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Abstract  

The gut microbiome represents a real “orchestra conductor” in the host’s physio(patho)logy due to 

its implications in many aspects of health and disease. Reciprocally, gut microbiome composition 

and activity are influenced by many different factors, such as diet and physical activity. 

The massive sequencing of gut microbiome specimens, thanks to the technological advancements in 

high-throughput sequencing and bioinformatics analyses, and more recently, the development of 

methods to quantify different microbial metabolites, allowed population-level studies to be carried 

out on the human microbiome. Their findings help to better understand the microbiome’s role in 

physiology, its functional imbalance in various chronic pathologies [1] and, its implications on 

athlete’s health and performance [2, 3]. In addition, mechanistic pre-clinical studies have brought 

novel insights into the underlying molecular mechanisms and can be used to test strategies, such as 

dietary challenges, to modulate the gut microbiota composition [4, 5]. 

The aim of our doctoral project was to first highlight the implications of gut microbiome on athlete’s 

health and then, to focus the attention on the combination of physical activity and nutritional 

interventions to modulate gut microbiome composition in the context of health and performance 

(dietary strategies and food supplementation). 

This new knowledge could be used to develop strategies (i.e., personalized dietary advice, 

supplementation, physical activity programs) to modulate the gut microbiome with the ultimate goal 

of improving performance in elite athletes and/or preventing various pathologies related to skeletal 

muscle metabolism. 

The thesis is structured as follow: 

 

1) Study 1.  

Type of study: Observational study 

Title: Athletes’ Microbiome Project (AMP) 
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Issue: The characteristic of a ‘healthy microbiome’ remains unclear and population-based 

study reveal that interindividual variation is partially accounted by diet and lifestyle factors 

including exercise 

Aim: Characterized the composition of gut microbiome in a well-defined population cohort 

(elite soccer players) and explore the associations of microbial features to metadata (dietary 

intakes). 

 

2) Study 2. 

Type of study: Randomized controlled trial 

Title: The anti-inflammatory role of extra-dark chocolate on elite athletes’ health and 

microbiome composition 

Issue: High intensity and/or long-lasting exercise impairs the intestinal environment and the 

gut microbiome composition thus, consequently impacting health and performance 

Aim: Identify potential food supplement (30g dark chocolate/day/1month) that may 

counteract the effect of intense exercise  

 

3) Study 3:  

Type of study Randomized controlled trial 

Title: Effect of 30 days of ketogenic Mediterranean diet with phytoextracts on athletes' gut 

microbiome composition 

Issue: Ketogenic diet seems to be detrimental for the athlete’s gut microbiome  

Aim: Investigating the effect of a specific ketogenic diet (KEMEPHY) on athlete’s gut 

microbiome and health [6]. 
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PART 1: BACKGROUND ON THE TOPIC OF DOCTORAL PROJECT 

General Introduction to microbiome study 

Gut Microbiome: What is it? 

In this thesis we will use both the term “microbiome” and “microbiota”. Sometimes used 

interchangeably, these two terms have subtle differences. The microbiota refers to the microbial 

taxa associated with humans to signify the communities of microorganisms within a specific 

environment, while microbiome, on the other hand, refers to the collection of microbial taxa or 

microbes and their gene content. Thus, if we consider these two terms differentially, “microbiota” 

is used to signify the communities of microorganisms, whereas “microbiome” is to signify the 

organisms and all their related genomes. Although we still need to confirm whether we are born 

sterilely [7], it is known that we begin to be colonized with microbes at birth, or our microbiota 

development begins well in amniotic fluid before delivery . Over the first several years of life, 

particularly during the first 3 years, our skin surface, oral cavity, and gut are colonized by a 

tremendous diversity of bacteria, archea, fungi, and viruses until the microbiota becomes adult-like 

[8]. The largest microbial community of the human microbiome is our intestinal tract harboring up 

to 100 trillion 1014 microbes, which are 10 times the number of human cells, and more than 150 

times the number of human genes [8]. The vast majority of microbes reside in the colon with a 

density around 1011 to 1012 cells/ml. In 2016, Sander et al. [9]  reestimated that the number of 

bacteria in adult colon is 3.8 x 1013  and the ratio of bacteria to human cells is closer 1:1 instead of 

10:1 as previously estimated. 

 Microbiome research and DNA sequencing 

The science of microbiome has a long history [10]. Historically, microbiology studies were almost 

entirely culture-dependent (it was necessary to grow the organism in the lab, outside their natural 
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habitat). However, it was a challenging process because many species were well adapted to live in 

human body and the suitable environment for human microbiome was not viable in in vitro 

condition. These challenges have resulted actually, in the past, in an underestimation of the 

complexity of the human microbial community. It was only in 2005, that the advances in DNA-

sequencing technologies allowed researchers to analyze the DNA extracted directly from human 

sample, rather than from individually cultured microbes [11]. Moreover, in few years, DNA 

sequencing has fundamentally shifted away from classical Sanger automated sequencing to next-

generation sequencing (NGS) analysis. Indeed, although the automated Sanger method is currently 

considered the “first-generation” sequencing technology, the sequenced reads produced were 

limited. For this reason, the shotgun sequencing techniques have been successively emerged to 

analyze longer fragments. Currently, Illumina /Solexa is the most widely used platform in the field 

of metagenomics. 

Introduction to Phylogenetics for bacteria analysis  

Phylogenetics is the study of the evolutionary history and relationships among individuals or groups 

of organisms. Phylogenetics is important because it enriches our understanding of how genes, 

genomes, species and molecular sequences generally evolve. Human microbiome is very 

complicated with existing genetic and evolutionary relationships among species. This field of 

classification, identification and naming of biological organisms on the basis of shared 

characteristics is called taxonomy. Taxonomy stems from ancient Greek taxis, meaning 

“arrangement”, and nomia , meaning “method”. To understand the complexity of the human 

microbiome, it is important to recognize the genetic and evolutionary relationship between species. 

The Swedish botanist Carl Linneaus was known as the father of taxonomy, who developed a system 

for categorization of organisms, known as Linnaean taxonomy, and binomial nomenclature from 

naming organisms. Linneaus and others ranked all living organisms into seven biological groups or 

levels of classification: kingdom, phylum, class, order, family, genus, and species. There are no 
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domains in these classifications. The classification of domain is a relatively new grouping, which 

was first proposed by Woese et al. in 1997. They said, a formal or natural system of organisms 

should have a new taxon called “domain” above the level of kingdom. Archea, Bacteria and 

Eukarya are the three domains of life. At each lower level, organisms are classified with their most 

similar characteristics. Species-level analysis provides the most precise information of life; however 

higher-level analyses are also valuable, especially when species identification is challenging [12]. 

How to analyze microbial genome: 16S rRNA amplicon sequencing and Whole Genome 

Shotgun Sequencing (WGS)  

Currently, there are two main approaches to sequence the uncultured microbes: amplicon 

sequencing (in which one particular gene, often 16S rRNA, is amplified and sequenced) and 

random shotgun sequencing. 

 

A breath of fresh air in microbiome science: shallow shotgun metagenomics for a reliable disentangling of microbial ecosystems, Microbiome Res 

Rep 2022;1:8.10.20517/mrr.2021.07 

16S rRNA Sequencing  

The 16S rRNA gene (or rDNA), is the conservative gene in the microbes.  
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Molecular Approaches to Studying Microbial Communities: Targeting the 16S Ribosomal RNA Gene, September 2016Journal of UOEH 38(3):223-

232.DOI: 10.7888/juoeh.38.223 

Lane et al. in 1985 [13] first described the use of 16S rRNA gene to identify and classify uncultured 

microbes in the environment. Because this gene has several desirable properties, the 16S rRNA 

gene sequencing has been the first metagenomics method. The properties include: 1) The 16S rRNA 

gene is ubiquitous and necessary component of ribosomes translating mRNA (it encodes the small 

subunit ribosomal RNA molecules of ribosomes that are used for the translation of mRNA into 

protein).; 2) The 16S rRNA gene contains highly conserved regions suitable for universal PCR 

primer design to amplify region of interests such as V1-V3 or V1-V4; 3) Well-studied primer sets 

are available for amplifying most organisms with high specificity for bacteria; 4) Well-curated 

databases of reference sequences and taxonomies are available allowing sequence comparison and 

taxonomic assignment of organisms; 5) The 16S rRNA gene sequencing in also relatively cheap 

and simple with mature analysis pipelines [14]. 

Limitation of 16S rRNA sequencing approach  

1) Amplicon sequencing rRNA markers via PCR may miss detecting taxa due to various biases 

associated with PCR (which may result in substantially reducing microbial diversity in a 

community) 
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2) 16S rRNA sequencing overestimates the community diversity or species abundance due to 

the artificial sequence caused by sequencing errors and incorrectly assembled amplicons 

(i.e., chimeras) 

3) Amplicon sequencing only discerns the taxonomic composition of microorganisms, but it 

cannot analyze the biological functions of associated taxa 

4) Amplicon sequencing can only analyze the taxa that taxonomically informative genetic 

markers are known and can be amplified. It is difficult to be used for analyzing novel or 

highly divergent microbes 

5) 16S rRNA sequencing approach lacks a golden standard for guiding decisions on quality 

control and statistical analysis methods (Xia and Sun 2017). 

Shotgun Metagenomic Sequencing   

Definition of Metagenomics 

Shotgun metagenomic sequencing is a powerful alternative to 16S rRNA sequencing for analyzing 

complex microbiome communities and avoids some of these limitations. Metagenomics has been 

defined as “the genomic analysis of microorganisms by direct extraction and cloning of DNA from 

assemblage of microorganisms” and a metagenome has been defined as “the entire genetic 

information of an ensemble of organisms, living in a common habitat” [15]. In its approach, 

metagenomics refers to “computational methods that maximize understanding of the genetic 

composition and activities of communities” and metagenomic analyses have three basic tasks: 

taxonomy analysis (who are they?), functional analysis (what can they do?) and comparative 

analysis (how to compare them?). 

Advantages of shotgun metagenomic sequencing  
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There has been an increasing interest in employing shotgun sequencing, rather than amplicon 

sequencing since this method has several advantages: 

1) Shotgun metagenomics not only produces analysis data for generating hypothesis about the 

microbial community composition, but also provides a powerful tool to hypothesize 

microbial functions associated with different conditions, such as, health and disease, and 

treatment and control. Given the functional profile, researchers can generate hypotheses on 

community dynamics and metabolic properties [16]. In shotgun metagenomic sequencing, 

total DNA in a community is extracted and independently sequenced, which produces huge 

numbers of DNA reads that align to various genomic locations in the sample. Thus, after 

obtaining the shotgun metagenomic sequencing data, microbiome scientists can 

simultaneously explore two basic tasks of a microbiome study: which microorganisms are 

present within a sample and what each of them do. Indeed, shotgun metagenomics can fully 

characterize a community, including: i) community composition, ii) community member’s 

genetic potential, iii) intra-species gene heterogeneity and iv) the metabolic potential of the 

community [17]; 

2) The shotgun metagenomic sequencing is potentially unbiased (accurate detection of all 

microorganisms and viruses [18]) so it has more chances to detect rare and novel species 

and viruses; 

3) The shotgun metagenomic sequencing approach has the ability to discriminate strains of 

common species by gene content, which is not possible with 16S rRNA sequencing 

approach [16]. 

Bioinformatic methods in metagenomics  

Two approaches are available: assembly-based and read-based metagenomics. In assembly-based 

metagenomics, separate reads are first de novo assembled to contigs and then clustered into so-
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called genome bins during a binning process (see below). In read-based metagenomics, individual 

reads are classified with regard to taxonomy and function, thus it is suitable to analyze the 

taxonomical composition, functions of the metagenome, and metabolic pathways [19].  

Processing of samples, DNA extraction and library preparation   

Sampling 

Sample is the first and most critical step in shotgun metagenomic studies. The first element of 

sample is to convert the source nucleic acid material into a sequencing library. Typically, there are 

several steps: first, to fragment long DNA into suitable size, then, to perform adapter addition. Last, 

to perform PCR to select molecules containing adapters at both ends and to generate enough 

quantities for sequencing. The most challenges of library preparation may be the quantitative biases 

and the loss of material occurred during preparation. However, to reduce the biases and loss of 

material, many algorithms have been developed and steps have been taken. 

DNA extraction 

DNA extraction in shotgun metagenomic sequencing method relies on the extraction of DNA from 

all cells in a sample and the obtained amounts of high-quality nucleic acids must be sufficient. The 

resulted DNA sequences reads are aligned to various genomic locations for the myriad genomes 

present in the sample. 

Assembly 

The step of assembling allows to assemble short reads into longer, contiguous sequences (‘contigs’) 

which permit downstream bioinformatic analysis smoothly. There are two types of assembly: 

reference-based assembly and de novo assembly. The first one performs well if the closely related 

reference genome sequences are available in the metagenomic datasets, while it performs poorly if 
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in the sample genome exists a large insertion, deletion, or polymorphisms. The novo assembly 

typically requires larger computational resources (more memory and run times). 

Binning 

Binning is defined as the process of sorting DNA sequences into groups that might represent an 

individual genome or genomes from closely related organisms. Mixtures of variable length of 

sequence fragments originating from various organisms returned by contig assembly. It is a 

challenge for assembly to reconstruct entire genomes, thus, following by assembly, it is necessary 

to bin genome fragments. 

Annotation 

To gain insight beyond taxonomic composition, the sequenced need to be annotated. Metagenome 

functional annotation of metagenomic sequences generally has two non-mutually exclusive steps: 

the gene prediction and annotation. Gene prediction refers to the procedure of identifying gene of 

interest, protein and RNA sequences coded on the sample DNA; functional annotation of 

metagenomic datasets assign putative gene functions and taxonomic neighbors. 

Limitation (challenges) of shotgun metagenomic data 

Despite the advantages, compared to 16S rRNA amplicon sequencing, the bioinformatic analysis of 

shotgun metagenomic data has some challenges. As an example, the data sets generated are very 

large and thus, highly complex to analyze (this makes, obviously, the bioinformatic analysis very 

complicated). Further, the cost of whole-genome sequencing is still high, compared to 16S 

(approximately 160$ for shotgun metagenomics analysis and 50$ for 16S rRNA amplicon analysis). 

Schematic summary of shotgun bioinformatic workflow: 



 
17 

 

Quince, C., Walker, A., Simpson, J. et al. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35, 833–844 (2017). 

https://doi.org/10.1038/nbt.3935 

Research themes and statistical hypothesis in human microbiome studies 

There are two themes in the current microbiome studies: 1) to characterize the relationship between 

microbiome features and biological, clinical, or experimental condition; and 2) to identify potential 

biological and environmental factors that are associated with microbiome composition. The goal of 

these studies is to understand mechanisms of host genetic and environmental factors that shape 

microbiome. Insights gained from studies potentially contribute to the development of therapeutic 

strategies in modulating the microbiome composition in human diseases [20]. The interaction 

among environment, microbiome and host are dynamic and complicated. In the following figure we 

schematically represent the interactions. 



 
18 

 

To study interactions among environment, the general research hypotheses could be developed. 

Hypothesis 1 is to test the association between microbiome and host: whether the composition of 

the microbiome or “dysbiotic” microbiome is linked to the health or disease of host, i.e., the 

association between microbiome and host physiology. For example, in inflammatory intestinal 

bowel disease (IBD), it is hypothesized that dysbiosis is associated with progression and symptoms 

of the disease. Hypothesis 2 is to test whether microbiome is associated with environmental or 

biological covariates, whether environmental factors impact microbiome, or whether an 

intervention influences a specific microbiome composition (diversity) in health and disease. For 

example, it may be assessed whether dietary interventions shape gut microbiota or whether 

probiotic intervention impacts the composition of the human microbiota. Hypothesis 3 is to 

investigate whether environmental features may be associated with host. In general, the statistical 

null hypothesis could be: there is no difference of microbiome composition in different 

experimental groups (i.e., health and disease). The core theme of these statistical hypothesis could 

be the same, i.e., to explore the impacts of external factors (interventions) on microbiome 

composition and/or richness of microbiota. However, these research topics are varying among alpha 

diversity (species diversity in each individual sample), bacterial richness, phylogenetic diversity, 

and species evenness in each sample [21]. 
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Insights into gut microbiome, diet, and athlete’s physiology  

As it previously discussed, a growing plethora of studies show how specific microbiome signatures 

are associated with lifestyle, diet, and many diseases states such as inflammatory bowel diseases 

(IBDs), cancer, alcoholic and non-alcoholic fatty liver diseases, type 2 diabetes, obesity, and mental 

related conditions. However, few studies reveal association between exercise and specific 

microbiota profiles with the majority lacking causation or mechanistic explanation. It seems that 

communication between gut microbiota and athlete’s physiology is still “hidden” and we do not 

have interpretable strategies able to decipher the secret information. However, thanks to new meta-

omics analysis and novel computational tools, the identification of this bidirectional influence is 

becoming clearer. Machine learning might offer an opportunity to reveal how bacteria communicate 

with host exercise physiology, highlighting the potential relevance of our microbiota in sport 

science [2]. The gut microbiome density varies along the gastrointestinal (GI) tract. It is low in the 

stomach, duodenum and jejunum and increases in the ileum and colon. The stomach is 

characterized by the presence of oxygen and high acidity. In the small intestine, the microbiota is 

mainly composed of facultative anaerobic bacteria (e.g., Lactobacilli, Streptococci and 

Enterobacteria) and strict anaerobic bacteria (Bifidobacteria, Bacteroides and Clostridia). In the 

colon, the slower intestinal peristalsis and anaerobiosis favor the onset of a large ecostystem with 

the highest bacterial diversity and density, where Firmicutes and Bacteroidetes account for 80–90%. 

The gut microbiota has many beneficial functions in the organism when it is in symbiosis with the 

host. For instance, the bacteria play a pivotal role in digestion by ensuring the fermentation of 

substrates and non-digestible food residues (such as fiber), by facilitating the nutrient assimilation 

thanks to a set of enzymes that are not present in human cells, and by participating in the synthesis 

of some vitamins. They also influence the overall functioning of the GI tract and participate in the 

functioning of the intestinal immune system, which is essential for the intestinal wall barrier 

function. In conclusion, the human gut microbiota is a complex ecosystem that is different from that 
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of other microbiota types in the human body. Due to the complexity of this ecosystem, host-

microbiota interactions/axis represent a fragile equilibrium that can be disrupted in many factors 

and pathologies [22]. 

Key points: 

• The trillions of microbes in the gastrointestinal tract play essential roles both in health and 

disease.  

• Different dietary strategies and exercise training methods may alter the composition and  

functional activity of the intestinal ecosystem.  

• We cannot define one healthy microbiota scenario for all athletes, however, there are several 

opportunities to modulate gut microbiota and consequently athlete’s health.  

• To get a better understanding of how microbiota communicate with athlete’s physiology it is 

required to go beyond correlation studies towards the combination of meta omics 

technologies with computational tools.  

• We explore the possibility to leverage Machine Learning models to predict exercise-  

induced alteration and performance measures (e.g. VO 2peak and VO2max, glycemic and 

markers of inflammation), to automatically distinguish between responders and non-

responders to specific nutrients or supplements (i.e., protein digestion), and to get additional 

information about which are the most relevant features and correlations to solve the 

mentioned tasks. 

 

Diet influences the gut microbiota composition 

See “Mancin L, Rollo I, Mota JF, Piccini F, Carletti M, Susto GA, Valle G, Paoli A. Optimizing 

Microbiota Profiles for Athletes. Exerc Sport Sci Rev. 2021 Jan;49(1):42-49. doi: 

10.1249/JES.0000000000000236. PMID: 33044333” for further information. 
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General dietary guidelines for athletes are described in consensus statements from different 

scientific societies; moreover, each athlete has a specific dietary requirement based on the demands 

of exercise and individual training/performance goals. 

Indeed, training can be broadly divided into endurance or strength/power based and, 

it is intuitive that different nutritional approaches are necessary to support the adaptation to the 

different training stimulus. To this end, different nutritional strategies are adopted to optimize the 

specific athletes’ energy requirements, body composition targets and performance goals.  

 

Carbohydrates: 

The effects of carbohydrates on gut microbial communities vary from the type and the amount of 

these macronutrients. While diets high in fermentable carbohydrate improve the growth of short 

chain fatty acids (SCFAs) - producing bacteria (i.e.: Prevotella species), instead, dietary patterns 

low in microbiota-accessible carbohydrates (MACs) promote the growth of mucus- degrading 

bacteria, impairing the gut intestinal barrier. However, although athletes may gain benefit from high 

intakes of MACs, some individuals may experience undesirable side effects such as bloating and 

flatulence, thus impacting exercise performance. Since the tolerance and the response efficiency to 

fiber is person-specific and correlates with the presence of certain fiber-degrading species, it would 

be interesting to characterize the microbiota composition of athletes, categorizing them as 

“responders” and “non-responders” to fiber intakes. Then, once clustered, it may be reasonable to 

target specific type and amount of fiber able to positively modulate microbiota without raising side 

effects.  

 

Protein: 

To date, the evidence concerning the effect of protein on gut microbiota composition is still 

contradictory. A high intake of protein increases the abundance of proteolytic microbes and derived 

end-products that can negatively impact barrier function and host physiological response. However, 
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microbial proteolytic fermentation occurs in specific situations, such as when the intake of protein 

is elevated and when low fiber - low resistant starches are provided. Interestingly, the MACs found 

within specific foods have the ability to suppress protein fermentation by lowering pH in distal gut 

and decreasing the requirement of amino acids as energy source for microorganisms. What deserves 

particular attention is the quality of protein sources: dietary patterns based on red meat, contain 

higher levels of choline, phosphatidylcholine and L- carnitine, which are bioactive precursors 

converted by gut bacteria in trimethylamine (TMA), the precursor of trimethylamine N-oxide 

(TMAO), an organic compound associated with the risk of atherothrombotic cardiovascular disease 

(CVD). While the mechanisms of how TMAO can develop CVD are still unknown, several studies 

are testing whether CVD may be controlled by reducing the relative abundance of TMAO-

producing bacteria . Thus, for those athletes who consume high intake of red meat or have a family 

story of CVD, it may be beneficial to investigate the presence of TMAO-producing bacteria to 

eventually suggest dietary strategies low in TMA ’s precursors. However, it has to be underlined 

that athletes usually reach the higher required protein intake through the use of dietary protein 

supplementation derived from milk proteins. 

 

Fats: 

See: Paoli A, Mancin L, Bianco A, Thomas E, Mota JF, Piccini F. Ketogenic Diet and Microbiota: 

Friends or Enemies? Genes (Basel). 2019 Jul 15;10(7):534. doi: 10.3390/genes10070534. PMID: 

31311141; PMCID: PMC6678592 for further information. 

 

Consumption of a high-fat diet (HFD) significantly reduces the fecal concentration of short-chain 

fatty acids (SCFA), including butyrate, and of Bifidobacteria, compared with a low-fat diet. 

Moreover, several human studies demonstrated that HFDs increase the total anaerobic microflora 

and Bacteroides. However, by definition, in HFDs, the carbohydrate amount in the total energy 

intake is decreased. Therefore, it is not clear whether microbiota composition and metabolism are 
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mainly influenced by elevated fat or reduced carbohydrate (in the form of fiber content). In 

addition, more than their amount, the fat quality plays an important role in the gut microbiota 

composition. For example, we demonstrated that 30 days of ketogenic Mediterranean diet, mainly 

composed of polyunsaturated fatty acids (PUFAs), and especially of n-3 PUFAs modulate the 

intestinal microbiota in a beneficial way.  

 

Probiotic 

See: “de Paiva AKF, de Oliveira EP, Mancin L, Paoli A, Mota JF. Effects of probiotic 

supplementation on performance of resistance and aerobic exercises: a systematic review. Nutr Rev. 

2022 Aug 11:nuac046. doi: 10.1093/nutrit/nuac046. Epub ahead of print. PMID: 35950956.” for 

further information.  

Probiotics are live microorganisms that, when administered in adequate amounts, confer a health 

benefit to the host. Their effects on the gut and immune system are the most researched applications. 

For example, fermented foods containing lactic acid bacteria, such as milk products and yogurt, 

represent a source of ingestible microorganisms that may beneficially regulate intestinal health and 

even treat or prevent IBDs. Lactobacillus, Bifidobacterium, and Saccharomyces strains have been 

safely and effectively used as probiotics for a long 

time. Roseburia spp., Akkermansia spp., Propionibacterium spp. and Faecalibacterium spp. are also 

promising probiotic microorganisms. In line with these findings, we conducted a systematic review 

to assess the effects of probiotic supplementation on athletic performance. 
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Bioactive Non-Nutrient Plant Compound 

See: “Sorrenti V, Ali S, Mancin L, Davinelli S, Paoli A, Scapagnini G. Cocoa Polyphenols and Gut 

Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients. 

2020 Jun 27;12(7):1908. doi: 10.3390/nu12071908. PMID: 32605083; PMCID: PMC7400387.” for 

further information. 

Some bioactive non-nutrient compounds present in fruits, vegetables, grains, and other plants have 

been linked to a reduction in the risk of major chronic diseases. These plant compounds include 

prebiotics and probiotics, as well as several chemical compounds, such as polyphenols (the largest 

group) and derivatives, carotenoids, and thiosulfates. Polyphenols can be subclassified into four main 

groups: flavonoids (including eight subgroups), phenolic acids (e.g., curcumin), stilbenoids (e.g., 

resveratrol), and lignans. They promote health by limiting oxidative stress. Common polyphenol-rich 

food types include fruits, seeds, vegetables, tea, cocoa products, and wine. The relative abundance 

of Bacteroides is increased in people consuming red wine polyphenols. Moreover, it has been 

reported that the abundance of pathogenic Clostridium species (C. perfringens and C. histolyticum) 

is reduced after regular consumption of fruit, seed, wine, and tea polyphenols. In a recent review, 

Rajha et al. (2021) showed that polyphenol metabolites interact with gut microbiota and mitochondria 

to fight many diseases, such as obesity, depression, inflammation, and allergy. According to this, we 

performed a systematic review investigating the potential effect of cocoa flavonoid on gut microbiota 

and the associated host health benefits. 
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Vitamins 

Some vitamins are directly produced by the gut microbiota, and others play a role in modulating the 

presence of beneficial/detrimental bacterial species. Specifically, vitamin A can modulate health-

beneficial microbes of the Bifidobacterium, Lactobacillus and Akkermansia genera. Some B-

complex vitamins are produced by gut commensals, and some of them contribute to increasing the 

virulence/colonization of potentially pathogenic microbes. Vitamin C, D, and E supplementation may 

alter the microbiota composition by increasing the concentration of beneficial species, such 

as Bifidobacterium and Lactobacillus. Thus, vitamin intake could have a significant role in 

modulating gut microbiota. Moreover, this effect might depend on the host’s pre-supplementation 

vitamin level. However, clinical trials are still necessary to avoid adverse effects due to excess vitamin 

intake. 

 

Potential Links between Gut Microbiome and Physical Fitness/Sports Performance 

See “Mancin L, Rollo I, Mota JF, Piccini F, Carletti M, Susto GA, Valle G, Paoli A. Optimizing 

Microbiota Profiles for Athletes. Exerc Sport Sci Rev. 2021 Jan;49(1):42-49. doi: 

10.1249/JES.0000000000000236. PMID: 33044333” for further information. 

 

The Athletes’ Gut Microbiota, a Specialized Microbiota? 

It is acknowledged that gut microbiota changes depend on individual factors, particularly in athletes, 

including energy expenditure, diet and drug intake (especially antibiotics or Non-Steroidal Anti-

Inflammatory Drugs). A great body of evidence shows that the gut microbiota of athletes is different 

from that of other populations and displays higher microbial diversity. In 2014, Clarke et al. were the 

first to demonstrate that microbial diversity is increased in elite rugby players compared with matched 

controls. Specifically, the abundance of the phylum Bacteriodetes was decreased, whereas that of the 

genus Akkermensia was increased in athletes with low body mass index (BMI) (<25 kg/m2) compared 

with the high BMI (>28 kg/m2) group. Moreover, Estaki et al. showed that peak oxygen uptake 
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(VO2peak), the gold standard measure of cardiorespiratory fitness, can account for more than 20% of 

the variation in taxonomic richness in healthy men and women, after adjusting for all other factors, 

including diet. Indeed, the abundance of key butyrate-producing taxa 

(Clostridiales, Roseburia, Lachnospiraceae, and Erysipelotrichaceae) was increased in individuals 

with high VO2peak values. In 2019, Scheiman et al. showed that the relative abundance 

of Veillonella was increased after a marathon and that the inoculation of a strain of Veillonella 

atypica from runner stool samples into mice significantly increased exhaustive treadmill run time in 

the inoculated animals. They also demonstrated a mechanistic link of the change in performance with 

lactate metabolism. The recent reviews by Mohr et al. in 2020 and by Aya et al. in 2021 concluded 

that in most cases, the alfa and beta diversity of gut microbiota are not different among sports 

disciplines, but some differences can be highlighted for some genera or taxa abundances. For 

example, O’Donovan et al. concluded that microbial diversity does not differ among sport disciplines 

but, on the other hand, they observed a greater abundance of Bifidobacterium animalis, Lactobacillus 

acidophilus, Prevotella intermedia and F. prausnitzii in athletes with high dynamic components 

(high VO2max), and greater abundance of Bacteroides caccae in athletes with both high dynamic and 

static components (in relation with the maximal voluntary contraction component). Besides their 

chronic training regimes, the dietary intake patterns of athletes are often different from those of 

sedentary subjects, as is medication intake. These factors also might influence their gut microbiota 

composition. Finally, some data show that prolonged excessive exercise could have a detrimental 

effect on intestinal function. Indeed, strenuous, and prolonged exercise increases intestinal 

permeability and alters the gut barrier function. This promotes bacterial translocation from the colon, 

leak of bacterial LPS into the bloodstream, and activation of systemic inflammation. GI symptoms 

(e.g., abdominal pain, nausea, and diarrhea) are reported by 70% of athletes after strenuous exercise, 

and the frequency is higher in elite athletes than in recreational exercisers. Besides the overall 

“healthy” gut microbiota in athletes, many discrepancies can be observed in the microbiota profiles 

at lower taxonomic levels in relation to many confounding factors linked to the exercise type (e.g., 
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intensity, mode, contraction type, duration, frequency), diet, drug intake, environment, season, sleep 

and many others. 

 

The Gut- Skeletal Muscle Axis 

See “Mancin L, Wu GD, Paoli A. Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol. 

2022 Oct 29:S0966-842X(22)00286-4. doi: 10.1016/j.tim.2022.10.003. Epub ahead of print. PMID: 

36319506.” for further information. 

The gut microbiota represents a ‘metabolic organ’ that can regulate human metabolism. Intact gut 

microbiota contributes to host homeostasis, whereas compositional perturbations, termed dysbiosis, 

are associated with a wide range of diseases. Recent evidence demonstrates that dysbiosis, and the 

accompanying loss of microbiota-derived metabolites, results in a substantial alteration of skeletal 

muscle metabolism. As an example, bile acids, produced in the liver and further metabolized by 

intestinal microbiota, are of considerable interest since they regulate several host metabolic pathways 

by activating nuclear receptors, including the farnesoid X receptor (FXR). Indeed, alteration of gut 

microbiota may lead to skeletal muscle atrophy via a bile acid–FXR pathway. The recent review by 

Mancin et al., aims to suggest new strategies aimed at optimizing skeletal muscle functionality. Figure 

1. 
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Figure 1. Probiotic and adequate protein intake for the maintenance of skeletal muscle health.  

 

On one side, adequate daily energy-protein intake improves musculoskeletal health. Protein digestion 

and amino acid absorption represent the sequential mechanism by which ingested protein provide 

amino acid available for the organism. Once ingested, amino acids are released and taken up across 

the gut mucosa, where many of them, are released into the systemic circulation to be transported and 

taken up by skeletal muscle. On the other side, probiotics may act synergically. Specific probiotics 

positively modulate gut microbiota (by preventing and/or treating gut dysbiosis) whole promoting 

the growth of beneficial bacteria (i.e.: increasing the relative abundance of BSH-containing bacteria). 

Beneficial bacteria consequently metabolize conjugated bile acids, which can up-regulate the FXR-

FGF15/19 signaling. FGF15/19, once released into the systemic circulation, can be transported, and 

taken up by skeletal muscle which expresses the receptors for FGF15/19 (FGFR4/BetaKlotho). 

FGF15/19 increases muscle mass, myofiber size and muscle strength. Abbreviation can be found in 

the text. 
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The future meta-omics potential 

The recent “omics” technological advances led to the understanding that the human responses to 

exercise may be driven by external factors such as diet, lifestyle, environment and microbiota 

composition. Since computational system approaches have the potential to lead to medical and 

technological breakthroughs, they may also provide a great opportunity for sport science to 

understand the functional impact of microbiota on athlete’s physiology. By implementing different 

analyses, from metagenomics to meta-transcriptomics, meta- proteomics and meta-metabolomics, 

we can effectively address the complexity of the microbial influence on host physiology and 

exercise. However, although some efforts are being made, the acquisition of new biomedical 

insights from the combination of these omics platforms is still hampered by their high cost and data 

heterogeneity. To obviate this issue, it may be convenient to identify which specific meta-omics 

analysis could be adopted and combined with computational strategies aiming to understand which 

microbes are doing what. In sport science, since the purpose is understanding the systemic 

mechanisms of gut microbiota’s influence on athlete’s physiology, it may be pioneering to combine 

metagenomics and meta-metabolomics analysis with innovative mechanistic models able to provide 

access to this “unknown” mechanism.  

 

Microbiota and personalized nutrition (a machine learning-based approach) 

Machine learning for microbiome science: a utopia? 

Machine learning (ML) approaches represent powerful tools in data-intensive application because 

they do not require a prior understanding of the underlying mechanisms governing the physical 

phenomenon under examination, but they automatically learn from the collected data. To date, ML 

tools have been broadly used in biomedical research and life science, in order diagnose or predict 

the risk of cancer, cardiovascular diseases, genetic disorders and, more generally to produce health 
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outcome predictions. 

More specifically for sport science, ML approaches can be adopted to support and enhance 

researches investigating the connection between the microbiome and exercise. Despite the 

application of microbiome analysis in sport sciences, ML is still in its infancy (and, thus, calls for a 

“healthy dose of skepticism”), it can provide profound insights on how athlete’s physiology is 

influenced by several different factors: ML may play a key role for such purpose. 

For instance, a ML model could predict the athlete’s exercise responsiveness in terms of glucose 

homeostasis and insulin sensitivity or in terms of biomarkers signature of aerobic fitness 

(ie., VO2peak); such prediction may be used to provide customized lifestyle recommendation for 

modulating an individual’s microbiota and consequently improving the athlete’s responsiveness to 

exercise and the general health. For this purpose, the interpretability of the adopted ML model will 

be crucial as it will enable the user to get additional knowledge, besides predictions, about which 

are the most relevant features to solve the task at hand. Under the assumption that the ML model 

has satisfactory performance in terms of predictive power, the factors deemed as the most important 

by the model will be the ones on which the athlete should focus more, in order to maximize his 

responsiveness to exercise and improve his health. Despite the appeal of ML in this context, it must 

be stressed that the design and deployment of a ML-based solutions is far from being trivial. In 

general, any application domain where ML approaches are not yet fully established should undergo 

a preliminary phase devoted to a correct and grounded formalization of the problem. This calls for 

interdisciplinary collaborations in order to establish a common ground aimed at facilitating 

knowledge transfer among researchers from different fields. From a more technical perspective, a 

number of aspects must be considered in order to avoid any misuse of the proposed solutions and 

misinterpretation of the obtained results. Some important considerations include (but are not limited 

to) the following points:  

●  The data collection process should be carefully designed in order to ensure the storing of 

easily measurable and informative quantities. Particular attention should be directed to the 
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above mentioned high inter-variability of microbiome features and, specifically, data used to 

train the ML model should be fully representative of the population being analyzed.  

●  The target variable to be predicted should be a quantitative measure and as much as 

possible an objective one. Qualitative target variables should be replaced with adequate 

quantitative proxy variables and problems where subjectivity might affect some of the 

recorded measurements should be tackled by exploiting ML models that are robust to such 

sources of uncertainty (i.e.: VO2peak and VO2max, glucose and lactate blood level). 

● As mentioned before preference should be given to interpretable ML models, i.e. models 

whose inherent logic is easily understandable by human beings. This poses a fundamental 

challenge since the best performing models (such as Deep Learning models) are often the 

hardest to be explained, but a growing number of researchers in the ML community are 

currently focused on the development of interpretability methods for so-called “black-box” 

models. This will enable a deeper comprehension of the problem at hand by identifying, for 

instance, which are the features (that can be represented by metagenomics, metabolomics, 

clinical and non-genetic information) that have the highest impact on the final prediction 

produced by the model. As an example, Zeevi and colleagues (2015) found that the gut 

microbiota has a great influence on the postprandial glycemic response of an 800-person 

cohort. The authors, using personal data and microbiome profiles, devised a ML algorithm 

which, integrating blood parameters, dietary habits, anthropometrics, physical activity, and 

gut microbiota features, accurately predicts personalized postprandial glycemic response to 

real-life meals. Similarly, Liu and colleagues (2020) revealed that baseline gut microbiota 

composition can accurately predict personalized exercise response in subjects with 

prediabetes. Both the abovementioned studies exploited ML models combined with 

interpretability methods to get feature importance measures, but focused only on how each 

feature affects the model output individually (i.e. independently from the others). We 
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advocate the need to extend such analysis and take into account also the impact that pairs (or 

groups) of features have on the produced predictions. 

  

It should be underlined that the use of intelligent algorithms should always be intended as a 

tool in support of decision-makers; the concept of personalized sport nutrition does not have 

to replace the role of physician, dietician or nutritionist and must be pertinent to the physical, 

clinical and emotional needs of athletes. In the context of personalized sport nutrition, ML-based 

solutions should be seen as a powerful tool for medical staff which holds the final approval and 

takes part in looking at compliance. 

 

An integrative approach: Microbiota and personalized nutrition 

The challenge of personalized sport nutrition lies in the ability to systematically prove 

that the modulation of specific features of the athlete’s diet (microbiome) is responsible for 

improving health and performance. To achieve the goal of personalized nutrition, these tailored 

nutritional recommendations might be firstly suggested for the amelioration of individual’s gut 

health. Claimed that i) similar foods have different effects on different individuals’ microbiome 

; ii) gut microbiome changes are related with the personal baseline microbiota profile; iii) diet 

influences host response in an individualized way that may be predicted by the personal 

microbiome composition iv) intrinsic and extrinsic factors affect microbiota composition; 

personalized prediction might be developed through ML tools in favor of ameliorating the athletes’ 

response to a specific nutrient, supplement, or medication. In athletes, it could be a great challenge 

to predict the response to prebiotics, probiotics, symbiotic supplementation, considered that the 

colonization of probiotic is strictly associated and predictable by “pre-treatment microbiome 

profile”. Thus, it may be useful to identify person-specific microbiota configuration to suggest 

personalized therapies enabling persistent live-bacteria colonization. 

In addition, since the microbiome plays a huge role in protein digestion, amino acid absorption and, 
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as such, on the bioavailability of the ingested protein derived amino acids, it may be interesting to 

discover the personal-specific tolerance and diversification in the physiological effect of whey 

protein or casein in order to personalize as much as possible the individual protein supplementation. 

For this purpose, ML models trained to distinguish between responders and non-responders 

(through the formalization of a binary classification task) may 

help in achieving better results, thanks to their ability to process multivariate data effectively. In 

sports science, personalized fluid and electrolyte recommendations has been achieved by exploiting 

measures of sweat losses during exercise (Gatorade Gx system). 

Harnessing these emerging technologies might represent an exciting promise for improving public 

health by optimizing diet and personal lifestyle. Whereas, in sports these technologies 

may be utilized to maintain or improve performance. Figure 2. 

Figure 2: Workflow for potential meta ‘omics studies in athletes 

 

Mancin L, Rollo I, Mota JF, Piccini F, Carletti M, Susto GA, Valle G, Paoli A. Optimizing Microbiota Profiles for Athletes. Exerc Sport Sci Rev. 

2021 Jan;49(1):42-49. Doi: 10.1249/JES.0000000000000236. PMID: 33044333. 
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Conclusion and perspectives  

Today, there is no doubt that the discovery of the gut microbiota community opened a promising 

and rapidly growing research field on the potential beneficial health effects of manipulating the gut 

microbiota. Indeed, the gut microbiota influences the function of the intestine and also brain and 

metabolic tissues, such as skeletal muscle. Although it is established that the microbiome may 

influence the development and treatment of several human diseases, less literature is available about 

the specific functional contribution of microbiota to an athletes’ physiology. Due to the complexity 

and variability in sports’ tasks (and related specific nutritional approaches), and the greater inter-

variability of microbiome features (and related response to diet) it is not reasonable to speculate that 

a unique “microbiota healthy configuration” could be defined for different sports and athletes. 

Indeed, to date, there are many limitations in the current research that so far need to be considered. 

It is by now intuitive to recognize the necessity to conduct long-term studies on athletes (at different 

time-point and scenarios), to use appropriate analyses such as metagenomics coupled with 

metabolomics, and to adopt innovative ML strategies capable of investigating the functional 

mechanism of the two-way crosstalk of microbiome and exercise. This will be made possible thanks 

to the growing research interest, within the ML community, in the design of methods to make 

black-box models more interpretable. Considering that there is no one optimal microbiota 

composition for athletes, we predict that meta omics data combined with interpretable machine-

learning approaches will reveal how microorganisms interact with each other and with their host in 

order to identify different healthy microbiota scenarios relevant for athlete’s health and 

performance. In many countries, National Gut Human Projects (e.g., the American Human 

Microbiome Project and the European Human Microbiome Action that started in 2021) have been 

set up to collect human fecal samples and to correlate the obtained microbiota results with the 

host’s characteristics. Human fecal samples and metagenomic data are currently collected for future 

biostatistics analyses. For instance, the Million Microbiome of Humans Project (MMHP) is a major 

international project, the aims of which are to create the largest human microbiota database in the 
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world, to analyze 1 million samples, and to explore the full microbiome potential. One major 

milestone will be to launch observation studies with well-defined cohort of athletes as well as 

interventional studies to modulate the gut microbiota composition because, as we demonstrated, the 

gut can adapt its bacterial community in response to external factors, such as nutrition and physical 

activity.  

The scientific and medical communities must now find the best way(s) to optimize the nutrition-gut 

microbiota-physical activity triad for each patient or athlete. The possibilities offered by ‘biotic 

nutrition’ represent a veritable “playground” for scientists. The challenge is to develop innovative, 

original and promising microbiota-based strategies to optimize sports performance and medical 

treatments or to delay disease onset. Finally, it is essential to increase the population’s awareness of 

the need for a healthy diet and some physical activity for a healthy microbiota, although the triad 

mechanisms have not been fully elucidated yet. Some scientific organizations and large food 

companies are already campaigning about the importance of a healthy diet as a key factor in 

microbiota formation. However, they did not include the physical activity component. Indeed, the 

goal should be to make clear that both a healthy/well-balanced diet and regular (high-level) physical 

activity practice are needed to improve gut microbiota composition/function for better health and/or 

performance. We think that outreach programs should also include the triad concept to develop 

individualized microbiota-based strategies for health and sports performance management. 
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PART 2: EXPERIMENTAL DATA OF DOCTORAL PROJECT 

The studies included in this section, all apply bioinformatic methods in metagenomics. 

The aim of our research studies, one observational and two randomized controlled trials, was to 

investigate the implication of gut microbiome on athlete’s health and then, to develop strategies (i.e., 

personalized dietary suggestions), to modulate gut microbiome, and, in turn, improving athlete’s 

performance. 

 

STUDY 1: Athlete’s Microbiome Project (AMP) 

See our systematic reviews for the general background. 

 

1) Mancin L, Rollo I, Mota JF, Piccini F, Carletti M, Susto GA, Valle G, Paoli A. Optimizing 

Microbiota Profiles for Athletes. Exerc Sport Sci Rev. 2021 Jan;49(1):42-49. doi: 

10.1249/JES.0000000000000236. PMID: 33044333.  

 

2) Mancin L, Wu GD, Paoli A. Gut microbiota-bile acid-skeletal muscle axis. Trends 

Microbiol. 2022 Oct 29:S0966-842X(22)00286-4. doi: 10.1016/j.tim.2022.10.003. Epub 

ahead of print. PMID: 36319506. 

 

Introduction to AMP: 

Dietary contributions to health and chronic conditions, such as obesity, metabolic syndrome, 

cardiovascular diseases, and age-associated sarcopenia are of universal importance. For example, 

age-associated sarcopenia and related mortality/morbidity have risen dramatically over the past 

decades [23], with the gut microbiome implicated as one of several causal human-environment 

interactions. According to the great importance of microbiome on skeletal muscle metabolism and 

athlete’s health, its role has been recently considered in the field of sport and exercise. Recent 

scientific advances suggest that nutrition influences athletic performance via the gut and the trillions 
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of microorganisms that inhabit this ecosystem. Importantly, diet affects the microbial community 

within the gut and, as a result, the gut microbiota mediates many of the effects of diet and nutrition 

on health. Indeed, given the microbiota’s potential to influence athletic health and performance, 

“fueling the microbes” should be seen as a pivotal strategy for athletes attempting to optimize 

performance. Surprisingly, the details of the microbiome’s role in athletes’ health and performance 

have proven difficult to define reproducibility in large athlete populations, probably due to the 

complexity of dietary patterns, the effects of individual characteristics, the difficulty to perform 

microbiota analysis in elite sport setting and the personalized nature of the gut microbiome. To 

overcome these challenges, we launched the Athlete Microbiome Project (AMP), involving a 

population cohort of 127 elite soccer players in Serie A League, with well-defined phenotypes. This 

study was inspired by previous large-scale studies, which identified gut microbiome configurations 

and microbial taxa associated with inflammatory markers [24], blood lipids [25], and post prandial 

glucose responses [26]. In the AMP we characterized the composition and the function of the gut 

microbiome of 127 elite soccer players (age range 19-34 years). Figure 3 and 4.  
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Figure 3: Graphical summary of the Athlete’s Microbiome Project (AMP) 

 

 

 

Figure 4. Project development 
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Figure 4: The AMP assessed the gut microbiome of 127 elite soccer players via metagenomic 

sequencing of stool sample. Phenotypic data obtained through in-person assessment and with the help 

of the medical staff, blood/stool collection and the return of validated study questionnaire queried a 

range of relevant host/environmental factors including personal characteristics (age, BMI, body 

composition, player position), habitual dietary intake using Food Frequency Questionnaire), fasting 

total lipid profile, anamnesis of injuries and performance test. 

 

Main objectives: 

-Identify microbial biomarkers related to the elite athlete population (less abundant and most 

abundant genera/species) 

-Compare alpha-diversity indices before and after championship for paired-longitudinal samples 

-Compare differences among different player position in term of taxonomy and alpha-diversity 

-Compare the elite athlete’s population against healthy control population 

-Create an athlete’s microbiome index (AMI) 

-Investigate diet-gut microbiome interactions  

 

Material and methods for data acquisition: 

Population cohort and metadata collection 

The Athlete Microbiome Project (AMP) cohort included 127 elite soccer players, members of the 

Italian Serie A league and recruited in 4 different teams (Genoa C.F.C., Fiorentina A.C.F, Hellas 

Verona, Parma Calcio). The sampling took place between September 2020 and May 2021, and all the 

participants signed a statement of informed consent before the beginning of the study. 

A set of clinical data, including participant’s birth date, height, weight, antibiotic use over the last 

month and habitual diet were collected at the enrollment. Fecal sample collection, blood analysis, 

anthropometry and performance measures were collected during the following 3 days at each training 
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facility. Briefly, athletes were asked to collect their fecal material (single defecation) in a plastic vial 

and place the vial in a labelled box. The nutritionist and/or the doctor of each team immediately 

collected the samples and delivered them within 72h to the research hub facility (University of 

Padova, Department of Biomedical Science).  

Blood samples were drawn by nurses and analyzed by an independent certified clinical laboratory 

(https://www.synlab.it). Participants were asked to be fasted the morning of blood test.  

Anthropometric measures, body composition analysis and performance measures Vo2Max (maximal 

oxygen consumption) were measured at each training center, in fasted state. 

 

Microbiome sequencing and profiling 

We performed deep shotgun metagenomic sequencing in stool samples from a total of 127 AMP 

participants. Computational analysis was performed using the bioBakery suite [27] of tool 

(http://huttenhower.sph.harvard.edu/biobakery) to obtain species-level microbial abundances for the 

taxa identified using the last version of MetaPhlan tool.  

 

Microbiome sample collection 

At each training facility, athletes were personally delivered a “microbiome kit pack” with the stool 

collection kit and information needed and ask to collect the stool sample within 3 days. We conducted 

a pre-study meeting with the medical staff of each team to explain the correct procedure and the ‘best 

practices’ of sampling, as accurately described by Segata et al.[28]. The sample collected, was 

deposited into a tube containing DNA/RNA Shield buffer (Zymo Research) to preserve the genetic 

integrity and expression profiles of samples at ambient temperatures (no refrigeration or freezing 

needed) and completely inactivates infectious agents (viruses, bacteria, fungi, & parasites). In this 

way, we facilitated the collection of the samples at each sport facility. Samples were stored at ambient 

temperature until returned to the research hub facility. Once receipted at university, and checked the 

sufficient biomass, the samples were sent by standard delivering to the laboratory 
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(https://igatechnology.com) to perform the wet analysis. The sample were homogenized, aliquoted 

and stored ay -80° in QIAGEN Power Beads 1.5mL tubes. The sample collection procedure was 

tested and validated internally comparing two different DNA extraction kits (Fast DNA and Zymo). 

 

DNA extraction and sequencing 

DNA was isolated by CELEROä DNA-Seq kit (San Carlos, California, NuGEN Technologies, Inc.) 

using DNA/RNA Shield-fixed microbiome samples. Before library preparation and sequencing, the 

quality and quantity of the samples were assessed using Fragment Analyzer system (Agilent 

technologies). Only samples with a high-quality DNA profile were further processed. Both input and 

final libraries were quantified by Qubit 2.0 fluorometer (Termo Fisher) and quality tested by Agilent 

2100 Bioanalyzer High Sensitive DNA assay. Libraries were then prepared for sequencing and 

sequenced on NovaSeq 6000 in paired ends *150 bp mode. At this step, the primary bioinformatic 

analysis included: 1.Base calling and demultiplexing. Processing raw data for both format conversion 

and de-multiplexing by Bcl2Fastq 2.0.2 version of the Illumina pipeline; and 2.Adapters masking. 

Adapter sequences are masked with Cutadapt v1.11 from raw fastq data using the following 

parameters: --anywhere (on both adapter sequences) --overlap 5 --times 2 --minimum-length 35 --

mask-adapter. Lastly, a folder ‘raw_reads’ containing files with raw reads (R1: first read sequence; 

R2: second read sequence) and multiqc_report.html file, which aggregates results from primary 

bioinformatic analysis into a single report file with parameters that give insight into overall processing 

and sequencing quality, were provided. 

 

Metagenome quality control and pre-processing 

All sequenced metagenomes were quality control edited using the pre-processing process as specified 

in (https://github.com/SegataLab/preprocessing/). Pre-processing consists of three main step: 

(1)read-level quality control ; (2) screening of contaminants (host sequences) and (3) split and sorting 

of cleaned reads. The read-level quality control involves the removal of low-quality reads (i.e., quality 
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score QC < 20), fragment short reads (< 75bp) and reads with > 2 more ambiguous nucleotides. 

Contaminant DNA was identified using Bowtie 2 [29]. The sorting and splitting step created a 

standard forward (5’ – 3’), reverse (3’-5’) and unpaired reads output files for each metagenome. 

 

Microbiome taxonomic profiling 

The metagenomic analysis was performed following the general guidelines which relies on the 

bioBakery computational environment. The taxonomic profiling of organisms’ relative abundances 

for each metagenomic sample was performed by MetaPhlan tool v. 4.0. 

(https://github.com/biobakery/metaphlan/wiki/). MetaPhlAn 4 relies on ~5.1M unique clade-specific 

marker genes identified from ~1M microbial genomes (~236,600 references and 771,500 

metagenomic assembled genomes) spanning 26,970 species-level genome bins (SGBs: 

http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html); 4,992 of them taxonomically unidentified at 

the species level. This set of species also included 83 species retrieved from defined by Co-Abundant 

Gene groups (CAGs)  approach  that were very genetically different from raw species represented by 

isolated genomes. (to make the idea clearer: .ost current approaches for analyzing metagenomic data 

rely on comparisons to reference genomes, but the microbial diversity of many environments extends 

far beyond what is covered by reference databases [30]). To estimate the microbiome species richness 

of everyone from the taxonomic profiles of AMP cohort, we computed alpha-diversity measures: the 

‘observed richness’ (the number/count of different species found in the microbiome) and the 

‘Shannon index’ (which combine the richness and the diversity). Microbiome dissimilarity 

(differences in the overall taxonomic composition between n samples) between athletes (beta 

diversity) was computed using Bray-Curtis dissimilarity on microbiome taxonomic profiles. The 

Bray-Curtis dissimilarity is always a number between 0 and 1. If 0, the two sites share all the same 

species; if 1, they don’t share any species. It is based on count of each site:  where 
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Where Cij is the sum of the lesser values, for only those species in common between both sites. Si and  

Sj are the total number of specimens counted at both sites. 

 

Collection and processing of dietary information 

Habitual dietary intakes were collected using Food Frequency Questionnaire (FFQ) -specifically the 

European Prospective Investigation into Cancer and Nutrition Norfolk Food Frequency 

Questionnaire (EPIC-Norfolk FFQ) (https://www.epic-norfolk.org.uk/for-researchers/ffq/). The 

questionnaire assessed the average intake in the past year. 

 

Food Frequency questionnaire: 

 

 

 

The nutrient intakes were determined using FETA FFQ Software v.2.53 (https://www.epic-

norfolk.org.uk/for-researchers/feta-download/) to calculate macro and micronutrients intake [31]. To 

better understand how changes in microbiome composition relates to diets, we decided to investigate 
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specific dietary indices based on a priori knowledge [32]. The following dietary indices were 

calculated: (1) Dietary intakes: Habitual dietary information was collected using FFQ and nutrient 

intakes were estimated by FETA software. Further, we used FETA to calculate the dietary indices; 

(2) HFD Index: the Healthy Food Diversity index consider the number, distribution and health value 

of the consumed food. This index is of importance because it considers simultaneously the number 

(count), the distribution (an individual with equal shares of foods has a greater food diversity than an 

individual who consumed 90% of 1 product and 10% of the others) and the health value (healthy or 

unhealthy products, such as fruits versus sugars) of a consumed food basket. The Health Value (HF) 

of foods were derived from the German Nutrition Society guidelines (https://www.dge.de/en./) and 

the weight of each food group was multiplied by its corresponding health value. Scores were divided 

by the maximum (health value 0,26) to bind values between 0 and 1 before multiplying with the Berry 

Index [33]; 

 

 

(3) (HEI) Healthy Eating Index: it assess to which extent an individual’s food intake aligns with the 

dietary guidelines for American 2010, developed by the US department of Agriculture;  
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(4) PDIndex: plant based scoring system gives the consumption of plant foods positive marks and the 

consumption of any animal-derived foods negative markers. Unhealthy plant foods, such as refined 

grains and sugar and processed foods can also be given negative marks in what is termed an unhealthy 

plant-based diet index (uPDI) [34];  

 

 

(5) The animal score: it categorized animal foods into “healthy” and “less-healthy”/“unhealthy” 

categories according to previous epidemiological studies (https://www.nhs.uk/live-well/eat-

well/milk-and-dairy-nutrition/.); (6)aMED score: it measured the adherence to the Mediterranean diet 

by following the method outlined by Fung et al. [35]. 

 

Statistical analysis: 

To test the association, Spearman correlations (reported with p in the text) were computed by the 

cor.test function from the stat R package version 3.5.1. Correlations and P values were computer for 
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the metadata (diet) and species, P values were corrected using false discovery rate FDR through the 

Benjamin–Hochberg procedure (BH step-down procedure), to avoid Type I errors (false positives), 

which are reported as q-value. We considered significant correlations with q<0.2, which means we 

should expect 2% of all the variables with q-value less than this to be false positives. To test the 

differential abundances among the groups (athletes versus control) we used 3 different algorithms: 

DESeq2, ANCOM and CODa4microbiome. The differential abundance analysis was carried out at 

genus level and the conditions were athletes and controls. Once identified several differences between 

the two groups, the criteria to consider the ‘biomarkers’ were: DESeq2: only Operational taxonomy 

Unit (OTUs) that reach genus level and FDR <0,001; COD4microbiome: only OTUs that reach genus 

level, ANCOM: only OTUs that reach genus level and detected -0.7=TRUE. Biomarkers whose 

log2FoldChange was between +0.5 and -0.5 were eliminated. Then we created the ‘biomarkers.tsv’ 

file with the name of the OTUs that were found at least in 2 methods (genera cross table) and we 

added if these OTUs were abundant in athlete or controls. To calculate the Athlete Gut Index (AGI) 

for each sample, we created the function in R [36] and applied to our biomarkers (on both athletes 

and controls) : 

 

Then, we performed Wilcox.test to verify if indices were different among groups. Finally, we 

considered the distributions as normal distributions, and we calculated the z-scores for each sample. 

After that, Z-scores distribution were added to the plot, showing that there exists a different value of 

gut index for athlete when it used the biomarkers’ group selected. This proved that the athlete’s 

population was different from controls (different microbiome composition). 

 

Results: 

Population cohort  
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AMP project explores diet-exercise and microbiome interactions in a cohort of elite soccer players 

(n=127) with accompanying metadata covering anthropometrics, habitual dietary intakes, and 

demographic information (Methods). 127 shotgun metagenomic samples were collected, then 

sequenced and metagenomically profiled. Upon completion, participants will receive the following 

free of charge: results of their blood analyses and a “map” of their microbiota composition. 

 

Microbial diversity and composition are associated with dietary patterns 

We investigated whether specific microbial taxa might influence microbiome composition (microbial 

species responsible for diet-microbiome associations). We considered only the significant taxa 

(genera and/or species) that had abundance >2% in at least one sample and appeared in more than 

10% of the samples. First, we noticed that the most significant associations included 2 dietary 

exposures, full-fat yogurt and milk with probiotic taxa such as Bifidobacterium animalis and 

Streptococcus thermophilus (p=0,045). However, given the potential nutrients-nutrients interactions, 

it was difficult to understand the independent association of other single food with specific microbial 

species. In this regard, and in accordance with Bowier et al. [32], and Johnson et al [37]., we identified 

understandable clusters of species associated with indices, such as the “healthy plant-based food” / 

“un-healthy plant-based food” (such as refined grains) as defined by the PDI. As a matter of fact, the 

genera linked to healthy plant-based food were predominantly butyrate producers, including 

Roseburia hominis and Faecalibacterium prausnitzii, whereas Clostridia taxa associated with less 

healthy plant-based food or animal-based food. These result support the concept that diet is a driver 

of microbiome variations, but the importance of food source (plant or animal-based food) and the 

food quality (unhealthy plant-based food) should be considered for improving microbiome and 

associated health outcome. (Figure 5 a,b) 
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Figure 5a. 

 

Figure 5b. 

 

 

 

Comparison between elite soccer players and healthy control population 

Our microbiota is composed of species that are found in high abundance and other in low abundance. 

This is because microbes undergo selective pressures from the host as well as from microbial 

competitors. After having an overview on the species diversity, to further understand whether elite 

soccer players might differently cluster, we plotted the beta diversity measure, that is, we clustered 
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the different species according to the taxonomic profile of their microbiota. For this purpose, we used 

the NMDS (non-metric multidimensional scaling) analysis with Bray-Curtis distances. 

The first analysis demonstrated us that soccer players, divided by their different position into the field 

(striker, midfielder, defender and goalkeeper), did not cluster together. Figure 6. 

 

Figure 6. 

 

 

 Thus, following the suggestion by Aramugam et al.[38], we decided to investigate whether our AMP 

samples might partition into clusters based on Enterotypes* division, and we identified that Prevotella 

(enterotype 1) and Bacteroides (enterotype 2) mostly distinguished two clusters. Figure 7.  

*Enterotype represent a classification of living organisms based on its bacteriological ecosystem in 

the gut microbiome 
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Figure 7. 

 

 

However, each of these enterotypes was affected by different microbial communities. To determine 

the phylogenetic basis of each enterotypes, we investigated in detail their differences in composition 

at species level. Enterotype 1 contained predominantly Prevotella and Paraprevotella (phylum 

Bacteroidetes) while Enterotype 2 was distinguished by the presence of Alistipes and Parabacteroides 

(phylum Bacteroidetes). However, the enterotype clustering was driven primarily by the ratio of the 

two dominant genera, Prevotella to Bacteroides, which defined the gradient across the two 

enterotypes. 

Finally, we decided to compare our athlete’s cohort against a healthy population to investigate the 

differences in microbiome composition. The control population was composed by ten healthy Italian 

individuals, downloaded from NCBI SRA, ID project PRJNA331138. Considering that this is not the 

best way to proceed, because of the number of athletes is much higher than the controls, we 

discovered that, at genus level, there were some differences in the composition.  
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Specifically, we identified Prevotella, Paraprevotella, Alistipes more abundant in soccer players than 

in control group. Interestingly, among Prevotella genus, Prevotella Copri was the most abundant 

specie.  

 

Microbial communities are not associated with different player position 

To investigate whether the different player positions (striker, midfielder, defender, goalkeeper) might 

influence the gut microbiota composition, we calculated the relative counts of each genus and drew 

a taxonomy bar plot, divided by field position. The y-axis represented the percentage of genera within 

each sample (none reached the 100% because we eliminated all the genera that did not reach 5% to 

facilitate the interpretation and visualization of the data). Figure 8. 

 Figure 8. 

 

 

Further, we performed the alpha diversity analysis by dividing the players by their positions. We 

presented alpha diversity in two ways. 1) Richness, that is the total number of different genres found 

in each sample (Figure 9) and 2) Shannon Index (Figure 10), that takes into account not only the 

number of different genera, but also the abundance within each sample of these. 
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Figure 9. 

 

Figure 10. 
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The results revealed that there was no statistically significant difference in alpha-diversity between 

different player position (D,F,G,M). Other indices of alpha diversity helped us to demonstrate the 

same result (Figure 11).   

Figure 11. 

 

We also presented the same results with a Venn diagram with the different genera found in each of 

the group. Figure 12. 
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Figure 12. 

 

 

All together the results indicated that there were no differences in the gut microbiome of elite soccer 

players when split by player position. 

 

Microbial community changes between pre - post competitive season 

We decided to study the potential changes in gut microbiome during the competitive season. 10 paired 

samples were investigated. We noticed that the alpha diversity, measured as Shannon diversity, 

slightly decreased during the championship among these players (from September to March), 

(p=0,21). However, the analysis revealed the high inter and intra subject variability of the gut 

microbiome at baseline, and after 6 months of training. (Figure 13). 

Figure 13. 
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These results demonstrate that under identical exercise training program, the inter-subjects and intra-

individual microbiome variability is very high. Indeed, similarly to our findings, controlled feeding 

trials revealed that inter-subject microbiome variation is high even after period of identical dietary 

intake [39]. Our results showed that exercise-gut interactions are highly personalized and that the 

personalized response might be one reason for the small observed effect sizes of exercise and/or diet 

in shaping the gut microbiome in population level studies [40]. However, at compositional level, we 

found differences between pre and post championship for the genus Prevotella (p = 0.021, ES = 

0.578), which decreased at the end of the season (Figure 14). 

Figure 14. 

 

 

Biomarker identification and Athlete’s Microbiome Index (AMI) 

A National Institutes of Health working group has defined a biomarker as “a characteristic that is 

objectively measured and evaluated as an indicator of normal biological processes, pathological 

processes, or pharmacologic responses to a therapeutic intervention / treatment” [41].  

At the beginning of the project, it was thought to identify microbial biomarkers related to the 

population ‘elite soccer player’ in order to potentially characterized this specific population and 

identified  a more “health-associated” gut microbiota (In individuals without disease, “health-
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associated” microbiota is preferred to the term “healthy microbiota”, since gut microbial composition 

alone cannot predict any state of health or disease according to currently available research) 

(Campbell K. Gut microbiota: interactive effects of nutrition and health, 2018). 

 For this purpose, a statistical analysis on the abundance table was conducted (Methods) and a series 

of biomarkers were identified for the condition elite soccer players. At phylum level, we noticed that 

the elite soccer player cohort had a greater abundance of genera belonging to the genera Prevotella, 

whose presence was lower in healthy control population. Table 1, 2.  

 

Table 1. Elite soccer player biomarkers (species level with adjusted p-value <0,01, log2Foldchange 

>0.5 or <-0.5 and average abundance among all samples >0.1%). 

 

OTUs species BIOMARKER log2FoldChange pValue behaviour 

Porphyromonas uenonis 5,3307870 5,76E-04 most abundant 

Paraprevotella clara 16,901574 5,39E-27 most abundant 

Paraprevotella xylaniphila 15,154024 1,24E-22 most abundant 

Prevotella amnii 11,415512 8,43E-138 most abundant 

Prevotella bergensis 11,183919 4,04E-289 most abundant 

Prevotella bivia 12,442637 8,17E-137 most abundant 

Prevotella copri 21,165868 7,05E-131 most abundant 

Prevotella corporis 12,077116 2,55E-131 most abundant 

Prevotella dentalis 11,268097 1,09E-134 most abundant 

Prevotella intermedia 14,487672 0,00E+00 most abundant 

Prevotella ruminicola 12,467142 7,90E-112 most abundant 

Alistipes putredinis 18,885677 0,00E+00 most abundant 

Alistipes shahii 17,421591 0,00E+00 most abundant 

Parabacteroides diastonis 16,770275 0,00E+00 most abundant 
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Parabacteroides golsteinii 13,845418 1,40E-167 most abundant 

Parabacteroides Johnsonii 14,712837 3,64E-299 most abundant 

Parabacteroides merdeae 17,610982 0,00E+00 most abundant 

    

 

Table 2. Control biomarkers 

Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides  most abundant  

Bacteria Firmicutes Bacilli Bacillales Listeriaceae Listeria most abundant 

Eukaryota Basidiomycota Malasseziomycetes Malasseziales Malasseziaceae Malassezia most abundant  

Bacteria Bacteroidetes Bacteroidia Bacteroidales Odoribacteraceae Odoribacte most abundant 

 

 

Once the biomarkers were identified in elite soccer player cohort and the index calculated (Methods), 

box plot representing the distribution of the indices of the subjects, separated by the condition (elite 

soccer player and controls), were produced. The resulting plots showed that the indices were 

distributed in a different range among elite soccer players and controls (Figure 15), highlighting the 

potential of such index for athlete. 

Figure 15. Box plot and distribution of indices 

Figure 15. 
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Indeed, considering the specific index for ‘soccer players’, this proved that there could be the 

possibility of using such index to discern from “typical” to “atypical” associated-gut microbiome 

signature among soccer players. For example, the index may be used for the identification of an 

imbalance of gut microbiome in soccer players (our cohort of athletes was accurate selected to be 

“healthy”, that means nor antibiotic or medication used at least 2 months before the sampling and, 

without gastrointestinal disorders that might have impact the results).  

 

Discussion 

The human gut microbiome is a fundamental indicator of the healthiness of a person, and it is shaped 

by many different factors such as diet and physical activity. Elite athletes often follow strict training 

and diet regimes to maximize performance and thus they can be used as a paradigm of the limit of 

the trained human body. After several years of intense training, elite athletes develop special features 

in terms of athletic performance but also in term of metabolic and physiological adaptations. For these 

reasons, AMP project was launched to investigate changes in elite athletes’ gut microbiome 

composition and their relationship to habitual dietary intakes by collecting dietary data records and 

stool samples for shotgun metagenomics during the competitive season.  

Our observational and longitudinal (pre-post championship) dataset allowed us to test whether diet-

microbiome interactions were personalized. Notably, both microbiome signatures and dietary 
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components grouped into “health-associated” or “un-health-associated” clusters, in agreement with 

dietary quality and diversity indices (Methods). The identified food-microbiome interactions, such as 

those among favorable microbial clusters and the heterogeneity of food baskets (heathy diversity 

index) highlighted the importance of looking beyond “micro-macronutrients count” when 

investigating diet-microbiome interactions. In line with our findings, Johnson et al. showed that the 

conventional nutrients profiles alone to assess diet was insufficient to connect dietary intake with 

microbiome variations [37] because of the limited information available about nutrients and 

substrates (i.e., hundreds of additional chemical compounds present even in a single piece of fruit 

[42]) that are relevant to the microbiome. This fact might explain the inability to detect correlations 

between microbial functions and nutrient intake [40, 43] in some studies.  

In addition, many other aspects might have obscured the ability to detect relationship in studies 

investigating the triad diet-exercise-microbiota. Indeed, the majority of the research presented pitfalls 

in: 

-Food intake records: most of the questionnaire were not filled out by study participants and, in the 

FFQ, different type of plant-based food or protein sources were not usually documented; 

-Microbial sequencing: 16S rRNA microbial data were often used to correlate to function (only 

‘predicted’ functional profiling is possible). 16S rRNA is limited to identify bacteria at the genus 

level and not at species or strains levels; 

-Bio-informatics analysis (not defined pipelines and standardized computational approaches);  

-Small sample size; 

 -Involvement of “recreational athletes” incorrectly considered/defined as athlete (different 

physiological adaptation). 

The consistence of our results resides in the quality of dietary recording (accurate FFQ provided by 

each nutritionist to each athlete) and analysis (food indices not only nutrients’ count), the large and 

well-defined sample size (127 elite soccer players with defined phenotypes) and the accurate 

metagenomic profiling pipeline (whole genome shotgun sequencing).  



 
60 

Another interesting aspect emerged from our research was that the microbiome was highly 

personalized among the same cohort of elite soccer players. This intra-subject variability might be 

one reason for the small effect size of diet and exercise in shaping the gut microbiome in some studies. 

In other words, the effect of exercise or diet might be much greater than these studies observed, but 

if the same food or training regime impact different bacterial populations in an individualized manner, 

such effects may not be totally detectable. However, our study deepened our understanding of the 

personalized diet-microbiome inter-relationships [26].  

Finally, NMDS analysis and comparisons between elite athletes and control population showed that 

the microbiome of our elite athlete cohort was primary dominated by Prevotella and Bacteroidetes 

Enterotypes and, more specifically, at compositional level, by the species Prevotella Copri.  

Prevotella is associated with plant-rich diets and its presence has been seen in healthy individuals, 

non-Westernized [44]. Indeed, non-Westernized population follow a traditional lifestyle and typically 

consume diets rich in fresh unprocessed food (vegetable and fruits). Although Westernization 

encompasses more factors and lifestyle modifications that diet alone, the association of Prevotella 

and (non)-Westernization may further support the hypothesis of diet being an important factor in 

selecting and shaping Prevotella populations. The higher prevalence of Prevotella in societies 

following a more traditional healthy-diet that the typical Westernized diet may also lend support for 

the health benefit of Prevotella Copri. Interestingly, and in line with our findings, Petersen et al. [45] 

identified associations between higher abundances of Prevotella and the amount of time that athletes 

(competitive cyclists) spent for exercising during an average week. Further, meta-transcriptomic 

analyses revealed that the increased abundance of Prevotella was correlated with a number amino 

acid and carbohydrate metabolism pathways, including branched-chain amino acid.  

Al together these results provide a framework for a common constituent of the gut community in 

athletes who follow an exercise-rich lifestyle and habitual healthy dietary patterns (diet high in 
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complex carbohydrates, vegetable, fruits and high caloric intake). Overall, AMP project provides the 

first look into the gut microbiomes of elite soccer player. Indeed, this is the first large-study to identify 

a shared diet-microbial signature and segregating favorable and unfavorable taxa with specific dietary 

intakes. These data present opportunities for generating important hypotheses regarding how intense 

and long-lasting training influences the microbiome in elite soccer players. It is likely that multiple 

factors such as type of exercise, amount of exercise and diet influence how the microbiome of elite 

athletes are structured.  Further studies will be important for understanding the impact of these factors 

on the metabolic capacity of the gut microbiome and how organisms such as Prevotella Copri may 

positively influence health and athletic performance. Finally, considering the characteristic of the 

microbiota to change from individual to individual, a personalized approach is required. As a 

resource, our findings will aid the utilization of gut microbiome in strategies for reshaping the 

microbiome to improve personalized dietary and training responses. 

The resource: web platform developed for athlete’s and health practitioner 

From our results, and as recently demonstrated by Johnson et al., the gut microbiome is highly 

individual and microbiome responses to identical foods are strictly personalized.  

These findings prompt us to develop a web platform, dedicated to athletes and health practitioners, 

able to deliver personalized nutritional advice, based on microbiome analysis. Indeed, since the 

microbiome composition and its metabolic contribution are related to health and performance, 

monitoring, and consequently modulating the microbiome, may represent a powerful strategy to 

improve athlete’s health and performance. For such purpose, we created “MICK 4Athletes”. 

How does MICK 4Athletes works? 

1) Measure: Collection of the stool sample and analysis of the gut microbiome (“gut microbiome 

profiling and analysis”) + questionnaire for anamnesis + food frequency questionnaire. 
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We identified specific scores and insights for athletes, including inflammation status, microbial activity, 

richness and diversity, metabolic fitness, gut lining health, gut permeability. 

2)  Nourish: Based on microbiome data and metadata collected, a precise nutritional plan and/or 

supplement recommendations are delivered, such as: 

minimizing certain foods (“you should still eat these foods but within specific limits”), avoiding specific 

foods and supplementation (“what you need and what you don’t”) 

3)  Improve: Following the recommendations could help to improve weight, inflammation, stress, 

sleep, energy levels, digestive wellness. 

 

  

What do we decided to develop and include in the platform MICK 4Athletes? 

Mick4Athletes 
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1) Identification of healthy bacteria: certain bacteria are related to healthy metabolic profiles, MICK 

4Athletes will identify the abundance of some microorganisms that are proven to help in different 

metabolic routes, such as carbohydrate metabolism ‘for fueling’ athletes 

2) Gut inflammatory status: high intensity exercise together with some bacteria can increase the 

permeability of the gastrointestinal epithelial wall and diminish the mucus layer thickness which 

causes gut inflammation. MICK 4Athletes will help monitor the athlete’s gut inflammatory activity. 

3) Gut Athlete’s Index: it will help to understand whether the athlete is in line with the “ typical” 

pattern of microbial community of athlete or to identify the measure of the deviations from that 

score 

4) Vitamin synthesis: some vitamins are produces in the gut by bacteria and have important roles in 

patient’s health. MICK 4Athletes investigates the performance of the athlete’s microbiome in 

producing vitamins and gives personalized food recommendation to improve it 

5) Microbiome diversity: the higher diversity there is in the gut microbiome, the more resistant it is to 

invaders and the better it performs its metabolic roles. MICK 4Athletes provides an overall viewof 

the athlete’s gut diversity and provides recommendations to increase it 

6) Production of short-chain fatty acids: acetate, propionate, and butyrate are short-chain fatty acids 

that support the integrity of the gut lining and help prevent inflammation. They are produced from 

dietary diber in the gut microbiome. MICK 4Athletes provides an overview of the athlete’s short 

chain fatty acid status and provides recommendations to improve its production 

7) Potential to break down nutrients: MICK 4Athletes shows how well the gut microbiome breaks 

down nutrients such as fiber, protein, simple sugar and fat. 

Each index is developed on specific algorithms. For example, the “Gut inflammatory status” 

considers the following: 

• Mucin-degraders. If high, the score is 1. If on average, the score is 0. If low, the score is -1. 

• Fiber intake. If high, the score is -1. If medium intake, the score is 0. If low, the score is 1. 
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• LPS-producers. If high, the score is 1. If on average, the score is 0. If low, the score is -1. 

• SCFA-producers. If high, the score is -1. If on average, the score is 0. If low, the score is 1. 

Each section has a score. In order to determine the inflammatory status, we summed the scores and 

we did the following: 

(score mucin-degraders)*2 + (score fiber intake)*2 + (score LPS-producers) + (score SCFA-

producers) = final score 

If the final score is negative, the inflammatory status is LOW. If 0 or 1, INTERMEDIATE. If 

higher than 1, HIGH. 

Note: Mucin-degraders and fiber intake are multiplied by 2 (more importance). There are 2 types of 

mucin-degraders: 1) mucin-degrading-specialists, and 2) mucin-degraders in general. The first 

group primary takes as carbon source the mucin available in the mucus layer (e.g. Akkermansia). 

The second group takes mucin as a carbon source when there is a shortage of other nutrients, such 

as fiber intake. For instance, Prevotella does not feed with mucin unless fiber intake is super-low. In 

this way, if mucin-degraders (in general) are high and fiber intake is low, the inflammatory status is 

high since it is expected that the mucus layer will be thinner. 

The potential of MICK 4Athletes? 

• Actionable results: it translates the microbiome analysis into multilevel comprehensive and 

customizable reports. Practitioners and researchers may interpret the results and customize the 

reports on-demand, in a few-click 

• Personalized health advice: it integrates microbiome data with key athlete’s metadata to provide 

actionable and personalized health insights 

• Automated and accurate: it performs automated and real time analysis with the highest accuracy  
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• Trustable: it is developed on solid scientific basis and validated technology. The Mick (for general 

population) it is already chosen by hospitals and clinics in 5 countries. 

Finally, we also improved our packaging to facilitate the collection and the process from sampling to 

analysis. 

Next step: microbiome based solutions 

Today, there is no doubt that the discovery of the gut microbiota community opened a promising and 

rapidly growing research field on the potential beneficial health effects of manipulating the gut 

microbiota. Indeed, the gut microbiota influences the function of the intestine and also metabolic 

tissue such as skeletal muscle. However, the majority of studies failed in the identification of 

“dysbiotic” or “healthy” microbiota profile, highlighting that microbiome is highly personalized and 

that food-based intervention aimed at modulating the intestinal community need to be tailored to the 

specific composition of an athlete’s microbiome. For this reason, one major milestone would be to 

launch a larger-scale diet- microbiome interaction study applying a sportomics approach to “mimic 

the real challenges and condition that are faced during sport training and competition”. Sportomics is 

defined as “non-hypothesis driven research on an individual’s metabolite changes during sport and 

exercise”. Such an integrated approach will open the door to personalized nutrition/training program 

based on microbial composition. It could lead to microbiome-based solutions for health or 

performance by helping the design of new supplements and probiotics. In addition to the new 

monitoring application, this strategy could lead to optimized diets through personalized nutrition 

based on an individual’s microbiome make up and workout intensity. Finally, based on the previous 

large-scale studies, it would be interesting to measure and understand the unique metabolic responses 

to food or supplements in elite athletes. For example, it may be of interest to investigate how blood 

sugar and fat levels change after we eat or, how metabolites that are biomarkers of microbial 

metabolism of specific amino acids can change after the intake of different protein sources or how 
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fiber and prebiotics can be better tolerated by athletes. These studies should also include some 

relevant measurements of performance and recovery (i.e., training periodization, recovery techniques, 

sleep) to develop a global vision of body adaptation through exercise. 

 

PART 2 - STUDY 2 

Acute cocoa supplementation influences long-chain n-3 polyunsaturated fatty acids levels and 

microbiota composition in elite soccer athletes: introduction 

See our systematic reviews for the general background: 

Sorrenti V, Ali S, Mancin L, Davinelli S, Paoli A, Scapagnini G. Cocoa Polyphenols and Gut 

Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients. 2020 

Jun 27;12(7):1908. doi: 10.3390/nu12071908. PMID: 32605083; PMCID: PMC7400387 

 

Increasing evidence demonstrate that consumption of dark chocolate is associated to lower risk of 

cardiovascular mortality due to the high content of cocoa’ flavanols [46-48]. 

Both in vitro and in vivo studies showed that cocoa flavanols promote anti-inflammatory effects.  

Mao et al., demonstrated that human immune cells incubated with cocoa flavanols exerted ani-

inflammatory effect through inhibiting mRNA expression of pro-inflammatory cytokines, including 

interleukin IL-6 and tumor necrosis factor TNFa [49, 50]. Accordingly, in humans, acute flavanol-

rich dark chocolate exerted anti-inflammatory effects both by increasing mRNA expression of the 

anti-inflammatory cytokine IL-10 and by attenuating stress reactivity of the pro-inflammatory 

transcription factor NF-kB and of the pro-inflammatory interleukin IL-6 at mRNA-levels [51]. 

More recently, it has been demonstrated that short-term intake of a flavanol-rich cocoa improved 

lipid profile and positively modulate the metabolism of polyunsaturated fatty acids (PUFA) in a 

cohort of healthy individuals [52]. 
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The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are among the most studied nutrients 

in human metabolism since the effects of these essential fatty acids are clinically relevant [53].  

Indeed, the anti-inflammatory effects of PUFAs have already been harnessed in various chronic 

inflammatory condition and autoimmune diseases. Moreover, beyond the well-documented health 

benefits of PUFAs in cardiovascular health, weight management, and blood sugar control, these fatty 

acids play an important role in muscle strength, in reducing muscle inflammatory processes caused 

by intense exercise, and injury prevention in athletes. 

However, these fatty acids do not have the same effect. It is known that omega 6 and omega 3 have 

opposing properties. 

An altered fatty acid profile characterized by an excess of omega 6, creates a pro-inflammatory 

environment associated with inflammatory processes [54, 55], while, long-chain n-3 PUFAs decrease 

the production of inflammatory mediators (eicosanoids, cytokines, and reactive oxygen species), give 

rise to anti-inflammatory mediators (resolvins) [54]. As such, they may be of therapeutic use in a 

variety of acute and chronic inflammatory settings or adopted for the enhancement of muscle 

recovery[56, 57].  

Of note, the anti-inflammatory efficacy of omega-3 may be improved if intakes of omega-6, 

especially arachidonic acid, are decreased [54]. 

Although there are several different omega-3 fatty acids, eicosapentaenoic acid (EPA), 

docosahexaenoic acid (DHA) and alpha-linolenic acid (ALA) are most prominent in term of human 

physiology and metabolism. However, while it is possible for ALA (found in plant-based source) to 

be converted to EPA and DHA in the body, the rate of conversion is modest [58]. Thus, consumption 

of EPA and DHA (found primarily in marine-based sources) is the best strategy to attain these 

nutrients. Omega-3 fatty acid status can be determined via dietary assessment (targeted food 

frequency questionnaire) o via blood markers. It is noteworthy that the arachidonic acid (AA): EPA 

ratio has been suggested as a potentially more relevant indicator of balance between omega-6 and 

omega-3 fatty acids in the diet since arachidonic acid and EPA compete metabolically for eicosanoid 



 
68 

production [52, 59]. Of note, most athletes have been shown to consume sub-optimal omega-3 fatty 

acid, [60] thus highlighting the need to identify additional nutritional strategies to reach the optimal 

omega-3 fatty acid status throughout the season. Moreover, athletes may likely require more omega-

3 than the general population with factors such as energy metabolism, training volume and the 

inflammatory response to exercise all influencing needs [59, 61]. 

Several dietary recommendations exist. Algae, phytoplankton, and other marine microorganisms are 

natural producers of EPA and DHA, and thus, in turn, fish and seafoods that consume these 

microorganisms are the richest sources in the food supply. 

Interestingly, also plant-derived polyphenols, such as cocoa flavanols, report a “fish-like effect” 

adequate for increasing blood EPA and DHA levels, and improving (AA): EPA ratio [52, 62-64]. 

Indeed, cocoa and chocolate products have much higher flavonoid concentration per weight than 

other flavonoid food sources, such as red wine, green tea or black tea [65]. Among milk and dark 

chocolate, the latter contains higher amount of cacao and higher amount of flavonoids (i.e., 951 mg 

polyphenols /40g serving compared to 394 mg milk chocolate) [65]. 

One mechanism by which cocoa polyphenols may influence the balance between omega-6 and 

omega-3 relates to the gut microbiota activity[5]. Indeed, once cocoa polyphenols reach the intestine, 

can interact bidirectionally with the gut microbial community. The cocoa polyphenols modulate the 

intestinal microbiota by exerting prebiotic effects, while the microorganisms metabolize the 

polyphenols in bioactive compounds. The bioactive molecules can enter the circulation, reach the 

target organs, and exhibit their activities [66]. In addition, a functional physiological gut microbiota 

(i.e., stability over time) is essential for athletes’ health and performance since it represents a key 

player along the signaling brain-gut axis [67] and skeletal muscle-gut axis [3]. 

To the best of our knowledge, no previous interventional studies have examinate the effect of high 

flavanol dark chocolate on the metabolism of PUFAs in elite athletes, and particularly its effect on 

AA:EPA ratio and gut microbiota composition. Interestingly, AA:EPA ratio has been recently 

identified as a biomarker of running-related injuries [59]. 
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For this reason, we conducted a dietary intervention study to assess the impact of 30g of dark 

chocolate on clinical biomarkers of omega-3 fatty acid status and to test whether dark chocolate 

supplementation may affect the athlete’s gut microbial community. Previous work investigating gut 

microbiota in athlete’s population has numerous confounding factor such as age, lifestyle, diet, and 

different physical activity level. This study focuses on a homogeneous group of elite-soccer players 

who shared baseline dietary habits and physical activity level. Recruiting such a well-controlled 

cohort enable us to highlight changes in plasmatic biomarkers and microbial features associated 

specifically with dark chocolate intervention. Critically to the aim of this study, diet and 

supplementation were rigorously controlled which enabled data to be attributable to the treatment.  

 

 

Material and methods 

Participants 

We performed a randomized controlled trial in a cohort of 38 elite football players (27.22 ± 4.31 

years) during the last month of the regular season (May 2022). Exclusion criteria were any disease or 

serious medical condition, probiotic use, special diet such as vegan or vegetarian, and the use of non-

steroidal anti-inflammatory drugs during the previous 7 days. Players were member of the Italian first 

league (Serie A), Genoa C.F.C. and Fiorentina A.C.F. The subjects were engaged in a  ~120-minute 

training, 6 times/week and 90 minutes, match/week. The training includes a 15-minute warm-up, 30 

minute technical/tactical skills, 30 minutes of strength training and 15-minutes cool down. The 

training program schedule and the number of matched played were the same among the two teams. 

The participants were instructed to maintain their habitual diet and supplementation, according to 

their anthropometric characteristics and to the amount of calories coming from chocolate intake.  All 

the athletes, medical staff and the head of coach were explained the study’s purposes, risk, and 

benefit, and they gave a written informed consent. Further, the nutritionists were asked to check with 
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a daily frequency the athletes’ diet in order to control the maintenance of their habitual dietary intakes 

during the study (both quality and quantity of food. 

 

Study design 

Elite football players were randomly divided into two groups: treatment group provided with 30g 

dark chocolate 88% in tablet (DC n=19) and control group with 30g white chocolate (WC n=19) (0 

mg flavanols). The participants were instructed to refrain from consuming chocolate or flavanol-

containing products (i.e., blueberry, strawberry, blackberry, green tea, red wine, and pomegranate 

juice), starting from 3 days before the beginning of the study and throughout the intervention period. 

The dark chocolate and white chocolate were provided every morning to each subject by the 

nutritionist of each team, while, during off days, the chocolate was portioned into individual serving 

sizes and provided to each player. For each assessment, participants arrived at the training center in 

the morning, after an overnight fast. Before the beginning and the end of the study, a 3-days food 

record (3DR) was recorded (2 weekdays and 1 week-end day) by the nutritionist, blood and fecal 

sample was collected (between 08:00 and 09:00 hours), and anthropometry measures were 

determined. Briefly, for stool samples, athletes were asked to collect their fecal material (single 

defecation) in a plastic vial and place the vial in a labelled box. The nutritionist and/or the doctor of 

each team immediately collected the samples and delivered them within 72h to the research hub 

facility (University of Padova, Department of Biomedical Science). 

 

Randomization and sample size  

Randomization was conducted using an online computer-generated sequence 

(https://www.graphpad.com), matched for BMI. Sample size calculation was computed with 

G*Power [68] from similar studies with healthy individuals who consumed flavanol-rich cocoa. 

 

Plasma Epicatechin extraction and quantification by HPLC-FLD/UV  
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Plasma samples were extracted by the method described by Spadafranca et al. [69]. Epicatechin was 

hydrolyzed enzymatically using beta-glucuronidase and sulfatase and subsequently extracted by 

addition of 1ml acetonitrile, and the mixture was centrifuged at10 000 g for 5 min at 4°C. After 

centrifugation, 50 μl supernatant was injected into the HPLC column for separation, detection, and 

analysis. The HPLC analysis was performed using an HPLC system (Agilent 1200 Infinity Series 

HPLC system, Santa Clara, USA). Spectroscopy data from all peaks were captured in the range of 

210–400 nm, and chromatograms were recorded at 279 nm. Separations were carried out at a flow 

rate of 1·5 ml/min. The identification of the epicatechin was made by comparison of retention times 

and spectra with those of commercially available standard compound (−)-epicatechin, E-1753, 

Sigma).  

 

Blood biochemical analysis  

Blood samples were collected using EDTA tubes and left for 10–15 min at room temperature. To 

obtain plasma aliquots samples were centrifuged (1800 × g, 15 min, 4 °C) and stored at - 80 °C until 

analysis. Total cholesterol, HDL cholesterol, low-density lipoprotein (LDL) cholesterol, and 

triglycerides were measured using colorimetric enzymatic tests. The plasma concentration of oxidized 

LDL (oxLDL) was quantified with a specific ELISA kit (Immundiagnostik AG, Bensheim, 

Germany). 

 

Fatty acid analyses 

Blood was collected into heparinized evacuated tubes and centrifuged at 1.000 × g for 10 min. Total 

lipids were extracted from plasma with chloroform: methanol:0.90% KCl (2:1:0.2, v/v/v).  Plasma 

fatty acid composition was determined from 2 mL of the lipid extract after transformation into 

isopropyl esters. Separation of isopropyl esters was done on a gas chromatograph using a capillary 

column (internal diameter: 0.32 mm). Column conditions were 175 °C for 4 min and then increased 

by 3 °C/min to 220 °C for 30 min. Helium was used as the carrier gas (flow rate: 2 mL/min). The 
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peaks were identified by comparison with reference fatty acid esters and peak areas were measured 

with an automatic integrator. The results for each fatty acid were expressed as a percentage of total 

fatty acids. The AA-to-EPA, AA-to-DHA ratios were calculated. We analyzed fatty acids that were 

greater than 0.01% of peaks detected.  

 

Microbiome sequencing and profiling 

We performed deep shotgun metagenomic sequencing in stool samples from a total of 38 elite soccer 

players. Computational analysis was performed using the bioBakery suite of tool 

(http://huttenhower.sph.harvard.edu/biobakery) to obtain species-level microbial abundances for the 

taxa identified using the last version of MetaPhlan tool.  

 

Microbiome sample collection 

At each training facility, athletes were personally delivered a “microbiome kit pack” with the stool 

collection kit and information needed and ask to collect the stool sample within 3 days. The sample 

collected, was deposited into a tube containing DNA/RNA Shield buffer (Zymo Research) to preserve 

the genetic integrity and expression profiles of samples at ambient temperatures (no refrigeration or 

freezing needed) and completely inactivates infectious agents (viruses, bacteria, fungi, & parasites). 

In this way, we facilitated the collection of the samples at each sport facility. Samples were stored at 

ambient temperature until delivered to the laboratory (https://igatechnology.com) to perform the wet 

analysis. The sample were homogenized, aliquoted and stored ay -80° in QIAGEN Power Beads 

1.5mL tubes. The sample collection procedure was tested and validated internally comparing two 

different DNA extraction kits (Fast DNA and Zymo). 

 

DNA extraction and sequencing 

DNA was isolated by CELEROä DNA-Seq kit (San Carlos, California, NuGEN Technologies, Inc.) 

using DNA/RNA Shield-fixed microbiome samples. Before library preparation and sequencing, the 
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quality and quantity of the samples were assessed using Fragment Analyzer system (Agilent 

technologies). Only samples with a high-quality DNA profile were further processed. Both input and 

final libraries were quantified by Qubit 2.0 fluorometer (Termo Fisher) and quality tested by Agilent 

2100 Bioanalyzer High Sensitive DNA assay. Libraries were then prepared for sequencing and 

sequenced on NovaSeq 6000 in paired ends *150 bp mode. At this step, the primary bioinformatic 

analysis included: 1.Base calling and demultiplexing. Processing raw data for both format conversion 

and de-multiplexing by Bcl2Fastq 2.0.2 version of the Illumina pipeline; and 2.Adapters masking. 

Adapter sequences are masked with Cutadapt v1.11 from raw fastq data using the following 

parameters: --anywhere (on both adapter sequences) --overlap 5 --times 2 --minimum-length 35 --

mask-adapter. Lastly, a folder ‘raw_reads’ containing files with raw reads (R1: first read sequence; 

R2: second read sequence) and multiqc_report.html file, which aggregates results from primary 

bioinformatic analysis into a single report file with parameters that give insight into overall processing 

and sequencing quality, were provided. 

 

Metagenome quality control and pre-processing 

All sequenced metagenomes were quality control edited using the pre-processing process as specified 

in (https://github.com/SegataLab/preprocessing/). Pre-processing consists of three main step: 

(1)read-level quality control ; (2) screening of contaminants (host sequences) and (3) split and sorting 

of cleaned reads. The read-level quality control involves the removal of low-quality reads (i.e., quality 

score QC < 20), fragment short reads (< 75bp) and reads with > 2 more ambiguous nucleotides. 

Contaminant DNA was identified using Bowtie 2. The sorting and splitting step created a standard 

forward (5’ – 3’), reverse (3’-5’) and unpaired reads output files for each metagenome. 

 

Statistical analysis 

Lipid profile and AA:EPA ratio  
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To each outcome, change from baseline was calculated for each time point with an independent t test. 

Results are presented as the mean ± SDs. We used an estimated standard deviation of 0.5 and the two 

tailed alpha set at 0.05. The two-way ANOVA was performed to identify differences between 

baseline and endpoint (at week 4) and considering treatment (dark chocolate, white chocolate) as 

inter-subjects factors. Statistical analyses were performed using SPSS Statistic software version 22 

(IBM Corp., Armonk, NY, USA). Post hoc analyses were performed using Bonferroni test. In 

addition, effect size (ES) calculation was done with Cohen’s d. The normal Gaussian distribution of 

the data was verified by the Shapiro-Wilk test. 

 

Microbiome taxonomic profiling 

The metagenomic analysis was performed following the general guidelines which relies on the 

bioBakery computational environment. The taxonomic profiling of organisms’ relative abundances 

for each metagenomic sample was performed by MetaPhlan tool v. 4.0. 

(https://github.com/biobakery/metaphlan/wiki/).  Microbiome dissimilarity (differences in the overall 

taxonomic composition between samples) between athletes (beta diversity index) was computed 

using Aitchison distance between two observations (microbiome profile pre and post intervention). 

Once measures of beta diversity have been calculated, the entire data set has been visualized using 

the ordination method of PCoA. PCoA method is used to explore and visualize dissimilarities of data 

by performing a rotation of the inter-sample distance matrix in order to represent those distances as 

accurately as possible in a small number of dimensions. Permutational Analysis of Variance 

(PERMANOVA) was used to test which variables = 

metadata_soccer[,c("ethnicity","team_location","timepoint","treatment","player_name")] were most 

significant in explaining the % of variance. To investigate the differences pre-post between the two 

groups (DC vs. WC) in the relative abundances at genus and species levels, we used the adonis R 

function, and post-hoc comparisons with a paired Wilcoxon test with FDR correction.  
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Microbiota community variation explained by metadata variables 

The contribution of metadata variables (player_name, treatment, timepoint, team location, ethnicity) 

to interindividual microbiota community variation was determined by PERMANOVA analysis on 

genus-level Aitchison dissimilarity with the functions in the vegan R package. The cumulative 

contribution of metadata variables was determined by forward model selection on PERMANOVA 

with the ordiR2step function in vegan, with variables that showed a significant contribution to 

microbiota community variation (Padj < 0.05) in the previous step.  

 

Microbiome and metadata associations 

Taxa unclassified at the genus level or present in less than 10% of samples were excluded from the 

statistical analyses. Wilcoxon paired tests were used to test the differences of continuous variables 

between two different groups 

  

Results 

Characteristic of study population 

This study was conducted in May 2022. Of the forty-two athletes who were enrolled into the study, 

thirty-eight were eligible and randomly assigned to one of the two groups. All thirty-eight athletes 

completed the intervention period, and all data were included in the analysis. No significant 

differences were noted over the intervention period for anthropometric parameters (weight, BMI and 

percent of body fat) and macronutrients intakes across the groups. Differently, plasma total 

polyphenols resulted to be unchanged in WC group (from 150.4± 23.2 µg GAE/ml to 147.1±34.4 µg 

GAE/ml), while the content increased in DC group (from 154.7± 18.6 µg GAE/ml to 185.11±57.6 µg 

GAE/ml). 

 

Dietary nutrition intake 
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There were no differences in dietary nutrient intakes between groups at baseline and after 4 weeks of 

intervention according to analysis of diets records.  

 

Effects of dark chocolate on plasma lipid profile 

Compared with baseline, 4 weeks of dark chocolate intervention revealed a statistically significant 

decrease in total cholesterol in DC group (-32.47± 17.18; -18.15%; P<0,001; time* treatment 

interaction P=0,032). No significant changes were observed for total plasma cholesterol in the WC 

group. Moreover, the DC group showed a reduction in triglycerides (-6.32± 4.96; - 7.62%; P<0,001; 

time* treatment interaction P=0.392) and LDL cholesterol (-18.42 ± 17.13; -13.67%; P<0,001; time* 

treatment interaction P=0.195) after intervention, compared with baseline. Differently, control group 

did not show any significant change in the level of triglycerides or LDL cholesterol. Furthermore, we 

demonstrated that 4 weeks of dark chocolate increased the level of HDL (3.26 ± 4.49; 6.63%; 

P=0,005; time* treatment interaction P=0.44). No differences were observed in DC group.  

 

Effects of dark chocolate on AA/EPA ratio 

Four weeks of dark chocolate supplementation significantly decreased the AA/EPA ratio. Indeed, 

daily supplementation of 30g of dark chocolate was associated with a significant reduction in 

AA/EPA ratio (-5.26 ± 2,35; -54.17%; P=<0,001; time* treatment interaction P=0.078). A weak 

reduction in the AA/EPA ratio was observed in the control group (-0.47 ± 0.73; -6.41%; P=0.012), 

suggesting the efficacy of dark chocolate on AA/EPA ratio. 

 

Greater microbial taxonomic stability is associated with dark chocolate intake 

Athletes were randomly divided into dark chocolate group intervention and white chocolate group 

control. Subject variance, based on Aitchison dissimilarity distance, was used as a measure of 

microbial stability within individual participants (Figure 16). Microbial communities of athletes 
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enrolled in dark chocolate group were more stable over time exhibiting lower within-subject 

community dissimilarity than subjects of control group (wilcoxon non paired, two.sided, p-value = 

0.0001226) (Figure 17). Conversely, athletes in the control group showed a greater variation in gut 

microbial communities across the study. There results suggest that dark chocolate intake might have 

promoted a greater gut microbial stasis in athletes. 

Figure 16. PCoA based on Aitchison dissimilarity distance 

 

Figure 17. Box plot based on Aitchison dissimilarity distance, wilcoxon non paired, two.sided, p-
value = 0.0001226 
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Microbiome variations are associated with player’s name, treatment, team location and 

ethnicity 

Exploring host or environmental factors significantly contributing to interindividual microbiome 

variation across longitudinal intervention, we combined shotgun metagenomic data with metadata of 

athletes. Player_name (n=38, Aitchison Distance for b-diversity pre and post intervention, R2 = 

62,3%, Padj = 0,001), treatment (R2 = 2,3%, Padj = 0,001), time point (R2 = 1,2%, Padj = 0,003), 

team_location (R2 = 2,1%, Padj = 0,001), and ethnicity (R2 = 4,2%, Padj = 0,001) were identified as 

cumulative metadata variables over microbiome variations in a multivariate analysis (permutational 

multivariate analysis of variance, PERMANOVA). Further, to understand the relative effect size of 

each significant metadata variable (identifying variables with non-redundant explanatory power over 

longitudinal microbiome community variation), we investigated variables excluding the covariate 

“player_name”, since this covariate represented the variable with the largest effects size explaining 

the microbial variation. The exclusion of player_name allowed us to demonstrate that team location, 

treatment and ethnicity accounted respectively for (R2adj = 3,6%, Padj = 0,002), (R2 adj= 2,8%, Padj = 

0,002) and (R2 adj= 1,6%, Padj = 0,002). 

 

Taxonomic features of the microbiota are associated with dark chocolate intake 

To investigate the specific bacterial taxa that were significantly affected by dark chocolate 

consumption, we compared the composition of the gut microbiota between the dark chocolate group 

and control group at species level. Although dark chocolate group maintained a greater stability 

compared to control group, some compositional changes in microbial community have been 

observed. At species level, Wilcoxon-paired test showed that Bifidobacterium longum (n = 38, two-

sided Wilcoxon rank-sum test, −log10(P) >0,28), Dysosmobacter welbionis (−log10(P) > 0,90), 

Faecalibacterium prausnitzii (−log10(P) > 0,61), Oscillibacter sp. ER4 (-log10(P) > 1,08 ) slightly 

increased in dark chocolate group, while Blautia wexlerae (−log10(P) > -5,88 ) and Blautia faecis 
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(−log10(P) > -2,27) decreased, compared to the controls. These results identify the effects of dark 

chocolate consumption on compositional changes in gut microbiota. (Figure 18 a,b,c,d,e). 

Figure 18. Compositional changes in microbial communities. Two-sided Wilcoxon rank-sum test. 

a b 

 

c d 

 

e 

 

 

Discussion 

Dark chocolate contains a number of polyphenolic compounds, and it is particularly rich in flavonoids 

- specifically, flavanols, also called flavan-3-ols [70]. Several clinical trials looking at the association 

between dark chocolate flavanols intake and lipid profile showed that dark chocolate and cocoa rich 

in flavanols can improve lipid profile status and modulate the metabolism of PUFA in humans [52, 
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71, 72]. However, to the best of our knowledge, there is no evidence of such effect on elite athlete 

population, thus, the purpose of this study was to investigate the influence of 30g of dark chocolate 

on plasma lipid profile, biomarkers of inflammation (AA:EPA ratio), and gut microbiome 

composition in elite soccer athletes. In this research we extended to elite athletes’ population the 

previous observations that dark chocolate and cocoa rich in flavanols can improve lipid profile and 

the metabolism of PUFA in humans [52, 71, 72], and additionally, we demonstrated that dark 

chocolate may contribute to the maintenance of a stable microbiota during intense exercise training. 

It is known that high total and LDL cholesterol, or low HDL cholesterol represents a significant long-

term risk factor for cardiovascular diseases (CVD) [73]. However, individuals who practice sports 

involving a high level of physical exertion, such as elite soccer players, show a less favorable lipid 

profile, compared to healthy population, thus potentially increasing the CVD risk factor [74-76]. 

Although it is difficult to identify the cause of why the most stressful exercise should impair the lipid 

profile towards a dysmetabolic pattern, it has been speculated that intense exercise, and particularly 

eccentric exercise accompanied by falls and collision [77], leads to the release of proinflammatory 

cytokines [78] associated with abnormalities in metabolism.[79, 80]. In addition, exercise-associated 

perturbations of gastrointestinal epithelial wall integrity, may lead to translocation of pathogenic 

bacteria and/or bacterial endotoxin and subsequently induce local and systemic inflammation [81] 

(cytokinemia). Further, it has been shown that lipopolysaccharide (LPS), the major component of the 

outer membrane of Gram-negative bacteria, can impair lipid metabolism increasing the activity of 3-

hydroxymethyl-gluaryl coenzyme A reductase and reducing the level and activity of cholesterol 7a-

hydroxylase mRNA [82]. For all these reasons, it seems reasonable to identify potential nutritional 

strategies aimed to decrease the inflammatory status of elite athlete and, consequently, the risk for 

CVD. Interestingly, our study revealed that total cholesterol, LDL cholesterol and triglycerides 

significantly decreased after 4 weeks of dark chocolate supplementation and, in addition, HDL 

cholesterol level significantly increased in the DC group. Nonetheless, no effects were evident in the 

control group. Our findings are in line with a recent clinical trial which observed the same positive 
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effect of cocoa supplementation (~220mg flavanols) on the improvement of lipid profile in a cohort 

of healthy population [5], and with two meta-analyses demonstrating the beneficial effects of dark 

chocolate/cocoa products on total and LDL cholesterol [83, 84].  Moreover, our study was also 

designed to assess whether dark chocolate intake could modulate the metabolism of PUFA by 

decreasing the plasmatic AA/EPA ratio. We chose the AA/EPA ratio as biomarkers since its 

measurement may serve as a marker for cardio-protective effect, such as anti-inflammatory effect 

[85]. Our results showed that dark chocolate may interfere with the metabolism of PUFA by 

significantly decreasing the AA/EPA ratio in elite soccer athletes. The mechanism by which cocoa 

flavanols elevate plasma EPA level or decrease AA concentration remain still uninvestigated, 

however, because of the control group did change the AA/EPA ratio level, it is plausible the 

hypothesis that the polyphenol content of dark chocolate may be responsible of this effect. Lastly, we 

looked for the potential effect of dark chocolate on athlete’s gut microbiota community. Gut 

microbiota and exercise have recently been shown to be interconnected [22]. However, if on one side, 

moderate exercise (< 70% of maximal oxygen uptake, VO2Max) has positive effects in the gut 

microbiome, on the other, intense exercise (> 70% VO2Max) usually practiced by elite athletes, can 

increase blood markers of inflammation [86] and impair gastrointestinal epithelial permeability, thus 

enabling pathogens to enter the bloodstream and increase inflammation level [81, 87]. For these 

reasons, we decided to investigate whether the daily intake of dark chocolate, known to have 

prebiotic-like effect [5], may positively affect the gut microbiota of elite soccer players. In the present 

study, we observed that 30 days of 30g dark chocolate did not affect the overall gut microbiota 

composition of both DC and WC group in terms of alpha diversity (Faith’s PD) and richness indices. 

However, subject variance analysis, which allowed us to measure the microbial stability within 

individual participants, showed that the microbial community of each individual in the DC group was 

more stable over time exhibiting lower ‘within-subject community dissimilarity’ compared to 

subjects of control group. Conversely, athletes in the control group exhibited greater microbial 

turbulence with bigger shifts in the gut communities across the study. There results suggest that dark 
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chocolate may be linked with gut microbiota where athletes provided of 30g dark chocolate/daily 

maintained a more stable gut ecosystem compared to controls. Interestingly, the recent body of 

evidence demonstrates that gut microbial stability and resilience represent essential ecological 

characteristics of gut microbiota and measures associated with host healthy states [88]. Accordingly, 

in the case of athlete population, the maintenance of gut microbial resilience after different dietary 

perturbations was associated with greater athletic performance [89]. Furber et al. [89] recently 

demonstrated that subjects consistently performed better during athletic performance test when 

microbial communities remain relatively unchanged throughout dietary challenges (high protein or 

high carbohydrate diets). Indeed, the maintenance of a subject-specific ecosystem and reduced 

longitudinal variation was associated with higher Time to Exhaustion (TTE) performance in both 

dietary interventions. In other words, athletes undergoing dietary periodization [90] or dietary 

supplementation protocols [91], with the aim of improving performance, would likely benefit from 

greater gut microbial resilience. Thus, from a clinical and translational perspective, the ability of dark 

chocolate to positively modulate lipid profile and PUFA metabolism while maintaining gut microbial 

stability, represents an effective nutritional therapeutical strategy for improving and/or maintaining 

elite athlete’s health. Our result stressed the concept that, although microbiome states that are 

unequivocally “healthy” are yet to be established [92], “it is less the response to perturbation but 

rather post-perturbation resilience the greatest hallmark of health” [1]. However, our explorative 

analyses of gut microbiota variation across 1-month dark chocolate intervention revealed the 

microbiome of individuals to be fundamentally unique, with player inter-variability explaining the 

largest effect of microbial community variation across study. In line with these findings, Johnson et 

al., demonstrated that microbiome composition is highly individual and daily microbial responses to 

diet is highly personalized [37]. Further, Wu et al., revealed that that inter-subject microbiome 

variation remained high even after periods of identical dietary intake [93]. Lastly, although dark 

chocolate group maintained a greater stability compared to control group, significant changes have 

been detected at species level. The top six flux changes in relative abundance that we observed were 
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an increase in Bifidobacterium longum, Dysosmobacter welbionis, Faecalibacterium prausnitzii, 

Oscillibacter sp. ER4 and a decrease in Blautia wexlerae and Blautia faecis in the dark chocolate 

group compared to controls. Bifidobacterium longum is known to be a probiotic bacterium with 

several potential benefit for health promotion such as immune regulation, anti-tumorigenesis, 

recovery of healthy gut microbiota after antibiotics treatment, and vitamin biosynthesis [1, 94]. 

Interestingly, bifidobacteria genera have been reported to have an anti-cholesterolemic effect. The 

available evidence suggested that bifidobacteria genera reduce blood cholesterol in two different 

ways: i) bifidobacterial cells absorb and accumulate intestinal cholesterol, and they are gradually 

excreted with the feces from the intestine [95]; ii) cholesterol is a precursor of conjugated bile acid. 

Bifidobacteria have bile acid hydrolase to convert conjugated bile acid to an unconjugated one. After 

deconjugation of bile acid, this unconjugated one is precipitated and excreted with the feces from the 

intestine. To recover the level of bile acid, cholesterol is gradually converted to bile acid in the liver, 

resulting in cholesterol reduction in the blood[3]. More specifically, Kim et al. showed that in vivo 

administration of Bifidobacterium longum subsp. BCBL-583 to a high-fat mouse model (HFD-583) 

solved the undesirable problem regarding obesity caused by the administered HFD. Indeed, B. longum 

BCBL-583 reduced the total cholesterol and LDL-cholesterol, decreased pro-inflammatory cytokines 

and increased anti-inflammatory cytokines, substantiating its cholesterol reduction and anti-

inflammation activities [96]. Differently from the recent findings observed by Shin et al. [97], we 

observed an increased in Faecalibacterium prausnitzii species. F. prausnitzii is a butyrate producers’ 

bacteria with anti-inflammatory properties and represent a crucial community for the maintenance of 

gut homeostasis [98]. Moreover, F. prausnitzii has been found in greater relative abundance in active 

women (with an increase associated with exercise training [99]) and in microbiomes of professional 

athletes participating in sports with a high dynamic component (>70% VO2Max [100]). Therefore, 

we hypothesized that the combination of intense exercise training and dark chocolate ingestion might 

have synergically contributed to increase the levels of F.prausnitzii. Indeed, in the study of Shin et 

al.[97], in which the authors observed a decrease in F.prausnitzii after dark chocolate 
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supplementation, the cohort of study was selected among healthy adults with a sedentary lifestyle and 

it is known that the microbial profile commonly observed in professional athletes differ significantly 

from sedentary individuals. The intestinal microbiota of athlete is mostly composed of good bacteria, 

such as F. prausnitzii, and is characterized by higher levels of propionate, acetate and butyrate 

producing bacteria [101]. In line with these metabolic properties, we revealed an increase in 

Dysosmobacter welbionis species. Dysosmobacter welbionis has been recently discovered to be a 

butyrate producing bacteria negatively correlated with body mass index (BMI) [102]. Le Roy et al., 

showed that the supplementation of Dysosmobacter welbionis (strain J115T) to HFD-fed mice 

reduced white adipose tissue hypertrophy and inflammation together with increased number of 

mitochondria in brown-adipose tissue and non-shivering thermogenesis. This finding was associated 

with improved glucose homeostasis and increased non-shivering thermogenesis, thus beneficially 

influences host metabolism [102]. In addition, we observed an increase in the genus of Oscillibacter 

that has been detected as the major determinant of obese or normal status [103]. Indeed, Tims et al. 

examined twins that were discordant in terms of BMI status and found that Oscillibacter genus was 

more abundant in the leaner twin [104]. Finally, we observed a reduction in Blautia wexlerae and 

Blautia faecis species. Blautia genus has been shown to be one of the most abundant genera in 

prediabetes and T2D compared with healthy subjects [105] and has been suggested to increase the 

release of pro inflammatory cytokines (TNFα, cytokines) [106]. Moreover, Motiani et al. showed that 

Blautia decreased after 2 weeks of training and that the reduction was associated with a decrease in 

the TNFα. This reduction is important as TNFα plays a critical role in the inflammatory processes, 

such as IBD [107]. In our study lower abundance of Blautia wexlerae and Blautia faecis species was 

observed in DC group, thus suggesting that dark chocolate supplementation may have reduced the 

inflammation in the gut and at systemic level. However, Shin et al., observed a higher abundance of 

the genus of Blautia in healthy population after 3 weeks of dark chocolate intervention [97]. Based 

on these conflicting results, it is still necessary to elucidate the characteristics of Blautia for specific 

species (or even strain) and to perform the direct feeding of this bacterium to human participants to 
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clarify the role of this bacterium for correlation with human health in the future. Although data on 

the impact of polyphenols on the gut microbiota and their mechanisms of action in humans are scarce 

[5], we demonstrated that dark chocolate and the gut microbiota may interact and positively influence 

athlete’s health. Moreover, we showed that dark chocolate supplementation contributes to the 

maintenance of gut health by the modulation of the gut microbial community (stability over time) 

and through the stimulation of the growth of beneficial bacteria. However, these results raised the 

questions of whether dark chocolate supplementation directly affected the growth of the 

Bifidobacterium longum, Dysosmobacter welbionis, Faecalibacterium prausnitzii and Oscillibacter 

sp. ER4 or if it was a combination of indirect effects via systemic changes. Whatever the nature of 

the prebiotic effect of dark chocolate, this is the first study conducted to demonstrate that ingestion 

of a dark chocolate may have these new properties on elite athlete’s population. However, we 

acknowledge that our study has several limitations. For example, we selected our cohort of elite 

soccer players from two different geographic locations (Genova and Florence, Italy) and it has been 

demonstrated that team location influenced the response in terms of microbiota changes. Accordingly, 

recent studies have showed a number of divergences in the microbiome composition between healthy 

individuals from different geographic locations (cultural/behavioral features) [108]. It should be 

highlighted that we decided to choose these two teams because of the same number of matches played 

(same volume of training volume) within the competitive season. However, we adopted appropriate 

statistical analyses (linear mixed model) to minimize the bias. In addition, another limit is that the 

underlying mechanism by which dark chocolate modulate the intestinal microbiota and elevate 

plasma EPA or DHA concentrations (or decrease AA levels) remain unclear. This encourages future 

studies to examine gut-liver signaling, such as associations between bacterial metabolites and 

cholesterol, following a period of dark chocolate consumption. Despite its limitations, to the best of 

our knowledge, our data suggest that supplementation with 30g dark chocolate, over 4 weeks of 

intense exercise, may improve lipid profile, the metabolism of PUFA and the gut microbiota 

community in elite soccer players. With the current advances in technology, metabolic profiling, and 
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others “omics” analysis can be harnessed to discover candidate microbial communities and their 

derived metabolites that impact human health [109]. Such advances will help discern the gut 

microbial mechanisms that explain the relationship between intestinal microbiota with cholesterol 

metabolism. This will lead to deeper understanding of the microbiota and encourage the development 

of microbiota-based therapies and microbiome-informed precision medicine to reduce the global risk 

for CVD. 

PART 2 - STUDY 3: 

Effect of thirty days of ketogenic Mediterranean diet with phytoextracts on athletes’ gut 

microbiome composition: introduction 

See our systematic review for the general background: 

Paoli A, Mancin L, Bianco A, Thomas E, Mota JF, Piccini F. Ketogenic Diet and Microbiota: 

Friends or Enemies? Genes (Basel). 2019 Jul 15;10(7):534. doi: 10.3390/genes10070534. PMID: 

31311141; PMCID: PMC6678592 for further information. 

The human intestinal tract is composed of a considerable population of microorganisms (microbiota) 

and its corresponding gene complement (microbiome), that symbiotically live within the host. In 

recent years, the awareness of the importance of microbial community in human health has increased 

tremendously, making the science of microbiome a key area for life sciences [110]. Intrinsic and 

extrinsic factors including age, environment, birth delivery route, breastfeeding, antibiotics, genetic 

background, human leukocyte antigen, dietary factors, and exercise, impact the microbial 

composition and function, with the diet and exercise act as primary modulators [67, 111-115]. More 

specifically, in sport nutrition, diet represents one of the most important tools that athletes use to 

optimize their fitness, performance and recovery and macro nutrients manipulation are often adopted 

to optimize training outcomes and competitions’ performance. For example, carbohydrates represent 
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a primary fuel source during physical activity, and they are fundamental to maintain and refill 

athlete’s muscle glycogen stores. To date, recent evidence suggests that carbohydrates may influence 

athletic performance also  via the modulation of gut microbiome [116]. Indeed, the effect of 

carbohydrates on the gut microbiome differs widely as a function of microbiota-accessible 

carbohydrates (MACs) commonly referred to as dietary fiber, content, and types. Dietary MACs are 

found in a variety of sources including plants, animal tissue, or food-borne microbes and represent 

the source of carbohydrates that are metabolically available for gut microbes. MACs hold a role of 

“primary fermenters” within the colonic ecosystem and generally tend to increase the production of 

the beneficial short chain fatty acids (SCFAs) producing bacteria such as Bacteroides, Firmicutes and 

Actinobacteria [117]. Differently, an increased consumption of protein among athletes, may lead to 

an excessive protein fermentation associated with the increased abundance of related taxa such as 

Clostridium and Proteobacteria. In sport nutrition, an additional area of interest is also represented 

by the study of ketogenic diet (KD) effects on athletes’ health and performance. Indeed, high fat-low 

carbohydrate diet, such as ketogenic diet, has gained popularity among athletes and practitioners for 

its potential application in sports [118]. KD represents a dietary protocol consisting of high-fat, 

adequate protein and less than 20g of carbohydrate daily (or 5% of total daily energy)[118]. This 

nutritional approach has been used since the 1920 as a treatment for refractory epilepsy [119] and  it 

has gained popularity as a potential treatment for obesity and related metabolic disorders [120]. 

Indeed, increased amount of evidence point out that KD may represent an efficient and safe solution 

to get adequate body composition and maintain a general good health. The metabolic shift induced 

by ketogenic diet and some of the complex metabolic pathways involved in ‘ketotic state’ has 

suggested a possible use of ketogenic diet in sports[118]. For example, the use of KD may represent 

a safe strategy for the athletes who need to reduce body weight and body fat while maintaining lean 

mass and performance [121]. One of the concerns raised about the use of KD for sport purposes is 

related to its putative negative impact on gut microbiome [122]. On the other side, substantial changes 

in microbiome composition have been also attributed to exercise. To date, some studies reveal that 
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exercise may increase the gut microbiota diversity and associated microbial-derived metabolites [45, 

67]. Observational studies have revealed that high-level athletes have an increased microbial α-

diversity (a measure of microbiome diversity of a single sample), lower inflammatory markers and a 

higher microbial production of short chain fatty acids (SCFAs) [45]. For example, Clarke et al., 

compared the gut microbiota of professional Irish male rugby players with two groups of healthy, 

non-athletes subjects matched for body mass index (BMI): ( > 28kg/m2) and (< 25kg/m2) and found 

that the microbial diversity of rugby players was higher compared with both non-athletes groups [67]. 

More recently, Scheinman and colleagues collected and sequenced the stool samples from a cohort 

of athletes participating to the Boston Marathon (1 week before and 1 week after), along with a group 

of healthy- non athletes’ controls. The researchers found that the most differentially abundant specie 

was Veillonella atypica, a Gram-negative bacterium that metabolize lactate into acetate and 

propionate via the methylmalonyl-CoA pathway. Further, compared with mice gavaged with 

Lactobacillus, the transplantation of stool containing the Veillonella significantly improved 

submaximal treadmill run time to exhaustion, suggesting a potential role for Veillonella atypica in 

improving athletic performance. The authors suggested the possibility that the lactate produced 

during sustained exercise could be converted by Veillonella atypica into propionate, identifying a 

new microbiota-driven enzymatic process that may improve athletic performance [112]. To the best 

of our knowledge, only one study investigated the effect of KD on the gut microbiota in athletes (a 

cohort of elite race walkers) [123], while no studies are available in a model of mixed 

endurance/power sport such as soccer. In our recent article [121] we investigated the effect of 30 days 

of ketogenic diet on body composition, muscle strength, muscle area and metabolism in a cohort of 

semi-professional soccer players. The athletes who underwent the KD intervention lost body fat mass 

without detrimental effect on strength, muscle mass and power. However, considered the suggested 

detrimental effect of KD on gut microbiome [123],  the aim of the current study was to assess the gut 

microbiome composition of semi-professional soccer players who participated in the above cited 
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study, to understand whether and how the gut microbiota changes in response to thirty-days of 

ketogenic Mediterranean diet with phytoextracts (KEMEPHY) diet. 

Material and methods 

Participants 

This is a secondary analysis of a previous published research [121]. A more detailed description of 

the experimental study and physiological measures can be found [121]. Sixteen semi-professional 

soccer players (25.5 ± 2.8 years, 77.2 ± 11.88 kg) were recruited for the study. The exclusion criteria 

were: participants with a body fat percentage over 32%, (determined via dual energy X-ray 

absorptiometry DXA), cardiovascular, respiratory, gastrointestinal, thyroid or any other metabolic 

diseases, weight change ± 2 Kg over the last month, adherence to special diets, use of nutritional 

supplements (except a daily multivitamin-mineral), use of antibiotics [124], use of medication to 

control blood lipids or glucose. The anthropometric details of the subjects enrolled in the study were 

provided in our previous published study [121]. During the study players were asked to keep their 

normal training schedule (8 hours of training/week). After the medical health screening, all the 

subjects read and signed the informed consent with the description of the testing procedures approved 

by the ethical committee of the Department of Biomedical Sciences, University of Padova, and 

conformed to standards for the use of human subjects in research as outlined in the Declaration of 

Helsinki, Clinical Trial registration number NCT04078971. 

Study design and procedures 

The study was a randomized, parallel arm, controlled, prospective study in which gut microbiota was 

tested before and after thirty days of KEMEPHY protocol. Subjects undergone to several 

anthropometric and performance measurements described in our previous paper[121].  Subject were 

randomly assigned to the KEMEPHY diet (KDP n=8) group or Western Diet (WD n=8) group, 
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through an on-line random number calculator (https://www.graphpad.com/quickcalcs/randMenu/), 

matched for percentage of body fat. The workload of all athletes was over-imposable because the 

coach and trainers strictly controlled the training schedule, and they were instructed to maintain the 

same level of physical activity throughout the study. (The study protocol is shown in detail in our 

previous article). 

Dietary intervention 

Before the start of the study, athletes were provided nutritional counseling and resources to better 

adhere to KEMEPHY. Resources included food lists containing the food prohibited and permitted in 

ketogenic diet and electronic-suggested daily meal plans, meal recipes. The food lists encouraged on 

eating unprocessed meat including beef, veal, poultry; fish such as eel, mackerel, salmon, sardines; 

raw and cooked vegetables, cold cuts such as dried beef, eggs and seasoned cheese (parmesan); 

Konjac; fruits with the lowest glycemic index (blueberry, raspberry), raw nuts and seeds, ghee butter, 

butter, plant oils and fats from avocado, coconut and green olives [125]. The drinks permitted were 

tea, coffee, herbal extracts without sugar and it was allowed a “Keto cocktail” once a week, made up 

of gin and soda. Moreover, since the nutritional protocol of KD it may be hard to be maintained for 

long periods due to the lack of sweet taste[126], many ready-to-eat ketogenic products (RKP) have 

been provided in addition to usual low carbohydrate foods [127]. The present study indeed tested 

some ready-to-eat foods selected from the product range of Tisanoreica® snacks and meals (Gianluca 

Mech S.p.A., Asigliano Veneto, Vicenza, Italy) and Le Gamberi Food ® and meals. In our protocol 

we used some RKP as a ketogenic pasta (selected with a ketogenic ratio of fats: protein+carbohydrate 

equal to 4:1) (Le Gamberi Foods, Forlì, Italy), and  other RKP (specialty meals and drinks) that 

mimics the taste of carbohydrates, constituted principally of high-quality protein (18 grams of protein 

per portion), fibers, and electrolytes (mainly magnesium and potassium) (Tisanoreica® by Gianluca 

Mech S.p.A., Asigliano Veneto, Vicenza, Italy), detailed in Table 1. Among the products selected, 

there were 4 sweets RKP products (chocolate biscuits CB (Cioco-Mech); chocolate and hazelnut balls 
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CHB (Bon Mech); apple-cinnamon biscuits ACB (T-Biscuit); chocolate-almonds-pistachio bar 

CAPB (T-Smart) and one savory product: pasta P1 (Le Gamberi Pasta). Both diets were designed to 

be isoproteic i.e., same amount of protein (1.8g x Kg-1 x body weight-1 x day -1). The distribution of 

macronutrients during the KEMEPHY was carbohydrate (<30gram x day-1; <10%) protein 1.8g x Kg-

1 x body weight-1 x day -1 (~25-30%), fats ad libitum. Moreover, each subject was provided of three 

herbal extracts (Paoli et al., 2021) according to commercial ketogenic protocol (Tisanoreica®, 

Gianluca Mech S.p.A., Asigliano Veneto, Vicenza, Italy). During the first week, subjects were 

provided of pure medium chain triglyceride oil (MCT oil: 20g Named® Natural Medicine), in order 

to facilitate ketosis [128] and to allow players maintaining the same work load during training 

sessions. WD group was provided of a diet similar to western diet, thus the intake of protein has been 

increased to 1.8g x Kg-1 x body weight-1 x day-1 in order to be make the two diets isoproteic.  The 

WD was composed mainly of whole cereals (spelt, rye, oat) and pseudo-cereals (buckwheat, quinoa, 

amaranth), whole grain pasta, potatoes, meet, fish, vegetables, fruit, legumes, olive oil, milk, and red 

wine (at most 1 glass per day). Thus, the WD ensured a constant energy and macronutrient balance: 

protein 1.8g x Kg-1 x body weight-1 x day-1, (~ 30%), fats ~20-25% and carbohydrate ~50-55%. WD 

diet was also designed to contain <10% saturated fat and <300mg cholesterol/day.  It should be 

stressed that, as it can be noted, the WD diet we provided to the athletes was totally different from 

the typical high-fat, high sucrose Western diet usually adopted in research studies. In both groups 

protein intake was distributed equally throughout the day (every 3 - 4 hours) and pre-sleep casein 

protein intake (30 - 40 g) was provided in both group after training evening session, as indicated by 

the ISSN’s position stand [129]. The diets were explained to all subjects during an individual visit 

and dietary intake was measured by validated 3-food-diary  that has been used in the past in studies 

with athletes [130] and analyzed by Nutritionist Pro™ (AxxyA systems, Arlington, VA). Subjects 

received the specific instruction for completing detailed weighed food records during 7 day-periods 

for each diet and were daily monitored by call interviews each day after dinner. To ensure that 

carbohydrates were restricted throughout the KEMEPHY diet, subjects tested their urine daily using 
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reagent strips at the same time of the day (Ketostix semiquantitative urine strips, Bayer, Leverkusen, 

Germany), recording the result on log sheet and, once or twice a week, subjects were tested by 

GlucoMen LX Plus (Menarini Diagnostics, Firenze, Italy) to detect ketones concentration in capillary 

blood. Subjects received follow-up counselling and dietetic education if necessary. Additionally, a 

WhatsApp (Meta Inc., Mountain View, CA, USA) group was created and some applications for 

smartphone were provided (Keto-diet tracker, https://ke.to; Keto-app, https://ketodietapp.com), to 

track their food daily intake. 

 

Faeces sampling and DNA extraction 

Faeces samples were collected at baseline and after thirty days of dietary protocol. 100-150mg of 

faeces were collected using sterile swab (FLmedical, Italy) tubes (Starlab Group, Italy) and 

preservative buffer (Zymo Research, USA) in the morning of the day of starting KEMEPHY and 

after thirthy days. Samples were sent to BMR Genomics srl (Via Redipuglia, 22, 35131 Padova, PD) 

within 2 days and stored at −20 °C until DNA extraction. DNA was extracted using Cador Pathogen 

96 QIAcube HT Kit (Qiagen srl, DE) with lysis step modification according to Mobio PowerFecal 

kit (Qiagen srl, DE).  

 

16S rRNA gene sequence data processing and analysis 

The V3-V4 regions of the 16S ribosomal RNA gene were amplified using Illumina tailed primers 

Pro341F (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-CCTACGGGAGGCAGCA-

3′) and Pro805R (5′-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACNVGGGTATCTAATCC-3′) 

using Platinum Taq (Thermo Fisher Scientific Inc, USA) by means PCR (94° C for 1 min, followed 



 
93 

by 25 cycles at 94° C for 30s, 55° C for 30s, and 68° C for 45s, and a final extension at 68°C for 7 

min). PCR amplicons were purified by means Agencourt AMPure XP Beads 0.8X (Beckman Coulter, 

Inc., CA, USA) and amplified following the Nextera XT Index protocol (Illumina, Inc., CA, USA). 

The indexed amplicons were normalized by SequalPrepTM Normalization Plate Kit (Thermo Fisher 

Scientific Inc.) and multiplexed. The pool was purified with 1X Magnetic Beads Agencourt XP 

(Beckman Coulter, Inc.), loaded on the MiSeq System (Illumina, Inc.) and sequenced following the 

V3 - 300PE strategy. The bioinformatic analysis was performed by means QIIME 2 2021.4 version 

[131]. Raw reads were firstly trimmed applying Cutadapt to remove residual primer sequences and 

then processed with DADA2 plug-in [132]  to perform the denoising step. DADA2 was run with 

default parameters except for the truncation length: forward and reverse reads were truncated at 260 

and 245 nucleotides, respectively. The resulting Amplicon Sequence Variant (ASV) sequences were 

filtered out by applying a 0.01% frequency threshold in order to discard singletons and very rare 

sequences. All the samples included in the analysis was rarefied. The value of rarefaction is 32232 

reads (Supplemental Figure 1). The more recent available Silva 138 database [133] as used to 

associate the taxonomy to the remaining ASVs for the final analysis; moreover we earlier performed 

also an analysis with Green genes v.13-8 database that will be briefly discussed to better understand 

the variability due to the database utilized. 

Statistical analysis 

Results are presented as mean and standard deviation (SD), or median and quartiles (Q1-Q3) where 

appropriate. Alpha diversity indexes (OTUs number and Shannon’s Effective Number of Species) 

were computed with the diversity function of the vegan R package, and time, group and time×group 

effects were tested using a Wilcoxon test for paired data (interaction effect was checked while 

performing the test on delta values); a false discover rate (FDR) with Benjamini-Hochberg correction 

was applied to account for multiple testing. Effect sizes were calculated with the rstatix and coin R 

packages. Common interpretations of Wilcoxon effect sizes (r) are: 0.10 - 0.3 (small effect), 0.30 - 



 
94 

0.5 (moderate effect) and ≥ 0.5 (large effect). A dissimilarity matrix with Bray-Curtis distance was 

calculated, and a Permutational Analysis of Variance (PERMANOVA) for repeated measures was 

used to test pre-post differences between the two groups (KDP vs WD) in the relative abundances at 

phylum and genera taxonomic levels, using the adonis R function, and post-hoc comparisons were 

performed with a paired Wilcoxon test with FDR correction. Furthermore, after ruling out baseline 

differences in the microbial composition at baseline, data were filtered for the presence of each taxon 

in at least 70% of the subjects, and a linear discriminant analysis (LDA) was performed at the different 

taxonomic levels (from phylum to genus) on the post-intervention data (LEfSe; LDA Score > 2.0, 

p<0.05); significant different taxa were graphically represented on a cladogram. To assess 

correlations between macronutrient intake (7-days food diary) and pre-post treatment variations in 

body composition, fitness measures and genera abundances, a Spearman correlation matrix was 

computed: significant correlations were extracted ((Spearman r0.05, 14 ≥ 0.503), and represented in a 

circular plot using the circlize R package. Analyses were performed using R Studio 4.1.1; the 

significance level was fixed at the standard value of 0.05.  

Results 

Dietary nutrition intake  

There were no differences in dietary nutrient intakes between groups at baseline. Subjects adhered to 

the given instructions for both diet interventions according to analysis of diets records (3 days food-

diary before the study and 7 days food-diary during the study). During the diet interventions, all 

dietary nutrients were significantly different between the KEMEPHY and WD diets. Indeed, the 

intake of CHO g/day and % in KEMEPHY and WD group was respectively (KDP = 22 ± 5 g/day; 

WD = 220 ± 56 g/day, p<0.0001), (KDP = 9 ± 3 %; WD = 51 ± %, p<0.0001) while the intake of % 

fat was (KDP = 64 ± 3%; WD = 20 ± 8 %; p<0.0001). In addition, the total energy intake was reduced 

during both the treatments but without a significant difference between groups (KDP = 1.984 ± 
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340Kcal/day; WD = 1.752 ± 320Kcal/day), (p>0.05). The complete results about dietary nutrition 

intake during the intervention are shown in Table 3 of the previous study [121]. For an easier 

understanding we reported pre- and post- daily dietary energy and nutrient intake in brief in Table 2. 

Table 3. Daily dietary energy and nutrient intake at baseline and during KEMEPHY diet (KDP) and Western Diet 

(WD).  

 KDP Pre   KDP Post WD Pre  WD Post Time*Diet 

effect (p) 

Total (Kcal/die) 2356±450 1984±340 2146±230 1752±320 n.s. 

Carbohydrates (g/die) 350±66 22±5 363±34 220±56 p<0.05 

Protein (g/die) 105±20 130±25 121±23 129±28 n.s. 

Fat (g/die) 107±20 132±27 110±16 38±10 n.s 

Carbohydrates (%) 49±6 9±3 51±4 51±4 p<0.05 

Protein (%) 15±3 28±4 14±6 28±3 n.s. 

Fat (%) 35±4 64±3 33±2 20±8 p<0.05 

Protein (g/Kg bw) 1.37±0.5 1.85±0.3 1.59±0.4 1.83±0.2 n.s. 

Saturated Fat (g) 35±10 45±12 36±4 15±3 p<0.05 

Monounsaturated Fat (g) 28±6 49±16 27±5 9±5 p<0.05 

Polyunsaturated Fat (g) 16±3 21±5 16±9 5±2 p<0.05 

Cholesterol (mg) 304±101 720±187 303±98 167±65 p<0.05 

Fiber (g) 13±2 10±3 11±9 15±4 n.s 

Values are mean ± SD, Analysis performed on 3 days of diet records during habitual diet and 7 days during KDP and 

WD. 

Microbiota composition 

As alpha diversity measures, the OTUs number and the Shannon’s Effective Number of Species 

(ENS) were calculated. No significant effects of time (p=0.056, ES=0.486 and p=0.129, ES=0.388, 
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respectively for OTUs number and Shannon’s ENS), group (p=0.317, ES=0.180 and p=0.809, 

ES=0.047) or time×group (p=0.999, ES=0.01 and p=0.230, ES=0.315) were found (Figure 19).  

 

 

Figure 19. Paired boxplots of OTU’s number and Shannon’s Effective Number of Species (ENS) in the two groups (KDP 

vs WD), at the two time points (Pre and Post Intervention). 

PERMANOVA for paired data did not find any significant time×group interaction effect for none of 

the analyzed taxonomic levels (p>0.05). Nonetheless, post-hoc paired Wilcoxon test showed a 

significant time×group effect for Actinobacteriota (p=0.021, ES=0.578), which increased in the WD 

group (median pre: 1.7%; median post: 2.3%) and decreased in the KDP group (median pre: 4.3%; 

median post: 1.7%) (Figure 20).  
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Figure 20. Relative abundance (in log10 scale) of the more represented phyla (>0.1%) in the pre- and  

post-intervention, for KDP and WD groups. Stars represent a significant time×group interaction (p<0.05). 

 

Firmicutes/Bacteroidetes ratio was 1.11 (1.07-1.23) in pre and 0.99 (0.73-1.15) in post, and 1.07 

(0.99-1.67) in pre and 1.16 (0.94-1.23) in post conditions, in KDP and WD groups, respectively. No 

significant effect was found for the time×group interaction (p>0.05). The linear discriminant analysis 

in the post intervention differentiated the two groups for Bifidobacterium genus (pertaining to the 

Actinobacteria phylum), Butyricicoccus and Acidaminococcus genera, all more abundant in the WD 

group, and for Clostridia UCG-014 (order, family, and genus), Butyricimonas and Odoribacterter 

genera (pertaining to the Marinifilaceae family), and Ruminococcus genus, all more abundant in the 

KDP group (Figure 21). 
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Figure 21. Differential taxa between the KDP and WD groups in the post-intervention (LEfSe analysis, adjusted 

p<0.05, log2 fold change >2). 

To investigate the associations between the macronutrient’s intake during the intervention and the 

variations in genera abundances and environmental variables (i.e., anthropometric and performance 

measures), genera were filtered taking into consideration only those which were present in at least 

70% of the subjects, both in pre- and post-interventions. Spearman’s correlations were then 

calculated, and after applying a filter to those statistically significant (r0.05, 14 ≥ 0.503), were reported 

on a circle plot (Figure 22). In Figure 22, blue color represents positive correlations while red 

represents negative ones; the color intensity represents the strength of the correlation. Carbohydrate 

intake was strongly (r = 0.84) associated with a modification in the respiratory exchange ratio (RER), 

which showed a significant reduction of RER in the KDP group. In other words, players in the KDP 

group that had less carbohydrate in their diet showed a greater decrease in RER, a sign of an increased 

reliance on oxidative metabolism. In addition, carbohydrate intake was inversely correlated with 

changes of Odoribacter genus abundance (r = -0.59), the latter being also negatively associated to 
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changes in RER (r = -0.57). This association is coherent with the significant time×group effect in 

RER presented in Table 3, as Odoribacter genus were found to be more abundant in the KDP group 

(Figure 3). Fat intake, in contrast, was negatively associated with variations of RER (r = -0.68), 

visceral adipose tissue (VAT) (r = -0.69), extracellular water (ECW) (r = -0.55) and Fusicatenibacter 

genus (r = -0.53). Reductions in weight were associated with a reduced abundance of Ruminococcus 

torques (r = 0.68) and Lachnospira (r = 0.71) genera, and inversely correlated with Parabacteroides 

genus abundance (r = -0.62).  

 

Figure 22. Spearman’s correlations between macronutrient intake during the treatment period (7 days food-diary), 

and post-pre variations on body composition measures, fitness measures, and genera relative abundances. Only 

significant correlations were reported (r0.05,14 ≥ 0.503). Positive correlations are represented by blue color and 

negative correlations by red color. Note: TBW: total body water; ECW: extracellular water; VAT: visceral adipose 

tissue; RER: respiratory exchange ratio. 

Discussion 
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The human gut microbiome is well recognized to be implicated in the promotion-maintenance of 

health as well in some disease states [134]. Given its plasticity, the gut microbial community can be 

affected by several factors including genetics, nutrition, environment, exercise and exposure to 

antibiotics; however, among these contributors, diet elicits the predominant influencing factor [135].  

To date, while only one study investigated the effect of ketogenic diet in sport’s performance and gut 

microbiome in endurance discipline [123], no data are available about the effect of ketogenic diet on 

gut microbiome composition and athlete’s performance in team sport.  In this study we demonstrate 

that 30 days of KEMEPHY did not affect the overall gut microbiome of athletes in terms of alpha- 

diversity indices (the total number of species and the Shannon’s Effective Number of Species); 

however, both groups presented a significant variation both at phylum and genus levels composition 

(Figure 1).  Indeed, the phylum of Actinobacteria was significantly decreased in the KEMEPHY and 

increased in the WD group (Figure 3), while Clostridia UCG-014, Butyricimonas, Odoribacterter 

and Ruminococcus genera were significantly increased after KDP intervention (Figure 4). Although 

our data are in contrast with previous studies identifying a positive association between ‘high fat diet’ 

and impairment on gut microbiome [14, 34, 35], our results are not surprising since the previous 

studies investigated the effect of a high-fat, high sugar, Western diet on gut microbiome and did not 

investigate the effect of ketogenic diet [14, 34, 36] that represent a unique, specific dietary pattern.  

In addition, many studies [136-139] investigating the effect of a high-fat diet on gut microbiome 

tested only mouse models fed a refined high-fat, low fiber diet with animals fed a standard chow diet, 

high in soluble fibers. For this reason, the conclusions arising from animal studies cannot be adopted 

to predict the outcomes of a ketogenic diet and, consequently, its associated effect on human gut 

microbiome [140].  

As a matter of fact, in humans, Turnbaugh and colleagues recently confirmed [141] that ketogenic 

diets differentially alter the composition of gut microbiome when compared to high-fat diet and, 

further, the authors showed that only ketogenic diet was able to provide positive gut-associated  
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systemic outcomes [141].  Moreover, another explanation for the maintenance of microbial diversity 

after KEMEPHY intervention may rely on the specific composition of our KEMEPHY diet. Indeed, 

when investigating the effect of a ketogenic diet on gut microbiome and health parameters, it should 

be considered not only the amount of fat (i.e., 70-80% fat from total daily calories), but also the 

different type and quality of fats. Different types of fat are associated with different effects on the gut 

microbiome and, consequently, with different effects on intestinal and systemic health [4, 142, 143]. 

If on one side saturated fats are associated with decreased microbiome diversity [122] in humans, 

polyunsaturated fat such as omega-3 did not affect microbial diversity and richness. Polyunsaturated 

fats have the capacity to improve gut epithelial integrity and gastrointestinal health through their 

ability to produce SCFAs [144]. In our study, the KEMEPHY diet was highly composed in mono-

polyunsaturated fat (49±16 g and 21±5 g, respectively) differently from the WD diet which was lower 

(9±5 g and 5±2 respectively) [121]. We hypothesized that sources of omega-3 fatty acids may have 

act synergically with ketone bodies to promote an anti-inflammatory state [145], also influencing the 

intestinal microbiome by increasing the production of SCFAs [4]. However, further studies 

investigating the hypothesized mechanisms are warranted.  Of note, more recently, Furber and 

colleagues [89] investigated the relationships between gut microbial communities and athletic 

performance in a cohort of highly trained individuals underwent dietary periodization (high-carbs 

versus high-protein diet). Interestingly, apart from the taxonomic differences between two dietary 

interventions, the authors revealed that that better athletic performance was linked with gut microbial 

stasis, where athletes harboring stable microbial communities consistently performed best in each 

dietary intervention compared to those with a more turbulent gut microbiome.  This result brings to 

light a pivotal concept: the maintenance of a stable gut microbiome during dietary intervention 

represents a marker for gut-health and athletic performance [89]. 

Differences at phylum level 
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At phylum level, the decrease in Actinobacteria relative abundance could mainly be attributed to a 

decrease of the relative abundance of the genus Bifidobacterium (Figure 3). Bifidobacteria are 

common to the healthy human gastrointestinal tract and represent one of the first colonizers of the 

mammalian gut. Bifidobacteria metabolize complex carbohydrates given that the genome of these 

bacteria harbors many genes involved in carbohydrate metabolism [146, 147]. The metagenome 

includes a variety of genes encoding for a specific hexose fermentation pathway, the fructose-6-

phosphate [148], which represent the principal pathway for the energy output produced, compared to 

classical pathways used by other fermentative intestinal bacteria. Indeed,  it provides a growth 

advantage for bifidobacteria in the presence of complex carbohydrates [148]. These facts may explain 

the concomitant proportional decrease of bifidobacteria and genes involved in carbohydrate 

metabolism during KEMEPHY intervention. Accordingly to the reduction in Bifidobacterium genus, 

Turnbaugh and colleagues [141] recently demonstrated in a cohort of over-weight humans that the 

drop in bifidobacterial genera was correlated with the increase of ketone bodies and positively 

associated with a decreased intestinal Th17 cell levels and adipose tissues. Given the links between 

obesity and chronic low-grade inflammation [149], the authors suggested that decreased levels of 

pro-inflammatory Th17 cells in both gut and adipose tissues during ketogenic diet may be a potential 

mechanism contributing to the greater efficacy of ketogenic diet in improving some aspects of 

metabolic syndrome such as glycemic control [150] and reduction in body fat [151]. A decline in 

bifidobacteria has been also observed in weight loss intervention on a macro nutritionally balanced 

diet, gluten-free diet  and low-gluten intervention diet [152, 153], thus, the reduction of 

Bifidobacterium abundance after KEMEPHY intervention may be also attributed to the low intake of 

cereal grains.  On the other side, the higher abundance of Actinobacteria phylum after WD 

intervention may be, at least in part, the consequences of the different amount of fibers given that the 

intake of fibers decreased in the ketogenic diet (from 13g to 11g per day) while increased in WD diet 

(from 11g to 15g per day), which could be a strong driver of Actinobacteria abundance [154]. Finally, 

at phylum level, our analysis also revealed that KEMEPHY intervention altered the composition 
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of the gut microbiome by increasing Bacteroidetes and lowering the Firmicutes phylum (decreased 

F:B ratio), compared to WD controls. Even though the F/B ratio is outdated [155], many studies [7, 

156-158] have reported that the balance of Bacteroidetes and Firmicutes may represent an important 

biomarker for obesity and an indicator of health. More specifically, an increased F:B ratio is 

commonly associated with dysbiosis, obesity and negative metabolic outcomes [159]. These findings 

are in line with our results since athletes following KEMEPHY underwent a significant reduction in 

body weight, body fat mass, waist circumference and visceral adipose tissues [121]. Moreover, it is 

well known that an excess of adipose tissue (and particularly visceral adipose tissue, VAT) is related 

to inflammation [160]. In our study, both groups lost body weight, but KEMEPHY group showed a 

greater reduction of fat mass and VAT. 

Differences and genus level 

At genus level, we observed an increased in Butyricimonas, Clostridia UCG_14, Odoribacter and 

Ruminococcus. Enrichment of Butyricimonas negatively correlated with BMI and triglyceride levels 

indicates that these taxa may promote health or contribute to the prevention of obesity [161, 162]. 

Our results may support this idea because these taxa increased after KEMEPHY intervention. 

Moreover, a high abundance of butyric-acid-producing such as Butyricimonas has been associated 

with normal weight and diets high in animal protein and saturated fats [163]. Differently as expected, 

we observed an increase in the relative abundance of the Ruminococcus genus in the KEMEPHY 

group. This result is in contrast with previously data which reported an inverse association between 

Ruminococcus abundance and a poly-unsaturated fat-rich diet [164]. Indeed, the growth of the genus 

Ruminococcus spp. is usually supported by dietary polysaccharides [111] and individuals consuming 

animal-based diet or ketogenic diet tend to decrease the levels of the butyrate-producing 

Ruminococcus spp. which are mainly involved in the metabolization of undigested complex dietary 

carbohydrates and production of SCFAs [111]. However, we may speculate that the daily intake of 

fiber (cellulose, pectin and lignin) provided during KEMEPHY intervention in the food form of 
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fermented foods, berries and vegetables, was adequate to support the growth of Ruminococcous 

bacterial taxa. Accordingly, we also observed that Odoribacter genus increased after KEMEPHY 

intervention. Odoribacter, belonging to the order Bacteroidales, is a common SCFAs producing 

bacteria [165], and, it seems to be associated with some metabolic health benefit such as the 

improvement of obesity condition [166, 167].  

Importance of up-to-date database 

To underline the importance to utilize an up-to-date database in such a new and rapidly growing field 

as microbiome analysis we reported here, briefly, the most significant differences between our 

previous analysis performed with Green genes v.13-8 database and the current Silva 138 database. 

The almost daily advancement in new bacteria classification request the utilization of the most recent 

database Silva 138. To confirm this fact, the same data showing the main differences are presented 

in brief and showed in Supplemental Table 1 and Supplemental Figure 2. 

Green genes v.13-8 database vs Silva 138 database 

At phylum level the differences in Proteobacteria disappeared with the more recent database, while 

the phylum of Actinobacteriota did not change: it increased in the WD group and decreased in the 

KEMEPHY group. At genus level, the main differences were found for Ruminococcus and Dorea  

genera. In the previous analysis both genera were slightly reduced in the post condition for 

KEMEPHY and increased in the WD group, while, with the recent Silva 138 database, the genus of 

Ruminococcus increased in KEMEPHY group while Dorea disappeared. More specifically, Green 

gene database revealed an increase in Bifidobacterium, Roseburia, Butyricicoccus and Gemmiger 

genera in the WD group, and an increase in Parabacteroides and Odoribacterter genera for 

KEMEPHY group; differently, the last database revealed an increase in Clostridia UCG-014, 

Butyricimonas and Odoribacterter genera in the KEMEPHY group, while the genus of Paracteroides 

disappeared.  
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The potential mechanisms of positive effects of KEMEPHY diet on gut microbiome 

Our findings suggest that ketogenic diet may partially affect the intestinal ecosystem throughout 

different mechanisms. We hypothesized that one of these mechanisms might include the production 

of SCFAs and especially butyrate. Indeed, we supposed that during ketogenic diet, SCFAs and 

butyrate may be originated from: 

 i)  the liver and then secreted into the gut (because of the ketogenic state); 

ii) ketogenic regimens adequately formulated for supplying a medium but adjusted amount of plant-

based fermentable fiber to be fermented by SCFAs-producing bacteria;  

iii) butyrate producing bacteria such as Odoribacter, Butyricimonas and Ruminococcus; 

iv) specific food sources included in ketogenic diet that may directly provide the adequate amount of 

butyric acid such as dairy foods (butter and cheese); 

v) fermented foods (kefir, yogurt, tempeh), naturally enriched in SCFAs [168-171]. 

As a matter of fact, butter is one of the richest butyric acid food sources with an inherent natural 

supply of 3-4% of fat content as butyric acid. For example, one tablespoon of butter is composed of 

560 mg of butyric acid [172]. Thus, for individuals following a ketogenic diet, it is easily possible to 

consume well more than 1000 mg of butyrate in a day, from natural sources [172]. Hence, butyrate 

acts in synergy with the ketogenic goals since it represents a direct substrate to undergo beta-oxidation 

[173]. In line with these concepts, Nagpal and colleagues observed a slight increase in fecal butyrate 

after 6-weeks of modified Mediterranean-ketogenic diet. The authors supposed that the butyrate 

might have originated in the liver as consequence of the ketogenic state, or the ketogenic diet might 

have promoted the intestinal production of butyrate by supplying plant-based fermentable fibers to 

be fermented by bacteria [169]. Notably, it should be also underlined that our KEMEPHY was 
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composed also of functional fermented products (kefir, kimchi, whole yogurt and fermented cheese) 

which are naturally enriched in short-chain fatty acids [170]. In addition, beta-hydroxybutyrate 

derived from hepatic production during ketogenesis, has also the ability to influence, directly or 

indirectly, the gut microbiome, providing additional support for the fundamental function of ketone 

bodies at both intestinal and systemic level [141]. 

Current limitations 

Despite these interesting results, our study is not without limitations. First, the reduced sample size 

of our cohort of athletes may represent a limit for a real robust statistical difference in gut microbiome 

profiling. Moreover, our analysis has been performed with 16S rRNA gene sequencing which 

represent the most applied method to investigating gut microbiome, but it is not efficient as shotgun 

metagenomic sequencing [174]. Indeed, 16s rRNA targets and reads a region of the 16S rRNA gene 

while shotgun technique sequences all given genomic DNA while achieving strain-level resolution. 

The results is that 16S rRNA gene sequencing detects only part of the gut microbiome community 

revealed by shotgun sequencing and it does not provide a functional profiling of gut microbes [175]. 

However, a technical challenge was considerable at the time of analysis. Since our research was 

conducted there years ago and shotgun metagenomic was orders of magnitude more expensive and 

relatively new than amplicon analysis (~$150 USD for shotgun and ~$50 USD for 16S), at that 

moment, 16S rRNA sequencing represented the best and most used method for microbiome studies. 

Moreover, it is important to highlight that also regular physical exercise, such as that performed by 

our cohort of semi-professional soccer players, might have influenced the results of the study by 

promoting the maintenance of a functional and physiological microbiota in both groups [176]. Further 

studies on KD on athletes would help validate these findings in gut microbiome and, thanks to the 

innovative available bioinformatic platforms, the integration of omics-data with the metagenomic 

methods may improve the understanding of the relationship between diet, gut microbiome and 

physical exercise [2]. In addition, our study did not measure the level of SCFAs that could be an 
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additional finding helping the explanation of the underlying mechanisms and of the interpretation of 

results. 

Conclusion 

There is a growing body of research on the role of gut microbiome in sport and performance. For the 

first time our results demonstrate that i) KEMEPHY diet may be considered a feasible and safe 

nutritional strategy for athletes to get an adequate body composition, ii)  KEMEPHY diet do not 

change the overall composition of gut microbiome and, iii) thirty days of KEMEPHY intervention 

may represent an alternative tool for maintaining and/or modulating the composition of gut 

microbiome in athletes practicing regular exercise. These findings suggest that KEMEPHY diet may 

represent an efficient dietary pattern for athletes, according to the notion that preserving a stable gut 

microbiome during dietary intervention represent a marker of gut health and greater athletic 

performance. It should be stressed that our KEMEPHY diet was mainly composed by healthy fats 

(good sources of monounsaturated and polyunsaturated fats), fibers (low-carb veggies, seeds), plant-

based protein (tofu, tempeh) and fermented foods (kefir, tempeh, yogurt, kimchi), different from a 

standard high fat - low fibers ketogenic diet, which may not arouse the same beneficial effects on gut 

microbiome. Our findings demonstrate also that changes in microbial taxa pre and post intervention 

significantly correlate with environmental variables such as athlete’s macronutrient intake.  Finally, 

it should be emphasized that data analysis performed with not updated database may give back 

partially different results as we demonstrated here. 
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