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The Feasibility Pump (FP) is one of the best-known primal 
heuristics for mixed-integer programming (MIP): more than 
15 papers suggested various modifications of all of its steps. 
So far, no variant considered information across multiple 
iterations, but all instead maintained the principle to optimize 
towards a single reference integer point. In this paper, we 
evaluate the usage of multiple reference vectors in all stages 
of the FP algorithm. In particular, we use LP-feasible vectors 
obtained during the main loop to tighten the variable domains 
before entering the computationally expensive enumeration 
stage, a procedure we refer to as mRENS. Moreover, we 
consider multiple integer reference vectors to explore further 
optimizing directions and introduce alternative objective 
scaling terms to balance the contributions of the distance 
functions and the original MIP objective.
Our computational experiments demonstrate that the new 
method can improve performance on general MIP test sets. 
In detail, our modifications provide a 29.3% solution quality 
improvement and 4.0% running time improvement in an 
embedded setting, needing 16.0% fewer iterations over a large 
test set of MIP instances. In addition, the method’s success 
rate increases considerably within the first few iterations. In 
a standalone setting, we also observe a moderate performance 
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improvement, which makes our version of FP suitable for the 
two main use-cases of the algorithm.
© 2023 The Author(s). Published by Elsevier Ltd on behalf 
of Association of European Operational Research Societies 

(EURO). This is an open access article under the CC 
BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Mixed-integer programming is widely used for modeling and solving challenging op-
timization problems that arise from real-world applications. We define a mixed-integer 
program (MIP) in matrix and vector notion as follows.

Definition 1.1. (mixed-integer program) Let m, n ∈ Z≥0. Given some matrix A ∈ Qm×n, 
vectors b ∈ Qm, c ∈ Qn, l, u ∈ Qn ∪ {±∞}, and a set of indices I ⊆ N := {1, . . . , n}, a 
problem in the form

min
x∈Qn

c�x

s.t. Ax ≤ b

l ≤ x ≤ u

xj ∈ Z for all j ∈ I,

(1)

is called a mixed integer program (MIP).

Finding a feasible solution to a given mixed integer programming (MIP) model is a 
very important, NP-complete problem that can be extremely hard in practice and is 
therefore often approached via primal heuristics [1,2]. One of the most successful schemes 
for finding initial feasible solutions for MIPs is the Feasibility Pump, originally proposed 
by Fischetti, Glover, and Lodi [3].

The fundamental idea of all FP algorithms is to construct two sequences of points 
that hopefully converge to a feasible solution to a given optimization problem; in our 
case, a MIP. One sequence consists of points that are feasible for a continuous relaxation 
(typically the LP relaxation), but possibly integer infeasible. The other sequence consists 
of points that are integral but might violate some of the imposed (linear) constraints. 
The next point of one sequence is always generated by minimizing the distance to the 
last point of the other sequence, using different distance measures in either case (e.g., 
the �1 and the �2 norm). For an overview of FP variants, we refer to [4].

The outline of this paper is as follows. In Section 2 we describe the core idea of 
FP, concentrating on the Objective Feasibility Pump 2.0 (OFP2), which is the baseline 
algorithm of our work. In Sections 3 and 4, we will describe one of our two main contri-
butions, namely variations of all three stages of the FP algorithm to consider multiple 
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reference vectors in each Stage. Section 5 describes our second contribution, namely the 
application of an alternative objective scaling method, to better balance optimality and 
feasibility considerations. Finally, in Sections 6 and 7 we present computational results 
with a detailed performance comparison in both an embedded and a standalone setting.

2. The Objective Feasibility Pump 2.0

The Feasibility Pump (FP) was originally introduced by Fischetti et al. [3]. In Al-
gorithm 1, we outline the principle idea of FP. In the main loop (called pumping loop) 
the algorithm constructs two sequences of vectors {x̄k}Kk=1 and {x̃k}Kk=1 for a finite K. 
These sequences satisfy the feasibility requirements of the MIP in a complementary way. 
More precisely, the first sequence contains LP-feasible vectors, i.e., vectors from

P = {x ∈ Rn |Ax ≤ b, l ≤ x ≤ u},

and the second contains integer vectors, i.e., vectors that satisfy the integrality con-
straints, but are not necessarily LP-feasible. The goal of FP is to iteratively reduce the 
distance between vectors of the two sequences and converge to a feasible MIP solution. 
The distance between two vectors x̄k and x̃k is defined as

Δ(x̄k, x̃k) :=
∑
j∈I

∣∣x̄k
j − x̃k

j

∣∣ .
In every iteration k, the vector x̃k is obtained in the rounding step (line 5), by rounding 
all values x̄k−1

j /∈ Z with j ∈ I to integer values. The vector x̄k is obtained in the 
projection step (line 8) by solving the optimization problem

arg min{Δ(x, x̃k) : x ∈ P}.

Linearizing Δ(x, ̃xk) requires the addition of auxiliary variables and constraints for every 
x̃k
j , j ∈ I with lj < x̃k

j < uj . More specifically, Δ(x, ̃xk) can be written as

Δ(x, x̃k) =
∑

j∈I : x̃k
j =lj

(xj − lj) +
∑

j∈I : x̃k
j =uj

(uj − xj) +
∑

j∈I : lj<x̃k
j<uj

dj

where the auxiliary variables dj satisfy the constraints

dj ≥ x̃k
j − xj and dj ≥ xj − x̃k

j .

Note that for binary MIPs, no auxiliary variables and constraints are required.
One major issue of FP is cycling. During the pumping loop, it can happen that the 

current integer vector x̃k is the same as a previous integer vector x̃r. If the cycle has 
length one, hence r = k − 1, a “slight” perturbation is applied to x̃k, which means that 
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a small number of its integer components are chosen and their value is flipped. In the 
case of a cycle with a length greater than one, a “strong” perturbation, also known as 
a restart is applied. In general, frequent use of perturbations and restarts is considered 
not desirable, since they often counteract the progress made on reducing the distance of 
the two sequences.

Algorithm 1: Feasibility Pump (core idea).
Input : A MIP in the form (1)
Initialization : x̄0 ← arg min{c�x : x ∈ P}, k ← 0
Output : A feasible solution of the MIP or ∅ if none found

1 while (not termination condition) do
2 k ← k + 1
3 if x̄k−1 is integer then
4 return x̄k−1

5 x̃k ← round(x̄k−1) /* Rounding step */
6 if cycle detected then
7 x̃k ← perturb(x̃k) /* Perturbation step */

8 x̄k ← arg min{Δ(x, ̃xk) : x ∈ P} /* Projection step */

9 return ∅

The computational experiments in [3] show that FP has a satisfactory success rate 
for finding feasible solutions for binary MIPs. However, for MIPs with both binary and 
integer variables, the success rate of FP is lower, and the algorithm is more likely to 
cycle.

Bertacco et al. [5] proposed to split FP in three different stages. In Stage 1, the 
integrality constraints on the general integer variables are relaxed before the execution 
of the pumping loop. Hence, Stage 1 searches for a “binary” feasible solution, i.e., an 
LP-feasible vector satisfying the integrality constraints on binary variables. Then, in 
Stage 2 the integrality constraints on general integers are restored and the pumping 
loop proceeds. As a last resort a so-called enumeration stage, also known as Stage 3, is 
called. The main idea of Stage 3 is to search for feasible solutions in the proximity of 
an “almost” feasible integer vector. Therefore, the original MIP is solved after replacing 
the objective function by the distance Δ(x, ̃x∗), where x̃∗ is the integer vector closest to 
the polyhedron P obtained in the previous stages.

A major drawback of FP is that it considers the original objective of the MIP only 
in the initialization phase. Thus, the objective value of the final solution is often of low 
quality. Achterberg and Berthold [6] propose to replace the objective of the projection 
step by a convex combination of the distance to a single integer reference vector x̃k and 
a term considering the original objective function of the MIP, i.e.,

Δαk
(x, x̃k) := (1 − αk)Δ(x, x̃k) + αk‖Δ‖2

‖c‖2
c�x, (2)

with αk ∈ [0, 1]. The idea of OFP is to dynamically adjust the influence of Δ(x, ̃xk)
and c�x in the projection step. In early iterations of the pumping loop, the projection 
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step prioritizes solutions with good quality over feasibility, and gradually, the priority of 
feasibility over solution quality is increased. The aim of the Euclidean norms ‖Δ‖2 and 
‖c‖2 is to bring the terms Δ(x, ̃xk) and c�x on the same scale. Note that ‖Δ‖2 is the 
Euclidean norm of the objective function vector in Δ(x, ̃xk) and is equal to 

√
|I|.

Moreover, OFP incorporates an adjustment in the restart mechanism. Here, revisiting 
integer vectors does not necessarily mean that the algorithm stalls since the parameter 
αk is dynamically adjusted. Consequently, if the current integer vector x̃k is equal to 
x̃r with r ∈ {1, . . . , k − 2}, the authors propose to apply the restart procedure only if 
αl − αk ≤ δ with δ ∈ [0, 1] being a fixed threshold parameter.

Fischetti and Salvagnin [7] introduced the Feasibility Pump 2.0 (FP2.0), which inte-
grates techniques from constraint programming in the rounding step of FP. Note that 
OFP and FP2.0 can be combined. The resulting algorithm is called Objective Feasibility 
Pump 2.0 (OFP2) and is considered the baseline algorithm for our implementation. See 
the overview paper of Berthold et al. [4] for (many) further variants of FP.

3. Multiple reference vectors in Stage 3

When embedded in MIP solvers, primal heuristics are usually run only for a short 
amount of time. Therefore, the computationally demanding Stage 3 of FP is deactivated 
or only used under certain circumstances, e.g., if the distance of the closest integer vector 
to the LP-polyhedron P is below a certain threshold. Therefore, we design an alternative 
Stage 3 that uses multiple reference vectors obtained from FP and the large neighborhood 
search heuristic RENS [8,9]. Notably, while the traditional Stage 3 solves an auxiliary 
MIP of the same dimensions as the original problem, our alternative approach will solve 
a sub-MIP, which can be significantly smaller and hence much faster to solve in practice.

3.1. Multi-reference RENS

The principle idea of RENS is to search for feasible solutions for a MIP in the proximity 
of the optimal solution of its LP relaxation x̄0. More specifically, RENS solves a sub-MIP 
of the original MIP with tighter bounds for the integer variables based on their value 
in x̄0. To that end, for each j ∈ I, if x̄0

j is an integer, then xj is fixed at this value. 
Otherwise, the bounds of xj are tightened to the two nearest integer values of x̄0

j , i.e., 
lj is set to 	x̄0

j
, and uj to �x̄0
j�. To summarize, RENS solves the sub-MIP

min
x∈Rn

c�x

s.t. Ax ≤ b

lj ≤ xj ≤ uj for all j /∈ I.
	x̄0

j
 ≤ xj ≤ �x̄0
j� for all j ∈ I.

x ∈ Z for all j ∈ I.

(3)
j
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In practice, solving (3) may be computationally expensive if only a small percentage of 
integer variables is assigned tighter bounds. On the contrary, in a considerable amount 
of cases, RENS tightens too many variable bounds, which leads to the infeasibility of 
(3) [8]. In the following, we propose to combine RENS with information obtained from 
Stages 1 and 2 of FP. During the pumping loop, FP generates a sequence x̄0, . . . , ̄xk of 
LP-feasible vectors which can be used as reference vectors for RENS. Let X̄ be a subset 
of {x̄0, . . . , ̄xk}. We propose a modified version of RENS, which we call multi-reference 
RENS (mRENS), in which the variable bounds are tightened based on the values they 
take in vectors from X̄. More precisely, for each j ∈ I, we set lj to 	min

x̄∈X̄
x̄j
, and uj to 

�max
x̄∈X̄

x̄j�. To summarize, mRENS solves the sub-MIP

min
x∈Rn

c�x

s.t. Ax ≤ b

lj ≤ xj ≤ uj for all j /∈ I.
	min
x̄∈X̄

x̄j
 ≤ xj ≤ �max
x̄∈X̄

x̄j� for all j ∈ I.

xj ∈ Z for all j ∈ I.

(4)

Note that if x̄0 ∈ X̄, then the RENS sub-MIP is itself a sub-MIP of the mRENS 
sub-MIP.

4. Multiple reference vectors in Stages 1 and 2

Next, we investigate how we can use multiple reference vectors in Stages 1 and 2. As 
already mentioned, the projection step objective considers the distance to the integer 
vector x̃k obtained in the current iteration. From a geometric point of view, the distance 
function points towards a direction that is likely to reduce the violation of the integrality 
constraints of the MIP. All its coefficients are in {−1, 0, 1} depending on the values of 
x̃k, which reduces the set of possible distance functions to 3n. We enlarge this set by 
considering a conic combination of multiple distance functions (w.r.t. multiple integer 
vectors in (2)). Using directions “in-between”, may also lead to feasible MIP solutions or 
rather LP solutions from the projection step that can be easily rounded to such. Further, 
they might serve as a “tie-breaker” in dimensions where the current distance function 
would have a zero coefficient.

Let L = {1, . . . , k} be the index set of integer vectors obtained during the pumping 
loop. By Δ(x, X̃L, ΛL), we denote a conic combination of the L1-distances to the integer 
vectors x̃i, i ∈ L, more precisely,

Δ(x, X̃L,ΛL) :=
∑

λiΔ(x, x̃i), (5)

i∈L
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where ΛL := {λ1, . . . , λk}, λi ≥ 0 for all i ∈ L, are the conic weights and X̃L :=
{x̃1, . . . , ̃xk}.

We suggest using some variant of (5) as an objective in the projection step of FP. 
Hence, in the projection step, we have to solve the following LP

min
∑

i∈L:λi>0

λi

( ∑
j∈I:x̃i

j=lj

(xj − lj) +
∑

j∈I:x̃i
j=uj

(uj − xj) +
∑

j∈I:lj<x̃i
j<uj

d i
j

)

s.t x ∈ P

d i
j ≥ x̃i

j − xj , i ∈ L, j ∈ I : λi > 0, lj < x̃i
j < uj

d i
j ≥ xj − x̃i

j , i ∈ L, j ∈ I : λi > 0, lj < x̃i
j < uj

d i
j ∈ R, i ∈ L, j ∈ I : λi > 0, lj < x̃i

j < uj .

(6)

In (6) each term of the objective function Δ(x, X̃L, ΛL) is linearized separately, as 
explained in Section 2. A combination with the OFP objective is straightforward. In this 
case, the objective function of (6) is replaced by

Δα(x, X̃L,ΛL) := (1 − αk)Δ(x, X̃L,ΛL) + αk‖Δ‖2

‖c‖2
c�x. (7)

Here, ‖Δ‖2 is the Euclidean norm of the objective function vector of (6). Note that for 
the special case where λk = 1 and λi = 0 for all i ∈ L\{k} the objective (7) is equal to 
(2).

Another idea is to create a single aggregated reference vector x̃agg, e.g., a convex 
combination of the integer vectors from previous pumping iterations and replace the 
distance function in (2) by Δ(x, ̃xagg). Another natural thing to try is to compute a 
single reference vector as a convex combination of integer vectors However, x̃agg is not 
guaranteed to satisfy the integrality constraints, i.e., and therefore will not be considered 
any further.

The following theorem and corollary motivate why (5) is a reasonable choice to drive 
the LP solutions towards integrality, and indicate how weights should be chosen.

Theorem 4.1. Let L = {1, . . . , k} be the set of indices of k ∈ N integer vectors 
x̃1, . . . , ̃xk ∈ Zn. Further, let λi ≥ 0, for all i ∈ L, and Δ(x, X̃L, ΛL) be defined as 
in (5). The set of minimizers of Δ(x, X̃L, ΛL) over Rn always contains an integer vec-
tor.

Proof. See Appendix A. �
Remark 4.2. Since Δ(x, X̃L, ΛL) is convex, it follows that the set of its minimizers S
is also convex. Further, from Theorem 4.1 it follows that S is the Cartesian product of 
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closed intervals with integer boundaries (which might consist of a single integer value, 
as an important special case).

Corollary 4.3. Let L = {1, . . . , k} be the set of indices of k ∈ N integer vectors 
x̃1, . . . , ̃xk ∈ Zn. Further, let λi ≥ 0 for all i ∈ L, and Δ(x, X̃L, ΛL) be defined as 
in (5). If for any two disjoint sets U, V ⊆ L with U ∪ V = L it holds that

∑
i∈U

λi 
=
∑
i∈V

λi, (8)

then the set of minimizers of Δ(x, X̃L, ΛL) over Rn contains only integer vectors.

Corollary 4.3 introduces a condition on the weights ΛL, which ensures the integrality 
of the minimizers of (5). However, this does not imply that any set of weights fulfilling 
this condition is an appropriate choice for the projection step of FP. For instance, if at any 
iteration k it holds that λ1 = λ2 = · · · = λk−1 > λk, then (8) is obviously fulfilled. But 
as k gets larger, the distance function (5) changes less and less, leading to stalling in the 
FP algorithm. We, therefore, suggest considering only a few reference integer vectors and 
carefully choosing the weights ΛL to avoid the above behavior. Based on the results of 
Mexi [10] we consider three reference vectors in any iteration k with geometric weights 
(0.5, 0.25, 0.125). The first one is x̃k and the remaining two are previously obtained 
integer vectors with the smallest sum of violation over all constraints.

By design, using multiple integer reference vectors in Stages 1 and 2 leads to smaller 
changes of the distance function in the projection step objective, which can be seen 
as taking smaller “steps” towards convergence aiming at staying close to good quality 
feasible solutions. This is expected to come with a slightly increased number of iterations 
that are traded in for better solution quality. Note that this might not necessarily be 
desired when running FP with very strict iteration limits.

Considering information from previous iterations in the projection step may increase 
the probability of cycling, since the distance function in the objective may not change 
much during the pumping loop. Therefore, it is essential to provide different ways to es-
cape cycles, since an increased number of random perturbations, and especially restarts, 
may drastically reduce the success rate of FP [6]. For instance, if a cycle of length one 
is detected, i.e., x̃k = x̃k−1, normally, a small number of integers components of x̃k are 
set to a different integer value. One alternative way of breaking this cycle is to adjust 
the weights ΛL and repeat the iteration k − 1. Intuitively, since x̃k−1 is revisited, we 
reduce the value of λk−1, i.e., reduce the contribution of Δ(x, ̃xk−1) in (5). In case that 
a cycle of length greater than one is detected, i.e., x̃k = x̃l for some l ∈ {1, . . . , k − 2}, 
the restart mechanism can be avoided in a similar way. For instance, if l ∈ Lactive, we 
decided to use the original projection step of FP for one iteration by setting λk = 1, and 
λi = 0, i ∈ L\{k} to ignore all information from previous iterations. Lastly, if the cycle 
persists, or a new cycle is detected, we apply the usual restart procedure of FP.
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5. Alternative objective scaling

After experimenting with the problem instance misc07, Pradignac et al. [11] observed 
that for this instance the fixed scaling terms ‖Δ‖2 and ‖c‖2 do not provide a balanced 
contribution of Δ(x, ̃xk) and c�x in (2). Therefore, they proposed to replace ‖c‖2 by ∣∣c�x̄k−1

∣∣, where x̄k−1 is the LP-feasible vector obtained in the projection step of the 
previous iteration. This modification resulted in a more balanced contribution of the two 
objective terms for this specific problem instance. However, no comparison over a large 
test set was presented.

Inspired by this idea, we propose to replace the scaling term ‖Δ‖2 by the dynamically 
changing term 

∣∣Δ(x̄k−1, x̃k)
∣∣ in addition to the scaling suggested above. In the spirit 

of this work, one can think of these two modifications as considering information from 
previous iterations in the projection step.

Recall that FP aims at minimizing the distance of the vectors x̄k and x̃k, and reach 
convergence. Thus, it is expected that the components of x̄k and x̃k do not differ much 
from the corresponding components of x̄k−1 and x̃k−1. Consequently, in the projection 
step we also expect that Δ(x, ̃xk) and c�x̄k will acquire values close to Δ(x̄k−1, ̃xk)
and c�x̄k−1, respectively. Therefore, the suggested scaling terms should provide a more 
balanced contribution of the two objective terms. To summarize, we propose the modified 
projection step objective given by

Δαk
(x, x̃k) := (1 − αk)Δ(x, x̃k) +

αk

∣∣Δ(x̄k−1, x̃k)
∣∣

|c�x̄k−1| c�x, (9)

where αk ∈ [0, 1]. Note that a small value for 
∣∣Δ(x̄k−1, x̃k)

∣∣ might also be an indicator 
of convergence in subsequent iterations. Whenever 

∣∣Δ(x̄k−1, x̃k)
∣∣ decreases, the contri-

bution of c�x in the objective also decreases, which turns the priority of the projection 
step more towards feasibility and less towards solution quality. Therefore, dynamically 
adjusting the two scaling terms may also accelerate the convergence to a feasible solu-
tion.

6. Setup

As a baseline for our C++ implementation we use the FP code from [7], that incor-
porates the WALKSAT perturbation procedure described in Dey et al. [12].

We carefully examined the literature to decide which further FP variants we should 
include in our implementation. We also (re-)implemented some variants that did not end 
up in our final experiments since, on the test set we used, they would have deteriorated 
the baseline w.r.t. the measures we concentrated on.

Some suggested amendments had a different scope, e.g., [13] or [14], which present an 
approach that can often find better quality solutions than OFP2, however, at the cost 
of increased computational time, often by orders of magnitude. This is out of our scope 
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to achieve better solutions with comparable or faster performance w.r.t. OFP2. Other 
suggested improvements, e.g., [15], are based on older FP implementations, and we found 
that they do not combine well with OFP2 or achieved almost identical performance, 
e.g., [16,17].

In our implementation, FP communicates with LP/MIP solvers through an abstract 
interface, which is implemented for two state-of-the-art commercial solvers, namely, the 
FICO Xpress Optimizer [18] and IBM ILOG CPLEX [19]. In addition, we provide a solver 
interface for the non-commercial solver SCIP [20] using SoPlex [21] for solving LPs. To 
the best of our knowledge, this is the first state-of-the-art OFP2 implementation that 
only uses open-source software. Our final version of the code is freely available and can 
be downloaded from https://github .com /GioniMexi /feaspump3.

Similar to [7] we compare variants of FP in an embedded and a standalone scenario. 
In the first case, we evaluate FP as a primal heuristic embedded in a general-purpose 
MIP solver. Typically, solvers do not spend a lot of computing time on a single heuristic. 
Therefore, in this scenario, we set a limit of 20 iterations in Stages 1 and 2. In the 
second scenario, we evaluate the performance of each FP variant as a standalone primal 
heuristic. Here the total number of iterations in Stage 1 is 10000 iterations, and in Stage 
2, it is 2000 iterations. A detailed description of the parameter settings that we use for 
our standalone experiment can be found in [5,6]. The chosen iteration limits align with 
those in earlier implementations, in particular the FP 2.0. In preliminary experiments, 
we also tried slightly different limits (e.g., 50 or 100 iterations for Stages 1 and 2) and 
found that this does not change the overall picture by much.

In both scenarios, embedded and standalone, when we evaluate the performance of 
mRENS and Stage 3, we limit the number of explored MIP nodes to 500. This coincides 
with typical node limits applied for sub-MIP solving heuristics in SCIP, see, e.g., [8,22,23], 
and is in marked difference to previous implementations of FP heuristics which either 
avoided a sub-MIP stage altogether (when used in an embedded setting) or did not apply 
any resource limitations beyond a time limit (when used in a standalone setting).

Our test set consists of the official benchmark set MIPLIB 2017 [24] and all instances 
used in [7] that are not part of MIPLIB 2017. We excluded the instances decomp2, ex9, 
and ex10, since they were solved to optimality during presolve, and supportcase19, 
since solving its LP relaxation exceeded one hour of computation. In total, our main test 
set consists of 283 instances, for details see our online supplement https://github .com /
GioniMexi /online -supplement -feaspump3.

All results were obtained on a cluster of Intel Xeon E5-2690 @ 2.6 GHz machines 
with 128 GB of RAM, using a time limit of 3600 seconds, and exclusive runs for each 
job. In all experiments, we use the FICO Xpress Optimizer as LP and MIP solver. To 
mitigate the impact of performance variability, each FP variant is tested on the complete 
test set with three different seeds. Therefore, we decided to use average results over all 
three seeds to compare different FP variants. For details about performance variability 
in mixed-integer programming, we refer to Lodi and Tramontani [25].

https://github.com/GioniMexi/feaspump3
https://github.com/GioniMexi/online-supplement-feaspump3
https://github.com/GioniMexi/online-supplement-feaspump3
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7. Computational results

For our comparisons, we use the so-called shifted geometric mean [26], with a shift of 
1. All FP variants are tested over the whole test set with the same three random seeds. 
In our tables, we always report the number of instances for which an FP variant finds 
a solution with all, some, and none of the seeds. Further, we compute the primal gap 
(gap(%)), running time (time(s)), and number of iterations (iter) as the shifted geometric 
mean over all instances solved by at least one of the FP variants that we compare. Here, 
the primal gap is a number between 0% and 100% defined as follows:

Definition 7.1. Let x̃ be a solution for a MIP, and x̃opt be an optimal (or best known) 
solution for that MIP. We define the primal gap γ ∈ [0, 1] of x̃ w.r.t. x̃opt as:

γx̃opt(x̃) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if
∣∣c�x̃opt

∣∣ =
∣∣c�x̃∣∣ = 0,

1, if c�x̃opt · c�x̃ < 0,∣∣∣c�x̃opt−c�x̃
∣∣∣

max{|c�x̃opt|, |c�x̃|} , otherwise.

In all tables, we highlight values in blue and bold that are at least 10% better than 
the values obtained by the reference runs, which are always the first row of each table. 
Values that are at least 10% worse than the reference are highlighted in red and in italics.

Over all 849 instance-seed combinations, we count the number of wins, i.e., the number 
of instances an FP variant provides at least a 10% relative improvement, for the primal 
gap, running time, and the number of iterations. As before, if the number of wins exceeds 
the number of losses by more than 10%, the number of wins is highlighted in blue and 
bold. If it is the other way around, the number of losses is highlighted in red and italics.

In Sections 7.1 to 7.3 we examine the performance of different FP variants in an 
embedded setting and in Section 7.4 in a standalone setting. For the complete results, 
we refer to our online supplement https://github .com /GioniMexi /online -supplement -
feaspump3. Note that for all different variants, we use OFP2 as a baseline and hence FP 
in setting abbreviations will always mean that a variant of OFP2 was used. We present 
our results in the order of the paper outline.

7.1. Applying mRENS

First, we illustrate the benefits of using (m)RENS before Stage 3. To this end, we 
compare FP with activated Stage 3 (FP-(s3)) to the variant which applies either RENS 
or mRENS, called FP-(RENS,s3) and FP-(mRENS,s3), respectively. In this setting, if 
(m)RENS finds a feasible solution, we terminate. Otherwise, we use the original Stage 3 
for the remaining available time. Our experiment is conducted over the 153 instances 
(out of 283) where FP fails to find a feasible solution within the limit of 20 iterations.

https://github.com/GioniMexi/online-supplement-feaspump3
https://github.com/GioniMexi/online-supplement-feaspump3
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Table 1
Comparison of using RENS and mRENS before Stage 3 over the 153 instances for which no 
feasible solution is found in Stage 1 and 2 after 20 iterations. Geometric means are highlighted 
blue-bold if they indicate a 10% improvement or red-italic if they indicate a 10% deterioration. 
The numbers in parentheses in the last column show the combined time spent in (m)RENS and 
Stage 3.

solved (#seeds) #wins/#losses vs FP geom. mean
all some none gap (%) time (s) gap (%) time (s)

FP-(s3) 127 16 10 - - 35.88 5.54(1.80)
FP-(RENS,s3) 129 14 10 145/21 57/86 22.58 5.71(2.00)
FP-(mRENS,s3) 131 13 9 198/25 23/63 20.87 5.78(1.83)

The results in Table 1 show that both new variants find feasible solutions for slightly 
more instances than FP-(s3). In addition, FP-(mRENS,s3) significantly outperforms FP-
(s3) w.r.t. solution quality. More precisely, it leads to a 41.8% gap decrease over instances 
solved by at least one FP variant, however with a slight increase of computational time 
since in many cases two sub-MIPs are solved. The geometric mean of the time spent in 
the sub-MIP stages of FP is shown in the parentheses in the last column of the table. In 
particular, RENS and mRENS are able to find a solution with all three seeds for 42% and 
54% of the instances and hence skip Stage 3. Both RENS and mRENS are significantly 
faster than the original Stage 3. Namely, in terms of geometric means RENS requires 
0.24 seconds, and mRENS 0.67 seconds.

As already mentioned, many implementations of FP in MIP solvers skip the compu-
tationally demanding Stage 3. We thus suggest that mRENS is a good alternative for 
Stage 3 in embedded implementations of FP, since it require 62.8% less computational 
time. However, similar to the RENS heuristic, there is no guarantee that the defined 
sub-MIP is going to be feasible. Fortunately, in most cases state-of-the-art MIP solvers 
are able to detect infeasibility in a short amount of time, which fits the “fail fast” de-
sign concept of primal heuristics [1]. It is worth pointing out that the time spent in the 
sub-MIP heuristics (s3)/(RENS,s3)/(mRENS,s3) was less than the time spent in Stages 
1 and 2 on average in all three cases, supporting the claim that we can afford Stage 3, 
with appropriate limits, even in the embedded setting.

7.2. Applying the new scaling

Next, we compare FP with configurations that use the alternative scaling terms intro-
duced in Section 5. Here, we deactivate Stage 3 to better compare the changes in Stage 1 
and 2. Table 2 summarizes the results of three runs: (1) FP, (2) FP using the alternative 
scaling for ‖c‖2 (FP-(c)), and (3) FP using the alternative scalings for both ‖c‖2 and 
‖Δ‖2 (FP-(c,Δ)).

Both FP-(c) and FP-(c,Δ) lead to a significant performance improvement. Especially 
FP-(c,Δ) leads to a 33.6% gap decrease over instances solved by at least one FP variant 
and requires 15.8% fewer iterations than FP to find a feasible solution.
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Table 2
Comparison of FP and variants that use the alternative objective scaling in an embedded setting. Geometric 
means are highlighted blue-bold if they indicate a 10% improvement.

solved (#seeds) #wins/#losses vs FP geom. mean
configuration all some none gap (%) time (s) iter gap (%) time (s) iter
FP 99 31 153 - - - 29.16 3.0 11.0
FP-(c) 104 36 143 110/91 211/144 123/85 24.31 3.02 10.67
FP-(c,Δ) 132 30 121 174/81 268/143 222/76 19.37 2.89 9.26

Table 3
Comparison of FP to FP-(c,Δ)-(mRENS,s3). Geometric means are highlighted blue-bold if they indicate a 
10% improvement.

solved (#seeds) #wins/#losses vs FP geom. mean
configuration all some none gap time (s) iter gap time (s) iter
FP-(s3) 256 17 10 - - - 25.56 4.26 11.0
FP-(c,Δ)-(mRENS,s3) 259 11 13 327/133 340/194 222/72 18.06 4.09 9.24

A further impressive result is that FP-(c,Δ) is able to find a feasible solution for 33.3% 
more instances than FP in less than 20 iterations. Our results suggest that replacing FP 
with FP-(c,Δ) in MIP solvers could be beneficial, especially for solvers that use FP only 
for a few iterations.

7.3. Final embedded setting

Since in the embedded setting both mRENS and the alternative objective scaling 
provide a significant performance improvement, we incorporate both in FP and make 
a final comparison. We observed in an offline experiment that using multiple reference 
vectors is not beneficial in this scenario. As we will see in the following subsection, 
multiple reference vectors tend to increase the iteration count, which is inferior in a 
setup with a strict iteration limit.

In Table 3 we compare FP-(s3) with the combination of FP-(c,Δ) and FP-
(mRENS,s3). Here FP-(c,Δ)-(mRENS,s3) undoubtedly outperforms FP-(s3). It provides 
a 29.3% gap decrease over instances solved by at least one of the two algorithms, and a 
4.0% decrease in running time requires 16.0% fewer iterations.

7.4. Standalone results

As it has been shown in the thesis of Mexi [10], the new scaling terms and the use 
of multiple reference vectors in Stages 1 and 2 enhance the performance of a standalone 
FP implementation in a complementary way. In particular, the new scaling terms mostly 
lead to an improvement in terms of running time and iterations, whereas using multiple 
reference vectors in the projection step improves the solution quality. Based on this, it 
seems natural to compare combinations of different FP variants in a standalone setting.
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Table 4
Comparison of FP to standalone variants. Geometric means are highlighted blue-bold if they indicate a 
10% improvement or red-italic if they indicate a deterioration.

solved (#seeds) #wins/#losses vs FP geom. mean
all some none gap time (s) iter gap time (s) iter

FP-(s3) 268 6 9 - - - 21.27 6.41 28.93

FP-(c,Δ)-(s3) 266 4 13 171/211 310/185 325/177 21.93 6.15 22.88
FP-(mrv)-(s3) 266 7 10 205/132 147/270 118/307 20.12 6.95 35.02
FP-(mrv)-(c,Δ)-

(s3)
266 6 11 213/204 309/254 294/247 21.28 6.32 26.34

FP-(c,Δ)-
(mRENS,s3)

267 7 9 210/192 301/210 325/177 20.17 6.21 22.88

FP-(mrv)-
(mRENS,s3)

267 6 10 232/123 131/276 118/307 18.98 7.0 35.02

FP-(mrv)-(c,Δ)-
(mRENS,s3)

268 4 11 223/202 278/231 294/247 20.94 6.19 26.34

In the first part of Table 4 we compare FP to FP-(c,Δ)-(s3), FP-(mrv)-(s3) which uses 
three integer reference vectors in the projection step, and FP-(mrv)-(c,Δ)-(s3) which uses 
both the alternative scaling and multiple reference vectors. Here, even though FP-(c,Δ)-
(s3) is faster and requires significantly fewer iterations than FP, the solution quality 
is slightly worse, namely, the gap is 3.1% worse than the gap obtained by FP. On the 
other hand, using multiple integer reference vectors (FP-(mrv)-(s3)) leads to a 5.4% gap 
improvement but to a worsening of the running time and iterations. Combining both 
approaches (FP-(mrv)-(c,Δ)-(s3)) we obtain more wins w.r.t. the gap, and a decrease in 
the total number of iterations. By enhancing the previous versions of FP by mRENS the 
gap improves further, especially for FP-(mrv)-(mRENS,s3) where the gap improves by 
10.8%.

To conclude, our results indicate that in the standalone case using the new scaling, 
three integer reference vectors in Stage 1 and 2, and applying mRENS before Stage 3, 
leads to both solution quality and running time improvement.

8. Conclusion

In this paper, we presented a new version of the Objective Feasibility Pump 2 heuris-
tic that makes use of multiple reference vectors, in all three stages of the algorithm. In 
particular, we introduced a modified version of RENS, which we call mRENS that uses 
LP-feasible reference vectors obtained in the main loop of FP to tighten the variable 
bounds before entering the computationally expensive Stage 3. We extended the idea 
of using multiple reference vectors to Stage 1 and 2. This is achieved by using a conic 
combination of distance functions in the projection step objective. Moreover, we intro-
duced alternative objective scaling terms to balance the contributions of the distance 
functions and the original MIP objective c�x. In addition, we provide a solver interface 
for the non-commercial solver SCIP using SoPlex [21] for solving LPs. To the best of 
our knowledge, this is the first state-of-the-art FP implementation that only uses open-
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source software. Our final version of the code is freely available and can be downloaded 
from https://github .com /GioniMexi /feaspump3.

Our computational experiments demonstrate that the new method can improve the 
performance on general MIP test sets. In detail, our modifications provide in an embed-
ded setting a 29.3% solution quality improvement and 4.0% running time improvement, 
needing 16.0% fewer iterations over a large test set of MIP instances. In addition, the 
success rate of the method within the first few iterations increases considerably. In a 
standalone setting, we observed also a moderate performance improvement for the gap, 
running time, and iterations.
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Appendix A. Proof of Theorem 4.1

Proof. If λi = 0 for all i ∈ L, the claim clearly holds. Assume there exists an i ∈ L with 
λi > 0. The distance function Δ(x, X̃L, ΛL) can be rewritten as

Δ(x, X̃L,ΛL) =
∑
i∈L

λiΔ(x, x̃i)

=
∑
i∈L

λi‖x− x̃i‖1

=
∑
i∈L

λi

∑
j∈J

|xj − x̃i
j |

=
∑
j∈J

∑
i∈L

λi|xj − x̃i
j |︸ ︷︷ ︸

=:fj(xj)

.

Thus, Δ(x, X̃L, ΛL) is the sum of |J | terms fj(xj), where each term depends only on 
the variable xj . Hence, the set of minimizers

S := arg min
x∈Rn

Δ(x, X̃L,ΛL)

is the Cartesian product over the |J | sets

arg min
xj∈R

fj(xj), j ∈ J .

Note that fj(xj) > fj(min
i∈L

x̃i
j) for all xj < min

i∈L
x̃i
j , and fj(xj) > fj(max

i∈L
x̃i
j) for all 

xj > max x̃i
j . Therefore, fj attains its minimum in [min x̃i

j , max x̃i
j ].
i∈L i∈L i∈L

https://github.com/GioniMexi/feaspump3
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Now, assume there was a non-integer minimizer x∗ ∈ Rn of S. Then, there exists 
r ∈ J , such that x∗

r /∈ Z. Since x∗
r is a minimizer of fr, it holds that

fr(x∗
r) ≤ fr(xr) for all xr ∈ R. (∗)

Consider the sets Lr, Ur ⊆ L defined as

Lr := {i ∈ L : x̃i
r < x∗

r , i ∈ J },

and

Ur := {i ∈ L : x̃i
r > x∗

r , i ∈ J }.

Since x∗
r /∈ Z, it holds that Lr ∪̇Ur = L. Then,

fr(x∗
r) =

∑
i∈L

λi|xr − x̃i
r|

=
∑
i∈Lr

λi|x∗
r − x̃i

r| +
∑
i∈Ur

λi|x∗
r − x̃i

r|

=
∑
i∈Lr

λi(x∗
r − x̃i

r) +
∑
i∈Ur

λi(x̃i
r − x∗

r)

=
(∑

i∈Lr

λi −
∑
i∈Ur

λi

)
︸ ︷︷ ︸

=:ΔΛr

x∗
r +

∑
i∈Lr

λix̃
i
r −

∑
i∈Ur

λix̃
i
r︸ ︷︷ ︸

=:τr

From the choice of Lr and Ur it follows that for all xr ∈ [ 	x∗
r
, �x∗

r� ]

fr(xr) = ΔΛrxr + τr.

We distinguish between the following cases:

– ΔΛr < 0: If x∗
r > 0, then for any xr ∈ [ 	x∗

r
, x∗
r ) it holds that fr(xr) < fr(x∗

r), which 
contradicts (∗). If x∗

r < 0, then for any xr ∈ (x∗
r , �x∗

r� ] it holds that fr(xr) < fr(x∗
r), 

which also contradicts (∗).
– ΔΛr > 0: Leads to a contradiction analogous to the first case.
– ΔΛr = 0: For all xr ∈ [ 	x∗

r
, �x∗
r� ], it holds that fr(xr) = fr(x∗

r),

which shows that ΔΛr = 0, and 	x∗
r
 and �x∗

r� are minimizers of fr. Therefore, for any 
j ∈ J there exists an integer minimizer of fj , which shows the existence of an integer 
vector in S. �
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