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Abstract: The members of the genus Hypericum have great potential to develop functional uses
in nutraceutical and pharmaceutical applications. With this in mind, we aimed to determine the
chemical profiling and biological properties of different extracts (ethyl acetate, methanol and water)
from two Hypericum species (H. montbretii and H. origanifolium). We combined two approaches (LC-
DAD-MS and LC-NMR) to identify and quantify chemical compounds of the extracts. Antioxidant
properties (free radical quenching, reducing power and metal chelating) and enzyme inhibitory
effects (cholinesterase, tyrosinase, amylase and glucosidase) were determined as biological prop-
erties. The tested extracts were rich in caffeic acid derivatives and flavonoids, and among them,
3-caffeoyl quinic acid and myricetin-3-O-rhamnoside were found to be the main compounds. The
total phenolic and flavonoid levels were determined to be 50.97–134.99 mg GAE/g and 9.87–82.63 mg
RE/g, respectively. With the exception of metal chelating, the methanol and water extracts showed
stronger antioxidant properties than the ethyl acetate extracts. However, different results were
obtained for each enzyme inhibition assay, and in general, the ethyl acetate extracts present more
enzyme-inhibiting properties than the water or methanol extracts. Results from chemical and biologi-
cal analyses were combined using multivariate analysis, which allowed establishing relationships
between composition and observed effects of the Hypericum extracts based on the extraction solvents.
To gain more insights between chemical compounds and enzyme-inhibiting effects, we performed
molecular docking analysis. We observed favorable interactions between certain compounds and the
tested enzymes during our analysis, confirming the data obtained from the multivariate approach.
In conclusion, the obtained results may shed light on the road from natural sources to functional
applications, and the tested Hypericum species may be considered potential raw materials, with
promising chemical constituents and biological activities.

Keywords: Hypericum; hydroxycinnamic acids; flavonoids; natural enzyme inhibitors; bioactive agents

1. Introduction

Natural products refer to a broad category of chemicals derived from various organ-
isms, including plants, fungi and animals. In the last century, however, the term has been
commonly associated with plants or plant products. Plants have played a key role in

Plants 2023, 12, 648. https://doi.org/10.3390/plants12030648 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12030648
https://doi.org/10.3390/plants12030648
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0001-8264-6953
https://orcid.org/0000-0001-6548-7823
https://orcid.org/0000-0002-2656-0319
https://orcid.org/0000-0002-0853-108X
https://doi.org/10.3390/plants12030648
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12030648?type=check_update&version=2


Plants 2023, 12, 648 2 of 25

traditional medicine since ancient times. Phytochemicals, particularly secondary metabo-
lites, exhibit outstanding biological properties, ranging from antimicrobial to anticancer
properties [1]. Because of their promising structural and pharmaceutical properties, these
compounds are cornerstones as natural therapeutics in the development of novel drugs.
Given the preceding fact, the research studies on non-investigated wild plants are increas-
ing day by day in order to discovery new natural products [2–5]. The process of discovering
and isolating natural bioactive compounds is complex and requires large amounts of sol-
vents, plant material and time. At the same time, the repositioning of bioactive products is
a hot research topic today, allowing the discovery of new effects of known compounds.

The genus Hypericum L. is one of the most popular genera in the various traditional
medicine systems, including Anatolian folk medicine, and it is represented by almost
500 species in the world [6]. Among them, H. perforatum has been considered the most
attractive, and many publications have focused on its chemical and biological proper-
ties [7]. Recently, some reviews considered ethnopharmacological uses in China [8], the
use of Hypericum compounds as potential new drugs against COVID-19 [9], and the
mechanism of hyperforin and hypericum extracts as anticancer agents through modu-
lation of Inflammatory Signaling, ROS Generation and Proton Dynamics [10]. The long
traditional use of the members of the Hypericum genus deal with multiple diseases. As an
example, Hypericum spp. are commonly used to treat wound, depression, gastrointestinal
and infection problems [6,8,11–15]. Moreover, the species have been utilized as tea and
dietary supplements (as an oil). The members of the genus Hypericum contain biologically
active compounds, including hypericin, hyperforin and flavonoids [16–20]. Although
many articles have been published on the biopharmaceutical properties of the Hypericum
species [21–26], information on the chemical and biological properties is still lacking for
most of them. Among the species, H. montbretii and H. origanifolium are common in the
eastern central and western regions of Anatolia and have been investigated in previous
studies for their chemical content and some biological properties [17,27–29]. However, in
the studies, the analytical methods for chemical characterization were generally simple
colorimetric and liquid chromatographic techniques.

With this in mind, we aimed to develop a strategy of study of the plant material.
Therefore, we created different extracts using solvent with increasing polarity, namely, ethyl
acetate, methanol and water, from H. montbretii and H. origanifolium. With the aim to obtain
accurate chemical fingerprinting, we used an approach of liquid chromatography and
“offline NMR” using small preparative chromatography and NMR analysis. We combined
the data with tandem mass spectrometry-based approaches. Related to this latter, we used
liquid chromatography coupled with diode array and multiple stage mass spectrometry
(LC-DAD-MSn) and high-resolution quadrupole time of flight mass spectrometry (HR-
QTOF-MS). The orthogonality of the two spectral techniques, MS and NMR, offer the
opportunity to have a comprehensive study of plant bioactive compounds. The novelty of
our approach is dual, that is, the combination of the two spectral techniques and the choice
of working on small scale; in fact, we used about 50–150 mg of dried extracts to perform the
study. Information on the structure of bioactive compounds is recorded from the NMR of
the fractions obtained by small-scale separations. The LC-MS approaches allowed obtaining
qualitative and quantitative information on minor abundance constituents. Simultaneously,
the acquisition of bioassay data (antioxidant and enzyme inhibitory properties) of the plant
extract obtained with different solvents were used to correlate the chemical composition
and spectral data. Finally, fine separations can be obtained from the most promising
fractions using preparative TLC.

2. Results and Discussion
2.1. Phytochemical Profiling

The phenol and flavonoid content of the two plants extracted with the three solvents,
namely ethyl acetate, methanol and water, were screened by colorimetric methods, and the
results are presented in Table 1. We can note the richesse of the two plants by the phenolic
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compounds and flavonoids, with a fairly good variability between the two plants and
between the three solvents used for the extraction. Indeed, the methanol and water extracts
showed high content in both plants, with (131.11 ± 0.43 mg GAE/g and 134.99 ± 0.08 mg
GAE/g, respectively) for H. montbretii and (106.92 ± 2.00 mg GAE/g and 93.34 ± 0.38 mg
GAE/g, respectively) for H. origanifolium compared to the ethyl acetate extract. However,
the ethyl acetate extract contained 50.97 ± 0.68 mg GAE/g and 71.58 ± 0.29 mg GAE/g for
the two plants H. montbretii and H. origanifolium, respectively.

Table 1. Extraction yields (%), total phenolic and flavonoid contents of tested extracts *.

Species Extracts Extraction Yields (%) Total Phenolic Content
(mg GAE/g)

Total Flavonoid Content
(mg RE/g)

H. montbretii
Ethyl acetate 3 ± 0.4 50.97 ± 0.68 f 9.87 ± 0.32 f

Methanol 23 ± 3 131.11 ± 0.43 b 68.57 ± 0.35 b

Water 19 ± 2 134.99 ± 0.08 a 62.30 ± 0.27 d

H. origanifolium
Ethyl acetate 4 ± 0.5 71.58 ± 0.29 e 25.38 ± 0.27 e

Methanol 15 ± 2 106.92 ± 2.00 c 82.63 ± 0.47 a

Water 12 ± 2 93.34 ± 0.38 d 63.59 ± 0.79 c

* Values are reported as mean ± SD. GAE: Gallic acid equivalent; RE: Rutin equivalent. Different letters indicate
significant differences between the tested extracts (p < 0.05).

For the flavonoids, the differences are related both to the plant source and solvent.
The methanolic extract shows a very high content of flavonoids compared to ethyl ac-
etate in both plants, with values of 82.63 ± 0.4768 mg GAE/g for H. origanifolium and
68.57± 0.35 mg GAE/g for H. montbretii, followed by l aqueous extract, which recorded val-
ues of 63.59± 0.79 mg GAE/g and 62.30± 0.27 mg GAE/g, respectively, for H. origanifolium
and H. montbretii.

These differences can be related to solvent polarities and compounds solubility, thus
suggesting that the phenolic compounds in H. origanifolium and H. montbretii are better ex-
tracted with polar solvents. Indeed, these compounds are plant secondary metabolites with
a wide range of pharmacological activities, such as anticancer, antiviral, anti-inflammatory,
antidiabetic, antioxidant, etc. [30–32].

Previous studies, which have looked at other Hypericum species, have shown that the
methanol extract of each plant contains a high amount of phenols and flavonoids [33,34].
Other phytochemical studies show that the aerial parts of H. origanifolium contain naphtho-
diantrones, flavonoids and xanthones [35].

Phenolics are a large and complex group of chemical constituents found in plants and
are classic defense compounds to protect plants against herbivores and pathogens [36].

The differences in composition may be due to the geographical origins of the plant,
environmental stimuli, climatic conditions and extraction methods, which affect the yield
of secondary metabolites [37].

2.2. Strategy of Extract Fingerprinting Using Offline LC-NMR and LC-MS Based Methods

We previously used the analysis of methanol extract by NMR as a screening technique
with other Hypericum species to drive the further investigations obtained by LC-MS [38].
To improve that approach, which suffers from the limited resolving power of NMR when
directly applied to very complex mixtures as crude extracts, in this paper, we decided
to perform fractionation of the extracts. For this reason, the ethyl acetate and methanol
extracts, due to their lipophilic nature, have been subjected to a small silica gel column,
using Si60 mesh fractionating in main fractions that will be used for NMR. The water
extracts, due to the hydrophilic nature of the residue, have been separated using sephadex
LH20. Results will be described for each specie. In parallel, two MS-based approaches,
namely, analysis by LC-DAD-MSn and LC-HR-QTOF, were obtained. Extracts will be finally
tested on different bioassays. A schematic representation of the workflow is reported in
Figure 1.
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Annotation of main compounds was obtained by combining the information from
1D and 2D NMR data, allowing the identification of the main classes of constituents and,
in some cases, the partial structure elucidation of some compounds. LC-DAD-MSn and
LC-HR-QTOF data were used to assess the complete qualitative and quantitative profiles
of the different extracts.

2.3. Offline NMR Characterization of H. montbretii and H. origanifolium Fractions

Superimposition of the 1H spectra of H. montbretii ethyl acetate extracts fractions
(Figure 2) allowed observing that the first fraction (Figure 2A) is mainly composed of lipids
and chlorophylls, and the second (Figure 2B) presents signals that can be ascribed to specific
secondary metabolites. In the C and D fraction, signals ascribable to phenolic glycosides
and phenylpropanoids are evident and are highlighted by a square in Figure 2C,D. The
enlargement of the aromatic part of the C and D 1H-NMR spectra are reported in Figure 3,
and signals ascribable to myricetin (M), caffeic acid (C) and quercetin (Q) are indicated.
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Assignments were confirmed by HSQC and HMBC data (See Table 2, and supplemen-
tary spectra). Considering the structures of the identified compounds (Figure 3), signals
ascribable to positions H-6 and H-8 of flavonol nuclei appeared as broad singlets at δ
6.22 and 6.33, correlating in the HSQC-DEPT with carbon resonances at δ 98.4 and 93.4.
HMBC correlations with carbon at δ 156.5 (C-9), 105.3 (C-10) and 163.5 (C-5/7) support
the assignment. Furthermore, the singlet at δ 6.95 (δ 107.8) and the HMBC correlations
(See Table 2) support this assignment to H-2′6′. A second series of signals, although less
abundant, may support the presence of a 1,3,4 trisubstituted aromatic ring due to the
presence of proton signals at δ 7.46, 7.45 and 7.21, assigned to positions 6′, 2′ and 5′ of
quercetin due to the HSQC and HMBC correlation. Fraction C present intense signals, sup-
porting the presence of myricetin and quercetin as major phenolic constituents (Figure 4).
The presence of an anomeric proton signal (Table 2) and methylene and methyl group of
rhamnose moiety, as shown in Figure 5, indicates that the most abundant compound is
myricetin-3-O-rhamnopranoside. Fraction D, on the other hand, presents signals due to
caffeic acid moiety and aliphatics signals, supporting the presence of quinic acid (K), as
reported in Figure 5, thus revealing the presence of chlorogenic acid as the main constituent.
Furthermore, minor signals in the aromatic region, namely, at δH 7.45–7.70 δC 120.0, can
support the presence of anthraquinone derivatives.
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Table 2. Principal NMR assignments obtained from the offline NMR measurements of the extracts
Hypericum species.

δH (ppm) δC (ppm) HMBC COSY/TOCSY Assignment

0.85 t 18.96 21.7 32.1 46.9 1.29 1.59 2.34 Fatty acid terminal methyl groups
0.96 d J = 7.5 16.38 3.53 Rhamnose C6
1.29 m 29.34 32.1 2.34 CH2 of fatty acids
1.59 m 24.58 1.29 2.34 CH2 of fatty acids
2.34 m 34.18 1.59 CH2 of fatty acids
2.71–2.30 29.6 138.3 127.9 71.89 CH2 shikimic acid
3.30 m 70.0 67.8 3.33 CH of sugar unit (C-2 glucose)
3.33 m 71.89 67.8 70.2 3.79 CH of sugar unit (C-2 glucose)
3.52 m 62.43 67.2 71.3 3.33 CH2 of sugar unit
3.53 m 70.75 CH of sugar unit
3.69 m 71.4 138.3 29.6 CH shikimic acid
3.81 m 70.35 CH of sugar unit
3.99 m 67.12 127.9 71.4 70.35 CH shikimic acid
4.09 70.04 2.02 CH of quinic acid moiety
4.14 69.03 2.25 CH of quinic acid moiety
4.18 70.04 2.18 CH of quinic acid moiety
4.23 70.04 2.18 CH of quinic acid moiety
4.39 66.13 3.68 CH of sugar unit
4.90 78.05 CH of sugar unit

5.30 brs 102.08 135.5 70.90 Anomeric proton signal of rhamnose
linked to position 3 of flavonol

6.20 98.25 95.2 105.3 163.5 C-6 of flavonol derivatives
6.27 d J = 15 113.8 168.3 127.3 C8 hydroxycinnamic moiety
6.37 93.24 98.2 105.3 156.8 163.5 C-8 flavonol derivatives
6.81 137.4 146.5 126.3 71.2 C-2 shikimic acid
6.94 107.80 107.8 146.3 156.8 135.5 C-2′-6′ myricetin derivatives
7.21 124.09 brd Aromatic moiety
7.32 128.12 m Aromatic moiety
7.36 128.71 m Aromatic moiety
7.44 118.53 m Aromatic moiety
7.45 124.85 Aromatic moiety
7.46 118.53 Aromatic moiety
7.57 d J = 15 145.6 168.3 127.4 121.2 113.8 C7 hydroxycinnamic moiety
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Comparing the ethyl acetate fractions obtained from H. origanifolium (see
Supplementary Figure S1), we could observe that, as for the previous extract, the frac-
tion A mostly contains lipids, while B, C and D contain the phenolic compounds. In the
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case of H. origanifolium, caffeic acid derivatives are missing and myricetin-3-O-rhamnoside
resulted as the most abundant compound. Spectra of the H. origanifolium ethyl acetate
fractions are reported as Supplementary Materials.

The offline LC-NMR screening on the ethyl acetate fractions of the two hypericum
species revealed that chlorogenic acid is efficiently extracted from H. montbretii, but not
from H. origanifolium, by ethyl acetate. This behavior is unexpected, but can be related to the
matrix effect, which did not allow efficient solubilization and extraction of this compound.

The methanol extracts of the two Hypericum were fractionated on silica gel, using and
obtaining four fractions (A–D) for H. montbretii and five (A–E) for H. origanifolium; spectra
are reported in the Supplementary Materials. The main constituents that are revealed are
also for this sample—myricetin, quercetin ad caffeic acid derivatives that are present in
fractions B–D for H. montbretii and B-E for H. origanifolium. Some significant signals appear
mainly in fraction C of H. origanifolium, and they are one sp2 methylene (δH 6.81; δC 137.4)
and three oxymehtyne groups, one at δH 4.39, δC 66.2 one at δH 3.70, δC 69.8 and the last
at δH 4.02, δC 66.5. Finally, an aliphatic CH2 is observed (δH 2.71–2.19, δC 30.2). All these
signals are part of the same spin system, as observed in the COSY spectrum. Furthermore,
the combination of HSQC-DEPT and HMBC allowed observing quaternary positions C-1
δC 128.2 and a carboxy function at δC 168.8. All the data indicate that the extract contains
shikimic acid moiety. This moiety is also detectable in the H. montbretii methanol extracts,
mostly in fraction B. In the same singlet ascribable to the methoxy group, (δH 3.70, δC 51.5)
is evident, while it is not detected in other extracts. The comparison of the HSQC-DEPT
and HMBC data allowed establishing the presence of quinic acid moiety (See Table 2) and
showed a strong correlation from H-2/6 of the quinic acid (δH 2.34–2.05) with carboxyl
function at δC 173.9, and the same HMBC correlation is observed from the methoxy group,
thus indicating the presence of quinic acid methyl ester moiety. The spin system of the
quinic acid moiety deduced by COSY and TOCSY appears to be multiple, but all can be
ascribed to the quinic acid esterified in positions 3, 4 or 5 due to the unshielded chemical
shift of some proton resonances (δH 5.30 and 4.23). Thus, from the NMR data, we can
support in the methanol extract of H. montbretii the presence of a methoxylated derivative
of quinic acid with ester linkage. In the methanol fraction of both the hypericum signals
ascribable to hypericin or pseudohypericin are observed, namely, the aromatic proton
H-2/5 (δH 6.50–6.70 δC 105–108) and H-9,12 (δH 7.45–7.70 δC 120–118), and also signals
ascribable to methyl groups are observed (δH 2.95–3.00 δC 22.5).

Water fractions of the two Hypericum were fractionated using sephadex. Four fractions
were collected, A–D, and the 1H-NMR spectra of H. origanifolium fractions (Figure 6) showed
the differences clearly.
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Fraction A presents signals due to sugars and polyphenols, fractions B and C present
the clear signals of polyphenols and glycosides, while fraction D mainly contains lipids.
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The main compounds are the myricetin-3-O-rhamnoside, chlorogenic acid and shikimic
acid detected in all fractions.

The water fraction of H. montbretii obtained with sephadex presents very similar chemical
constituents as the H. origanifolium ones; spectra are reported in the Supplementary Materials.

The assignment of the main position of the most abundant compounds has been
performed by analyzing the 2D spectra obtained from the cleaner fractions, and the as-
signments are reported in Table 2. Spectra details with assigned positions are reported as
figures in the Supplementary Materials. Structures of the main compounds detected in the
extract of H. montbretii are summarized in Figure 3. The NMR of the obtained fractions
have evidenced the presence of flavonoid and caffeoylquinic derivatives as the main con-
stituents in the plants. Thus, for further steps, preparative TLC was used to isolate the
major constituents in the extracts used for the offline NMR.

2.4. Isolation of the Main Constituents from H. montbretii and H. origanifolium Fractions

Preparative TLC was selected as a profitable technique for the separation due to
the limited amount of starting material and due to the small amount of the available
extracts. After silica or sephadex separation, preparative TLC was used, and bands were
scrapped and eluted with methanol. The isolated compounds were then characterized
using NMR spectroscopy. The isolated compounds were chlorogenic acid, myricetin-3-O-
rhamnopyranoside, quercetin-3-O-rhamnopyranoside and shikimic acid. Structures of the
isolated compounds are reported in Figure 3.

2.5. LC-DAD-MSn Characterization of H. montbretii and H. origanifolium

LC-DAD-MSn was used to combine the detection of the UV active species and use the
absorbance for quantitative purposes. Multiple stage mass spectrometry and UPLC-HR-
QTOF were instead used for obtaining structural information on the eluted compounds.
Four main classes of compounds, namely, quinic acid derivatives, flavonoids, phlorogluci-
nols and anthraquinone derivative, were all detected, and the qualitative and quantitative
data for the different plant extracts are summarized in Tables 3 and 4.

Table 3. Identification and quantification (µg/mg) of secondary metabolites in H. montbretii by
LC-DAD-MSn.

RT Compound M-H Fragments Ethyl Acetate Methanol Water

quinic acid derivatives
2.3 quinic acid 191.0555 n.d. n.d. n.d.
8.4 1 caffeoyl quinic acid 353.08722 0.10 ± 0.02 1.51 ± 0.09 2.19 ± 0.09
11.9 3 caffeoyl quinic acid * 353.08724 5.20 ± 0.06 22.83 ± 0.15 16.82 ± 0.11
12.5 5 caffeoyl quinic acid 353.08723 - 1.35 ± 0.08 2.20 ± 0.08
14.6 caffeoyl quinic acid 353.08722 0.51 ± 0.04 0.86 ± 0.05 3.58 ± 0.11
14.8 methylferuloylshikimic acid methyl ester 377.1259 0.66 ± 0.04 2.69 ± 0.11 2.88 ± 0.10
16.9 methylferuloylshikimic acid methyl ester 377.1259 0.20 ± 0.03 0.55 ± 0.03 0.77 ± 0.03
16.9 feruloylquinic acid 367.10291 0.07 ± 0.01 0.61 ± 0.03 0.74 ± 0.03
17.3 feruloylquinic acid 367.10291 191 179 135 0.06 ± 0.01 30.29 ± 0.15 0.16 ± 0.01

flavonoids
16.7 myricetin hexoside 479.0827 316 287 271 0.57 ± 0.04 4.54 ± 0.13 3.14 ± 0.10
17.5 myricetin pentoside 449.0723 316 0.28 ± 0.10 1.47 ± 0.08 0.80 ± 0.10
17.7 myricetin-3-O-rhamnoside 463.0879 316 6.89 ± 0.09 19.77 ± 0.11 11.47 ± 0.10
18 Quercetin-3-O-galactoside(hyperoside) 463.0878 301 271 0.70 ± 0.04 3.60 ± 0.11 3.75 ± 0.09

18.7 quercetin-3-O-pentoside 433.0775 301 0.27 ± 0.02 1.27 ± 0.04 1.13 ± 0.04
18.8 cinchonain lb 451.1030 341 323 217 0.20 ± 0.01 1.67 ± 0.09 1.23 ± 0.09
18.9 quercetin rhamnoside 447.0926 301 1.84 ± 0.03 6.70 ± 0.12 4.24 ± 0.11
21.1 quercetin 301.0347 271 0.14 ± 0.02 0.84 ± 0.04 0.35 ± 0.02
22.1 biapigenin 537.0822 443 385 0.56 ± 0.04 3.15 ± 0.07 0.28 ± 0.02

anthraquinone derivative
14.3 tetrahydroxyxanthone-C hexoside 421.0770 331 301 273 0.01 ± 0.01 0.14 ± 0.01 0.11 ± 0.01
35 hypericin 503.0767 487 459 433 0.01 ± 0.01 0.01 ± 0.01 0.98 ± 0.01

35.1 pseudohypericin 519.0716 503 487 475 0.01 ± 0.01 3.66 ± 0.05 1.28 ± 0.08
phloroglucinols

31.0 3′3′me6′oxo PIB derivative 497.6865 222 0.20 ± 0.01 0.03 ± 0.01 0.13 ± 0.01
31.3 Hyperpolyphyllrin 481.3312 437 233 0.05 ± 0.01 0.01 ± 0.01 0.38 ± 0.01

* Comparison with reference standard.
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Table 4. Identification and quantification (µg/mg) of secondary metabolites in H. origanifolim by
LC-DAD-MSn.

RT Compound M-H Fragments Ethyl
Acetate Methanol Water

quinic acid derivatives
0.3 quinic acid
8.4 1 caffeoyl quinic acid 353.08722 0.01 ± 0.01 0.77 ± 0.02 1.14 ± 0.09

11.9 3 caffeoyl quinic acid * 353.08718 0.67 ± 0.02 10.65 ± 0.11 10.19 ± 0.11
12.5 5 caffeoyl quinic acid 353.08721 0.01 ± 0.005 0.42 ± 0.03 2.03 ± 0.09
14.6 caffeoyl quinic acid 353.08720 0.01 ± 0.005 0.14 ± 0.01 1.78 ± 0.08
14.8 cumaroylquinic acid 377.1258 0.01 ± 0.005 0.52 ± 0.02 0.60 ± 0.03
16.9 cumaroylquinic acid 377.1258 0.01 ± 0.005 0.08 ± 0.01 0.13 ± 0.01
16.9 feruloylquinic acid 367.10291 0.05 ± 0.01 0.77 ± 0.01 0.60 ± 0.03
17.3 feruloylquinic acid 367.10291 191 179 135 0.01 ± 0.005 3.00 ± 0.12 0.10 ± 0.03

flavonoids
16.7 myricetin hexoside 479.0827 316 287 271 0.32 ± 0.01 2.60 ± 0.11 1.72 ± 0.06
17.7 myricetin-3-O-rhamnoside 463.0879 301 271 19.19 ± 0.12 23.15 ± 0.21 13.95 ± 0.12
18 Quercetin-3-O-galactoside(hyperoside) 463.0879 301 271 1.85 ± 0.09 7.94 ± 0.09 3.11 ± 0.09

18.9 Quercetin-O-rhamnoside isomer 1 447.0926 301 7.83 ± 0.08 13.74 ± 0.21 9.65 ± 0.11
19.1 Quercetin-O-rhamnoside isomer 2 447.0926 301 2.95 ± 0.08 1.97 ± 0.06 0.01 ± 0.005
21.1 quercetin 301.0347 271 0.19 ± 0.01 0.40 ± 0.01 0.15 ± 0.01
22.1 biapigenin 537.0822 443 385 1.77 ± 0.08 2.83 ± 0.10 0.31 ± 0.04

phloroglucinols
28.2 geranyl phlorisobutylphenone 331.1909 287 262 207 0.08 ± 0.01 0.52 ± 0.01 0.02 ± 0.005
28.6 2 methyl butityl phenone (olympicon A) 345.4531 301 276 261 321 0.46 ± 0.03 3.26 ± 0.09 0.10 ± 0.01
30.5 hyperfirin 467.6606 423 398 329 0.14 ± 0.01 0.01 ± 0.005 0.01 ± 0.005

anthraquinone derivative
35 hypericin 503.0767 487 459 433 0.43 ± 0.02 0.01 ± 0.005 0.72 ± 0.03

35.1 pseudohypericin 519.0716 503 487 475 0.16 ± 0.01 2.10 ± 0.09 0.76 ± 0.06

* Comparison with reference standard.

The DAD chromatograms recorded at 330 nm are reported in Figure 7 and showed
intense peaks at 11.9, 17.3 and 17.7 min for H. montbretii and at 11.9, 17.7, 18.9 min for
H. origanifolium. The compounds have been identified as chlorogenic acid (3-caffeoyl
quinic acid, 11.9 min), 7-methoxy-quinic caffeol ester (17.3 min), myricetin-3-O-rhamnoside
(17.7 min) and quercetin-3-O-rhamnoside (18.9 min), in agreement with NMR data.

From a qualitative point of view, the main differences in the two species are related to
the composition and extraction efficiency. H. montbretii extracts showed the larger amount
of identified compounds. Phloroglucinol is different in the extracts of the two species, while
caffeoylquinic acid derivatives are almost superimposable. H. montbretii extracts present as
marker compounds flavonoid pentosides, a C-glucoside derivative of anthraquinone.

Considering the quantitative data, we can observe different behavior for the vari-
ous classes of phytochemicals for the two species. Caffeoyl quinic acid derivatives are
quite abundant in the extracts; in both the species, chlorogenic acid are the main deriva-
tives. These two compounds are better extracted in methanol for both the species; we
observed an efficient extraction of the different derivatives in water, indicating this solvent
as appropriate for the extraction of these compounds.

The flavanones myricetin-3-O-rhamnoside and hyperoside are the most abundant
flavonoid derivatives in both the species. This class of constituents were extracted with
solvent, ethyl acetate, methanol and water, but for almost all the derivatives, methanol
resulted as the best solvent.
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The extracts of the two Hypericum species are not abundant in phloroglucinols, and
in the analyzed samples, the composition is completely different in H. origanifolium and
H. montbretii. Olympicon A is the most abundant in the H. origanifolium methanol extract
(3 mg/g) compared to the other floroglucinol in both the plant species extracts. Hyperforin
is detected in H. origanifolium, while hyperpolyfillirin in H. montbretii. Due to the different
structure of these compounds, the most appropriated solvent is different for each of them.

Hypericin and pseudohypericin, belonging to antraquninone class, can be observed
in the ethyl acetate fraction of H. origanifolium, while they are not detectable in the same
solvent extract of H. montbretii. The methanol extract of both species exhibits only pseu-
dohypericin, while water is able to extract both compounds in both species. The plant
matrix and used solvent influence the extraction process, suggesting that specific protocols
should be applied for anthraquinone derivatives. Considering the presented data for the
two species, water appears to be the best solvent for the extraction of the three detected
anthraquinone derivatives.

The proposed approach is valuable because it allows the identification of the main com-
pounds and the confirmation of the structure of the most abundant due to isolation. Small
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flash chromatography on silica and gel permeation on Sephadex for the most hydrophilic
solvents allow separating the most interfering compounds as lipids and polysaccharides
and allow the improvement of NMR spectra. Application of 2D sequences help a lot for
the compound identification. Small-scale preparative TLC allows obtaining compounds in
sufficient purity and amount to confirm the structures of the most abundant derivatives,
while comparison with standards helps to annotate further compounds. The accurate
chemical analysis allowed establishing the differences between the two species, in par-
ticular, quercetin is more abundant in H. montbretii, and the 3′3′me6′oxo PIB derivative
are most abundant in H. montbretii, while myricetin-3-O-rhamnoside is more abundant in
H. origanifolium. Furthermore, we can observe that shikimic acid is quite abundant in both
the plant extracts; in fact, we were able to isolate this compound, but it cannot be detected
by LC-MS in the proposed methods. This shows the importance of using orthogonal
approaches in natural product analysis to avoid losing information.

2.6. Antioxidant Properties

In our study, to study the antioxidant activity of our plant extracts, we used six methods:
DPPH and the ABTS cation, FRAP, CUPRAC, phosphomolybdenum and metal chelating.

Table 5 illustrates the DPPH radical-scavenging activity of the different extracts. All
the extracts tested showed a scavenging effect, while the extracts of H. montbretii presented
a very important antioxidant activity compared to the extracts of H. origanifolium.

Table 5. Antioxidant properties of tested extracts *.

Species Extracts DPPH
(mg TE/g)

ABTS
(mg TE/g)

CUPRAC
(mg TE/g)

FRAP
(mg TE/g)

Phosphomolybdenum
(mmol TE/g)

Metal Chelating
(mg EDTAE/g)

H. montbretii
Ethyl acetate 60.39 ± 0.51 e 63.69 ± 0.69 f 175.88 ± 1.81 f 84.74 ± 0.31 f 1.79 ± 0.04 bc 22.61 ± 0.37 b

Methanol 346.63 ± 2.86 a 360.22 ± 0.56 b 699.16 ± 2.52 a 371.25 ± 5.23 a 1.95 ± 0.08 ab 8.52 ± 0.57 e

Water 340.05 ± 4.36 a 329.71 ± 11.45 c 637.33 ± 3.03 b 348.91 ± 5.78 b 2.03 ± 0.12 a 4.41 ± 0.22 f

H. origanifolium
Ethyl acetate 96.34 ± 2.28 d 254.13 ± 0.11 e 231.71 ± 7.03 e 105.74 ± 1.34 e 1.98 ± 0.03 a 24.27 ± 0.93 a

Methanol 266.36 ± 2.75 b 402.73 ± 2.16 a 455.56 ± 9.17 c 264.35 ± 0.77 c 1.75 ± 0.04 c 10.29 ± 0.14 d

Water 194.43 ± 2.67 c 280.63 ± 4.23 d 364.27 ± 3.67 d 216.18 ± 3.40 d 1.46 ± 0.02 d 20.63 ± 0.34 c

* Values are reported as mean ± SD. TE: Trolox equivalent; EDTAE: EDTA equivalent. Different letters indicate
significant differences between the tested extracts (p < 0.05).

The aqueous and methanolic fractions of both plants showed increased activity of
340.05± 4.36 mg TE/g and 346.63± 2.86 mg TE/g for H. montbretii and 194.43± 2.67 mg TE/g,
266.36 ± 2.75 mg TE/g for H. origanifolium, respectively, while the ethyl acetate extract
showed less activity for both plants. These results showed that the extracts contained
a large amount of radical-scavenging phenolic compounds with proton-donating capacity.

For the ability of the extracts to scavenge the ABTS, cation was expressed in the table.
The methanol fractions of H. montbretii and H. origanifolium had significant scavenging
activity of 360.22 ± 0.56 mg TE/g and 402.73 ± 2.16 mg TE/g against ABTS, respectively.
The aqueous fraction exhibited ABTS radical-scavenging activity. On the other hand, the
antioxidant activity of the ethyl acetate extract is very weak for the two plants; this can be
explained by the poor ability of this solvent to extract plant phenolics. By the CUPRAC
method, the methanolic and aqueous extract of H. montbretii had high antioxidant activity
(699.16 ± 2.52 mg TE/g, 637.33 ± 3.03 mg TE/g), respectively, compared to the methanolic
and aqueous extract of H. origanifolium. With the FRAP method, a high absorbance indicates
a high reducing power. The aqueous and methanolic fraction of the two plants showed
very significant reducing activity.

In finding that the antioxidant activity of the extracts obtained with the different
solvents is related to the amount of phenolic compounds. this correlation between the
total phenolic compounds with the results of radical scavenging activity was observed
in a previous study by Öztürk et al. [39]. These phenolic compounds are antioxidants
with redox properties; the hydroxyl group helps them act as reducing agents, hydrogen
donors and singlet oxygen quenchers [40]. Other results were observed in another study,
including the trapping capacity of Hypericum has significant values (77.6% ± 0.5 for DPPH
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and 81.2% ± 0.4 for ABTS) and corresponds to the presence of a high quantity of phenolic
compounds [41]. Another study finds Hypericum species to be good sources of natural
antioxidants high in TPCs and major constituents [42].

For the phosphomolybdenum method, all the extracts of the two plants including
the ethyl acetate extract showed antioxidant activities with similar values; it is a specific
method. On the other hand, for the metal-chelating method, the ethyl acetate extract of
H. origanifolium and H. montbretii showed very significant effects compared to other extracts,
with values of 24.27 ± 0.93 mg EDTAE/g and 22.61 ± 0.37 mg EDTAE/g, respectively;
it is too specific a method, whose ethyl acetate extracts contain molecules that have the
ability to react with metals. In particular the presence of unsaturated fatty acid can at least
in part explain this result. For example, the phosphomolybdenum activity of lipid extract
of Sorghum seeds ranged from 0.13 to 0.21 µmol VEEAC (equivalent of vitamin E)/g in
another study performed by Hadbaoui et al. [43]. In addition, Benalia et al. [44] reported
that the total antioxidant abilities of pumpkin seed oils varied from 18.88 to 56.30 mg/mL
(EC50 values). Several other studies, also using the phosphomolybdenum test, show that
Hypericum had considerable antioxidant activities [45–47].

Indeed, the antioxidant activity depends on the interactions in the reaction media
between the substrate(s) (radicals) and the active molecule(s) that trap them [48].

The effectiveness of the antioxidants can be attributed to the high amount of the main
constituents, mostly the phenolics, and also to the presence of other constituents in small
amounts or to the synergy between them.

2.7. In Vitro Antidiabetic Activity

α-amylase and α-glucosidase are the two key enzymes that break down complex
sugar into simple sugar at the intestinal tract level. These degradations result in simple
products, in particular glucose, which will be absorbed, and consequently, there will be an
increase in blood sugar. One of the therapeutic approaches to improve diabetes is to lower
postprandial blood sugar by inhibiting carbohydrate-hydrolyzing enzymes [49]. From this
context, the inhibition of these enzymes at the intestinal level will block the degradation of
complex sugar towards simple sugar, and consequently, it will contribute to the reduction
of the consent of blood glucose. In our work, we studied the test of inhibition of these
enzymes by the extracts of our plants. The extracts of our plants showed inhibitory effects
on the two enzymes tested, as presented in Table 6. The results revealed that these extracts
inhibit the activity of α-amylase and α-glucosidase.

Table 6. Enzyme inhibitory effects of the tested extracts *.

Species Extracts AChE
(mg GALAE/g)

BchE
(mg GALAE/g)

Tyrosinase
(mg KAE/g)

Amylase
(mmol ACAE/g)

Glucosidase
(mmol ACAE/g)

H. montbretii
Ethyl acetate na 6.61 ± 0.08 a 68.38 ± 0.29 a 0.61 ± 0.02 a 1.00 ± 0.02 c

Methanol 2.17 ± 0.12 b na 68.84 ± 0.62 a 0.52 ± 0.01 b 1.14 ± 0.02 a

Water 1.55 ± 0.11 c na 34.47 ± 1.08 c 0.05 ± 0.01 c na

H. origanifolium
Ethyl acetate 3.09 ± 0.22 a 4.94 ± 0.15 b 57.47 ± 0.98 b 0.63 ± 0.01 a 1.06 ± 0.02 b

Methanol 2.17 ± 0.06 b 0.66 ± 0.06 c 69.66 ± 0.47 a 0.49 ± 0.01 b 1.09 ± 0.03 b

Water 2.21 ± 0.04 b na 16.63 ± 1.46 d 0.06 ± 0.01 c 1.10 ± 0.02 ab

* Values are reported as mean ± SD. GALAE: Galantamine equivalent; KAE: Kojic acid equivalent, ACAE:
Acarbose equivalent; na: not active. Different letters indicate significant differences between the tested extracts
(p < 0.05).

These inhibitors may delay the absorption of dietary carbohydrates in the small
intestine and reduce postprandial hyperglycemia, which may be a useful mechanism in the
preparation of antidiabetic drugs [50].

Indeed, the ethyl acetate fraction of H. montbretii and H. origanifolium showed strong
inhibitory capacity against α-Amylase (0.61 ± 0.02 and 0.63 ± 0.01 mg ACAE/g respec-
tively). In addition, the methanol fraction showed moderate inhibition of α-glucosidase
(1.14 ± 0.02 mg ACAE/g for H. montbretii and 1.09 ± 0.03 for H. origanifolium) and α-
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Amylase (0.52 ± 0.01 mg ACAE/g for H. montbretii and 0.49 ± 0.01 mg ACAE/g for
H. origanifolium). However, only the aqueous extracts of H. origanifolium present an enzy-
matic activity against α-glucosidase with a value of 1.10 ± 0.02 mg ACAE/g.

These results are consistent with other studies that considered another species of
Hypericum. Their study revealed that the methanolic extract of the whole plant exhibited
α-glucosidase inhibitory activity, which increased with increasing concentration [51–53].

2.8. Cholinesterase Activity

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes specific
to nervous tissues and neuromuscular junctions. They rapidly hydrolyze acetylcholine
(neurotransmitter) into inert choline and acetate. AChE is involved in the process of
nervous transmission, and consequently, a strong expression or an abundant catalysis
creates disturbances at the neuron level, among the strategies used for neuroprotection is
the blocking of AChE.

In this context we use our extracts as an inhibitor of these two enzymes (AChE and
BChE). The results are indicated in Table 6.

The study of anti-AChE and anti-BChE activities of our studied extracts showed that
these extracts are able to inhibit AChE and BChE. Indeed, the results showed that the ethyl
acetate extract is more active against BChE, with a value of (6.61 ± 0.08 mg GALAE/g for
H. montbretii and 4.94 ± 0.15 mg GALAE/g for H. origanifolium). Some paper reported that
fatty acid can exert some inhibitory activities on these enzymes, and this can explain the
activity observed [54,55].

In addition, the methanolic and aqueous extracts of the two plants are selectively
active only against AChE, with values of 2.17 ± 2.12 mg GALAE/g and 1.55 ± 0.11 mg
GALAE/g for the methanolic and aqueous extracts of H. montbretii, respectively, and of
2.17 ± 0.06 and 2.21 ± 0.04 for the two extracts of H. origanifolium. This study showed
that most of the extracts are very significant in terms of AChE inhibitory power compared
to BChE.

The therapeutic action of cholinesterase inhibitors is, therefore, essentially due to the
inhibition of acetylcholinesterase at the central level.

According to other studies, it is noted that Hypericum has the ability to block and
inhibit both types of enzyme [53,56–61]; in addition, other plants have this ability [62–65].
Finally, it is a major therapeutic strategy for neuroprotection.

2.9. Tyrosinase Activity

Tyrosinase is a key enzyme involved in skin cell aging, and its inhibition is an im-
portant strategy to delay skin aging. Tyrosinase catalyzes the first two common steps of
melanogenesis and thus appears to be the limiting enzyme [66]. Its absence or mutations of
its gene lead to a decrease or even a cessation of pigmentation. Mutation of his gene has
been found to be associated with oculocutaneous albinism type I [67].

In our study we tested all the extracts against tyrosinase, and we demonstrated that
all the extracts are active against with a variability that depends on both the plant studied
and the solvent used; the results are presented in the Table 6. Ethyl acetate and methanol
extracts from both plants showed very strong tyrosinase inhibitory activity, with values
between 69.66 ± 0.47 mg KAE/g and 57.47 ± 0.98 mg KAE/g. On the other hand, the
aqueous extract had presented a moderate activity against tyrosinase, with values of
34.47 ± 1.08 mg KAE/g for H. montbretii and 16.63 ± 1.46 mg KAE/g for H. origanifolium.

A great interest is focused on natural compounds capable of inhibiting the activ-
ity of tyrosinase, for which there is an increasing demand in the fields of cosmetic and
pharmaceutical applications. In the literature, several studies which have shown that the
members of the genus Hypericum exhibited inhibitory effects on tyrosinase [68–71]. To
provide a structure-ability relationship, as can be seen in Tables 3 and 4, some identified
compounds in the tested extracts have been reported to be potent anti-tyrosinase inhibitors.
For example, in a previous study by Lou et al. [72], myricetin-3-O-rhamnoside exhibited
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a good anti-tyrosinase inhibitor ability, with a lower IC50 value among some isolated com-
pounds. In addition, the derivatives of caffeoylquinic acids, including 3-caffeoylquinic
acid, displayed a significant tyrosinase inhibitory effect [73]. In another study by
Park et al. [74], quercetin-O-rhamnoside was isolated, and it was tested on tyrosinase.
The authors suggested that the compound could be useful in treating skin disorders. In this
sense, the tested Hypericum species could be considered as sources of natural anti-tyrosinase
agents in the preparation of effective cosmeceuticals.

2.10. Molecular Docking

To understand the interaction of the bioactive compounds with the target enzymes,
molecular docking was performed. The binding energy (docking) score of each ligand
against each target enzyme is displayed in Figure 8. All the study ligands showed potential
binding to the 5 enzymes, with some of the compounds displaying a preference for AChE
and BChE, amylase and glucosidase. Therefore, the detailed analysis of protein-ligand
interactions was analyzed for some selected complexes. Quercetin 3-O-rhamnoside was
predicted to have strong binding potential to both AChE and BChE, and it also bound to
amylase, tyrosinase and glucosidase with high affinity. Quercetin 3-O-rhamnoside bound to
AChE and BChE in different orientations and formed multiple H-bonds bonds, several van
der Waals interactions, and a couple of hydrophobic interactions with amino acid residues
lining the catalytic channel of AChE (Figure 9A), with additional π-π stacked interactions
in the case of BChE (Figure 9B).
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In the case of tyrosinase, with a relatively narrow pocket, myricetin 3-O-rhamnoside
was accommodated via a couple of H-bonds, a π-π stacked interaction, a few Van der Waals
interactions deep inside the tunnel, as well as a π-anion and π-cation interactions near the
entrance to the pocket (Figure 9C). Interestingly, quercetin 3-O-galactoside (hyperoside)
was completely buried in the active site of amylase, forming H-bonds, van der Waals
interactions, π-π stacked interactions and a hydrophobic interaction deep inside (Figure 9D).
Likewise, 3-Caffeoylquinic acid occupied the cavity of glucosidase via multiple H-bonds,
a few Van der Waals interactions and a hydrophobic (Figure 9E). Together, these interactions
may be responsible for the observed biological activity of the bioactive compounds on these
target enzymes.
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Figure 9. Protein-ligand interaction: (A) AChE and quercetin 3-O-rhamnoside isomer 1, (B) BChE and
3-O-rhamnoside isomer 1, (C) tyrosinase and myricetin 3-O-rhamnoside, (D) amylase and quercetin
3-O-galactoside (hyperoside) and (E) glucosidase and 3-caffeoylquinic acid.

2.11. Multivariate Analysis

Due to the large amount of experimental data, it is difficult to establish relationships,
but we wanted to study if there is any relation between the solvent used for the extraction
and the results of the bioassays, and we also wanted to establish any relation, if present,
between chemical composition and bioactivity. Figure 10 represent a PLS-DA obtained
considering as X variables the chemical constituents in each extract and as Y the results of
the different bioassays test. As we can observe in Figure 10 and in the loading scatter plot
Figure 11, the results related to inhibitory assays are mostly occupying the −x + y part of
the plot and are correlated mostly with the more lipophilic extracts of both the hypericum
species. Considering the compounds, high correlation with enzyme inhibitory activity
appears to be with quercetin-3-O-rhamnoside, hyperforin, 3′3′me6′oxo-PIB-derivative,
geranylpholoroisobutylphenone and biapigenin, indicating that multiple compounds can
act. This is expected since in this first elaboration, we considered all the enzymatic activities
together, and we can expect that specific compounds can be related to each enzymatic
activity. The biplot shown in Figure 12 gives a general overview of the graph.
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ing the plot. Solvents are indicated as EA ethyl acetate, MEOH methanol, Water, number indicate
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Figure 11. Loading scatter plot corresponding to plot 8, showing the correlation between the com-
pounds that have been detected in the extracts (green dots) and the considered bioassays. Blue
dots represent Acetyl Cholinesterase AChea, Butyril Cholinesterase BuCea, Glucosidase GLCa, Ty-
rosinase TYRa, Amylase AMYa, Total phenolic contents TPC, CUPRAC, FRAP, DPPH, ABTS and
Phosphomolibdenum PHA.
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Figure 12. Biplot showing the loading scatter plot of the model generated using the quantitative data
on the chemical composition of the extracts and the results of bioassays. Plant extracts are represented
with blue squares, enzyme inhibitory test are represented with red dots, metal chelating and ferric
reducing power are represented with brown dots, antioxidant assay results are represented with
turquoise dots and compounds are all represented with green dots.

The assays related to antioxidant activity are, on the other hand, mostly concentrated
in the +x-y part of the plot, and the compounds mostly related to these activities appear to
be quercetin and caffeoyl derivatives, as we can expect from literature data.

The loading scatter plot suggests that the compounds most significantly involved in
the antioxidant activity of the analyzed extracts are the caffeoyl quinic acid, and the most
abundant quercetin derivatives, namely, the hyperoside and the 3-O-rhamnoside. This
result is obviously related to the specific structural moieties of the compounds, as well as
to the amount of each compound in each extract. We, in fact, should always consider that
in studying the plant extract activities, we are evaluating the effects of complex mixtures of
compounds that act based on their chemical moieties, as well as due to their abundance in
the tested extract.

As we have observed, the methanol and water extracts are rich in chlorogenic acid,
myricetin and quercetin derivatives, and these compounds, due to their structure presenting
phenolic groups, can act easily as antioxidants, as well as present significant metal-chelating
properties. We can observe that the phloroglucinols are more correlated to the enzyme
inhibitory effects, and we should consider this result as a consequence of their specific
chemical structure that can probably help interactions with different sites of the enzymes,
but their relatively minor role in these specific extracts can also be related to their low
abundance compared with the phenolic derivatives.

3. Materials and Methods
3.1. Plant Materials and Extraction

The aerial parts of the plants (H. montbretii: Taskopru, between Beykoy and Bozarmut,
1375 m; H. origanifolium: Hanonu, between Yenikoy and Yilanli, 531 m) were collected
in Kastamonu of Turkey in the summer season of 2020. The plant was identified by one
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botanist co-author (Dr. Ismail Senkardes, Marmara University). Voucher specimens were
deposited in the herbarium at Marmara University (Voucher Numbers: MARE-18374 and
MARE-19844, respectively).

In the preparation of plant extracts, we used three solvents (ethyl acetate, methanol
and water) to extract compounds with different polarities. Maceration was selected for ethyl
acetate and methanol extracts, and for this purpose, plant materials (10 g) were stirred with
the 200 mL of methanol for 24 h at room temperature. After that, the mixtures were filtered
using Whatman filter paper, and the solvents were removed using a rotary-evaporator.
Regarding the water extract, the extract was prepared as a traditional infusion, and the
plant materials (10 g) were kept in the boiled water (200 mL) for 15 min. Then, the mixture
was filtered and lyophilized for 48 h. All extracts were stored at 4 ◦C until analysis.

The extraction yields were calculated based on the formula yield (%) = 100× (W1/W2),
where W1 is the mass of the crude extract (g) and W2 is the mass of the initial material
(g) [75].

3.2. Profile of Bioactive Compounds

Folin–Ciocalteu and AlCl3 assays, respectively, were utilized to determine the total
phenolic and flavonoid contents [76]. For respective assays, results were expressed as gallic
acid equivalents (mg GAEs/g extract) and rutin equivalents (mg REs/g extract).

3.3. LC-DAD-MSn and LC-QTOF Analysis of Hypericum montbretii and Hypericum
Origanifolium Extracts

For the chemical characterization of the extracts, an Agilent 1260 system was used,
coupled with a 1260-diode array (DAD) detector and an ion trap Varian MS 500. An Eclipse
XDB C18 3 × 150 mm 3.5 µm was used, and the mobile phases were water (1% formic acid)
(A), acetonitrile (B) and methanol (C). The elution gradient was as follows: 95:5:0% (A:B:C)
from 0 min to 0.5; 85:15:0% (A:B:C) at 10 min; 60:30:10% (A:B:C) at 15 min; 20:70:10% (A:B:C)
at 20 min; 0:90:10% (A:B:C) at 25 min till 30 min; and 5 min of re-equilibration time. The flow
was 0.3 mL/min and injection volume 5 µL. Each extract was exactly weighted (4 mg) and
dissolved in 0.5 mL of DMSO. The solution was sonicated for 10 min and centrifuged for
5 min, and the liquid was used for analysis. With the diode array, chromatograms were ac-
quired in the range 200–600 nm and traces recorded at 254 nm, 280 nm, 330 nm and 590 nm.
For identification of each peak, UV spectra were acquired. A mass spectrometer was use
with an Electrospray (ESI) ion source, and mass spectra were acquired in negative ion mode
in a mass range between 100–1200 m/z. Ion trap collected data in TDDS mode allowed
multiple reaction monitoring with multistage fragmentation, allowing the identification
of secondary metabolites based on comparison with the reference standard and literature.
Mass spectrometer parameters were the following: needle voltage 4500 volts, nebulizer gas
pressure 25 psi, drying gas pressure 15 psi, drying gas temperature 260 ◦C, spray chamber
temperature 50 ◦C, capillary voltage 80 volts and RF loading 80%. For quantification, chloro-
genic acid, quercetin-3-O-glucoside, quercetin-3-O-galactoside (hyperoside), hyperforin
and hypericin were used. Standard solutions were prepared in methanol: water (50:50)
for chlorogenic acid, methanol for quercetin-3-O-glucoside, quercetin-3-O-galactoside and
hyperforin and methanol: DMSO (50:50) for hypericin, respectively. Standard solutions
were prepared at four different concentrations in a range of 50–1 µg/mL, and calibration
curves were calculated. For quantitative purpose, metabolites were grouped in phloroglu-
cinols derivatives, anthraquinone derivatives, quinic acid derivatives and flavonoids. For
the LC-QTOF analysis, a Waters Acquity UPLC system coupled to a Waters Xevo G2 QTOF
mass spectrometric (MS) detector. As stationary phase, an Agilent Zorbax Eclipse Plus C18
(2.1 × 50 mm, 1.8 µm) column was used, and column temperature was maintained at 40 ◦C.
A mixture of water + 1% formic acid (A) and methanol + 1% formic acid (B) was used as
the mobile phase. The elution gradient was as follows: 0–1 min, 98% A; 11 min, 15% A;
16 min, 0% A; 20 min, 0% A; 21 min, 98% A; 24 min, 98% A. Flow rate was 0.3 mL/min,
and the injection volume was 2 µL. MS data were acquired in negative ionization mode
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(ESI-) in the mass range 50–2000 Da. The sampling cone voltage was adjusted at 40 V,
the source offset at 80 V. The capillary voltage was adjusted to 3.5 KV. The nebulizer gas
used was N2 at a flow rate of 800 L/h. The desolvation temperature was 450 ◦C. The mass
accuracy and reproducibility were maintained by infusing lock mass (leucine–enkephalin,
[M−H]− = 554.2620 m/z) through Lockspray at a flow rate of 20 µL/min. The m/z value of
all acquired spectra was automatically corrected during acquisition based on lock mass.
A MSe experiment was simultaneously performed to collect structural information, setting
the collision energy to 30 V.

3.4. Fractionation of Extracts, Offline NMR and Purification of Compounds

A total of 1.5 g of silica gel 60 mesh was loaded in a plastic cartridge for flash chro-
matography and packed; one cartridge each was packed for ethyl acetate and methanol
extract. Ethyl acetate extracts of H. montbretii (67 mg) and H. origanifolium (69 mg) were
used. The cartridge was loaded with the ethyl acetate extract solubilized in 0.2 mL of mobile
phase and eluted with toluene: methanol in ratio 10:3 (50 mL). The stationary phase was
then washed using 10 mL of methanol to elute more polar compounds. Next, 30 fractions
of 2 mL were collected and pooled on the bases of the TLC behavior in four groups named
A–D. Fractions were dried under vacuum. The NMR of the fraction were recorded in
deuterated chloroform, and spectra are included in the Supplementary Materials.

The same procedure was performed for methanol extract of H. montbretii (120 mg) and
H. origanifolium (130 mg) with a different mobile phase, namely, dichloromethane: methanol
3:1. Then, 50 mL of mobile phase was used and followed by 10 mL of methanol for eluting
all compounds. Fractions were grouped in four groups (A–D) for H. montbretii, while in
five (A–E) for H. origanifolium due to the chromatographic behavior in TLC. The NMR of
all the fractions were recorded in deuterated methanol, and spectra are included in the
Supplementary Materials.

For the analysis of water fractions, cartridges were filled with Sephadex LH20 (4.0 g),
and for the elution, methanol was used (40 mL), and then 5 mL of acetone for final wash-
ing. Fractions were pooled in 4 groups based on the TLC behavior (A–D). The NMR of
all the fractions were recorded in deuterated methanol, and spectra are included in the
Supplementary Materials.

From the fractions after the NMR spectra acquisition, we isolated the main constituents
using preparative TLC. A Camag Lynomat 5 was used to charge the plates (Silica gel plates
20 × 20). Eluents used for separating compounds were mixtures of n-Buthanol:Acetic
acid:Water (20:5:1). After plate development, spots related to the main compounds were
detected by UV (254 nm) and scraped from the plate. Silica was washed with methanol,
and liquid was filtered and dried under vacuum. Residues were dissolved in deuterated
methanol and used for structure elucidation. From the two Hypericum, the following com-
pounds were isolated: myricetin-3-O-rhamnopyranoside, chlorogenic acid and quercetin-
3-O-rhamnopyranoside. Shikimic acid structures of the compounds were deduced from
1D, 2D NMR experiments and finally compared with reference standards available in
the·laboratory.

3.5. Determination of Antioxidant and Enzyme Inhibitory Effects

The antioxidant and enzyme inhibitory activity of the extracts was determined ac-
cording to previously described methods [77,78]. DPPH and ABTS radical scavenging
activity, cupric ion reducing antioxidant capacity (CUPRAC) and ferric ion reducing an-
tioxidant power (FRAP) were expressed as mg Trolox equivalents (TE)/g extract. The
metal-chelating ability (MCA) was reported as mg EDTA equivalents (EDTAE)/g extract,
whereas the total antioxidant activity (phosphomolybdenum assay, PBD) was expressed as
mmol TE/g extract. AChE and BChE inhibitory activities were given as mg galantamine
equivalents (GALAE)/g extract; tyrosinase inhibitory activity was expressed as mg kojic
acid equivalents (KAE)/g extract; and amylase and glucosidase inhibitory activities were
presented as mmol acarbose equivalents (ACAE)/g extract.
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3.6. Molecular Modeling

To gain insights into the interaction of the compounds from the tested extracts, a molec-
ular docking simulation was carried out. The target enzymes’ crystal structures were
downloaded from the protein data bank (PDB) (https://www.rcsb.org/ (accessed on
1 April 2022)) with the following IDs: human AChE (PDB ID: 6O52) [79] and BChE
(PDB ID: 6EQP) [80], human pancreatic alpha-amylase (PDB ID: 1B2Y) [81]. However,
the crystal structures of human tyrosinase and glucosidase are not available; therefore,
Priestia megaterium tyrosinase (PDB ID: 6QXD) [82] and Mus musculus alpha-glucosidase
(PDB ID: 7KBJ) [83] were retrieved and used as templates to build their human mod-
els using the respective human sequences and UniProt entries P14679 and P0DUB6.
The detailed procedure of the model building was described previously in [84]. The
pKa of titratable residues in each protein was predicted using the “Playmolecule Pro-
teinPrepare” module [85] and was then used to prepare the proteins at a physiologi-
cal pH of 7.4. The ligand 3D structures were retrieved from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/ (accessed on 1 April 2022)) and optimized using
Frog2 [86]. Docking grid files were generated based on the size of the active site of each en-
zyme and the binding (x,y,z) coordinates of the respective cocrystal ligand using AutoDock-
Tools 1.5.6, followed by docking using AutoDock 4.2.6 (https://autodock.scripts.edu
(accessed on 1 April 2022)) [87]. The details of the docking were described previously
in [88–91]. The binding energy (docking) score of each ligand (pose) was estimated, and
protein–ligand interactions were examined using Biovia Discovery Studio Visualizer (Das-
sault Systèmes Biovia Software Inc., 2012).

3.7. Statistical Analysis

Data are presented as mean ± standard deviation of the number (n = 3) of replicates.
One-way analysis of variance with Tukey’s post-hoc test was conducted; p < 0.05 was
considered statistically significant. The statistical evaluation was performed using Graph-
Pad version 9.0. For the generation of the multivariate data analysis plot, SIMCA 12 was
used. Quantitative data obtained from the LC measurements were used to generate a table
containing all the extracts, all the quantified compounds and all the results of the bioassays.
The matrix was loaded in SIMCA 12 and pareto scaled. Data initially were used to obtain a
PCA, then a PLS-DA was used, assigning as Y variables all the data from the bioassays and
X data all the quantified compounds.

4. Conclusions

The current work examined the chemical characterization and biological properties of
different extracts from two Hypericum species, namely, H. montbretii and H. origanifolium.
We used the combination of LC-MS-DAD and offline LC-NMR methods to detect chemical
compounds in the tested extracts, and this is the first application on the members of the
genus Hypericum. In the chemical profiles, quinic acids derivatives and flavonoids were
recorded as the predominant groups. The biological properties of the tested extracts de-
pended on the extraction solvents used, and generally, the methanol and water extracts
were more active when compared to ethyl acetate. This fact was also supported by mul-
tivariate analysis, which provided a separation based on the extraction’s solvents for the
tested Hypericum species. Molecular docking analysis also showed a connection between
chemical compounds and the tested enzymes, and some compounds had a strong binding
capacity on the enzymes. From this, it can be concluded that our findings could provide
valuable contributions on the natural product area, and the Hypericum species could be
considered valuable candidates for functional applications in nutraceutical, pharmaceu-
tical and cosmeceutical industries. Nonetheless, we advocate for more research into the
Hypericum species, particularly with regard to isolated compounds and their biological and
toxicological properties.

https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://autodock.scripts.edu
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12030648/s1, Figure S1: superimposition of the Ethyl Ac-
etate fraction of H. origanifolium; Figure S2: superimposition of the methanol fraction of H. montbretia;
Figure S3: superimposition of the methanol fraction of H. montbretii enlargment of spectral region
4.5–8.0 ppm; Figure S4: superimposition of the methanol fraction of H. origanifolium; Figure S5: super-
imposition of the methanol fraction of H. origanifolium enlargment of spectral region 4.5–8.0 ppm;
Figure S6: superimposition of the ethyl acetate fraction of H. origanifolium enlargment of spectral re-
gion 4.5–8.0 ppm; Figure S7: ethyl acetate fractions of H. montbretii; Figure S8: ethyl acetate fraction C
of H. montbretii; Figure S9: COSY spectrum of methanol fraction B of H. montbretii; Figure S10: HSQC
of fraction C of ethyl acetate extract of H. montbretii assignments of myricetin-3-O-rhamnoside;
Figure S11: HSQC of fraction C of ethyl acetate extract of H. montbretii assignments Detail of NMR as-
signments of rhamnopyranosil unit of myricetin; Figure S12: water extract fractions of H. origanifolium;
Figure S13: Detail of H-NMR related to methanol fraction B of H. montbretii indicated different hy-
droxycinnamic acid derivatives; Figure S14: Assignments of shikimic acid in the HMBC spectrum of
fraction B of H. montbretii; Figure S15: Assignments of proton signals ascribable to anthraquinone
derivatives; Figure S16: HSQC of H origanifolium fraction B with indicated the antracene assignments.
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