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Abstract
In this paper we study Strichartz estimates for the half wave, the half Klein–Gordon
and theDirac Equations on compactmanifolds without boundary, proving in particular
for each of these flows local in time estimates both for the wave and Schrödinger
admissible couples (in this latter casewith an additional loss of regularity). The strategy
for the proof is based on a refined version of the WKB approximation.

Mathematics Subject Classification 35Q41 · 35L05

1 Introduction

1.1 Main results

The study of dispersive equations in a non-flat setting is a topic that has attracted
significant interest in the last years, andmany powerful tools and techniques have been
developed. In the case of compact manifolds without boundary, we should mention
the seminal works [9] for the wave and [3] for the Schrödinger equation respectively.
In the former, the author shows that due to the finite speed of propagation, Strichartz
estimates are the same as the estimates on flat Euclidean manifolds, while in the
latter the authors prove Strichartz estimates with some additional loss of derivatives
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for the Schrödinger equation. In both cases, the estimates are only local in time, as
indeed the compactness of the manifold prevents from having global dispersion. More
recently, in [7] the author extended these results to deal with the fractional Schrödinger
propagator eit(−�g)σ/2

for σ ∈ [0,+∞)\{1}. All of these results are essentially based
on the so-called WKB approximation, that will be the key tool in our strategy as well.

The aim of the present paper is two-folded: as a first result, we investigate the disper-
sive properties of the “half” wave/Klein–Gordon equation on a compact Riemannian
manifold without boundary (M, g) of dimension d � 2, that is for system

{
i∂t u(t, x) + P1/2

m u(t, x) = 0 u(t, x) : Rt × M → C,

u(0, x) = u0(x)
(1)

where Pm = −�g + m2, m � 0 and �g denotes the Laplace–Beltrami operator on

(M, g). Notice that the solution u = eit P1/2
m u0 to system (1) is classically connected

to the standard wave/Klein–Gordon equations: the function

u(t, x) = cos(t P1/2
m )u0(x) + sin(t P1/2

m )

P1/2
m

u1(x) = R(eit P1/2
m )u0(x) + I(eit P1/2

m )

P1/2
m

u1(x)

indeed solves the system

⎧⎪⎨
⎪⎩

∂2t u(t, x) + Pmu(t, x) = 0,

u(0, x) = u0(x),

∂t u(0, x) = u1(x).

(2)

In particular, we shall prove that solutions to (1) satisfy local in time Strichartz esti-
mates both for wave and Schrödinger admissible pairs: these estimates, whose proof
as we shall see requires a refined version of the WKB approximation, improve on the
existing results provided by [9]. As a second result, we will prove Strichartz estimates
for the Dirac equation on compact manifolds, that is for system

{
i∂t u − Dmu = 0, u : Rt × M → C

N ,

u(0, x) = u0(x)
(3)

where again (M, g) is a compact Riemannian manifold without boundary of dimen-
sion d � 2 equipped with a spin structure, Dm represents the Dirac operator and the

dimension of the target space N = N (d) = 2� d
2 � depends on the parity of d (see

Sect. 3.1). The estimates, in this case, can be somehow deduced, as we shall see, from
the ones for (1), after “squaring” system (3). We should mention that the construction
of the Dirac operator on curved spaces is a delicate but fairly classical task (see, e.g.,
[4–12]); we include a short overview of this topic in Sect. 3.

Before stating our main Theorems, let us recall the definitions of admissible pairs:
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Definition 1 (Wave admissible pair) We say a pair (p, q) is wave admissible if

p ∈ [2,∞], q ∈ [2,∞), (p, q, d) �= (2,∞, 3),
2

p
+ d − 1

q
� d − 1

2
.

Definition 2 (Schrödinger admissible pair)We say a pair (p, q) is Schrödinger admis-
sible if

p ∈ [2,∞], q ∈ [2,∞), (p, q, d) �= (2,∞, 2),
2

p
+ d

q
� d

2
.

We also denote

γKG
p,q := (1 + d)

(1
2

− 1

q

)
− 1

p
, γW

p,q := d
(1
2

− 1

q

)
− 1

p
.

In what follows, we shall use standard notation for the Sobolev spaces, that is

‖u‖Hs (M) := ‖(1 − �g)
s/2u‖L2(M).

Also, we shall use the classical Strichartz spaces X(I , Y (M)) where the X norm is
taken in the time variable and the Y norm in the space variable

We are now in a position to state our main results.

Theorem 1 (Strichartz estimates forwave andKlein–Gordon)LetM be a Riemannian
compact manifold without boundary of dimension d � 2. Let I ⊂ R be a bounded
interval. Then, for any m � 0 the following estimates hold:
(1) for any wave admissible pair (p, q), we have

‖eit P1/2
m u0‖L p(I ,Lq (M)) � C(I )‖u0‖

HγWp,q (M)
; (4)

(2) for any Schrödinger admissible pair (p, q), we have

‖eit P1/2
m u0‖L p(I ,Lq (M)) � C(I )‖u0‖

H
γKGp,q + 1

2p (M)
. (5)

Remark 1 Let us compare this result with the one in [9]. In fact, it is possible to deduce
Strichartz from Theorem 2 of [9] one can deduce Strichartz estimates for a solution u
to the half wave/Klein–Gordon equation (1) with m ≥ 0, d ≥ 2. We observe that the

principal symbol of h P1/2
m is q0(x, ξ) =

√
gi, j (x)ξiξ j and rank ∂2ξ q0(x, ξ) = d − 1;

then, Theorem 2 states that

∥∥u‖L p(I ;Br
q,q1

(M)) ≤ C(I )‖u0‖Hs
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for some s, r , p, q and q1 (here Bs
p,q denote the standard Besov spaces). In particular,

from the embedding B0
q,2(M) ↪→ Lq(M) that holds for every q ∈ [2,+∞], we get

‖eit P1/2
m u0‖L p(I ;Lq (M)) ≤ C(I )‖u0‖

HγWp,q (M)

provided that p ∈ [2,+∞], q ∈ (2,+∞] and
{

p > 2 if (d − 1)
( 1
2 − 1

q

) ≥ 1,
2
p + d−1

q ≤ d−1
2 otherwise.

This recovers estimate (4).
On the other hand, in order to prove estimate (5), we have to consider an “h-

dependent principal symbol” of h P1/2
m which is qm̃,h(x, ξ) =

√
gi, j (x)ξiξ j + h2m̃2

with m̃ = m if m > 0 and m̃ = 1 if m = 0 (as in definition (10)). Then,
rank ∂2ξ qm̃,h(x, ξ) = d for any h > 0 rather than rank ∂2ξ q0(x, ξ) = d−1 asmentioned
above. This will give us the Schrödinger admissible pairs as on the flat manifolds. The
1
2p loss of regularity is a consequence of the delicate analysis of the term qm̃,h with
respect to h ∈ (0, 1]. For the details, see the end of this section and Remark 4.

Theorem 2 (Strichartz estimates for Dirac) LetM be a Riemannian compact manifold
without boundary of dimension d � 2 equipped with a spin structure. Let I ⊂ R be a
bounded interval. Then, for any m � 0 the following estimates hold:
(1) for any wave admissible pair (p, q), we have

‖eitDm u0‖L p(I ,Lq (M)) � C(I )‖u0‖
HγWp,q (M)

; (6)

(2) for any Schrödinger admissible pair (p, q), we have

‖eitDm u0‖L p(I ,Lq (M)) � C(I )‖u0‖
H

γKGp,q + 1
2p (M)

. (7)

Remark 2 Notice that our argument could be adapted with minor modifications to
prove the sameStrichartz estimates for equations posed onRd withmetrics g satisfying
the following assumptions:

(1) There exists C > 0 such that for all x, ξ ∈ R
d ,

C−1|ξ |2 �
d∑

j,k=1

g jk(x)ξ jξk � C |ξ |2; (8)

(2) For all α ∈ N
d , there exists Cα > 0 such that for all x ∈ R

d ,

|∂αg jk(x)| � Cα, j, k ∈ {1, . . . , d}. (9)
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We should stress the fact that assumptions (8)–(9) are much weaker than the classical
“asymptotically flatness” assumptions, for which global in time Strichartz estimates
have been proved for several dispersive flows, (see in particular [5] for the Dirac
equation). On the other hand, in our weaker assumptions above we are only able to
prove local-in-time Strichartz estimates.

Remark 3 We stress the fact that, to the very best of our knowledge, Theorem 2 is
the first result concerning the dispersive dynamics of the Dirac equation on compact
manifolds.We should point out the fact that it is not a trivial consequence of Theorem1,
as it would be in the Euclidean setting: while indeed in the flat case the relation
D2

m = −� + m2 directly connects the solutions to the Dirac equation to a system of
decoupled Klein–Gordon equations, in a non-flat setting, as the definition of the Dirac
operator requires to rely on a different connection, the so-called spin connection, this
identity becomes D2

m = −�S + 1
4R + m2 where �S is the spinorial (not the scalar)

Laplace operator and R is the scalar curvature of the manifold (this is the so-called
the Lichnerowicz formula). For the details, see Sect. 3.2.

As a final result, we will show that the estimates (6) are sharp in the case of the
spheres in dimension d � 4: this requires writing explicitly the eigenfunctions of the
Dirac operator on the sphere and to prove some asymptotic estimates for them; as we
will see, these will be a consequence of some well known asymptotic estimates for
Jacobi polynomials.

1.2 Overview of the strategy

The strategy for proving Theorem 1 follows a well-established path based on WKB
approximation: in fact, our proof is strongly inspired by the one of Theorem 1 in [3]
and the one of Theorem 1.2 in [7]. As a consequence, we shall omit some of the
proofs that can be found in those papers. On the other hand, in order to obtain our
Strichartz estimates we will need some “refined” version of the WKB approximation:
let us briefly try to review the main ideas.

Recall that Pm = −�g + m2 and P0 = −�g. The first ingredient that we need is
the following standard Littlewood–Paley decomposition:

Proposition 1 Let ϕ̃ ∈ C∞
0 (R) and ϕ ∈ C∞

0 (R\{0}) such that

ϕ̃(λ) +
∞∑

k=1

ϕ(2−2kλ) = 1, λ ∈ R.

Then for all q ∈ [2,∞), we have

‖ f ‖Lq (M) � Cq

⎛
⎝‖ϕ̃(P0) f ‖Lq (M) +

( ∞∑
k=1

‖ϕ(2−2k P0) f ‖2Lq (M)

)1/2
⎞
⎠ .

Proof See, e.g., Corollary 2.3 in [3]. �
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The second ingredient is the following T T ∗ criterion:

Proposition 2 Let (X ,S, μ) be a σ -finite measured space, and U : R →
B(L2(X ,S, μ)) be a weakly measurable map satisfying, for some constants C, γ, δ >

0,

‖U (t)‖L2(X)→L2(X) � C, t ∈ R,

‖U (t)U (s)∗‖L1(X)→L∞(X) � Ch−δ(1 + |t − s|h−1)−τ , t, s ∈ R.

Then for all pair (p, q) satisfying

p ∈ [2,∞], q ∈ [1,∞], (p, q, τ ) �= (2,∞, 1),
1

p
� τ

(
1

2
− 1

q

)
,

we have

‖U (t)u‖L p(R,Lq (X)) � Ch−κ‖u‖L2(X)

where κ = δ( 12 − 1
q ) − 1

p .

Proof See [10] or Proposition 4.1 in [20] for a semiclassical version. �

Then, the third main ingredient we need is given by the following proposition. Here

and in what follows, we shall denote with

m̃ =
{

m if m > 0

1 if m = 0.
(10)

Proposition 3 (Dispersive estimates) Let m � 0, and ϕ ∈ C∞
0 (R\[−m̃, m̃]) with m̃

given by (10). Then, for any t ∈ [−t0, t0],

‖eit P1/2
m ϕ(−h2�g)u0‖L∞(M) � Ch−d(1 + |t |h−1)−(d−1)/2‖u0‖L1(M); (11)

for any t ∈ h
1
2 [−t0, t0],

‖eit P1/2
m ϕ(−h2�g)u0‖L∞(M) � Ch−d−1(1 + |t |h−1)−d/2‖u0‖L1(M). (12)

Let us quickly show how Theorem 1 can be derived from these three Propositions.

Proof of Theorem 1 We first consider the Strichartz estimates for wave admissible pair
by using (11). From Proposition 2 and (11), we infer that

‖eit P1/2
m ϕ(−h2�g)u0‖L p([−t0,t0],Lq (M)) � Ch−γW

p,q ‖u0‖L2(M).
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By writing I as a union of N intervals Ic = [c − t0, c + t0] of length 2t0 with N � C,

we have

‖eit P1/2
m ϕ(−h2�g)u0‖L p(I ,Lq (M)) � Ch−γW

p,q ‖u0‖L2(M).

Taking h = 2−k, Proposition 1 and the Minkowski inequality give

‖eit P1/2
m u0‖L p(I ,Lq (M))

� C‖eit P1/2
m ϕ̃(P0)u0‖L p(I ,Lq (M)) + C

( ∞∑
k=1

‖eit P1/2
m ϕ(2−2k P0)u0‖L p(I ,Lq (M))

)1/2

� C‖u0‖L2(M) + C

( ∞∑
k=1

2−2kγW
p,q ‖ϕ(2−2k P0)u0‖L2(M)

)1/2

� C‖u0‖
HγWp,q (M)

since [Pm, P0] = 0, and where we have used that

‖eit P1/2
m ϕ̃(P0)u0‖Lq (M) � ‖eit P1/2

m ϕ̃(P0)u0‖Hs (M) = ‖(1 − �g)
s/2ϕ̃(P0)u0‖L2(M)

� C‖ϕ̃(P0)u0‖L2(M)

as ϕ̃(λ) ∈ C∞
0 (R).

We now turn to the proof for Schrödinger admissible pairs; here we make use of
(12). We write I as a union of N = Nh intervals Icn = [cn − h1/2t0, cn + h1/2t0],
cn ∈ R, of length 2h

1
2 t0 with N � Ch− 1

2 . Using Proposition 2, we infer that

‖eit P1/2
m ϕ(−h2�g)u0‖L p(I ,Lq (M)) �

(
N∑

n=1

∫
Icn

‖eit P1/2
m ϕ(−h2P0)u0‖p

Lq (M)
dt

)1/p

� C N 1/ph−γKG
p,q ‖u0‖L2(M) � Ch−γKG

p,q − 1
2p ‖u0‖L2(M).

Arguing as for the wave admissible pairs case, we conclude that

‖eit P1/2
m u0‖L p(I ,Lq (M)) � C‖u0‖

H
γKGp,q + 1

2p (M)
.

�

Therefore, the only thing we need to prove is Proposition 3: Sect. 2 will be devoted

to this. As the proof is quite technical and involved, before entering the details let us
try to explain the main ideas and the main improvements with respect to the existing
results.

We are going to prove the dispersive estimates (11) and (12) by making use of
the WKB approximation and stationary phase theorem (see [13] for generalities). For
(11), one can obtain the estimate by using the “standard” WKB approximation, as
done in [3, 7] after a slight refinement of the stationary phase method. However, for
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(12), a more structural modification is needed: roughly speaking, the standard WKB
approximation says that any h-dependent symbol Ah can be written asymptotically as
follows

Ah ∼
N−1∑
j=0

h j a j + O(hN ),

where here the terms (a j ) j are independent of h. In order to obtain the dispersive
estimate (12), we consider instead an h-dependent WKB approximation, that is,

Ah ∼
N−1∑
j=0

h j a j,h + O(hN ).

The difference is that after the asymptotic expansion a j,h will still be h-dependent,
but their values and all the derivatives will be uniformly bounded w.r.t. h ∈ (0, 1].

To explain it better, let us consider the following semiclassical half Klein–Gordon
equation (i.e., m > 0) on the flat manifold (Rd , δ jk):

ih∂t ũ + h
√

m2 − �ũ = 0, ũ(0, x) = ϕ(−h2�)u0(x). (13)

We seek ũ as the following oscillatory integral

ũ(s, x) =
∫
Rd

e
i
h Sh(s,x,ξ)a(s, x, ξ, h)̂u0

(
ξ

h

)
dξ

(2πh)d
(14)

where

a(s, x, ξ, h) =
N∑

j=0

h j a j,h(s, x, ξ), a0,h(0, x, ξ) = ϕ(ξ),

a j,h(0, x, ξ) = 0 for j � 1

and

Sh(0, x, ξ) = x · ξ.

We first consider the standard h-independent WKB approximation. Proceeding as
in [7] using the fact that the principal symbol of h2Pm is p0,0(x, ξ) = |ξ |2, we know
that Sh satisfies Sh(t, x, ξ) = x · ξ + t |ξ |which solves the following Hamilton–Jacobi
equation

∂t Sh −
√

|∇x S|2 = 0, Sh(0, x, ξ) = x · ξ
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and (a j,h(t, x, ξ)) j independent of h exist for t small enough. Then the problem that
ũ solves is indeed a wave equation which is essentially equivalent to the following
one:

∂2t ũ − �ũ = f (̃u)

where f (̃u) := −m2ũ plays the role of an inhomogeneous term. Obviously, the
Strichartz estimates obtained by this h-independent WKB approximation are far from
optimal for the massive case and can not be global-in-time.

Nowwe turn to the h-dependentWKB approximation that we shall use in Sect. 2.2.
Taking pm,h = |ξ |2 + h2m2 as the principal symbol, as we will see in Eq. (30), the
phase Sh now takes the form Sh = x · ξ + t

√
h2m2 + |ξ |2 for m > 0. Then we will

get that

∂t a0,h − ∇ξ

√
h2m2 + h2|ξ |2 · ∇x a0,h = 0,

which yields that a0,h(t, x, ξ) = ϕ(ξ) for any t ∈ R. Analogously, we have
ak,h(t, x, ξ) = 0 for k = 1, . . . , N and t ∈ R. As a result, we deduce the following
oscillatory integral representation for ũ:

ũ(t, x) = 1

(2πh)d

∫
Rd

∫
Rd

eih−1[(x−y)·ξ+t
√

h2m2+|ξ |2]ϕ(|ξ |2)u0(y)dξdy.

This formula holds for any t ∈ R. Thus the Strichartz estimates that thisWKB approx-
imation produces are really the “standard” ones for Klein–Gordon equation in the flat
Euclidean case.

We can conclude: compared to the standardWKB approximation, this h-dependent
version gives the exact integral formula for the half Klein–Gordon equation on
(Rd , δ jk). Then the Strichartz estimates that we deduce directly is exactly the one for
the Klein–Gordon equation rather than the one for the wave equation. Furthermore,
on the flat Euclidean manifold, we can get the global-in-time Strichartz estimates by
using this h-dependent WKB approximation (see, e.g., [11, Chp. 2.5]) while only
local-in-time Strichartz estimates will be obtained by using the h-independent WKB
approximation.

Notice that we may take pm̃,h = |ξ |2 + h2m̃2 for any m̃ � 0 as a principal symbol
instead of pm,h; in this case, the corresponding WKB approximation still allows to
prove local-in-time Strichartz estimates, but not the global ones.

We conclude the introduction with the following remark, that is technical:

Remark 4 Compared with the Klein–Gordon Strichartz estimates on flat manifold
(Rd , δ jk), we will lose some regularity on the initial datum (see (7)) on compact
manifolds (M, g). As we will see later (formula (31)), on the compact manifold, the
phase term Sh satisfies

∂t Sh(t, x, ξ) − ∇ξ

√
h2m2 + h2g jk(x)∂ j Sh∂k Sh = 0
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and takes the form

Sh(t, x, ξ) = x · ξ + t
√

gi jξiξ j + h2m̃2 + O(t2).

Compared with the phase term on the flat manifold, we have an error termO(t2)which
will complicate our argument when considering the stationary phase theory, and this
will eventually produce the additional loss of regularity.

The paper is organized as follows: Sect. 2 is devoted to the proof of Proposition 3,
while Sect. 3 contains the proof of Theorem 2 as well as a discussion on the sharpness
of these latter estimates on the sphere.

2 Dispersive estimates: proof of Proposition 3

This section is devoted to the proof of Proposition 3. Let us start by recalling some
basic results about coordinate charts and semiclassical calculus.

2.1 Preliminaries: coordinate charts, Laplace–Beltrami operator and semiclassical
functional calculus

A coordinate chart (Uκ , Vκ , κ) on M comprises an homeomorphism κ between an
open subset Uκ of M and an open subset Vκ of Rd . Given χ ∈ C∞

0 (Uκ) (resp.
ζ ∈ C∞

0 (Vκ)), we define the pushforward of χ (resp. pullback of ζ ) by κ∗χ = χ ◦κ−1

(resp. κ∗ζ = ζ ◦ κ). For a given finite cover of M, namely M = ∪κ∈FUκ with
#F < ∞, there exist χκ ∈ C∞

0 (Uκ), κ ∈ F such that 1 = ∑
κ χκ(x) for all x ∈ M.

For all coordinate chart (Uκ , Vκ , κ), there exists a symmetric positive definite
matrix gκ(x) := (gκ

j�)1� j,��d with smooth and real valued coefficients on Vκ such
that the Laplace–Beltrami operator P0 = −�g reads in (Uκ , Vκ , κ) as

Pκ
0 := −κ∗�gκ

∗ = −
d∑

j,�=1

|gκ(x)|−1∂ j (|gκ(x)|g j�
κ (x)∂�),

where |gκ(x)| = √
det(gκ(x)) and (g j�

κ (x))1� j,��d := (gκ(x))−1. Thus in the chart
(Uκ , Vκ , κ), the Klein–Gordon operator reads as Pκ

m = κ∗ Pmκ∗.
We now recall some results from the semiclassical functional calculus that will be

used throughout the paper. For any ν ∈ R, we consider the symbol class S(ν) the
space of smooth functions ah on R2d (may depend on h) satisfying

sup
h∈(0,1]

|∂α
x ∂

β
ξ ah(x, ξ)| � Cαβ 〈ξ 〉ν−|β| ,

for any x, ξ ∈ R
d and 〈ξ 〉 = √

1 + |ξ |2. We also need S(−∞) := ∩ν∈RS(ν). We
define the semiclassical pseudodifferential operator on R

d with a symbol ah ∈ S(ν)
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by

Oph(ah)u(x) := 1

(2πh)d

∫∫
R2d

eih−1(x−y)·ξ ah(x, ξ)u(y)dydξ (15)

where u ∈ S (Rd) the Schwartz space.
On a manifold M, for a given ah ∈ S(ν) the semiclassical pseudo-differential

operator is defined as follows

Opκ
h(ah) := κ∗Oph(ah)κ∗.

If nothing is specified, the operator Opκ
h(ah) maps C∞

0 (Uκ) to C∞(Uκ). In the case
Supp(ah) ⊂ Vκ ×R

d ,we have Opκ
h(ah)mapsC∞

0 (Uκ) toC∞
0 (Uκ) hence toC∞(M).

We are going to construct an h-dependent WKB approximation in order to obtain
an h-dependent phase term Sh . To do so, we first introduce the following h-dependent
symbol pκ

m̃,h :

pκ
m̃,h(x, ξ) := g j�

κ (x)ξ jξ� + h2m̃2 (16)

with the choice of m̃ given by (10). In order to obtain the dispersive estimate (12), we
will have to slightly modify the principal symbol pκ

0,0 of the operator h2Pκ
m into an

“h-dependent principal symbol” pκ
m̃,h .

Let us now describe the relationship between the general operator f (h2Pm) and the
h-dependent symbol f (pκ

m̃,h). In what follows, several cut-off functions will appear;

we will denote them by χ( j) for j = 1, 2, 3, . . . with the spirit that, as we shall see,
χ

(n)
κ = 1 near Supp(χ(n−1)

κ ).

Lemma 1 Let χ
(1)
κ ∈ C∞

0 (Uκ) be an element of a partition of unity on M and χ̃
(2)
κ ∈

C∞
0 (Uκ) be such that χ

(2)
κ = 1 near Supp(χ(1)

κ ). Then for f ∈ C∞
0 (R), m, m′ � 0

and any N � 1,

f (h2Pm)χ(1)
κ =

N−1∑
j=0

h jχ(2)
κ Opκ

h(qκ
j,h)χ(1)

κ + hN Rκ,N (h), (17)

where qκ
j,h ∈ S(−∞) with Supp(qκ

j,h) ⊂ Supp( f ◦ pκ
m′,h) for j = 0, . . . , N − 1.

Moreover, qκ
0,h = f ◦ pκ

m′,h and, for any integer 0 � n � N
2 , there exists C > 0 such

that for all h ∈ (0, 1],

‖Rκ,N (h)‖H−n(M)→Hn(M) � Ch−2n . (18)

Proof The proof closely follows the one of [3, Proposition 2.1] or [7, Proposition 3.2],
and we only need to change the principal symbol of h2Pm in [3, Proposition 2.1] with
our symbol pκ

m′,h as defined in (16). We omit the details. �
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Before going further, let us introduce the following auxiliary functions: for a given
ϕ ∈ C∞

0 (R\[−2m̃2, 2m̃2]) we take

ψ̃ ∈ C∞
0 (R\{0}) : ∀ h ∈ (0, 1] and λ ∈ Supp(ϕ), ψ̃(λ + h2m̃2) = 1 (19)

and

ψ(λ) = ψ̃(λ)λ1/2. (20)

Obviously, ψ ∈ C∞
0 (R). The idea is that the function ψ helps regularize the square

root of the operator Pm, in view of applying Lemma 1. We have that

eih−1tψ(h2Pm)ϕ(−h2�g) = eit P1/2
m ϕ(−h2�g). (21)

According to the partition of unity and (21), it suffices to consider the operator

eit P1/2
m ϕ(−h2�g) on a chart, i.e.,

eit P1/2
m ϕ(−h2�g)χ

(1)
κ = eih−1tψ(h2Pm )ϕ(−h2�g)χ

(1)
κ , κ ∈ F

where χ
(1)
κ ∈ C∞

0 (Uκ) is an element of a partition of unity on M. Using Lemma 1,
we infer that there is a symbol aκ ∈ S(−∞) satisfying Supp(aκ) ⊂ Supp(ϕ ◦ pκ

0,0)

and an operator R1,κ,N satisfying (18) such that

eih−1tψ(h2Pm )ϕ(−h2�g)χ
(1)
κ = eih−1tψ(h2Pm )χ(2)

κ Opκ
h(aκ)χ(1)

κ

+ hN eih−1tψ(h2Pm) R1,κ,N (h) (22)

with χ
(2)
κ given in Lemma 1. Let

u(t) = eih−1tψ(h2Pm )χ(2)
κ Opκ

h(aκ)χ(1)
κ ;

then u solves the following semi-classical evolution equation

{
(ih∂t + ψ(h2Pm))u(t) = 0,
u|t=0 = χ

(2)
κ Opκ

h(aκ)χ
(1)
κ u0.

(23)

We can now decompose the operatorψ(h2Pm) onmanifoldM: letting χ
(3)
κ , χ

(4)
κ ∈

C∞
0 (Uκ) such thatχ(3)

κ = 1 near Supp(χ(2)
κ ) andχ

(4)
κ = 1 near Supp(χ(3)

κ ), and letting
m̃ be given by (10), Lemma 1 yields

ψ(h2Pm)χ(3)
κ = χ(4)

κ Opκ
h(qκ(h))χ(3)

κ + hN R2,κ,N (h), (24)
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where

qκ (h) = ψ(pκ
m̃,h) +

N−1∑
j=1

h j qκ
j,h (25)

with qκ
j,h ∈ S(−∞) and R2,κ,N (h) satisfies (18).

2.2 TheWKB approximation and semiclassical dispersive estimates

Inserting (24) into (23), the main operator we are going to study is

ih∂t + Opκ
h(qκ (h))

onM which is equivalent to

ih∂t + Oph(qκ(h))

on R
d . Then the following result represents the key ingredient in the proof of Propo-

sition 3.

Lemma 2 Let ϕ ∈ C∞
0 (R\{0}), K be a small neighborhood ofSupp(ϕ) not containing

the origin, a ∈ S(−∞) with Supp(a) ⊂ (pκ
0,0)

−1(Supp(ϕ)) and let v0 ∈ C∞
0 (Rd).

Then there exist t0 > 0 small enough, Sh ∈ C∞([−t0, t0] × R
2d) and a sequence

of functions a j,h(t, ·, ·) satisfying Supp(a j,h(t, ·, ·)) ⊂ (pκ
0,0)

−1(K ) uniformly w.r.t.
t ∈ [−t0, t0] and w.r.t. h ∈ (0, 1] such that for all N � 1,

(ih∂t + Oph(qκ(h)))JN (t) = RN (t)

where qκ is given by (25),

JN (t)v0(x) =
N∑

j=0

h j Jh(Sh(t), a j,h(t))v0(x)

=
N∑

j=0

h j
[
(2πh)−d

∫∫
R2d

eih−1(Sh(t,x,ξ)−y·ξ)a j,h(t, x, ξ)v0(y) dydξ

]
,

(26)

JN (0) = Oph(a) and the remainder RN (t) satisfies that for any t ∈ [−t0, t0], h ∈
(0, 1] and n � N

2

‖RN (t)‖H−n(Rd )→Hn(Rd ) � ChN−2n . (27)

Moreover, there exists a constant C > 0 such that
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(1) for all t ∈ [−t0, t0] and all h ∈ (0, 1],

‖JN (t)‖L1(Rd )→L∞(Rd ) � Ch−d(1 + |t |h−1)−
d−1
2 ; (28)

(2) for all t ∈ h1/2[−t0, t0] and all h ∈ (0, 1],

‖JN (t)‖L1(Rd )→L∞(Rd ) � Ch−d−1(1 + |t |h−1)−
d
2 . (29)

Remark 5 Compared with the existing results on the dispersive estimates for JN -
type oscillatory integrals (see, e.g., [3, 7, 9]), (29) is much more complicated even if
eventually all the results are based on the stationary phase theorem. In fact, estimate
(29) involves amuch deeper insight into the behaviour of the eigenvalues of theHessian
matrix ∇2

η�̃h where, as we shall see,

�̃h(t, x, y, η) = t−1
√

g(x)(x − y) · η +
√

|η|2 + h2m̃2.

More precisely, ∇2
η�̃h has d −1 eigenvalues away from 0 uniformly w.r.t. h and it has

a unique eigenvalue of the sizeO(h2). In order to apply the stationary phase theorem
for (29), we will first need to use the stationary phase theorem to deal with a submatrix
of ∇2

η�̃h associated with the d −1 eigenvalues which are away from 0 uniformly w.r.t
h, and then use the Van der Corput lemma in order to deal with the remaining terms
associated with the eigenvalue of sizeO(h2). This strategy has been used to deal with
the Klein–Gordon equations [11, 21].

Proof We split the proof into three steps: the construction of theWKB approximation,
the estimates for the remainder RN for (27) and the semiclassical dispersive estimates
(28) and (29). For the reader’s convenience, we will omit the index κ since the chart
has been fixed and we will borrow the notations and the results from [7, Step 1 and
Step 2, Proof of Theorem 2.7] directly. The arguments of Step 1. and Step 2. below are
essentially the same as in [7, Step 1 and Step 2, Proof of Theorem 2.7] (except taking
the supremum over h ∈ (0, 1]), thus we only give the sketch of the proof of these two
steps.

Step 1: the WKB approximation.
We are going to seek for JN (t) satisfying (26). Before going further, we look for

Sh satisfying the following Hamilton–Jacobi equation

∂t Sh(t) − ψ(pm̃,h)(x,∇x Sh(t)) = 0, (30)

with Sh(0) = x · ξ.

Proposition 4 Let ψ be given by (19)–(20). There exists t0 > 0 small enough and a
unique solution Sh ∈ C∞([−t0, t0] × R

2d) to the Hamilton–Jacobi equation

{
∂t Sh(t, x, ξ) − ψ(pm̃,h)(x,∇x Sh) = 0,
Sh(0, x, ξ) = x · ξ.

(31)
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Moreover, for all α, β ∈ N
d , there exists Cαβ > 0 independent of h (with h ∈ (0, 1])

such that for all t ∈ [−t0, t0] and all x, ξ ∈ R
d ,

sup
h∈(0,1]

|∂α
x ∂

β
ξ (Sh(t, x, ξ) − x · ξ)| � Cαβ, |α + β| � 1, (32)

sup
h∈(0,1]

∣∣∣∂α
x ∂

β
ξ

(
Sh(t, x, ξ) − x · ξ − tψ(pm̃,h)(x, ξ)

)∣∣∣ � Cα,β |t |2. (33)

Proof This proposition holds since ψ(pm̃,h) satisfies the following condition: for all
α, β ∈ N

d there exists Cαβ > 0 such that for all x, ξ ∈ R
d ,

sup
h∈(0,1]

|∂α
x ∂

β
ξ q0,h | � Cα,β .

Indeed, it satisfies the condition (A.2) in [7, Appendix A] uniformly w.r.t. h ∈ (0, 1].
Then following the argument in [7, Appendix A], we get a unique solution Sh to the
Hamilton–Jacobi equation (31) and Sh satisfies [7, Eqns. (2.19) and (2.20)] uniformly
w.r.t. h ∈ (0, 1]. Hence (32) and (33). �


In the next proposition, we describe the action of a pseudodifferential operator on
a Fourier integral operator.

Proposition 5 Let bh ∈ S(−∞) and ch ∈ S(−∞) and Sh ∈ C∞(R2d) such that for
all α, β ∈ N

d , |α + β| � 1, there exists Cαβ > 0,

sup
h∈(0,1]

|∂α
x ∂

β
ξ (Sh(x, ξ) − x · ξ)| � Cαβ, for all x, ξ ∈ R

d . (34)

Then

Oph(bh) ◦ Jh(Sh, ch) =
N−1∑
j=0

h j Jh(Sh, (bh � ch) j ) + hN Jh(Sh, rN (h)),

where (bh � ch) j is an universal linear combination of

∂β
η bh(z,∇x Sh(x, ξ))∂β−α

x ch(x, ξ)∂α1
x Sh(x, ξ) · · · ∂αk

x Sh(x, ξ),

with α � β, α1+· · ·+αk = α and |αl | � 2 for all l = 1, . . . , k and |β| = j . The map
(bh, ch) �→ (bh � ch) and (bh, ch) �→ rN (h) are continuous from S(−∞) × S(−∞)

to S(−∞) and S(−∞) respectively. In particular, we have

(bh � ch)0(x, ξ) = bh(x,∇x Sh(x, ξ))ch(x, ξ),

i(bh � ch)1(x, ξ) = ∇ηbh(x,∇x Sh(x, ξ)) · ∇x ch(x, ξ)

+ 1

2
Tr
(
∇2

ηbh(x, ∂s Sh(x, ξ)) · ∇2
x Sh(x, ξ)

)
· c(x, ξ).
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Proof This is a variant of [7, Proposition 2.9] (see also in [13, Théorème IV.19],
[14, Lemma 2.5]) and [2, Appendix]. From [7, Proposition 2.9], we know that this
proposition holds if bh, ch and Sh are h-independent. Then for any h̃ ∈ (0, 1], this
proposition holds for bh̃, ch̃ and Sh̃ . Finally, this proposition holds for h-dependent
symbols by taking h̃ = h. �


We are now in a position to explicitly write down the WKB approximation. From
(30), Propositions 2 and 5, we infer that

(ih∂t + Oph(q(h)))JN = −
N∑

r=0

hr Jh(Sh(t), cr ,h(t)) + hN+1 Jh(Sh(t), rN+1(h, t)),

(we recall that the symbol q(h) is defined by (25)), where rN+1 ∈ S(−∞) and

c0,h(t) = ∂t Sh(t)a0,h(t) − ψ(pm̃,h)(x,∇x Sh(t))a0,h(t) = 0,

−cr ,h(t) = i∂t ar−1,h(t) + (ψ(pm̃,h) � ar−1,h)1 + (q1,h � ar−1,h)0

+
∑

k+ j+l=r , j�r−2

(qk,h � a j,h(t))l , r = 1, . . . , N − 1,

−cN ,h(t) = i∂t aN−1,h + (ψ(pm̃,h) � aN−1,h)1 + (q1,h � aN−1,h)0

+
∑

k+ j+l=N ,
j�N−2

(qk,h � a j,h)l .

This leads to the following transport equations

i∂t a0,h(t) + (ψ(pm̃,h) � a0,h)1 + (q1,h � a0,h)0 = 0, (35)

i∂t ar ,h(t) + (ψ(pm̃,h) � ar ,h)1 + (q1,h � ar ,h)0

= −
∑

k+ j+l=r+1, j�r−1

(qk,h � a j,h)l (36)

and

RN (t) := hN+1 Jh(Sh(t), rN+1(h, t)) (37)

with

a0,h(0, x, ξ) = a(x, ξ), ar ,h(0, x, ξ) = 0 for r = 1, . . . , N . (38)

We rewrite the equations on ar ,h as follows

∂t a0,h − Vh(t, x, ξ, h) · ∇x a0,h − fha0,h = 0,

∂t ar ,h − Vh(t, x, ξ, h) · ∇x ar ,h − fhar ,h = gr ,h(h) (39)
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where

Vh(t, x, ξ) = (∂ξψ(pm̃,h))(x,∇x Sh(t, x)),

fh(t, x, ξ) = 1

2
tr [∇2

ξ ψ(pm̃,h)(x,∇x Sh) · ∇2
x Sh] + iq1,h(x,∇x Sh),

gr ,h(t, x, ξ) = i
∑

k+ j+l=r+1, j�r−1

(qk,h � a j,h)l .

We now construct ar ,h by the method of characteristics and by induction as follows.
Let Zh(t, s, x, ξ) be the flow associated with Vh, i.e.,

∂t Zh = −Vh(t, Zh), Zh(s, s, x, ξ) = x .

As ψ(pm̃,h) ∈ S(−∞) and using the same trick as in [7, Lemma A.1], from (32) we
infer

sup
h∈(0,1]

|∂α
x ∂

β
ξ (Zh(t, s, x, ξ) − x)| � Cαβ |t − s| (40)

for all |t |, |s| � t0. Then by iteration, the solutions to (35) and (36) with initial data
(38) are

a0,h(t, x, ξ) = a(Zh(0, t, x, ξ), ξ) exp

(∫ t

0
fh(s, Zh(s, t, x, ξ), ξ)ds

)
,

ar ,h(t, x, ξ) =
∫ t

0
gr ,h(s, Zh(s, t, x, ξ), ξ) exp

(∫ t

s
fh(τ, Zh(τ, t, x, ξ), ξ)dτ

)
ds,

for r = 1, . . . , N − 1.
Using the fact that a, qk,h, fh ∈ S(−∞), it is easy to see that a0,h ∈ S(−∞). Then

g1,h ∈ S(−∞) and a1,h ∈ S(−∞). By iteration, we infer that ar ,h ∈ S(−∞) for
any r = 1, . . . , N − 1. On the other hand, Supp(a) ⊂ p−1

0,0(Supp(ϕ)). According to

(40), this implies that, for t0 > 0 small enough and for any (x, ξ) ∈ p−1
0,0(Supp(ϕ)),

we have (Z(t, s, x, ξ), ξ) ∈ p−1
0,0(K ) for all |t |, |s| � t0. Thus, a0,h(t, x, ξ) = 0 for

(x, ξ) /∈ p−1
0,0(Supp(ϕ)) since Supp(gr ,h(t, ·, ·)) ⊂ ∪0� j�r−1Supp(a j,h). This shows

that Supp(ar ,h(t, ·, ·)) ⊂ p−1
0,0(K ) uniformly w.r.t. t ∈ [−t0, t0].

Step 2: L2-boundedness of the remainder. The proof of the boundedness of the
remainder is the same as in [7, Step 2, Page 8819–8820]. We use the notations therein
and only need to point out that there exists t0 > 0 small enough such that for all
t ∈ [t0, t0],

sup
h∈(0,h0]

‖∇x∇ξ Sh(t, x, ξ) − 1Rd ‖ � 1, for all x, ξ ∈ R
d .
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As a result, for any α, α′, β ∈ N
d , there exists Cαα′β > 0 such that

sup
h∈(0,h0]

|∂α
x ∂α′

y ∂
β
ξ (�−1(t, x, y, ξ) − ξ)| � Cαα′β |t |

for any t ∈ [−t0, t0]. Here � is given by

�(t, x, y, ξ) =
∫ 1

0
∇x S(t, y + s(x − y), ξ)ds.

Then by changing variable ξ �→ �−1(t, x, y, ξ), the action Jh(S(t), rN+1) ◦
Jh(S(t), rN+1)

∗ becomes a semiclassical pseudodifferential operator. Then the proof
in [7] gives the boundedness from L2(Rd) to L2(Rd).

Concerning the boundedness from H−n(Rd) → Hn(Rd), according to (37), we
only need to point out that, for any α, β ∈ N

d and |α|, |β| � n, there exists a symbol
rN+1,α,β ∈ S(−∞) such that

∂α
x RN (t) ◦ (∂β

x v0)

= ihN+1(2πh)−d∂x

(∫∫
R2d

eih−1(Sh(t,x,ξ)−y·ξ)rN+1,α,β(t, x, ξ)∂β
y v0(y)dydξ

)

= ihN+1−|α|−|β|(2πh)−d
∫∫

R2d
eih−1(Sh(t,x,ξ)−y·ξ)rN+1,α,β(t, x, ξ)v0(y)dydξ

thanks to the fact that rN+1 ∈ S(−∞) and Proposition 4. Then, repeating the proof
above by replacing rN+1 by rN+1,α,β , we get (27).

Step 3: semiclassical dispersive estimates.
The kernel of Jh(Sh(t), ah(t)) reads

Lh(t, x, y) = (2πh)−d
∫
Rd

eih−1(Sh(t,x,ξ)−y·ξ)ah(t, x, ξ)dξ, (41)

where ah(t) = ∑N−1
r=0 hr ar ,h(t) and (ah(t))t∈[−t0,t0] is bounded in S(−∞) satisfying

Supp(ah(t, ·, ·)) ∈ p−1
0,0(K ) for some small neighborhood K of Supp(ϕ)not containing

the origin uniformly w.r.t. t ∈ [−t0, t0].
It suffices to consider the case t � 0, as the case t � 0 can be dealt with in a similar

way. If 0 � t � h or 1 + th−1 � 2, as Sh is compactly supported in ξ and ah are
uniformly bounded in t, x, y, we get

|Lh(t, x, y)| � Ch−d(1 + th−1)−(d−1)/2. (42)

Now let us consider the case h � t � t0. Set λ := th−1 � 1. Then

Sh(t, x, ξ) = x · ξ + t
√

gi jξiξ j + h2m̃2 + t2
∫ 1

0
(1 − θ)∂2t Sh(θ t, x, ξ)dθ
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since ψ(pm̃,h)(x, ξ) =
√

g j�ξ jξ� + h2m̃2 on p−1
0,0(K ).

Setting p(x, ξ) = ξ t G(x)ξ = |η|2 with η = √
G(x)ξ or ξ = √

g(x)η, where
g(x) = (

g j�(x)
)

j� and G(x) = (
g(x)

)−1 = (
g j�(x)

)
j�, the kernel Lh can be written

as

Lh(t, x, y) = (2πh)−d
∫
Rd

eith−1�h(t,x,y,η)ah(t, x,
√

g(x)η)
√

g(x)dη, (43)

where
√

g(x) = √
det g(x) and

�h(t, x, y, η) =
√

g(x)(x − y) · η

t
+
√

|η|2 + h2m̃2

+ t
∫ 1

0
(1 − θ)∂2t Sh(θ t, x,

√
g(x)η)dθ.

Now, let us deal with the wave and Klein–Gordon-type dispersive estimates sepa-
rately.

Wave type dispersive estimates: proof of (28). Let us start with the case m̃ > 0. The
gradient of the phase �h is

∇η�h(t, x, y, η) =
√

g(x)(x − y)

t
+ η√|η|2 + h2m̃2

+ t
√

g(x)

∫ 1

0
(1 − θ)(∇η∂

2
t Sh)(θ t, x,

√
g(x)η)dθ.

If |√g(x)(x − y)/t | � C for some constant C large enough, we use the non-stationary
phase method which gives for any N > d−1

2 ,

|Lh(t, x, y)| � Ch−dλ−N � Ch−(d+1)/2t−(d−1)/2. (44)

Here we recall that λ = th−1.

We now deal with the case |√g(x)(x − y)/t | < C by using the stationary phase
method. For any |η j | � ε with some ε small but independent of t, we have

∇2
η( j)�h = 1√|η|2 + h2m̃2

[
1(d−1)×(d−1) − η( j) ⊗ η( j)

|η|2 + h2m̃2

]
+ O(t)

where η( j) = (η1, . . . , η j−1, η j+1, . . . , ηd−1). Then for any j = 1, . . . , N and t0
small enough, we have

| det∇2
η( j)�h | = (|η j |2 + h2m̃2)(|η|2 + h2m̃2)(−d+1)/2 + O(t) � C (45)
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independently of h. Let us now take a cover χ j (x, ξ) ∈ C∞(Rd × R
d) such that

d∑
j=1

χ j (x, η) = 1 on p−1
0,0(K ). (46)

Notice that for any η ∈ Supp(χ j ) we have |η j | � ε. Let

L j,h(t, x, y, η j )

= (2πh)−d
∫
Rd−1

eith−1�h(t,x,y,η)χ j (x, η)a(t, x,
√

g(x)η)
√

g(x)dη( j)

We need the following parameter-dependent stationary phase theorem as in [9].

Theorem 3 Let �(x, y) be a real valued C∞ function in a neighborhood of (x0, y0) ∈
R

n+m . Assume that ∇x�(x0, y0) = 0 and that ∇2
x �(x0, y0) is non-singular, with

signature σ. Denote by x(y) the solution to the equation ∇x�(x, y) = 0 with x(y0) =
x0 given by the implicit function theorem. Then when a ∈ C∞

0 (K ), K close to (x0, y0),∣∣∣∣
∫

eiλ�(x,y)a(x, y)dx − λ−n/2eiλ�(x(y),y)| det(∇2
x �(x(y), y))|−1/2

×eπ iσ/4a(x(y), y)

∣∣∣
� Cλ−1− n

2
∑

|α|�3+n

sup
x

|∂α
x a(x, y)|.

Proof See Theorem 7.7.6 in [8]. �

Applying this stationary phase theorem and choosing x = η( j), y = η j , we have

|Lh(t, x, y)| �
d∑

j=1

|
∫
R

L j,h(t, x, y, η j )dη j | � C
d∑

j=1

‖L j,h(t, x, y, ·)‖L∞(R)

� Ch−dλ−(d−1)/2 = Ch−(d+1)/2t−(d−1)/2. (47)

Recall that λ = th−1 for h � t � t0. Combining (42), (44) and (47), we conclude that

|Lh(t, x, y)| � h−d(1 + th−1)−(d−1)/2.

If we take m̃ = 0, as estimate (45) still holds, the proof works in the same way.
Klein–Gordon type dispersive estimates: proof of (29) Arguing as above for the

wave one, we only need to consider the case |t−1√g(x)(x − y)| � C . Unfortunately,
in this case

∇2
η�h = 1√|η|2 + h2m̃2

[
1d×d − η ⊗ η

|η|2 + h2m̃2

]
+ O(t)
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from which we infer that

| det∇2
η�h | = h2m̃2(|η|2 + h2m̃2)−

d
2 + O(t) � Ch2m̃2 + O(t).

Notice now that, differently from (45), we may not be able to control the above term
from below for t ∈ [h, t0] when h is small enough. To overcome this problem, we
split the phase term �h into two parts:

�h = �̃h(t, x, y, η) + t
∫ 1

0
(1 − θ)∂2t Sh(θ t, x,

√
g(x)η)dθ

where

�̃h(t, x, y, η) = t−1
√

g(x)(x − y) · η +
√

|η|2 + h2m̃2. (48)

Let

ãh(t, x,
√

g(x)η) = eih−1t2
∫ 1
0 (1−θ)∂2t Sh(θ t,x,

√
g(x)η)dθah(t, x,

√
g(x)η),

then we can write

Lh(t, x, y) = (2πh)−d
∫
Rd

eiλ�̃h(t,x,y,η)ãh(t, x,
√

g(x)η)
√

g(x)dη. (49)

Then we turn to study this new oscillatory integral problem for any t ∈ [0, h1/2t0].
The advantage is that for t ∈ [0, h1/2t0],

|∂α
η ãh | � Cα(h−1t2)|α| � C ′

α

independently of h. So we only consider the interval t ∈ [h, h1/2t0].
We can also write L j,h as

L j,h(t, x, y, η j ) = (2πh)−d
∫
Rd−1

eiλ�̃h (t,x,y,η)χ j (x, η)̃ah(t, x,
√

g(x)η)
√

g(x)dη( j).

As explained in Remark 5, applying Theorem 3 as for the wave dispersive case we
infer that∫
R

L j,h(t, x, y, η j )dη j = h−dλ− d−1
2

∫
R

eiλFh(η j ) Ah(t, x, η j )dη j + O
(

h−dλ− d+1
2

)
,

(50)

where

Fh(η j ) = �̃h(ζ(η j ), η j ), Ah(t, x, η j ) := eπ iσ/4χ j (ζ(η j ), η j )̃ah(ζ(η j ), η j )

| det(∇2
x �̃h(ζ(η j ), η j ))|1/2
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and, given by implicit function theorem, ζ(η j ) is the solution to the equation

∇η( j) �̃h(ζ, η j ) = 0 with ζ(η j,0) = η
( j)
0 (51)

with the point (η
( j)
0 , η j,0) ∈ R

d−1 × R satisfying ∇η( j) �̃h(η
( j)
0 , η j,0) = 0. Further-

more, by implicit function theorem, we know that ζ is smooth and satisfies

ζ ′(η j ) = −[∇2
η( j) �̃h(η( j), η j )]−1[∂η j ∇η( j) �̃h(η( j), η j )]. (52)

Now we are going to study (50) by using the following Van der Corput lemma, see
[16].

Lemma 3 (Van der Corput) Let ϕ be a real-valued smooth function in (a, b) such that
|ϕ(k)(x)| � ck for some integer k � 1 and all x ∈ (a, b). Then

∣∣∣∣
∫ b

a
eiλϕψ(x)dx

∣∣∣∣ � C(ckλ)−1/k
(

|ψ(b)| +
∫ b

a
|ψ ′|dx

)

holds when (i) k ≥ 2 or (ii) k = 1 and ϕ′(x) is monotone.

To apply this lemma to (50), we are going to verify that |F ′′(η j )| � C on
(ζ(η j ), η j ) ∈ Supp(χ j ). Using (51) and (52), we know that

F ′′(η j ) = ∇2
η( j) �̃h(ζ(η j ), η j )ζ

′(η j ) · ζ ′(η j ) + 2∇η( j)∂η j �̃h(ζ(η j ), η j )ζ
′(η j )

+ ∂2η j
�̃h(ζ(η j ), η j )

= −∇η( j)∂η j �̃h(ζ(η j ), η j )[∇2
η( j) �̃h(η( j), η j )]−1∂η j ∇η( j) �̃h(η( j), η j )

+ ∂2η j
�̃h(ζ(η j ), η j ). (53)

Notice that

∇η( j)∂η j �̃h = − η j

(|η|2 + h2m̃2)3/2
η( j),

and ∇η( j)∂η j �̃h is an eigenvector of ∇2
η( j) �̃h(η( j), η j ). More precisely,

∇2
η( j) �̃h(η( j), η j )∇η( j)∂η j �̃h = h2m̃2 + |η j |2

(|η|2 + h2m̃2)3/2
∇η( j)∂η j �̃h .

Thus,

F ′′(η j ) = 1

(|ζ |2 + |η j |2 + h2m̃2)3/2
(|ζ |2 + h2m̃2 − |η j |2|ζ |2

|η j |2 + h2m̃2 ) � Ch2m̃2
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for (ζ(η j ), η j ) ∈ Supp(χ j ). Using now Lemma 3 with k = 2 into (50) yields

|Lh(t, x, y)| �
d∑

j=1

|
∫
R

L j,h(t, x, y, ηl)dη j |

� Ch−dλ−(d−1)/2(h2λ)−
1
2 + Ch−dλ− d+1

2 � Ch−d/2−1t−d/2 (54)

for any t ∈ [h, h1/2t0] and (x, η) ∈ p−1
0,0(K ). Gathering together (42) and (54), we

conclude that for any t ∈ h
1
2 [−t0, t0] with t0 small enough,

|Lh | � Ch−d−1(1 + th−1)−d/2. (55)

This concludes the proof. �


2.3 Conclusion of the proof of Proposition 3

We are finally in position to prove Proposition 3. We need this additional result:

Lemma 4 Let χ(1), χ(2) ∈ C∞
0 (Rd) such that χ(2) = 1 near Supp(χ(1)). Let K ,

a j,h(t, ·, ·) ∈ S(−∞), Sh ∈ C∞([−t0, t0] × R
2d) and Jh be given as in Lemma 2.

Then for t0 > 0 small enough,

Jh(Sh(t), ah(t, x))χ(1) = χ(2) Jh(Sh(t), ah(t))χ(1) + R̃(t)

where R̃(t) = OH−n(Rd )→HnRd )(h
∞).

Proof The proof follows the one of [7, Lemma 3.6]; we omit the details. �

We now turn to the

Proof of Proposition 3 Let J κ
N (t) = κ∗ JN (t)κ∗, R3,κ,N = κ∗ RN κ∗ with JN and RN

being given by Lemma 2.
Notice that

d

ds

(
e−ish−1ψ(h2Pm )χ(2)

κ J κ
N (s)χ(1)

κ

)
= −ih−1e−ish−1ψ(h2Pm )(ih∂s + ψ(h2Pm))χ(2)

κ J κ
N (s)χ(1)

κ ,

and J κ
N (0) = Opκ

h(aκ). Integrating the above equation over [0, t], we infer

eith−1ψ(h2Pm )χ(2)
κ Opκ

h(aκ)χ(1)
κ u0 = χ(2)

κ J κ
N (t)χ(1)

κ u0

+ ih−1
∫ t

0
ei(t−s)h−1ψ(h2Pm )(ih∂s + ψ(h2Pm))χ(2)

κ J κ
N (s)χ(1)

κ u0 ds. (56)
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We now consider the terms inside the integral for the above formula. From (24), we
infer

(ih∂s + ψ(h2Pm))χ(2)
κ J κ

N (s)χ(1)
κ

= ihχ(2)
κ ∂s J κ

N (s)χ(1)
κ + χ(3)

κ Opκ
h(qκ (h))χ(2)

κ J κ
N (s)χ(1)

κ + hN R2,κ,N (t)χ(2)
κ J κ

N (s)χ(1)
κ .

Then using Lemmas 2 and 4,

(ih∂s + ψ(h2Pm))χ(2)
κ J κ

N (s)χ(1)
κ

= χ(3)
κ κ∗(ih∂s + Oph(qκ (h)))JN (s)κ∗χ(1)

κ + R4,κ,N (s) + hN R2,κ,N (t)χ(2)
κ J κ

N (s)χ(1)
κ

= −χ(3)
κ R3,κ,N (s)χ(1)

κ + R4,κ,N (s) + hN R2,κ,N (t)χ(2)
κ J κ

N (s)χ(1)
κ

where R4,κ,N (s) = OH−n(M)→Hn(M)(h
∞). Thus (22), (56) and this give

eih−1tψ(h2Pm )ϕ(−h2�g)χκu0 = χ̃κ J κ
N (t)χκu0 + Rκ,N u0 (57)

with

Rκ,N := hN eih−1tψ(h2Pm ) R1,κ,N (h)

− ih−1
∫ t

0
ei(t−s)h−1ψ(h2Pm )

(
χ(3)

κ R3,κ,N (s)χ(1)
κ − R4,κ,N (s)

−hN R2,κ,N (t)χ(2)
κ J κ

N (s)χ(1)
κ

)
ds.

It follows from theSobolev inequality and the fact R j,κ,N = OH−n(M)→Hn(M)(h
N−2n)

for any n � N
2 that

‖Rκ,N u0‖L∞(M) � C‖Rκ,N u0‖Hd (M) � ChN−2d−1‖u0‖H−d (M)

� ChN−2d−1‖u0‖L1(M).

Taking N large enough, we infer that for any t ∈ [−t0, t0],

‖Rκ,N ‖L∞(M) � Ch−d(1 + |t |h−1)−
d
2 .

From (57), Lemma 2 and this, we obtain (11) and (12). This completes the proof. �


3 Dirac equation

In this section, we show how to deduce Strichartz estimates for the Dirac flow from
estimates of Theorem 1.
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3.1 The Dirac equation on curved spaces

We begin with a brief overview of the construction of the Dirac equation in a non-flat
(or non-Lorentzian) setting; we shall refer to [6] for further details (see also Section 5.6
in [12] and Sect. 2 in [4]). For any d � 2 let us consider a (d+1)-dimensionalmanifold
in the form Rt × M with (M, g) a compact Riemannian manifold of dimension d
endowed with a spin structure; then, the Dirac operator on M can be written as

Dm = −iγ aei
a Di − m (58)

with m � 0 is the mass and γ j , j = 1, . . . , d is a set of matrices that satisfy the
condition

γ iγ j + γ jγ i = 2δi j , i, j = 1, . . . d.

There are few different possible choices for the γ matrices; notice anyway that the
explicit choice of the basis will play no role in our argument. Following [6], let us
define these matrices recursively as follows (in computations below, the index d will
be added to the γ matrices in order to keep track of the dimensions):

• Case d = 2. We set

γ 1
2 =

(
0 i
−i 0

)
, γ 2

2 =
(
0 1
1 0

)
.

• Case d = 3. We set

γ 1
3 = γ 1

2 , γ 2
3 = γ 2

2 , γ 3
3 = (−i)γ 1

2 γ 2
2 =

(
1 0
0 −1

)
.

• Case d > 3 even. We set

γ
j

d =
(

0 iγ j
d−1

−iγ j
d−1 0

)
, j = 1, . . . , d − 1, γ d

d =
(

0 I
2

d−2
2

I
2

d−2
2

0

)
.

• Case d > 3 odd. We set

γ
j

d = γ
j

d−1, j = 1, . . . , d − 1, γ d
d

= i
d−1
2 γ 1

d−1 · · · · · γ d−1
d−1 = i

d−1
2

(
I
2

d−3
2

0

0 −I
2

d−3
2

)
.

The matrix bundle ei
a is called n-bein and it is defined as follows

gi j = ei
aδabe j

b (59)
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where δ is the Kronecker symbol, and in fact it connects the “spatial” metrics to the
Euclidean one. Finally, the covariant derivative for spinors Di is defined by

D0 = ∂0, D j = ∂ j + B j , j = 1, 2, . . . , d (60)

where B j writes

B j = 1

8
[γ a, γ b]ω ab

j

and ω ab
j , called the spin connection, is given by

ω ab
j = ei

a∂ j e
ib + e a

i �i
jkekb (61)

with the Christoffel symbol (or affine connection) �i
jk

�i
jk := 1

2
gil(∂ j glk + ∂k g jl − ∂l g jk). (62)

We stress the fact that in the rest of this section we shall abuse notation by calling
functions what should be more precisely called spinors.

3.2 Strichartz estimates for the Dirac equation: proof of Theorem 2

We are now in a position to prove Strichartz estimates for the solutions to the Dirac
equation (3), deducing them from the ones for the Klein–Gordon that we have proved
in Sect. 1. The starting point is the following explicit formula, that has been proved in
[4]:

D2 := m2 + 1

4
Rg − �S = −�g + Bi∂i + D̃i Bi + Bi Bi + 1

4
Rg + m2 (63)

where the spinorial Laplacian �S = D j D j , D̃i�k = ∂ i�k − �l i
k �l , Bi = hi j B j

and Rg denotes the scalar curvature on (M, g). As a consequence, the solution u to
the Dirac equation can be written as follows:

u(t, x) := eitDm u0 = Ẇm(t)u0 + iWm(t)Dmu0

+
∫ t

0
Wm(t − s)(�1(u)(s) + �2u(s))ds (64)

where

Wm(t) = sin(t
√

m2 − �g)√
m2 − �g

, Ẇm = ∂t Wm
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and

�1(u) := 2Bi∂i u, �2 := −∂ i Bi + Bi Bi − �
j i
i B j − 1

4
Rg. (65)

Notice that as the manifold M is assumed to be smooth, the terms Bi , �
j i
i and Rg

are smooth.
We first consider the case m > 0. We set γ̃pq := γW

pq for wave admissible pair
(p, q), and γ̃pq := γKG

pq for Schrödinger admissible pair (p, q). Using Theorem 1 for
wave admissible pair or Schrödinger admissible pair (p, q), we infer

‖eit
√

m2−�g v0‖L p(I ,Lq (M)) � C‖v0‖H γ̃pq (M).

Thus for m > 0,

‖eitDm u0‖L p(I ,Lq (M)) � C‖u0‖H γ̃pq (M) + t0C sup
s

‖Bi∂i u(s)‖H γ̃pq −1(M)

+t0C sup
s

‖�2u(s)‖H γ̃pq −1(M).

It remains to study the terms ‖Bi∂i u(s)‖H γ̃pq −1(M) and ‖�2u(s)‖H γ̃pq −1(M). We first
show that

‖Bi∂i u(s)‖H γ̃pq −1(M) � ‖u(s)‖H γ̃pq (M), ‖�2u(s)‖H γ̃pq −1(M) � ‖u(s)‖H γ̃pq (M).

Using standard interpolation theory (see, e.g., [18, Proposition 2.1 and Proposition 2.2,
Chp.4]), it suffices to show that

‖Bi∂i f ‖H−1(M) � ‖ f ‖L2(M), ‖Bi∂i f ‖Hn−1(M) � ‖ f ‖Hn(M) (66)

where n > γ̃pq is an integer. As B1 ∈ C∞(M), we infer that

‖Bi∂i f ‖Hn−1(M) � ‖ f ‖Hn(M).

On the other hand, as Bi∂i u = ∂i (Bi u) − (∂i Bi )u, we have

‖Bi∂i f ‖H−1(M) � ‖(1 − �g)
−1/2Bi∂i‖L2(M)→L2(M)‖ f ‖L2(M)

� ‖(1 − �g)
−1/2[∂i Bi − (∂i Bi )]‖L2(M)→L2(M)‖ f ‖L2(M)

� ‖ f ‖L2(M).

The above two estimates and the interpolation theory show that

‖Bi∂i f ‖H γ̃pq −1(M) � ‖ f ‖H γ̃pq (M).
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Analogously, as �2 ∈ C∞(M), we also have that

‖�2 f ‖H γ̃pq −1(M) � ‖�2 f ‖H γ̃pq (M) � C‖ f ‖H γ̃pq (M).

Thus,

‖eitDm u0‖L p(I ,Lq (M)) � C‖u0‖H γ̃pq (M) + Ct0 sup
s

‖u(s)‖H γ̃pq (M)

� ‖u0‖H γ̃pq (M) + Ct0 sup
s

‖|Dm |γ̃pq u(s)‖L2(M).

The operator |Dm | is defined as follows

|Dm | = Dm[1[0,+∞)(Dm) − 1(−∞,0)(Dm)] (67)

and here we use the fact that for any s � 0,

C1‖(1 − �g)
s f ‖L2(M) � ‖|Dm |2s f ‖L2(M) � C2‖(1 − �g)

s f ‖L2(M),

which is obtained by using the interpolation theory again and the fact that there are
constants C ′

1, C ′
2 > 0 such that for any n ∈ N,

C ′
1‖(1 − �g)

n f ‖L2(M) � ‖|Dm |2n f ‖L2(M) � C ′
2‖(1 − �g)

n f ‖L2(M).

According to (67), [|Dm |,Dm] = 0. As a result,

‖eitDm u0‖L p(I ,Lq (M)) � C‖u0‖H γ̃pq (M) + Ct0 sup
s

‖|Dm |γ̃pq eitDm u0‖L2(M)

� C‖u0‖H γ̃pq (M) + C‖|Dm |γ̃pq u0‖L2(M) � C‖u0‖H γ̃pq (M).

This gives (6) and (7) for m > 0.
It remains to show the case m = 0. By the Duhamel formula, for m̃ given by (10),

we have

eitD0u0 = eitDm̃ u0 − m̃
∫ t

0
ei(t−s)Dm̃ u(s)ds.

Repeating the above proof for the case m > 0, we infer

‖eitD0u0‖L p(I ,Lq (M)) � C‖u0‖H γ̃pq (M) + Ct0 sup
s

‖|Dm |γ̃pq eitD0u0‖L2(M)

� C‖u0‖H γ̃pq (M).

This concludes the proof.
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Remark 6 As it is seen, by making use of formulas (63)–(64), we have been able to
deduce the Strichartz estimates for the Dirac flow from the ones for the half Klein–
Gordon equation with a rather simple argument. In fact, it would have been much
more complicated to tackle directly the study of the Dirac flow: if we studied the half-
spinor-Klein–Gordon equation, then the proof of the existence of solutions for ar in
Eq. (39) would have been significantlymore involved. Indeed, in the spinorial case, the
equations on ar turn out to be first-order ODE systems in the form ∂t ar −Aar = Fr ,

with ar , A and Fr matrices, rather than simple transport equations. On the one hand,
the matrix A may not be self-adjoint, so the solution ar (t) may not have a bounded
compact support; on the other hand, for a general t-dependent matrix F(t), we do
not even know the formula for d

dt eF(t), so we do not know the formula for a0,h and
ar ,h . Finally, let us mention that it might be possible to rely on an explicit WKB
approximation directly on the Dirac equation (see, e.g., [1] for its construction in
the flat case), but this seems to require a significant amount of technical work, and
therefore we preferred to rely on the strategy above.

3.3 The case of the sphere

As a final result, as done in [3] for the Schrödinger equation, we would like to test
the sharpness of the Strichartz estimates proved in Theorem 2 in the case of the
Riemannian sphere. In this case, the spectrum and the eigenfunctions of the Dirac
operator are indeed explicit and well known (see, e.g., [6, 19]); we include here a short
review of the topic, as indeed an explicit representation of these eigenfunctions will be
needed for our scope. Notice that in this section we will be considering the massless
Dirac operator, that is the case m = 0, and the subscript on the Dirac operator will be
used to keep track of the dimension.

As seen in Sect. 3.1, the definition of the Dirac matrices (and thus of the Dirac
operator) is slightly different depending on whether the dimension d of the sphere is
even or odd: it is thus convenient to discuss the two cases separately.

• Case d even. In this case, the Dirac operator can be recursively defined as

DSd =
(

∂θ + d − 1

2
cot θ

)
γ d

d + 1

sin θ

(
0 DSd−1

−DSd−1 0

)

where the matrix γ d
d , as we have seen, is given in this case by γ d

d =
(

0 I
2

d−2
2

I
2

d−2
2

0

)
.

Now, let χ±
�m be such that

DSd−1χ
±
�m = ±(� + 1

2 (d − 1))χ±
�m, (68)

where � = 0, 1, 2 . . . and m run from 1 to the degeneracy d� of the eigenfunction
(notice that this parameter will play no role in our forthcoming argument). Then, we
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set

� =
(

�+
�−

)
.

One can separate variables as follows:

�
+,−
n�m (θ,�) = ϕn�(θ)χ−

�m(�), �
+,+
n�m (θ,�) = ψn�(θ)χ+

�m(�) (69)

(notice that the first apex + in the above labels the first and second component of �,

while the second one distinguishes on the choice of the sign ± performed in (68)).
Clearly, an analogous decomposition holds for the component �−. Then, plugging
(69) into the squared equation D2

Sd � = −λ2n,d� yields the following

[(
∂

∂θ
+ d − 1

2
cot θ

)2

− (� + d−1
2 )2

sin2 θ
+ (� + d−1

2 )
cos θ

sin2 θ

]
ϕn� = −λ2n,�ϕn�

which has a unique (up to a constant) regular solution

ϕn�(θ) = (cos θ
2 )�+1(sin θ

2 )� P
d
2 +�−1, d

2 +�

n−� (cos θ) (70)

where Pα,β
n is a Jacobi polynomial with n − � � 0 (this condition is required in order

to have regular eigenfunctions) and with eigenvalue λ2n,d = (n + d
2 )2. Similarly, one

gets

ψn�(θ) = (cos θ
2 )�(sin θ

2 )�+1P
d
2 +�, d

2 +�−1
n−� (cos θ). (71)

Then, the functions

�1±n�m(θ,�) := Cd(n�)√
2

(
ϕn�(θ)χ−

�m(�)

±iψn�(θ)χ−
�m(�)

)
(72)

and

�2±n�m(θ,�) := Cd(n�)√
2

(
iψn�(θ)χ+

�m(�)

±ϕn�(θ)χ+
�m(�)

)
(73)

both satisfy equation

DSd �
j
±n�m(θ,�) = ±(n + d

2 )�
j
±n�m(θ,�), j = 1, 2. (74)

The standard normalization condition

〈� j
±n�m, �

j ′
±n′�′m′ 〉L2 = δnn′δ��′δmm′δ j j ′

123



Strichartz estimates for the half wave/Klein–Gordon…

fixes the value of the constant Cd(n�) to be

Cd(n�) =
√

(n − �)!(n + � + 1)!
2

d
2 −1�(n + 1)

. (75)

• Case d odd. In this case, we can write the Dirac equation as

DSd =
(

∂θ + d − 1

2
cot θ

)
γ d

d + 1

sin θ
DSd−1

with γ d
d =

(
I2(d−3)/2 0

0 −I2(d−3)/2

)
. As done for the even case, taking χ±

�m to be the

eigenfunctions of the Dirac operator on the (d −1)-dimensional sphere, i.e. satisfying
(68), the normalized eigenfunctions to the Dirac operator are given by

�±n�m(θ,�) = Cd(n�)√
2

(
ϕn�(θ)χ̃−

�m(�) ± iψn�(θ)χ̃+
�m(�)

)
(76)

with ϕn�, ψn� given by (70)–(71), with χ̃± defined as

χ̃�m
− = 1√

2
(1 + �d)χ−

�m, χ̃�m
+ = �dχ−

�m,

and where the normalization constant is given by (75). The functions given in (76)
satisfy Eq. (74).

We are now in a position to show that our Strichartz estimates (6) are sharp in
dimension d � 4. Let us consider system (3) on M = S

d with m = 0, and let
us take as initial condition u0 an eigenfunction of the Dirac operator for a fixed
eigenvalue λ = ±(n + d

2 ), with n ∈ N. Then, the solution u can be written as
u = eitD0u0 = eitλu0. By taking any admissible Strichartz pair we can write, given
that the time interval is bounded,

‖eitλu0‖L p
I Lq (Sd ) ∼ ‖u0‖Lq (Sd ) (77)

Now, we need the following spinorial adaptation of a classical result due to Sogge
(see [15]).

Lemma 5 Let d � 2. For any λ = ±(n + d
2 ) with n ∈ N such that |λ| is sufficiently

large, there exists an eigenfunction �λ of the Dirac equation on S
d such that the

following estimate holds:

‖�λ‖Lq (Sd ) � C |λ|s(q)‖�λ‖L2(Sd ) (78)

with s(q) = d−1
2 − d

q , provided 2(d+1)
d−1 � q � ∞.

123



F. Cacciafesta et al.

Proof Let us deal with the case d even; the case d odd can be dealt with similarly.
Let us take for any eigenvalue λ = ±(n + d

2 ) an eigenfunction � in the form (72)–
(73) corresponding to the choice � = 0, which is always admissible. Notice that the
functions χ do not depend on n. Then, taking advantage of the classical asymptotic
estimates on Jacobi polynomials

∫ 1

0
(1 − x)r |Pα,β

n |pdx ∼ nα p−2r−2

provided 2r < α p − 2 + p/2 (see, e.g., [17, page 391]), we easily get that

‖�λ‖Lq (Sd ) ∼ |λ| d−1
2 − d

q

for |λ| � 1 and q � 2(d+1)
d−1 . �


By making use of this Lemma we can thus estimate further (77) as follows

‖u0‖Lq (S2) ∼ |λ|s(q)‖u0‖L2(S2).

Then, taking d � 4 and p = 2 in Strichartz estimates (6) yields q = 2(d−1)
d−3 , so that

s(q) = d+1
2(d−1) which is exactly γW

2, 2(d−1)
d−3

and thus estimates (6) are sharp provided

d � 4.

Remark 7 Lemma 5 is the analog of Theorem 4.2 in [15], where the author proves the
same bound for homogeneous harmonic polynomials. Anyway, as the eigenfunctions
of the Dirac operator are not “pure” spherical harmonics, we cannot simply evoke this
result.

Remark 8 Notice that the argument above relies on the “endpoint” p = 2, and this is
the reason why we are only able to prove the sharpness in the case d � 4. Indeed, the
same computations provide

• for d = 2, by taking p smallest possible, that is p = 4 and thus q = ∞:

γW
4,∞ = 3

4
and s(∞) = 1

2
;

• for d = 3, as the endpoint (p, q) = (2,∞) has to be excluded, by taking p = 2+ε

with ε > 0 small:

γW
2+ε,

2(2+ε)
ε

= 2

2 + ε
and s

(
2(2 + ε)

ε

)
= 2

2 + ε
− ε

2(2 + ε)

which shows that the estimates are sharp in the limit ε → 0.
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