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Abstract: Recently, increased attention has been devoted to intermittent and ephemeral streams (IRES)
due to the recognition of their importance for ecology, hydrology, and biogeochemistry. However,
IRES dynamics still demand further research, and traditional monitoring approaches present several
limitations in continuously and accurately capturing river network expansion/contraction. Optical-
based approaches have shown promise in noninvasively estimating the water level in intermittent
streams: a simple setup made up of a wildlife camera and a reference white pole led to estimations
within 2 cm of accuracy in severe hydrometeorological conditions. In this work, we investigate
whether the shortcomings imposed by adverse illumination can be partially mitigated by modifying
this simple stage-cam setup. Namely, we estimate the image-based water level by using both the
pole and a larger white bar. Further, we compare such results to those obtained with larger bars
painted in the red, green, and blue primary colors. Our findings show that using larger white bars
also increases reflections and, therefore, the accuracy in the estimation of the water level is not
necessarily enhanced. Likewise, experimenting with colored bars does not significantly improve
image-based estimations of the stage. Therefore, this work confirms that a simple stage-cam setup
may be sufficient to monitor IRES dynamics, suggesting that future efforts may be rather focused on
including filters and polarizers in the camera as well as on improving the performance of the image
processing algorithm.

Keywords: stage-cam; water level; IRES; image analysis; headwaters; environmental monitoring

1. Introduction

Intermittent rivers and ephemeral streams (IRES) are rivers or streams that cease
to flow at least one day per year. During the last two decades, the interest in IRES has
sensibly increased, due to the recognition of their importance for ecology, hydrology, and
biogeochemistry. In particular, it is known that the drying/rewetting cycle of IRES consists
in the shift from flowing water, pools, and dry riverbed [1]. This flow intermittency leads
to the change of the extension of IRES in expansion and contraction cycles, in response to
hydrologic conditions and climate drivers [2–4]. Regarding the spatiotemporal variability
of the drainage network, Reference [5] demonstrated that the dynamics of IRES follow
a hierarchical rule in the drying/wetting cycles. Recent studies predict that 51–60% of
rivers by length cease to flow at least one day per year, both in dry and humid regions [6],
thus demonstrating IRES ubiquity. Despite the recognition that streamflow variations have
remarkable effects on biodiversity [7], little quantitative information is available about
their dynamics.

Monitoring such streams is a major challenge in hydrology, whereby conventional
approaches for streamflow observations may often be inadequate [8]. Highly variable
cross-sections, fluctuating water levels, and severe turbidity facilitate by-pass flow and
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hinder the use of conventional stream-gauges and current meters. Temperature sensors
and electrical resistance sensors have been adopted to detect the presence/absence of
water in IRES cross-sections [9–11]; however, they have exhibited ambiguities in detecting
zero-flow records [12]. Interestingly, in Ref. [13] the duration of active streamflow and
dry periods has been measured at 182 sites in the Attert catchment, Luxembourg, through
time-lapse imagery, electric conductivity and stage measurements. The introduction of
cameras for IRES monitoring has proved beneficial in such challenging environments since
they have the potential to afford fully non-intrusive measurements at high spatio-temporal
resolutions [14,15]. These capabilities are expected to open novel avenues for assessing
and managing climate-related hazards [16,17]. However, image quality can be affected by
several parameters, including sunlight, reflections, moisture, and vegetation [13]. Despite
such sources of inaccuracies, more recent applications of “gauge-cams” have demonstrated
the advantages of image-based stage measuring systems. For instance, in Ref. [18], a gauge-
cam system was able to measure the water level within±3 mm accuracy (that is, the United
States Geological Survey hydrologic standard) around 70% of the time (several months)
over a range of about 1 m in a tidal creek in a remote location of North Carolina, USA.

In vein of providing water level data at high temporal and spatial resolution in complex
IRES settings, Reference [19] developed and applied a stage-camera system to monitor the
water level in ungauged headwater streams. The system encompasses a consumer-grade
wildlife camera with near-infrared (NIR) night vision capabilities and a white pole that
serves as a reference object in the collected images. In case of severe storms with intense
rainfall and fog, the stage-cam is shown to lead to maximum mean absolute errors between
image-based and reference data of approximately 2 cm. The introduction of the stage-
camera system directly stems from recent advancements in the field of automatic and non-
contact image-based methodologies for river monitoring [20–22]. While flow visualization
and quantitative characterization date back to laboratory-based particle image velocimetry
(PIV) [23], recent studies have leveraged the continuous acquisition of images at high
resolution to provide accurate kinetic characterization of stream and river systems with
minimal supervision by the user [17,24]. These previous image-based studies have shown
potential to extract distributed rather than pointwise information at multiple locations in
typically ungauged locations, thus motivating further efforts on water level monitoring
in IRES.

The main drawbacks of stage-camera systems include (see Ref. [19]): (i) inadequate
illumination conditions and scattered sunlight, which control image quality and impact
the estimation of the pole length; (ii) presence of rainfall, whereby raindrops lead to poor
quality images; and (iii) background complexity, which challenges the identification of
the pole as the brightest object in the field of view, a major requisite of the image analysis
algorithm. This latter issue has suggested the use of broader targets of enhanced color with
respect to the background, which is thoroughly analyzed in this work.

More specifically, in this paper, we test alternative setups and conduct specific experi-
mental tests to answer the following questions:

• Can water level detection be enhanced by using broader targets rather than a thin pole?
• Is water detection facilitated if large bars painted in primary colors are used?
• Can we identify optimal settings for applying the image-based procedure for water level

detection as a function of environmental (light, rain, background complexity) conditions?

The first two questions aim at improving image quality and facilitating image pro-
cessing through an alternative experimental setup with respect to the thin pole. The last
question targets at executing parametric analyses to unambiguously select optimal parame-
ters for the image analysis algorithm. In the rest of the paper, we answer such questions by
describing and illustrating results for two sets of experimental tests. In the first set, water
levels extracted from images of the pole are compared to pictures of a nearby white bar
simultaneously taken at the same location. In the second set of experiments, water levels
from images of a white bar are compared to those from two nearby colored bars (blue
and red).
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2. Methodology
2.1. Stage-Camera Setup

The system comprises a consumer-grade wildlife camera, the Trap Bushwhacker D3,
a white-painted steel pole (1.5 m long and 8 mm in diameter), a white PVC bar (0.7 m long
and 3.5 cm wide), and two colored PVC bars (red and blue, 0.7 m long and 2.5 cm wide).
The bars are located next to the pole as illustrated in Figure 1. The uppermost end of the
pole and bars is visible by means of a black stripe. To ensure stability of the setup, the pole
is fixed to the ground for 40–50 cm and the bars are fixed on three steel poles with cable
ties. As ascertained through previous studies [19], the pole and bars’ length guarantees
detection of the water level even during extreme events.

Camera

2 m

Figure 1. Experimental setup including: white pole, three colored bars, and a wildlife camera.

The camera is installed at a stream bank and captures the pole and bars set in the
thalweg in the central region of the image. The distance of the pole/bars to the camera is
kept within the 5 m range with the pole/bars consistently occupying the central region of
the field of view, and, therefore, image geometric correction is not necessary. The camera
captures 16 Mpix images in the time-lapse mode at intervals from 3 s to 24 h. At night, high
image visibility is afforded through shooting in the NIR band (850–940 nm). Power loading
is enabled through eight rechargeable AA batteries. The camera is tied to a 1-m-long
grounding bar through straps and installed on a river bank at a few decimetres from the
river. The grounding bar is fully fixed into the ground to ensure image stability. The camera
is set at a distance of 2–4 m from the pole and bars, with its axis roughly perpendicular
to the longitudinal axis of the river bed. Care is taken in focusing the pole and bars at
the camera’s image center and in positioning the stage-camera system so as to prevent
direct sunlight from entering the objective as well as target vibrations. Images are either
4640× 3480 pixels or 4032× 3024 pixels in spatial resolution, which leads to a pixel length
of 0.03–0.06 cm. Images are taken every 30 min, thus guaranteeing a system runtime of
approximately 1 month, and are then stored in a 32 GB SD card.
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2.2. Experimental Tests

A total of seven experimental tests are conducted in real settings at a stream section
in the headwater Montecalvello catchment, Viterbo Italy, from October to December 2020.
At the experimental section, the catchment area is 1.9 km2. In all tests, the water level is
detected based on analysis of the pole and the white bar. Further, in two out of the seven
experimental tests (6A, 6B, and 7), water levels from the white bar are also compared to
estimations obtained by analyzing the colored bars.

Table 1 reports the test initial and final dates and times, along with the number of
analyzed frames.

Table 1. Initial and final dates, times, and number of frames for the experimental tests.

Test Initial Date and Time Final Date and Time Number of Frames

E1 2020/10/15 10:40 2020/10/20 14:45 249
E2 2020/10/20 15:20 2020/10/29 10:20 423
E3 2020/10/29 11:20 2020/11/06 13:20 389
E4 2020/11/17 11:30 2020/11/27 11:30 481
E5 2020/11/27 12:16 2020/12/04 09:15 331

E6A 2020/12/04 11:00 2020/12/08 09:00 283
E6B 2020/12/08 18:00 2020/12/18 07:00 690
E7 2020/12/18 14:00 2021/01/08 09:30 1000

Test E6 recorded an intense rainfall event, and images collected during the major
rainfall peak were severely disturbed, preventing application of the water level detection
algorithm. Thus, in Table 1, we report initial and final dates and times for the image
sequences analyzed before and after the rainfall peak.

The reported experimental tests present a broad array of light and rainfall conditions.
In particular, Table 2 qualitatively describes light conditions during each test. The index G
in Table 2 is related to light settings, and is computed as the average intensity of gray-scale
images captured during the day.

Table 2. Light conditions during each experimental test. Abbreviations “morn.” and “aft.” stand
for morning and afternoon, respectively. The index G quantifies the average intensity of gray-scale
images captured during the day.

Test Light Conditions G

E1 Diffused sunlight in morn. and aft.; weakly scattered in the day 83
E2 Diffused sunlight in morn. and aft.; weakly scattered in the day 86
E3 Diffused sunlight in morn. and aft.; weakly scattered in the day 90
E4 Diffused sunlight in early morn. and aft.; scattered in the day 93
E5 Diffused sunlight in early morn. and aft.; scattered in the day 95
E6 Diffused sunlight in morn. and aft.; weakly scattered in the day 104
E7 Diffused sunlight in early morn. and aft.; scattered in the day 101

Further, in Table 3, average intensity and duration are reported for the experimental
tests executed during rainfall events.

Tests E1 and E3 do not capture any rainfall event nor water level changes. Tests E2,
and E4 to E7, instead, are recorded during variable light and rain conditions and thus
comprise longer image sequences.
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Table 3. Rainfall characteristics (I, average intensity, and duration) for experimental tests executed
during the precipitation events.

Test Rainfall Event Initial Date and Time I [mm/h] Duration [min]

E2 2020/10/24 07:30 4.8 80
2020/10/26 21:50 4.6 50

E4 2020/11/20 05:40 3.2 30
2020/11/20 07:10 3.2 260

E5 2020/12/01 16:20 3.0 20
2020/12/01 19:00 1.6 120
2020/12/01 23:10 2.1 70
2020/12/02 10:30 3.3 450

E6 2020/12/05 04:40 1.7 120
2020/12/05 13:10 1.9 50
2020/12/05 22:20 5.0 240
2020/12/06 06:30 3.4 330
2020/12/06 13:10 5.5 50
2020/12/07 03:40 2.1 40
2020/12/07 07:40 2.0 30
2020/12/08 01:00 3.6 630
2020/12/08 17:40 2.4 250
2020/12/08 23:20 2.7 80
2020/12/09 03:40 1.4 60
2020/12/09 12:30 7.2 60
2020/12/09 21:40 2.0 30
2020/12/10 07:30 2.8 30

E7 2020/12/28 07:20 2.4 70
2020/12/28 11:40 4.7 160
2020/12/28 15:40 2.3 110
2020/12/29 14:30 4.2 80
2020/12/29 17:40 2.6 60
2020/12/30 04:00 1.5 40
2020/12/30 10:50 2.8 30
2020/12/30 13:40 4.7 90
2021/01/01 09:00 2.7 220
2021/01/01 15:20 2.4 30
2021/01/02 03:30 2.2 50
2021/01/02 05:50 3.5 140
2021/01/02 10:20 2.6 210
2021/01/02 20:10 3.8 60
2021/01/03 02:40 3.6 50
2021/01/03 14:20 1.2 100
2021/01/04 16:40 1.8 40
2021/01/05 05:50 2.1 120
2021/01/05 11:30 3.6 80
2021/01/05 23:10 1.9 180
2021/01/07 00:20 3.6 20

2.3. Image Analysis

Following [19], water level detection is performed in two steps. First, the out-of-water
pole/bar length is estimated based on the analysis of the image sequences. Then, such raw
measurements are filtered through a statistics-based scheme. The image analysis procedure
assumes the pole/white bar as the brightest objects in the field of view. The analysis works
as follows: colored images are converted to gray-scale and cropped around the pole/bars.
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When comparing water level estimations from the pole against the white bar, gray-scale
conversion is executed by eliminating the hue and saturation information while retaining
the luminance. In addition, in tests E6 and E7, when water level estimations from the white
and colored bars are assessed, gray-scale conversion is performed based on the luminance
as well as by retaining the red, green, and blue channels. The procedure assumes the
colored bars as either the brightest or the darkest object in the field of view depending
on the color of the bar and the gray-scale conversion channel (e.g., once the images are
converted to gray-scale, the red bar in the green channel and the blue bar in the red channel
appear dark, as well as in RGB images, while they are bright in the other channels).

Image trimming entails cropping the image background on the sides and top of the
pole/bars to minimize disturbance from heterogeneous light and vegetation patterns.
The bottom side of the image is not cropped to capture water level fluctuations at the
pole/bars–water interface. Trimmed images are segmented through the nonparametric
unsupervised Otsu method [25] and quantized based on the number of segmentation
classes. The brightest pixel class is set to white and the remaining darker classes to black
in the following conditions: white bar in RGB images and in each one of the red, green,
and blue channels; red bar in the red and blue channels; blue bar in the green and blue
channels. In the remaining cases, the darkest pixel class is set to white and the remaining
brighter classes to black. In this way, the bar always appears white in binary images.

When comparing water level estimations between the pole and the white bar, pole
images are trimmed to 60× 1270 pixels pictures. White bar images are instead cropped
to pictures 110 pixels in width and 1270 pixels in height. To fully exploit the advantage of
experimenting with wide bars rather than the thin pole, a different approach is followed
when comparing the white to colored bars. Specifically, a first set of analyses is conducted on
images of 25× 1270 pixels for each bar, whereby the crop is performed inside the bar itself.
Another set of analyses is repeated on slightly larger cropped images: 110× 1270 pixels,
55× 1270 pixels, and 55× 1270 pixels for the white, red, and blue bars, respectively. In this
latter set, pictures also include an image background and thus result in increasingly complex
conditions for water level detection.

While in Ref. [19] the number of segmentation classes was consistently set for all the
experimental tests, in this work, we vary the number of classes and assess the optimal value
that leads to the lowest mean absolute error (MAE) in the a priori known pole/bar length.
Testing a large number of segmentation classes is motivated by the need to enhance water
level detection in the presence of complex light, rain, and background conditions such as
those experienced in the reported experimental tests. In such variable environmental
settings, in fact, the pixel intensity variance is maximized and adopting consistent classes
may lead to inaccuracies in water level estimations. Namely, we execute the image analysis
procedure by changing the number of segmentation classes from one (corresponding to
two pixel classes) up to six (corresponding to seven pixel classes) in increments of one. This
analysis is performed both on images captured during the day (RGB) and at night (NIR).

Among eight-connected objects in binary images, the pole/bars are identified as the
object with the largest number of pixels and bounded in a rectangle. Then, either the side
or the vertices of the bounding box are used to estimate the out-of-water pole length. Water
level is estimated by subtracting the out-of-water length from the total pole/bars length.
Pixel to metric conversion is conducted by calibrating images in situ based on the a priori
known pole/bars length.

This image analysis procedure is run 252 times for the pole and white bar, respectively.
Specifically, for images of the pole and the white bar, we execute the algorithm on the seven
experimental tests, by varying six segmentation classes on RGB as well as NIR images.
Once such raw measurements are computed, we compare them to the benchmark water
levels (see Section 2.4), and estimate the MAE with respect to the known pole/bar length.
Then, for each experimental test, the number of the segmentation class which reflects the
lowest MAE in both RGB and NIR images is defined as optimal. The images for each
test are then processed using the optimal number of segmentation classes for RGB and
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NIR images. Finally, these records are further processed through the filtering procedure
previously illustrated in Ref. [19].

Water levels estimated with the white bar are compared to those obtained from
colored bars by running the image analysis procedure on tests E6 and E7, by varying
six segmentation classes on RGB as well as NIR images, and by adopting four different
modalities of gray-scale conversion from RGB images. This results in 60 algorithm runs for
each bar, respectively. As mentioned above, each algorithm run is performed twice on the
narrower and wider image crops, thus leading to a total of 120 analyses per bar. Similar to
the pole-white bar comparison, we first compute the MAE against known bar lengths to
identify the optimal number of segmentation classes and then apply the filtering procedure.

When filtering image-based water levels, a moving average with window width set to
three is computed and subtracted from raw data. Outliers are identified by first computing
the absolute difference between moving average and raw values. Records whose difference
exceeds the 90% quantile are defined outliers. Such data are removed and replaced with
inputs obtained through linear interpolation between values acquired at the previous
and subsequent time steps. The value of the window width is chosen to maximize the
difference between raw and averaged data only on those records that are strongly over-
or underestimated. This minimizes the difference between raw and average data close to
errors, and thus, values immediately before and after outliers fall within the 90% quantile
and are not removed. MAEs are again computed on filtered records.

2.4. Data Validation

The intermittent nature of the stream prevented the use of classical measurement
equipment to independently estimate water level. In particular, a pressure transducer
with a stilling well was installed at a nearby cross-section but unfortunately resulted in
unrealistic water levels. Therefore, in this work, we only validate the accuracy of the
automated image-based procedure by comparing unsupervised water level estimations
to those obtained by manually inspecting the image sequences. For each experimental
test, image sequences are visually analyzed, picture by picture, and the pole/bars–water
interface (yint) identified by eye. The uppermost end of the pole/bars (ytop) is determined
once for each image sequence, and the actual pole length is estimated from |ytop − yint|.
Water levels are computed by subtracting this actual length from the pole’s a priori known
total length. The length in pixels is computed from the pixel-to-metric conversion coefficient
obtained from in situ image calibration.

3. Results and Discussion
3.1. Pole versus White Bar: Water Level Detection

Water level estimations for experimental tests E1, E5, E6, and E7 for both the pole and
the white bar are displayed in Figure 2. In all graphs, raw and filtered records are compared
to benchmark data from the visual inspection of pictures. Light gray bars highlight data
estimated from NIR images. These are most frequently taken at night, however, at dusk
and dawn, when light conditions can be highly variable, the camera can autonomously
activate the RGB and NIR sensors, thus resulting in a variable number of frames taken in
the NIR/RGB channels.

The image analysis procedure satisfactorily estimates water levels in complex light
and rain conditions, spanning from the absence of rain (and almost constant water levels,
E1), up to heavy rain and moderate flood conditions (E6 and E7). For experiments E5, E6,
and E7, we display examples of images that led to large deviations from the benchmark
in Figure 3.

The filtering procedure markedly enhances water level estimations, especially in case
of the pole, see Figure 2. White bar-based observations are slightly more accurate than the
pole in daylight conditions, while they are more critical at night (light gray bars) or at the
transition from day to night (see, for instance, the left graphs for E1, E5, and E6). Thus,
records obtained with the white bar are globally less accurate than the pole. Conversely,
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pole-based data show higher inaccuracy in daylight conditions (see, for instance, the left
graphs for E1 and E6).
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Figure 2. Unfiltered (left) and filtered (right) water levels computed from the pole and the white bar
for experimental tests E1 and E5–E7. Benchmark water levels are in green markers and transparent
black; pole unfiltered and filtered in dashed and solid blue, respectively; and white bar unfiltered
and filtered in dashed and solid red, respectively. Light gray vertical bars indicate NIR frames.

3.2. Pole versus White Bar: Optimal Parameter Settings

Heatmaps for all MAE values are depicted in Figure 4, where raw water levels are
compared to benchmark values for pole (left) and white bar (right) images. In the top row
of Figure 4, the illustrated values are obtained from RGB images, whereas in the bottom row,
data from NIR pictures are reported. In absolute terms, white bar data are slightly more
accurate than pole data in 5 out of the 7 experiments for images taken in the day. Conversely,
at night, pole images result in much lower MAEs than the white bar. Both the pole and the
white bar tend to improve estimations when a small number of segmentation classes are set
for all the experimental tests and the images are taken in daylight. An opposite behavior is
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instead found for data relative to white bar images taken at night, where low MAE values
tend to be clustered towards a high number of segmentation classes.

Figure 3. Examples of good-quality (left) and poor-quality (right) images taken during experiments
E5–E7 (from top to bottom). Right-side pictures led to large deviations from the benchmark.

The optimal number of segmentation classes for RGB (TRGB) and NIR (TNIR) images
are reported in Table 4 for both the pole and the white bar.

Finally, the identified optimal numbers of segmentation classes is used to estimate the
MAE between filtered and a priori known pole/white bar lengths as reported in Table 5.
Such data are computed from the entire sequence of RGB and NIR images collected during
each experimental test, whereby the optimal number of segmentation classes identified in
Table 4 is applied.
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Figure 4. Mean absolute error (MAE) in mm between unfiltered and a priori known pole/white bar
lengths for all experimental tests (E1 to E7). Left side heatmaps show values estimated from images
of the pole in RGB (top) and NIR (bottom). Right side heatmaps show values estimated from images
of the white bar in RGB (top) and NIR (bottom). Values are reported for all segmentation classes
(T1 to T6).

Table 4. Optimal number of segmentation classes for RGB (TRGB) and NIR (TNIR) images.

Test Pole White Bar

TRGB TNIR TRGB TNIR
E1 1 2 2 6
E2 1 1 1 6
E3 1 3 2 6
E4 1 2 1 5
E5 1 3 1 6
E6 1 3 1 6
E7 1 3 2 6
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Table 5. MAE in mm between filtered and benchmark lengths estimated from the entire sequence of
RGB and NIR images for the pole and white bar.

Test Pole White Bar

mm mm
E1 4.4 11.4
E2 9.3 13.7
E3 2.6 11.2
E4 3.0 6.7
E5 3.8 15.8
E6 5.8 9.8
E7 3.7 8.9

3.3. White versus Colored Bar: Narrow Image Crop

In this set of analyses, water levels estimated from images of the white bar are com-
pared to records obtained from pictures of the nearby red and blue bars. All images are
cropped within the bars (narrow crop) to minimize the effects induced by an irregular back-
ground and light. As we follow four gray-scale conversion modalities for each bar image
sequence, our analyses not only aim at identifying the optimal number of segmentation
classes but also the best tonal conversion mode. We first show the results for the parametric
analysis aimed at identifying such optimal number of segmentation classes and gray-scale
conversion mode. Then, we illustrate raw and filtered against benchmark water levels for a
representative experimental test and selected the gray-scale conversion modes.

3.3.1. Optimal Parameter Settings

MAE values between image-based and a priori known bar lengths are reported in
Figure 5 for experimental tests E6 and E7. Results are reported as heatmaps for the blue
(top), red (middle), and white (bottom) bars, respectively. In each heatmap, the top four
rows indicate findings obtained for RGB images treated with different gray-scale conversion
modalities (luminance, red, green, and blue channels), whereby the last row pertains to
NIR images. MAE values for the bars tend to be on a consistent order of magnitude within
each experimental test (see the color bars), with higher values for experiment E6 than E7.
Generally, estimations from the white bar tend to be more accurate (lower MAEs) than
from colored bars.

Based on Figure 5, the optimal combinations of gray-scale conversion modality and
number of segmentation classes are illustrated in Table 6. Similar to the experimental
comparisons between the white bar and the pole, segmentation classes for the white bar
tend to be higher for NIR images than RGB. The blue and red bars, instead, all exhibit a
low number of TRGB and TNIR.

Table 6. Optimal combinations of gray-scale conversion modality (red, green, and blue channel, ch.)
and number of segmentation classes (TRGB and TNIR for RGB and NIR, respectively) for each bar
(blue, red, and white) and experimental test (E6 and E7). Images are treated with the narrow crop.

Bar E6 E7

TRGB TNIR TRGB TNIR
Blue Red Ch. − 1 1 Blue Ch. − 1 2
Red Green Ch. − 1 1 Red Ch. − 1 2

White Blue Ch. − 1 4 Blue Ch. − 1 6

MAE values between estimated and benchmark bar lengths pertaining to the optimal
combinations in Table 6, are reported in Table 7. While experiment E6 results in higher
discrepancies with respect to the actual bar lengths, most likely due to more adverse
climatic conditions and poorer image quality, the lowest values are found for the white bar.
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Figure 5. Mean absolute error (MAE) in mm between unfiltered and a priori known bar lengths for all
experimental tests (E6, left, and E7, right) treated with the narrow image crop. From top to bottom,
heatmaps show MAE values estimated from images of the blue (top), red (middle), and white
(bottom) bars. In each heatmap, rows indicate MAEs obtained for different color channels: the top
four rows report values for RGB images processed through four gray-scale conversion modalities
(luminance, red, green, and blue channels). The bottom row refers to values for NIR images. Values
are reported for all segmentation classes (T1 to T6).

Table 7. MAE in mm between benchmark and filtered lengths estimated from the entire sequence of
RGB and NIR images of the colored and white bars treated with the narrow crop.

Bar E6 E7

MAE MAE
mm mm

Blue 11.8 4.5
Red 7.0 5.6

White 7.0 3.9

3.3.2. Water Level Detection

Water level estimations for experimental test E6 and for images of the three bars
treated with the narrow crop are displayed in Figure 6. For each bar (top: blue, middle:
red, bottom: white), the gray-scale conversion mode resulting in the lowest MAE value
(as reported in Figure 5 and Table 6) is selected. Graphs on the left-hand side display
unfiltered and on the right-hand side filtered records, respectively, compared to benchmark
data (solid black) from visual inspection of pictures. Light gray vertical bars highlight data
estimated from NIR images at night.

Experimental findings confirm that the filtering procedure is successful at remov-
ing unrealistic peaks eventually detected with the image analysis procedure. However,
data from the blue and red bars are overall less accurate (filtered records still display
several peaks) than from the white bar. Observations of the blue bar typically lead to
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over-estimations of the water level during the day, whereas the red bar shows smaller
underestimations. The white bar, even if it shows several inaccuracies during the day,
exhibits smaller outliers than the colored ones in filtered data.
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Figure 6. Raw (left) and filtered (right) water levels computed from the bars (top: blue, middle:
red, bottom: white) for experimental test E6. Benchmark water levels are in green markers and
transparent black; bar raw and filtered in dashed and solid red, respectively. Light gray vertical bars
indicate NIR frames. Images are treated with the narrow image crop.

3.4. White versus Colored Bar: Large Image Crop

Consistently with the narrow crop images, herein, we report results for the parametric
analysis aimed at selecting the optimal number of segmentation classes along with the gray-
conversion mode. Then, we show raw and filtered against benchmark data for experimental
test E6 and the best (with lowest MAE values) gray-scale conversion modes.

3.4.1. Optimal Parameter Settings

MAE values between image-based and a priori known bar lengths for experimental
tests E6 and E7 and the large image crop are reported in Figure 7. MAE values for the
colored bars (top and middle heatmaps) are much higher than the white bar for both
experiments E6 and E7. This is evident for RGB images (the top four rows in each heatmap).
Generally, estimations for experimental test E7 are more accurate than for E6.

Based on Figure 7, the optimal combinations of gray-scale conversion modality and
number of segmentation classes are illustrated in Table 8. Segmentation classes for the
white bar tend to be higher both for RGB and NIR images than the colored bars. Compared
to data for the narrow crop, the best gray-scale conversion mode is the extraction of the
blue channels for images of the white bar. Consideration of the green and red channels is
the best choice for images of the red bar treated with both the narrow and large crops. RGB
and NIR images of the blue bar treated with the large crop are consistently enhanced when
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the blue channel is selected, whereas, in the narrow crop, the red channel is best for the
RGB and the blue for the NIR pictures.
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Figure 7. Mean absolute error (MAE) in mm between unfiltered and a priori known bar lengths for
all experimental tests (E6, left, and E7, right) treated with the large image crop. From top to bottom,
heatmaps show MAE values estimated from images of the blue (top), red (middle), and white
(bottom) bars. In each heatmap, rows indicate MAEs obtained for different color channels: the top
four rows report values for RGB images processed through four gray-scale conversion modalities
(luminance, red, green, and blue channels). The bottom row refers to values for the NIR images.
Values are reported for all the segmentation classes (T1 to T6).

Table 8. Optimal combinations of gray-scale conversion modality (red, green, and blue channel, ch.)
and number of segmentation classes (TRGB and TNIR for RGB and NIR, respectively) for each bar
(blue, red, and white) and experimental test (E6 and E7). Images are treated with the large crop.

Bar E6 E7

TRGB TNIR TRGB TNIR
Blue Blue Ch. − 1 2 Blue Ch. − 1 4
Red Green Ch. − 5 2 Red Ch. − 1 2

White Blue Ch. − 1 6 Blue Ch. − 2 6

MAE values between estimated and benchmark bar lengths pertaining to the optimal
combinations in Table 8, are reported in Table 9. Experiment E6 still results in higher
discrepancies with respect to the actual bar lengths. The lowest MAE values tend to be
found for the white bar. In E7, the blue bar leads to MAE values slightly lower than the
white bar.

3.4.2. Water Level Detection

Water level estimations for experimental test E6 for images of the three bars treated
with the large crop are displayed in Figure 8. For each bar (top: blue, middle: red, bottom:
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white), the gray-scale conversion mode resulting in the lowest MAE value (as reported
in Figure 8 and Table 8) is selected. Graphs on the left-hand side display raw and on the
right-hand side filtered records, respectively, compared to benchmark data (solid black).
Light gray vertical bars highlight data estimated from NIR images at night.

Table 9. MAE in mm between benchmark and filtered lengths estimated from the entire sequence of
RGB and NIR images of the colored and white bars treated with the large crop.

Bar E6 E7

MAE MAE
mm mm

Blue 17.9 8.6
Red 11.2 9.9

White 8.6 8.9

Data obtained with the large image crop are generally in agreement with those com-
puted with the narrow image crop (as elicited by the comparison of Figures 5–8). Specifically,
the filtering procedure effectively reduces the number of outlying peaks in all bars. How-
ever, the blue bar suffers from significant overestimations in the water levels during the
day. Observations of the red bar systematically underestimate water levels in daylight
conditions. Finally, filtered records from the white bar are in closer agreement with the
benchmark, except for underestimations during the night-time images of the flood event.
Treating images with the large crop generally results in less accurate MAEs, as indicated by
the comparison of Tables 7 and 9.
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Figure 8. Raw (left) and filtered (right) water levels computed from the bars (top: blue, middle:
red, bottom: white) for experimental test E6. Benchmark water levels are in green markers and
transparent black; bar raw and filtered in dashed and solid red, respectively. Light gray vertical bars
indicate NIR frames. Images are treated with the large image crop.
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4. Conclusions

Our experimental findings confirm that a simple setup, comprising a commercial
wildlife camera and a pole, can be efficiently used to monitor the water level in IRES
with a robust image analysis procedure that relies on minimal a priori information on the
setup itself. In spite of some inaccuracies, this setup leads to a good agreement between
image-based and visually estimated records in a broad set of experimental conditions,
including diffused and scattered sunlight and heavy rainfall.

In this work, we compare the simple setup with the pole to a broader target (white bar)
and to larger bars of different colors. This study is motivated by the need to enhance the
target visibility in complex light and rain conditions while maintaining the simplicity of
the image analysis algorithm. Our results demonstrate that:

• From the point of view of target visibility and detection by the algorithm, the broader
white bar represents an advantage, since it leads to lower MAE values for images
taken in daylight conditions. However, the opposite occurs at night, when the width
of the bar increases the mirroring effect, thus yielding an overestimation of the target
length. Globally, the thin pole remains the best option compared to the broader
white bar. Both in the absence of rainfall and during a moderate flood, images of the
pole can be used to accurately estimate the water level with minimal inaccuracies in
challenging images;

• The use of broad bars painted in primary colors is not necessarily beneficial for
facilitating water level detection. In most cases, water levels estimated with the blue
and red bars are less accurate or in line with those of the white bar. However, images
of the colored bars tend to be more negatively affected by daylight;

• The procedure developed in this work for identifying optimal parameter settings
demonstrates that the image analysis procedure can indeed be optimized based on a
diverse array of experimental conditions. Namely, the number of segmentation classes
should generally be lower for processing RGB than NIR images both for the pole and
the bars.

Our analyses also show that images treated with a large crop, which includes part
of the background in addition to the sole target, lead to less accurate water levels than
in case of a narrow crop. This is especially true when the background is highly irregular
and dishomogeneous, and can be tackled by opportunely setting the trimming parameters
before processing with the image analysis algorithm. With regards to the gray-scale
conversion mode, selecting the blue channel generally proves to be beneficial compared to
the alternative red, green, and luminance channel extraction.

Additional parameters that may influence the accuracy of water level estimations
include the width of the trimming (in case the large crop option is selected) and dealing with
waters of diverse turbidity. Regarding the extension of the trimming, we have conducted
further experimental tests with the pole and the white bar (not reported in this work).
These show that, while minimal ameliorations can be obtained with the white bar, the pole
can be almost always used to successfully detect the water level. A similar behavior is also
observed on the effects of clear vs. turbid waters: in some cases the white bar outperforms
the pole but the results are not significant nor robust.

In conclusion, our results suggest that a simple pole-based setup is to be favored to
more complex implementations. A future effort may encompass the optimization of the
image analysis algorithm to fully enhance the proposed methodology and facilitate water
level estimations even in challenging daylight conditions. Further, consolidating the exper-
imental setup in an autonomous and unsupervised platform with remote communication
capability is a necessary step forward towards a deeper comprehension of IRES dynamics.
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