques to reduce the assembly and storage memory
requirements of BEM matrices is mandatory when large-scale eddy-current problems are
considered. Among different techniques proposed in the literature, the ACA is a frequently
used for electromagnetic problems with smooth integral kernels in the low frequency limit.
The numerical experiments of Section 5 show, however, that ACA does not provide a good
sparse approximation of the dense double-layer matrix, which, in turn, leads to highly
inaccurate field solutions. As a remedy to this issue, a novel matrix-compression technique
based on randomized singular value decomposition, which is able to rapidly compute
accurate sparse approximations of both single- and double-layer matrices, is proposed.
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4.1. Adaptive Cross Approximation

The ACA method is a frequently used technique for matrix compression because it is
kernel-free, relatively easy to implement, it allows for parallelization, and the matrix-vector
products are fast. The method is briefly summarized here (details can be found in [11]).

First, a hierarchical data structure (the so-called H-matrix) has to be constructed.
The interior region is encapsulated into a bounding box, i.e., a parallelepiped, which is
recursively partitioned by bisection into smaller parallelepipeds forming a multi-level octree
or cluster tree. The octree terminates with small boxes that are termed children or leaves of
the tree. In this way, the interface mesh GΓ is partitioned into pairwise disjoint clusters of
triangles—each one contained into a leaf of the octree.

Let Z of size l × l be the dense matrix to be compressed, i.e., the so-called matrix of
moments. Any cluster pair GΓ(I), GΓ(J) is associated with a submatrix ZI J extracted from Z,
where I, J ⊆ {1, . . . , l} are sets of indices. In order to identify rank-deficient submatrices
(whose existence is guaranteed by the kernel asymptotic decay), an admissibility criterion
is used [23]. A submatrix belongs to the set of far-field interactions [23] if the diameters are
small compared to their distance, that is:

max{diam(GΓ(I)), diam(GΓ(J))} ≤ η dist(GΓ(I),GΓ(J)), (52)

where diam is the cluster diameter, dist is the distance between clusters, and η > 0 is
the admissibility parameter. Far-field submatrices, i.e., off-diagonal blocks with remote
interactions, are likely to be low-rank and can be approximated as products of “thin”
rectangular matrices. In particular, ZI J , of size m × n, is approximated as ZI J ≈ UW,
with factors U, W of size m× r and r× n, respectively. The submatrix rank r is such that
r � min(m, n). In such a way, the ACA algorithm requires storing only (m + n)× r entries
instead of m× n and results in almost linear complexity.

On the other hand, if the cluster pair does not fulfill (52), then ZI J belongs to the
set of near-field interactions and does not have to be compressed. The decomposition of
ZI J can ideally be obtained by SVD, which is, however, too computationally expensive
(as shown in [24], its computational complexity is O(n3 + m3)). To overcome this issue,
ACA approximates any submatrix iteratively by using products of pivot rows and columns
extracted from the submatrix itself. In this way, only a few coefficients need to be computed,
and the computational complexity yields almost linear instead of quadratic results. The
i + 1th step of the ACA algorithm, thus, becomes [25]:

Ui+1 WT
i+1 = Ui WT

i + ui+1 vT
i+1, (53)

where ui+1, vi+1 are pivot rows and columns, respectively. The ACA algorithm stops when
the compression error, defined in terms of the Frobenius norm ‖·‖F, as:

eZI J =
‖ZI J −U W‖F

‖ZI J‖F
, (54)

is less than a prescribed approximation tolerance τ. It has to be noted, however, that (54)
cannot be explicitly calculated due to the high computational cost of ZI J ; therefore, an error
estimate is used instead (see [25] for details). This estimate is based on the assumption of
an asymptotically smooth integral kernel, which holds for the single-layer matrix [26]. For
other types of integral kernels, the convergence of ACA is not theoretically guaranteed and
can only be investigated with the help of numerical experiments.

4.2. Randomized Singular Value Decomposition

The numerical results in Section 5 show that ACA does not provide a good sparse
approximation for the double-layer matrix; therefore, this technique is unsuited for CM-
BEM. To overcome this issue, a more robust, accurate, and fast compression technique based
on R-SVD is proposed. Its main advantage is that factors are not iteratively constructed,
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and thus a convergence criterion is not needed. First, an H-matrix is constructed, and a
factorization of submatrix ZI J of size m× n is sought, such as for the ACA procedure. The
main steps of the R-SVD procedure (summarized by Algorithm 1) are described as follows:

• The rank r of ZI J is estimated by an heuristic rule. Square brackets indicate the nearest
integer to a real value (line 1).

• Random row and column indices R, C are selected (lines 2–3).
• The reduced row matrix R = ZI(R)J is explicitly constructed, where, e.g., notation I(R)

indicates that indices are extracted from the set I by using vector R (line 4).
• The reduced matrix RC, obtained from R by extracting columns listed in C, is factored

by using SVD such that RC ≈ U0S0W0. S0 is the eigenvalue diagonal matrix, where
eigenvalues are assumed to be sorted in descending order (line 5).

• The indices of dominant eigenvalues, stored in the set E, are obtained by comparing
any eigenvalue, i.e., a diagonal coefficient of S0, to the largest eigenvalue S0(1, 1). The
same approximation tolerance τ of ACA is used (line 6).

• By using the set of indices E, reduced matrices {U1, S1, W1} are obtained (line 7).
• The reduced column matrix C = ZI J(C) is explicitly constructed (line 8).
• Finally, factors U, V of ZI J are reconstructed from reduced matrices (lines 9–10).

Algorithm 1 (Randomized singular value decomposition)

1: r ← min([6 log(max(m, n)], min(m, n))
2: R← rand({1, . . . , m}, r))
3: C ← rand({1, . . . , n}, r))
4: R← ZI(R)J
5: {U0, S0, W0} ← svd(RC)
6: E← {i ∈ R : S0(i, i) > τ S0(1, 1)}
7: {U1, S1, W1} ← {U0(:, E), S0(E, E), W0(E, :)}
8: C← ZI J(C)

9: U← C W1 S−1/2
1

10: V← S−1/2
1 UT

1 R

5. Numerical Results

The hybrid a, v-q formulation withH-matrix compression based on both classic ACA
and R-SVD algorithms, shown in Section 4, was implemented under the MATLAB® soft-
ware environment. For the generation of the H-matrix data structure and for the ACA
compression of its submatrices, the functions of the ACAsolver Software library provided
in [27] were used. The R-SVD compression function was implemented from scratch together
with functions for CM and BEM.

In particular, subroutines for computing single- and double-layer matrices of the BEM,
called from the ACAsolver library functions, were implemented in parallel Fortran 90 lan-
guage with OpenMP library and interfaced with MATLAB® using MEX files. Moreover,
functions for matrix assembly were implemented in a vectorized-language style to run
real-size models of a few million DOFs at limited computational cost. All numerical tests
were run on a standard laptop equipped with an Intel Core i7-6920HQ processor (4 cores,
8 MB cache, and 2.9 GHz frequency) and 16 GB RAM. The commercial FEM software
package COMSOL Multiphysics® was used for validating the proposed hybrid method.

The accuracy of the hybrid approach was first validated by using an academic bench-
mark, which could be solved also by third-order 2D FEM to obtain highly accurate results
to be used as a reference in comparisons. The effectiveness of the hybrid approach in
analyzing large-scale eddy-current problems of engineering interest was then tested by
considering the TEAM 3 Problem, a classic benchmark in computational electromagnetics
of the International Compumag Society [28].
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5.1. Axisymmetric Inductor

Figure 1 shows the axisymmetric model of an inductor, which consists of a cylindrical
billet Ω made of conductive material (4 cm long, 1 cm radius, σ = 25 MS/m electric
conductivity, and µr = 2 relative magnetic permeability) excited by a coaxial current loop γ
(1.5 cm radius, 1000 A current RMS value, and 100 Hz frequency). A cylindrical coordinate
system r, z is located at the billet center. For the sake of comparison, the magnetic flux
density distribution (real and imaginary parts) was computed along the line AB in Figure 1
with the coordinates 0 ≤ r ≤ 3 cm and z = 2.5 cm by using both 3D CM-BEM and
third-order 2D FEM.

Ω

γr

z

0

Ωe

A B

Figure 1. Axisymmetric inductor: a billet (4 cm long and 1 cm radius) is excited by a current loop γ

(1.5 cm radius and 1000 A); the magnetic flux density was computed along line AB (0 ≤ r ≤ 3 cm
and z = 2.5 cm).

The FEM computational domain is the model cross-section, which corresponds to
the y = 0 plane of the full 3D model. In the FEM model, the exterior region is finite and
bounded by a 40 cm radius circle—large enough to make FEM truncation error negligible. A
triangle mesh (5461 third-order triangles) was refined up to convergence. The full 3D model
was considered in the case of the CM-BEM. The coarsest mesh used for the discretization of
Ω consisted of 25,157 tetrahedra, 51,282 triangles (1936 of which were on the boundary),
30,863 edges, and 4739 nodes. The mesh was refined in order to obtain a mesh size (i.e.,
2.83 mm) smaller than the skin depth of the conductor (7.11 mm at 100 Hz). The eddy-
current problem in Ω was discretized by using the a, v-q formulation with 35,602 DOFs for
the CM domain (a, v variables) and 1936 DOFs for the BEM domain (q variables).

To assess the error introduced by matrix compression, the a, v-q formulation was
implemented: (1) without matrix compression of BEM matrices, (2) with ACA matrix
compression, and (3) with R-SVD matrix compression. For case (1), by using the mesh
described above, the preprocessing time was 8.37 s, including the construction of CM and
BEM matrices of the final linear system, where the latter took most of the time (6.96 s). The
solution of the final linear system encompassed the construction of Symmetric Successive
Over-Relaxation (SSOR) preconditioner, 0.86 s, and the solution by TFQMR solver, 10.64 s.
In this case, the prescribed tolerance of 10−10 was attained in 153 iterations. For case (2),
on the same mesh, the corresponding computation times (shown in line 1, Table 1) were:
0.63 for preprocessing, 1.77 s for ACA compression, 0.44 s for preconditioning, and 3.37 s
for the TFQMR iterative solution. Finally, for case (3), with R-SVD matrix compression,
computation times (shown in line 1, Table 2) were comparable to those of case (2). It
can be noted that the preprocessing time for cases (2) and (3) is much less than that for
case (1) because the BEM matrices were not explicitly constructed but stored inH-matrix
format, by using the same mesh octree with two levels. Moreover, the time required for the
construction of the sparse SSOR preconditioner was comparable to that of case (1), while
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the solution time was almost one third using compressed matrices. It is interesting to note
that the same number of iterations (153) and the same smooth convergence pattern were
obtained in all three cases, showing that matrix compression does not affect the solver
performance. Figure 2 shows the convergence pattern of the TFQMR solver with SSOR
preconditioning for case (3).

Figure 2. Convergence pattern of the TFQMR solver with SSOR preconditioning at 100 Hz (CM-BEM
software with R-SVD compression; coarsest mesh: 25,157 tets).

In order to compare the matrix-compression capabilities of ACA and R-SVD algo-
rithms, four different mesh refinements were considered. The number of octree levels was
increased from two (coarsest mesh) to four (finest mesh) in order to reduce the memory
usage for BEM matrices and, thus, to make solution feasible also for large-scale problems.
Table 1 shows that, for the finest mesh (1,735,096 tetrahedra), the computation time for the
construction of H-matrices with ACA is almost four times larger than that with R-SVD,
as reported in Table 2, proving the effectiveness of the proposed compression technique.
Moreover, it can be noted that the solution times are not affected by the algorithm-type
used for compression, while the preprocessing and preconditioning assembly computation
times are almost the same because both tasks were performed by using the same code.

Table 1. Computation times for the CM-BEM software with ACA compression (prepro: preprocessing,
comp: matrix compression, precon: SSOR preconditioner assembly, and sol: TFQMR solver).

# Tets # DOFs
CM/BEM

# Octree
Levels Prepro (s) ACA

Comp (s) Precon (s) Sol (s)

25,157 35,602/1936 2 0.63 1.77 0.44 3.37
76,438 106,243/4100 2 2.09 5.44 1.27 17.11
418,089 570,494/12,332 3 13.02 67.00 9.12 140.70

1,735,096 2,346,891/31,132 4 62.09 1684.45 117.41 809.40

Table 2. Computation times for the CM-BEM software with R-SVD compression (prepro: preprocessing,
comp: matrix compression, precon: SSOR preconditioner assembly, and sol: TFQMR solver).

# Tets # DOFs
CM/BEM

# Octree
Levels Prepro (s) R-SVD

Comp (s) Precon (s) Sol (s)

25,157 35,602/1936 2 0.74 1.42 0.42 3.34
76,438 106,243/4100 2 2.02 4.98 1.25 16.89
418,089 570,494/12,332 3 12.89 41.28 9.08 129.98

1,735,096 2,346,891/31,132 4 64.12 419 119.57 769.34
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The compression ratio for single-layer and double-layer BEM matrices, which are
dense and need to be sparsified, is defined as:

r(M) = 1− ρ(M̂)

ρ(M)
, (55)

where the operator ρ indicates the allocated memory, and M, M̂ are the dense matrix and its
correspondingH-matrix, respectively. The definition (55) shows that the ideal compression
(rM = 1) is obtained when the memory allocated for M̂ is negligible compared to that of
M. Table 3, for the ACA algorithm, and Table 4, for the R-SVD algorithm, show that the
compression ratio increases as the number of mesh elements and the number of octree
levels increase.

Table 3. Compression ratio of single-layer matrix KΓ and double-layer matrix VΓ with ACA.

# Tets Matrix Size Memory (MB) # Octree Levels r(KΓ) r(VΓ)

25,157 1936 28.59 2 35.60% 33.53%
76,438 4100 128.25 2 39.83% 38.90%
418,089 12,332 1160.26 3 82.79% 81.14%

1,735,096 31,132 7394.42 4 93.28% 91.53%

Table 4. Compression ratio of single-layer matrix KΓ and double-layer matrix VΓ with R-SVD.

# Tets Matrix Size Memory (MB) # Octree Levels r(KΓ) r(VΓ)

25,157 1936 28.59 2 37.51% 36.08%
76,438 4100 128.25 2 40.84% 40.17%
418,089 12,332 1160.26 3 84.65% 83.88%

1,735,096 31,132 7394.42 4 94.55% 93.80%

In particular, R-SVD shows slightly better compression capabilities along with much
smaller computation times (Table 2). It has to be noted that the case with the finest mesh
(1,735,096 elements) was intractable without compression since the laptop used for the
simulations was equipped with 16 GB RAM. These numerical experiments show that the
double-layer matrix (obtained from the analytical-numerical calculation of a non-smooth
integral kernel) can also be compressed by using the same ACA (or R-SVD) algorithm used
for the single-layer matrix, for which convergence has been theoretically proven [26].

In the compression of single- and double-layer matrices with ACA and R-SVD, the
approximation tolerance τ was set to 10−3. Due to the high computational cost to calculate
ZI J , traditional ACA typically makes use of an error estimator, which provides only a rough
approximation of (54). This is not required by the R-SVD algorithm, which is not based on
an iterative procedure. Figure 3 shows the distribution of compression error (54) for VΓ,
computed by using either ACA or R-SVD. In this histogram, nZI J indicates the error count,
i.e., the number of submatrices in theH-structure that are in a specific error interval. It can
be observed in Figure 3 that most of the submatrices are properly compressed by using
either ACA or R-SVD with a compression error smaller than τ. This shows that, for the
axisymmetric inductor benchmark, the proposed R-SVD algorithm provides an accurate
sparse decomposition while ensuring a much smaller compression time compared to ACA.

To assess the approximation error produced by matrix compression, numerical results
of the CM-BEM software for implementations (1), (2), and (3) were compared with those
obtained from third-order 2D FEM. To this end, the magnetic flux density was computed by
both CM-BEM and FEM into N = 401 equally spaced points along the line AB in Figure 1,
with the cylindrical coordinates 0 ≤ r ≤ 3 cm and z = 2.5 cm. In particular, the real and
imaginary parts of magnetic flux density radial component Br and axial component Bz
were compared. The discrepancy between CM-BEM and FEM values is defined as:
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∆(F) =

√
∑N

i=1|Fi − Fi|2

∑N
i=1|Fi|2

, (56)

where Fi is the field values computed at the ith point of the line AB by CM-BEM, and Fi
is the reference value computed at the same point by third-order FEM. This definition
approximates the L2-norm relative discrepancy along the line AB. The local discrepancy
between CM and FEM field values computed at the same points of (56) is defined as:

δ(F) = {|Fi − Fi| : i = 1, . . . , N}. (57)

Even by using the coarsest mesh refinement (25,157 tetrahedra), the discrepancy be-
tween third-order FEM (taken as a reference) and CM-BEM was very small. For case (1),
without matrix compression, ∆(Re(Br)) = 0.51% for the real part of Br, ∆(Im(Br)) = 0.76%
for the imaginary part of Br; ∆(Re(Bz)) = 0.49% for the real part of Bz, ∆(Im(Bz)) = 0.75%
for the imaginary part of Bz. Similar results were obtained for case (2) with R-SVD compres-
sion: ∆(Re(Br)) = 0.51%, ∆(Im(Br)) = 0.74%, ∆(Re(Bz)) = 0.47%, ∆(Im(Bz)) = 0.72%.
Therefore, accuracy is preserved even after the matrix compression of BEM matrices.

Figure 3. Compression error distribution for the double-layer matrix computed by the ACA and
R-SVD algorithms: percentage compression error eZI J vs. error count nZI J . The prescribed tolerance
for both algorithms is 10−3, which corresponds to −3 in abscissa.

Tables 5 and 6 show that the discrepancies obtained with ACA and R-SVD algorithms
are comparable and decrease as the number of mesh elements increases. Figures 4 and 5
show that the real part and the imaginary part of either Br or Bz, computed by using CM-
BEM with R-SVD are in very good agreement with the corresponding second-order FEM
profiles. Similar results were obtained by using CM-BEM with ACA matrix compression.
Figures 6 and 7 show the local discrepancies computed by (57) when considering field
profiles plotted in Figures 4 and 5, respectively.

Table 5. Discrepancy between 3D CM–BEM with ACA compression and third ord. 2D FEM.

# Tets ∆(Re(Br)) ∆(Im(Br)) ∆(Re(Bz)) ∆(Im(Bz))

25,157 0.53% 0.76% 0.49% 0.75%
76,438 0.27% 0.39% 0.28% 0.37%

418,089 0.13% 0.20% 0.16% 0.21%
1,735,096 0.07% 0.12% 0.11% 0.13%
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Figure 4. Real and imaginary parts of the magnetic flux density radial component Br along line A–B
depicted in Figure 1 computed by the hybrid method with R-SVD matrix compression: CM-BEM is
the straight line, third ord. 2D FEM (reference) is the dashed line.

Figure 5. Real and imaginary parts of the magnetic flux density radial component Bz along line A–B
depicted in Figure 1 computed by the hybrid method with R-SVD matrix compression: CM-BEM is
the straight line, third ord. 2D FEM (reference) is the dashed line.
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Figure 6. Local discrepancy between CM-BEM and FEM profiles of component Br in Figure 4.

Figure 7. Local discrepancy between CM-BEM and FEM profiles of component Bz in Figure 5.

Table 6. Discrepancy between 3D CM–BEM with R-SVD compression and third ord. 2D FEM.

# Tets ∆(Re(Br)) ∆(Im(Br)) ∆(Re(Bz)) ∆(Im(Bz))

25,157 0.51% 0.74% 0.47% 0.72%
76,438 0.27% 0.41% 0.28% 0.41%

418,089 0.13% 0.19% 0.16% 0.20%
1,735,096 0.07% 0.11% 0.11% 0.13%
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5.2. TEAM 3 Problem

The following benchmark is useful to show that the hybrid approach with matrix
compression can be applied even to 3D models with multiply-connected domains with
general topology. As an example, the TEAM 3 Problem (already used in [8] for validating
both hybrid a-ϕ direct and indirect formulations with dense BEM matrices) is considered
here. This benchmark is a classic eddy-current problem used in the literature for validating
electromagnetic formulations (see [28] for a detailed description). It consists of an aluminum
plate Ω (6.35 × 60 × 110 mm, σ = 32.78 MS/m, and µr = 1) with two symmetric holes,
excited by a current-driven cylindrical coil Ω0 (20 mm × 20 mm cross-section, and 20 mm
inner radius) carrying 1240 A RMS current at 200 Hz (Figure 8).

The case at the smallest frequency (50 Hz) described in the original formulation of
the benchmark is not considered here, since it is less stringent for the application of ACA,
whose performance deteriorates as the frequency increases as noted in [11]. Ω is multiply-
connected, with the first Betti number β1 = 2. The origin of Cartesian coordinate system
(x, y, z) is located at the center of plate top surface. The coil is centered on the plate z vertical
axis, 15 mm above the plate. To properly represent the magnetic field in the unbounded air
domain Ωe, virtual loops are introduced in the model geometry (50 × 38 mm rectangular
coils), which are depicted as a red line in Figure 8.

For the sake of comparison, the magnetic flux density distribution (real and imaginary
parts) was computed by using both 3D CM-BEM and second-order 3D FEM along the line
AB with coordinates x = 0, −55 ≤ y ≤ 55 mm, z = 0.5 mm (which is depicted in blue
in Figure 8). In the FEM model, which also includes the air region, only half geometry
is considered due to symmetry (for details, see [8]). The air region of the FEM model is
bounded by a parallelepiped of dimensions 0.5 × 0.5 × 1 m—large enough to minimize the
truncation error typical of the FEM when homogeneous Neumann boundary conditions at
finite distance were applied. The FEM mesh was refined up to convergence: 80,862 second-
order tetrahedra were used in the whole domain, corresponding to 517,341 DOFs; the
TFQMR solver with multigrid preconditioner attained the 10−12 relative tolerance in 48 s.

Figure 8. TEAM 3 Problem: an aluminum plate with two symmetric holes excited by current driven
coil (orange); virtual loops are depicted in red and the field calculation line AB is depicted in blue.

The same numerical tests as in the axisymmetric inductor benchmark were performed.
The initial mesh refinement was constructed in order to properly capture the skin effect
at 200 Hz frequency: it consisted of 69,492 tetrahedra, 143,798 triangles (9628 of which
were located on the plate boundary), 88,443 edges, and 14,136 nodes. In such a way, the
mesh size (1.45 mm) was smaller than the skin depth (6.22 mm) at the operating frequency.
The eddy-current problem in Ω was discretized by using the a, v-q formulation (only with
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matrix compression). For the initial mesh refinement, 102,579 DOFs for the CM domain
(a, v variables) and 9628 DOFs (q variables) for the BEM domain were used. Two additional
DOFs were required to properly represent the magnetic field in Ωe because β1 = 2. Thus,
the algebraic structure of the linear system was different from the simply connected case,
and the convergence properties had to be checked again. Moreover, it has to be noted that,
for this benchmark, even with a rather coarse mesh (69,492 elements), it was not possible
to use the a, v-q formulation without matrix compression due to the excessive amount of
memory required by dense off-diagonal matrix blocks in (51).

The following scenarios were considered for the hybrid approach: (1) with ACA matrix
compression and (2) with R-SVD matrix compression. For case (1), the corresponding
computation times (reported in Table 7) were: 101.39 s for preprocessing, 82.54 s for ACA
compression, 4.50 s for preconditioning, and 21.71 s for the TFQMR iterative solution. In
this case, the 10−10 tolerance was attained in 208 iterations. For case (2), unlike the inductor
benchmark, the R-SVD compression allowed in this case for a considerable computation
time reduction compared to case (1). In fact, it can be noted in Table 8 that only 25.49 s
(almost one third of ACA) were needed for R-SVD compression. The same number of
iterations as case (1) was achieved by the TFQMR solver with a smooth convergence pattern
(Figure 9). These results show that the convergence behavior of the a, v-q formulation does
not depend on the type of algorithm used for matrix compression.

Figure 9. Convergence pattern of the TFQMR solver with SSOR preconditioning at 200 Hz (CM-BEM
software with R-SVD compression, coarsest mesh: 69,492 tets).

In order to compare the matrix-compression capabilities of ACA and R-SVD algo-
rithms, four different mesh refinements were used. Five levels were taken for the construc-
tion of octree need for H-matrices, in order to obtain a good trade-off between memory
occupation and computation time required for matrix compression. By comparing the
computation times needed by ACA and R-SVD for different discretizations (Tables 7 and 8),
it can be observed that R-SVD algorithm is much faster (i.e., only one-third of the ACA
time is needed). This proves the effectiveness of the proposed compression algorithm. The
other computation times (preprocessing, preconditioning, and TFQMR solution) are almost
unchanged because the same code was used for these tasks.
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Table 7. Computation times for the CM-BEM software with ACA compression (prepro: preprocessing,
comp: matrix compression, precon: SSOR preconditioner assembly, and sol: TFQMR solver).

# Tets # DOFs
CM/BEM

# Octree
Levels Prepro (s) ACA

Comp (s) Precon (s) Sol (s)

69,492 102,579/9628 5 101.39 82.54 4.50 21.71
105,481 153,422/12,508 5 122.45 96.81 7.59 38.50
248,427 352,526/20,912 5 206.42 135.69 28.42 95.56
435,213 610,778/30,316 5 316.17 285.26 73.16 171.39

Table 8. Computation times for the CM-BEM software with R-SVD compression (prepro: preprocessing,
comp: matrix compression, precon: SSOR preconditioner assembly, and sol: TFQMR solver).

# Tets # DOFs
CM/BEM

# Octree
Levels Prepro (s) R-SVD

Comp (s) Precon (s) Sol (s)

69,492 102,579/9628 5 99.31 25.49 4.36 19.81
105,481 153,422/12,508 5 124.32 32.88 7.77 33.08
248,427 352,526/20,912 5 208.75 58.26 28.70 93.39
435,213 610,778/30,316 5 314.30 93.45 72.66 181.12

Table 9 shows that compression ratios of the CM-BEM with ACA are lower than those
of the CM-BEM with R-SVD as given in Table 10. The compression ratio increases as the
number of elements increases for both ACA and R-SVD algorithms. By using an octree with
five levels for the H-matrix generation the compression ratio becomes very high (around
90%). It can be noted that, when the finest mesh is considered (435,213 tetrahedra), single-
and double-layer matrices cannot be stored without matrix compression on a standard
laptop equipped with 16 GB RAM. These numerical experiments show that double-layer
matrix can be compressed as well by using the same ACA (or R-SVD) algorithm used for
the single-layer matrix.

Table 9. Compression ratio of single-layer matrix KΓ and double-layer matrix VΓ with ACA.

Mesh Matrix Size Memory (MB) # Octree Levels r(KΓ) r(VΓ)

69,492 9628 707.23 5 87.56% 84.52%
105,481 12,508 1193.62 5 90.28% 87.91%
248,427 20,912 3336.42 5 93.67% 92.22%
435,213 30,316 7011.87 5 95.18% 94.11%

Table 10. Compression ratio of single-layer matrix KΓ and double-layer matrix VΓ with R-SVD.

Mesh Matrix Size Memory (MB) # Octree Levels r(KΓ) r(VΓ)

69,492 9628 707.23 5 90.37% 88.08%
105,481 12,508 1193.62 5 92.57% 90.76%
248,427 20,912 3336.42 5 95.12% 94.03%
435,213 30,316 7011.87 5 96.19% 95.43%

The effectiveness of both compression algorithms is examined again by considering the
compression error (54), which evaluates the accuracy of low-rank sub-block approximations
in theH-matrix. By setting the threshold value τ as usual to 10−3 for both ACA and R-SVD,
it can be noted in Figure 10 that ACA is not accurate since most of error occurrences are
above τ. This shows that ACA is ineffective for the compression of the double-layer matrix.
It is also not robust since its performance depends on the type of model geometry (i.e., ACA
works for the axysimmetric inductor model but not for the TEAM 3 model). In contrast,
R-SVD provides an accurate sparse approximation and it is also robust for both models.
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Figure 10. Compression error distribution for the double-layer matrix computed by ACA and R-SVD
algorithms: percentage compression error eZI J vs. error count nZI J . The prescribed tolerance for both
algorithms is 10−3, which corresponds to −3 in abscissa.

It can be observed that such inaccuracy of the ACA in matrix compression leads to an
inaccurate solution of the field problem. To show this issue, real and imaginary parts of
the magnetic flux density components along y, z axes were computed on equally spaced
401 points, along the line AB in Figure 8. In Table 11, it can be observed that, by increasing
the number of mesh elements the discrepancy from the reference field distribution (obtained
with second-order 3D FEM) increases as well. On the contrary, this loss in accuracy is not
present in simulations obtained by the CM-BEM with R-SVD compression (see Table 12).

Table 11. Discrepancy between 3D CM–BEM with ACA compression and second order 3D FEM.

# Tets ∆(Re(By)) ∆(Im(By)) ∆(Re(Bz)) ∆(Im(Bz))

69,492 1.56% 5.89% 1.98% 5.28%
105,481 2.19% 8.27% 3.05% 8.05%
248,427 2.53% 9.88% 3.41% 9.46%
435,213 3.03% 11.02% 4.26% 10.81%

Table 12. Discrepancy between 3D CM–BEM with R-SVD compression and second order 3D FEM.

# Tets ∆(Re(By)) ∆(Im(By)) ∆(Re(Bz)) ∆(Im(Bz))

69,492 1.24% 4.74% 1.50% 4.82%
105,481 1.05% 4.56% 1.27% 4.73%
248,427 0.77% 4.36% 0.82% 4.55%
435,213 0.70% 4.37% 0.72% 4.61%

Even by using the coarsest mesh refinement (69,492 tetrahedra), numerical results of
CM-BEM with R-SVD matrix compression (case 2) are in good agreement with second-
order FEM taken as a reference. Figures 11 and 12 show that real and imaginary parts
of either By or Bz, computed by using CM-BEM with R-SVD matrix compression, are
in very good agreement with the corresponding second-order FEM values. Figures 13
and 14 show the corresponding local discrepancy profiles computed by (57). In particular,
the discrepancies computed by (56) are: ∆(Re(By)) = 1.24%, ∆(Im(By)) = 4.74% for
By component; ∆(Re(Bz)) = 1.50%, ∆(Im(Bz)) = 4.82% for Bz component. Moreover,
it can be observed in Table 12 that the discrepancy decreases as the number of mesh
elements increases. The imaginary part shows a larger discrepancy compared to the real
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part because since the imaginary part is ten-times smaller. In contrast, results from the
CM-BEM with ACA matrix compression show that this approach is not reliable since it is
not convergent, i.e., the discrepancy of Bz imaginary part increases as the number of mesh
elements increases (Table 11).

Even by using the finest mesh refinement (435,213 tetrahedra), the CM-BEM with ACA
matrix compression provides incorrect results as can be observed from profiles of By, Bz real
and imaginary parts shown in Figures 15 and 16. Figures 17 and 18 show the corresponding
local discrepancy profiles. In particular, it can be noted that around y = ±40 mm is almost
doubled compared to the corresponding plots for CM-BEM with R-SVD (Figures 13 and 14).
The discrepancies computed by (56) are: ∆(Re(By)) = 3.03%, ∆(Im(By)) = 11.02% for By
component; ∆(Re(Bz)) = 4.26%, ∆(Im(Bz)) = 10.81% for Bz component. These values are
much higher than those shown above for CM-BEM with R-SVD.

The TEAM 3 model was also simulated using FEM to compare the performance of a
state-of-the-art method with that of the proposed hybrid method. A MATLAB® vectorized
implementation of the standard A, V–A formulation (typically adopted in FEM commercial
software for electromagnetic analysis) was performed. The implementation is based on
use of edge and face Whitney elements for discretization (these are vector basis functions
described, e.g., in [29]), and on the numerical treatment of the RHS proposed in [30], which
ensures a good convergence behavior of Krylov iterative solvers. The final system of linear
equations is complex symmetric and was solved by the same solver used for CM-BEM (i.e.,
TFQMR+SSOR preconditioner).

Figure 11. Real and imaginary parts of the magnetic flux density radial component By along line AB
in Figure 8 computed by the hybrid method (R-SVD matrix compression) with the coarsest mesh
(69,492 tets): CM-BEM is the straight line, second ord. 3D FEM (reference) is the dashed line.

For a fair comparison, first-order FEM was considered (which corresponds to a pure
CM) and the FEM mesh in the plate was generated with a number of tetrahedra similar
to that of the CM-BEM. In this way, approximately the same number of DOFs was used
by pure FEM and CM-BEM model (which includes only the discretization of the plate).
The air region was bounded by a cube of the 1 m side, as the parallelepiped used for the
second-order FEM model. To ensure a good transition of the mesh between the conductive
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region and the air region, and thus a reliable solution, a large number of tetrahedra was
required with the FEM, which led, in turn, to a large number of DOFs.

Figure 12. Real and imaginary parts of the magnetic flux density radial component Bz along line AB
depicted in Figure 8 computed by the hybrid method (R-SVD matrix compression) with the coarsest
mesh (69,492 tets): CM-BEM is the straight line, second ord. 3D FEM (reference) is the dashed line.

Figure 13. Local discrepancy between CM-BEM and FEM profiles of component By in Figure 11.
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Figure 14. computed byLocal discrepancy between CM-BEM and FEM profiles of component Bz in
Figure 12.

Figure 15. Real and imaginary parts of the magnetic flux density radial component By along line
AB in Figure 8 computed by the hybrid method (ACA matrix compression) with the finest mesh
(435,213 tets): CM-BEM is the straight line, second ord. 3D FEM (reference) is the dashed line.
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Figure 16. Real and imaginary parts of the magnetic flux density radial component Bz along line AB
depicted in Figure 8 computed by the hybrid method (ACA matrix compression) with the finest mesh
(435,213 tets): CM-BEM is the straight line, second ord. 3D FEM (reference) is the dashed line.

Figure 17. Local discrepancy between CM-BEM and FEM profiles of component By in Figure 15.
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Figure 18. Local discrepancy between CM-BEM and FEM profiles of component Bz in Figure 16.

To compare the computational performance of the FEM with respect to that of the
CM-BEM with R-SVD compression (see computation times in Table 8), four different mesh
refinements, with a number of tetrahedra similar to that of the CM-BEM models, were
considered. Figure 19 shows the FEM mesh distribution near the plate and the coil for the
first examined model with the coarsest mesh refinement (69,702 tets for plate, 1,171,167 tets
for air): many elements were required to ensure a good transition of the mesh from the
conductive region to the air region.

Figure 19. Distribution of the FEM mesh near the plate and the coil, whose elements are depicted in
blue (coarsest case: 69,702 tets for plate and 1,171,167 tets for air): element size within the plate has to be
smaller than skin depth; many elements have to be used in the air region to ensure a good transition.

For this discretization, the computation times for preprocessing (i.e., the assembly of
FEM matrices and RHS, and the numerical treatment of the coil), SSOR preconditioning,
and solution were 148.73 s, 67.93 s, and 148.56 s, respectively (Table 13). It can be observed
that the solution time for the FEM is at least seven times greater than that required by the
CM-BEM with R-SVD matrix compression (Table 8), which clearly shows the validity of the
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proposed method. The same consideration holds also when refining the mesh: computation
times in Table 13, for the FEM, are much greater than those in Table 8, for the CM-BEM.

Table 13. Computation times for first ord. FEM software implementing the A, V-A formulation
(prepro: preprocessing, comp: matrix compression, precon: SSOR preconditioner assembly, and sol:
TFQMR solver).

# Tets Plate # Tets Air # DOFs FEM Prepro (s) Precon (s) Sol (s)

69,702 1.171,167 1,500,258 148.73 67.93 148.56
105,384 1,706,681 2,178,508 232.42 127.38 271.33
248,174 2,300,615 3,067,714 337.43 270.50 463.64
433,737 3,157,965 4,323,418 519.17 429.78 772.48

Concerning the FEM solution, the number of TFQMR iterations to attain the solver
prescribed tolerance of 10−10 was almost doubled compared to the CM-BEM: for the
coarsest case, the solver converged into 372 iterations instead of 208 of the CM-BEM.
Figure 20 shows the convergence pattern of the TFQMR + SSOR solver for the FEM, which
corresponds to Figure 9 evaluated for the same solver when running the CM-BEM model.

Finally, despite the large number of tetrahedra used in the air region, it can be noted
that first-order FEM is not very accurate. Figures 21 and 22 show that FEM profiles are very
irregular and differ from those of second-order FEM, which are very smooth, such as those
of the CM-BEM. In particular, the discrepancies computed by (56) are: ∆(Re(By)) = 11.93%,
∆(Im(By)) = 9.98% for By component; ∆(Re(Bz)) = 14.19%, ∆(Im(Bz)) = 12.18% for
Bz component. These values are much greater than those of the CM-BEM with R-SVD
compression for a mesh in the plate of comparable size (Table 12).

Figure 20. Convergence pattern of the TFQMR solver with SSOR preconditioning at 200 Hz (first ord.
3D FEM with coarsest mesh: 69,702 tets for plate, 1,171,167 tets for air).
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Figure 21. Real and imaginary parts of the magnetic flux density radial component By along line AB
depicted in Figure 8 computed by FEM with the coarsest mesh (69,702 tets for plate, 1,171,167 tets for
air): first ord. 3D FEM is the straight line, second ord. 3D FEM (reference) is the dashed line.

Figure 22. Real and imaginary parts of the magnetic flux density radial component Bz along line AB
depicted in Figure 8 computed by FEM with the coarsest mesh (69,702 tets for plate, 1,171,167 tets for
air): first ord. 3D FEM is the straight line, second ord. 3D FEM (reference) is the dashed line.
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6. Conclusions

We proposed a novel hybrid method for the analysis of time-harmonic eddy-current
problems. This method was coupled to a novel R-SVD matrix-compression technique
to reduce both the assembly time and the amount of allocated memory needed for BEM
matrices. As a result, the simulation of large-scale unbounded field problems becomes
feasible even on a standard laptop at a reasonable computational cost. Numerical examples
show that the R-SVD algorithm is more accurate, faster and more robust than the classical
ACA algorithm when applied to the compression of BEM matrices.

A comparison with first-order FEM also shows that the CM-BEM provides much
higher performance in terms of computation time due to a much smaller number of DOFs.
Furthermore, when analyzing a test case of engineering interest, the CM-BEM with R-SVD
matrix compression shows very good agreement with high-order FEM although the former
uses much fewer degrees of freedom.
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