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Direct sum decompositions of modules, almost trace ideals,
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Abstract. We show that a number of pullback diagrams appear naturally in the study of pre-
ordered Grothendieck groups. The passage of projective modules from a ring R to a factor ring
R/I turns out to be particularly good for a certain class of ideals, which we call almost trace
ideals. We generalize to arbitrary rings a result by Goodearl concerning the lattice of the di-
rected convex subgroups of Ko(R). Finally, we show that a variant K((I) of the Grothendieck
group of 7, introduced by Quillen, has an easy description in terms of projective modules when
I is an almost trace ideal.
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1 Introduction

In this paper we show that pullbacks of monoids appear very frequently in the study
of the pre-ordered stucture of the Grothendieck group Ky(R). For instance, let R be
a ring with Jacobson radical J(R) and V(R) the monoid of finitely generated pro-
jective R-modules up to isomorphism, with the operation induced by direct sum. The
Grothendieck group K((R) is the universal enveloping group of V(R), and the pre-
order on Ky(R) has the image of the universal mapping /5 : V(R) — Ko(R) as its
positive cone. We prove that the canonical projection p: R — R/J(R) induces a
pullback diagram
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v(R) 2 V(R/J(R))
‘//RJ/ lWR/J(R)
Ko(R) =7 Ky(R/J(R)).

We show that a lot of other pullback diagrams appear naturally in pre-ordered
Grothendieck groups.

Trace induces a one-to-one correspondence between prime ideals P of the com-
mutative monoid V(R) and trace ideals I of the ring R, so that operations in the
monoids V' (R), like localization V'(R), with respect to a prime ideal P or reduced
localization (¥ (R)p),.q, can be interpreted in terms of projective R/I-modules |8,
Theorem 2.2]. Every ideal I of R contains a greatest trace ideal Tr(I), and we say
that a two-sided ideal I is an almost trace ideal if I/Tr(I) is contained in the Ja-
cobson radical of R/Tr(I). For an almost trace ideal I of R, the natural map
V(R) — V(R/I) factors through (V(R)p),.q, Where P corresponds to Tr(/) in the
above mentioned bijection, and the corresponding map (V(R)p),.q — V(R/I) is in-
jective and induces a pull-back as above (Proposition 5.3; also see Proposition 5.7).
Injective monoid homomorphisms that induce a pullback yield order-embeddings of
Grothendieck groups (Lemma 6.1).

Using our results, we show that, for any almost trace ideal 7, the natural map
Ko(R) — Ko(R/I) factors through an order-embedding G((V(R)p),q) — Ko(R/I).
Moreover, we get an exact sequence of groups

G(V(I)) = Ko(R) = G((V(R)p)ea) = 0

where V(1) is the monoid defined by the finitely generated projective R-modules Ag
such that 4 = AI. In Section 7, the group G(V (1)) is compared with both the Gro-
thendieck group Ko(Z) [19] and its variant K)(7) defined by Quillen in [17]. We show
that the groups K((I) and G(V'(I)) are canonically isomorphic for every almost trace
ideal 7 and that Ky(7) and G(V'(I)) are isomorphic when 7 is a trace ideal.

We also apply pullbacks of monoids and almost trace ideals to describe directed
subgroups of Ky(R). Generalizing a result of Goodearl [11, Theorem 15.20], we show
that there is an order-preserving one-to-one correspondence between the set of di-
rected convex subgroups of Ky(R) and a suitable set of trace ideals of R.

2 Notations and preliminaries

All rings of this paper are assumed to be associative rings with identity, and all
modules are right unital modules. All our monoids are commutative additive mono-
ids, that is, commutative additive semigroups with a zero element. Let M be a (com-
mutative additive) monoid. We denote by U(M) the subgroup of M consisting of
all elements a € M with an additive inverse —a in M, and we call M reduced if
U(M) = {0}. For a monoid M, we denote by M, the factor monoid M /U (M),
whose elements are all cosets x + U(M) with x € M. The monoid M4 is obviously a
reduced monoid.
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Let R be a ring with identity. We shall denote by proj-R both the class of all finitely
generated projective right R-modules and the full subcategory of Mod-R whose ob-
jects are all finitely generated projective right R-modules. For every ring R under
consideration, we fix a set V(R) of representatives up to isomorphism of the finitely
generated projective right R-modules. Thus it is possible to associate to every module
Ag € proj-R a unique module {Ar) € V(R) isomorphic to Ag, and for all Ag, Bg €
proj-R, Agr = B if and only if (Az) = {Bgr). The set V(R) is a commutative mon-
oid under the addition defined by (Agr)> + (Br) = {Agr ® Bgr) for all {Ag)>,(Bg) €
V(R). The monoid V' (R) can also be viewed in an informal way as the monoid whose
elements are the isomorphism classes (Agr) of the modules Ag € proj-R, but if we
look at V'(R) in this way, the elements (Ar) of V'(R) are not sets, and thus V(R) is
not a set by Zermelo’s Sum Axiom (Union Axiom) of General Set Theory (“for any
set S there exists the set whose elements are the elements of the elements of 7). To
avoid this set theoretical difficulty, we have preferred not to introduce V(R) as the
class whose elements are the isomorphism classes of finitely generated projective
modules, but to think of V' (R) as a fixed set of representatives of proj-R up to iso-
morphism.

Any ring homomorphism f : R — S induces a monoid homomorphism V(f) :
V(R) — V(S) defined by V(f):<{Ar)— {A®rS) for all {Ag) e V(R). Thus
V(—) is a functor from the category of rings with identity to the category of com-
mutative monoids.

Clearly, the monoid V(R) describes all direct sum decompositions of finitely gen-
erated projective right R-modules up to isomorphism, in the sense that to every de-
composition of a projective module A € proj-R as a direct sum of finitely many
submodules there corresponds a decomposition of the element {Ag> of the monoid
V(R) as a sum of elements of V(R), and two direct sum decompositions of Ag are
isomorphic in the sense of the Krull-Schmidt theorem if and only if they correspond
to the same sum decomposition of (Ag) in the monoid V' (R), up to the order of the
summands.

In particular, if we want to describe all direct sum decompositions of the module
Rp, the convenient structure to consider over V(R) is the structure of commutative
monoid with order-unit, which is defined as follows. Recall that there is a natural pre-
order (= reflexive and transitive relation) on any commutative additive monoid M,
defined by x < y if there exists z € M such that x + z = y. We shall call this pre-order
< on M the algebraic pre-order on M. An element u of M is an order-unit if for every
x € M there exists a positive integer n such that x < nu. The category of commutative
monoids with order-unit is defined as follows. Its objects are the pairs (M, u), where
M is a commutative monoid and # € M is an order-unit. The morphisms ¢ :
(M,u) — (M’ u’) are the monoid homomorphisms ¢ : M — M’ such that p(u) = u'.
For instance, for every ring R the element (Rg) is an order-unit in the monoid V' (R),
and there is a functor from the category of rings with identity to the category of
commutative monoids with order-unit that associates to each ring R the commutative
monoid with order-unit (V' (R),<{Rgr)). The monoid with order-unit (V' (R),<{Rr>)
describes all direct sum decompositions of the module Rg up to isomorphism.

More generally, let Mg be a right module over an arbitrary ring S, let add(Ms) be
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the full subcategory of Mod-S whose objects are all modules isomorphic to direct
summands of direct sums M” of finitely many copies of M, and let R = End(M5).
The functors Homg(Ms, —) : Mod-S — Mod-R and — ® Ms : Mod-R — Mod-S
induce a category equivalence between the categories add(My) and proj-R [7, Theo-
rem 4.7]. Under this equivalence, My corresponds to Rg, and direct sum decom-
positions of Mg correspond to direct sum decompositions of Rg. As in the case of
V(R), we fix a set V' (add(My)) of representatives of the modules in add(Ms) up to
isomorphism. Then V' (add(Ms)) becomes a commutative monoid with order-unit
{Ms) isomorphic to the monoid with order-unit (¥ (R),{Rg>). Thus all direct sum
decompositions of a module Mg are described by the monoid with order-unit
(V(R),<{Rgr)) for R the endomorphism ring End(My) of Ms.

A submonoid M’ of a monoid M is said to be divisor-closed if x e M, y € M' and
x < yin M implies x € M'. Divisor-closed submonoids of M have also been called
order-ideals (or o-ideals) in a number of places (e.g. [4]). A prime ideal of a monoid M
is a proper subset P of M such that M\ P is a divisor-closed submonoid; that is, for
any x, y € M one has x + y € P if and only if either x € P or y € P. It is easy to see
that the prime ideals of a commutative monoid M are exactly the subsets P of M for
which there exists a homomorphism ¢ of M into a reduced monoid N with P =
{x e M|p(x) # 0}. Equivalently, the prime ideals of a monoid M are exactly the
subsets P of M for which there exists a congruence ~ on M with M/~ reduced and
P ={xe M|x + 0}. Notice that the union of any family of prime ideals of a com-
mutative monoid M is a prime ideal, so that the set Spec(M) of all prime ideals of
M, partially ordered by set inclusion, is a complete lattice whose greatest element is
the prime ideal M\ U(M) and whose least element is the empty ideal (). By passing
to the complements, we can consider the complete lattice Dc(M) of all divisor-closed
submonoids of M. In this lattice Dc(M), the greatest element is M and the least ele-
ment is U(M). If P is a prime ideal of M, then the localization Mp of M at P is the
monoid whose elements are all formal differences x — s with x e M and s € M\P,
and in which we define x — s = x’ — s/, for all x,x’ € M and s,s' € M\ P, if and only if
there exists 7 € M\ P such that x + 5" + ¢ = x’ + s+ ¢ [13, §4]. The monoid (Mp),.4 =
Mp/U(Mp) is called the reduced localization of M at P. If x,x’ € M and s,s" € M\P,
then x — s+ U(Mp) = x' — s’ + U(Mp) in (Mp),.q if and only if there exist elements
t,t' € M\P such that x+¢=x"+1¢. Notice that the canonical homomorphism
¢: M — (Mp),y, defined by x — x — 04 U(Mp), is surjective. The reduced local-
ization (Mp),.q, was denoted by M /S, where S is the complement of P in M, in the

paper [4].

3 The Grothendieck group

The localization My of M at its empty prime ideal () is an abelian group, which is
usually called the Grothendieck group of M, or the group of differences of M, and
denoted by G(M). There is a canonical monoid homomorphism y,, : M — G(M),
and G(—) turns out to be a functor of the category of commutative monoids into the
category of abelian groups. The Grothendieck group G(V(R)) is usually denoted
Ky(R). For any projective R-module Ag, we shall denote by [4g] the image of (Agr)
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via the homomorphism ¥y () : V(R) — Ko(R), and usually write y instead of iy (g).
For every Ag, Br € proj-R, we have [Ag| = [Bg] if and only if Ag and B are stably
isomorphic, that is, Ag ® R} =~ Br @ R}, for some integer n > 0. Then Ky(R) =
{[AR] — [Br] | Ar, Br € proj-R}. Any ring homomorphism f : R — S induces an abe-
lian group homomorphism Ky(f) : Ko(R) — Ko(S) defined by Ko(f) : [Ar] — [Br] —
[A ®z S] — [B®gS]. Thus Ko(—) turns out to be a functor from the category of rings
with identity to the category of abelian groups.

There is a one-to-one correspondence between the submonoids M of an abelian
group G and the translation-invariant pre-orders < on G [10]. If G is an abelian
group with a translation-invariant pre-order <, an order-unit in G is an element
ue G, u > 0, such that for every x € G there exists a positive integer n with x < nu.
For any ring R, there is a canonical translation-invariant pre-order on Ky(R) whose
positive cone is Ko(R)" = {[4g]| A& € proj-R}. Relatively to this pre-order, [Rg]
turns out to be an order-unit in Ko(R). If F is the forgetful functor from the category
of abelian groups to the category of commutative monoids, then both V' (—) and
F o Ky(—) are functors from rings to commutative monoids. For every ring homo-
morphism f : R — S the diagram

173 l'//s

Ko(R) 217 Ky(S)
is commutative. Thus the homomorphisms v : V(R) — Kyp(R) define a natural
transformation from the functor ¥ (—) to the functor F o Ko(—).

We have already remarked that the monoid V' (R) is the algebraic object that de-
scribes the direct sum decompositions of the finitely generated projective R-modules,
and that the monoid with order-unit (¥ (R), {Rg)) describes the direct sum decom-
positions of the R-module Rg or, more generally, the direct sum decompositions of
any right module Mg with R = End(My). The abelian group Ky(R) does not have
a similar property. For instance, when the monoid V' (R) is not cancellative, most
information about direct sum decompositions is lost in the passage from V(R) to
Ko(R). Even when V'(R) is cancellative, the monoid 7' (R) contains information that
is lost in Ky(R). For instance, if R is semilocal, then V(R) can be any finitely gen-
erated Krull monoid, while Ky(R) is a free abelian group, that is, Ko(R) is iso-
morphic to Z" for some n, and this is not sufficient to faithfully describe the wealth of
behaviors that direct sum decompositions of finitely generated projective modules
can have in this case [9]. To remedy this difficulty, it is necessary to consider not only
the abelian group structure on K(R), but also its structure of pre-ordered abelian
group. This is because the category of commutative cancellative monoids is equiva-
lent to the category of directed pre-ordered abelian groups, and the category of com-
mutative cancellative monoids with order-unit is equivalent to the category of di-
rected pre-ordered abelian groups with order-unit. (Recall that a pre-ordered abelian
group G is a directed group in case G = GT — G*.)

Our first result describes the relation between the monoid V(R), the abelian group
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Ky(R), and the reduction modulo the Jacobson radical J(R). The relation is in terms
of pullbacks. Notice that if

M/

" |

M M

are homomorphisms of commutative monoids (or of commutative monoids with
order-unit), then the pullbacks of diagram (1) in the category of sets and in the cate-
gory of monoids (or in the category of commutative monoids with order-unit) coin-
cide. They are in one-to-one correspondence with the subset (isomorphic to the sub-
monoid, submonoid with order-unit) of the product M x M’ whose elements are all
the pairs (x,x') with x e M, x" € M’ and ¢(x) = Yy(x').

Theorem 3.1. Let R be a ring, J(R) its Jacobson radical, and p : R — R/J(R) the ca-
nonical projection. Then the commutative diagram

VR) 2L V(R/I(R))

(2) lllkl l‘/’R/J(R)

Ko(p)
—

Ko(R) Ko(R/J(R))

is a pullback of monoids.

Proof. We must prove that, for every pair ([4g] — [Br],{Cr/sr)>) of elements
[Ar] — [Br] € Ko(R) and {Cryyn> € V(R/J(R)) with [4/AJ(R)| — [B/BJ(R)| =
[Cr/sr)] in Ko(R/J(R)), there exists a unique {Xr» € V(R) such that [Xg] =
[4r] — [Br] and <X /XJ(R)) = {Cr/yr)- From [4/AJ(R)] - [B/BJ(R)] = [Cr/sr)];
we obtain that there exists n > 0 such that 4/4J(R) ® (R/J(R))" =~ B/BJ(R) ®
Cr/s(r) ® (R/J(R))". Replacing 4 with 4 ® R" and B with B® R", we can assume
that 4/AJ(R) = B/BJ(R) ® Cr/s(z)-

Let a:A/AJ(R) — B/BJ(R) ® Cg/yry be an isomorphism and p,:Ag —
A/AJ(R), py: Bg — B/BJ(R) and p : B/BJ(R) ® Crys(r) — B/BJ(R) the canoni-
cal projections. As Ag is projective, the mapping pop, : Ag — B/BJ(R) factors
through pp, that is, there exists 4 : Ag — Bg such that pgh = pap,. In particular,
pah is epic. As the kernel of pp is superfluous, it follows that % also is epic. Thus
h splits, that is, there is a direct sum decomposition Ag = Xg @ Er such that the
restriction of & to Xy is zero and the restriction of & to Eg is an isomorphism of
Er onto Bg. Notice that Ag = Xgr @ Eg = Xg @ Bg, so that [Xg] = [4g] — [Bg]. If
h:A/AJ(R) — B/BJ(R) denotes the mapping induced by 4 modulo the Jacobson
radical, the identity pgh = pap, implies that 1 = po. Moreover, there is a direct sum
decomposition A/AJ(R) = X/XJ(R) ® E/EJ(R) such that the restriction of / to
X/XJ(R) is zero and the restriction of & to E/EJ(R) is an isomorphism of E/EJ(R)
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onto B/BJ(R). Thus keri = X/XJ(R). As ker(pa) = Cg/yr), it follows that
X/XJ(R) = Cgyyr). Hence Xy is a projective R-module with the desired properties.

In order to prove that Xy is the unique finitely generated projective R-module with
the required properties up to isomorphism, notice that the condition (X /XJ(R)) =
{Cr/s(r)> mplies that Xz must be isomorphic to the projective cover of Cg/sr)
viewed as an R-module. The uniqueness of Xz now follows from the uniqueness of
projective covers. [

Thus, by Theorem 3.1, the monoid homomorphism g g : V(R/J(R)) —
Ko(R/J(R)) and the abelian group homomorphism Ky(p) : Ko(R) — Ko(R/J(R))
completely determine the monoid V' (R). Notice that all the morphisms in the com-
mutative square (2) are morphisms of monoids with order-unit, so that (2) is a pull-
back in the category of commutative monoids with order-unit as well.

4 Pullbacks of monoids

Motivated by Theorem 3.1, we give the following definition.

Definition 4.1. We shall say that a homomorphism of monoids ¢ : M — M induces a
pullback if the associated commutative diagram

M L M

(3) wl Jw

a(m) 27 G
is a pullback of monoids.

In this terminology, Theorem 3.1 says that for every ring R the monoid homo-
morphism V(p): V(R) — V(R/J(R)), obtained applying the functor V'(—) to the
canonical projection p : R — R/J(R), induces a pullback.

It is obviously possible to give a characterization of the monoid homomorphisms
@: M — M’ that induce a pullback. This is done in the following elementary
Lemma.

Lemma 4.2. A monoid homomorphism ¢ : M — M’ induces a pullback if and only if
Sor every x,y € M and every x',y" € M’ such that ¢(x) +x' + y' = ¢(y) + ' there
exists a unique element t € M satisfying both the following conditions.

(@) pl1) = '

(b) there exists z € M such that x+t+z =y + z.

Proof. Assume that (3) is a pullback. Let x, y € M and x’, ' € M’ be elements such
that ¢(x) + x' + y' = @(y) + »'. Then ¥, (x’) = G(p)([y] — [x]) and so, by the pull-
back property, there is a unique € M such that ¢(¢) = x" and ¥, (¢) = ¥, (») —

Uar(x). But ¥, (¢) = Y () — ¥ (x) if and only if vy, (x + 1) = ¥,,(»), if and only if
there exists ze M with y+z=x+1+z.
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Conversely, assume that ,,(y) — ¥, (x) € G(M) and let x’ € M’ be such that
G(0) (W (¥) = Y (x)) = Yy (X') in G(M'). Then Yy (p(x) + x') = pp(9(y)), so
that there is y' € M’ with ¢(x) +x"+ »' = ¢(y) + »’. By hypothesis, there is a
unique ¢ € M such that ¢(r) = x’ and there exists ze M such that x +t+z =y + z,
that is, Y, (x + ¢) = ¥,(»). Equivalently, there is a unique ¢ € M such that ¢(¢) = x’
and ¥, (1) = ¥y, (¥) — Yy (x). Thus diagram (3) is a pullback. [

The characterization of Lemma 4.2 can be improved in the case in which ¢ : M — M’
is a homomorphism of monoids with ¢(M) cofinal in M’ (that is, for every w’ € M’
there exists w e M with w’ < ¢(w) in M’). For instance, if ¢ : M — M’ is a homo-
morphism of monoids with order-unit, then (M) is cofinal in M".

Theorem 4.3. Let ¢ : M — M’ be a homomorphism of monoids and suppose that p(M)
is cofinal in M'. Then ¢ : M — M’ induces a pullback if and only if for every x,y € M
and every x' € M’ such that (x) + x' = ¢(y), there exists a unique element t € M such
that (t) = x" and x +t = y.

Proof. Assume that (3) is a pullback. Let x, y € M and x’ € M’ be elements such that
p(x) +x' = ¢(p). By Lemma 4.2 (applied with y’ = 0), there exists at most one ele-
ment ¢ € M satisfying the two conditions ¢(¢) = x’ and x + ¢ = y. This proves the
uniqueness of the element ¢ with the properties required in the statement of the
proposition, if such a 7 exists. In order to prove the existence, notice that iy, (x’) =
G(p)([y] — [x]), and so, by the pullback property, there is a unique € M such
that p(1) = x’ and iy, () — Yy (x) = Yy (1). Thus p(x+ 1) = () and Yy, (x + 1) =
WUy (). It follows that x + ¢ = y. Notice that the proof of this implication does not
need the cofinality of (M) in M'.

For the converse, in order to prove that (3) is a pullback we shall apply Lemma
42. Letx,ye M and x’, y’ € M’ be such that p(x) + x' + y' = ¢(y) + . As p(M) is
cofinal in M, there exists z € M with y’ < ¢(z). Thus ¢(x) + x’ + ¢(z) = ¢(¥) + ¢(2).
By hypothesis, there exists a unique element ¢ € M such that ¢(f) = x’ and x +z +
t = y+ z. This proves the existence of the element ¢ with the property required in
the statement of Lemma 4.2. To prove the uniqueness, suppose that ¢ € M also has
the properties required in the statement of Lemma 4.2, that is, ¢(¢) = x’ and there
exists w e M such that x+¢+w=y+w. Then (x+z+w)+1=(y+z+w) and
(x+z4+w)+g=(y+z+w). By hypothesis, p(x+z+w)+x' =p(y +z+w) im-
plies that there exists a unique element ¢’ € M such that ¢(¢#') = x" and (x +z + w) +
t'=(y+z+w). Thus ¢ = ¢ = t. This shows that diagram (3) is a pullback. [

If M is a commutative monoid and G(M) is its Grothendieck group, the kernel of
the canonical monoid homomorphism ¥, : M — G(M) is the congruence ~,, de-
fined, for all x, y € M, by x ~,; y if there exists t € M such that x+¢= y+ 1t Let
¢: M — M' be an arbitrary monoid homomorphism. Then, for each x,ye M,
X ~y y implies ¢(x) ~y (), so that ¢ : M — M’ induces by restriction a mapping
q)hxlw t[x]., = lo(x)].,, of the congruence class [x]  ~of x in M into the congru-
ence class [p(x)] . of ¢(x) in M’ for each element x € M.

~u!
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In the next proposition, we give a further characterization of monoid homomor-
phisms with cofinal image that induce a pullback. Since we shall not use it in this
paper, we leave its direct proof to the reader. Recall that a monoid homomorphism
f M — M’ is a divisor homomorphism if, for every x, ye M, f(x) < f(y) implies
x <y

Proposition 4.4. Let ¢ : M — M’ be a homomorphism of commutative monoids and
suppose p(M) cofinal in M'. Then ¢ induces a pullback if and only if both the following
conditions hold:

(a) ¢ is a divisor homomorphism;,

(b) the restriction ¢+ [x]_, — lp(x)]. , is a bijective mapping for every x € M.
o . 1

Example 1. The two conditions of Proposition 4.4 are independent. For an example
in which (a) does not hold, but (b) does, it is sufficient to take as ¢ : M — M’ the
embedding of N into Z. An example in which (a) holds, and (b) does not, and in
which M and M’ are monoids of the type V' (R), will be given in Example 2.

If I is a two-sided ideal of a ring R and V(p;) : V(R) — V(R/I) is the monoid ho-
momorphism induced by the canonical projection p; : R — R/I, then V' (py) is a di-
visor homomorphism if and only if 4 is a direct summand of Bz whenever Ag, Bg €
proj-R and Agr/ARrI is a direct summand of Br/Bgrl. Let 2 be the set of all the
ideals I € .#g for which the homomorphism V' (p;) is a divisor homomorphism. Par-
tially order ¢ by set inclusion. If an ideal I of R belongs to Zg, then every ideal of
R contained in I belongs to g as well. The second author and Franz Halter-Koch
proved in [8, Theorem 3.1] that 2 always has maximal elements. Moreover,
J(R) € Iy and J(R/I)) = 0 for every maximal element [y of Zg. It would be very
natural to think that Theorem 3.1 holds not only for the Jacobson radical J(R),
which belongs to Zg, but also for any other ideal 7 € 9. This is false as the follow-
ing example shows.

Example 2. Example of a ring R with an ideal I € Y for which the monoid homo-
morphism V(pr) : V(R) — V(R/I) obtained applying the functor V(—) to the canon-
ical projection p; : R — R/I does not induce a pullback.

Let F be a field, x and y two non-commuting indeterminates over F and R =
F{x, y) be the free associative F-algebra. Let I be the principal two-sided ideal of R
generated by the element xy — 1 of R. In order to show that I € &g, notice that any
right or left ideal of R is free [5, Corollary 2.4.3], so that R is hereditary. But in a
hereditary ring every projective module is a direct sum of finitely generated ideals [1],
so that every right or left projective R-module is free. There is a unique surjective ring
homomorphism ¢ : R — F that is the identity on F and maps both x and y to 1.
Clearly, I is contained in the kernel of ¢, so that there is a surjective homomorphism
R/I — F. Therefore if Ag, Br € proj-R and Ag/Agl is a direct summand of Br/Bgl,
then there exist non-negative integers n and m with A =~ R} and Bg =~ R}. Then
Ar/ARrI Qg F = Fp is a vector space over F isomorphic to a direct summand of
Br/Bgrl Qg F = F'. In particular, n < m, so that Ay is isomorphic to a direct
summand of Bg. This proves that p; is a divisor homomorphism, that is, I € Zg.
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In order to prove that ¥V (p;): V(R) — V(R/I) does not induce a pullback, we
shall apply Theorem 4.3. Thus it is sufficient to show that there exist Az, Bg € proj-R
and Czlz/l € proj-R/I such that Agr/Arl ® Cl’w =~ Br/Bgrl, but there does not exist
Cr € proj-R with Cgr/Cgrl = Cl’w. Set A = Br = Rg. The ring R/I is the prototype
of a ring that is not directly finite. That is, if X, j denote the images of x, y in R/I,
then left multiplication by ¥ is an injective non-surjective endomorphism of the right
R/I-module R/I, left multiplication by X is a surjective non-injective endomorphism
of the module R/I, and the composition of these two endomorphisms is the identity
endomorphism of R/I. Thus R/I = R/I @ r.anng;(X). If we set Cp, ; = r.anng(X),
we see that Cj , is a non-zero cyclic projective R//-module and Ar/ArI ® Cy =
Bgr/BRrI. Suppose that there exists Cr € proj-R with Cr/Crl = Cy ;. Then Cr = R}
for some . Hence Ci,, is a free R/I-module of rank ¢. Tensoring by F the iso-
morphism Agr/Arl ® Cy = Br/BrI and comparing the dimensions, we see that
l4+7=1, so that =0, hence Cx =0. Thus 0 = Cr/Crl = CI’W = r.anng,;(X),
contradiction.

5 Trace ideals in R, prime ideals in V' (R), and reduced localization

For any subset % of V(R), we shall denote by Trz(%) the smallest two-sided ideal
I of R such that f(Ag) =1 for every Ag € % and every f € Hom(Ag, Rg). The
ideal Trg(%) is called the trace of %. Obviously, Trg(%) is the sum of all the images
f(ARr) when Ag ranges in the set % and f ranges in the set of all homo-
morphisms of Ax into Rg. Conversely, for any two-sided ideal / of R, we shall
denote by T'(7) the largest subset % of V(R) such that f(Ar) < I for every Ar e U
and every f € Hom(Ag, Rg). Obviously, T(I) = {Ag € V(R)| f(Ar) = I for every
f € Hom(Ag, Rg)}.

When % has a unique element A4, we shall write Trg(A4g) instead of Trr(%). The
trace Trg(%) is the smallest two-sided ideal I of R satisfying Arl = A (or, equiv-
alently, 4 ®x R/I = 0) for every Ag € %. Moreover, Trg(%) is an idempotent ideal.
We call an ideal I of R a trace ideal if I = Trg(%) for some subset % of V(R). For
instance, let Agx be a cyclic projective right R-module, so that Ag = ¢R for some
idempotent element e € R. Then Trg(A4g) = Trr(eR) = ReR is the two-sided ideal
generated by e. The sum of trace ideals is a trace ideal, so that the set 7 (R) of all
trace ideals of R, partially ordered by set inclusion, is a complete lattice whose
greatest element is the trace ideal R and whose least element is the zero ideal.

We recall some results of [8, Section 2]. Let Z(V'(R)) denote the set of all subsets
of V(R) and .#(R) the set of all two-sided ideals of R. Define two mappings

D: I(R)— P(V(R)) by ©(I) := {{Ar) € V(R) | ARl # Agr}
forall I € #(R)
and

¥ : 2(V(R)) — J(R) by W(%) := Trg(V(R)\%) for all % € ?(V(R)).
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Then @ and ¥ are a Galois connection from .#(R) to Z(V (R)) with the inverse order
[14, Theorem IV.5.1], that is, for all # € #(V(R)) and I € #(R),

O(I)cu ifandonlyif I=2¥ (%),

as is immediately verified. The image of @ is the lattice Spec(V(R)) of all prime ide-
als of the monoid V' (R), and the image of ¥ is 7 (R). Thus the lattices 7 (R) and
Spec(V(R)) are antiisomorphic via the restrictions of ® and ¥ [8, Theorem 2.2(c)].

Lemma 5.1. The following conditions are equivalent for every Ag € proj-R and every
Ie J(R):

(@) f(ARr) = I for every f € Hom(Ag, Rg);

(b) ArRI = Ag.

Proof. Statement (a) says that Trr(Ag) is contained in I. As the trace Trg(ARg) is the
smallest ideal J with AgJ = AR, Trgr(Ag) is contained in [/ if and only if statement (b)
holds. [

From Lemma 5.1 we immediately obtain that:

Corollary 5.2. For every I € #(R), the subset ®(I) of V(R) is the complement of T(I)
in V(R).

As YO(I) < I for every ideal I of R, the composition Y@ : #(R) — F(R) is a clo-
sure operation on the partially ordered set .#(R) with the inverse inclusion (recall that
a closure operation t in a partially ordered set P is a monotonic mapping ¢: P — P
such that x < #(x) and #(¢(x)) = t(x) for all x € P [14, p. 135]). We shall denote by
Tr(7) the ideal W®(I) for every I € #(R), and call Tr([) the trace ideal of I. Thus
Tr(7) is the greatest trace ideal of R contained in I for every ideal I of R. Equiv-
alently, the trace ideal Tr(/) of an ideal I is the trace of the set of all the finitely
generated projective modules P such that P = PI. Also, I is a trace ideal if and only
if I = Tr(I). (Notice that there is some ambiguity of terminology when I is at the
same time a two-sided ideal of R and a projective right R-module. For instance, if 7 is
any proper non-zero ideal of the ring Z, then Tr(I) = 0, but the trace of I viewed as a
projective right R-module is Z.) We shall say that an ideal 7 of R is an almost trace
ideal if I/Tr(I) is contained in the Jacobson radical J(R/Tr(I)) of R/Tr(I).

For any ring homomorphism f: R — S, we shall denote by P, the set of all
{Ary € V(R) with V(f)({Ar>) # 0. In the following proposition we shall see that
Py is a prime ideal of V'(R).

Proposition 5.3. Let f: R— S be a ring homomorphism, I =Xker f, and V(f):
V(R) — V(S) the monoid homomorphism induced by f. Then:

(a) The set Py is the prime ideal of V(R) corresponding to the trace ideal Tr(I) of I
in the antiisomorphism between the lattices Spec(V (R)) and T (R).

(b) The homomorphism V (f) : V(R) — V(S) factors uniquely through the canonical

homomorphism ¢ of V(R) into its reduced localization (V(R)p, ) ,oq. that is, there exists
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a unique monoid homomorphism e : (V(R)p, )eq — V(S) with V(f) = wg. The image
of V(f) is equal to the image of w. ‘

(c) If f is surjective and I is an almost trace ideal, then w is injective and induces a
pullback.

Proof. (a) The prime ideal of V' (R) corresponding to Tr(I) = YO(I) is OYD(I) =
(1) = {<4r) € V(R)[A @r R/T # 0} = {{Ar) € V(R) | A ®r S # 0} = Py.

(b) It is sufficient to remark that e is defined by w(<Ar) — <Br> + U(V(R)p,)) =
V(f)({Ar>) for every (Agr»,{Bry € V(R), {Br) ¢ Py.

For the proof of (c), which is modelled on the proof of [20, Theorem 1.5], we need
the following lemma.

Lemma 5.4. Let I be an almost trace ideal of a ring R, Ar,Br € proj-R and let
h: Ar/ARl — Br/BrI be an epimorphism. Then there exist a module Cg € proj-R

and an epimorphism h: Ar @ Cr — Br such that CrTr(I) = Cg, ker(h) =
ker(h)/ker(h)1, and the diagram

Ar @ Cg N Bp

[’A@OJ/ lﬁn

AR/ARI L) BR/BRIa

where py : AR — Ar/ARrI and pg : Bg — Bgr/BgrI denote the canonical projections, is
commutative.

Proof. As Ay is projective and h: Agr/Agl — Bgr/BgI is an epimorphism, there
exists a homomorphism 4’ : Ag — Bg such that pgh’ = hp,. In particular, Bg =
/’l/(AR) + BgrI. Then BR/BR TI‘(I) = (h/(AR) + Bgr Tr(])/BR TI‘(I)) + (BI + Bgr TI‘([)/
BrTr(I)) = (W' (Agr) + BrTr(I)/Bgr Tr(I)) + (Br/Br Tr(I))(I/Tx(I)). As I is an al-
most trace ideal, that is, 7/Tr(I) = J(R/Tr(I)), we can apply Nakayama’s Lemma,
from which we get that Br/BrTr(I) = h'(ARr) + Br Tr(I)/Br Tr(I), and thus Bg =
lil(AR) + BR TI‘(I)

Let by,...,b, be a set of generators of Bg, and write each b; as b, = h'(a;) +
biriy + - -+ by for suitable a; € A and rj € Tr(I). As Tr(I) is a trace ideal, if
P = ®(I) is the prime ideal of V'(R) corresponding to Tr([), then for each r; € Tr(J)
there is a homomorphism from a projective module C;; € V'(R)\P to Rg whose image
contains r;. Thus there is a homomorphism from C; to Br whose image contains
bjr;;. Taking the direct sum, we find a homomorphism g from a projective module
Cr=€D;; Cje V(R)\P to Bg whose image contains all the elements b;r;. Thus
there is a surjective homomorphism 7 := (h’,g) : Ag @ Cr — Bg. From Cg ¢ P, it
follows that Cr Tr(I) = Cg. Thus Crl = Cg, from which pgg = 0. The commuta-
tivity of the diagram follows. Finally, as Bg is projective, the exact sequence 0 —
kerh — Ar @ Cr — Bgr — 0 splits. Therefore it remains exact when tensored with
R/I. Thus ker(h)/ker(h)I is isomorphic to the kernel of h® R/I: Ar/ARI @

Cr/CrI — Br/BgI, which is isomorphic to ker(/) because Cg/CrI =0. [
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We are ready for the proof of Proposition 5.3(c). Assume f surjective and 7 an al-
most trace ideal. The prime ideal Py = ®(I) corresponds to the trace ideal Tr([/), that
is, Tr(I) is the trace of the set V(R)\Ps. Let {Ar),{Ax>,{Br),{By> be elements
of V(R) with (Ap>,<Bi> ¢ Py and w(<Ar) — <Ap>+ U(V(R)p)) = o(<Br) —
(Bgy+ U(V(R)p,)). Then A @S = A'®xS, ie., there is an isomorphism £ :
Ar/Arl — Br/Bgrl. By Lemma 5.4, there are Cg € proj-R and an epimorphism
h:Ar ® Cr — Bg with CrTr(I) = Cg, ker(h) = ker(h)/ker(h)I and h(ps ®0) =
pgh. In particular, Cg ¢ Py. As h is an isomorphism, it follows that ker (/) /ker(h)I =
0, so that ker(h) ¢ P, either. Thus Az @ Cr = Br @ ker(h) implies that (Ag)+
UV(R)p,) =<Bry+ U(V(R)p,) in (V(R)p )q, from which <Ag) — (AR +
U(V(R)p,) = {Bry — By + U(V(R)p,). This shows that e is injective.

In order to prove that w induces a pullback, we shall apply Theorem 4.3. It is
enough to show that, if Ag, Bg are finitely generated projective R-modules and Qg is
a finitely generated projective S-module such that 4/A47 =~ B/BI & Q, then there
exists a unique <X) + U(V(R)p,) € (V(R)p,),oq such that X/XT = Q as S-modules
andA@T =B®X ® T’ forsome T,T"' € proj-R with {T'»,{T"> ¢ Py.

Let i : A/AI — B/BI be an epimorphism with kernel isomorphic to Q, and apply
Lemma 5.4. There are Cg € proj-R and an epimorphism /4 : Ag @ Cr — Br with
CrTr(I) = Cg and ker(h) = ker(/)/ker(h)I. The module X := ker(k) has the re-
quired properties. The uniqueness of <X + U(V(R) P/) follows from the injectivity
ofw. [

Let R be an exchange ring [7, p. 67]. Every projective right R-module is a direct sum
of cyclic projective modules [7, Theorem 2.56]. Thus the (finitely generated) trace
ideals are exactly the two-sided ideals generated by (finitely many) idempotents of R.
In [4, Proposition 1.4], it is proved that if R is an exchange ring and [ is a two-sided
ideal of R, then V(R/I) is isomorphic to the reduced localization of V'(R) at the
prime ideal of all {Ag» € V(R) with Agl # Ag. The isomorphism is the isomorphism
o induced by the canonical projection p; : R — R/I. This can be generalized as fol-
lows. Let I be an ideal of a ring R. We say that [ is an exchange ideal of R in case for
each a € I there are elements r,s € I and an idempotent e € I such that ar = a + s —
as = e. This notion is left-right symmetric and depends only on the ring structure of
I and not on the particular embedding of I as an ideal of a unital ring R; see [2].
Moreover, a ring R is an exchange ring if and only if R is an exchange ideal of R.
(This follows from the well-known characterization of exchange rings obtained in-
dependently by Goodearl [12] and Nicholson [16].) By [2, Proposition 1.5(a)], if I is
an exchange ideal of a ring R, then each A € proj-R with 4 = AI is a direct sum of
cyclic projective modules, so that the ideal Tr([/) is exactly the ideal generated by all
the idempotents of I. Also, by [2, Theorem 2.2], the factor 7/Tr(I) is an exchange
ideal of R/Tr(I) with no nonzero idempotents, so I/Tr(I) = J(R/Tr(I)), i.e., I is an
almost trace ideal of R. It follows that we can apply Proposition 5.3(c). We have thus
obtained the following:

Corollary 5.5. Let I be an exchange ideal of a ring R and let P be the prime ideal ®(I)
of V(R). Then the map @ : (V(R)p),eq — V(R/I) induces a pullback.
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Proposition 5.3(a) gives a characterization of prime ideals in the monoids V(R),
because:

Proposition 5.6. Let R be a ring. A subset P of V(R) is a prime ideal of V(R) if and
only if there exists a homomorphism f of R into some ring S such that P = Py.

Proof. In view of Proposition 5.3(a), it is sufficient to show that every prime ideal P of
V(R) is of the type P, for some homomorphism f: R — S. Let P be a prime ideal
and 7 the trace ideal of R corresponding to P in the antiisomorphism @ : 7 (R) —
Spec(V(R)), so that P = ®(I). Let f: R — R/I be the canonical projection. Then
P={¢Arye V(R)| Arl # Ag} = {<Ar) € V(R) | V(f)(<AR)) #0} = Pr. O

Proposition 5.7. For every ideal K of a ring R, let px denote the canonical projection
R — R/K. Then:

(@) The trace ideal Tr(I) of an ideal I of R is the smallest among the ideals K of R
with P,, = P,,.

(b) If I is an almost trace ideal of R and 7w : R/Tr(I) — R/I is the canonical pro-
Jjection, then V() : V(R/Tr(I)) — V(R/I) is injective and induces a pullback.

Proof. (a) For every ideal K of a ring R, one has P, = {{Ar)e V(R)|
ArK # Ar} = ©(K). As O(I) = OYP(I) = ©(Tr(!)), it follows that Py, = Py, .
Also, if K is any ideal of R such that P,, = P,,, then ®(K) = ®(I), so that Tr(I) =
Yo(I) = YO(K) = K.

(b) It is enough to show the result for an ideal I contained in J(R) (so that
Tr(I) = 0). It is well known that, for every ring S, the mapping V(p;s)) : V(S) —
V(S/J(S)) is injective (this follows from the uniqueness of projective covers). Ap-
plying this fact to the two rings S = R and S = R/I, one sees that the two mappings

V(piw) : V(R) = V(R/J(R))
and
V(psrin) : VIR/T) — V(R/J(R))

are both injective. From the equality V' (p;r)) = V(psr/1)) © V(7) and the injectivity
of V(pyry), it follows that V(r) is injective.

Theorem 3.1 says that V(pyg)) : V(R) — V(R/J(R)) induces a pullback. From
this fact, the injectivity of V(p;(r)) and the equality V(p;r)) = V(psr/n)) © V(n), it
easily follows that V'(n) also induces a pullback. [

6 Directed convex subgroups of Ky(R)

Let 7 be an ideal of a ring R. The canonical projection p; : R — R/I induces a group
homomorphism Ky(p;) : Ko(R) — Ko(R/I). We will prove that this homomorphism
has good properties when [ is an almost trace ideal. We have seen in Proposition 5.3
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that for such an ideal 7, the map (V(R)p)..q — V(R/I) induces a pullback, and this
immediately gives us useful information on Ko (py).

For any commutative monoid M, we endow its Grothendieck group G(M) with
the structure of pre-ordered group given by G(M)" = {[m]|m e M}, where [m] is
the image of m € M under the canonical map ¥, : M — G(M). Note that every
monoid homomorphism ¢ : M — N induces a homomorphism of pre-ordered groups
G(p) : G(M) — G(N).

Let G1 and G, be pre-ordered groups. We say that a map f : G; — G is an order-
embedding if f is an injective group homomorphism and x < y in Gy if and only if
f(x) < f(p) in Gy, for all x, y € G. The latter property is equivalent to the statement
(G = 1(G1) n GF.

Lemma 6.1. Let ¢ : M — N be an injective homomorphism of commutative monoids
that induces a pullback. If p(M) is cofinal in N, then the induced map G(p) : G(M) —
G(N) is an order-embedding.

Proof. Assume that G(¢)([m;] — [m2]) = 0. Then ¢(m;) + v = p(m,) + v for some
v e N. Since p(M) is cofinal in N, there exists w € M with v < ¢(w) in N. From this
and the injectivity of ¢, we deduce that m; + w = my + w, and thus [m;] — [my] = 0.
This shows that G(¢) is injective.

Now assume that G(¢)([m;] — [m,]) = [1n] in G(N) for some n € N and m;,m; € M.
By the pullback property, there is m € M such that [m] = [m;] — [m2] and n = p(m).
It follows that [m;] — [m;] € G(M)" and so G(g) is an order-embedding. []

The converse of Lemma 6.1 does not hold, that is, there exist injective homo-
morphisms ¢ : M — N with ¢(M) cofinal in N and G(¢p) : G(M) — G(N) an order-
embedding, but such that ¢ does not induce a pullback. To see this, it is sufficient to
take N = IN/~, where ~ is the smallest congruence on N with 4 ~ 5, so that N is a
monoid with five elements 0,1,2,3,4, and M the submonoid of N whose elements
are 0,2,4.

A subgroup H of a pre-ordered group G is a pre-ordered group by taking H' :=
H n G*. A convex subset of a partially ordered set G is any subset H with the prop-
erty that whenever x,z€ H and ye G with x < y <z, then y € H. A convex sub-
group of a pre-ordered group G is any subgroup H of G which is also a convex subset
of G. Clearly a subgroup H of G is convex if and only if whenever 0 < a < b with
be H and a € G, then a € H; see [10, p. 8]. We shall denote by #(G) the set of all
directed convex subgroups of the pre-ordered group G. We shall say that a commu-
tative monoid M is directly finite if for every x, y € M, x + y = y implies x = 0 (cf.
[18, p. 136]). Now let M be a commutative monoid, Spec(M) the set of its prime
ideals, and G(M) the Grothendieck group of M. Let Spec’(M) denote the set of all
P € Spec(M) with (Mp),.q directly finite. In the next proposition we shall describe the
partially ordered set Z(G(M)).

Proposition 6.2. Let M be a commutative monoid. Then there is an order reversing
bijection f : Spec'(M) — L(G(M)) defined by f(P) := Yy, (M\P) — ), (M\P) for
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every P e Spec’'(M). The inverse of f is the order reversing mapping g : (G(M)) —
Spec’ (M) defined by g(H) := ;' (G(M)\H) for every H € £(G(M)).

Proof. Let us prove that f(P) := i, (M\P) — y,,(M\P) belongs to ¥ (G(M)) for
every P e Spec’(M). It is easily seen that f(P) is a directed subgroup of G(M).

In order to show that f(P) is convex, suppose that 0 < x < y with x e G(M) and
vy € f(P). Then x =y, (m) and y = Y, (m") — ,,(m”) for suitable m,m’,m" e M,
m',m" ¢ P. Moreover, x + z = y for some z € G(M)", that is, z = y,,(n) for some
neM. As x+z=y, it follows that v, (m) + ¥, (n) + ¥, (m") =, (m'), 1ie.,
m+n+m"+n"=m' +n' for a suitable n’ € M. Thus m +n+n' =n" in (Mp),y.
As (Mp),.q is directly finite, it follows that m+n =0 in (Mp),., i.e., there exists
n” € M\P with m+n+n" ¢ P. Since P is a prime ideal, we get that m ¢ P. Thus
x € f(P). This shows that f is a well defined mapping of Spec’(M) into Z(G(M)).
Clearly, f is order reversing.

Let us prove that g(H): =y, (G(M)\H) belongs to Spec’(M) for every
He #(G(M)). The subset g(H) of M is proper, because 0 ¢ g(H).

Suppose that m,m’ € M\g(H). Then y,,(m),\,,(m’) € H, so that y,,(m+m’) €
H, and thus m+m' ¢ g(H). Conversely, if m,m’e M and m+m’ ¢ g(H), then
War(m) + Y (m’) € H. Thus y,,(m) and y,,(m’) are elements of G(M) that are >0
and < than the element v, (m) + y,,(m’) of H. As H is convex, it follows that both
YUy (m) and y,,(m') belong to H. Thus m,m’ ¢ g(H). This proves that g(H) e
Spec(M). Let us show that the monoid (M), is directly finite. Suppose that
X,y € (My(g))req and x +y = y. Then x = /1 and y = 7 for some m,n € M, and there
exist d,d’ € M\g(H) withm+n+d =n+d’. Then y,,(m) + Y, (d) = Y, (d’), and
U (d), ¥y, (d") € H. Hence y,(m) =y, (d') — oy, (d) € H, so that m¢ g(H). In
particular, x = = 0. Thus g(H) e Spec’(M), and g is a well defined mapping of
Z(G(M)) into Spec’(M), clearly order reversing.

We shall now show that gf (P) = P for every P € Spec’(M). Suppose m € gf (P).
Then y,(m) ¢ f(P), so that y,,(m) # Y, (m") — py, (m") for every m’,m” € M\P.
In particular, ,,(m) # y,,(m’) for every m’ e M\P, and so m e P. Conversely,
suppose m € M\gf (P). Then y,,(m) € f(P), so that y,,(m) = y,,(m’) — s, (m") for
suitable m’,m” € M\ P. Thus m +m" + my = m’ + mg for some my € M. In the di-
rectly finite monoid (Mp),4 we have that i + g = iy, hence i = 0. Therefore
m + m(, = my for suitable m(, m; € M\ P. From m + mj, ¢ P it follows that m ¢ P, as
desired.

We shall now show that fg(H) = H for every H € (G(M)). As fg(H) and H
are directed subgroups of G(M), it suffices to show that fg(H)" = H*. Suppose
xe H". Then x =, (m) for some me M. From y,,(m) e H, it follows that
m¢ g(H). Thus me M\g(H), so x =y, (m) € Y, (M\g(H)) < fg(H). Conversely,
suppose x € fg(H)". Then x=,,(m) for some me M, and x =, (m)e
Yar(M\g(H)) — Yy (M\g(H)). Thus s (m) = Y (m") =y, (m")  for = suitable
m',m" € M\g(H). Thus ,,(m’),,,(m") € H, so that x =y, (m") — i, (m") also
belongs to H. [

Example 3. The greatest element of #(G(M)) is G(M), and the least element is the
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convex subgroup Hy = {x e G(M)|0 < x < 0} of G(M). Correspondingly, the least
element of Spec’(M) is the empty ideal () = g(G(M)). Notice that () € Spec’ (M) be-
cause (My),.q = G(M),.q = 0 is directly finite. The greatest element of Spec’(M) is
the prime ideal g(Hy) = {me M |m+n+n' #n’ for every n,n’ € M}. To see this,
notice that m € M belongs to g(Hp) if and only if y,,(m) ¢ Hy, that is, if and only
if Yy, (m) + 4y, (n) # 0 for every ne M, i.e., if and only if m+n+n' # n’ for every
nn eM.

Example 4. If M is cancellative and P is any prime ideal of M, then (Mp),.4 is always
cancellative. In particular, it is always directly finite. Thus Spec’(M) = Spec(M) for
M cancellative. In this case, the least element of #(G(M)) is the convex subgroup
U(M) of G(M).

Proposition 6.2 allows us to describe the directed convex subgroups of Ky(R) for a
ring R. This is done in the next theorem, which is a generalization of [11, Theorem
15.20 and Corollary 15.21] to arbitrary rings. For a ring R, we shall denote by 7 '(R)
the set of all trace ideals I of R such that for every Ag, Bg € proj-R, Ar/Arl ®
BR/BRI = BR/BRI implies Ar = ARl.

Theorem 6.3. Let R be a ring. Then there is an order preserving one-to-one correspon-
dence h: T'(R) — Z(Ko(R)) defined by h(I) := {[Ar] — [Br| | Ar, Br € proj-R and
Ar = ARl, Br = BRI} for every I € 7'(R). The inverse of h is the order preserving
mapping ¢ : L(Ko(R)) — 7' (R) defined by ((H):=Trr({{Ar)|Ar € proj-R,
[AR] € H}) for every H € £(G(M)).

Proof. The mapping /4 is the composite mapping of the mapping f of Proposition 6.2
and the bijection ® : .7 (R) — Spec(V(R)) restricted to 7 '(R). The mapping / is
the composite mapping of the bijection W : Spec(V(R)) — 7 (R), restricted to
Spec’(V(R)), and the mapping ¢ of Proposition 6.2. By [8, Theorem 2.1(d)], for
every I € 7 (R), the image of the canonical homomorphism V(R) — V(R/I), Ar €
proj-R — Ar/ARl, is canonically isomorphic to (V' (R))g(r))rea- Thus ((V(R)) o) )red
is directly finite if and only if for every Ag, Bg € proj-R, Ar/ArI @ Br/Brl =
Bgr/BRrI implies Agx = Agl. Therefore an ideal I € 7 (R) belongs to 7 '(R) if and
only if ®(I) e Spec’(V(R)). [

There is another description of the directed convex subgroup /(1) of K(R) corre-
sponding to an ideal 7 € 7'(R). It says that A(I) is the kernel of the group homo-
morphism Ko(p;) : Ko(R) — Ko(R/I). To show this, we first prove a proposition
that holds not only for the trace ideals I € 7 '(R), but for all almost trace ideals of R.

Proposition 6.4. Let I be an almost trace ideal of a ring R, and let p; : R — R/I be the
canonical projection. Then the following properties hold:

(a) kerKo(pI) = {[AR] — [BR] |AR,BR € pI‘Oj-R and AR = ARI7 BR = BRI}.

(b) ker Ko(py) is a directed subgroup of Ko(R).

(¢) Ko(pr)(Ko(R)") = Ko(p1)(Ko(R)) N Ko(R/I)".
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Proof. (a) Set P:=®(I) e Spec(V(R)), M := (V(R)p),eq and N := V(R/I). By
Proposition 5.3(c), the map w : M — N is injective and induces a pullback. So by
Lemma 6.1, the map G(w) : G(M) — G(N) = Ko(R/I) is an order-embedding. Now
the map Ky(p;) factors as Ko(p;) = G(w) o 7, where 7 : Ko(R) — G(M) is a surjec-
tion with ker(t) = {[Ar] — [Br] | Ar, Br € proj-R and there exist Cg, Dg, D} € proj-R
with Dg = DRI,D/ = D;?[ and AR ® Cr® Dr = B ® Cg @D;?} = {[DH - [DR] |
Dg, Dy € proj-R and Dg = Dgl, Dy = DiI}. But ker(Ko(pr)) = ker(7).

(b) follows from (a).

(c) Since 7(Ko(R)") = G(M)*, we have, using Lemma 6.1,

Ko(pr)(Ko(R)") = G(0)(G(M)")
= G(0)(G(M)) 0 Ko(R/I)" = Ko(pr)(Ko(R)) nKo(R/T)". O

Theorem 6.5. For every ideal I of a ring R, let p; : R — R/I be the canonical projec-
tion. The following conditions are equivalent for a subset H of Ko(R):

(a) H is a directed convex subgroup of Ko(R).
(b) There exists an ideal 1 € 7'(R) such that H = {[Ag] — [Br]| Ar, Br € proj-R
andAR = ARI,BR = BRI}

(c) There exists an ideal I € 7'(R) such that H = ker Ko(py).

Proof. The equivalence of (a) and (b) follows from Theorem 6.3. The equivalence of
(b) and (c) follows from Proposition 6.4(a). [

7 The groups Ky(I)

For an ideal I of a ring R, consider the submonoid V() of V(R) consisting of
the elements {A) € V(R) such that 41 = A. Note that V(1) = V(Tr({)) = V(R)\P,
where P is the prime ideal of V(R) associated to Tr(/). The sequence

V() = V(R) = (V(R)p)rea
gives rise to an exact sequence of Grothendieck groups
G(V(I)) = Ko(R) = G((V(R)p)gea) = 0

as has been shown in the proof of Proposition 6.4(a). The map G(V (1)) — Ko(R) is
not injective in general, and its failure to be injective is related to the exact sequence
in algebraic K-theory

K] (R) — K] (R/I) — K()(I) — K()(R) — K()(R/I)

Recall that K(7) is defined as the kernel of the natural map Ko(1') — Ko(Z), where
I' = I ® Z is the unitization of I.

There is a natural map ¢ : G(V(I)) — Ko(I) sending the class of a finitely gen-
erated projective module 4z such that 4 = A to the corresponding class [4 ®; I'] in
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Ko(I). It is easy to check that if 7 is an (almost) trace ideal of R, then [ is an (almost)
trace ideal of any ring in which it can be embedded as an ideal. In particular, 7 is an
(almost) trace ideal of I' for any (almost) trace ideal I of R.

The following proposition generalizes [3, Proposition 4.4|, where the same result is
obtained for exchange ideals.

Proposition 7.1. Assume that I is an almost trace ideal of R. Then the natural map
vV G(V(I)) — Ko(I) is surjective.

Proof. Set S =1I', and note that / is an almost trace ideal of S by our previous
observation. Observe that Ko(I) consists of elements of the form [4] — [S”], where 4
is a finitely generated projective S-module such that A/Al =~ AQRsZ = Z". Let
h:AJAI — S"/S"I = Z" be an isomorphism. By Lemma 5.4, there exist a module
Cs e proj-S and an epimorphism /i: As @ Cs — S such that CsTr(I) = Cs,

ker(h) = ker(h)/ker(h)I, and the diagram

As®Cs —1 81

PA(‘BO\ J{Ps"

Ag/As] —— SL/SLI,

where py : As — As/AsI and psr : S§ — S§/SI denote the canonical projections,
is commutative.

Set D =ker(h). Then 4 ® C = S"@® D and, since h is an isomorphism, we get
D = DI. Consequently [4] —[S"] = [D] —[C], with C = CI and D = DI, which
proves that [4] — [S'] is in the image of the map  : G(V(I)) — Ko(I). O

It was asked in [3] whether the map  : G(V(I)) — Ko(I) is injective for any ex-
change ideal /. We now provide a counterexample.

Example 5. We consider a modification of an example due to Chuang and Lee, cf. [6].
Let F be a countable field and let F(¢) be the field of rational functions in the inde-
terminate 7. Chuang and Lee construct in [6] a (von Neumann) regular ring S which
is an F-subalgebra of the algebra B(F) of row-and-column finite matrices over F and
contains the ideal 4 = M(F) of matrices with only a finite number of nonzero en-
tries. Moreover there is a surjective F-algebra homomorphism 7 : S — F(z) with
kernel A4, and there are elements a,b € S such that n(a) = ¢, n(b) = ¢!, ba = 1 and
1 — ab is a one-dimensional idempotent in A. Now consider D = MF]|t],,, where M
is the ideal of F[¢] generated by 1 — t. As F[t],, is a local ring, D is a radical ring. Set
I = n~!(D). By [2, Corollary 2.5], I is a non-unital exchange ring. Note that the ele-
mentsa — 1l and b — 1 are in /.

All the idempotents of M(I) are in M(A) and so G(V(A4)) = G(V(I)) = Z. Since
A is a regular ring we have G(V(A4)) = Ko(A4) (cf. [15, Proposition 1.2]). The gener-
ator of Ko(A) is given by [I — ab]. Set B=TI'. To compute Ko(I) we use the exact
sequence in K-theory associated to the ideal 4 of B. Note that B/4 =~ D', so the fact
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that D is a radical ring gives us that Ko(D') = K¢(Z), and we obtain an exact se-
quence

Ky(A) — Ko(B) — Ko(Z) — 0.

Thus the map Ko(A4) — Ko(I) is surjective. But since a — 1,5 — 1 € I, the image of
the generator [1 — ab] of Ky(A) under that map is 0 and so Ko(/) = 0. Therefore the
map V¥ : G(V(I)) — Ko(I) is the map Z — 0, and it is not injective.

In [17], D. Quillen introduced a variant K{(/) of Ko(I) for a nonunital ring / in the
following way. Let R be a unital ring containing / as an ideal, for instance R can
be the unitization 7' = I @ Z of I. The group K/(I) is the abelian group generated
by elements [f : P — Q], where P and Q are finitely generated projective right R-
modules, f : P — Q is a homomorphism and f : P/PI — Q/QI is an isomorphism,
subject to the relations:

M[fP=0+[f":P=0]=[f@f:POP = 0O QT

@Qf:P—=P+lg:P—0l=[gf : P'— O

(3) [f : P— Q] =0 when f is an isomorphism.

It can be shown that K(j(I) does not depend on the unital ring R in which 7 is em-
bedded [17, pp. 197-198]. There is a canonical surjection K;(I) — Ko(I) that maps
[f : P — Q] to [Q] — [P]. This map is not injective in general [17, p. 208 and §7]. We
next show that, for an almost trace ideal 7, there is a natural isomorphism K| (/) —
G(V(I)). The canonical surjection K{)(I) — Ko(I) factors as the composite mapping
of the isomorphism K((I) — G(V(I)) and the natural map vy : G(V(I)) — Ko(I).
Thus Example 5 shows that K (1) — Ko(/) is not necessarily injective for an almost
trace ideal /.

Theorem 7.2. For an almost trace ideal I of a unital ring R, the groups K{(I) and
G(V(I)) are canonically isomorphic.

Proof. Define ¢ : K((I) — G(V(I)) as follows. Given a generator [f : P — Q] of
K{(I), we can construct by using Lemma 5.4 an exact sequence

o—H-PacLl o0

of finitely generated projective modules with CI = C. As f is an isomorphism, we get
that H = HI. The mapping ¢ sends [f : P — Q] to [C] — [H] € G(V(I)). We have to
show that this deﬁmtlon does not depend on the choice of the sequence
0—- H— P@C )Q 0. If0—>H’—>P®C’ Jr Q—>Ols another exact
sequence with C'I = C' and H' = H'I, there is a homomorphism (;) :C—P@®C’
such that = (f,7 )() Similarly, we get a map (Z:) :C'— P@® C such that

' = (f, r)( ) We have a commutative dlagram

00— H — Pdc L% oo

L6l

00— H — prac L% oo
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So we have an exact sequence
1 a *
0 f
>

which splits, and the splitting is determined by a map P@® C' — P@® C @ H' of the
1 o b 0 0
form A =(o0 p ). Let A be the automorphism ( 0 1c 0 )of P® C® H'. Then we

have J e =5 0 1

0-HLPdC) @H P®C' —0,

POCOH =AAP®C')®@y(H))
=AA(P) DAA(CYDAy(H)=PDC"®H"

with C" =2 C'"and H" 2~ H. Thus C®O H' = C"® H" ~ C' ® H. This shows that
[C]— [H] = [C'] — [H'], as desired.

We must now show that ¢ respects the defining relations (1), (2) and (3). This
is obvious for (1) and (3). For (2), fix f: P' — P and g : P— Q. Construct the

(7)

I

correspondlng exact sequences 0 — H —= P' @ C —0 and 0 - H' -5
P C ——= 0.5 QO — 0 via Lemma 5.4. As H’ is pI‘OJeCthe and (f,7)®1lc: P @
C®C'— P® (' is onto, there exists a map :H' — P'® C® C’ that com-

(5 3

posed with (f,7) ® 1¢ gives (;, ) The exact sequence corresponding to gf : P’ — Q

is
()
B o )
o-HeoH ~ L Pecec Lo o
This completes the proof that ¢ is a well defined homomorphism.

Now define a homomorphism V(I) — K((I), <C)>+— [0 — C]. This monoid
homomorphism induces a group homomorphism  : G(V(I)) — Kj(I) such that
U([C] - [H]) = [0 H — C] for every [C]—[H]eG(V(I)). It is obvious that
@ oy =1Idgy ). To check that o ¢p = IdK , we first consider the case of a split
monomorphlsm f : P — Q with cokernel C such that C = CI. We then have

[f:P—=Ql=[f:P—f(P)]+[0—-C]=[0— C].

For the general case, consider a generator [f : P — Q] of K((I). Consider the corre-
sponding exact sequence

0-H—-Poc?

0 —0.

Then there is a right inverse g: Q — P@® C of (f,7), which is a split mono-
morphism with cokernel H. By the previous case, [g: Q — P® C] = [0 — H].
Thus [(f,7): P@® C— 0] = —[g: Q — P& C] = —[0 — H] — [H — 0]. But [(f,7):
POC—0l=[/®lc:POC—0@Cl+[(1,7): 0@ C—Ql=[f:P— Q]
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(()):0—0&C]=[f:P— 0] -[0—C]. We conclude that [f:P— Q]=
[H — 0]+ [0 — C]=1[0: H— C]. This completes the proof. []

We conclude our paper showing that, if I is a trace ideal of a unital ring R, then the
natural map vy : G(V(I)) — Ko(I) is an isomorphism. It follows then from Theorem
7.2 that the canonical map K (/) — Ko (/) also is an isomorphism for a trace ideal /.
We will use the description of Ky(R) in terms of idempotent matrices over R; see
for example [19, Section 2]. If X is any additive subgroup of a ring R, we denote by
M(X) the set of all infinite matrices, indexed by N x IN, having their entries in X
almost all zero. Note that M(X) can be identified with the direct limit lim M, (X),
via the embeddings M,(X) — M, 1(X) given by a+— diag(a,0). If 4 and B are
matrices of finite size, then we will denote by 4 @ B the (block) diagonal matrix
diag(4, B). If e is an idempotent in R, we will use the notation e, for the diagonal
matrix diag(e,...,e) (r times). If E, F are idempotent matrices in M(R), we write
E ~ F if the corresponding finitely generated projective R-modules are isomorphic.

Lemma 7.3. Let e be a non-zero idempotent in a ring R. Then Ko(ReR) =~ Ky(eRe).
More precisely, the map ¢ : Ko(eRe) — Ko((ReR)), defined by ¢([glg,(.re) =
9]k, ((Rer)") Jor all idempotents g € M (eRe), is an isomorphism.

Proof. Clearly, we have a monoid homomorphism y : V(eRe) — V(ReR) sending the
class in V' (eRe) of an idempotent g in M(eRe) to the class of g in V(ReR). It is
readily seen that y is injective. To see that it is also surjective, let £ € M(ReR) be an
idempotent matrix. Then there exist r > 0 and 4, B € M(R) such that E = Ae,B. As
E is idempotent, E = EAe,BE, so that e,BEAe, € M(eRe) is an idempotent matrix
equivalent to E, which proves that y is onto. Thus y is an isomorphism, and therefore
G(y) : Ko(eRe) = G(V(eRe)) — G(V(ReR)) is a group isomorphism.

Let ¢ : Ko(eRe) — Ko(ReR) be the composition of the isomorphism y : Ky(eRe) —
G(V(ReR)) and the map  : G(V(ReR)) — Ko(ReR). Clearly o([g]g,(cre) =
9] Ko((ReR)") for every idempotent g in M (eRe). By Proposition 7.1, the map ¢ is
surjective, hence so is the map ¢. It only remains to show that ¢ is injective. Let
E,F € M,(eRe) be two idempotents such that ¢([E] — [F]) = 0. Then there exists
m>1with E@l, ~F@® 1, in M,.,((ReR)"). Let A, Be M,,,((ReR)") be such
that

4) (E®l,)A=4, AF®l,) =4, (F®!l,)B=B, BE®I1, =B
and
(5) AB=E®1,, BA=F®l,.

Let 7 : (ReR)' — Z be the canonical map. Observe that 7(A4)r(B) =0, @® 1,, and
n(B)n(4) =0, @ 1,,. Moreover, by conditions (4), we have n(4) =0,® Z; and
n(B) = 0, ® Z, for some matrices Z,Z, € M,,(Z), so that Z, = Zl’l. Replacing 4
with (1, ® Z;!)4 and B with B(1, ® Z;), we see that, in addition to the other
properties, we can assume that (e, ® 1,,) — 4 € M, ,,(ReR) and (e, ® 1,,) — Be
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M im(ReR). Write A = (%1 “2 ) where a;; € EM,(eRe)F, aj; € EM,xm(ReR),

ay lytan

a1 € Mysn(ReR)F and ay € M, (ReR). Note that

6)  (a®ly)—A= (e” —an ‘“'2).

—a —am
One can find a positive integer r and matrices a}; € M,,x,(Re) and a5, € M, (eR)

and af, € My.u(eR) such that ax = ajaj;, and ax = a}a),. Moreover, since
az = an F, we can assume that aj, = a}, F. Now set

e, O
(7) Y = ( 0 aé] ) € M(n+m)><(n+r)(Re)a

e, —dadjp —dap
(8) X = ( ﬂ_ " o ) € M(n+i')><(n+m)(eR)'
as) ay»

Note that, by (6), (7) and (8), we have YX = (e, @ 1,,) — A. Also observe that
9) (E®1,))Y=Y(E®e), (F®1,)Y=YFDe).
Consider the following matrices in M, ,(eRe):
A =e,,— XY, B =(E®e)+ XBY.
Then
A'B' = (E®e,)— XY(E®e,) + XBY — X(YX)BY
=(E@e)— XY(E®e,) + XBY — X[(ey @ 1,y) — A|BY
—(E®e,)— XY(E®e,)+ XBY —XBY + X(E® 1,,)Y
—(E@e,)—XY(E®e,)+ X(E®1,)Y.

From the first equation in (9), we get A’'B' = (E @ e,).
On the other hand, we have

B'A'=(E®e,)+XBY — (E®e,)XY — XB(YX)Y
—(E®e)+XBY — (E®e,)XY — XB(e, ® 1,,) — A]Y
=(E@e)+XBY — (E®e,)XY —XBY + X(F® 1,)Y
—(E®e)— (E@e)XY +X(F®1,)Y.

From the second equation in (9), we get
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B'A=(E®e)— (E®@e)XY +XY(F®e)

=(F®e)+ (EDe)(enr — XY) — (enir — XY)(F De,).

Now

/
ag dajdy

e"+r_XY:< " noro):
ay et axndy

As Ea;) = ay, Eap =an, edf,=ad), and eal, =dl,, we get that (E@e,)-
(ensr — XY) = ey, — XY. Similarly, from ay; = anF, a}, = de, and a5\ F = aj),
we obtain that (e, — XY )(F @ e;) = e,y — XY. Therefore B'A' = F @ e,.

This shows that [E] — [F] = 0 in Ky(eRe), and ¢ is injective. [

Theorem 7.4. Let I be a trace ideal of a ring R Then the natural map
v GV(I)) — Ko(I) is a group isomorphism.

Proof. By Proposition 7.1, the map  is surjective. It remains to show that it is
injective. Let E and F be idempotents in M,(I), for some n > 1, such that
Y([E] — [F]) = 0. Then there exists m > 1 such that E@ 1,, ~ F® 1,, in M, ,,(I").
As in the proof of Lemma 7.3, we can assume that

ap apn b1 b
4 (azl Ly + azz) and B <b21 L+ bzz)
for some a;; € M, (I) and b;; € M, (I). (Here the notation x € M, (X) means that x is a
matrix with entries in X of suitable size.)

Since [ is a trace ideal, the non-unital ring M(I) is generated as a two-sided ideal
by its idempotents. It follows that there are k > max{n,m} and an idempotent
e e Mi(I) such that a; ®0,b; ® 0 e M (R)eM;(R) for all i,je 1,2, for suitably
sized zero matrices. In particular, identifying £ @ 04—, with E and F @ 0;_, with F,
we see that E, F € My (R)eM(R). Put S = M;(R) and observe that E® 1 ~ F® 1
in M((SeS)").

There are x;, yi,z,t;€S, for i=1,...,r, such that E=5, xey; and
F=Y" zet. Set E =e(yi,...,y) E(x1,...,x)e, € M,(eSe), and F'=
e(ty...\ 1) TF(zl, ... zy)e, € M, (eSe). Then E' and F’ are idempotents with £’ ~ E
and F' ~ F in M,(SeS). Let ¢ : Ky(eSe) — Ko(SeS) be the map defined in Lemma
7.3. Then p([E'] — [F']) = [E'] — [F'] = [E] — [F] = 0in K(SeS). By Lemma 7.3, we
get [E'] — [F'] = 0in Ky(eSe) and it follows that [E] — [F] = [E'] — [F'] = 0 in Ko (]).
This completes the proof. []
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