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Abstract. We show that a number of pullback diagrams appear naturally in the study of pre-
ordered Grothendieck groups. The passage of projective modules from a ring R to a factor ring
R=I turns out to be particularly good for a certain class of ideals, which we call almost trace
ideals. We generalize to arbitrary rings a result by Goodearl concerning the lattice of the di-
rected convex subgroups of K0ðRÞ. Finally, we show that a variant K 0

0ðIÞ of the Grothendieck
group of I , introduced by Quillen, has an easy description in terms of projective modules when
I is an almost trace ideal.

2000 Mathematics Subject Classification: 16E20; 06F20, 19A49.

1 Introduction

In this paper we show that pullbacks of monoids appear very frequently in the study
of the pre-ordered stucture of the Grothendieck group K0ðRÞ. For instance, let R be
a ring with Jacobson radical JðRÞ and VðRÞ the monoid of finitely generated pro-
jective R-modules up to isomorphism, with the operation induced by direct sum. The
Grothendieck group K0ðRÞ is the universal enveloping group of VðRÞ, and the pre-
order on K0ðRÞ has the image of the universal mapping cR : VðRÞ ! K0ðRÞ as its
positive cone. We prove that the canonical projection p : R ! R=JðRÞ induces a
pullback diagram
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VðRÞ ���!VðpÞ
VðR=JðRÞÞ

cR

???y
???ycR=JðRÞ

K0ðRÞ ���!K0ðpÞ
K0ðR=JðRÞÞ:

We show that a lot of other pullback diagrams appear naturally in pre-ordered
Grothendieck groups.

Trace induces a one-to-one correspondence between prime ideals P of the com-
mutative monoid VðRÞ and trace ideals I of the ring R, so that operations in the
monoids VðRÞ, like localization VðRÞP with respect to a prime ideal P or reduced
localization ðVðRÞPÞred, can be interpreted in terms of projective R=I -modules [8,
Theorem 2.2]. Every ideal I of R contains a greatest trace ideal TrðIÞ, and we say
that a two-sided ideal I is an almost trace ideal if I=TrðIÞ is contained in the Ja-
cobson radical of R=TrðIÞ. For an almost trace ideal I of R, the natural map
VðRÞ ! VðR=IÞ factors through ðVðRÞPÞred, where P corresponds to TrðIÞ in the
above mentioned bijection, and the corresponding map ðVðRÞPÞred ! VðR=IÞ is in-
jective and induces a pull-back as above (Proposition 5.3; also see Proposition 5.7).
Injective monoid homomorphisms that induce a pullback yield order-embeddings of
Grothendieck groups (Lemma 6.1).

Using our results, we show that, for any almost trace ideal I , the natural map
K0ðRÞ ! K0ðR=IÞ factors through an order-embedding GððVðRÞPÞredÞ ! K0ðR=IÞ.
Moreover, we get an exact sequence of groups

GðVðIÞÞ ! K0ðRÞ ! GððVðRÞPÞredÞ ! 0

where VðIÞ is the monoid defined by the finitely generated projective R-modules AR

such that A ¼ AI . In Section 7, the group GðVðIÞÞ is compared with both the Gro-
thendieck group K0ðIÞ [19] and its variant K 0

0ðIÞ defined by Quillen in [17]. We show
that the groups K 0

0ðIÞ and GðVðIÞÞ are canonically isomorphic for every almost trace
ideal I and that K0ðIÞ and GðVðIÞÞ are isomorphic when I is a trace ideal.

We also apply pullbacks of monoids and almost trace ideals to describe directed
subgroups of K0ðRÞ. Generalizing a result of Goodearl [11, Theorem 15.20], we show
that there is an order-preserving one-to-one correspondence between the set of di-
rected convex subgroups of K0ðRÞ and a suitable set of trace ideals of R.

2 Notations and preliminaries

All rings of this paper are assumed to be associative rings with identity, and all
modules are right unital modules. All our monoids are commutative additive mono-
ids, that is, commutative additive semigroups with a zero element. Let M be a (com-
mutative additive) monoid. We denote by UðMÞ the subgroup of M consisting of
all elements a A M with an additive inverse �a in M, and we call M reduced if
UðMÞ ¼ f0g. For a monoid M, we denote by Mred the factor monoid M=UðMÞ,
whose elements are all cosets x þ UðMÞ with x A M. The monoid Mred is obviously a
reduced monoid.
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Let R be a ring with identity. We shall denote by proj-R both the class of all finitely
generated projective right R-modules and the full subcategory of Mod-R whose ob-
jects are all finitely generated projective right R-modules. For every ring R under
consideration, we fix a set VðRÞ of representatives up to isomorphism of the finitely
generated projective right R-modules. Thus it is possible to associate to every module
AR A proj-R a unique module hARi A VðRÞ isomorphic to AR, and for all AR;BR A
proj-R, AR GBR if and only if hARi ¼ hBRi. The set VðRÞ is a commutative mon-
oid under the addition defined by hARiþ hBRi ¼ hAR lBRi for all hARi; hBRi A
VðRÞ. The monoid VðRÞ can also be viewed in an informal way as the monoid whose
elements are the isomorphism classes hARi of the modules AR A proj-R, but if we
look at VðRÞ in this way, the elements hARi of VðRÞ are not sets, and thus VðRÞ is
not a set by Zermelo’s Sum Axiom (Union Axiom) of General Set Theory (‘‘for any
set S there exists the set whose elements are the elements of the elements of S ’’). To
avoid this set theoretical di‰culty, we have preferred not to introduce VðRÞ as the
class whose elements are the isomorphism classes of finitely generated projective
modules, but to think of VðRÞ as a fixed set of representatives of proj-R up to iso-
morphism.

Any ring homomorphism f : R ! S induces a monoid homomorphism Vð f Þ :
VðRÞ ! VðSÞ defined by Vð f Þ : hARi 7! hAnR Si for all hARi A VðRÞ. Thus
Vð�Þ is a functor from the category of rings with identity to the category of com-
mutative monoids.

Clearly, the monoid VðRÞ describes all direct sum decompositions of finitely gen-
erated projective right R-modules up to isomorphism, in the sense that to every de-
composition of a projective module AR A proj-R as a direct sum of finitely many
submodules there corresponds a decomposition of the element hARi of the monoid
VðRÞ as a sum of elements of VðRÞ, and two direct sum decompositions of AR are
isomorphic in the sense of the Krull-Schmidt theorem if and only if they correspond
to the same sum decomposition of hARi in the monoid VðRÞ, up to the order of the
summands.

In particular, if we want to describe all direct sum decompositions of the module
RR, the convenient structure to consider over VðRÞ is the structure of commutative
monoid with order-unit, which is defined as follows. Recall that there is a natural pre-
order (¼ reflexive and transitive relation) on any commutative additive monoid M,
defined by xa y if there exists z A M such that x þ z ¼ y. We shall call this pre-order
aon M the algebraic pre-order on M. An element u of M is an order-unit if for every
x A M there exists a positive integer n such that xa nu. The category of commutative
monoids with order-unit is defined as follows. Its objects are the pairs ðM; uÞ, where
M is a commutative monoid and u A M is an order-unit. The morphisms j :
ðM; uÞ ! ðM 0; u 0Þ are the monoid homomorphisms j : M ! M 0 such that jðuÞ ¼ u 0.
For instance, for every ring R the element hRRi is an order-unit in the monoid VðRÞ,
and there is a functor from the category of rings with identity to the category of
commutative monoids with order-unit that associates to each ring R the commutative
monoid with order-unit ðVðRÞ; hRRiÞ. The monoid with order-unit ðVðRÞ; hRRiÞ
describes all direct sum decompositions of the module RR up to isomorphism.

More generally, let MS be a right module over an arbitrary ring S, let addðMSÞ be
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the full subcategory of Mod-S whose objects are all modules isomorphic to direct
summands of direct sums M n of finitely many copies of M, and let R ¼ EndðMSÞ.
The functors HomSðMS;�Þ : Mod-S ! Mod-R and �nR MS : Mod-R ! Mod-S
induce a category equivalence between the categories addðMSÞ and proj-R [7, Theo-
rem 4.7]. Under this equivalence, MS corresponds to RR, and direct sum decom-
positions of MS correspond to direct sum decompositions of RR. As in the case of
VðRÞ, we fix a set VðaddðMSÞÞ of representatives of the modules in addðMSÞ up to
isomorphism. Then VðaddðMSÞÞ becomes a commutative monoid with order-unit
hMSi isomorphic to the monoid with order-unit ðVðRÞ; hRRiÞ. Thus all direct sum
decompositions of a module MS are described by the monoid with order-unit
ðVðRÞ; hRRiÞ for R the endomorphism ring EndðMSÞ of MS.

A submonoid M 0 of a monoid M is said to be divisor-closed if x A M, y A M 0 and
xa y in M implies x A M 0. Divisor-closed submonoids of M have also been called
order-ideals (or o-ideals) in a number of places (e.g. [4]). A prime ideal of a monoid M

is a proper subset P of M such that MnP is a divisor-closed submonoid; that is, for
any x; y A M one has x þ y A P if and only if either x A P or y A P. It is easy to see
that the prime ideals of a commutative monoid M are exactly the subsets P of M for
which there exists a homomorphism j of M into a reduced monoid N with P ¼
fx A M j jðxÞ0 0g. Equivalently, the prime ideals of a monoid M are exactly the
subsets P of M for which there exists a congruence@on M with M=@ reduced and
P ¼ fx A M j xS 0g. Notice that the union of any family of prime ideals of a com-
mutative monoid M is a prime ideal, so that the set SpecðMÞ of all prime ideals of
M, partially ordered by set inclusion, is a complete lattice whose greatest element is
the prime ideal MnUðMÞ and whose least element is the empty ideal j. By passing
to the complements, we can consider the complete lattice DcðMÞ of all divisor-closed
submonoids of M. In this lattice DcðMÞ, the greatest element is M and the least ele-
ment is UðMÞ. If P is a prime ideal of M, then the localization MP of M at P is the
monoid whose elements are all formal di¤erences x � s with x A M and s A MnP,
and in which we define x � s ¼ x 0 � s 0, for all x; x 0 A M and s; s 0 A MnP, if and only if
there exists t A MnP such that x þ s 0 þ t ¼ x 0 þ s þ t [13, §4]. The monoid ðMPÞred ¼
MP=UðMPÞ is called the reduced localization of M at P. If x; x 0 A M and s; s 0 A MnP,
then x � s þ UðMPÞ ¼ x 0 � s 0 þ UðMPÞ in ðMPÞred if and only if there exist elements
t; t 0 A MnP such that x þ t ¼ x 0 þ t 0. Notice that the canonical homomorphism
j : M ! ðMPÞred, defined by x 7! x � 0 þ UðMPÞ, is surjective. The reduced local-
ization ðMPÞred was denoted by M=S, where S is the complement of P in M, in the
paper [4].

3 The Grothendieck group

The localization Mj of M at its empty prime ideal j is an abelian group, which is
usually called the Grothendieck group of M, or the group of di¤erences of M, and
denoted by GðMÞ. There is a canonical monoid homomorphism cM : M ! GðMÞ,
and Gð�Þ turns out to be a functor of the category of commutative monoids into the
category of abelian groups. The Grothendieck group GðVðRÞÞ is usually denoted
K0ðRÞ. For any projective R-module AR, we shall denote by ½AR� the image of hARi
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via the homomorphism cVðRÞ : VðRÞ ! K0ðRÞ, and usually write cR instead of cVðRÞ.
For every AR;BR A proj-R, we have ½AR� ¼ ½BR� if and only if AR and BR are stably

isomorphic, that is, AR lRn
R GBR lRn

R for some integer nb 0. Then K0ðRÞ ¼
f½AR� � ½BR� jAR;BR A proj-Rg. Any ring homomorphism f : R ! S induces an abe-
lian group homomorphism K0ð f Þ : K0ðRÞ! K0ðSÞ defined by K0ð f Þ : ½AR� � ½BR� 7!
½AnR S � � ½BnR S �. Thus K0ð�Þ turns out to be a functor from the category of rings
with identity to the category of abelian groups.

There is a one-to-one correspondence between the submonoids M of an abelian
group G and the translation-invariant pre-orders a on G [10]. If G is an abelian
group with a translation-invariant pre-order a, an order-unit in G is an element
u A G, ub 0, such that for every x A G there exists a positive integer n with xa nu.
For any ring R, there is a canonical translation-invariant pre-order on K0ðRÞ whose
positive cone is K0ðRÞþ ¼ f½AR� jAR A proj-Rg. Relatively to this pre-order, ½RR�
turns out to be an order-unit in K0ðRÞ. If F is the forgetful functor from the category
of abelian groups to the category of commutative monoids, then both Vð�Þ and
F � K0ð�Þ are functors from rings to commutative monoids. For every ring homo-
morphism f : R ! S the diagram

VðRÞ ���!Vð f Þ
VðSÞ

cR

???y
???ycS

K0ðRÞ ���!K0ð f Þ
K0ðSÞ

is commutative. Thus the homomorphisms cR : VðRÞ ! K0ðRÞ define a natural
transformation from the functor Vð�Þ to the functor F � K0ð�Þ.

We have already remarked that the monoid VðRÞ is the algebraic object that de-
scribes the direct sum decompositions of the finitely generated projective R-modules,
and that the monoid with order-unit ðVðRÞ; hRRiÞ describes the direct sum decom-
positions of the R-module RR or, more generally, the direct sum decompositions of
any right module MS with RGEndðMSÞ. The abelian group K0ðRÞ does not have
a similar property. For instance, when the monoid VðRÞ is not cancellative, most
information about direct sum decompositions is lost in the passage from VðRÞ to
K0ðRÞ. Even when VðRÞ is cancellative, the monoid VðRÞ contains information that
is lost in K0ðRÞ. For instance, if R is semilocal, then VðRÞ can be any finitely gen-
erated Krull monoid, while K0ðRÞ is a free abelian group, that is, K0ðRÞ is iso-
morphic to Zn for some n, and this is not su‰cient to faithfully describe the wealth of
behaviors that direct sum decompositions of finitely generated projective modules
can have in this case [9]. To remedy this di‰culty, it is necessary to consider not only
the abelian group structure on K0ðRÞ, but also its structure of pre-ordered abelian
group. This is because the category of commutative cancellative monoids is equiva-
lent to the category of directed pre-ordered abelian groups, and the category of com-
mutative cancellative monoids with order-unit is equivalent to the category of di-
rected pre-ordered abelian groups with order-unit. (Recall that a pre-ordered abelian
group G is a directed group in case G ¼ Gþ � Gþ.)

Our first result describes the relation between the monoid VðRÞ, the abelian group
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K0ðRÞ, and the reduction modulo the Jacobson radical JðRÞ. The relation is in terms
of pullbacks. Notice that if

ð1Þ

M 0???yc

M ���!j M 00

are homomorphisms of commutative monoids (or of commutative monoids with
order-unit), then the pullbacks of diagram (1) in the category of sets and in the cate-
gory of monoids (or in the category of commutative monoids with order-unit) coin-
cide. They are in one-to-one correspondence with the subset (isomorphic to the sub-
monoid, submonoid with order-unit) of the product M � M 0 whose elements are all
the pairs ðx; x 0Þ with x A M, x 0 A M 0 and jðxÞ ¼ cðx 0Þ.

Theorem 3.1. Let R be a ring, JðRÞ its Jacobson radical, and p : R ! R=JðRÞ the ca-

nonical projection. Then the commutative diagram

ð2Þ
VðRÞ ���!VðpÞ

VðR=JðRÞÞ

cR

???y
???ycR=JðRÞ

K0ðRÞ ���!K0ðpÞ
K0ðR=JðRÞÞ

is a pullback of monoids.

Proof. We must prove that, for every pair ð½AR� � ½BR�; hCR=JðRÞiÞ of elements
½AR� � ½BR� A K0ðRÞ and hCR=JðRÞi A VðR=JðRÞÞ with ½A=AJðRÞ� � ½B=BJðRÞ� ¼
½CR=JðRÞ� in K0ðR=JðRÞÞ, there exists a unique hXRi A VðRÞ such that ½XR� ¼
½AR� � ½BR� and hX=XJðRÞi ¼ hCR=JðRÞi. From ½A=AJðRÞ� � ½B=BJðRÞ� ¼ ½CR=JðRÞ�,
we obtain that there exists nb 0 such that A=AJðRÞl ðR=JðRÞÞn GB=BJðRÞl
CR=JðRÞ l ðR=JðRÞÞn. Replacing A with AlRn and B with BlRn, we can assume
that A=AJðRÞGB=BJðRÞlCR=JðRÞ.

Let a : A=AJðRÞ ! B=BJðRÞlCR=JðRÞ be an isomorphism and pA : AR !
A=AJðRÞ, pB : BR ! B=BJðRÞ and p : B=BJðRÞlCR=JðRÞ ! B=BJðRÞ the canoni-
cal projections. As AR is projective, the mapping papA : AR ! B=BJðRÞ factors
through pB, that is, there exists h : AR ! BR such that pBh ¼ papA. In particular,
pBh is epic. As the kernel of pB is superfluous, it follows that h also is epic. Thus
h splits, that is, there is a direct sum decomposition AR ¼ XR lER such that the
restriction of h to XR is zero and the restriction of h to ER is an isomorphism of
ER onto BR. Notice that AR ¼ XR lER GXR lBR, so that ½XR� ¼ ½AR� � ½BR�. If
h : A=AJðRÞ ! B=BJðRÞ denotes the mapping induced by h modulo the Jacobson
radical, the identity pBh ¼ papA implies that h ¼ pa. Moreover, there is a direct sum
decomposition A=AJðRÞ ¼ X=XJðRÞlE=EJðRÞ such that the restriction of h to
X=XJðRÞ is zero and the restriction of h to E=EJðRÞ is an isomorphism of E=EJðRÞ
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onto B=BJðRÞ. Thus ker h ¼ X=XJðRÞ. As kerðpaÞGCR=JðRÞ, it follows that
X=XJðRÞGCR=JðRÞ. Hence XR is a projective R-module with the desired properties.

In order to prove that XR is the unique finitely generated projective R-module with
the required properties up to isomorphism, notice that the condition hX=XJðRÞi ¼
hCR=JðRÞi implies that XR must be isomorphic to the projective cover of CR=JðRÞ
viewed as an R-module. The uniqueness of XR now follows from the uniqueness of
projective covers. r

Thus, by Theorem 3.1, the monoid homomorphism cR=JðRÞ : VðR=JðRÞÞ !
K0ðR=JðRÞÞ and the abelian group homomorphism K0ðpÞ : K0ðRÞ ! K0ðR=JðRÞÞ
completely determine the monoid VðRÞ. Notice that all the morphisms in the com-
mutative square (2) are morphisms of monoids with order-unit, so that (2) is a pull-
back in the category of commutative monoids with order-unit as well.

4 Pullbacks of monoids

Motivated by Theorem 3.1, we give the following definition.

Definition 4.1. We shall say that a homomorphism of monoids j : M ! M 0 induces a

pullback if the associated commutative diagram

ð3Þ
M ���!j M 0

cM

???y
???ycM 0

GðMÞ ���!GðjÞ
GðM 0Þ

is a pullback of monoids.

In this terminology, Theorem 3.1 says that for every ring R the monoid homo-
morphism VðpÞ : VðRÞ ! VðR=JðRÞÞ, obtained applying the functor Vð�Þ to the
canonical projection p : R ! R=JðRÞ, induces a pullback.

It is obviously possible to give a characterization of the monoid homomorphisms
j : M ! M 0 that induce a pullback. This is done in the following elementary
Lemma.

Lemma 4.2. A monoid homomorphism j : M ! M 0 induces a pullback if and only if

for every x; y A M and every x 0; y 0 A M 0 such that jðxÞ þ x 0 þ y 0 ¼ jðyÞ þ y 0 there

exists a unique element t A M satisfying both the following conditions:

(a) jðtÞ ¼ x 0;
(b) there exists z A M such that x þ t þ z ¼ y þ z.

Proof. Assume that (3) is a pullback. Let x; y A M and x 0; y 0 A M 0 be elements such
that jðxÞ þ x 0 þ y 0 ¼ jðyÞ þ y 0. Then cM 0 ðx 0Þ ¼ GðjÞð½y� � ½x�Þ and so, by the pull-
back property, there is a unique t A M such that jðtÞ ¼ x 0 and cMðtÞ ¼ cMðyÞ�
cMðxÞ. But cMðtÞ ¼ cMðyÞ � cMðxÞ if and only if cMðx þ tÞ ¼ cMðyÞ, if and only if
there exists z A M with y þ z ¼ x þ t þ z.
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Conversely, assume that cMðyÞ � cMðxÞ A GðMÞ and let x 0 A M 0 be such that
GðjÞðcMðyÞ � cMðxÞÞ ¼ cM 0 ðx 0Þ in GðM 0Þ. Then cM 0 ðjðxÞ þ x 0Þ ¼ cM 0 ðjðyÞÞ, so
that there is y 0 A M 0 with jðxÞ þ x 0 þ y 0 ¼ jðyÞ þ y 0. By hypothesis, there is a
unique t A M such that jðtÞ ¼ x 0 and there exists z A M such that x þ t þ z ¼ y þ z,
that is, cMðx þ tÞ ¼ cMðyÞ. Equivalently, there is a unique t A M such that jðtÞ ¼ x 0

and cMðtÞ ¼ cMðyÞ � cMðxÞ. Thus diagram (3) is a pullback. r

The characterization of Lemma 4.2 can be improved in the case in which j : M ! M 0

is a homomorphism of monoids with jðMÞ cofinal in M 0 (that is, for every w 0 A M 0

there exists w A M with w 0 a jðwÞ in M 0). For instance, if j : M ! M 0 is a homo-
morphism of monoids with order-unit, then jðMÞ is cofinal in M 0.

Theorem 4.3. Let j : M ! M 0 be a homomorphism of monoids and suppose that jðMÞ
is cofinal in M 0. Then j : M ! M 0 induces a pullback if and only if for every x; y A M

and every x 0 A M 0 such that jðxÞ þ x 0 ¼ jðyÞ, there exists a unique element t A M such

that jðtÞ ¼ x 0 and x þ t ¼ y.

Proof. Assume that (3) is a pullback. Let x; y A M and x 0 A M 0 be elements such that
jðxÞ þ x 0 ¼ jðyÞ. By Lemma 4.2 (applied with y 0 ¼ 0), there exists at most one ele-
ment t A M satisfying the two conditions jðtÞ ¼ x 0 and x þ t ¼ y. This proves the
uniqueness of the element t with the properties required in the statement of the
proposition, if such a t exists. In order to prove the existence, notice that cM 0 ðx 0Þ ¼
GðjÞð½y� � ½x�Þ, and so, by the pullback property, there is a unique t A M such
that jðtÞ ¼ x 0 and cMðyÞ � cMðxÞ ¼ cMðtÞ. Thus jðx þ tÞ ¼ jðyÞ and cMðx þ tÞ ¼
cMðyÞ. It follows that x þ t ¼ y. Notice that the proof of this implication does not
need the cofinality of jðMÞ in M 0.

For the converse, in order to prove that (3) is a pullback we shall apply Lemma
4.2. Let x; y A M and x 0; y 0 A M 0 be such that jðxÞ þ x 0 þ y 0 ¼ jðyÞ þ y 0. As jðMÞ is
cofinal in M 0, there exists z A M with y 0ajðzÞ. Thus jðxÞþ x 0 þ jðzÞ ¼ jðyÞþ jðzÞ.
By hypothesis, there exists a unique element t A M such that jðtÞ ¼ x 0 and x þ zþ
t ¼ y þ z. This proves the existence of the element t with the property required in
the statement of Lemma 4.2. To prove the uniqueness, suppose that q A M also has
the properties required in the statement of Lemma 4.2, that is, jðqÞ ¼ x 0 and there
exists w A M such that x þ q þ w ¼ y þ w. Then ðx þ z þ wÞ þ t ¼ ðy þ z þ wÞ and
ðx þ z þ wÞ þ q ¼ ðy þ z þ wÞ. By hypothesis, jðx þ z þ wÞ þ x 0 ¼ jðy þ z þ wÞ im-
plies that there exists a unique element t 0 A M such that jðt 0Þ ¼ x 0 and ðx þ z þ wÞþ
t 0 ¼ ðy þ z þ wÞ. Thus q ¼ t 0 ¼ t. This shows that diagram (3) is a pullback. r

If M is a commutative monoid and GðMÞ is its Grothendieck group, the kernel of
the canonical monoid homomorphism cM : M ! GðMÞ is the congruence @M de-
fined, for all x; y A M, by x@M y if there exists t A M such that x þ t ¼ y þ t. Let
j : M ! M 0 be an arbitrary monoid homomorphism. Then, for each x; y A M,
x@M y implies jðxÞ@M 0 jðyÞ, so that j : M ! M 0 induces by restriction a mapping
jj½x�@M

: ½x�@M
! ½jðxÞ�@M 0 of the congruence class ½x�@M

of x in M into the congru-

ence class ½jðxÞ�@M 0 of jðxÞ in M 0 for each element x A M.

P. Ara, A. Facchini372

Brought to you by | Uniwersytet Warszawski
Authenticated

Download Date | 5/22/15 10:05 AM



In the next proposition, we give a further characterization of monoid homomor-
phisms with cofinal image that induce a pullback. Since we shall not use it in this
paper, we leave its direct proof to the reader. Recall that a monoid homomorphism
f : M ! M 0 is a divisor homomorphism if, for every x; y A M, f ðxÞa f ðyÞ implies
xa y.

Proposition 4.4. Let j : M ! M 0 be a homomorphism of commutative monoids and

suppose jðMÞ cofinal in M 0. Then j induces a pullback if and only if both the following

conditions hold:

(a) j is a divisor homomorphism;

(b) the restriction jj½x�@M

: ½x�@M
! ½jðxÞ�@M 0 is a bijective mapping for every x A M.

Example 1. The two conditions of Proposition 4.4 are independent. For an example
in which (a) does not hold, but (b) does, it is su‰cient to take as j : M ! M 0 the
embedding of N into Z. An example in which (a) holds, and (b) does not, and in
which M and M 0 are monoids of the type VðRÞ, will be given in Example 2.

If I is a two-sided ideal of a ring R and VðpI Þ : VðRÞ ! VðR=IÞ is the monoid ho-
momorphism induced by the canonical projection pI : R ! R=I , then VðpI Þ is a di-
visor homomorphism if and only if AR is a direct summand of BR whenever AR;BR A
proj-R and AR=ARI is a direct summand of BR=BRI . Let DR be the set of all the
ideals I A IR for which the homomorphism VðpI Þ is a divisor homomorphism. Par-
tially order DR by set inclusion. If an ideal I of R belongs to DR, then every ideal of
R contained in I belongs to DR as well. The second author and Franz Halter-Koch
proved in [8, Theorem 3.1] that DR always has maximal elements. Moreover,
JðRÞJ I0 and JðR=I0Þ ¼ 0 for every maximal element I0 of DR. It would be very
natural to think that Theorem 3.1 holds not only for the Jacobson radical JðRÞ,
which belongs to DR, but also for any other ideal I A DR. This is false as the follow-
ing example shows.

Example 2. Example of a ring R with an ideal I A DR for which the monoid homo-

morphism VðpI Þ : VðRÞ ! VðR=IÞ obtained applying the functor Vð�Þ to the canon-

ical projection pI : R ! R=I does not induce a pullback.

Let F be a field, x and y two non-commuting indeterminates over F and R ¼
Fhx; yi be the free associative F -algebra. Let I be the principal two-sided ideal of R

generated by the element xy � 1 of R. In order to show that I A DR, notice that any
right or left ideal of R is free [5, Corollary 2.4.3], so that R is hereditary. But in a
hereditary ring every projective module is a direct sum of finitely generated ideals [1],
so that every right or left projective R-module is free. There is a unique surjective ring
homomorphism j : R ! F that is the identity on F and maps both x and y to 1.
Clearly, I is contained in the kernel of j, so that there is a surjective homomorphism
R=I ! F . Therefore if AR;BR A proj-R and AR=ARI is a direct summand of BR=BRI ,
then there exist non-negative integers n and m with AR GRn

R and BR GRm
R . Then

AR=ARI nR=I F GF n
F is a vector space over F isomorphic to a direct summand of

BR=BRI nR=I F GF m
F . In particular, nam, so that AR is isomorphic to a direct

summand of BR. This proves that pI is a divisor homomorphism, that is, I A DR.
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In order to prove that VðpI Þ : VðRÞ ! VðR=IÞ does not induce a pullback, we
shall apply Theorem 4.3. Thus it is su‰cient to show that there exist AR;BR A proj-R
and C 0

R=I A proj-R=I such that AR=ARI lC 0
R=I GBR=BRI , but there does not exist

CR A proj-R with CR=CRI GC 0
R=I . Set AR ¼ BR ¼ RR. The ring R=I is the prototype

of a ring that is not directly finite. That is, if x; y denote the images of x; y in R=I ,
then left multiplication by y is an injective non-surjective endomorphism of the right
R=I -module R=I , left multiplication by x is a surjective non-injective endomorphism
of the module R=I , and the composition of these two endomorphisms is the identity
endomorphism of R=I . Thus R=I GR=I l r:annR=I ðxÞ. If we set C 0

R=I ¼ r:annR=I ðxÞ,
we see that C 0

R=I is a non-zero cyclic projective R=I -module and AR=ARI lC 0
R=I G

BR=BRI . Suppose that there exists CR A proj-R with CR=CRI GC 0
R=I . Then CR GRt

R

for some t. Hence C 0
R=I is a free R=I -module of rank t. Tensoring by F the iso-

morphism AR=ARI lC 0
R=I GBR=BRI and comparing the dimensions, we see that

1 þ t ¼ 1, so that t ¼ 0, hence CR ¼ 0. Thus 0 ¼ CR=CRI GC 0
R=I ¼ r:annR=I ðxÞ,

contradiction.

5 Trace ideals in R, prime ideals in V(R), and reduced localization

For any subset U of VðRÞ, we shall denote by TrRðUÞ the smallest two-sided ideal
I of R such that f ðARÞJ I for every AR A U and every f A HomðAR;RRÞ. The
ideal TrRðUÞ is called the trace of U. Obviously, TrRðUÞ is the sum of all the images
f ðARÞ when AR ranges in the set U and f ranges in the set of all homo-
morphisms of AR into RR. Conversely, for any two-sided ideal I of R, we shall
denote by TðIÞ the largest subset U of VðRÞ such that f ðARÞJ I for every AR A U
and every f A HomðAR;RRÞ. Obviously, TðIÞ ¼ fAR A VðRÞ j f ðARÞJ I for every
f A HomðAR;RRÞg.

When U has a unique element AR, we shall write TrRðARÞ instead of TrRðUÞ. The
trace TrRðUÞ is the smallest two-sided ideal I of R satisfying ARI ¼ AR (or, equiv-
alently, AnR R=I ¼ 0) for every AR A U. Moreover, TrRðUÞ is an idempotent ideal.
We call an ideal I of R a trace ideal if I ¼ TrRðUÞ for some subset U of VðRÞ. For
instance, let AR be a cyclic projective right R-module, so that AR G eR for some
idempotent element e A R. Then TrRðARÞ ¼ TrRðeRÞ ¼ ReR is the two-sided ideal
generated by e. The sum of trace ideals is a trace ideal, so that the set TðRÞ of all
trace ideals of R, partially ordered by set inclusion, is a complete lattice whose
greatest element is the trace ideal R and whose least element is the zero ideal.

We recall some results of [8, Section 2]. Let PðVðRÞÞ denote the set of all subsets
of VðRÞ and IðRÞ the set of all two-sided ideals of R. Define two mappings

F : IðRÞ ! PðVðRÞÞ by FðIÞ :¼ fhARi A VðRÞ jARI 0ARg

for all I A IðRÞ

and

C : PðVðRÞÞ ! IðRÞ by CðUÞ :¼ TrRðVðRÞnUÞ for all U A PðVðRÞÞ:
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Then F and C are a Galois connection from IðRÞ to PðVðRÞÞ with the inverse order
[14, Theorem IV.5.1], that is, for all U A PðVðRÞÞ and I A IðRÞ,

FðIÞJU if and only if I KCðUÞ;

as is immediately verified. The image of F is the lattice SpecðVðRÞÞ of all prime ide-
als of the monoid VðRÞ, and the image of C is TðRÞ. Thus the lattices TðRÞ and
SpecðVðRÞÞ are antiisomorphic via the restrictions of F and C [8, Theorem 2.2(c)].

Lemma 5.1. The following conditions are equivalent for every AR A proj-R and every

I A IðRÞ:
(a) f ðARÞJ I for every f A HomðAR;RRÞ;
(b) ARI ¼ AR.

Proof. Statement (a) says that TrRðARÞ is contained in I . As the trace TrRðARÞ is the
smallest ideal J with ARJ ¼ AR, TrRðARÞ is contained in I if and only if statement (b)
holds. r

From Lemma 5.1 we immediately obtain that:

Corollary 5.2. For every I A IðRÞ, the subset FðIÞ of VðRÞ is the complement of TðIÞ
in VðRÞ.

As CFðIÞJ I for every ideal I of R, the composition CF : IðRÞ ! IðRÞ is a clo-
sure operation on the partially ordered set IðRÞ with the inverse inclusion (recall that
a closure operation t in a partially ordered set P is a monotonic mapping t : P ! P

such that xa tðxÞ and tðtðxÞÞ ¼ tðxÞ for all x A P [14, p. 135]). We shall denote by
TrðIÞ the ideal CFðIÞ for every I A IðRÞ, and call TrðIÞ the trace ideal of I . Thus
TrðIÞ is the greatest trace ideal of R contained in I for every ideal I of R. Equiv-
alently, the trace ideal TrðIÞ of an ideal I is the trace of the set of all the finitely
generated projective modules P such that P ¼ PI . Also, I is a trace ideal if and only
if I ¼ TrðIÞ. (Notice that there is some ambiguity of terminology when I is at the
same time a two-sided ideal of R and a projective right R-module. For instance, if I is
any proper non-zero ideal of the ring Z, then TrðIÞ ¼ 0, but the trace of I viewed as a
projective right R-module is Z.) We shall say that an ideal I of R is an almost trace

ideal if I=TrðIÞ is contained in the Jacobson radical JðR=TrðIÞÞ of R=TrðIÞ.
For any ring homomorphism f : R ! S, we shall denote by Pf the set of all

hARi A VðRÞ with Vð f ÞðhARiÞ0 0. In the following proposition we shall see that
Pf is a prime ideal of VðRÞ.

Proposition 5.3. Let f : R ! S be a ring homomorphism, I ¼ ker f , and Vð f Þ :
VðRÞ ! VðSÞ the monoid homomorphism induced by f . Then:

(a) The set Pf is the prime ideal of VðRÞ corresponding to the trace ideal TrðIÞ of I

in the antiisomorphism between the lattices SpecðVðRÞÞ and TðRÞ.
(b) The homomorphism Vðf Þ : VðRÞ ! VðSÞ factors uniquely through the canonical

homomorphism j of VðRÞ into its reduced localization ðVðRÞPf
Þred, that is, there exists
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a unique monoid homomorphism o : ðVðRÞPf
Þred ! VðSÞ with Vð f Þ ¼ oj. The image

of Vð f Þ is equal to the image of o.
(c) If f is surjective and I is an almost trace ideal, then o is injective and induces a

pullback.

Proof. (a) The prime ideal of VðRÞ corresponding to TrðIÞ ¼ CFðIÞ is FCFðIÞ ¼
FðIÞ ¼ fhARi A VðRÞ jAnR R=I 0 0g ¼ fhARi A VðRÞ jAnR S 0 0g ¼ Pf .

(b) It is su‰cient to remark that o is defined by oðhARi� hBRiþ UðVðRÞPf
ÞÞ ¼

Vð f ÞðhARiÞ for every hARi; hBRi A VðRÞ, hBRi B Pf .
For the proof of (c), which is modelled on the proof of [20, Theorem 1.5], we need

the following lemma.

Lemma 5.4. Let I be an almost trace ideal of a ring R, AR;BR A proj-R and let

h : AR=ARI ! BR=BRI be an epimorphism. Then there exist a module CR A proj-R
and an epimorphism h : AR lCR ! BR such that CR TrðIÞ ¼ CR, kerðhÞG
kerðhÞ=kerðhÞI , and the diagram

AR lCR ���!h
BR

pAl0

???y
???ypB

AR=ARI ���!h
BR=BRI ;

where pA : AR ! AR=ARI and pB : BR ! BR=BRI denote the canonical projections, is

commutative.

Proof. As AR is projective and h : AR=ARI ! BR=BRI is an epimorphism, there
exists a homomorphism h 0 : AR ! BR such that pBh 0 ¼ hpA. In particular, BR ¼
h 0ðARÞþ BRI . Then BR=BR TrðIÞ ¼ ðh 0ðARÞþ BR TrðIÞ=BR TrðIÞÞþ ðBI þ BR TrðIÞ=
BR TrðIÞÞ ¼ ðh 0ðARÞ þ BR TrðIÞ=BR TrðIÞÞ þ ðBR=BR TrðIÞÞðI=TrðIÞÞ. As I is an al-
most trace ideal, that is, I=TrðIÞJ JðR=TrðIÞÞ, we can apply Nakayama’s Lemma,
from which we get that BR=BR TrðIÞ ¼ h 0ðARÞ þ BR TrðIÞ=BR TrðIÞ, and thus BR ¼
h 0ðARÞ þ BR TrðIÞ.

Let b1; . . . ; bt be a set of generators of BR, and write each bi as bi ¼ h 0ðaiÞþ
b1ri1 þ � � � þ btrit for suitable ai A AR and rij A TrðIÞ. As TrðIÞ is a trace ideal, if
P ¼ FðIÞ is the prime ideal of VðRÞ corresponding to TrðIÞ, then for each rij A TrðIÞ
there is a homomorphism from a projective module Cij A VðRÞnP to RR whose image
contains rij . Thus there is a homomorphism from Cij to BR whose image contains
bjrij . Taking the direct sum, we find a homomorphism g from a projective module
CR ¼

L
i; j Cij A VðRÞnP to BR whose image contains all the elements bjrij. Thus

there is a surjective homomorphism h :¼ ðh 0; gÞ : AR lCR ! BR. From CR B P, it
follows that CR TrðIÞ ¼ CR. Thus CRI ¼ CR, from which pBg ¼ 0. The commuta-
tivity of the diagram follows. Finally, as BR is projective, the exact sequence 0 !
ker h ! AR lCR !h BR ! 0 splits. Therefore it remains exact when tensored with
R=I . Thus kerðhÞ=kerðhÞI is isomorphic to the kernel of hnR=I : AR=ARI l
CR=CRI ! BR=BRI , which is isomorphic to kerðhÞ because CR=CRI ¼ 0. r
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We are ready for the proof of Proposition 5.3(c). Assume f surjective and I an al-
most trace ideal. The prime ideal Pf ¼ FðIÞ corresponds to the trace ideal TrðIÞ, that
is, TrðIÞ is the trace of the set VðRÞnPf . Let hARi; hA 0

Ri; hBRi; hB 0
Ri be elements

of VðRÞ with hA 0
Ri; hB 0

Ri B Pf and oðhARi� hA 0
Riþ UðVðRÞPf

ÞÞ ¼ oðhBRi�
hB 0

Riþ UðVðRÞPf
ÞÞ. Then AnR S GA 0 nR S, i.e., there is an isomorphism h :

AR=ARI ! BR=BRI . By Lemma 5.4, there are CR A proj-R and an epimorphism
h : AR lCR ! BR with CR TrðIÞ ¼ CR, kerðhÞG kerðhÞ=kerðhÞI and hðpA l 0Þ ¼
pBh. In particular, CR B Pf . As h is an isomorphism, it follows that kerðhÞ=kerðhÞI ¼
0, so that kerðhÞ B Pf either. Thus AR lCR GBR l kerðhÞ implies that hARiþ
UðVðRÞPf

Þ ¼ hBRiþ UðVðRÞPf
Þ in ðVðRÞPf

Þred, from which hARi� hA 0
Riþ

UðVðRÞPf
Þ ¼ hBRi� hB 0

Riþ UðVðRÞPf
Þ. This shows that o is injective.

In order to prove that o induces a pullback, we shall apply Theorem 4.3. It is
enough to show that, if AR;BR are finitely generated projective R-modules and QS is
a finitely generated projective S-module such that A=AI GB=BI lQ, then there
exists a unique hXiþ UðVðRÞPf

Þ A ðVðRÞPf
Þred such that X=XI GQ as S-modules

and AlT GBlX lT 0 for some T ;T 0 A proj-R with hTi; hT 0i B Pf .
Let h : A=AI ! B=BI be an epimorphism with kernel isomorphic to Q, and apply

Lemma 5.4. There are CR A proj-R and an epimorphism h : AR lCR ! BR with
CR TrðIÞ ¼ CR and kerðhÞG kerðhÞ=kerðhÞI . The module X :¼ kerðhÞ has the re-
quired properties. The uniqueness of hXiþ UðVðRÞPf

Þ follows from the injectivity
of o. r

Let R be an exchange ring [7, p. 67]. Every projective right R-module is a direct sum
of cyclic projective modules [7, Theorem 2.56]. Thus the (finitely generated) trace
ideals are exactly the two-sided ideals generated by (finitely many) idempotents of R.
In [4, Proposition 1.4], it is proved that if R is an exchange ring and I is a two-sided
ideal of R, then VðR=IÞ is isomorphic to the reduced localization of VðRÞ at the
prime ideal of all hARi A VðRÞ with ARI 0AR. The isomorphism is the isomorphism
o induced by the canonical projection pI : R ! R=I . This can be generalized as fol-
lows. Let I be an ideal of a ring R. We say that I is an exchange ideal of R in case for
each a A I there are elements r; s A I and an idempotent e A I such that ar ¼ a þ s�
as ¼ e. This notion is left-right symmetric and depends only on the ring structure of
I and not on the particular embedding of I as an ideal of a unital ring R; see [2].
Moreover, a ring R is an exchange ring if and only if R is an exchange ideal of R.
(This follows from the well-known characterization of exchange rings obtained in-
dependently by Goodearl [12] and Nicholson [16].) By [2, Proposition 1.5(a)], if I is
an exchange ideal of a ring R, then each A A proj-R with A ¼ AI is a direct sum of
cyclic projective modules, so that the ideal TrðIÞ is exactly the ideal generated by all
the idempotents of I . Also, by [2, Theorem 2.2], the factor I=TrðIÞ is an exchange
ideal of R=TrðIÞ with no nonzero idempotents, so I=TrðIÞJ JðR=TrðIÞÞ, i.e., I is an
almost trace ideal of R. It follows that we can apply Proposition 5.3(c). We have thus
obtained the following:

Corollary 5.5. Let I be an exchange ideal of a ring R and let P be the prime ideal FðIÞ
of VðRÞ. Then the map o : ðVðRÞPÞred ! VðR=IÞ induces a pullback.

Direct sum decompositions of modules 377

Brought to you by | Uniwersytet Warszawski
Authenticated

Download Date | 5/22/15 10:05 AM



Proposition 5.3(a) gives a characterization of prime ideals in the monoids VðRÞ,
because:

Proposition 5.6. Let R be a ring. A subset P of VðRÞ is a prime ideal of VðRÞ if and

only if there exists a homomorphism f of R into some ring S such that P ¼ Pf .

Proof. In view of Proposition 5.3(a), it is su‰cient to show that every prime ideal P of
VðRÞ is of the type Pf for some homomorphism f : R ! S. Let P be a prime ideal
and I the trace ideal of R corresponding to P in the antiisomorphism F : TðRÞ !
SpecðVðRÞÞ, so that P ¼ FðIÞ. Let f : R ! R=I be the canonical projection. Then
P ¼ fhARi A VðRÞ jARI 0ARg ¼ fhARi A VðRÞ jVð f ÞðhARiÞ0 0g ¼ Pf . r

Proposition 5.7. For every ideal K of a ring R, let pK denote the canonical projection

R ! R=K . Then:

(a) The trace ideal TrðIÞ of an ideal I of R is the smallest among the ideals K of R

with PpK
¼ PpI

.
(b) If I is an almost trace ideal of R and p : R=TrðIÞ ! R=I is the canonical pro-

jection, then VðpÞ : VðR=TrðIÞÞ ! VðR=IÞ is injective and induces a pullback.

Proof. (a) For every ideal K of a ring R, one has PpK
¼ fhARi A VðRÞ j

ARK 0ARg ¼ FðKÞ. As FðIÞ ¼ FCFðIÞ ¼ FðTrðIÞÞ, it follows that PpI
¼ PpTrðIÞ .

Also, if K is any ideal of R such that PpK
¼ PpI

, then FðKÞ ¼ FðIÞ, so that TrðIÞ ¼
CFðIÞ ¼ CFðKÞJK .

(b) It is enough to show the result for an ideal I contained in JðRÞ (so that
TrðIÞ ¼ 0). It is well known that, for every ring S, the mapping VðpJðSÞÞ : VðSÞ !
VðS=JðSÞÞ is injective (this follows from the uniqueness of projective covers). Ap-
plying this fact to the two rings S ¼ R and S ¼ R=I , one sees that the two mappings

VðpJðRÞÞ : VðRÞ ! VðR=JðRÞÞ

and

VðpJðR=IÞÞ : VðR=IÞ ! VðR=JðRÞÞ

are both injective. From the equality VðpJðRÞÞ ¼ VðpJðR=IÞÞ � VðpÞ and the injectivity
of VðpJðRÞÞ, it follows that VðpÞ is injective.

Theorem 3.1 says that VðpJðRÞÞ : VðRÞ ! VðR=JðRÞÞ induces a pullback. From
this fact, the injectivity of VðpJðRÞÞ and the equality VðpJðRÞÞ ¼ VðpJðR=IÞÞ � VðpÞ, it
easily follows that VðpÞ also induces a pullback. r

6 Directed convex subgroups of K0(R)

Let I be an ideal of a ring R. The canonical projection pI : R ! R=I induces a group
homomorphism K0ðpI Þ : K0ðRÞ ! K0ðR=IÞ. We will prove that this homomorphism
has good properties when I is an almost trace ideal. We have seen in Proposition 5.3

P. Ara, A. Facchini378

Brought to you by | Uniwersytet Warszawski
Authenticated

Download Date | 5/22/15 10:05 AM



that for such an ideal I , the map ðVðRÞPÞred ! VðR=IÞ induces a pullback, and this
immediately gives us useful information on K0ðpI Þ.

For any commutative monoid M, we endow its Grothendieck group GðMÞ with
the structure of pre-ordered group given by GðMÞþ ¼ f½m� jm A Mg, where ½m� is
the image of m A M under the canonical map cM : M ! GðMÞ. Note that every
monoid homomorphism j : M ! N induces a homomorphism of pre-ordered groups
GðjÞ : GðMÞ ! GðNÞ.

Let G1 and G2 be pre-ordered groups. We say that a map f : G1 ! G2 is an order-

embedding if f is an injective group homomorphism and xa y in G1 if and only if
f ðxÞa f ðyÞ in G2, for all x; y A G1. The latter property is equivalent to the statement
f ðGþ

1 Þ ¼ f ðG1ÞXGþ
2 .

Lemma 6.1. Let j : M ! N be an injective homomorphism of commutative monoids

that induces a pullback. If jðMÞ is cofinal in N, then the induced map GðjÞ : GðMÞ !
GðNÞ is an order-embedding.

Proof. Assume that GðjÞð½m1� � ½m2�Þ ¼ 0. Then jðm1Þ þ v ¼ jðm2Þ þ v for some
v A N. Since jðMÞ is cofinal in N, there exists w A M with va jðwÞ in N. From this
and the injectivity of j, we deduce that m1 þ w ¼ m2 þ w, and thus ½m1� � ½m2� ¼ 0.
This shows that GðjÞ is injective.

Now assume that GðjÞð½m1� � ½m2�Þ ¼ ½n� in GðNÞ for some n A N and m1;m2 A M.
By the pullback property, there is m A M such that ½m� ¼ ½m1� � ½m2� and n ¼ jðmÞ.
It follows that ½m1� � ½m2� A GðMÞþ and so GðjÞ is an order-embedding. r

The converse of Lemma 6.1 does not hold, that is, there exist injective homo-
morphisms j : M ! N with jðMÞ cofinal in N and GðjÞ : GðMÞ ! GðNÞ an order-
embedding, but such that j does not induce a pullback. To see this, it is su‰cient to
take N ¼ N=@, where @ is the smallest congruence on N with 4@ 5, so that N is a
monoid with five elements 0; 1; 2; 3; 4, and M the submonoid of N whose elements
are 0; 2; 4.

A subgroup H of a pre-ordered group G is a pre-ordered group by taking Hþ :¼
H XGþ. A convex subset of a partially ordered set G is any subset H with the prop-
erty that whenever x; z A H and y A G with xa ya z, then y A H. A convex sub-

group of a pre-ordered group G is any subgroup H of G which is also a convex subset
of G. Clearly a subgroup H of G is convex if and only if whenever 0a aa b with
b A H and a A G, then a A H; see [10, p. 8]. We shall denote by LðGÞ the set of all
directed convex subgroups of the pre-ordered group G. We shall say that a commu-
tative monoid M is directly finite if for every x; y A M, x þ y ¼ y implies x ¼ 0 (cf.
[18, p. 136]). Now let M be a commutative monoid, SpecðMÞ the set of its prime
ideals, and GðMÞ the Grothendieck group of M. Let Spec 0ðMÞ denote the set of all
P A SpecðMÞ with ðMPÞred directly finite. In the next proposition we shall describe the
partially ordered set LðGðMÞÞ.

Proposition 6.2. Let M be a commutative monoid. Then there is an order reversing

bijection f : Spec 0ðMÞ ! LðGðMÞÞ defined by f ðPÞ :¼ cMðMnPÞ � cMðMnPÞ for
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every P A Spec 0ðMÞ. The inverse of f is the order reversing mapping g : LðGðMÞÞ !
Spec 0ðMÞ defined by gðHÞ :¼ c�1

M ðGðMÞnHÞ for every H A LðGðMÞÞ.

Proof. Let us prove that f ðPÞ :¼ cMðMnPÞ � cMðMnPÞ belongs to LðGðMÞÞ for
every P A Spec 0ðMÞ. It is easily seen that f ðPÞ is a directed subgroup of GðMÞ.

In order to show that f ðPÞ is convex, suppose that 0a xa y with x A GðMÞ and
y A f ðPÞ. Then x ¼ cMðmÞ and y ¼ cMðm 0Þ � cMðm 00Þ for suitable m;m 0;m 00 A M,
m 0;m 00 B P. Moreover, x þ z ¼ y for some z A GðMÞþ, that is, z ¼ cMðnÞ for some
n A M. As x þ z ¼ y, it follows that cMðmÞ þ cMðnÞ þ cMðm 00Þ ¼ cMðm 0Þ, i.e.,
m þ n þ m 00 þ n 0 ¼ m 0 þ n 0 for a suitable n 0 A M. Thus m þ n þ n 0 ¼ n 0 in ðMPÞred.
As ðMPÞred is directly finite, it follows that m þ n ¼ 0 in ðMPÞred, i.e., there exists
n 00 A MnP with m þ n þ n 00 B P. Since P is a prime ideal, we get that m B P. Thus
x A f ðPÞ. This shows that f is a well defined mapping of Spec 0ðMÞ into LðGðMÞÞ.
Clearly, f is order reversing.

Let us prove that gðHÞ :¼ c�1
M ðGðMÞnHÞ belongs to Spec 0ðMÞ for every

H A LðGðMÞÞ. The subset gðHÞ of M is proper, because 0 B gðHÞ.
Suppose that m;m 0 A MngðHÞ. Then cMðmÞ;cMðm 0Þ A H, so that cMðm þ m 0Þ A

H, and thus m þ m 0 B gðHÞ. Conversely, if m;m 0 A M and m þ m 0 B gðHÞ, then
cMðmÞ þ cMðm 0Þ A H. Thus cMðmÞ and cMðm 0Þ are elements of GðMÞ that are b0
anda than the element cMðmÞ þ cMðm 0Þ of H. As H is convex, it follows that both
cMðmÞ and cMðm 0Þ belong to H. Thus m;m 0 B gðHÞ. This proves that gðHÞ A
SpecðMÞ. Let us show that the monoid ðMgðHÞÞred is directly finite. Suppose that
x; y A ðMgðHÞÞred and x þ y ¼ y. Then x ¼ m and y ¼ n for some m; n A M, and there
exist d; d 0 A MngðHÞ with m þ n þ d ¼ n þ d 0. Then cMðmÞ þ cMðdÞ ¼ cMðd 0Þ, and
cMðdÞ;cMðd 0Þ A H. Hence cMðmÞ ¼ cMðd 0Þ � cMðdÞ A H, so that m B gðHÞ. In
particular, x ¼ m ¼ 0. Thus gðHÞ A Spec 0ðMÞ, and g is a well defined mapping of
LðGðMÞÞ into Spec 0ðMÞ, clearly order reversing.

We shall now show that gf ðPÞ ¼ P for every P A Spec 0ðMÞ. Suppose m A gf ðPÞ.
Then cMðmÞ B f ðPÞ, so that cMðmÞ0cMðm 0Þ � cMðm 00Þ for every m 0;m 00 A MnP.
In particular, cMðmÞ0cMðm 0Þ for every m 0 A MnP, and so m A P. Conversely,
suppose m A Mngf ðPÞ. Then cMðmÞ A f ðPÞ, so that cMðmÞ ¼ cMðm 0Þ � cMðm 00Þ for
suitable m 0;m 00 A MnP. Thus m þ m 00 þ m0 ¼ m 0 þ m0 for some m0 A M. In the di-
rectly finite monoid ðMPÞred we have that m þ m0 ¼ m0, hence m ¼ 0. Therefore
m þ m 0

0 ¼ m 00
0 for suitable m 0

0;m 00
0 A MnP. From m þ m 0

0 B P it follows that m B P, as
desired.

We shall now show that fgðHÞ ¼ H for every H A LðGðMÞÞ. As fgðHÞ and H

are directed subgroups of GðMÞ, it su‰ces to show that fgðHÞþ ¼ Hþ. Suppose
x A Hþ. Then x ¼ cMðmÞ for some m A M. From cMðmÞ A H, it follows that
m B gðHÞ. Thus m A MngðHÞ, so x ¼ cMðmÞ A cMðMngðHÞÞJ fgðHÞ. Conversely,
suppose x A fgðHÞþ. Then x ¼ cMðmÞ for some m A M, and x ¼ cMðmÞ A
cMðMngðHÞÞ � cMðMngðHÞÞ. Thus cMðmÞ ¼ cMðm 0Þ � cMðm 00Þ for suitable
m 0;m 00 A MngðHÞ. Thus cMðm 0Þ;cMðm 00Þ A H, so that x ¼ cMðm 0Þ � cMðm 00Þ also
belongs to H. r

Example 3. The greatest element of LðGðMÞÞ is GðMÞ, and the least element is the
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convex subgroup H0 ¼ fx A GðMÞ j 0a xa 0g of GðMÞ. Correspondingly, the least
element of Spec 0ðMÞ is the empty ideal j ¼ gðGðMÞÞ. Notice that j A Spec 0ðMÞ be-
cause ðMjÞred ¼ GðMÞred ¼ 0 is directly finite. The greatest element of Spec 0ðMÞ is
the prime ideal gðH0Þ ¼ fm A M jm þ n þ n 0 0 n 0 for every n; n 0 A Mg. To see this,
notice that m A M belongs to gðH0Þ if and only if cMðmÞ B H0, that is, if and only
if cMðmÞ þ cMðnÞ0 0 for every n A M, i.e., if and only if m þ n þ n 0 0 n 0 for every
n; n 0 A M.

Example 4. If M is cancellative and P is any prime ideal of M, then ðMPÞred is always
cancellative. In particular, it is always directly finite. Thus Spec 0ðMÞ ¼ SpecðMÞ for
M cancellative. In this case, the least element of LðGðMÞÞ is the convex subgroup
UðMÞ of GðMÞ.

Proposition 6.2 allows us to describe the directed convex subgroups of K0ðRÞ for a
ring R. This is done in the next theorem, which is a generalization of [11, Theorem
15.20 and Corollary 15.21] to arbitrary rings. For a ring R, we shall denote by T 0ðRÞ
the set of all trace ideals I of R such that for every AR;BR A proj-R, AR=ARI l
BR=BRI GBR=BRI implies AR ¼ ARI .

Theorem 6.3. Let R be a ring. Then there is an order preserving one-to-one correspon-

dence h : T 0ðRÞ ! LðK0ðRÞÞ defined by hðIÞ :¼ f½AR� � ½BR� jAR;BR A proj-R and

AR ¼ ARI ;BR ¼ BRIg for every I A T 0ðRÞ. The inverse of h is the order preserving

mapping l : LðK0ðRÞÞ ! T 0ðRÞ defined by lðHÞ :¼ TrRðfhARi jAR A proj-R;
½AR� A HgÞ for every H A LðGðMÞÞ.

Proof. The mapping h is the composite mapping of the mapping f of Proposition 6.2
and the bijection F : TðRÞ ! SpecðVðRÞÞ restricted to T 0ðRÞ. The mapping l is
the composite mapping of the bijection C : SpecðVðRÞÞ ! TðRÞ, restricted to
Spec 0ðVðRÞÞ, and the mapping g of Proposition 6.2. By [8, Theorem 2.1(d)], for
every I A TðRÞ, the image of the canonical homomorphism VðRÞ ! VðR=IÞ, AR A
proj-R 7! AR=ARI , is canonically isomorphic to ððVðRÞÞFðIÞÞred. Thus ððVðRÞÞFðIÞÞred

is directly finite if and only if for every AR;BR A proj-R, AR=ARI lBR=BRI G
BR=BRI implies AR ¼ ARI . Therefore an ideal I A TðRÞ belongs to T 0ðRÞ if and
only if FðIÞ A Spec 0ðVðRÞÞ. r

There is another description of the directed convex subgroup hðIÞ of K0ðRÞ corre-
sponding to an ideal I A T 0ðRÞ. It says that hðIÞ is the kernel of the group homo-
morphism K0ðpI Þ : K0ðRÞ ! K0ðR=IÞ. To show this, we first prove a proposition
that holds not only for the trace ideals I A T 0ðRÞ, but for all almost trace ideals of R.

Proposition 6.4. Let I be an almost trace ideal of a ring R, and let pI : R ! R=I be the

canonical projection. Then the following properties hold:

(a) ker K0ðpI Þ ¼ f½AR� � ½BR� jAR;BR A proj-R and AR ¼ ARI ;BR ¼ BRIg.
(b) ker K0ðpI Þ is a directed subgroup of K0ðRÞ.
(c) K0ðpI ÞðK0ðRÞþÞ ¼ K0ðpI ÞðK0ðRÞÞXK0ðR=IÞþ.
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Proof. (a) Set P :¼ FðIÞ A SpecðVðRÞÞ, M :¼ ðVðRÞPÞred and N :¼ VðR=IÞ. By
Proposition 5.3(c), the map o : M ! N is injective and induces a pullback. So by
Lemma 6.1, the map GðoÞ : GðMÞ ! GðNÞ ¼ K0ðR=IÞ is an order-embedding. Now
the map K0ðpI Þ factors as K0ðpI Þ ¼ GðoÞ � t, where t : K0ðRÞ ! GðMÞ is a surjec-
tion with kerðtÞ ¼ f½AR� � ½BR� jAR;BR A proj-R and there exist CR;DR;D 0

R A proj-R
with DR ¼ DRI ;D 0

R ¼ D 0
RI and AR lCR lDR GBR lCR lD 0

Rg ¼ f½D 0
R� � ½DR� j

DR;D 0
R A proj-R and DR ¼ DRI ;D 0

R ¼ D 0
RIg. But kerðK0ðpI ÞÞ ¼ kerðtÞ.

(b) follows from (a).
(c) Since tðK0ðRÞþÞ ¼ GðMÞþ, we have, using Lemma 6.1,

K0ðpI ÞðK0ðRÞþÞ ¼ GðoÞðGðMÞþÞ

¼ GðoÞðGðMÞÞXK0ðR=IÞþ ¼ K0ðpI ÞðK0ðRÞÞXK0ðR=IÞþ: r

Theorem 6.5. For every ideal I of a ring R, let pI : R ! R=I be the canonical projec-

tion. The following conditions are equivalent for a subset H of K0ðRÞ:
(a) H is a directed convex subgroup of K0ðRÞ.
(b) There exists an ideal I A T 0ðRÞ such that H ¼ f½AR� � ½BR� jAR;BR A proj-R

and AR ¼ ARI ;BR ¼ BRIg.
(c) There exists an ideal I A T 0ðRÞ such that H ¼ ker K0ðpI Þ.

Proof. The equivalence of (a) and (b) follows from Theorem 6.3. The equivalence of
(b) and (c) follows from Proposition 6.4(a). r

7 The groups K0(I )

For an ideal I of a ring R, consider the submonoid VðIÞ of VðRÞ consisting of
the elements hAi A VðRÞ such that AI ¼ A. Note that VðIÞ ¼ VðTrðIÞÞ ¼ VðRÞnP,
where P is the prime ideal of VðRÞ associated to TrðIÞ. The sequence

VðIÞ ! VðRÞ ! ðVðRÞPÞred

gives rise to an exact sequence of Grothendieck groups

GðVðIÞÞ ! K0ðRÞ ! GððVðRÞPÞredÞ ! 0

as has been shown in the proof of Proposition 6.4(a). The map GðVðIÞÞ ! K0ðRÞ is
not injective in general, and its failure to be injective is related to the exact sequence
in algebraic K-theory

K1ðRÞ ! K1ðR=IÞ ! K0ðIÞ ! K0ðRÞ ! K0ðR=IÞ:

Recall that K0ðIÞ is defined as the kernel of the natural map K0ðI 1Þ ! K0ðZÞ, where
I 1 ¼ I lZ is the unitization of I .

There is a natural map c : GðVðIÞÞ ! K0ðIÞ sending the class of a finitely gen-
erated projective module AR such that A ¼ AI to the corresponding class ½AnI I 1� in
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K0ðIÞ. It is easy to check that if I is an (almost) trace ideal of R, then I is an (almost)
trace ideal of any ring in which it can be embedded as an ideal. In particular, I is an
(almost) trace ideal of I 1 for any (almost) trace ideal I of R.

The following proposition generalizes [3, Proposition 4.4], where the same result is
obtained for exchange ideals.

Proposition 7.1. Assume that I is an almost trace ideal of R. Then the natural map

c : GðVðIÞÞ ! K0ðIÞ is surjective.

Proof. Set S ¼ I 1, and note that I is an almost trace ideal of S by our previous
observation. Observe that K0ðIÞ consists of elements of the form ½A� � ½S r�, where A

is a finitely generated projective S-module such that A=AI GAnS ZGZr. Let
h : A=AI ! S r=S rI GZr be an isomorphism. By Lemma 5.4, there exist a module
CS A proj-S and an epimorphism h : AS lCS ! S r

S such that CS TrðIÞ ¼ CS,
kerðhÞG kerðhÞ=kerðhÞI , and the diagram

AS lCS ���!h
S r

S

pAl0

???y
???ypS r

AS=ASI ���!h
S r

S=S r
SI ;

where pA : AS ! AS=ASI and pS r : S r
S ! S r

S=S r
SI denote the canonical projections,

is commutative.
Set D ¼ kerðhÞ. Then AlC GS r lD and, since h is an isomorphism, we get

D ¼ DI . Consequently ½A� � ½S r� ¼ ½D� � ½C �, with C ¼ CI and D ¼ DI , which
proves that ½A� � ½S r� is in the image of the map c : GðVðIÞÞ ! K0ðIÞ. r

It was asked in [3] whether the map c : GðVðIÞÞ ! K0ðIÞ is injective for any ex-
change ideal I . We now provide a counterexample.

Example 5. We consider a modification of an example due to Chuang and Lee, cf. [6].
Let F be a countable field and let F ðtÞ be the field of rational functions in the inde-
terminate t. Chuang and Lee construct in [6] a (von Neumann) regular ring S which
is an F -subalgebra of the algebra BðFÞ of row-and-column finite matrices over F and
contains the ideal A ¼ MðF Þ of matrices with only a finite number of nonzero en-
tries. Moreover there is a surjective F -algebra homomorphism p : S ! FðtÞ with
kernel A, and there are elements a; b A S such that pðaÞ ¼ t, pðbÞ ¼ t�1, ba ¼ 1 and
1 � ab is a one-dimensional idempotent in A. Now consider D ¼ MF ½t�M , where M

is the ideal of F ½t� generated by 1 � t. As F ½t�M is a local ring, D is a radical ring. Set
I ¼ p�1ðDÞ. By [2, Corollary 2.5], I is a non-unital exchange ring. Note that the ele-
ments a � 1 and b � 1 are in I .

All the idempotents of MðIÞ are in MðAÞ and so GðVðAÞÞ ¼ GðVðIÞÞ ¼ Z. Since
A is a regular ring we have GðVðAÞÞ ¼ K0ðAÞ (cf. [15, Proposition 1.2]). The gener-
ator of K0ðAÞ is given by ½1 � ab�. Set B ¼ I 1. To compute K0ðIÞ we use the exact
sequence in K-theory associated to the ideal A of B. Note that B=AGD1, so the fact
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that D is a radical ring gives us that K0ðD1Þ ¼ K0ðZÞ, and we obtain an exact se-
quence

K0ðAÞ ! K0ðBÞ ! K0ðZÞ ! 0:

Thus the map K0ðAÞ ! K0ðIÞ is surjective. But since a � 1; b � 1 A I , the image of
the generator ½1 � ab� of K0ðAÞ under that map is 0 and so K0ðIÞ ¼ 0. Therefore the
map c : GðVðIÞÞ ! K0ðIÞ is the map Z ! 0, and it is not injective.

In [17], D. Quillen introduced a variant K 0
0ðIÞ of K0ðIÞ for a nonunital ring I in the

following way. Let R be a unital ring containing I as an ideal, for instance R can
be the unitization I 1 ¼ I lZ of I . The group K 0

0ðIÞ is the abelian group generated
by elements ½ f : P ! Q�, where P and Q are finitely generated projective right R-
modules, f : P ! Q is a homomorphism and f : P=PI ! Q=QI is an isomorphism,
subject to the relations:

(1) ½ f : P ! Q� þ ½ f 0 : P 0 ! Q 0� ¼ ½ f l f 0 : PlP 0 ! QlQ 0�;
(2) ½ f : P 0 ! P� þ ½g : P ! Q� ¼ ½gf : P 0 ! Q�;
(3) ½ f : P ! Q� ¼ 0 when f is an isomorphism.

It can be shown that K 0
0ðIÞ does not depend on the unital ring R in which I is em-

bedded [17, pp. 197–198]. There is a canonical surjection K 0
0ðIÞ ! K0ðIÞ that maps

½ f : P ! Q� to ½Q� � ½P�. This map is not injective in general [17, p. 208 and §7]. We
next show that, for an almost trace ideal I , there is a natural isomorphism K 0

0ðIÞ !
GðVðIÞÞ. The canonical surjection K 0

0ðIÞ ! K0ðIÞ factors as the composite mapping
of the isomorphism K 0

0ðIÞ ! GðVðIÞÞ and the natural map c : GðVðIÞÞ ! K0ðIÞ.
Thus Example 5 shows that K 0

0ðIÞ ! K0ðIÞ is not necessarily injective for an almost
trace ideal I .

Theorem 7.2. For an almost trace ideal I of a unital ring R, the groups K 0
0ðIÞ and

GðVðIÞÞ are canonically isomorphic.

Proof. Define j : K 0
0ðIÞ ! GðVðIÞÞ as follows. Given a generator ½ f : P ! Q� of

K 0
0ðIÞ, we can construct by using Lemma 5.4 an exact sequence

0 ! H ! PlC ��!ð f ; tÞ
Q ! 0

of finitely generated projective modules with CI ¼ C. As f is an isomorphism, we get
that H ¼ HI . The mapping j sends ½ f : P ! Q� to ½C � � ½H � A GðVðIÞÞ. We have to
show that this definition does not depend on the choice of the sequence

0 ! H ! PlC ��!ð f ; tÞ
Q ! 0. If 0 ! H 0 ! PlC 0 ��!ð f ; t 0Þ

Q ! 0 is another exact

sequence with C 0I ¼ C 0 and H 0 ¼ H 0I , there is a homomorphism a
b

� �
: C ! PlC 0

such that t ¼ ð f ; t 0Þ a
b

� �
. Similarly, we get a map a 0

b 0

� �
: C 0 ! PlC such that

t 0 ¼ ð f ; tÞ a 0

b 0

� �
. We have a commutative diagram

0 ���! H ���! PlC ���!ð f ; tÞ
Q ���! 0???y

�
1 a
0 b

�???y
����

0 ���! H 0 ���! PlC 0 ���!ð f ; t 0Þ
Q ���! 0:
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So we have an exact sequence

0 ! H !g ðPlCÞlH 0 �����!
�

1 a �
0 b �

�
PlC 0 ! 0;

which splits, and the splitting is determined by a map PlC 0 ! PlC lH 0 of the

form A ¼
�

1 a 0

0 b 0

d e

�
. Let D be the automorphism

�
1P 0 0
0 1C 0
�d 0 1H 0

�
of PlC lH 0. Then we

have

PlC lH 0 ¼ DðAðPlC 0Þl gðHÞÞ

¼ DAðPÞlDAðC 0ÞlDgðHÞ ¼ PlC 00 lH 00

with C 00 GC 0 and H 00 GH. Thus C lH 0 GC 00 lH 00 GC 0 lH. This shows that
½C � � ½H � ¼ ½C 0� � ½H 0�, as desired.

We must now show that j respects the defining relations (1), (2) and (3). This
is obvious for (1) and (3). For (2), fix f : P 0 ! P and g : P ! Q. Construct the

corresponding exact sequences 0 ! H ��!abð Þ P 0 lC ��!ð f ; tÞ
P ! 0 and 0 ! H 0 ��!a

0
b 0

� �
PlC 0 ��!ðg; t 0Þ

Q ! 0 via Lemma 5.4. As H 0 is projective and ð f ; tÞl 1C 0 : P 0 l

C lC 0 ! PlC 0 is onto, there exists a map

�
d1

d2

d3

�
: H 0 ! P 0 lC lC 0 that com-

posed with ð f ; tÞl 1C 0 gives a 0

b 0

� �
. The exact sequence corresponding to gf : P 0 ! Q

is

0 ! H lH 0 ����!
�

a d1

b d2

0 d3

�
P 0 lC lC 0 ����!ðgf ;gt; t 0Þ

Q ! 0:

This completes the proof that j is a well defined homomorphism.
Now define a homomorphism VðIÞ ! K 0

0ðIÞ, hCi 7! ½0 ! C �. This monoid
homomorphism induces a group homomorphism c : GðVðIÞÞ ! K 0

0ðIÞ such that
cð½C � � ½H �Þ ¼ ½0 : H ! C � for every ½C � � ½H � A GðVðIÞÞ. It is obvious that
j � c ¼ IdGðVðIÞÞ. To check that c � j ¼ IdK 0

0
ðIÞ, we first consider the case of a split

monomorphism f : P ! Q with cokernel C such that C ¼ CI . We then have

½ f : P ! Q� ¼ ½ f : P ! f ðPÞ� þ ½0 ! C � ¼ ½0 ! C �:

For the general case, consider a generator ½ f : P ! Q� of K 0
0ðIÞ. Consider the corre-

sponding exact sequence

0 ! H ! PlC ��!ð f ; tÞ
Q ! 0:

Then there is a right inverse g : Q ! PlC of ð f ; tÞ, which is a split mono-
morphism with cokernel H. By the previous case, ½g : Q ! PlC � ¼ ½0 ! H �.
Thus ½ð f ; tÞ : PlC ! Q� ¼ �½g : Q ! PlC � ¼ �½0 ! H � ¼ ½H ! 0�. But ½ð f ; tÞ :
PlC ! Q� ¼ ½ f l 1C : PlC ! QlC � þ ½ð1; tÞ : QlC ! Q� ¼ ½ f : P ! Q� �
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1
0

� �
: Q ! QlC



¼ ½ f : P ! Q� � ½0 ! C �. We conclude that ½ f : P ! Q� ¼

½H ! 0� þ ½0 ! C � ¼ ½0 : H ! C �. This completes the proof. r

We conclude our paper showing that, if I is a trace ideal of a unital ring R, then the
natural map c : GðVðIÞÞ ! K0ðIÞ is an isomorphism. It follows then from Theorem
7.2 that the canonical map K 0

0ðIÞ ! K0ðIÞ also is an isomorphism for a trace ideal I .
We will use the description of K0ðRÞ in terms of idempotent matrices over R; see

for example [19, Section 2]. If X is any additive subgroup of a ring R, we denote by
MðXÞ the set of all infinite matrices, indexed by N�N, having their entries in X

almost all zero. Note that MðX Þ can be identified with the direct limit lim�! MnðXÞ,
via the embeddings MnðXÞ ! Mnþ1ðXÞ given by a 7! diagða; 0Þ. If A and B are
matrices of finite size, then we will denote by AlB the (block) diagonal matrix
diagðA;BÞ. If e is an idempotent in R, we will use the notation er for the diagonal
matrix diagðe; . . . ; eÞ (r times). If E;F are idempotent matrices in MðRÞ, we write
E @F if the corresponding finitely generated projective R-modules are isomorphic.

Lemma 7.3. Let e be a non-zero idempotent in a ring R. Then K0ðReRÞGK0ðeReÞ.
More precisely, the map j : K0ðeReÞ ! K0ððReRÞÞ, defined by jð½g�K0ðeReÞÞ ¼
½g�

K0ððReRÞ1Þ for all idempotents g A MðeReÞ, is an isomorphism.

Proof. Clearly, we have a monoid homomorphism g : VðeReÞ ! VðReRÞ sending the
class in VðeReÞ of an idempotent g in MðeReÞ to the class of g in VðReRÞ. It is
readily seen that g is injective. To see that it is also surjective, let E A MðReRÞ be an
idempotent matrix. Then there exist rb 0 and A;B A MðRÞ such that E ¼ AerB. As
E is idempotent, E ¼ EAerBE, so that erBEAer A MðeReÞ is an idempotent matrix
equivalent to E, which proves that g is onto. Thus g is an isomorphism, and therefore
GðgÞ : K0ðeReÞ ¼ GðVðeReÞÞ ! GðVðReRÞÞ is a group isomorphism.

Let j : K0ðeReÞ ! K0ðReRÞ be the composition of the isomorphism g : K0ðeReÞ !
GðVðReRÞÞ and the map c : GðVðReRÞÞ ! K0ðReRÞ. Clearly jð½g�K0ðeReÞÞ ¼
½g�

K0ððReRÞ1Þ for every idempotent g in MðeReÞ. By Proposition 7.1, the map c is
surjective, hence so is the map j. It only remains to show that j is injective. Let
E;F A MnðeReÞ be two idempotents such that jð½E � � ½F �Þ ¼ 0. Then there exists
mb 1 with E l 1m @F l 1m in MnþmððReRÞ1Þ. Let A;B A MnþmððReRÞ1Þ be such
that

ðE l 1mÞA ¼ A; AðF l 1mÞ ¼ A; ðF l 1mÞB ¼ B; BðE l 1mÞ ¼ Bð4Þ

and

AB ¼ E l 1m; BA ¼ F l 1m:ð5Þ

Let p : ðReRÞ1 ! Z be the canonical map. Observe that pðAÞpðBÞ ¼ 0n l 1m and
pðBÞpðAÞ ¼ 0n l 1m. Moreover, by conditions (4), we have pðAÞ ¼ 0n lZ1 and
pðBÞ ¼ 0n lZ2 for some matrices Z1;Z2 A MmðZÞ, so that Z2 ¼ Z�1

1 . Replacing A

with ð1n lZ�1
1 ÞA and B with Bð1n lZ1Þ, we see that, in addition to the other

properties, we can assume that ðen l 1mÞ � A A MnþmðReRÞ and ðen l 1mÞ � B A
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MnþmðReRÞ. Write A ¼
�

a11 a12

a21 1mþa22

�
, where a11 A EMnðeReÞF , a12 A EMn�mðReRÞ,

a21 A Mm�nðReRÞF and a22 A MmðReRÞ. Note that

ðen l 1mÞ � A ¼ en � a11 �a12

�a21 �a22

� �
:ð6Þ

One can find a positive integer r and matrices a 0
21 A Mm�rðReÞ and a 00

21 A Mr�nðeRÞ
and a 00

22 A Mr�mðeRÞ such that a21 ¼ a 0
21a 00

21 and a22 ¼ a 0
21a 00

22. Moreover, since
a21 ¼ a21F , we can assume that a 00

21 ¼ a 00
21F . Now set

Y ¼ en 0

0 a 0
21

� �
A MðnþmÞ�ðnþrÞðReÞ;ð7Þ

X ¼ en � a11 �a12

�a 00
21 �a 00

22

� �
A MðnþrÞ�ðnþmÞðeRÞ:ð8Þ

Note that, by (6), (7) and (8), we have YX ¼ ðen l 1mÞ � A. Also observe that

ðE l 1mÞY ¼ Y ðE l erÞ; ðF l 1mÞY ¼ YðF l erÞ:ð9Þ

Consider the following matrices in MnþrðeReÞ:

A 0 ¼ enþr � XY ; B 0 ¼ ðE l erÞ þ XBY :

Then

A 0B 0 ¼ ðE l erÞ � XY ðE l erÞ þ XBY � XðYX ÞBY

¼ ðE l erÞ � XY ðE l erÞ þ XBY � X ½ðen l 1mÞ � A�BY

¼ ðE l erÞ � XY ðE l erÞ þ XBY � XBY þ XðE l 1mÞY

¼ ðE l erÞ � XY ðE l erÞ þ XðE l 1mÞY :

From the first equation in (9), we get A 0B 0 ¼ ðE l erÞ.
On the other hand, we have

B 0A 0 ¼ ðE l erÞ þ XBY � ðE l erÞXY � XBðYX ÞY

¼ ðE l erÞ þ XBY � ðE l erÞXY � XB½ðen l 1mÞ � A�Y

¼ ðE l erÞ þ XBY � ðE l erÞXY � XBY þ X ðF l 1mÞY

¼ ðE l erÞ � ðE l erÞXY þ XðF l 1mÞY :

From the second equation in (9), we get
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B 0A 0 ¼ ðE l erÞ � ðE l erÞXY þ XY ðF l erÞ

¼ ðF l erÞ þ ðE l erÞðenþr � XY Þ � ðenþr � XYÞðF l erÞ:

Now

enþr � XY ¼ a11 a12a 0
21

a 00
21 er þ a 00

22a 0
21

� �
:

As Ea11 ¼ a11, Ea12 ¼ a12, era
00
21 ¼ a 00

21 and era
00
22 ¼ a 00

22, we get that ðE l erÞ �
ðenþr � XY Þ ¼ enþr � XY . Similarly, from a11 ¼ a11F , a 0

21 ¼ a 0
21er and a 00

21F ¼ a 00
21,

we obtain that ðenþr � XY ÞðF l erÞ ¼ enþr � XY . Therefore B 0A 0 ¼ F l er.
This shows that ½E � � ½F � ¼ 0 in K0ðeReÞ, and j is injective. r

Theorem 7.4. Let I be a trace ideal of a ring R. Then the natural map

c : GðVðIÞÞ ! K0ðIÞ is a group isomorphism.

Proof. By Proposition 7.1, the map c is surjective. It remains to show that it is
injective. Let E and F be idempotents in MnðIÞ, for some nb 1, such that
cð½E � � ½F �Þ ¼ 0. Then there exists mb 1 such that E l 1m @F l 1m in MnþmðI 1Þ.
As in the proof of Lemma 7.3, we can assume that

A ¼ a11 a12

a21 1m þ a22

� �
and B ¼ b11 b12

b21 1m þ b22

� �

for some aij A M�ðIÞ and bij A M�ðIÞ. (Here the notation x A M�ðXÞ means that x is a
matrix with entries in X of suitable size.)

Since I is a trace ideal, the non-unital ring MðIÞ is generated as a two-sided ideal
by its idempotents. It follows that there are k bmaxfn;mg and an idempotent
e A MkðIÞ such that aij l 0; bij l 0 A MkðRÞeMkðRÞ for all i; j A 1; 2, for suitably
sized zero matrices. In particular, identifying E l 0k�n with E and F l 0k�n with F ,
we see that E;F A MkðRÞeMkðRÞ. Put S ¼ MkðRÞ and observe that E l 1@F l 1
in M2ððSeSÞ1Þ.

There are xi; yi; zi; ti A S, for i ¼ 1; . . . ; r, such that E ¼
Pr

i¼1 xieyi and
F ¼

Pr
i¼1 zieti. Set E 0 ¼ erðy1; . . . ; yrÞT

Eðx1; . . . ; xrÞer A MrðeSeÞ, and F 0 ¼
erðt1; . . . ; trÞT

F ðz1; . . . ; zrÞer A MrðeSeÞ. Then E 0 and F 0 are idempotents with E 0 @E

and F 0 @F in MrðSeSÞ. Let j : K0ðeSeÞ ! K0ðSeSÞ be the map defined in Lemma
7.3. Then jð½E 0� � ½F 0�Þ ¼ ½E 0� � ½F 0� ¼ ½E � � ½F � ¼ 0 in K0ðSeSÞ. By Lemma 7.3, we
get ½E 0� � ½F 0� ¼ 0 in K0ðeSeÞ and it follows that ½E � � ½F � ¼ ½E 0� � ½F 0� ¼ 0 in K0ðIÞ.
This completes the proof. r
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[8] Facchini A. and Halter-Koch F.: Projective modules and divisor homomorphisms. J.
Algebra Appl. 2 (2003), 435–449

[9] Facchini A. and Herbera D.: K0 of a semilocal ring. J. Algebra 225 (2000), 47–69
[10] Goodearl K. R.: Partially ordered abelian groups with interpolation. Mathematical Sur-

veys and Monographs 20. American Mathematical Society, Providence, RI 1986
[11] Goodearl K. R.: Von Neumann Regular Rings, Second edition. Krieger Publishing Co.,

Inc., Malabar, FL 1991
[12] Goodearl K. R. and Warfield R. B. Jr.: Algebras over zero-dimensional rings. Math.

Annalen 223 (1976), 157–168
[13] Halter-Koch F.: Ideal Systems. An Introduction to Multiplicative Ideal Theory. Marcel

Dekker, New York 1998
[14] MacLane S.: Categories for the Working Mathematician. Springer-Verlag, New York

1971
[15] Menal P. and Moncasi J.: Lifting units in self-injective rings and an index theory for

Rickart C �-algebras. Pacific J. Math. 126 (1987), 295–329
[16] Nicholson W. K.: Lifting idempotents and exchange rings. Trans. Amer. Math. Soc. 229

(1977), 269–278
[17] Quillen D.: K0 for nonunital rings and Morita invariance. J. Reine Angew. Math. 472

(1996), 197–217
[18] Rørdam M.: A simple C �-algebra with a finite and an infinite projection. Acta Math. 191

(2003), 109–142
[19] Rosenberg J.: Algebraic K-theory and its applications. Graduate Texts in Math. 147.

Springer-Verlag, New York 1994
[20] Schofield A. H.: Representations of rings over skew fields. London Math. Soc. Lecture

Notes Series 92. Cambridge University Press, Cambridge 1985

Received February 2, 2004; revised July 14, 2004
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