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Abstract
Deep learning models obtain impressive accuracy in road scene understanding; however, they need a large number of labeled
samples for their training. Additionally, such models do not generalize well to environments where the statistical properties
of data do not perfectly match those of training scenes, and this can be a significant problem for intelligent vehicles. Hence,
domain adaptation approaches have been introduced to transfer knowledge acquired on a label-abundant source domain to a
related label-scarce target domain. In this work, we design and carefully analyze multiple latent space-shaping regularization
strategies that work together to reduce the domain shift. More in detail, we devise a feature clustering strategy to increase
domain alignment, a feature perpendicularity constraint to space apart features belonging to different semantic classes,
including those not present in the current batch, and a feature norm alignment strategy to separate active and inactive
channels. In addition, we propose a novel evaluation metric to capture the relative performance of an adapted model with
respect to supervised training. We validate our framework in driving scenarios, considering both synthetic-to-real and real-
to-real adaptation, outperforming previous feature-level state-of-the-art methods on multiple road scenes benchmarks.

Keywords Semantic segmentation · Domain adaptation · Latent space shaping · Representation learning

1 Introduction

One of the key components of a self-driving vehicle is the
capability to understand the surrounding environment from
sensory input data. Semantic segmentation enables accurate
scene understanding, by assigning all pixels of the input
images to a semantic category corresponding to key elements
to be detected, such as the road, other vehicles or traffic lights
and signs [1]. Nowadays, such a task is commonly tackled
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with deep convolutional neural networks (DCNNs), which
have achieved outstanding results in image understanding
tasks, provided that a sufficiently large number of labeled
examples are available from the target input domain distri-
bution. On the other side, the annotation of thousands of
images of road scenes is highly expensive, time-consuming,
error-prone and, possibly, worthless, since the test data can
show a domain shift with respect to the training labeled sam-
ples. Therefore, recently, a new requirement has emerged
for DCNN-based scene understanding systems embedded in
autonomous driving vehicles, namely allowing training with
a combination of labeled source samples (e.g., synthetic from
ad hoc simulators or driving video games) and unlabeled
target samples (e.g., real-world acquisitions from cameras
mounted on cars), with the aim of getting high performance
on data following the target distribution. With this strategy,
the need for large quantities of labeled real-world data can
be avoided by using samples from a source domain where
they are abundantly available and annotations are faster and
cheaper to generate.

Unfortunately, DCNNs are prone to failure when they are
shown an input domain distribution other than the training
one (domain shift phenomenon). In order to deal with this
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problem, various unsupervised domain adaptation (UDA)
techniques have been developed to adapt networks at dif-
ferent stages (the most common are the input, feature and
output levels) [2].

Deep learning models for semantic segmentation are
mostly based on encoder–decoder architectures, i.e., they
build some concise latent representations of the inputs, which
are highly correlated with the classifier output. As such, they
are used in the subsequent classification process [3,4] that
reconstructs the full-resolution segmentationmap. Neverthe-
less, only some UDA techniques for semantic segmentation
work in the feature space because of its large dimensionality.

In this paper, we propose an approach focusing on feature
space adaptation, introducing a new set of strategies working
at the latent space level, built on top of our previous confer-
encework [5]. Employing a shaping objective at that level we
are able to promote class-aware feature extraction and fea-
ture invariance between source and target domains. More in
detail, our target is to push the feature vectors on the bound-
ary of an N-dimensional sphere, assigning to each class a
direction orthogonal to all others. Such a shaping objective
can be implemented using three major components:

Firstly, a clustering constraint groups feature vectors of
each class tightly around their prototypical representation.

Secondly, a perpendicularity objective over the class pro-
totypes promotes disjoint filter activation sets across different
semantic categories.

Finally, a regularization-based norm alignment objective
enforces consistent vector norms in the source and target
domains, while jointly forcing progressively increasing norm
values. This, in combination with the perpendicularity con-
straint, is able to reduce the entropy associated with feature
vector channel activations.

Importantly, the proposed techniques require the gener-
ation of accurate class prototypes and the imposition of a
strong correlation between feature representations and pre-
dicted segmentation maps. Hence, we also propose a novel
strategy to map semantic information from the labelingmaps
to the low-resolution feature space (annotations downsam-
pling).

1.1 Limitations in existing work

The major limitations of our previous approach [5] can be
found in the inherent instability of pseudo-labels in the UDA
setting. Since the employed architecture is trained on a dif-
ferent domain, the predictions and features it produces when
analyzing target samples may vary significantly between
batches. This leads to a loss in performance, especially when
considering class-conditional clustering and feature perpen-
dicularity. A further problem can be found in the norm
alignment constraint, which enforced the same norm value
for all features, regardless of the semantic content and of

the specific channels’ activation profile. This strategy may
introduce noise, since channels that the network may want to
disable are still forced to produce a nonzero result, especially
in feature vectors that correspond to pixel windowswithmul-
tiple class labels (usually found along object borders) or for
which there is no clear network response.

1.2 Contribution

To tackle the first problem, we focused on the computa-
tion of prototypes and feature vector extraction. The first
now considers the prototype trajectory evolution for a better
estimation (Sect. 3.2), while the second exploits target infor-
mation to reduce the domain shift (Sect. 3.3); additionally,
a class-weighting scheme is used in the source supervi-
sion (Sect. 3.1). In particular, the clustering objective was
modified to be more resilient to outliers (Sect. 4.1); the per-
pendicularity constraint now accounts for classes not present
in the current batch (Sect. 4.2); and the norm alignment now
ignores low-activated channels (Sect. 4.3).

To analyze the improvements to the proposed space-
shaping constraints, we report ablation studies on our
approach, LSR+ (Sect. 8), and for the proposed evaluation
metric, mASR (Sect. 6).

Extensive experiments have been conducted onmany road
scenarios, expanding the set of experiments reported in [5].
The results are evaluated on 4 backbones in 6 different setups.
These include not only 2 synthetic-to-real ones, commonly
used in related works, but also 4 real-to-real settings address-
ing the critical issue of generalizing autonomous driving
systems across different cities and types of roads in different
regions of the world. Additional results using the unlabeled
Cityscapes coarse set [6] are reported, showing significant
performance gains when more unlabeled data are used (see
Table 1).

Overall, our approach shows significant improvement
over the conference version [5], gaining, on average, 1%
mIoU on all settings. Importantly, the performance gains
are well spread across the classes, as is confirmed by the
very high mASR score. Such achievement confirms that our
space-shaping approach is able to bridge the gap between
source and target domains very effectively, even when small
and rare classes are considered.

2 Related works

Semantic segmentation of road scenes is a very active
research field. Many semantic segmentation architectures
based on the widely used encoder–decoder architecture [7–
12] or more recently on vision transformers [13–15] have
been applied to road scenes for two interconnected motiva-
tions: First, there is a large interest into the target application
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of self-driving vehicles, and second, there is the availability
of large real world (Cityscapes [6],Mapillary [16], IDD [17],
Cross-City [18], CamVid [19]) and synthetic (GTA5 [20],
SYNTHIA [21], SELMA [22] and SHIFT[23]) datasets that
can be employed to train deep learning architectures. These
twomotivations also provided a strong push for road-scenes-
specific architectures [24–29], which have recently started to
be proposed by the research community.

Unsupervised domain adaptation consists in transferring
knowledge extracted from a label-rich source domain to a
completely unlabeled target domain. The ultimate objective
is to address the performance decline caused by domain shift,
which negatively affects the generalization capabilities of
deep neural networks. The problem was initially studied for
the classification task, but recently many works dealt with
the unsupervised adaptation problem in relation to seman-
tic segmentation and in other similarly complex tasks [30].
Although several methods have been proposed to tackle the
adaptation task, they all share an underlying search for a form
of domain distribution alignment over some representation
space. Somemethods pursue distributionmatching inside the
input image space via style transfer [31] or image generation
techniques, while others aim at bridging the statistical gap
between source and target representations produced by the
task model, whether manipulating some output representa-
tions or operating inside a latent feature space [2].

Input-space adaptation has been commonly addressed
resorting to image-to-image translation [32–39]. By trans-
ferring visual attributes across source and target samples,
domain invariance is achieved in terms of visual appearance.
Source supervision can thus be safely exploited in the shared
image space, retaining consistent accuracy on the source and
target data.

As concerns feature and output-space adaptation, adver-
sarial learning has been largely employed to bridge the
statistical domain gap [40–46]. With the help of a domain
discriminator, the task network is forced to provide statis-
tically indistinguishable source and target representations,
typically drawn from a latent feature space [40–42] or in
the form of probability maps at the output of the segmenta-
tion pipeline [42–46]. More recently, some works focusing
on feature-level regularization have been proposed [5,47].
In [47], a class-conditional domain alignment is achieved
by means of a discriminative clustering module, paired with
orthogonality constraints to enhance class separability. The
approach of [5] relies on conditional clustering adaptation,
enhanced by a perpendicularity objective over class proto-
typical representations and a novel norm alignment loss to
improve class separability at the latent space. As an alterna-
tive form of feature-level adaptation, dropout regularization
has been explored [48–50]: decision boundaries are pushed
away from target high-density regions in the latent space
without direct supervision.

Output-space adaptation has been further pursued by
resorting to self-training [51,52], where the learning pro-
cess is guided (in a self-supervisedmanner) by pseudo-labels
extracted from target network predictions. Self-supervision
has been proposed in a curriculum learning fashion as
well [53–55]. First, simple tasks that are less sensitive to
domain shift are solved, by inferring some useful properties
related to the target domain. Then, the extracted information
is exploited to address more complex learning tasks (e.g.,
semantic segmentation).Alternatively, someworks introduce
entropy minimization techniques [56–58], which force more
confident network predictions over target data, thus encour-
aging the behavior shown in the supervised source domain.

Latent space regularization has been shown to ease the
semantic segmentation tasks in different settings, such as
UDA [59,60], continual learning [61], federated learning
[62] and few-shot learning [63,64]. The idea is to embed
additional constraints on feature representations during the
training process, enforcing a regular semantic structure on
latent spaces of the deep neural classifier. In UDA, where
target semantic supervision is missing, regularization can
be applied in a class-conditional manner by relying on the
exclusive supervision of source samples, while indirectly
propagating its effect to target representations as well. Such
improved regularity has, in fact, shown to promote general-
ization properties, leading to statistical alignment between
the source and target distributions when regularization is
jointly applied over both domains [5,47].

A multitude of feature clustering techniques based on
the K-means algorithm has been proposed [59,60,65,66] to
address the adaptation task. Those works are mainly focused
on image classification and resort to a projection to a more
easily tractable lower-dimensional latent space where to per-
form pseudo-labeling of the original target representations
extracted by the task model [60,65,66]. In [5,47], the idea
is further refined and applied to semantic segmentation by
proposing an explicit clustering objective pairedwith orthog-
onality constraints to force feature vectors to cluster around
the respective class prototypes. Feature-level orthogonality
has been also explored in [67] to limit the redundancy of the
information encoded in feature representations. Approaches
closer to our strategy are [68,69], whereUDA is promoted via
an orthogonality objective over class prototypes. Nonethe-
less, [67–69] all limit their focus to the image classification
task.

3 Problem setting

In this section, we overview our setup, detailing the math-
ematical notation used throughout the paper. We start by
identifying the input space as X ⊂ R

H×W×3 and the cor-
responding label space as Y ⊂ CH×W , where H and W
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represent the image resolution and C the class set. Further-
more, we assume to have a training set T = T s ⋃

T t , where
T s = {(Xs

n,Y
s
n)}Ns

n=1 contains labeled samples (Xs
n,Y

s
n) ∈

X s × Ys originated from a source domain, while an addi-
tional set of input samples T t = {Xt

n}Nt
n=1 is drawn from an

unlabeled target domain (Xt
n ∈ X t ).We adapt the knowledge

of semantic segmentation learned on the source domain to
the unsupervised target domain. Superscript s identifies the
source domain, while t the target.

As done by most recent approaches for semantic seg-
mentation, we assume a model S = D ◦ E based on an
encoder–decoder architecture, that is, made by the consec-
utive application of an encoder network E (referred to as
backbone, which acts as feature extractor) and a decoder
network D, which actually performs the classification and
produces the segmentation map. We denote the features
extracted from an input imageX as E(X) = F ∈ R

H ′×W ′×K
0+ ,

where K refers to the number of channels and H ′ ×W ′ to the
low-dimensional (feature-level) spatial resolution. Thanks
to the topology of encoder–decoder DCNNs for semantic
segmentation, classes are encoded into ideal latent repre-
sentations, invariant with respect to the domain shift. The
strategies presented in Sect. 4 enforce this goal by com-
paring the extracted features belonging to each class with
the respective prototypical representations. In the follow-
ing paragraphs, we present the techniques used to compute
the prototypes and associate feature vectors with semantic
classes.

3.1 Weighted histogram-aware downsampling

Given that the spatial arrangement of the pixels of an image
is maintained while it is processed by an encoder–decoder
dilated residual network [70] (even if at reduced resolution
in the internal feature representation), we can assume a tight
relationship between any feature vector (i.e., the vector of
features associated with a single spatial location within the
feature tensor) and the semantic labelingof the corresponding
image region.

Hence, the extraction process begins with the identifica-
tion of a way to propagate the labeling information to latent
representations (decimation), without losing the semantic
content of the window (image region) corresponding to
each feature vector. Issues in the mapping typical of naïve
approaches would strongly affect the whole following pro-
cedure. Our solution is a nonlinear pooling function, which
instead of computing a simple subsampling (e.g., nearest
neighbor) extracts a weighted frequency histogram over the
labels of all the pixels in the window corresponding to a
low-resolution feature location. The weights are inversely
proportional to the class frequency in the source training
dataset. Then, these metrics are used to select the most

appropriate class for each image region, producing source
feature-level label maps {Isn}Ns

n=1. The computation of the tar-

get counterparts ({Itn}Nt
n=1) is discussed in Sect. 3.3 and we

remark that each Is,tn belongs to the set CH ′×W ′
. In particular,

we choose the label with the highest frequency peak in the
windows, only if such a peak is relevant enough, i.e., if all
other peaks are smaller than Th times it. (A similar approach
is found in the orientation assignment step of the SIFT fea-
ture extractor [71].) Empirically, we set Th = 0.5. Finally,
we remark on a useful side effect of this technique: when-
ever a window cannot be uniquely assigned to a class (that
is, it contains multiple labels), the procedure automatically
assigns it to the void class.

3.2 Prototype extraction

The feature-level label maps {Is,tn }Ns,t
n=1 allow to identify the

setF s,t
c of feature vectors belonging to class c ∈ C in training

batch B:

F s,t
c =

{
Fs,t
n [h, w] ∈ R

K
0+ | Is,tn [h, w] = c,∀n ∈ B

}
(1)

where the couple [h, w] denotes the spatial location (0 ≤ h <

H ′ and 0 ≤ w < W ′). The definition is further expanded
into the set of all feature vectors in batch B by taking their
union with the set F s,t

v of samples belonging to class void:
F s,t = (

⋃
c F

s,t
c )∪F s,t

v . From these sets, we can extract the
batch-wise prototypes of each class (note that we use feature
vectors exclusively from the source):

pc[i] = 1

|F s
c |

∑

f∈F s
c

f[i] ∀i, 1 ≤ i ≤ K (2)

Moreover, with the goal of obtainingmore stable and reliable
prototypes, and reducing estimation noise, we consider the
exponentially smoothed vectors:

p̂c,new = (1 − η)pc + ηp̂c,old (3)

The parameters are initialized with p̂c = 0 and η = 0.8
(empirically). In our notation, p̂c,old represents the smoothed
estimate up to the previous optimization step, pc the pro-
totypes estimated on the current batch and p̂c,new the new
smoothed estimate. This way, by setting η > 0, we can prop-
agate the previous estimates to the current batch, allowing to
consider classes absent from Ys

n in the loss computation.

3.3 Feature pseudo-labeling

While the histogram strategy can be seamlessly extended to
be used with pseudo-labels (i.e., network estimates for the
unlabeled target samples, as was our strategy in the previous
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Fig. 1 Visual representation of our two-pass feature vector classifica-
tion strategy. The initial source-based classification (in blue) can lead to
erroneously classified target samples (purple-shaded areas). This prob-
lem is tackled by computing target prototypes as the centroids of the
partitioned vectors (notice the shift compared to the original source pro-
totype), these prototypes are used as new classification centers (green
boundary), producing a correct segmentation

work [5]), this approach can introduce instability in the train-
ing procedure. To avoid such an issue, we devise a novel way
of extracting the target feature-level label maps {Itn}Nt

n=1.
Our strategy exploits the euclidean distance in the latent

space, computing a clustering of the feature vectors around
their prototype (see Fig. 1). More in detail, we compute an
initial classification exploiting the prototypes computed over
the source labeled data, which, due to the domain shift, will
not be adequately representative of the target distribution:

F̃ t
c = {Ft

n[h, w] if σc(−||Ft
n[h, w] − p̂c||) > 0.5,∀n ∈ B}

ptc[i] = 1

|F̃ t
c |

∑

f∈F̃ t
c

f[i] ∀i, 1 ≤ i ≤ K (4)

where σc(·) is the softmax function computed over the
classes. Then, we refine the classification keeping only those
vectors that have high classification confidence according to a
probability distribution attained through a softmax function:

Itn[h, w] =
{
c σc(−||Ft

n[h, w] − ptc||) > 0.5

void otherwise
(5)

4 Methodology

The proposed approach is detailed in this section, highlight-
ing the key differences with respect to our previous work.
Our investigation moves from the fact that the discrimina-
tive effect acquired by the model with the source-supervised
cross-entropy objective may not be propagated to the target
domain due to the distribution shift. To tackle such a problem,

in [5] we proposed to use additional space-shaping objectives
to increase the network generalization capability, therefore
improving robustness to distribution shifts from the original
source training data. In particular, we added three feature
space-shaping constraints to the standard source supervision
(Ls

CE ), whose combined effect can be expressed as:

L = Ls
CE + λC · Ls,t

C + λP · Ls
P + λN · Ls,t

N (6)

Here,LC represents the clustering objective acting on the fea-
ture vectors (Sect. 4.1), LP the perpendicularity constraint
applied to class prototypes (Sect. 4.2) and LN the norm
alignment goal (Sect. 4.3). To simplify the notation, Eq. (6)
contains each loss component with s, t superscripts to indi-
cate the sum of the loss on source and target samples. To
further improve the performance and to show how the pro-
posed techniques can be used on top of existing strategies,
we also add to the optimization target the entropy minimiza-
tion loss introduced by Chen et al. [56], thus obtaining:
L+ = L + λEM · LEM . By doing so, we also show that
our space-shaping objectives provide a different and com-
plementary effect on the feature vectors when compared to
the entropyminimization constraint. An overview of the pro-
posed strategy is presented in Fig. 2.

4.1 Clustering of latent representations

Due to the distribution discrepancy between source and target
domains, feature vectors originating from them will be mis-
aligned. This inevitably causes some incorrect classifications
of target representations, in turn degrading the segmenta-
tion accuracy in the target domain. We introduce our first
loss, a clustering objective over the latent space, to mit-
igate this problem, seeking class-conditional alignment of
feature distribution. We do so by exploiting the prototypical
representations discussed in Sect. 3 and forcing the feature
vectors from source and target representations to tightly clus-
ter around them: representations are adapted into a common
class-wise distribution and the discrimination capacity of the
latent space is increased.

Differently from the previous work, we define the clus-
tering objective as the L1 distance between feature vectors
and their associated class prototypes. This results in a more
stable training evolution and lower error rate in clustering,
thanks to the outlier-rejecting properties of the L1 norm. In
particular, due to the quadratic nature of the L2 loss, outliers
with distances greater than 1 have a strong push toward the
clusters. On the other hand, the L1 loss is stronger than L2 for
close samples, which are more representative of each class,
and is significantly gentler than L2 for distant outliers. The
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Fig. 2 Visual summary of our strategy. Features are associated with
semantic classes and prototypes are computed from them (Sect. 3).
Class clustering (Sect. 4.1), prototypes perpendicularity (Sect. 4.2) and

norm alignment and enhancement (Sect. 4.3) are the three proposed
space-shaping constraints. Additionally, we apply on top an entropy
minimization objective [56]

loss can be expressed mathematically as:

Ls,t
C = 1

|C|
∑

c∈C

1

|F s,t
c |

∑

f∈F s,t
c

1

K

K∑

k=1

|p̂c[k] − f[k]| (7)

This loss hasmultiple targets: the first is the increased cluster-
ing of the latent representations thanks to label supervision,
which reduces the tendency to erroneous predictions. The
second one is to perform self-supervised clustering on tar-
get samples using our two-pass pseudo-labeling strategy (see
Sect. 3.3). Finally, it leads to better prototype estimates, due
to the fact that forcing tighter clusters will lead to more sta-
ble batch-wise centroids, which in turn will get closer to the
moving-averaged prototypes.

4.2 Perpendicularity of latent representations

A prototype perpendicularity loss is further proposed to aid
the latent space regularization brought by the clustering
objective. Our goal is to induce compact and domain-
aligned feature clusters, in order to boost the accuracy of
network segmentation maps. As a direct consequence, the
margin between classification boundaries and feature clus-
ters is expanded, thus decreasing the probability that target
high-density regions are traversed by such boundaries. We
directly encourage a class-wise orthogonality property, not
only increasing the distance among class clusters but also
reducing class cross talk by discouraging shared channel acti-
vations in distinct categories.

In the loss, we encode the perpendicularity score exploit-
ing the definition of euclidean space inner product:
j · k = ||j|| ||k|| cos θ , where θ is the angle between the two
vectors j and k. To maximize θ we just need to minimize
the vectors’ normalized product (recall that j,k ∈ R

K
0+ ).

Therefore, the cross-perpendicularity between prototypes is
encoded as:

Ls
P = 1

|C|(|C| − 1)

∑

ci ,c j∈C,i 	= j

p̂ci
||p̂ci ||

· p̂c j
||p̂c j ||

(8)

Equation (8) computes the sum of the cosines over the set
of all couples of non-void classes. The influence of the
orthogonality objective indirectly reaches all feature vectors,
as prototypical representations and single feature instances
share a strong geometric bound promoted by Ls,t

C . What
we ultimately achieve is thus to enforce a perpendicular-
ity constraint among instances of different clusters, with a
homogeneous action over all latent representations from the
same semantic class. In other words, the angular gap among
distinct semantic categories in the feature space is enlarged,
by inducing disjoint patterns of activated feature channels
between distinct classes.

In contrast to our previous paper [5], we compute the loss
on the exponentially smoothed version of the prototypes, i.e.,
from Eq. (3). This guarantees that the space will be more
evenly occupied by the classes, since all directions are con-
sidered in the computation of the loss, instead of considering
only the ones in the current batch.

4.3 Latent norm alignment constraint

This loss term is computed by exploiting source and target
feature vector norms. More in detail, we enforce norm con-
sistency between the latent representations extracted from
the two domains. This has two objectives: firstly, we aim at
improved classification confidence on target predictions, as
done by adaptation techniques using entropy minimization
in the output space [57]. Secondly, we assist the perpendicu-
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larity constraint by reducing the number of domain-specific
feature channels used by the network for classification.
Thirdly, we reduce the number of channels enabled only on
one of the domains, whichwould lead to normmisalignment.
Moreover, to reduce the possible decrease in norm value dur-
ing the alignment process, we introduce a regularization term
that promotes norm increase. Differently from [5], here the
norm objective is encoded as a relative difference with a reg-
ularization term inversely proportional to the norm value.
This allows obtaining a value-independent loss where norm
values higher than the target are less discouraged. Moreover,
we introduce a norm filtering strategy to reduce the negative
effects a careless increase in norm could imply. In particular,
we suppress low channel activations, stopping the gradient
flow through them and preventing the norm alignment pro-
cedure to increase their value, in contrast to what source
supervision indicates. Formally, we define the loss term as:

Ls,t
N = 1

|F s,t∗ |
∑

f∈F s,t∗

∣
∣( f̄s + � f ) − ||f ||∣∣

f̄s
(9)

where f̄s is the average source vector norm (extracted in the
previous optimization step), � f dictates the regularization
strength (experimentally tuned to 0.1) and F s,t∗ is a thresh-
olded version of F s,t where we set to 0 the low-activated
channels of each feature vector, stopping the gradient prop-
agation:

F s,t∗ = {φ(f) ∀f ∈ F s,t }

φ(f)i =

⎧
⎪⎨

⎪⎩

fi fi ≥ 1
K

K∑

j=1
fi

0 otherwise.

(10)

This objective is applied in a completely unsupervised man-
ner, and the vector norms are forced to align to the same
value regardless of their class. In this way, we remove the
bias generated by heterogeneous pixel-class distribution in
semantic labels, that, for example, lead features of the most
frequent classes to have larger norms than average. The con-
straint of Eq. (9) forces the inter-class alignment step, i.e.,
it promotes gradual alignment of the norms toward a target
common to all categories, while discouraging the value of
such a target to decrease too rapidly. An additional bene-
fit of rescaling the loss by the norm target is that the loss
gradients will be limited in magnitude and, therefore, more
stable.

5 Implementation details

5.1 Training data

We evaluated our approach (LSR+, latent space regulariza-
tion) on road scenes segmentation in various synthetic-to-real
and real-to-real unsupervised adaptation tasks. As source
domains we used the synthetic datasetsGTAV [20] and SYN-
THIA [21]. The first contains 24,966 labeled images at a
resolution of 1914 × 1052 px, produced with the rendering
engine of the GTAV video game, while the second con-
tains 9, 500 labeled images at a resolution of 1280 × 760
px, rendered with a custom software. As target domain, we
selected the real-world dataset Cityscapes [6]. It contains
5, 000 labeled images at a resolution of 2048 × 1024 px
and an additional set of 20,000 coarsely labeled samples,
acquired in European cities. When considering only unla-
beled samples, the two versions are equivalent and can be
merged (obtaining a dataset we refer to as CS-full) improv-
ing the adaptation process (as we show in Table 1). In the
real-to-real setup, we used the Cross-City benchmark, where
the Cityscapes dataset takes the role of the source domain,
while theCross-City dataset [18] takes the role of target. Such
dataset is comprised of 12, 800 high resolution (2048×1024
px) images taken in four major cities (Rome, Rio, Tokyo and
Taipei).

We trained the model in a closed-set [2] setting, i.e., with
the same source and target class sets. More in detail, we used
the 19, 16 and 13 classes in common for GTAV, SYNTHIA
and Cross-City, respectively. GTAV, Cityscapes and Cross-
City images have been rescaled for training to 1280 × 720
px, 1280 × 640 px and 1280 × 640 px, respectively, while
the resolution of SYNTHIA images has not been changed.

5.2 Segmentation network

We employed the well-known [42,47,56,57,72] DeepLabV2
network [10–12], with ResNet101 [73] as the backbone
(using 2048 channels in the last stage of the encoder) and
a stride of 8. We pre-train the network as in [5], employing
the same data augmentation techniques used during adapta-
tion.

5.3 Network training

We optimize the model with SGD (using a momentum of
0.9 and a weight decay regularization of 5 × 10−4). The

123



F. Barbato et al.

Table 1 Comparison of adaptation strategies in terms of IoU, mIoU and mASR (Sect. 6). Best in bold, runner-up underlined. mIoU1 and mASR1

restricted to 13 classes, ignoring the classes with the same superscript

UDA setup Configuration Road Sidewalk Building Wall1 Fence1 Pole1 Traffic light Traffic sign Vegetation Terrain

Target only 96.5 73.8 88.4 42.2 43.7 40.7 46.1 58.6 88.5 54.9

From GTAV Baseline [47] 71.4 15.3 74.0 21.1 14.4 22.8 33.9 18.6 80.7 20.9

ASN (feat) [42] 83.7 27.6 75.5 20.3 19.9 27.4 28.3 27.4 79.0 28.4

MinEnt [57] 84.4 18.7 80.6 23.8 23.2 28.4 36.9 23.4 83.2 25.2

SAPNet [75] 88.4 38.7 79.5 29.4 24.7 27.3 32.6 20.4 82.2 32.9

MaxSquareIW [56] 87.7 25.2 82.9 30.9 24.0 29.0 35.4 24.2 84.2 38.2

UDA OCE [47] 89.4 30.7 82.1 23.0 22.0 29.2 37.6 31.7 83.9 37.9

LSR [5] 87.7 32.6 82.6 29.1 23.0 28.5 36.1 28.5 84.8 41.8

LSR+ (ours) 88.9 26.6 82.0 21.0 24.4 30.1 41.1 27.0 84.7 42.7

LSR+ on CS-full 89.3 28.7 82.1 25.2 27.5 31.9 40.3 33.2 84.7 38.7

From SYNTHIA Baseline [47] 17.7 15.0 74.3 10.1 0.1 25.5 6.3 10.2 75.5 –

ASN (feat) [42] 62.4 21.9 76.3 – – – 11.7 11.4 75.3 –

MinEnt [57] 73.5 29.2 77.1 7.7 0.2 27.0 7.1 11.4 76.7 –

SAPNet [75] 81.7 33.5 75.9 – – – 7.0 6.3 74.8 –

MaxSquareIW [56] 78.9 33.5 75.3 15.0 0.3 27.5 13.1 16.7 73.8 –

UDA OCE [47] 88.3 42.2 79.1 7.1 0.2 24.4 16.8 16.5 80.0 –

LSR [5] 81.0 36.9 79.5 13.4 0.2 28.7 9.0 16.1 79.1 –

LSR+ (ours) 82.6 38.4 80.6 15.5 0.3 31.8 6.7 16.3 81.7 –

LSR+ on CS-full 89.4 47.9 79.4 13.9 0.4 29.5 10.0 16.5 79.5 –

Backbone setup Configuration Sky Person Rider Car Truck Bus Train Motorbike Bicycle mIoU mIoU1 mASR mASR1

Target only 91.9 68.7 46.2 90.7 68.8 69.9 48.8 47.6 64.5 64.8 – 100 100

From GTAV Baseline [47] 68.5 56.6 27.1 67.4 32.8 5.6 7.7 28.4 33.8 36.9 – 54.0 –

ASN (feat) [42] 70.1 55.1 20.2 72.9 22.5 35.7 8.3 20.6 23.0 39.0 – 56.9 –

MinEnt [57] 79.4 59.0 29.9 78.5 33.7 29.6 1.7 29.9 33.6 42.3 – 61.9 –

SAPNet [75] 73.3 55.5 26.9 82.4 31.8 41.8 2.4 26.5 24.1 43.2 – 63.1 –

MaxSquareIW [56] 79.2 59.0 27.7 79.5 34.6 44.2 7.5 31.1 40.3 45.5 – 67.2 –

UDA OCE [47] 78.3 60.7 27.4 84.6 37.6 44.7 7.3 26.0 38.9 45.9 – 67.3 –

LSR [5] 80.1 59.4 23.8 76.5 38.4 45.8 7.1 28.5 40.1 46.0 – 67.7 –

LSR+ (ours) 80.1 63.0 26.4 83.1 30.4 44.3 16.8 35.8 42.4 46.9 – 69.5 –

LSR+ on CS-full 81.2 63.2 27.2 85.2 34.7 43.9 9.8 37.2 47.7 48.0 – 71.3 –

From SYNTHIA Baseline [47] 77.9 57.1 19.2 31.2 – 31.2 – 10.0 20.1 30.1 34.3 41.7 44.6

ASN (feat) [42] 80.9 53.7 18.5 59.7 – 13.7 – 20.6 24.0 – 40.8 – 52.5

MinEnt [57] 82.1 57.2 21.3 69.4 – 29.2 – 12.9 27.9 38.1 44.2 51.1 56.3

SAPNet [75] 78.9 52.1 21.3 75.7 – 30.6 – 10.8 28.0 – 44.3 – 56.0

MaxSquareIW [56] 77.7 50.4 19.9 66.7 – 36.1 – 13.7 32.1 39.4 45.2 53.8 58.3

UDA OCE [47] 84.3 56.2 15.0 83.5 – 27.2 – 6.3 30.7 41.1 48.2 54.3 60.9

LSR [5] 81.7 57.9 21.6 77.2 – 35.3 – 14.2 35.4 41.7 48.1 56.5 61.6

LSR+ (ours) 82.5 58.4 20.2 81.3 – 32.7 – 15.3 36.7 42.6 48.7 57.7 62.1

LSR+ on CS-full 83.3 57.7 17.0 84.3 – 37.7 – 21.5 28.6 43.5 50.2 58.8 64.2

123



Road scenes segmentation across...

learning rate starts from 2.5 × 10−4 and uses a polynomial
decay of power 0.9 over 250k steps, as in [56]. We used for
validation a subset of the original training set to tune the
hyper-parameters of our loss components. To tackle over-
fitting, we used some data augmentation strategies: random
left–right flipping;white point re-balancing∝ U([−75, 75]);
and color jittering∝ U([−25, 25]) (the last two applied inde-
pendently in the R, G and B channels) and random Gaussian
blur [51,56]. We perform training on an NVIDIA Titan RTX,
using a batch size of 2 (1 source and 1 target samples) for
24, 750 steps (i.e., 10 epochs of the Cityscapes train set). We
also exploited the validation set for early stopping.

The code developed for this work is publicly available at
https://github.com/LTTM/LSR.

6 Adapted-to-supervised ratio metric

In this section, we introduce a novel measure, called mASR
(mean Adapted-to-Supervised Ratio), in order to better eval-
uate the domain adaptation task with respect to the usual
mIoU.

The idea behind the new metric sparks from realizing that
themIoU ismissing a key component to evaluating an adapta-
tion method: i.e., it does not account for the starting accuracy
of the different classes in supervised training. In particular,
the objective of domain adaptation is to transfer the knowl-
edge learned on a source dataset to a target one, trying to get
as close as possible to the results attainable through super-
vised learning on the target domain. We design mASR to
capture the relative accuracy of an adapted architecture with
respect to its target supervised counterpart, whichwe identify
as a reasonable upper bound. Therefore, mASR focuses less
on the absolute-term performance and more on the relative
accuracy obtained by an adapted architecturewhen compared
to traditional supervised training.

We compare the per-class IoU score of the adapted net-
work for each c ∈ C (IoUc

adapt ) with the results of supervised
training on target data (IoUc

sup), and we compute mASR by:

mASR = 1

|C|
∑

c∈C
ASRc, ASRc de f= IoUc

adapt

IoUc
sup

· 100 (11)

In mASR, the contribution corresponding to each seman-
tic category is inversely proportional to the accuracy of the
segmentation model on it in the supervised scenario, thus
giving more relevance to the most challenging classes and
producing a more class-agnostic adaptation score. Further-
more, notice how the most challenging classes in driving
scenarios are typically associatedwith small objects like traf-
fic lights or pedestrians and bicycles, which are very critical
for autonomous navigation. In this metric, higher means bet-
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ter, and when the adapted network has the same performance
as supervised training, the score is 100%.

As an example, the mASR scores reported in the last two
columns of Table 1 allow identifying at a glance the algo-
rithms that more faithfully match the target performance.

To validate the new metric, we used as a reference the
supervised training on the Cityscapes dataset and compared
it with the training on corrupted versions of the same dataset
using the introduced mASR metric to evaluate the relative
performances and so, indirectly, the domain shift introduced
by the perturbations. In Fig. 3, we identified 5 types of pertur-
bations that are likely to be encountered by an agent moving
outdoors (i.e., Gaussian noise, motion blur, snow, fog, bright-
ness) and we set 5 levels of noise intensity as defined by [74].
As expected, the higher the noise intensity, the lower the
adaptation score computed by mASR. Furthermore, we can
also have a hint of the most detrimental types of noise for
adapting source knowledge, namely Gaussian noise, snow
and motion blur. This can help us identify which set of sam-
ples we should consider more in order to obtain a reliable
model capable of handling these situations. On the other
hand, brightness and fog influence less the final scores.

7 Experimental evaluation

The qualitative and quantitative results achieved by the pro-
posed approach (LSR+) in various driving contexts will be
presented in this section, where it will be compared with
several other feature-level approaches (i.e., [42,47,75]), with
some entropyminimization strategies (i.e., [56,57]) that have
a similar effect on feature distribution, and finally with the
conference version of our work [5]. The key feature of these
approaches is the training efficiency; indeed, the addition
of such constraints does not increase the training compu-
tational complexity, differently from expensive adversarial
approaches or modified architectures.
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Our end-to-endmethod allows straightforward integration
with other strategies, e.g., adversarial approaches at input
or output level, or entropy minimization. In order to ver-
ify such compatibility, we introduce an additional entropy
minimization loss [56] in our setup. We start by consid-
ering two widely used synthetic-to-real benchmarks and a
standard ResNet101 as backbone architecture obtaining the
results shown in Table 1. Then, a real-to-real benchmark [18]
has also been used (see Table 2). To further verify the robust-
ness of our setup, in Table 3 we report some results using
different backbones (i.e., ResNet50, VGG16 and VGG13).

7.1 Adaptation from synthetic data to Cityscapes

When adapting source knowledge from the GTA5 dataset to
the Cityscapes one, our approach (LSR+) achieves a mIoU
of 46.9%, with a gain of 10% compared to the baseline and of
0.9% compared to the conference version (LSR) [5], thanks
to the refined space-shaping objectives. In particular, the
classes which enjoyed the greatest improvements are those
targeted by our approach, i.e., the less common or the ones
corresponding to small objects (pole, t. light, train, etc.). Our
new pipeline improves recognition of these types of classes
since we actively re-weight the labels during downsampling
and employ outlier-resistant strategies, differently from the
previous approach. In general, our approach outperforms all
compared strategies: the only techniques able to get close to
its performance are the works by [47] and [56], while the
other competitors see a significant score drop. The perfor-
mance improvement is quite stable across per-class IoUs and
is particularly noticeable in challenging classes, like terrain
and t. light where our strategy shows very high accuracy
gains, and on train where we significantly outperform the
competitors by doubling the score of the second-best strat-
egy.

Some qualitative results are reported in the top half of
Fig. 4. From visual inspection, we can verify that our method
increases the precision of edges on t. sign, t. light, pole and
person classes in both images. Furthermore, our approach is
the only one to correctly classify the bus on the right of the
first image, which is confused as truck by the other strate-
gies. Importantly, we can also see the effects of our two-pass
labeling (see Sect. 3.3) on the left of the top image (where
part of the fence is correctly classified by our strategy while
being missed by all competitors) and of the second image
(where LSR+ significantly reduces the confusion between
sky and the white building, and is able to correctly recognize
the car, which was confused for truck by the old approach).

In the SYNTHIA to Cityscapes setup, LSR+ surpasses its
conference version (LSR) by about 1% of mIoU in the 16-
class setup and by 0.6% in the 13-class one, achieving a final
score of 42.6and48.7%, respectively.Again, themost notice-
able improvement can be found in the difficult classes, such

as wall, pole or bicycle. Such gains over the older approach
confirm once again the effectiveness of our new formula-
tion. Similarly to the GTA5-to-Cityscapes experiments, also
in this setting LSR+ outperforms all the other competitors,
with a slight margin of 1% on average with respect to [47]
and a larger one (more than 3%) compared to all the other
approaches.

Qualitative results are reported in the bottomhalf of Fig. 4,
where the overall increase in segmentation accuracy formany
classes such as car, road and sidewalk is evident. In the first
image (third row of Fig. 4), we can see how LSR+ is the only
strategy to correctly classify both rider and bike, whereas
other strategies even miss the t. sign in the foreground. Sim-
ilarly, in the second image, we note improvements in the
prediction of such classes and, fundamentally, of the road in
the foreground (confused for car and bicycle by the competi-
tors).

7.2 Adaptation from Cityscapes to Cross-City

Besides using synthetic data, another key requirement is
the capability of adapting networks trained on road scenes
coming from certain geographical areas to other regions.
However, the great variability of road scenes across theworld
limits the wide application of locally trained models on a
global scale. To investigate the capability of our approach
to cope with this problem, we evaluate the performance on
theCross-City real-to-real benchmark in Table 2. This bench-
mark is comprised of 4 cities with a completely different type
of urban setting: Rome, Rio, Tokyo and Taipei. When eval-
uated on those setups, our strategy reaches an mIoU score
of 56.2, 52.3, 50.0 and 50.0% surpassing the source-only
model by 5.2, 3.4, 2.2 and 3.7%, respectively. Importantly,
our approach achieves consistent results across the setups
(LSR+ is the top scorer in 3 out of 4 setups, and second in
the remaining one) surpassing the average best competitor
score by 0.5% mIoU (52.1 versus 51.6%). We remark that
the best competitor changes depending on the setup, being
[42] for Rome and Taipei and [47] for Rio and Tokyo, under-
lining the unstable performances ofmany approaches usually
associated with this benchmark.

This adaptation setup is particularly suited for evaluating
approaches since it presents data with varying degrees of
domain shift. The fact that our approach is able to achieve
good performance in all settings highlights how the new
space-shaping objectives are able to work effectively even
in the presence of a significant distribution shift, thanks to
the updated feature vector estimation. Looking at the per-
class IoU scores, we can see how our strategy significantly
outperforms the competitors in t. light and rider in the
Cityscapes→Rome setup (increase of 6% of IoU), in per-
son and rider in the Cityscapes→Rio setup (increase of 4%
of IoU) and in motorbike in the Cityscapes→Taipei setup
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Table 2 Quantitative results on the Cross-City real-to-real benchmark. (r) indicates that the strategy was retrained, starting from the official code.
Best in bold, runner-up underlined

Target city Configuration Road Sidewalk Building Traffic light Traffic sign Vegetation

Rome Source only [56] 85.0 34.7 86.4 17.5 39.0 84.9

Cross-City [18] 79.5 29.3 84.5 0.0 22.2 80.6

ASN (feat) [42] 83.9 34.2 88.3 18.8 40.2 86.2

MaxSquareIW [56] (r) 86.2 37.8 86.4 22.3 39.5 85.4

UDA OCE [47] (r) 85.6 35.0 87.9 23.1 42.0 85.9

LSR+ (ours) 83.4 34.5 88.1 29.0 44.5 85.5

Rio Source only [56] 74.2 42.2 84.0 12.1 20.4 78.3

Cross-City [18] 74.2 43.9 79.0 2.4 7.5 77.8

ASN (feat) [42] 76.2 44.7 84.6 9.3 25.5 81.8

MaxSquareIW [56] (r) 79.5 50.7 84.5 14.9 17.7 80.8

UDA OCE [47] (r) 78.9 48.5 85.3 14.2 24.4 81.3

LSR+ (ours) 79.5 52.2 83.7 10.2 23.1 79.3

Tokyo Source only [56] 81.4 28.4 78.1 14.5 19.6 81.4

Cross-City [18] 83.4 35.4 72.8 12.3 12.7 77.4

ASN (feat) [42] 81.5 26.0 77.8 17.8 26.8 82.7

MaxSquareIW [56] (r) 84.1 32.9 76.7 11.3 23.8 82.3

UDA OCE [47] (r) 85.0 33.3 77.9 8.5 25.5 82.5

LSR+ (ours) 84.2 34.6 78.2 16.8 22.6 83.3

Taipei Source only [56] 82.6 33.0 86.3 16.0 16.5 78.3

Cross-City [18] 78.6 28.6 80.0 13.1 7.6 68.2

ASN (feat) [42] 81.7 29.5 85.2 26.4 15.6 76.7

MaxSquareIW [56] (r) 80.9 31.3 83.3 12.9 13.4 75.4

UDA OCE [47] (r) 81.4 30.1 84.3 16.7 13.4 75.4

LSR+ (ours) 81.8 32.9 86.8 19.1 14.2 79.3

Target city Configuration Sky Person Rider Car Bus Motorbike Bicycle mIoU

Rome Source only [56] 85.4 43.8 15.5 81.8 46.3 38.4 4.8 51.0

Cross-City [18] 82.8 29.5 13.0 71.7 37.5 25.9 1.0 42.9

ASN (feat) [42] 93.1 47.8 21.7 80.9 47.8 48.3 8.6 53.8

MaxSquareIW [56] (r) 84.0 49.5 21.2 82.7 55.3 48.5 9.5 54.5

UDA OCE [47] (r) 89.2 49.3 24.3 82.8 48.8 48.5 9.0 54.7

LSR+ (ours) 93.9 51.9 31.3 83.2 44.7 51.5 8.8 56.2

Rio Source only [56] 87.9 50.1 25.6 76.6 40.0 27.6 17.0 48.9

Cross-City [18] 69.5 39.3 10.3 67.9 41.2 27.9 10.9 42.5

ASN (feat) [42] 87.3 55.3 32.7 74.3 28.9 43.0 27.6 51.6

MaxSquareIW [56] (r) 85.7 54.5 29.6 75.1 37.0 40.6 24.5 51.9

UDA OCE [47] (r) 87.0 55.9 36.2 74.3 29.7 41.8 27.9 52.7

LSR+ (ours) 82.3 59.8 40.0 75.0 23.0 43.0 29.0 52.3

Tokyo Source only [56] 86.5 51.9 22.0 70.4 18.2 22.3 46.4 47.8

Cross-City [18] 64.3 42.7 21.5 64.1 20.8 8.9 40.3 42.8

ASN (feat) [42] 90.9 55.8 38.0 72.1 4.2 24.5 50.8 49.9

MaxSquareIW [56] (r) 87.4 55.3 30.0 72.0 8.6 18.9 47.1 48.5

UDA OCE [47] (r) 89.4 56.1 29.2 72.4 2.1 12.3 41.9 47.4

LSR+ (ours) 89.3 55.0 33.2 72.0 8.6 20.5 52.2 50.0
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Table 2 continued

Target city Configuration Sky Person Rider Car Bus Motorbike Bicycle mIoU

Taipei Source only [56] 83.3 26.5 8.4 70.7 36.1 47.9 15.7 46.3

Cross-City [18] 82.1 16.8 9.4 60.4 34.0 26.5 9.9 39.6

ASN (feat) [42] 91.7 31.0 12.5 71.5 41.1 47.3 27.7 49.1

MaxSquareIW [56] (r) 89.5 31.8 3.9 69.0 44.3 49.4 33.3 47.6

UDA OCE [47] (r) 91.9 32.5 4.6 71.0 41.4 48.0 33.3 48.0

LSR+ (ours) 91.8 35.1 11.6 72.8 33.8 58.7 31.6 50.0

(increase of 9.3% of IoU). Qualitative results on this bench-
mark are presented in Fig. 5. From a visual inspection of the
images, we can see an overall increase in the discrimination
of the object borders, particularly for classes such as car,
road, building, vegetation and person. In Rome, we see how
LSR+ is the only strategy that correctly identifies the rider
behind the cars in the second image. In Rio, our architecture
significantly reduces the amount of confusion regarding the
building on the left of the second image. Again, in Tokyo, we
note how LSR+ is the only technique able to recognize the
traffic sign on the right of the first image. Finally, in Taipei,
we see how our approach is the only to correctly identify the
person and motorcycle in the second image.

7.3 Results with different backbones

Table 3 shows the performance of our strategy on GTAV→
Cityscapes using multiple encoder–decoder backbones in
order to evaluate the generalizationproperties of the approach
to different network architectures. Here we can see how
LSR+ outperforms the source-only models (i.e., without
adaptation) by 13.3, 12.7 and 7.8% using ResNet50, VGG16
and VGG13, respectively. Even more importantly, we can
see how the performance improvement is consistent across
all backbones, in opposition to what happens to competing
strategies. Finally, we remark on the stability of the mASR
score of our strategy, hovering around a mean of 57.0% with
a very tight standard deviation of 1.4%. (The mean values
of the other strategies are 48.5 and 42.2%, and the standard
deviations are 2.5 and 31.3%, respectively.) We can see how
the consistent performance of our approach is preserved even
in the class-wise IoU scores, particularly in the train class,
where we significantly outperform the competitors, gaining
an average of 7% of IoU across the four backbones with
respect to the second-best strategy.

8 Ablation studies

In this section, we evaluate the impact of each component
of the approach on the final accuracy. Quantitative results

are reported in Tables 4 and 5. In the first, we evaluate
our strategy by removing each constraint independently and
evaluating the impact on the score, while also comparing
the results with [5], highlighting the improvement over the
older version of the approach. In the second, we report the
performance attained when sweeping across values of each
loss learning rate while keeping the optimum value for the
other two losses. Several conclusions can be drawn from the
tables: firstly, the removal of any of our losses incurs in a
noticeable drop in performance ranging from 0.9% mIoU to
around 2%, meaning that the three objectives should always
be employed together, since only when working together
they can effectively shape the latent space into the desired
arrangement; secondly, the novel implementation offers sig-
nificantly reduced space-shaping overlap with the minimum
entropy constraint, leading to a higher score when LEM is
included in the pipeline; thirdly, all three objectives offer an
improvement over the baseline score regardless of the cho-
sen weighting factor (the worst scores are 43.9, 44.6 and
45.7% for LC , LP and LN , respectively, which correspond
to improvements of 1.1, 1.8 and 2.9%).

8.1 Analysis of the latent space regularization

For visualization purposes and for a fair comparative analysis
across the classes, the plots of this section are computed on
a balanced subset of feature vectors (250 vectors per class)
extracted from the Cityscapes validation set.

8.1.1 Two-pass prototypes and clustering

To investigate the semantic feature representation learning
produced by our approach, we computed a shared t-SNE [76]
embedding of the prototypes sampled during the training
procedure and of the target features produced by the final
model. We remind the reader that, in order to more effec-
tively shift target features closer to the source ones, we resort
to a two-stage label assignment procedurewhich recovers tar-
get awareness (by averaging target-extracted features) from
prototypes computed on the source domain (by centroid com-
putation) as reported in Sect. 3.3. In the left plot of Fig. 6, we
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Fig. 4 Qualitative results sampled from the Cityscapes validation split. Best viewed in color

Fig. 5 Qualitative results on the Cross-City benchmark. Best viewed in color

report the learned prototype trajectory embeddings and on
the right the respective feature vectors. Here we can appre-
ciate how prototypes get farther apart while training goes on
and how features extracted from the target domain lie in a
neighborhood of the prototype, which we recall is computed
exclusively via source supervision. This underlines the effec-

tiveness of our clustering strategy, which is able to shift the
target feature distribution closer to the source one.

To further analyze our clustering objective, we produce
additional t-SNE embeddings starting from the normalized
features (to remove the norm information, focusing on the
angular one), which is reported in Fig. 8. Our strategy sig-
nificantly improves the cluster separation in the embedded
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Table 4 Ablation studies, mIoU and mASR scores comparison when
removing any of the losses. Implementations of losses from [5] are
compared with the new ones in this work.

LC LP LN LEM mIoU mASR

[5] Ours [5] Ours [5] Ours

42.8 64.4

� � � 44.8 –

� � � 44.9 66.3

� � � 44.9 –

� � � 45.3 66.7

� � � 45.2 –

� � � 46.0 68.3

� � � 44.2 –

� � � 44.5 66.1

� � � � 46.0 67.7

� � � � 46.9 69.5

Best values are in bold

Table 5 Ablation on the weighting factors of the losses, we fix the best
value for two weighting coefficients and sweep values for the third one.
λEM is fixed to the best value (i.e., 0.1, according to [56])

Loss Off ÷10 ÷2 Best ×2 ×10

λC
0 0.01 0.05 0.1 0.2 1

44.9 45.3 46.0 46.9 45.5 43.9

λP
0 0.02 0.04 0.2 0.4 2

45.3 45.5 45.3 46.9 45.6 44.6

λN
0 0.0025 0.0125 0.025 0.05 0.25

46.0 45.7 45.8 46.9 46.4 46.3

Fig. 6 t-SNE embedding of the target feature vectors. On the left: tra-
jectories of prototypes sampled over 200 training steps. On the right:
features produced by the final model embedded according to the shared
t-SNE projection. Best viewed in color

space and increases the spacingbetween clusters belonging to
different classes, promoting features’ disentanglement. This
cross-talk reduction is also reflected in the decreased prob-
ability of confusing visually similar classes (e.g., the truck
class with the bus and train ones).

Finally, PCA embeddings are reported in Fig. 7 to evaluate
the effect of latent-spacing techniques when projected to a

Fig. 7 Prototypes trajectories and target feature vectors projected via
PCA. Projection is three-dimensional; here, we report the three xy, xz
and yz planes. Best viewed in color

(a) Baseline (b) LSR (c) LSR+

Fig. 8 t-SNE embeddings of the normalized feature vectors. Best
viewed in color

(a) Nearest (b) Histogram (c) Weighted His-
togram

Fig. 9 Sample image downsampled nearest (left), frequency-aware [5]
(middle) or weighted frequency-aware (LSR+). Best viewed in color

lower dimension via a linear function, which confirms the
findings highlighted in the t-SNE embeddings.

8.1.2 Weighted histogram-aware downsampling

In this work, we extended the scheme proposed in [5] by
adding class weights inversely proportional to the class fre-
quency in the training dataset (see Sect. 3). Our goal is to
provide labeling only to spatial locations in feature maps
where a clear class association can be performed, by rely-
ing on a frequency-aware scheme. By doing so, we seek the
disentanglement of activations belonging to different classes,
even when their feature vectors are neighbors in a given label
map. This effect can be noted in Fig. 9, where our down-
sampling algorithms enhanced with frequency awareness are
able to identify some feature locations close to class edges as
unlabeled in the downsampled label map (middle and right),
keeping only faithful features. As expected, class-weighting
(right plot of Fig. 9) promotes rarer classes at the feature level

123



Road scenes segmentation across...

Fig. 10 Class frequency of the downsampled feature-level segmenta-
tion maps

Fig. 11 Mean inter-prototype angle

Fig. 12 Average channel entropy

compared to the version without it [5] (middle plot of Fig. 9):
for instance, compare the traffic sign (in yellow).

Further evidence of this can be found in the class distribu-
tion of segmentation maps (computed after their downsam-
pling to the latent space spatial resolution),whichwe reported
in Fig. 10 for our weighted histogram-aware scheme, the pre-
vious unweighted histogram-aware scheme of the conference
version [5] and the standard nearest neighbor. In particular,
the schemes based on histogram awareness generally seldom
preserve small object classes, promoting unlabeled classi-
fication when discrimination between classes is uncertain.
Our weighted histogram-aware scheme improves uniformity
across rarer or smaller semantic categories, which were over-
penalized by the previous approach [5], where all classes
were treated equally, regardless of their occurrence.

8.1.3 Perpendicularity

is analyzed in Fig. 11 where we display the average angu-
lar distance between each prototype and all the remaining
ones. Our goal is to achieve prototype perpendicularity, such
that we minimize the overlap (i.e., cross-talk) among dis-

tinct semantic categories over feature activations. By the red
dashed line, we highlight the upper bound to the angular
distance, which is set to 90 degrees since we assume fea-
ture vectors to have nonnegative entries. From the figure,
it emerges clearly that LSR-based approaches increase the
inter-prototypical angle and that LSR+ makes prototypes
even more orthogonal with an improvement of more than
2 degrees on average.

8.1.4 Norm alignment

is analyzed in Fig. 12, where we show the mean chan-
nel entropy for each class. We observe that the entropy
corresponding to feature vectors produced by LSR+ is sig-
nificantly reduced, meaning that features are characterized
by more relevant peaks and fewer poorly activated channels.

9 Conclusions

In this work, we tackled domain adaptation of road scene
segmentation models by introducing a set of latent space
regularization strategies for unsupervised domain adapta-
tion. We improved domain invariance using different latent
space-shaping constraints (i.e., class clustering, class per-
pendicularity and norm alignment), to space apart features
belonging to different classes while clustering together fea-
tures of the same class in a consistent way on both the source
and target domain. To support their computation, we intro-
duced a novel target pseudo-labeling scheme and a weighted
label decimation strategy. Results have been evaluated using
both the standard mIoU and a novel metric (mASR), which
captures the relative performance between an adapted model
and its target supervised counterpart.We outperformed state-
of-the-art methods in feature-level adaptation on two widely
used synthetic-to-real road scene benchmarks and in real-
to-real setups, paving the way to a new set of feature-level
adaptation strategies capable to improve the discrimination
ability of road scene understanding approaches.

Future work will focus on designing novel feature-level
techniques and on evaluating their capability of generalizing
to various tasks in driving scenarios. The adaptation from
multiple source domains to multiple target ones will also be
considered together with the application also to multimodal
data (e.g., LIDARs or depth cameras) mounted on cars.
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