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Introduction 

 

The idea that people’s attitudes include components of which they are aware (i.e., explicit or 

direct) and components of which they are not completely aware and that cannot be controlled 

(i.e., implicit or indirect) has now been widely accepted (e.g., Meissner, Grigutsch, Koranyi, Muller, & 

Rothermund, 2019). Among the measures aimed at capturing the indirect components of attitudes, the 

Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) is one of the most studied and used 

in a constantly wider and more varied range of areas (see Epifania, Robusto, & Anselmi, 2020a; for a 

review). By appropriately changing the labels of the attitude objects under investigation and leaving its 

structure unaltered, the IAT can be easily adapted for the investigation of different topics, ranging from 

personality and self-esteem (e.g., Van Tuijl et al., 2016; Vecchione et al., 2016) to emotions (Riediger, 

Wrzus, & Wagner, 2014), addiction behaviors (e.g., Tatnell, Loxton, Modecki, & Hamilton, 2019), and 

perception (e.g., Wu, Lu, van Dijk, Li, & Schnall, 2018). Given the IAT resistance to self-presentation 

strategies (Egloff & Schmukle, 2002; Greenwald, Poehlman, Uhlmann, & Banaji, 2009), its main 

applications are in social cognition, where it is used for the implicit assessment of attitudes towards different 

social groups (e.g., Anselmi, Vianello, & Robusto, 2011; Anselmi, Voci, Vianello, & Robusto, 2015), even 

in sensitive social contexts like hospitals (e.g., Zeidan et al., 2019). Despite its broad use, the meaning of the 

effect obtained from the IAT remains unclear. The aim of this contribution is to help in shedding a light on 

the meaning of the IAT effect by considering the information that can be retrieved from stimuli and 

respondents’ random variability.  

The IAT is based on the speed and accuracy with which prototypical exemplars of two contrasting 

target categories (e.g., White and Black people in a Race IAT) and exemplars of two evaluative categories 

(Good and Bad) are sorted in the category to which they belong by means of two response keys. The 

categorization task takes place in two contrasting associative conditions. In one associative condition, the 

labels Good and White are displayed on the same side of the screen, and exemplars belonging to these 

categories are sorted with the same response key. The labels Bad and Black are displayed on the opposite 

side of the screen, and their exemplars are mapped with the same response key. In the contrasting associative 

condition, the labels White and Black switch their locations on the sides of the screen. Good and Black share 

the same side of the screen and are mapped with the same response key. Bad and White are displayed on the 

opposite side of the screen and are mapped with the other response key. The assumption underlying the IAT 

functioning is that respondents would show a better performance (i.e., faster response times and higher 

accuracy) when the task is consistent with their automatically activated association. The so-called IAT effect 

denotes the difference in respondents’ performance between the two associative conditions. 

The strength and direction of the IAT effect is usually expressed by the D-score (Greenwald, Nosek, 

& Banaji, 2003), which results from the standardization of the difference in the average response time 

between the two conditions. The effect size measure proposed by Greenwald et al. (2003) is the most 

commonly used. Other authors have introduced modifications to the D-score algorithm to either obtain more 

robust scores (Richetin, Costantini, Perugini, & Schönbrodt, 2015) or to fairly compare the IAT with other 

implicit measures (Epifania, Anselmi, & Robusto, 2020b). The D-score provides general information on the 

implicit constructs that have been assessed, but it cannot inform about the automatic associations that mostly 

contribute to the IAT effect. Sticking with the Race IAT example, it would not be possible to discern 

whether the result is mostly due to an in-group favoritism, an out-group derogation, or even both. Moreover, 

since the D-score is obtained by averaging across all trials in each associative condition, it cannot account 

for the dependency between the observations and the random variability due to both stimuli and respondents. 

As such, it might result in inflated scores (Brauer & Curtin, 2017; Wolsiefer, Westfall, & Judd, 2017), 



leading to inaccurate inferences on the implicit attitudes under investigation. Additionally, by overlooking 

the variability related to the stimuli, the information that can be gathered from each singular stimulus and 

their categories is completely neglected (Wolsiefer et al., 2017). 

Different models have been proposed for getting a better understanding of the IAT effect. Some of 

these models, like the Quad Model (Conrey, Gawronski, Sherman, Hugenberg, & Groom, 2005) or the ReAL 

Model (Meissner & Rothermund, 2013), consider only the accuracy responses, while other models, like the 

Diffusion Model (DM; Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007) or the Discrimination-

Association Model (DAM; Stefanutti, Robusto, Vianello, & Anselmi, 2013), simultaneously account for both 

accuracy and time responses. These models provide useful information at either the sample level (Quad 

model and ReAL model) or the respondent level (DAM and DM). DM and DAM also inform about the 

stimuli, but the information is provided at the level of stimuli categories and not at that of individual stimuli. 

Nevertheless, fine-grained information at the stimuli level would allow for testing whether individual stimuli 

are easily recognizable as prototypical exemplars of their own reference categories. Furthermore, the 

investigation on the contribution of each stimulus to the IAT effect would help in shedding a light on the 

meaning of the implicit measure itself. 

Rasch modeling (Rasch, 1960) of the IAT data can provide a fine-grained analysis at the level of 

each stimulus. Such an analysis allows for disentangling the automatic associations that mostly contribute to 

the IAT effect and for providing a better understanding of the measure. For instance, by applying the Rasch 

model to the IAT discretized response times, Anselmi et al. (2011) found that positive words were those that 

mostly contributed to the IAT effect. By analyzing responses to a Race IAT, the authors concluded that the 

implicit preference for European people over African people that is often observed in European respondents 

could be expression of in-group favoritism rather than out-group derogation. Despite the interesting insights 

provided by the Rasch modeling of IAT data, its application comes with some limitations. Firstly, the 

discretization of response times may result in a large loss of information. Additionally, Rasch model is not 

able to account for the non-independence of IAT observations, potentially resulting in biased parameter 

estimates and thus leading to an incorrect estimation of the importance of the effect of the IAT associative 

conditions (Judd, Westfall, & Kenny, 2017; McCullagh & Nelder, 1989). Finally, for the application of the 

Rasch model to the IAT, it was assumed that the difficulty of the two associative conditions did not differ 

across respondents, hence neglecting respondents’ individual differences.  

Linear Mixed Effects Models (LMMs) can easily handle all the above-mentioned issues, while 

providing a Rasch parametrization of the data. LMMs also allows for treating the response times in their 

continuous nature, potentially avoiding the loss of information related to their discretization. To better 

understand the IAT effect and the meaning of the IAT measure, while addressing the issues related to its  

sources of random variations, in the present work: (i) Generalized LMMs (GLMMs) have been applied to 

IAT accuracy responses to obtain Rasch model parameters estimates; (ii) LMMs have been applied to IAT 

log-time responses to obtain log-normal model parameters estimates; and (iii) The relationship between the 

classic measure of the IAT effect (i.e., the D-score) and the estimates of the models parameters obtained via 

the GLMM and the LMM has been investigated. 

In the following section, the use of Rasch model and log-normal model for the analysis of IAT data 

is described, as well as the meaning of the resulting parameters. The application of these models to a Race 

IAT is presented. Some final remarks conclude the argumentation. 

 

Models specification 

Accuracy and latency responses of the IAT can be modeled in a similar fashion by means of the Rasch model 

(Rasch, 1960) and the log-normal model (van der Linden, 2006), respectively. 

In the Rasch model, the probability of a respondent to endorse the correct response (i.e., categorizing 

the stimulus into the correct category) can be expressed as a function of his/her ability θ (i.e., the ability to 

correctly categorize the stimuli) and stimuli easiness b (i.e., stimuli characteristics that make them more or 

less recognizable as prototypical exemplars of their category). The higher the value of θ, the higher the 

respondent’s ability to perform the task, and, hence, the higher the proportion of stimuli correctly 

categorized. The higher the value of b, the easier the sorting of the stimulus in its own category. Thus, b 

informs about how much a stimulus is prototypical of the category that is representing. Rasch model 

parameters estimates can be obtained by applying GLMMs to IAT accuracy responses. In GLMMs, the 

natural link function (g) between the linear combination of predictors and the observed values y is the logit 

(McCullagh & Nelder, 1989). The inverse of the link function g (i.e., g-1) takes on a form that can be equated 



to the Rasch model (see De Boeck et al., 2011; Doran et al., 2007; Gelman & Hill, 2007 for the mathematical 

proofs). 

The log-normal model allows for using the response times in their continuous nature by log-

transforming the latencies. Consequently, the loss of information due to the discretization of the response 

times is avoided. According to this model,  the log-time response of a respondent can be expressed as a 

function of respondent’s speed τ (i.e., respondent’s speed to categorize the stimuli) and stimuli time intensity 

δ (i.e., stimuli characteristics that make them require more or less time for getting a response). The lower the 

value of τ, the higher the respondents’ speed. Likewise, the lower the value of δ, the lower the time the 

stimulus requires for getting a response. As for the b parameters of the Rasch model, δ informs about how 

much prototypical of its category the stimulus is. The lower the time it needs to be categorized, the more 

recognizable it is. Log-normal model parameter estimates can be obtained by applying LMMs to IAT 

response time after they have been log-transformed. In LMMs, the link between the predictors and the 

observed variables is the identity link, according to which the same scale of the dependent variable is taken 

as the scale for the link function, that is, the normal distribution. 

The Best Linear Unbiased Predictors (BLUP) are used for obtaining the Rasch model and log-normal 

estimates from the fitted (G)LMMs (De Boeck et al., 2012; Doran et al., 2007). BLUPs are the conditional 

modes of each level of the random effect, and they are not parameters of the model per se. They express the 

deviation of each level of the random effect from the estimated fixed effect. When added to the fixed effect 

of the IAT associative conditions, they result in the condition-specific estimates of either each respondent 

parameters or the condition-specific estimates of each stimulus parameters.  

When using (G)LMMs for obtaining the estimates of the Rasch model and the log-normal model 

parameters, the effect of the IAT condition on respondents’ performance can be investigated by specifying 

the between–conditions and within–respondents variability, or, in other words, by specifying the random 

slopes of the respondents in the associative conditions. This results in condition–specific respondents’ 

parameters. By specifying the between–conditions and within–stimuli variability (i.e., specifying the random 

slopes of the stimuli in the associative conditions), it is possible to obtain condition–specific estimates of the 

stimuli parameters, and hence investigating their contribution to the IAT effect. Three meaningful models for 

the analysis of the IAT accuracy responses were specified (left panel of Table 1), as well as three meaningful 

models for the analysis of the IAT log-time responses (right panel of Table 1). Besides the distribution of the 

error term, the GLMMs and the LMMs have the same random structures. The fixed intercept is set at 0, so 

that the fixed effects of the IAT associative conditions represent the expected average proportion of correct 

responses or the average response time in each condition for the Rasch model and the log-normal, 

respectively.  

 

TABLE 1 HERE 

 

The random structure specification of Model 1 (i.e., respondents’ random slopes in the associative conditions 

and stimuli random intercept) results in the estimation of condition–specific respondents’ parameters and 

overall stimuli parameters. The condition–specific respondents’ parameters, either θ or τ, can express if and 

how accuracy or speed performance of each respondent is affected by the IAT associative condition. By 

computing the difference between respondents’ condition–specific parameters, a measure of the bias due to 

the associative conditions can be obtained, allowing for testing whether there is an effect of the condition on 

respondents’ performance. Since the fixed intercept is set at 0 and stimuli are specified as random intercepts, 

their estimates are centered around 0, that is, the mean of the distribution of stimuli estimates. 

The random structure specification of Model 2 (i.e., stimuli random slopes in the associative 

conditions and respondents’ random intercept) results in the estimation of condition–specific stimuli 

parameters and overall respondents’ parameters. This model allows for testing whether the functioning of the 

stimuli differs between conditions. If a stimulus shows a higher b (or δ) parameter in one condition than in 

the other, it means that it was easier (or required less time) to be categorized in the former condition rather 

than in the other. Moreover, the differential measure between the condition–specific stimuli parameters 

informs about the bias due to the associative conditions, hence providing information about the contribution 

of each stimulus to the IAT effect. Since the fixed intercept is set at 0 and respondents are specified as 

random intercepts, their estimates are centered around 0, that is, the mean of the distribution of respondents’ 

estimates. 

Finally, the random structure specification of Model 3 (i.e., stimuli random intercepts and 



respondents’ random intercepts) results in the estimation of overall stimuli parameters and overall 

respondents’ parameters. These parameters inform about the across conditions performance of the 

respondents and the across conditions functioning of the stimuli. This model should be preferred when a low 

between–conditions variability is observed at both respondents’ and stimuli level. The lack of between–

conditions variability already indicates that there is no IAT effect on either respondents’ performance or 

stimuli characteristics.  Since both respondents and stimuli are specified as random intercepts, their estimates 

are centered around 0. This model is not identified, at least for what concerns the Rasch model (see Gelman 

& Hill, 2007), and it is just used as a Null model.  

Response times must be log-transformed for the application of the log-normal model and for 

obtaining its estimates. From now on, the models applied on IAT accuracy responses will be identified with 

the letter “A”, while the models applied on IAT log-time responses will be identified with the letter “T”. The 

R code used for estimating these models is reported in the Appendix.  

Outfit statistics were used to evaluate the fit of the data to the model chosen after model comparison. 

If Outfit statistics ranged between .50 to 2.00 (Linacre, 2002), they express a good fit of the data to the 

model. However, the most problematic ones are the Outfit statistics above 2, indicating a higher variability in 

the data that is not explained by the model (i.e., underfit). Outfit statistics below 0.50 indicates overfit of the 

model and will not be considered as problematic as those indicating underfit. 

 

Method 

 

The above-mentioned models were applied to a Race IAT.ls were fitted with lme4 package (Bates, 

Machler, Bolker, & Walker, 2015) in R (Version 3.5.1, R Core Team, 2018) and implicitMeasures 

package (Epifania, Anselmi, & Robusto, 2019b) was used for computing the IAT D-score. A free and user-

friendly tool for computing the IAT D-score is retrievable at http://fisppa.psy.unipd.it/DscoreApp/ 

(Epifania, Anselmi, & Robusto, 2019a).  

 

Participants. Sixty-five university students (F = 49.23%, Age = 24.95±2.09 years) voluntarily took part in 

the study. Participants were informed about the confidentiality of the data and asked for their consent to take 

part in the study. Most of them (84.62%) self-identified as belonging to the Mediterranean ethnic group. A 

sensitivity power analysis was run with G*Power (Faul, Erdfelder, Buchner, & Lang, 2009) to understand 

whether the sample size allowed for ensuring 80% power to detect an effect size f2 of at least 0.15 at p < .05. 

The sensitivity power analysis was run specifically for the investigation of the relationship between the 

parameter estimates of the Rasch and log-normal models and the IAT classic score and pointed out that the 

sample size was adequate for the aim. 

 

Materials and procedure. Participants were presented with a Race IAT. It was composed of 16 attribute 

stimuli, of which 8 represented the Good category (i.e., “love”, “good”, “happiness”, “joy”, “glory”, 

“peace”, “pleasure”, “laughter”) and 8 represented the Bad category (i.e., “bad”, “pain”, “failure”, 

“annoying”, “evil”, “hate”, “horrible”, “terrible”). Target stimuli (same as in Study 2 by Nosek, Greenwald, 

& Banaji, 2005) were 6 faces of African people representing the Black category (3 male and 3 female) and 6 

faces of European people representing the White category (3 male and 3 female). Participants were 

presented with 60 trials in the White-Good/Black-Bad (WGBB) condition, and 60 trials in the Black-

Good/White-Bad (BGWB) one. The IAT administration included a built-in correction, for which 

participants had to correct each error response in order to go on with the experiment. They were instructed 

to be as accurate and fast as they could. 

 

Data cleaning and D-score. Exclusion criteria based on both latency and accuracy responses were applied 

(Greenwald et al., 2003; Nosek, Banaji, & Greenwald, 2002). The algorithm D1 in Greenwald et al. (2003) 

was used for computing the D-score. The difference was computed between the average response time in 

the BGWB and that in the WGBB condition: Positive scores stood for a possible preference for European 

people over African people. For the application of the LMMs to the log-time responses, the latencies at the 

incorrect responses were used. 

 

Results 

 

http://fisppa.psy.unipd.it/DscoreApp/


No participants or trials were eliminated grounding on the response time exclusion criteria. Three 

participants were excluded because of the accuracy deletion criterion (Nosek et al., 2002). The sample was 

finally composed of 62 participants (F = 48.39%, Age = 24.92 ± 2.11 years). The overall average response 

time was 815.06 ms (sd = 423.20, skewness = 3.82, kurtosis = 33.87), while the average response time in the 

WGBB condition was 667.11 ms (sd = 294.06, skewness = 4.64, kurtosis = 44.60) and 943.01 ms (sd = 

488.89, skewness = 3.45, kurtosis = 29.05) in the BGWB one. When the latencies (expressed in second) are 

log-transformed, the overall average response time is  -0.29 log-seconds (sd = 0.40, skewness = 0.72, 

kurtosis = 3.88), the average response time in the WGBB condition is -0.43 log-seconds (sd = 0.31, 

skewness = 1.26, kurtosis = 3.73), and the average response time in the BGWB condition is -0.15 log-second 

(sd = 0.42, skewness = 0.24, kurtosis = 5.09). These response time distributions are consistent with 

computerized speed tasks like the IAT, where respondents are explicitly encouraged to give fast responses to 

all trials, and only a few numbers of slow responses are observed.  

 

Rasch models. Rasch models were obtained by applying GLMMs on IAT accuracy responses. Concerning 

AIC, Log-Likelihood, and Deviance, Model A2 (AIC = 3784.43, Log-Likelihood = -1886.21, Deviance = 

3722.43) performed better than Model A1 (AIC = 3786.51, Log-Likelihood = -1887.26, Deviance = 

3774.51) and Model A3 (AIC = 3785.87, Log-Likelihood = −1888.93, Deviance = 3777.87). However, the 

latter one showed the lowest BIC value (3813.53, 3825.91, 3828.00, BIC values for Model A3, A2, and A1, 

respectively). Model A2 was chosen. This model provided overall participants ability parameters θi and 

condition–specific stimuli easiness parameters (bWGBB and bBGWB). Results from Model A2 indicated a higher 

probability of correct response in the WGBB condition (log-odds = 3.45, SE = 0.12) than in the BGWB 

condition (log-odds = 2.07, SE = 0.11). Between–participants variability was 0.17. Between–stimuli 

variability in the WGBB condition (σ2 = 0.08) was lower than that in the BGWB condition (σ2 = 0.15). The 

correlation between stimuli variability in the two conditions was moderate (r = .34).  

The Outfit statistics for respondents ranged between 0.04 and 1.85 (M = 0.92 ± 0.33). Seven respondents 

showed Outfit statistics below 0.50, and they were retained in the analysis. 

All stimuli showed appropriate Outfit statistics in condition BGWB (M = 0.92 ± 0.12, Min = 0.69, Max = 

1.08). Outfit statistics in condition WGBB (M = 0.94 ± 0.40, Min = 0.25, Max = 1.71) highlighted four 

stimuli with Outfit statistics below 0.50, and they were retained in the analysis.  

Stimuli easiness parameters for each condition resulting from Model A2, are reported in Table 2. The stimuli 

condition—specific easiness estimates are obtained by adding the condition—specific BLUP for each 

stimulus to the fixed effect of the associative condition. 

 

TABLE 2 HERE 

 

The higher the value of b, the easier the stimulus is, meaning that it is easily recognized as belonging to its 

category and correctly assigned to that. Generally, IAT stimuli tended to be easy stimuli. Stimuli tended to 

be easier in the WGBB condition than in the BGWB condition, where they showed a higher easiness 

variability. On average, object stimuli in the WGBB condition were the easiest stimuli, while negative words 

stimuli tended to be the least easy stimuli in the BGWB condition, immediately followed by positive words 

in the same condition. The difference in stimuli easiness parameters is reported in Table 2, as well. Object 

stimuli showed the lowest average easiness difference, while attribute stimuli, particularly positive word 

stimuli, showed the highest average difference between conditions. The difference in the easiness estimates 

between the two associative conditions allowed for the identification of the stimuli of each category that 

gave the highest contribution and the least contribution to the IAT effect. The stimuli giving the highest 

contribution to the IAT effect were joy and happiness (Good category), evil and horrible (Bad category), 

wm3 and wf3 (White category), and bm2 and bf2 (Black category).  The stimuli giving the lowest 

contribution to the IAT effect were love and glory (Good category), annoying and pain (Bad category), wf1 

and wm1 (White category) and bm3 and bf3 (Black category). 

 

Log-normal models. Log-normal models were obtained by applying LMMs on IAT log-time responses. The 

three log-time models were compared between each other. Model T2 produced aberrant estimates (i.e., 

correlation between the stimuli random slopes equal to 1). Model T1 (AIC = 4399.66, BIC = 4448.06, Log-

Likelihood = -2192.83, Deviance = 4385.66) performed better than Model T3 (AIC = 4762.63, BIC = 

4797.20, Log-Likelihood = −2376.32, Deviance = 4752.63). Model T1 was chosen. This model resulted in 



condition–specific participants’ speed parameters (τWGBB and τBGWB) and overall stimuli time intensity 

parameters, δj. Respondents’ Outfit statistics showed a good fit for all respondents in both the associative 

conditions (M = 0.98 ± 0.01, Min = 0.98, Max = 0.99 for the BGWB condition, and M = 0.99 ± 0.01, Min = 

0.98, Max = 1.03 for the WGBB condition).  Concerning the stimuli, overall Outfit statistics indicated a good 

fit for all the stimuli (M =1.00 ± 0.16, Min = 0.77, Max =1.33). The condition—specific estimates of 

respondents’ speed are obtained by adding the condition—specific BLUP of each respondent to the 

corresponding fixed effect of the associative conditions. 

Responses in the WGBB condition tended to be faster (B = -0.43, SE = 0.02) than responses in the 

BGWB condition (B = -0.15, SE = 0.03). The between-stimuli variability was particularly low (σ2 = 0.003), 

while the between-participants variability was slightly higher in the BGWB condition (σ2 = 0.05) than that in 

the WGBB one (σ2 = 0.02). The correlation between respondents’ variability in the two conditions was 

strong (r = .63).   

Stimuli time intensity parameters δj obtained from Model T3 are reported in Table 2. The stimuli 

time intensity estimates are obtained by adding each stimulus BLUP to the fixed intercept. Since the fixed 

intercept is set at 0, the time intensity estimates are centered around 0.  The lower the value of δj, the lower 

the amount of time the stimulus needs for getting a response. Attribute stimuli required more time to get a 

response, while object stimuli were the ones requiring less time, with exemplars of the Black category 

inducing the fastest responses. African American male faces required less time to obtain a response than 

African American female faces did, while this pattern was not observed for White American people faces. 

Three of the positive attribute stimuli (pleasure, glory, laughter) showed time intensity estimates higher than 

the estimates of the stimuli belonging to the same category. Also, three negative words (failure, annoying, 

pain) showed a higher time intensity estimates than the other negative words. Object stimuli tended to have 

similar time intensity estimates. 

 

Regression model: D-score. A speed-differential measure was computed by taking the difference between 

speed estimates in the BGWB condition and speed estimates in the WGBB condition. Negative values 

indicated a respondent faster in the BGWB condition than in the WGBB condition. Pearson’s correlations 

were computed between participants’ ability, condition–specific speed parameters and speed-differential. 

Participants’ ability poorly and positively correlated with speed in the BGWB condition (r = .13, p = .32), 

while it poorly and negatively correlated with the speed-differential (r = –.14, p = .28). Ability moderately 

correlated with the speed parameters in the WGBB condition (r = .32, p = .01).  

Participants’ ability and speed-differential were regressed on the D-score. Backward deletion was 

used to investigate the linear combination of predictors accounting for the higher proportion of explained 

variance. Backward deletion kept both the predictors in the model, which accounted for about 80% of the 

total variance (Adjusted R2 = .78, F(2, 59) = 106.30, p < .001). Speed-differential strongly and positively 

predicted D-score (B = 1.93, t(59) = 13.88, p < .001). Ability negatively predicted the D-score (B = –0.18, 

t(59) = –2.48, p = .012).  

To better understand the specific contribution of the speed of each associative condition, a model 

including the linear combination of ability estimate, speed estimate in the WGBB condition, and speed 

estimate in the BGWB condition was specified as well. Backward deletion kept all three predictors in the 

model, which accounted for almost the 80% of the total variance (Adjusted R2 = .79, F(3, 58) = 76.46, p < 

.001). Speed estimate in the WGBB condition negatively predicted the D-score (B = –2.22, t(58) = –11.43, p 

< .001), while speed in the BGWB condition positively predicted it (B = 1.92, t(58) = 14.16, p < .001). 

Despite the ability parameter remained in the model, its contribution was no longer significant (B = –0.13, 

t(58) =–1.76, p = .08).  

 

Final remarks 



The application of (G)LMMs to IAT data proved to be an effective modeling framework for obtaining the 

estimates of Rasch model and log-normal model parameters while accounting for the non-independence of 

the observations. 

The fine-grained analysis at the stimuli level allowed for a deeper understanding of the meaning of 

the IAT measure, for example by giving the chance of investigating the stimuli that were not representative 

of their category or did not contribute to the IAT effect. Specifically, these models provided detailed 

information about how much each stimulus is representative of its own category. According to Nosek et al. 

(2005), a valid IAT measure can be obtained by using as few as two stimuli to represent each category. The 

information at the stimuli level provided by these models allows for exploiting the most representative and 

prototypical exemplars of each category. For instance, it was possible to identify two stimuli for each 

category providing the highest information (e.g., the words joy and happiness for the Good category). 

Grounding on these results, it is possible to design new IATs that can maximize the information, while 

reducing the number of stimuli representing each category and, consequently, the number of trials. However, 

the estimates provided by the Rasch model and the log-normal model were not considered together, and 

hence the information they are providing should be interpreted with caution. This issue can be addressed by 

using a hierarchical approach like the one in van der Linden (2007). 

The representativeness of the stimuli can be pretested in a sample drawn from the population of 

interest. Even though this procedure is a valid procedure, it should be repeated every time the IAT is used on 

samples drawn from different populations. One of the advantages of Rasch modeling is that the estimates 

obtained on the stimuli are independent from the sample from which they were estimated. As such, stimuli 

parameters estimates can provide information on stimuli functioning that can be generalized to other samples 

(drawn from the same population) than the one from which they were obtained. Besides, by using this 

approach, it is possible to add new stimuli and test their functioning independently from the functioning of 

the old stimuli.  

The information at the stimuli level can also be used for understanding the associations mostly 

driving the IAT effect. In this case, the evaluative dimensions Good and Bad were the stimuli categories 

showing the highest difference between the associative conditions. Both stimuli categories resulted easier in 

the WGBB condition than in the BGWB condition, meaning that the Good stimuli were more easily sorted 

when their category shared the response key with White category than when it shared the response key with 

Black category. Similarly, Bad stimuli were more easily sorted when their category shared the response key 

with Black category than when it shared the response key with White category. This result is in line with the 

positive primacy effect found by Anselmi et al. (2011), and it also highlights the contribution of the negative 

evaluative dimension in influencing the IAT effect. Given that the IAT effect appears to be mostly driven by 

evaluative dimensions, this result is in contrast with what has been found by Klauer et al. (2007), according 

to whom attitudes influence the performance at the IAT through the categorization of the object stimuli.  

These models also resulted in detailed information on respondents’ accuracy and speed performance. 

Understating how respondents are behaving during the IAT administration is crucial for getting a deeper 

comprehension of its measure and on the factors that might influence it. Respondents’ accuracy performance 

was not affected by the IAT associative conditions, while their speed performance was. Consequently, the 

IAT effect seems to be mostly due to a respondents’ slowdown, while the accuracy performance remains 

unaltered. This result can be interpreted by considering the speed-accuracy trade-off (Klauer et al., 2007). 

Indeed, respondents tend to slow down to maintain the accuracy unaltered in the condition that is against 

their automatically activated associations.   

Not surprisingly, the D-score was strongly related with the speed parameters, both speed-differential 

and condition–specific speed estimates, while the contribution of ability was negligible. By using a 

differential measure to predict the D-score, it is not possible to understand the actual weight of each 

associative condition in determining the final score. Conversely, when the condition–specific estimates were 

used to predict the D-score, it was possible to isolate and highlight the higher contribution of the speed 

estimate pertaining to the WGBB condition compared with those pertaining to BGWB condition. This result 

is consistent with those obtained from the stimuli easiness estimates.  

Given their flexibility, these models can be used for modeling data from other implicit measures 

similar to the IAT, such as the Single Category IAT (SC-IAT; Karpinski & Steinman, 2006) or the Go/No-

Go Association Task (GNAT; Nosek & Banaji, 2001). Since the SC-IAT results from a slight modification 

of the IAT procedure and is based on speed and accuracy of stimuli categorization, both the accuracy and the 

log-normal models can be used for modeling its responses. Differently, the GNAT is based solely on 



accuracy responses. Given that the accuracy and the log-time models do not rely on each other to be applied, 

it is possible to use only the accuracy models for obtaining the estimates of the Rasch model parameters on 

the GNAT accuracy responses. Moreover, since the IAT can be used together with either the SC-IAT (e.g., 

Karpinski & Steinman, 2006; Chevance, Stephan, Heraud, & Boiché, 2018) or the GNAT (e.g., ´ 

Ueda, Yanagisawa, Ashida, & Abe, 2017; Yang, Zhao, Guan, & Huang, 2017), it is possible to specify 

LMMs able to simultaneously account for the different implicit measures in one comprehensive model. 

Since the aim of the study was to investigate the effect of the IAT associative condition on 

respondents’ performance or stimuli functioning within a Rasch approach, no other predictors were entered 

in the models. However, given the flexibility of these models, it is possible to include other fixed effects for 

the investigation of the effect of different features of the stimuli (e.g., whether it is a word or an image) or of 

different characteristics of the respondents.  

In this study, we did not investigate and compare the relationship between explicit measures of 

attitudes, behavioral outcomes, estimates obtained through Rasch and log-normal models, and D-score. It 

can be speculated that, since the estimates obtained from the (G)LMMs are not influenced by unwanted error 

variance due to the non-independence of the observations, they can be more reliable than the D-score, hence 

allowing for a better inference of the construct under investigation. Therefore, they may result in a better 

prediction of behavioral outcomes, as well as showing stronger relations with explicit evaluations tapping the 

same construct. Future studies should address this issue. 

 Rasch analysis based on small samples, such as that used in this study, should be used for 

exploratory purposes with extreme caution (Chen, Lederking, Jin, Wyrwich, Gelhorn & Revicki, 2014). 

Nonetheless, when LMMs are employed, it is not the sample size per se that matters, but the number of 

observations for each unit of analysis, in this case, the respondents. There were 120 observations for each 

respondent, which should have ensured reliable estimates for the respondents.  

This work highlighted how a simple approach can lead to a thorough and detailed analysis of the IAT 

data within a Rasch framework. The fine-grained analysis at the stimuli, participants, and associative 

condition levels provided by these models may lead to new interesting insights on the IAT functioning and 

meaning. 
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Table 1: Accuracy and log-time models overview 

 Accuracy  Response time 

Model Respondents Stimuli  Respondents Stimuli 

1 Condition–specific 

ability (θik) 

Overall easiness (bj)  Condition–specific 

speed (τik) 

Overall time intensity 

(δj) 

2 Overall ability (θi) Condition–specific 

easiness (bjk) 

 Overall speed (τi) Condition–specific time 

intensity (δjk) 

3 Overall ability (θi) Overall easiness (bj)  Overall speed (τi) Overall time intensity 

(δj) 

Note: Respondent i = 1,…,I, Stimulus j = 1,…, J, Condition k = 1,…,K, where I, J, and K, are 

the number of respondents, stimuli, and conditions, respectively. 

 

 
Table 2: Stimuli condition-specific estimates (bjk) and overall time intensity estimates (δj). 

 bWGBB  bBGWB bWGBB - 

bWGBB 

δj   bWGBB  bBGWB bWGBB - 

bWGBB 

δj 

Positive words  Negative words 

joy 3.53 1.69 1.85 0.02  evil  3.19 1.37 1.82 -0.01 

happiness 3.48 1.67 1.81 0.01  horrible  3.56 1.77 1.79 0.05 

pleasure 3.29 1.60 1.69 0.05  bad  3.11 1.58 1.53 0.03 

peace 3.32 1.73 1.59 0.01  terrible  3.34 1.81 1.52 0.01 

good 3.54 1.95 1.59 0.01  hate  3.34 1.85 1.50 0.01 



laughter 3.54 2.03 1.52 0.09  failure  3.43 2.06 1.38 0.05 

love 3.48 1.99 1.49 0.01  annoying  3.07 1.87 1.20 0.09 

glory 3.42 1.99 1.43 0.08  pain  3.21 2.02 1.19 0.10 

M  3.45  1.83  1.62  0.03    3.28  1.79  1.49  0.04  

sd 0.09 0.16 0.15   0.04   0.15 0.21 0.22 0.04 

White faces  Black faces 

wm3 3.61 2.04 1.57 –0.05   bm2  3.61 2.32 1.30 –0.08 

wf3 3.66 2.29 1.36 –0.05   bf2  3.56 2.33 1.23 –0.06 

wf2 3.59 2.46 1.12 –0.03   bf1  3.56 2.36 1.20 –0.04 

wm2 3.48 2.44 1.04  0.03   bm1  3.52 2.42 1.10 –0.10 

wf1 3.59 2.57 1.02 –0.05   bm3  3.58 2.51 1.07 –0.09 

wm1 3.28 2.28 1.01 –0.02   bf3  3.36 2.47 0.89 –0.05 

M  3.54  2.35  1.19  –0.03    3.53  2.40  1.13  –0.07  

sd 0.14 0.17 0.21    0.03   0.09 0.07 0.13  0.02 

Note: b: easiness estimates obtained from Model A2, δj: time intensity estimates obtained from Model T3,  

“wf”: European female face, “wm”: European male face, “bf”: African female face, “bm”: African male 

face; WGBB: White-Good/Black-Bad condition; BGWB: Black-Good/White-Bad condition. Rows are 

ordered by decreasing values of bWGBB − bWGBB 

 

 

Appendix 

 

The Rasch and log-normal estimates were obtained by means of lme4 package (Bates et al., 2015) in R. The 

R code used for estimating the models and for extracting the parameters estimates is illustrated in this 

Appendix. This code can be copied and pasted in an R script, and it can be executed without changes as long 

as the data set on which the models are applied has the following characteristics: 

 

• subject: Column containing the respondents’ IDs (can be numeric, a factor, or a string, as long as 

it is unique for each respondent). 

• condition: Column containing the labels for the two associative conditions of the IAT (factor 

with two levels such as mappingA and mappingB). 

• stimuli: column containing the labels identifying each stimulus (e.g., good, bad, wf1, bm2). 

• latency: Column containing the latency of the IAT responses. Latency can be expressed in 

seconds or milliseconds (in this paper, we used seconds). In case the IAT included a built-in 

correction for the error responses, the raw response times should be used instead of the corrected 

ones. 

• correct: Column containing the accuracy of the IAT responses, where 0 is the incorrect response 

and 1 is the correct response. 

 

The data set must be in a long format. This means that the response of each respondent on each stimulus in 

each associative condition must be on a separate row, and the total number of observations (and rows) for 

each subject must correspond to the total number of critical trials in the two associative conditions. For 

instance, in this study participants were presented with 60 trials in each associative condition, so that we had 

120 trials for each respondent, and consequently 120 rows for each participant.  

In both accuracy and log-time responses, the fixed intercept was set at 0, so that the estimates for the 

effect of the IAT associative conditions can be interpreted as the expected log-odds of the probability of a 

correct response in each condition or the expected average log-response time in each condition, respectively. 

For both accuracy and log-time responses, in Model 1 ( 

 

Table 1) the estimates of the stimuli are centered at 0 (argument (1|stimuli)), while in Model 2 

( 

 

Table 1) respondents estimates are centered at 0 (argument (1|subject)). 

 



Accuracy models specification 

 

The code for the specification of the accuracy models is illustrated. The name of the data set in the argument 

data must be changed accordingly. 

 

Model 1: Between–stimuli variability specified as random intercepts (i.e., (1|stimuli)). Within–

subjects and between–conditions variability specified as random slopes of the respondents in the conditions 

(i.e., (0 + condition|subject)). 

 
library(lme4) # upload the package for the estimation of the models 

a1 <- glmer(correct ~ 0 + condition + (1|stimuli) +  

          (0 + condition|subject),   

           data = your_data, family = "binomial") 

summary(a1) # summary of the results 

 

Model 2: Between–subjects variability specified as random intercepts (i.e., (1|subject)). Within–

stimuli and between–conditions variability specified as random slopes of the stimuli in the conditions (i.e., 

(0 + condition|stimuli)). 

 
a2 <- glmer(correct ~ 0 + condition + (1|subject) +  

           (0 + condition|stimuli),  

            data = your_data, family = "binomial") 

summary(a2) # summary of the results 

 

Model 3: Between–subjects variability specified as random intercepts (i.e., (1|subjects)). Between–

stimuli variability specified as random intercepts (i.e., (1|stimuli)). 

 
a3 <- glmer(correct ~ 0 + condition + (1|stimuli) + (1|subject), 

            data = your_data, 

            family = "binomial") 

summary(a3) # summary of the results 

 

Once the three models have been estimated, they can be compared with each other. Model 1 (a1) and Model 

2 (a2) have the same degrees of freedom: 

 
anova(a1, a2, a3) 

 

Accuracy models: Rasch model parameter estimates. Grounding on the results of the model comparison, 

the best fitting model can be selected for extracting the Rasch model parameter estimates. 

 

Model 1 results in condition–specific respondents’ estimates and overall stimuli estimates. Respondents’ 

condition–specific ability estimates can be extracted as follows: 

 
cond_ability <- coef(a1)$subject[, -1] # drop the first column 

                        # (fixed intercepts set at 0) 

                        # rownames are the subjects’ IDs 

 

Stimuli easiness estimates can be extracted and stored in a data frame as well: 

 
easiness <- data.frame( 

              stimuli = rownames(coef(a1)$stimuli),  

              easiness = coef(a1)$stimuli[, 1] # select only the 

                       # random estimates intercept 

) 

 



Model 2 results in condition–specific stimuli estimates and overall respondents’ estimates. Stimuli 

condition–specific estimates can be extracted as follows: 

 
easiness_cond <- coef(a2)$stimuli[, -1] # drop the first column 

                       # (fixed intercept set at 0) 

                       # rownames are stimuli labels 

 

Respondents overall ability estimates can be extracted and stored in a data frame: 

 
ability <- data.frame( 

             subject = rownames(coef(a2)$subject), 

             ability = coef(a2)$subject[, 1] # select only the  

             # random intercept estimates 

) 

 

Model 3 results in overall respondents’ estimates and overall stimuli parameters. Respondents overall ability 

estimates can be extracted and stored in a data frame: 

 
ability <- data.frame( 

             subject = rownames(coef(a3)$subject), 

             ability = coef(a3)$subject[, -1] 

) 

 

Stimuli overall easiness estimates can be extracted and stored as well: 

 
easiness <- data.frame( 

              stimuli = rownames(coef(a3)$stimuli), 

              easiness = coef(a3)$stimuli[, -1] 

) 

 

Log-time models specification 

 

The code for the estimation of the log-normal models is the same as the one used for estimating the Rasch 

models. The changes concern the name of the specific function to use (from glmer() to lmer()) and the 

dependent variable (from correct to log(latency)). For this reason, we report the code for the 

estimation of Model 1 only. 

 
t1 <- lmer(log(seconds) ~ 0 + condition + (1|stimuli) + 

          (0 + condition|subject), 

          data = your_data, 

          REML = FALSE) # Maximum Likelihood estimation 

summary(t1) # summary of the results 

 

For log-time models comparison, the same code as the one used for accuracy models comparison can be used 

by changing the names of the models from a to t. 

 

Log-time models: Log-normal model parameters. We report the code for extracting the log-normal model 

estimates for log-time Model 1, assuming it was the best fitting model according to model comparison. The 

same code used for extracting the estimates for the accuracy models can be used for extracting the 

parameters of the log-normal models. The changes regard the name of the objects containing the models, 

from a to t, and the names of the new objects created for the parameters (e.g., from easiness to 

intensity). 

Respondents’ condition–specific parameters: 

 
cond_speed <- coef(a1)$subject[, -1] # drop the first column 



                      # (fixed intercepts set at 0) 

                      # rownames are the subjects’ IDs 

 

Stimuli overall time intensity parameters: 

 
intensity <- data.frame( 

               stimuli = rownames(coef(t1)$stimuli), 

               intensity = coef(t1)$stimuli[, 1] # select only the 

            # random intercept estimates 

) 

 

 

 

Abstract (not exceed 150 words) 

 

Despite the Implicit Association Test (IAT) is widely used for the implicit assessment of attitudes, the 

meaning of its effect remains unclear. Literature on the IAT already highlighted the importance of the stimuli 

characteristics in influencing the meaning and the validity of the IAT measure. A model providing in-depth 

information at both respondents and stimuli levels can help in clarifying the meaning of the IAT measure. A 

modeling framework based on Linear Mixed Effects Models for a fine-grained analysis at both respondents 

and stimuli levels is presented. The proposed models provide a detailed picture of the contribution of each 

stimulus to the IAT effect, allowing for the identification of malfunctioning stimuli that can be eliminated or 

substituted to obtain better performing IATs. The information on respondents allows for a better 

interpretation of the IAT effect. Implications of the results and future research directions are discussed. 

 

Abstract words count: 145 

 

Five keywords  

Implicit Social Cognition; Implicit Association Test; Fully-crossed design; Rasch Model; Log-normal 

Model 

 

x I authorize the use of my personal data under the Regulation (EU) 2016/679 (General 
Data Protection Regulation) 

 


