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Abstract

In this thesis we investigate the dynamics of systems of coupled pendula and, in particular,
we discuss the emergence of synchronization patterns in the asymptotic dynamics of these
systems when suitable dissipative contributions are included in the model.

The core of the thesis is the spectral study of the linearisation of a system formed by a
viscoelastic string, fixed at its ends, with n pendula hanging equally spaced from it. This
is a ‘hybrid’ mechanical system with dissipation, and a motivation for it comes from the
famous Huygens synchronization phenomenon. The novelty of our approach is that the
coupling between the pendula is realised via a continuous string, and hence an infinite-
dimensional mechanical system. Moreover, the string is supposed to be viscoelastic, and
therefore inherently introduces dissipation.

We describe the coupled system starting from a Lagrangian formulation and we
adopt the classical Kelvin-Voigt damping model for the viscoelasticity of the string. The
equations of motion that we obtain for our system are a set of coupled ODEs and PDEs.
Even though the Kelvin-Voigt viscoelastic string is a linear system, the pendula are not
and the coupled system is nonlinear. The equilibrium state in which the string is at rest
and the pendula hang downward is an attracting equilibrium, and we study the spectrum
of the linearisation of the system at that equilibrium.

The linearised system decouples into a “vertical” system, which describes the vertical
motion of the string with the pendula replaced by point masses, and a “horizontal” system,
which describes the horizontal motion of the string and the linearised pendula. We
determine a closed form for the eigenvalue equation for both the vertical and horizontal
systems for any number of pendula. These expressions involve Chebyshev polynomials of
the second kind. We also provide closed expressions for the eigenfunctions. We hence
detail the study of the spectrum, without and with dissipation. This is done to a large
extent analytically, but partly also resorting to a numerical investigation.

Next, we study the long-term dynamics of the system. Due to the frequency-dependent
damping of the Kelvin-Voigt model, in the case of weak dissipation, the long-term dynamics
is dominated by the damped normal modes that dissipate less. Hence, after a transient,
motions of the system will tend to motions that are either periodic or quasi-periodic, even
though with slowly decreasing amplitudes; particularly when n is small, these motions
may appear as ‘synchronised’. On these bases, a careful numerical study enables us to
determine the regions in the parameter space in which, when n = 2, either the pendula
synchronise in phase or in opposition of phase or where beats are present.

In the concluding part of the work, we advance a first attempt to extend the analysis
beyond the linear level. We restrict the study to a finite-dimensional setting, and we
investigate invariant structures in the phase space of holonomically constrained mechanical
systems with dissipation and no forcing. In particular, we consider the case of velocity-
proportional friction forces and we assume that the dissipation vanishes not only at zero
velocity but also on a certain larger subset of the phase space. We initiate the analysis of
such a situation, in the nonlinear setting, via the LaSalle invariance principle.





Sommario

In questa tesi studiamo la dinamica di sistemi di pendoli accoppiati e, in particolare, la
comparsa di comportamenti di sincronizzazione nella dinamica asintotica di tali sistemi
qualora si includano nel modello termini dissipativi.

La parte principale della tesi riguarda lo studio spettrale della linearizzazione di un
sistema meccanico composto da una corda viscoelastica, fissata alle estremità, e da n
pendoli identici, appesi ad essa a distanza regolare. Tale sistema è dissipativo e “ibrido”,
avendo una componente continua ed una discreta, e il suo studio trae ispirazione dal
classico problema di sincronizzazione dei pendoli di Huygens. Una novità dell’approccio
che proponiamo sta nel modellizzare l’accoppiamento tra i pendoli con una struttura
continua, che è pertanto infinito-dimensionale. Questa caratteristica, inoltre, permette di
includere la dissipazione in modo naturale, adottando un modello di corda viscoelastica.

Il sistema verrà descritto partendo da una formulazione Lagrangiana e adotteremo
il modello di Kelvin-Voigt per la viscoelasticità della corda, ottenendo così un sistema
di equazioni differenziali ordinarie e alle derivate parziali. La presenza di termini di
pendolo rende tali equazioni non-lineari. Procederemo quindi col linearizzarle attorno
alla configurazione di equilibrio stabile, nella quale la corda è a riposo e i pendoli sono
appesi verso il basso, e ne studieremo lo spettro.

Nel linearizzarlo, il sistema si disaccoppia in una componente “verticale”, che descrive
il moto di una corda con delle masse puntiformi in luogo dei pendoli, e una “orizzontale”,
che descrive il moto della corda in un piano orizzontale con i pendoli linearizzati. Otter-
remo delle espressioni esplicite per le equazioni caratteristiche dei due sistemi e per le
corrispondenti autofunzioni, in termini di polinomi di Chebyshev del secondo tipo, per un
numero arbitrario di pendoli. Analizzeremo quindi gli spettri dei due sistemi, per la gran
parte analiticamente, nel caso conservativo e in quello dissipativo.

Infine studieremo la dinamica asintotica del sistema. Questa è fortemente influenzata
dall’aver adottato un modello di attrito che porta ad un tasso di smorzamento dipendente
dalla frequenza, e pertanto essa è dominata nei tempi lunghi da un piccolo numero di
modi normali smorzati poco dissipativi. Dopo un transiente iniziale, cioè, i moti del
sistema tenderanno a dei moti che sono periodici o quasi-periodici, con delle ampiezze di
oscillazione lentamente decrescenti. Uno studio numerico nel caso di n = 2 ci permetterà
di determinare le regioni nello spazio dei parametri nelle quali i pendoli si sincronizzano
asintoticamente in fase, in quali in contro fase, e dove invece si osservano battimenti.

Nella parte conclusiva del lavoro ci interessiamo al regime non-lineare. Considereremo
sistemi finito-dimensionali e inizieremo uno studio delle strutture invarianti nello spazio
delle fasi di sistemi dissipativi senza forzante. Specificamente, approfondiremo la tratta-
zione del caso di sistemi meccanici olonomi in presenza di forze dissipative proporzionali
alla velocità del sistema. Presenteremo un tentativo preliminare per la descrizione di tali
sistemi nel caso in cui la dissipazione si annulli in un insieme più grande dei soli equilibri,
applicando il classico principio di invarianza di LaSalle.





Il problema insomma non è quello, ma
forse sollevarlo non è stato inutile
perché serve a farci capire che le cose
non sono semplici come sembra e così
ci si avvicina lentamente al punto in
cui capiremo quanto sono complicate.

Italo Calvino, Ti con zero.
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Introduction

Motivation and background

The research material collected within this thesis was inspired by the observation of a
physical experiment (like the one studied in [42], although from a completely different
perspective and scope) consisting of a certain number of identical pendula hanging from a
cable, and the remark that, in the dynamics of such a system, various dynamical patterns
spontaneously do emerge, and evolve at different time scales. A similar context led to the
first description of what is now called “synchronization”. Originally, the mathematician C.
Huygens (1629-1695) referred to it as “sympathy”, denoting the behaviour that he first
observed in a pair of pendulum clocks which would come to oscillate in opposition of
phase when interacting ([17]). Motivated by these examples of eye-catching dynamics,
we propose a study that aims to investigate some of the mechanisms underlying such
phenomena.

Commonly understood as the spontaneous tendency of a system toward an organised
collective state, synchronization phenomena have been observed, ever since, in the time-
evolution of an increasing number of systems, ranging from biological populations (e.g.
fireflies, cardiac pacemaker cells, neuronal networks), to electronics (e.g., Josephson
junctions), from classical (e.g., pendula, metronomes, organ-pipes), celestial (e.g., tidal
locking), and quantum (e.g., optomechanical arrays) mechanics, to social interactions
(e.g., clapping). The oft-quoted books [37] and [9] collect many such examples and
portray the richness of these phenomena. Accordingly, a comprehensive and rigorous
definition of synchronization itself may only be satisfactory for the specific problem under
investigation, as its manifestations – and related phenomena – are very numerous (in-
or anti-phase, phase-locking, complete synchronization, chimera states, oscillation death,
chaotic synchronization,...). An example of an attempted definition can be found, e.g., in
[8]. As a consequence, the scientific communities interested in this topic are extremely
variegated, together with the mathematical formulations employed for its description.
The works cited above, for example, give unified models of several systems in terms of
self-sustained phase oscillators, the former using the Kuramoto model and the latter using
complex network dynamics.

As mentioned, coupled pendulum clocks are an example of a mechanical system where
synchronicity patterns could emerge. Even in this field, research has been developing in
different directions, both theoretical and applied, and there has been renewed enthusiasm
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2 Introduction

in the last decades. In particular, Huygens’s problem is remarkably still up-to-date and
several studies have been devoted to modelling coupled pendula systems and understanding
the underlying core mechanisms that lead to their synchronization (see, e.g., [14] and
references therein). Specifically, two essential factors, among possibly many others, greatly
influence the dynamics of these systems and require a deeper investigation.

The first is the coupling. Huygens himself identified, for his set-up, the small move-
ments of the common supporting beam as the source of the interaction between the two
pendulum clocks. Therefore, an adequate modelling of the coupling structure is cardinal.
But this is not an easy task, and a satisfactory description is still lacking, though necessary
(as remarked, e.g., in [36]). As a matter of fact, to our knowledge, all the models of the
coupling between the pendula are to date finite-dimensional.

The second factor is the dissipation. In [22], where the first mathematical attempt to
explain Huygens observations is addressed, D.J. Korteweg argues that synchronization is
the outcome of the action of dissipative sources, which make some motions “unsustainable”.
It is worth mentioning that another piece of evidence of the impact of dissipation on
synchronization phenomena in mechanical systems is the so-called “tidal locking”. It is
indeed well-acknowledged that the 1 : 1 resonance between the Moon’s orbital period and
the Earth’s rotation period is the outcome of the dissipation of energy due to internal
friction induced by deformation (see, e.g., [4] for a discussion on the asymptotic stability
of this synchronous state). Therefore, as these examples indicate, the evaluation of the
dissipative contributions is important for an accurate model.

The two pointed aspects are closely related, as the coupling often introduces a source
of dissipation (as discussed, e.g., in [16]), and they lead our investigation in this work.

Problem statement and objectives

The overarching theme of this thesis is the asymptotic dynamics of dissipative mechanical
systems without forcing, specifically having systems of coupled pendula in mind. In
this context, being inclined in particular toward asymptotic synchronous behaviours and
Huygens-like systems mentioned at the beginning, we are motivated to raise the following
questions:

1. What kind of dynamics does a system of interacting pendula manifest when the
continuous nature of the coupling is taken into account? And, in particular, how
does the dissipation in the coupling structure affect the (asymptotic) motion of the
pendula?

2. What information on the long-term nonlinear dynamics of an unforced mechanical
system can we infer by studying the damping contributions? Can we expect the
solutions to tend to invariant submanifolds of the phase space, if existent, on which
the dissipation — at least at first approximation — does not act, and how their
knowledge can be used to comprehend synchronization?

In this thesis, we exhaustively deal with question 1, and we advance an attempt
to confront question 2, with the objective of better understanding the emergence of
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synchronization phenomena in the absence of forcing. The approaches that we follow are
complementary: on the one hand, we study in great detail a novel model, which presents
a rich dynamics in its constitutive complexity; on the other, we refer to simple models to
test grounding intuitions which may be useful to explore through a systematic approach
dissipative mechanical systems. Specifically, our study progresses as follows.

1. We construct an infinite-dimensional model for a system consisting of an arbitrary
number n of identical pendula coupled through a continuous structure, which we
choose to be a viscoelastic string fixed at its ends. We derive the equations of
motion of the system through a Lagrangian formulation of the problem and we then
add dissipative forces. Specifically, we adopt the Kelvin-Voigt damping model for
the viscoelasticity of the string, while we neglect other sources of dissipation. The
study of such a system is highly nontrivial and offers several stimulating lines of
investigation. We work in the hypothesis of small oscillations and we linearise the
equations of motion about the stable equilibrium configuration. These equations
are a system of coupled ODEs and PDEs, which, after being linearised, split into a
“vertical” and a “horizontal” system. The vertical system describes a viscoelastic
string carrying equally spaced point masses; the non-dissipative version of such
“loaded string” is a classical system, introduced and studied by Lord Rayleigh for
n = 1 ([40]) and later generalised to any n (see, e.g., [15]); its viscoelastic version
is novel. The horizontal system describes the linearised pendula coupled to the
horizontal motion of the string, and is an entirely new system.

For the two systems, we investigate the damped normal modes. We first derive
the eigenvalue equations and we then present an exhaustive description of the
vertical and the horizontal spectra, in both the conservative and the dissipative
cases. Finally, we focus our study on the asymptotic dynamics of the system with
two pendula. We resort to a numerical analysis and we investigate feasible regimes
of synchronization and their dependence on the parameters of the system.

The interest in the comprehension of the full nonlinear dynamics of this complex
system motivates the study of related finite-dimensional systems, as explained in
the item below.

2. We consider a generic conservative mechanical system subject to holonomic con-
straints in a finite-dimensional phase space, described by a Lagrangian L(q, q̇) =
T (q, q̇) − V (q), with T and V being the kinetic energy and potential energy, re-
spectively. We include dissipative contributions by choosing the classical model of
forces of viscous friction (see, e.g., [3]), namely we add to the Lagrange equations a
velocity-proportional damping term of the form −Γ(q)q̇, where Γ is a symmetric
and positive semi-definite tensor. Specifically, we assume that Γ has nontrivial
kernel and constant rank. Indeed, we are motivated by some studies on unforced
synchronization, such as [4] and [38], to consider the case of partially damped
systems. In this context, we make an attempt to investigate, in this nonlinear
framework, attracting invariant sets on which dissipation does not act, by exploiting
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the classical LaSalle Invariance Principle ([26]). Some simple models accompany
the discussion.

Structure of the thesis

The work is organised into three parts: an introductory part, which provides the back-
ground for our research; a main part, where we present a self-contained study for the
problem of our interest; a closing part, where we lay the foundation for future investigations.
The subdivision into chapters has the following structure.

Part I.
Chapter 1 is devoted to a brief review of the most relevant studies on coupled pendula,

related to the Huygens synchronization problem. We schematically organise the main
features of (some of) the models present in the literature to highlight the key strategies
for the investigation of systems of coupled pendula and to critically assess some of the
shortcomings in their modelling. In this context, we will find an opportunity to advance
our meaning of synchronization and better explain our research approach.

Part II.
We consider a system of pendula, in the absence of driving forces, hanging from a

viscoelastic string, and we detail its dynamics in the regime of small oscillations.
Chapter 2 presents the model for the coupled system. We provide a Lagrangian

description of the undamped problem and then include dissipative forces in the Euler-
Lagrange equations, accounting for internal friction acting within the string. Before
introducing our model, we recall some tools from the Lagrangian formulation of mechanics,
both in the finite- and infinite-dimensional settings, and compare damping models for the
string.

Chapter 3 defines the class of solutions in which we are interested, namely, the damped
normal modes for the linearised equations of motion. We derive explicit expressions for the
eigenvalue equation and for the corresponding eigenfunctions for any number of pendula.

Chapter 4 presents a detailed spectral analysis for the eigenvalues, in the conservative
limit first, and for the dissipative system afterwards. While in the former case the
investigation is fully analytical, in the presence of dissipation the formulas are more
involved, and the characterisation of the spectrum relies partly on a numerical study. In
both cases, we provide a comprehensive description of the spectra.

Chapter 5 discusses the asymptotic dynamics of the pendula. The analysis proceeds
in greater detail for the case of two pendula and weak damping, studying numerically
the dependence of the decay rates of the eigenvalues on the physical parameters entering
the model. A discussion of different synchronization regimes which are attainable in the
asymptotic dynamics of the pendula closes the chapter and this part.

Part III.
Chapter 6 is a very preliminary attempt to deal with dissipation in a nonlinear

framework. We recall some classical tools useful in the study of the asymptotic behaviour
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of dissipative dynamical systems, and we describe two simple illustrative models, which
exhibit a spontaneous tendency toward a synchronised state and motivate our setting. In
particular, we discuss attractive invariant subsets of the phase space, and lay the foundation
for studying the asymptotic nonlinear dynamics of finite-dimensional mechanical systems
subject to viscous friction forces.

Contributions

The contents presented in Part II are, to our knowledge, original. Indeed, the model is
completely new and our analysis led us to an exhaustive description of the linearised
system, disclosing some interesting and unexpected features.

The modal analysis of our model can be decomposed into three subproblems: the
viscoelastic string loaded with equally spaced point masses, the vibrating string with
equally spaced hanging pendula, and, eventually, the pendula hanging from the viscoelastic
string. Each can be investigated independently and represents a rich problem in itself;
accordingly, each original result is potentially significant in different fields. Here, we
convey some of the (partially) explored topics.

Synchronization. We study synchronization phenomena in coupled pendula, constructing
a model which accounts for the flexibility of the coupling structure and its continuous
nature. With respect to other discretised finite-dimensional models, this choice allows not
only to portray a more realistic coupling structure, but also to adopt a damping model
different from the viscous friction, to derive general results for an arbitrary number of
pendula, and to give an explanation for the different synchronization regimes.

Waves in a locally periodic medium. The locally periodically loaded string is a well-known
model, which belongs to a wider class of systems that describes waves in a locally periodic
medium. For this system, we recover a known expression for the eigenvalue equation,
in terms of Chebyshev polynomials, providing an alternative derivation of the result.
Moreover, we enrich the description of such a system by including a Kelvin-Voigt dissipative
term, and also for this case we obtain, for any number of masses, closed-form expressions
for the eigenvalue equations and the eigenfunctions, in terms of Chebyshev polynomials
of the second kind. Furthermore, we prove that similar expressions are obtained when
the equally spaced masses are replaced by harmonic oscillators.

Lagrangian mechanics. The construction of the model is based on a Lagrangian descrip-
tion of the system, considering a particle-field type of interaction. In fact, the model is a
“hybrid” system in the sense that it is composed of both discrete and continuous degrees
of freedom.

Spectral theory. The analysis conducted for the dynamics of the system relies on the
characterisation of the spectrum, and the associated eigenfunctions, of a system of
coupled second-order ODEs and hyperbolic PDEs. For our model, a weak formulation
of the problem is left to future study. Our description in the conservative case is fully
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analytical, while in the dissipative regime, part of our spectral study relies on a numerical
investigation.

Part III represents an initial study based on ideas that can be found spread in the
literature of unforced synchronization, mostly employed ad hoc to specific problems. Since
we were not able to find a precise theory, ours is a first attempt to systematically apply
some classical techniques to study these problems in a general framework. However, the
analysis in this direction has only been initiated and no conclusive results have been found,
and the discussion belongs to the chapter “future perspectives”, as further investigation is
required.



Part I

A look at synchronization in
systems of coupled pendula





Chapter 1

Short review of the literature

The study of the synchronous behaviour of coupled systems started with a fortuitous
observation made in 1665 by Christiaan Huygens, who had constructed the first pendulum
clock some years before [17]. Huygens’s pendulum clock consisted of an oscillating
pendulum embedded in a wooden chase, kept in motion by an escapement mechanism. He
noticed that when two of those pendula with very closely matched frequencies hung side
by side from a common wooden beam supported by two chairs, they would spontaneously
adjust their rhythm, and after a transient, they would oscillate synchronously in opposite
directions, motion now referred to as ‘anti-phase’ synchronization. Instead, when they were
hanging on a wall or out-distanced, each pendulum would oscillate without influencing
the motion of the other one.

Huygens’s clocks are one of the mechanical systems which exhibit synchronization
phenomena that received the greatest interest. Reproductions and variations of the
original experiment are still carried out today, and several models, rich in new details,
try to grasp the fundamental features of the synchronization of Huygens’s pendulum
clocks [39]. A major obstacle in understanding the phenomenon – with the consequence
of considering this problem still open ([39]) – is the fact that anti-phase synchronization
is not the only behaviour that pendulum clocks manifest. On the contrary, a notable
aspect that emerges when we face the literature on this subject is the great variety of
possible dynamics that a pair, or more, of coupled pendula manifest. In general, it is still
not clear what to expect a priori from a new experiment. Examples of motions recorded
following Huygens’s observations are in- or anti-phase synchronization, beats, beating
death, quenching, clustering, chimera states, . . . . For an up-to-date review, we refer to,
e.g., [14] and references therein.

The focus on pendulum clocks, and more generally on systems of pendula, is motivated
not only by the historical significance but also – and possibly foremost – by their central role
in mechanics. In fact, being a one-dimensional nonlinear holonomically constrained system
in a conservative field, the pendulum provides sufficient material to better understand
synchronous behaviours in other mechanical systems. Indeed, phenomena analogous to
the above-mentioned types of synchronization in systems of pendulum clocks have been
witnessed, for example, in coupled metronomes ([34]). Moreover, several applications

9
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have been developed in the context of control synchronization (see [31]) and, even in this
context, pendulum-like systems play a major role.

This chapter presents a partial overview of some of the main models employed in
the study of synchronization of mechanical systems and, more specifically, of systems of
coupled pendula inspired by Huygens clocks. In doing that, we resolve to provide a proper
contextualisation for the system we will address in the following Part. In particular, we
organise the collected material in order to point out the principal research lines on this
topic, and the shortcomings of the modelling. We evaluate only theoretical studies, while
for a review of the experimental evidence we refer to [36].

1.1 Huygens’s clocks

First of all, it is instructive to give a detailed look at the Huygens observations, and at the
prototypical first model which tried to explain the underlying mechanisms. Indeed, they
are paradigmatic for any study of synchronization of coupled mechanical (pendulum-like)
oscillators.

1.1.1 Huygens - first observation

Through thorough observations gathered from further experiments, Huygens could provide
a quite detailed and comprehensive description of the behaviour of his two pendulum
clocks [18]. The key properties can be summarised as follows.

1. The synchronization is consistently always in anti-phase, howsoever the motion is
initiated. This means that, after a transient, at each oscillation the pendula reach
their maximum amplitudes at the same time, but in opposite direction with respect
to the resting configuration.

2. The common oscillation frequency when synchronised differs from the proper one of
each pendulum when not interacting, and it is in fact a value in-between.

3. The interaction between the pendula is ascribable to the imperceptible movements
of the common wooden support. When the clocks are positioned in different
configurations, like laid on the ground back-to-back or side-by-side, the motion of
each pendulum is not affected by the other.

4. The synchronous behaviour is robust with respect to small perturbations, namely
after being disturbed, the pendula would tend to swing with opposite phases again.

1.1.2 Korteweg - first model

The first attempts at a mathematical description of Huygens’s work started in the 20th
century with the work of D.J. Korteweg [22]. His analysis is based on the belief that
the fundamental properties of Huygens’s observations could be fully described by a
three-degree-of-freedom system, in which the clocks are modelled by (not necessarily
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identical) pendula and the wooden supporting bar by a one-degree-of-freedom linear
oscillator. Korteweg does not introduce in this mathematical model either driving forces
or dissipative terms, and works in the regime of small oscillations. His analysis, based on
the normal modes of oscillation, leads, in particular, to the following conclusions:

1. the generic small oscillation of his system is the linear superposition of three
normal modes, two of which corresponding to the in-phase configuration and one
corresponding to the anti-phase configuration;

2. in the normal mode corresponding to the anti-phase configuration, the displacement
of the supporting bar is small with respect to the amplitude of oscillation of the
pendula, and smaller compared to the other two normal modes;

3. the frequency of oscillation associated to the anti-phase normal mode has a value
in-between the proper frequency of each pendulum, while the frequencies of the
in-phase normal modes are respectively greater/smaller than the proper frequency
of both pendula;

4. the motion of a pendulum greatly affects the other whenever their lengths (and
hence their proper frequencies) are comparable.

Subsequently, Korteweg remarks that “friction” was certainly not negligible in Huygens’s
experiment and discusses that, as a matter of fact, the observed emergence of synchro-
nization is ascribable to the great dissipation of energy associated with the motion of
the supporting bar. Korteweg observes that, as the parameters change, the three normal
modes dissipate energy differently, and the energy supplied by the escapement mechanisms
of the clocks might not compensate for the dissipation in those normal modes in which
the amplitude of oscillation of the bar is of the same order as that of the pendula. In
particular, for values of the parameters corresponding to Huygens’s set-up, the anti-phase
synchronization of the two pendula could be explained as the only normal mode, out of
the three, which was energetically sustainable.

Korteweg’s model was able to give an explanation to experimental evidence of other
phenomena connected with the anti-phase synchronization observed by Huygens. For
example, he was motivated also by the observations by J. Ellicott, among others, who
reported that two pendulum clocks laid on the same rail would undergo beating oscillations,
namely periodic and alternating variations of the amplitude of the oscillations due to
the exchange of energy. According to Korteweg’s reasoning, the emergence of beats was
justifiable in terms of the superposition of two normal modes having close frequencies
and both associated with a small (with respect to the amplitudes of oscillation of the
pendula) displacement of the supporting bar.

1.2 Features of the models

Both Huygens’s experiment and Korteweg’s model found great appeal. Remarkably,
even apparently similar experimental setups show that different collective behaviours
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may emerge: for example, very close reproductions of Huygens’s experiment may exhibit
in-phase synchronization ([36]). The very existence of a large number of ad hoc studies of
different models seems to indicate the lack of a unifying understanding.

Here, we focus our survey on the research strategies rather than on the types of
synchronization attained. More precisely, in this section we collect and present a summary
of the main features which characterise the most popular models for two, or more, coupled
pendulum-like oscillators. A discussion regarding the outcomes of such models and their
agreement with the observations is not included; instead, we provide references for these
aspects.

Models of pendula

The first choice for the model is the type of oscillator used to describe the pendula.
The simplest possibility is the pendulum, whose linearisation at the stable equilibrium

is the harmonic oscillator. Instances of studies based on such models of possibly dissipative
coupled pendula are the already mentioned Korteweg’s [22] and the more recent [46].

Most studies include some sources of energy supply, which prevent the pendula from
asymptotically stopping as a result of dissipative contributions. Indeed, to this end,
systems that admit a limit cycle are often preferred.

This can be achieved by considering the so-called “self-sustained” oscillators, examples
of which are the Van der Pol oscillator, the Duffing oscillator, and the Andronov oscillator
[32].

Alternatively, an external driving force can be introduced to model, for example, an
impulsive escapement mechanism [7], [12], [21], [14].

Degrees of freedom

The number of degrees of freedom of the system can vary depending on either the coupling
structure model or the number of pendula considered.

Coupling. The degrees of freedom of the coupling structure may not be included in
the model. This can be achieved by adopting different approaches. One way the
pendula might interact is by means of a massless structure, for example, an elastic
string (as in [28]) or, conversely, a structure with great inertia (as assumed in [32]).
More generally, the direct coupling may be modelled as a suitable coupling function
(see [45]).

Alternatively, the degrees of freedom of the coupling structure may be taken into
account. A one-degree-of-freedom coupling, as the one considered by Korteweg,
models, for example, a rigid bar that can move in one dimension, and is often
referred to as Huygens type coupling, e.g., [21]. Some degree of elasticity of the
coupling structure has been considered, allowing the pivots of the pendula to move,
in four-degree-of-freedom models ([12]), or more ([44]). Finally, a higher number of
degrees of freedom have been modelled using finite element methods (see [35]).
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To our knowledge, there are no studies in which the coupling is analysed as a
continuum.

Number of pendula. Most studies deal with two coupled pendula. Some generalisations
to three or more have been considered, e.g., in [21], [20] and [28], and analysed
through numerical simulations.

To our knowledge, there are no analytical studies dealing with a generic number of
pendula.

Parameters

Both experiments and models reveal a great sensitivity of the emergence of synchronization
to the physical parameters. Without dwelling upon how they influence the dynamics, we
list here the main ones, as we shall encounter them in our model as well.

i. Mass ratio of pendula and coupling structure.

ii. Stiffness of the structure.

iii. Proper frequency of the pendula.

iv. Damping coefficients.

As these parameters vary, bifurcations emerge (see, e.g., [20]). Moreover, often, some
of the parameters are considered to be small; in which cases the analysis proceeds, for
example, under the hypothesis of weak coupling or weak damping, as in [7].

1.3 Some comments

From the map outlined in the previous section, one may perceive not only the great
variety of models and the complexity of the related analyses, but also some of the issues
left unsolved from these studies. We can assert that a major obstacle in constructing a
general framework is, as we portrayed, the number of variables entering the models and
the difficulty to discern how each contribution affects the overall dynamics. Indeed, as, for
example, advanced in [12], despite the fact that several models are rich in details, a defined
identification of the underlying mechanisms which influence the collective behaviours of
these systems is still lacking. The study we present in this thesis aims to take a step
forward in this direction. In this perspective, and on the basis of the evidence that we
discussed, we argue that the details of the dissipative contributions are a fundamental
factor. Hence, we choose to consider unforced systems only and, accordingly, our analysis
will focus on the study of the asymptotic dynamics.

Besides, it might be restrictive to investigate these phenomena starting from a strict
definition of synchronization (for one, distinguishing between in- or anti-phase). Indeed,
the variety of correlated phenomena suggests that a wider perspective might be preferred.
Ultimately, to fix the concept, we can think of synchronicity phenomena, in a quite
indefinite fashion, as the ability of an observer to discern, in the dynamics of complex
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systems, quasi-periodic behaviours. We will eventually discuss in our analysis specific
regimes and their peculiarities.

Finally, as mentioned above, coupled pendula models with many degrees of freedom
have been investigated only numerically. We try to fill this gap by analytically examining
an infinite degree-of-freedom system, in which the continuous nature of the coupling
structure is taken into account, and by deriving results valid for an arbitrary number of
pendula.



Part II

Study of a system of pendula
hanging from a viscoelastic string





Chapter 2

The hybrid system

In this chapter, we introduce the model of the mechanical system which will be the object
of our study in this part of the dissertation. Such a system consists of a viscoelastic string
fixed at its ends and of an arbitrary number of identical pendula hanging from it, equally
spaced. The characteristics of our model will be detailed in Section 2.3, however, we
anticipate that its peculiarity is to be hybrid, in that discrete and continuous components
are coupled. Accordingly, the equations of motion governing the dynamics are a system
of coupled ODEs and PDEs. Furthermore, our model describes a dissipative system,
without forcing, where the viscoelasticity of the string is responsible for the dissipation.

Our study of this system evolves progressively from a Lagrangian formulation of the
problem to the description of asymptotic synchronization phenomena for the pendula.
In this chapter, we define our model and derive the equations of motion for the infinite-
dimensional coupled system. In particular, in Section 2.3.3 we introduce the “horizontal
and vertical systems”, obtained by linearising the equations about the stable configuration
of equilibrium. Their study is the main goal of this work.

2.1 Lagrangian systems

Conservative mechanical systems, both finite- and infinite-dimensional, admit a natural
Lagrangian description. In this section, we recall the basic notions of the Lagrangian
formulation of mechanics and field theory, mainly following Arnold’s exposition [1–3],
and [29]. As prototypical examples, we refer to the pendulum and the vibrating string,
which, in fact, are the components of the system that we intend to investigate.

2.1.1 Lagrangian formulation for mechanics

Let Q be a d-dimensional connected smooth manifold and TQ its tangent bundle. For
any configuration point q ∈ Q, its tangent vector q̇ ∈ TqQ is the velocity, and the pair
(q, q̇) ∈ TQ is a state in the phase space. Let then g be a Riemannian metric on Q and
V : Q→ R a smooth function. We consider the (autonomous and conservative) mechanical
system (Q, g, V ) which describes a holonomically constrained d degree-of-freedom system

17
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of material points, with configuration manifold Q, kinetic energy T (q, q̇) = 1
2gq(q̇, q̇) and

potential energy V (q). We take as Lagrangian of the system the smooth scalar function
on the phase space L : TQ → R defined by L(q, q̇) := T (q, q̇) − V (q). The equations
of motion in the lifted local coordinates (q1, . . . , qd, q̇1, . . . , q̇d) in TQ are the Lagrange
equations (

d

dt

∂L

∂q̇i

)
(q, q̇, q̈)− ∂L

∂qi
(q, q̇) = 0, i = 1, . . . , d, (2.1)

which are a system of d second-order ordinary differential equations. A motion is a curve
t→ q(t) ∈ Q solution of (2.1), and the pair (q(t), q̇(t)) identifies the state of the system
at time t.

For such a system, the energy function E : TQ→ R,

E(q, q̇) := T (q, q̇) + V (q), (2.2)

is a first integral, namely d
dtE(q(t), q̇(t)) = 0 along any motion t→ q(t) ∈ Q.

A state (qeq, veq) ∈ TQ is called equilibrium if t→ qeq is a constant solution of (2.1).
In particular, (qeq, 0) is an equilibrium if and only if qeq is a critical point for V .

2.1.2 The pendulum

We consider as a basic example of Lagrangian system the pendulum, a heavy material
point of mass m constraint to move without friction on a circle of radius l in a vertical
plane. The configuration space is diffeomorphic to S1 and can be parametrised by an
angle φ measured from the downward vertical. The Lagrangian is then

L(φ, φ̇) =
1

2
ml2φ̇2 +mgl cosφ,

with g the constant gravitational acceleration. The equation of motion is

φ̈+ ω2
p sinφ = 0

with ωp :=
√

g
l the proper frequency of the pendulum.

2.1.3 Lagrangian formulation for fields

Let D ⊂ R3 be a bounded, open set with smooth boundary ∂D. Let Q be a Hilbert
manifold of functions on D and TQ its tangent bundle ([24]). For any configuration
u ∈ Q, its tangent vector ut ∈ TuQ is the velocity, and the pair (u, ut) ∈ TQ is a
state in the phase space. Let then g be a Riemannian metric on Q and V : Q → R a
smooth functional. We consider the (autonomous and conservative) continuous mechanical
system (Q, g, V ), with configuration manifold Q, kinetic energy T (u, ut) = 1

2gu(ut, ut) and
potential energy V (u), and we take as Lagrangian of the system the smooth functional on
the phase space L : TQ→ R defined by L(u, ut) := T (u, ut)− V (u). Let x = (x1, x2, x3)
be coordinates on D and let the subscripts denote the partial derivatives of u (e.g.,
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uxi = ∂u
∂xi
, uxixj = ∂2u

∂xi∂xj
, . . . ). The Lagrangian can be expressed in terms of a so-called

Lagrangian density L as

L(u, ut) =

∫
D
L(u, ux, . . . , ut, utx, . . . , x) dx.

Let ∇αL denote the L2-gradient of L with respect to its arguments α = u, ut; for example,
if L = L(u, ux, ut), ∇uL = ∂L

∂u −
d
dx

∂L
∂ux

, ∇utL = ∂L
∂ut

. The equations of motion are the
Euler-Lagrange equations

d

dt
∇utL(u, ut)−∇uL(u, ut) = 0 in D, (2.3)

to be supplemented by the boundary conditions u = g on ∂D, g being given.
For such a system, the energy function E : TQ→ R,

E(u, ut) := T (u, ut) + V (u), (2.4)

is a conserved quantity.
A configuration ueq ∈ Q is called equilibrium configuration if t→ ueq is a stationary

solution of (2.3) that satisfies the boundary conditions. In particular, ∇uL(ueq, 0) = 0.

2.1.4 The vibrating string

We consider as an example of a continuous mechanical system a model of a string with the
following properties (as in [43], Chap. 5.2): homogeneous, infinitesimally thin, perfectly
flexible, and elastic string, with extremities fixed, which lays horizontally and tightly
stretched in the gravitational field, and we shall assume it performs small transverse
vibrations from the equilibrium configuration, in a vertical plane. By this, we mean the
following (standard)

constitutive properties:

• infinitesimally thin: the string is a one-dimensional object;

• homogeneous: the linear density is constant along the length of the string; ρ
will denote the value of the density of the string at rest;

• perfectly flexible: the tension is a force which, at any point of the string, acts
tangentially, hence there is no resistance to bending;

• perfectly elastic: the tension is constant, and τ will denote its magnitude;

static properties:

• horizontal: the extrema of the string are fixed at the same level with respect
to the vertical direction, at a distance Λ that is the length of the resting string;

• tightly stretched: the string is subject only to small changes (with respect to
its length) in the slope from the horizontal equilibrium configuration;
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dynamical properties:

• heavy: gravity acts on any point of the string, with constant acceleration g;
• small transverse vibrations: each point of the string moves transversally to the

equilibrium configuration, and these displacements are small (with respect to
the length of the string). Longitudinal displacements are neglected.

The configuration of the system is a function u ∈ H, that represents the transverse
displacement of the string, with H a space of functions [0,Λ]→ R which vanish at 0 and
Λ. Let x be the coordinate on [0,Λ]. The Lagrangian of the system is

L(u, ut) =

∫ Λ

0

[ρ
2
u2
t −

τ

2
u2
x − ρgu

]
dx. (2.5)

The associated Euler-Lagrange equation – a second-order hyperbolic linear nonhomoge-
neous PDE with constant coefficients –, supplemented by homogeneous Dirichlet boundary
conditions, is the wave equation for the so-called “vibrating string”:{

ρutt − τuxx = f
u|0 = u|Λ = 0

(2.6)

where f = −ρg.
The equilibrium configuration is

ueq(x) =
ρg

2τ
(x2 − Λx),

namely the profile of the string at the equilibrium is a parabola. (The parabolic shape
is due to the hypotheses of elasticity and small displacements; the profile is a catenary
for an inextensible string [19]). It is convenient to redefine u as u− ueq and work with
rescaled coordinate and time x′ = x

Λ , t
′ =

√
τ
ρ
π
Λ t, and still denote them x, t. After this

rescaling, the vibrating string equation (2.6) becomes{
π2utt − uxx = 0
u|0 = u|1 = 0.

(2.7)

For any ` ∈ Z+, the `-th normal mode, defined as a family of nonzero solutions of (2.7)
of the form

u`(x, t) = Re
(
c`f

S
` (x)eiω

S
` t
)
, c` ∈ C \ {0},

has frequency
ωS
` = ` (2.8)

and associated eigenfunction

fS
` (x) = sin(π ωS

` x) , x ∈ [0, 1]. (2.9)

The spectrum of the system is SpS = {±iωS
` }`∈Z+ , and it consists of countably many

eigenvalues equally spaced along the imaginary axis.
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The energy of the vibrating string at time t, in rescaled variables, is

Et(u, ut) =
1

2

∫ 1

0
(u2
t + u2

x) dx, (2.10)

which is a conserved quantity for system (2.7). Indeed, d
dtEt(u, ut) = 0 for every solution

t 7→ u.

2.2 Models of dissipation

Next, we discuss the modelling of dissipative contributions, which cause the mechanical
energy of the system to decrease over time. In general, their laws have to be determined
empirically, from physical reasonings and experimental evidence, and several such sources
might affect the motion concurrently.

We may generically distinguish between internal and external sources of dissipation,
depending on whether they come from the interaction among parts of the system or with
external elements, respectively. These contributions are commonly accounted for in the
model with the inclusion of suitable additional forces in the Lagrange equations.

The example of a viscously damped pendulum is classical. The system is described
by the equation φ̈ + ω2

p sinφ + γφ̇ = 0, where the force −γφ̇, with γ > 0, accounts for
the viscous friction of the air acting upon the pendulum. The mechanical energy of this
pendulum decays at a rate proportional to its kinetic energy.

More diverse are the models of dissipation for infinite-dimensional systems. For a
string, for example, typical sources of dissipation come again from the interaction with
an external fluid, but now also from internal friction, due, for example, to deformation or
bending. Classical damping models for a string with density ρ, length Λ and displacement
u, are the following (see, e.g., [43]):

· viscous damping : −γ(x)ρut ;

· viscoelastic damping : γ(x)utxx ;

where the damping coefficient γ is positive and might be, in principle, a function of x.
In the following sections, we detail the main properties of these models, one of which

will be adopted for our system. In this description we consider γ > 0 constant, and we
refer to [11] for the former model and to [41] for the latter. A combined study of the two
is presented, e.g., in [23].

2.2.1 The viscous string

Drag forces act on the string as it moves in a viscous medium (typically the air) and
are therefore an external source of dissipation. Such contributions are modelled as a
linear term proportional to the velocity of the system, in analogy with viscously damped
finite-dimensional systems.
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The equation of motion of the viscous string is

π2utt − uxx + νπ2ut = 0 (2.11)

with ν > 0 the damping coefficient.
The energy function (2.10) decreases at a rate that is proportional to the kinetic

energy of the string: along any non-stationary solution t → u of (2.11) with Dirichlet
boundary conditions u|0 = u|1 = 0,

d

dt
Et(u, ut) = −ν

∫ 1

0
u2
t dx.

The eigenvalues of the eigenvalue problem associated to (2.11) with u|0 = u|1 = 0 are the
nonzero solutions λ ∈ C of the equation∗

sinh
(
π(λ2 + νλ)1/2

)
= 0.

Hence, the spectrum Spvν of the viscous vibrating string consists of the eigenvalues

λv`,± = −ν
2
±
√(ν

2

)2
− `2 , ` ∈ Z+. (2.12)

Remark 2.1. In particular, Spvν contains finitely many (and possibly zero) negative real
eigenvalues

rv`,± := λv`,±, ` ≤
⌊ν

2

⌋
,

and a countable infinity of complex conjugate pairs of eigenvalues with nonzero imaginary
part and constant real part

λv` := λv`,+ , λ
v
` := λv`,−, ` >

⌊ν
2

⌋
(see Figure 2.1).

2.2.2 The viscoelastic string

The viscoelastic damping models the internal dissipation caused by the friction between
the particles composing the string as it bends. The conversion of mechanical energy into
heat leads to a decrease in tension that depends on the velocity of the change in slope.
For a generic continuum, the Kelvin-Voigt model of viscoelasticity introduces a linear
term proportional to the elasticity operator that acts on the velocity.

For a viscoelastic string with damping coefficient ν > 0, the Kelvin-Voigt equation is

π2utt − uxx − νutxx = 0. (2.13)

∗We find it convenient, here and in the following, to make the convention that ( )1/2 denotes the
complex square root with nonnegative imaginary part, which is analytic in C \ {x ≥ 0}.
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Figure 2.1: The eigenvalues (2.12) of the viscous string. The numerical value used in the generation of
the picture is ν = 3.5. The two eigenvalues on the real axis are rv1,±, while the countably
many nonreal ones are λv` , λ

v
` with ` ≥ 2, having constant real part equal to − ν

2
.

The energy function (2.10) is strictly decreasing along any non-stationary solution t→ u
of (2.13) with Dirichlet boundary conditions u|0 = u|1 = 0:

d

dt
Et(u, ut) = − ν

π2

∫ 1

0
u2
tx.

The eigenvalues of the eigenvalue problem associated to (2.13) with u|0 = u|1 = 0 are the
nonzero solutions λ ∈ C of the equation

sinh

(
πλ

(1 + νλ)1/2

)
= 0. (2.14)

Hence, the spectrum SpKV
ν of the vibrating string with Kelvin-Voigt damping consists of

the eigenvalues

λKV
`,± = −ν`

2

2
±

√(
ν`2

2

)2

− `2

= −
ν(ωS

` )2

2
±

√(
ν(ωS

` )2

2

)2

− (ωS
` )2 , ` ∈ Z+,

(2.15)

and the associated eigenfunction are

fKV
` (x) = sin(πωS

` x) , ` ∈ Z+. (2.16)

Remark 2.2. In particular (see Figure 2.2), the spectrum SpKV
ν consists of a countable

infinity of negative eigenvalues

rKV
`,± := λKV

`,± , ` ≥
⌈

2

ν

⌉
,
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which belong to the interval (−∞,− 1
ν ) and accumulate to its boundaries, and of a

(possibly zero) finite number, which equals
⌊

2
ν

⌋
, of pairs of nonreal complex conjugate

eigenvalues

λKV
` := λKV

`,+ , λ
KV
` := λKV

`,− , ` <

⌈
2

ν

⌉
,

which belong to the circle Cν of centre (− 1
ν , 0) and radius 1

ν .

Remark 2.3. An important feature of the Kelvin-Voigt model is that it gives a frequency-
dependent damping. In particular, the less damped normal modes are the λKV

` ’s with
small ` (unless ν is very large and they are absent). For small ν, those with `� 2

ν have a
decay rate |Re(λKV

`,± )| = 1
2ν`

2 which grows in an approximately quadratic way with their

frequency |Im(λKV
`,± )| = 1

2`ν
√

( 2
ν )2 − `2 ≈ `.

Figure 2.2: The eigenvalues (2.15) of the Kelvin-Voigt viscoelastic string. The numerical value used in
the generation of the picture is ν = 0.15. Countably many eigenvalues, λKV

`,± with ` ≥ 14,
belong to the negative real axis, and

⌊
2
ν

⌋
pairs of complex conjugate eigenvalues, λKV

`,± with
` ≤ 13, belong to Cν .

2.3 Our model

In this section, we detail the construction of our model for the system considered, which
is formed by a vibrating string, modelled according to Section 2.1.4, with the inclusion of
a Kelvin-Voigt term (see Section 2.2.2), and n ≥ 1 identical pendula, as in Section 2.1.2,
hanging from n equally spaced points of it, under the action of weight (see Figure 2.3).

We proceed as follows: we provide a Lagrangian description of the coupled ‘hybrid’
system and we derive the Euler-Lagrange equations for the Lagrangian density which
describes our infinite-dimensional system in absence of dissipation; we then add the terms
which account for the viscoelasticity of the string; finally, we linearise the system of
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equations about the stable equilibrium configuration. The system of equations obtained
will be the object of investigation in the upcoming chapters.

We remark that our choice for the damping model is motivated, on one hand, by
experimental evidence on decay rates in strings (we refer to [41] for a review), and on
the other, is targeted at the explanation of patterns in the asymptotic dynamics of the
pendula. We shall comment on this aspect in Chapter 5, when discussing the details of
the asymptotic dynamics of the system.

2.3.1 Configurations

Fix a coordinate system {O;X,Y, Z} such that the extrema of the string are attached at
the origin O and at the point (Λ, 0, 0) and the Z-axis is directed as the ascending vertical.
For each t ∈ R, the configuration of the string at time t is described by an embedding of
the form

[0,Λ] 3 x 7→
(
x, ψ(x, t), ζ(x, t)

)
∈ R3

where the “horizontal displacement” ψ and the “vertical displacement” ζ are two functions
from [0,Λ] × R to R which satisfy the homogeneous Dirichlet boundary conditions
ψ(0, t) = ψ(Λ, t) = ζ(0, t) = ζ(Λ, t) = 0 ∀t ∈ R.

We assume that n ≥ 1 identical pendula of length l are hanging from the string and
are constrained to move in vertical planes parallel to the YZ-plane. The pivot of the k-th
pendulum is attached to the point of the string with coordinate x given by x̃k := kΛ

n+1 ,
and the position in the space of the k-th pendulum at time t is(

x̃k , ψ
(
x̃k, t

)
+ l sin(φk(t)) , ζ

(
x̃k, t

)
− l cos(φk(t))

)
where φk is the angle formed by the k-th pendulum with the downward vertical (k =
1, . . . , n).

Remark 2.4. This mechanical system is “hybrid” in the sense that it consists of point
masses coupled to a continuous system, and being so, its study requires techniques from
both mechanics (see Section 2.1.1) and field theory (see Section 2.1.3). The description of
similar systems is studied in [5]. To our knowledge, our model is completely new.

2.3.2 The equations of motion

We assume that the forces that act on the system are the weight of the string and the
pendula, and the tension of the string. Both these forces are conservative. We assume
moreover that internal dissipative forces act on the string, which we hence assume to be
viscoelastic. We neglect other sources of dissipation, such as the viscous friction of the air.

We derive the equations of motion of the undamped coupled string-pendula system
from a Lagrangian formulation, to which we then add the Kelvin-Voigt dissipation term.
Proceeding for now formally, we consider the configuration space

M := Tn ×H ×H 3 (φ, ψ, ζ) = ((φ1, . . . , φn), ψ, ζ)
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Figure 2.3: The system with n = 2 pendula.

where H is a space of functions [0,Λ] → R that vanish at the extrema, to be better
specified.

We choose as Lagrangian for the system the scalar functional in the (formal) tangent
bundle TM given by the difference between the kinetic energy T and the potential energy
V of the full (string+pendula) system, namely

L(φ, ψ, ζ, φ̇, ψt, ζt) = T (φ, ψ, ζ, φ̇, ψt, ζt)− V (φ, ψ, ζ)

with

T =

∫ Λ

0

ρ

2

(
ψ2
t + ζ2

t

)
dx+

m

2

n∑
k=1

[
l2φ̇2

k +
(
ψ2
t + ζ2

t + 2lφ̇k
(
ψt cosφk + ζt sinφk

))∣∣
x=x̃k

]
,

V =

∫ Λ

0

[τ
2

(
ψ2
x + ζ2

x

)
+ ρgζ

]
dx+

n∑
k=1

mg
(
ζ|x=x̃k − l cosφk

)
.

The Lagrangian can be written as L(φ, ψ, ζ, φ̇, ψt, ζt) =
∫ Λ

0 L(φ, ψ, ζ, φ̇, ψt, ζt, ψx, ζx)dx
with Lagrangian density

L =
ρ

2

(
ψ2
t + ζ2

t

)
− τ

2

(
ψ2
x + ζ2

x

)
− ρgζ +

n∑
k=1

[
m

2

(
l2φ̇2

k + ψ2
t + ζ2

t + 2lφ̇k (ψt cosφk + ζt sinφk)
)
−mg (ζ − l cosφk)

]
δx̃k

(2.17)
where δx̃k(x) := δ(x− x̃k), with δ the Dirac delta.

We take as equations of motion the Euler-Lagrange equations for the Lagrangian
density L with the inclusion of a Kelvin-Voigt term, with damping coefficient γ ≥ 0, in
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the equations for the horizontal and vertical displacement of the string, complemented
with the homogeneous Dirichlet boundary conditions, namely the system

d

dt

∂L

∂φ̇k
− ∂L

∂φk
= 0 (k = 1, . . . , n)

d

dt

∂L

∂ψt
− ∂L

∂ψ
+

d

dx

∂L

∂ψx
− γψtxx = 0

d

dt

∂L

∂ζt
− ∂L

∂ζ
+

d

dx

∂L

∂ζx
− γζtxx = 0

ψ(0, t) = ψ(Λ, t) = ζ(0, t) = ζ(Λ, t) = 0

(2.18)

in [0,Λ]× R.
To reduce the number of parameters, we work with rescaled space and time coordinates

x′ = x
Λ , t

′ =
√

τ
ρ
π
Λ t, and still denote them x, t, and with rescaled displacements of the

string ψ′ = ψ
l and ζ ′ = ζ

l , and still denote them ψ, ζ. Hence, we define the dimensionless
parameters

α :=

√
ρg

lτ

Λ

π
, µ :=

m

Λρ
, ν :=

πγ
√
ρτ Λ

, xj :=
j

n+ 1
(j = 0, . . . , n+ 1).

(2.19)
Note that α is the ratio between the proper frequency

√
g
l of the pendulum and the

(dimensional) fundamental frequency π
Λ

√
τ
ρ of the vibrating string, while µ is the ratio

between the mass of each pendulum and the total mass of the string. We assume α > 0,
µ > 0, and ν ≥ 0. As noticed, after this rescaling of time, the frequencies of the vibrating
string are ωS

` = `, ` ∈ Z+.
Written in these variables, equations (2.18) are the system

φ̈k + (ψtt cosφk + ζtt sinφk) |x=xk + α2 sinφk = 0 (k = 1, . . . , n)

ψtt +

n∑
k=1

µ
(
ψtt + φ̈k cosφk − φ̇2

k sinφk

)
δxk −

1

π2
ψxx −

ν

π2
ψtxx = 0

ζtt +

n∑
k=1

µ
(
ζtt + φ̈k sinφk + φ̇2

k cosφk + α2
)
δxk −

1

π2
ζxx −

ν

π2
ζtxx + α2 = 0

ψ(0, t) = ψ(1, t) = ζ(0, t) = ζ(1, t) = 0

(2.20)

in [0, 1]× R 3 (x, t), where δxk(x) = δ(x− xk).

2.3.3 The linearised system

The equations of motion (2.20) have the equilibrium solution t 7→ (φeq, ψeq(x), ζeq(x))
with

φeq = (0, . . . , 0) , ψeq(x) = 0 ,

ζeq(x) = π2α2

(
x2

2
− x

2
(1 + nµ) + µ

n∑
k=1

(x− xk)Θ(x− xk)
)

(2.21)
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where Θ denotes the Heaviside step function. In this equilibrium, all pendula are in their
stable vertical position while the string, which lies in the vertical plane, has the profile of
an arc of parabola in each interval xk ≤ x ≤ xk+1, k = 0, . . . , n, with not C1 matchings
at the pendula’s hanging positions.

Linearising system (2.20) at the equilibrium configuration (2.21) gives the two systems
in [0, 1]× R

φ̈k + ψtt|x=xk + α2φk = 0 (k = 1, . . . , n)

ψtt −
1

π2
ψxx −

ν

π2
ψtxx + µ

n∑
k=1

(
ψtt + φ̈k

)
δxk = 0

ψ(0, t) = ψ(1, t) = 0

(2.22)

and

ζtt −
1

π2
ζxx −

ν

π2
ζtxx + µ

n∑
k=1

ζtt δxk = 0

ζ(0, t) = ζ(1, t) = 0

(2.23)

where δxk(x) = δ(x− xk) and φ, ψ, ζ stand now for the displacements φ− φeq, ψ − ψeq
and ζ − ζeq from the equilibrium.

Thus, at the linear level, the linearised dynamics of the pendula is coupled only to the
horizontal displacement of the string, while the vertical displacement of the string decouples
from the other degrees of freedom (i.e., in the regime of small oscillations about the lower
equilibrium position, the horizontal displacement of the pendula is an infinitesimum
of order 1 while the vertical one is of order 2). Note, moreover, that system (2.22)
depends on the three parameters α, µ, ν and system (2.23) depends on the parameters
µ, ν. In particular, the second can be regarded as the (singular) limit of the first for
α→ +∞, namely as the limit case of zero-length pendula. In fact, it may be shown that
system (2.23) describes the motion in a plane of a viscoelastic vibrating string loaded
with n identical and equidistant masses.

We call system (2.22) the horizontal (linear) system and system (2.23) the vertical
(linear) system. We shall also refer to the latter as Rayleigh’s periodically loaded string,
as the undamped case for n = 1 was first studied by Lord Rayleigh [40].

2.3.4 Solutions of the linearised system

We close this chapter by defining what we mean by the solution of horizontal and vertical
systems.

First, we specify the function spaces in which we will work for the study of (2.22)
and (2.23):

i. E is the space of continuous functions u : [0, 1] → R which are C2 in (0, 1) \
{x1, . . . , xn}, have bounded left and right derivatives at x1, . . . , xn, and satisfy
u(0) = u(1) = 0.

ii. S is the space of functions v : [0, 1]×R→ R, (x, t) 7→ v(x, t), which are C2 in t and
such that v(·, t) ∈ E for every t.
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iii. P is the space of functions of class C2 from R to Tn.
iv. ΣH := P× S and ΣV := S.

v. EC is the space of continuous complex functions u : [0, 1] → C which are C2 in
(0, 1)\{x1, . . . , xn}, have bounded left and right derivatives at x1, . . . , xn, and satisfy
u(0) = u(1) = 0.

vi. ΣH
C and ΣV

C are the spaces of complex functions whose real and imaginary parts
belong to ΣH and ΣV respectively.

Moreover, we shall adopt the following notation: if u ∈ E we write u′(x±k ) for limx→x±k
u′(x)

(k = 1, . . . , n). If (φ, ψ) ∈ ΣH then ψx(x±k , t) and ψtx(x±k , t) have a similar meaning, and
so also for ζ ∈ ΣV .

We define as solution of the horizontal system (2.22) any function (φ, ψ) ∈ ΣH which
satisfies

φ̈k(t) + ψtt(xk, t) + α2φk(t) = 0

ψtt(x, t)−
1

π2
ψxx(x, t)− ν

π2
ψtxx(x, t) = 0 ∀x ∈ (0, 1) \ {x1, . . . , xn}

µ
(
ψtt(xk, t) + φ̈k(t)

)
− 1

π2

(
ψx + νψtx

)
(x+
k , t) +

1

π2

(
ψx + νψtx

)
(x−k , t) = 0

(2.24)

for all t ∈ R and k = 1, . . . , n. Similarly, we define as solution of the vertical system (2.23)
any function ζ ∈ ΣV which satisfies

ζtt(x, t)−
1

π2
ζxx(x, t)− ν

π2
ζtxx(x, t) = 0 ∀x ∈ (0, 1) \ {x1, . . . , xn}

µζtt(xk, t)−
1

π2

(
ζx + νζtx

)
(x+
k , t) +

1

π2

(
ζx + νζtx

)
(x−k , t) = 0

(2.25)

for all t ∈ R and k = 1, . . . , n.
We define as solution of the linearised system any function (φ, ψ, ζ) ∈ ΣH × ΣV with

(φ, ψ) and ζ solutions of the horizontal and vertical system, respectively. Finally, by
complex solutions of these systems we mean complex functions whose real and imaginary
parts are real solutions.

Remark 2.5. This procedure is classical (see, e.g., [47], Appendix III to Ch. II). For the
horizontal system, the jump of the x derivative at each point xk is computed integrating
the function in the second line of (2.22) in the interval (xk − ε, xk + ε) and taking ε→ 0;
same with the first equation of (2.23) for the vertical system.





Chapter 3

The eigenvalue problem

In this chapter, we initiate the study of the solutions of the vertical and horizontal systems.
In particular, since the two systems of equations (2.22) and (2.23) are linear, we deal with
the associated eigenvalue problem. As we shall discuss, the locally periodic arrangement
of the pendula along the string has a remarkable impact on the analysis of the problem.
Ultimately, we are able to obtain closed-form expressions for the eigenvalue equations
for any number of pendula, as well as for the eigenfunctions, in terms of Chebyshev
polynomials of the second kind.

Even if the horizontal and the vertical systems may be investigated as two independent
problems, since equations (2.22) and (2.23) are independent of each other, we propose
a parallel description, so as to facilitate the comparison of the two. In particular, the
results for the vertical system will always be stated first, and those for the horizontal
system, which carries the degrees of freedom of the pendula, right after, so as to highlight
more easily the peculiarities of the latter.

3.1 Damped normal modes

Among the solutions of the horizontal system (2.24) and the vertical system (2.25), we
are interested in the ‘damped normal modes’, which we define in the following way.

Definition 3.1. i. A horizontal damped normal mode with eigenvalue λ ∈ C and
eigenfunction (A, f) ∈ Cn × EC is a family of nonzero complex solutions (φ, ψ)
of (2.22) of the form

(φ(t), ψ(x, t)) =
(
cAeλt, cf(x)eλt

)
, c ∈ C \ {0} .

ii. A vertical damped normal mode with eigenvalue λ ∈ C and eigenfunction f ∈ EC is
a family of nonzero complex solutions ζ of (2.23) of the form

ζ(x, t) = cf(x)eλt , c ∈ C \ {0} .

We call decay rate the absolute value of the real part of the eigenvalues and (oscillation)
frequency their positive imaginary part. By multiplicity of an eigenvalue of each of the two

31
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types we mean the number of damped normal modes with that eigenvalue and linearly
independent eigenfunctions.

The set of all the eigenvalues of the horizontal and vertical damped normal modes, each
one repeated as many times as its multiplicity, will be called the horizontal and vertical
spectra. In order to stress their dependence on the parameters on which the linearised
systems depend, we will denote them, respectively, SpH

α,µ,ν and SpV
µ,ν . Finally, we call

damped small oscillation for the horizontal and vertical system a linear superposition of
the horizontal and vertical damped normal modes, respectively.

For each of the above definitions, we will drop the attribute “damped” whenever ν = 0.

3.1.1 Energy estimates

Preliminarily to the study of the damped normal modes of the system, we make a remark.

Proposition 3.1. If λ ∈ SpH
α,µ,ν or SpV

µ,ν , then Re(λ) = 0 if ν = 0 and Re(λ) < 0 if
ν > 0.

Proof. We consider the horizontal spectrum; the argument for the vertical spectrum is
similar. Define the total energy of the horizontal system at time t of a complex solution
(φ, ψ) of the horizontal linear system as

EHt (φ, ψ) :=
1

2

n∑
j=0

∫ xj+1

xj

(
|ψt(x, t)|2+

|ψx(x, t)|2

π2

)
dx+

µ

2

n∑
k=1

(
|φ̇k(t)+ψt(xk, t)|2+α2|φ̇2

k(t)|2
)
.

Using equations (2.24), the fact that ψt vanishes at x = 0, 1 and integrating by parts
terms containing ψxψtx, ψxψtxx and their complex conjugates gives

d

dt
EHt (φ, ψ) = − ν

π2

n∑
j=0

∫ xj+1

xj

|ψtx(x, t)|2dx .

For a horizontal damped normal mode (φ, ψ) = (Aeλt, f(x)eλt),

δ :=

n∑
j=0

∫ xj+1

xj

|ψtx(x, t)|2dx = |λeλt|2
n∑
j=0

∫ xj+1

xj

|f ′(x)|2dx > 0

because λ 6= 0 and f is not constant (if it was, then the derivatives of ψ would vanish and
the first and last equations (2.24) would give φk = 0 for all k, hence A = 0 as well). On
the other hand, EHt (φ, ψ) = e2tRe(λ)E0(φ, ψ) and thus d

dtE
H
t (φ, ψ) = 2Re(λ)EHt (φ, ψ).

We conclude that 2Re(λ)EHt (φ, ψ) = −ν δ
π2 ≤ 0, with the equality holding if and only if

ν = 0. This proves the statement because EHt (φ, ψ) > 0 if (φ, ψ) is nonzero.

Proposition 3.1 implies, in particular, that, for any ν > 0, the mechanical energy of
the system is dissipated in every damped normal mode, therefore, by LaSalle invariance
principle, every such solution tends asymptotically in time to the equilibrium. However,
we shall see in Sections 4.3 that, similarly to the case of the viscoelastic string discussed
in Section 2.2.2, the decay rates of the eigenvalues of the horizontal and vertical damped
normal modes are strongly frequency-dependent, and this will have a crucial impact on
the asymptotic dynamics of the system.
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3.2 The eigenvalue equations

We derive now equations for the eigenvalues of the horizontal and vertical damped normal
modes. In what follows, Un denotes the Chebyshev polynomials of the second kind of
order n; we refer to Appendix A for details on basic facts on these polynomials. We write

Pµ :=
µ

2

and, for any α > 0 and µ > 0, we define

Pα,µ : C \ {±iα} → C , Pα,µ(λ) =
µ

2

α2

α2 + λ2
,

and, for ν = 0,
ξ0 : C→ C , ξ0(λ) = πλ ,

and, for ν > 0,

ξν : C \ {− 1
ν } → C , ξν(λ) =

πλ

(1 + νλ)1/2
,

where ( )1/2 denotes, as above, the complex square root with nonnegative imaginary part,
which is analytic in C \ {x ≥ 0}.

Proposition 3.2. Consider n ≥ 1, α > 0, µ > 0 and ν ≥ 0 and a complex number λ.

i. λ ∈ SpV
µ,ν if and only if λ 6= 0, λ 6= − 1

ν (if ν > 0) and

sinh
( ξν(λ)

n+ 1

)
Un

(
Pµξν(λ) sinh

( ξν(λ)

n+ 1

)
+ cosh

( ξν(λ)

n+ 1

))
= 0. (3.1)

ii. λ ∈ SpH
α,µ,ν if and only if λ 6= 0, λ 6= − 1

ν (if ν > 0) and satisfies any of the following
two conditions:

sinh
( ξν(λ)

n+ 1

)
= 0 , (3.2a)

Un

(
Pα,µ(λ)ξν(λ) sinh

( ξν(λ)

n+ 1

)
+ cosh

( ξν(λ)

n+ 1

))
= 0 , λ 6= ±iα . (3.2b)

Proof. (ii.)We consider first the horizontal spectrum. Assume that (φλ,ψλ) :=c(Aeλt, feλt),
c 6= 0, is a horizontal damped normal mode. Write A = (A1, . . . , An). The function f
belongs to EC. Hence, if we define

fj := f |[xj−1,xj ] , j = 1, . . . , n+ 1 ,

then each fj : [xj−1, xj ]→ C is of class C2 in (xj−1, xj) and of class C1 in [xj−1, xj ] (with
the derivatives at the extrema interpreted as left and right derivatives) and satisfies

f1(x0) = 0 , fn+1(xn+1) = 0 (3.3)
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(recall that x0 = 0, xn+1 = 1) and

fk+1(xk) = fk(xk) ∀k = 1, . . . , n . (3.4)

The function (φλ, ψλ) satisfies (2.24) if and only if

(α2 + λ2)Ak + λ2fk(xk) = 0 , k = 1, . . . , n , (3.5a)

λ2fj(x)− 1 + νλ

π2
f ′′j (x) = 0 , x ∈ (xj−1, xj), j = 1, . . . , n+ 1 , (3.5b)

µλ2
(
fk(xk) +Ak

)
− 1 + νλ

π2

(
f ′k+1(x+

k )− f ′k(x−k )
)

= 0 , k = 1, . . . n . (3.5c)

It is simple to check that if λ = 0 or, when ν > 0, λ = −1/ν then the only solution of
equations (3.5) is Ak = 0 for all k = 1, . . . , n and fj = 0 for all j = 1, . . . , n+ 1. Thus 0
and (if ν > 0) − 1

ν do not belong to SpHα,µ,ν and in the remainder of the proof we exclude
these values of λ. Equation (3.5b) is equivalent to

fj(x) = aj cosh
(
ξ(x− xj−1)

)
+ bj sinh

(
ξ(x− xj−1)

)
∀x∈ [xj−1, xj ], j = 1, . . . , n+ 1 ,

with ξ := ξν(λ), aj := fj(xj−1) and bj := 1
ξ f
′
j(x

+
j−1). Note that fj(xj) = caj + sbj and

f ′j(x
−
j ) = ξ(saj + cbj) with

c := cosh
( ξν(λ)

n+ 1

)
, s := sinh

( ξν(λ)

n+ 1

)
.

We now impose the conditions on λ and on the Aj ’s, aj ’s and bj ’s that come from the
fact that A, f satisfies the remaining conditions, namely (3.3), (3.4), (3.5a) and (3.5c),
that is

a1 = 0 , can+1 + sbn+1 = 0 , (3.6a)
ak+1 = cak + sbk , k = 1, . . . , n , (3.6b)

(α2 + λ2)Ak + λ2(cak + sbk) = 0 , k = 1, . . . , n , (3.6c)
µξ(ak+1 +Ak)− (bk+1 − sak − cbk

)
= 0 , k = 1, . . . , n . (3.6d)

We distinguish two cases.
(1.) If λ 6= ±iα, then (3.6c) are equivalent to

Aj = − λ2

α2 + λ2
(caj + sbj) , j = 1, . . . , n .

Therefore, (3.6b) and (3.6d) can be written(
aj+1

bj+1

)
= M

(
aj
bj

)
, j = 1, . . . , n, (3.7)

with the 2× 2 “transfer” matrix

M :=

(
c s

s+Qc c+Qs

)
, Q := 2ξPα,µ(λ) (3.8)
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This gives, by iteration,(
aj+1

bj+1

)
= M j

(
a1

b1

)
, j = 1, . . . , n ,

It remains to impose the two conditions in (3.6a). The first is a1 = 0; but then, since λ is
an eigenvalue, b1 = 1

ξ f
′(0+) 6= 0 (otherwise all aj , bj = 0 and (φλ, ψλ) is zero). From the

second, the vanishing of can+1 + sbn+1 gives c(Mn)12 + s(Mn)22 = 0.
SinceM is a 2×2 matrix with determinant one, its powers are given by (see Appendix B,

equation (B.1))
M j = Uj−1(y)M − Uj−2(y)I , j ∈ N ,

where y = 1
2Tr(M), I is the 2 × 2 unit matrix, U−1 = 0 and, for j ≥ 0, the Uj ’s are

the Chebyshev polynomials of the second kind. Thus, c(Mn)12 + s(Mn)22 = (cM12 +
sM22)Un−1(y) − sUn−2(y). In our case y = c + 1

2Qs and c(Mn)12 + s(Mn)22 = (2cs +
s2Q)Un−1(y)− sUn−2(y) = s

(
2yUn−1(y)− Un−2(y)

)
= sUn(y), where the last equality

follows from (A.1). This proves that every eigenvalue λ 6= ±iα is either a zero of s or of
Un(y), as claimed.

Conversely, it is easy to prove that any λ ∈ C which is 6= 0, 6= iα and (if ν > 0) 6= − 1
ν

and satisfies sUn(y) = 0 belongs to SpHα,µ,ν .
(2.) If λ = ±iα, then (3.5a) is fj+1(xj) = 0 for all j = 1, . . . , n. Together with the first

equality (3.3) this gives aj = 0 for all j = 1, . . . , n+ 1. Notice that, by Proposition 3.1,
λ = ±iα ∈ SpHα,µ,ν implies ν = 0. Equations (3.5c) are satisfied by Ak =

bk+1−cbk
µξ0(iα) with

c = cos
(
πα
n+1

)
. The second equality (3.3) and the equalities (3.4) reduce to s bj = 0 for

j = 1, . . . , n+ 1, which have a nontrivial solution if and only if λ is such that s = 0. (The
trivial solution would lead to zero Ak’s and hence to a zero solution).

(i.) We consider now the vertical system. Assume that cg(x)eλt is a vertical damped
normal mode. Proceeding as in i., define gj := g|[xj−1,xj ], j = 1, . . . , n+ 1. The gj ’s satisfy
conditions similar to the fj ’s, specifically (with the fj ’s replaced by the gj ’s) (3.3), (3.4),
(3.5b) and, this is the difference, (3.5c) with all Ak = 0. Thus, as above, λ 6= 0 and (if
ν > 0) λ 6= −1/ν,

gj(x) = aj cosh
(
ξ(x− xj−1)

)
+ bj sinh

(
ξ(x− xj−1)

)
∀x∈ [xj−1, xj ], j = 1, . . . , n+ 1

and instead of (3.6) we have now

a1 = 0 , can+1 + sbn+1 = 0 , (3.9a)
ak+1 = cak + sbk , k = 1, . . . , n , (3.9b)
µξak+1 − (bk+1 − sak − cbk) = 0 , k = 1, . . . , n . (3.9c)

This gives the recurrence (3.7)−(3.8) with Q = 2ξPµ and, by comparison with (3.6), leads
to (3.1).

We will refer to equation (3.1) as the vertical eigenvalue equation and to equations (3.2)
as the horizontal eigenvalue equation. Interestingly, they can be represented in this form
for any number of pendula.
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Remark 3.1. For ν > 0, equation (3.2) for the horizontal system writes equivalently as

sinh
( ξν(λ)

n+ 1

)
Un

(
Pα,µ(λ)ξν(λ) sinh

( ξν(λ)

n+ 1

)
+ cosh

( ξν(λ)

n+ 1

))
= 0 , λ 6= ±iα.

Indeed, in virtue of Proposition 3.1, λ = ±iα belongs to SpHα,µ,ν only if ν = 0.

In Section 3.2.2, we shall analyse these expressions in greater detail. Here, we note
that when µ = 0, namely for massless pendula, we recover the unloaded viscoelastic
string, as in Section 2.2.2. Indeed, since, for µ = 0, P0 = 0 and P0,α = 0, the left
hand sides of equations (3.1) and (3.2) become sinh

( ξν(λ)
n+1

)
Un
(

cosh
( ξν(λ)
n+1

))
. By ex-

ploiting the definition (A.3) of Chebyshev polynomials of the second kind, we have
0 = sinh

( ξν(λ)
n+1

)
Un
(

cosh
( ξν(λ)
n+1

))
= sinh(ξν(λ)), which is precisely the eigenvalue equa-

tion (2.14) for the viscoelastic string. We consider from now on µ > 0.
Moreover, we remark that the vertical eigenvalue equation (3.1) differs from the

horizontal eigenvalue equation (3.2) in that Pα,µ(λ) is replaced by Pµ. Indeed, (3.1) (and
the vertical system) can be regarded as the (singular) limit for α → +∞ of (3.2) (and
the horizontal system). In fact, as mentioned, equation (2.23) for the vertical system
describes a viscoelastic vibrating string loaded with n identical and equidistant masses.

3.2.1 Alternative proof for the vertical eigenvalue equation

We originally obtained equations (3.1) and (3.2) by means of an alternative derivation.
At an earlier stage of our study, the possibility of finding explicit expressions for any
number of pendula, and in particular the emergence of Chebyshev polynomials, was still
not evident to us. We first figured out most formulas inductively, an a-posteriori analysis
then allowed us to simplify both the derivation and the final expressions.

Later in our study, we found that our expression (3.1) for the vertical eigenvalue
equation was already present in the literature for ν = 0 (see [15, 33]). There, the result
was obtained by exploiting the method of the transfer matrix (which we used in the
proof of Proposition 3.2). For comparison, we report here our alternative proof for the
derivation of (3.1) for ν = 0, since we believe it might provide some useful insights. In
particular, we prove the following

Proposition 3.3. Let n ≥ 1 and α > 0, µ > 0, and consider ω > 0. The conjugate pair
±iω ∈ SpV

µ,0 if and only if ω is a root of

sin
( πω

n+ 1

)
Un

(
Pµπω sin

( πω

n+ 1

)
− cos

( πω

n+ 1

))
= 0 . (3.10)

Proof. Let ν = 0. Assume that cf(x)eλt, c 6= 0, is a vertical normal mode. By Proposi-
tion 3.1, the eigenvalues are purely imaginary, hence we set λ = iω (and λ̄ = −iω) with
ω > 0. The function f belongs to EC. Hence, if we define

fj := f |[xj−1,xj ] , j = 1, . . . , n+ 1 ,
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then each fj : [xj−1, xj ]→ C is of class C2 in (xj−1, xj) and of class C1 in [xj−1, xj ] (with
the derivatives at the extrema interpreted as left and right derivatives) and satisfies

f1(x0) = 0 , fn+1(xn+1) = 0 (3.11)

and

fk+1(xk) = fk(xk) ∀k = 1, . . . , n . (3.12)

The function f(x)eiωt satisfies (2.25) if and only if

f ′′j (x) + π2ω2fj(x) = 0 , x ∈ (xj−1, xj), j = 1, . . . , n+ 1 , (3.13a)

µπ2ω2fk+1(xk) + f ′k+1(x+
k )− f ′k(x−k ) = 0 , k = 1, . . . n . (3.13b)

Equations (3.13a) are equivalent to

fj(x) = aj cos(wx) + bj sin(wx) ∀x∈ [xj−1, xj ], j = 1, . . . , n+ 1 ,

with w := πω, aj := fj(x0) and bj := 1
wf
′
j(x

+
0 ). Write P := µπw and, for all j =

0, . . . , n+ 1,

cj := cos(wxj) , sj := sin(wxj) .

We impose that the fj ’s satisfy the remaining conditions, namely (3.11), (3.12) and (3.13b),
that is a1 = 0 and

(ak+1 − ak)ck − (bk − bk+1)sk = 0 , k = 1, . . . , n , (3.14a)
(ak − ak+1 + Pbk)sk − (bk − bk+1 − Pak)ck = 0 , k = 1, . . . , n , (3.14b)
an+1cn+1 + bn+1sn+1 = 0 . (3.14c)

These are a system of 2n+ 1 linear equations for (b1, . . . , an+1, bn+1) =: u that we write
as Mnu = 0 with a (2n+ 1)× (2n+ 1) matrix Mn which depends on n and w. We thus
conclude that ±iω ∈ SpH

µ,0 if and only if ω = w
π and detMn = 0.

Lemma 3.1. For any n ≥ 0, detMn equals the left-hand side of (3.10).

Proof. From system (3.14),

M1 =

 s1 −c1 −s1

Ps1 − c1 −s1 c1

0 c2 s2
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and, for n ≥ 2,

Mn =



0 0

...
...

Mn−1

0 0

−cn −sn

0 · · · 0 Pcn + sn Psn − cn −sn cn

0 · · · 0 0 0 cn+1 sn+1



. (3.15)

Note that, if we define M0 := (s1) (a 1× 1 matrix), then the recursive formula (3.15) is
valid for all n ≥ 1. Note also that

detM0 = s1, detM1 = (Ps1 − 2c1)s1.

Assume now n ≥ 2. Using Laplace expansion along the last row gives detMn as a
sum cn+1 det +sn+1 det with two matrices and . Using Laplace expansion along the
last coloumn to compute det and det gives detMn = −(sn+1sn + cn+1cn) detMn+1 +
(cn+1sn) det M̃n−1 where the matrix M̃n−1 differs from Mn−1 in that its last row is
(0, . . . , 0, P cn + sn, Psn − cn). Hence, with a little trigonometry,

detMn = −c1 detMn−1 + s1 det M̃n−1.

Since (0, . . . , 0, P cn + sn, Psn − cn) = P (0, . . . , 0, cn, sn) + (0, . . . , 0, sn,−cn),

det M̃n−1 = P detMn−1 + det M̂n−1

where M̂n−1 differs from Mn−1 only because its last row is (0, . . . , 0, sn,−cn). Hence,

detMn = (Ps1 − 2c1) detMn−1 + (c1 detMn−1 + s1 det M̂n−1) ∀n ≥ 2.

We now show that

c1 detMk + s1 det M̂k = −detMk−1 ∀k ≥ 1.

For k = 1 this is verified with a computation. If k ≥ 2, using the linearity of the
determinant as a function of the last row of the matrix, one sees that c1 detMk +
s1 det M̂k = det M̌k, where M̌k differs from Mk because its last row is (0, . . . , 0, c1ck+1 +
s1sk+1, c1sk+1, sk+1 − s1ck+1) = (0, . . . , 0, ck, sk). Since adding the last row of M̌k to its
third-to-last row produces a block lower triangular matrix with diagonal blocks Mk+1

and
(
−sk ck
ck sk

)
, det M̌k−1 = −detMk−1. This proves

detMn = (Ps1 − 2c1) detMn−1 + detMn−2.
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In particular,
detMn = s1Dn ∀n ≥ 0

with the Dn’s satisfying the recurrence

D0 = 1, D1 = 2

(
P

2
s1 − c1

)
, Dn = 2

(
P

2
s1 − c1

)
Dn−1 +Dn+1 (n ≥ 2).

A comparison with Chebyshev recurrence (A.1) shows that Dn = Un
(
P
2 s1 − c1

)
. This

proves the Lemma.

The statement of Proposition 3.3 follows immediately from that of Lemma 3.1.

3.2.2 Peculiarities of the eigenvalue equations

In this section we further comment the expressions (3.1) and (3.2) for the eigenvalue
equations.

First, we observe that both equations (3.1) and (3.2) factorise. In particular, they share
the factor sinh

( ξν(λ)
n+1

)
and the remaining factors are expressed in terms of Chebyshev

polynomials of the second kind of order n. As we anticipated, this structure of the
eigenvalue equations reflects the locally periodic geometry of the system, in particular, it
is specific to the fact that we are assuming that the pendula are equally spaced.

Note, indeed, that Chebyshev polynomials Un naturally emerge in locally periodic
systems (see Appendix B.2 for a more general setting and Appendix A.1 for a simple
example).

As for the factor sinh
( ξν(λ)
n+1

)
, we note that the zeroes of this term are those eigenvalues

of the viscoelastic string without pendula whose eigenfunctions have nodes at the points
of suspension of the pendula (see Section 2.2.2). We will thus call them the (horizontal
and vertical) pure-string eigenvalues of the vertical and horizontal spectra – and of the
Kelvin-Voigt string as well. And we will call (horizontal and vertical) string-pendula
eigenvalues the other eigenvalues of the vertical and horizontal spectra, which are given
by the zeroes of the Chebyshev polynomials.

From Proposition 3.2 and the characterisation (A.4) of the zeroes of Un(·), we have
the following

Corollary 3.1. For any n ≥ 1, α > 0, µ > 0, ν ≥ 0:

i. The pure-string eigenvalues of SpV
µ,ν and SpH

α,µ,ν are the solutions λ ∈ C of
sinh

( ξν(λ)
n+1 ) = 0, namely of the countably many equations

ξν(λ)

n+ 1
= imπ , m ∈ Z . (3.16)

ii. The string-pendula eigenvalues of SpV
µ,ν are the solutions λ ∈ C of the n equations

Pµ ξν(λ) sinh
( ξν(λ)

n+ 1

)
+ cosh

( ξν(λ)

n+ 1

)
= cos

( kπ

n+ 1

)
, k = 1, . . . , n . (3.17)
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iii. The string-pendula eigenvalues of SpH
α,µ,ν are the solutions λ ∈ C \ {±iα} of the n

equations

Pα,µ(λ)ξν(λ) sinh
( ξν(λ)

n+ 1

)
+ cosh

( ξν(λ)

n+ 1

)
= cos

( kπ

n+ 1

)
, k = 1, . . . , n .

(3.18)

iv. The sets of pure-string and string-pendula eigenvalues of each of one of the two
spectra SpV

µ,ν and SpH
α,µ,ν are disjoint.

Proof. (i.) The zeroes of sinh are iπm, m ∈ Z. (ii.) and (iii.) are obvious, given (A.4).
(iv.) If λ is a pure-string eigenvalue, then ξν(λ)

n+1 = iπm for somem ∈ Z and equations (3.17)
and (3.18) reduce to the n equations cos(πm) = cos( kπ

n+1), k = 1, . . . , n, none of which
has solutions.

Corollary 3.1 implies, in particular, that the string-pendula eigenvalues come in
families of n.

As we will see in Chapter 4, the pure-string eigenvalues play an organising role in
the vertical and horizontal spectra, dividing them into ‘bands’ whose consideration will
facilitate their description. Moreover, for the horizontal spectrum, we anticipate that
another divide enters the structure of the eigenvalues, and that it is given by the special
values ±iα. Note that, as we mentioned, being purely imaginary, they can only belong
to the horizontal spectrum for ν = 0 and, in that case, only if they are pure-string
eigenvalues, namely if

α̃ :=
α

n+ 1
∈ Z+ .

We will say that α is resonant if α̃ ∈ Z+ and nonresonat otherwise. The reason is
that, since α is the ratio between the frequency of oscillation of the pendula and the
fundamental frequency of the vibrating string, an integer value of α

n+1 means that there
is a resonance in which the frequency of each pendulum is a multiple of the vibration
frequency of the part of the string between each pair of consecutive pendula.

In Chapter 4 we will study the roots of equations (3.16)—(3.18).

3.3 The eigenfunctions

We determine now expressions for the eigenfunctions of the vertical and horizontal systems
in terms of the eigenvalues. Analogously to the eigenvalue equations, we will express them
in terms of Chebyshev polynomials, for any number of pendula. Moreover, a peculiarity
of the resonant case will emerge.

For comparison, we preliminarily recall that, with our notation, the eigenfunction of
the Kelvin-Voigt string relative to an eigenvalue λ ∈ C is the function

fKV
ν,λ (x) = sinh

(
ξν(λ)x

)
, x ∈ [0, 1] . (3.19)

As above, we write xj = j
n+1 , Ck = cos

(
kπ
n+1

)
, and we make the convention that U−1 = 0.

Notice in particular that Un(Ck) = 0 ∀k = 1, . . . , n, by property (A.4). We then denote
by δij the Kronecker delta.
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Proposition 3.4. For any n ≥ 1, α > 0, µ > 0, ν ≥ 0:

i. All eigenvalues in SpV
µ,ν and SpH

α,µ,ν have multiplicity 1 except, if present, ±iα ∈
SpH

α,µ,0 which have multiplicity n+ 1.

ii. The eigenfunction of any vertical pure-string eigenvalue λ ∈ SpV
µ,ν is fKV

ν,λ .

iii. The eigenfunction of any vertical string-pendula eigenvalue λ ∈ SpV
µ,ν solution of

the k-th equation (3.17) is the function fV
ν,k,λ ∈ EC such that

fV
ν,k,λ(x) = Uj−1(Ck) sinh

(
ξν(λ)(x−xj−1)

)
−Uj−2(Ck) sinh

(
ξν(λ)(x−xj)

)
(3.20)

for x ∈ [xj−1, xj ], j = 1, . . . , n+ 1.

iv. The eigenfunction of any horizontal pure-string eigenvalue λ ∈ SpH
α,µ,ν with ν >

0 and of any horizontal pure-string eigenvalue λ 6= ±iα of SpH
α,µ,0 is (0, fKV

ν,λ ).
If ±iα ∈ SpH

α,µ,0, then each of them has the n + 1 independent eigenfunctions
(AH

α,l, f
H
α,l) ∈ Rn × E, l = 1, . . . , n+ 1, with

(AH
α,l)h =

(−1)h
α
n+1

παµ
(δhl + δh(l−1)), h = 1, . . . , n, (3.21a)

fH
α,l = δlj sin (παx) , x ∈ [xj−1, xj ], j = 1, . . . , n+ 1. (3.21b)

v. The eigenfunction of any horizontal string-pendula eigenvalue λ ∈ SpH
α,µ,ν solution

of the k-th equation (3.18) is (AH
ν,k,λ, f

H
ν,k,λ) ∈ Cn × EC with

(AH
ν,k,λ)h = − λ2

α2 + λ2
Uh−1(Ck) sinh

( ξν(λ)

n+ 1

)
, h = 1, . . . , n , (3.22a)

fH
ν,k,λ(x) = Uj−1(Ck) sinh

(
ξν(λ)(x− xj−1)

)
− Uj−2(Ck) sinh

(
ξν(λ)(x− xj)

)
(3.22b)

for x ∈ [xj−1, xj ], j = 1, . . . , n+ 1.

Proof. We adopt the same notation as in the proof of Proposition 3.2, and use some of
the results obtained therein. As before, we set c := cosh

( ξν(λ)
n+1

)
, s := sinh

( ξν(λ)
n+1

)
, and

Ck := cos
(
kπ
n+1

)
.

Consider the vertical system, and assume that cgeλt, c 6= 0, is a vertical damped
normal mode. Recall that we wrote gj := g|[xj−1,xj ], j = 1, . . . , n+ 1, as

gj(x) = aj cosh
(
ξν(λ)(x− xj−1)

)
+ bj sinh

(
ξν(λ)(x− xj−1)

)
,

and that a1, b1, . . . , an+1, bn+1 satisfy (3.9).
ii. Let λ ∈ SpVµ,ν be a pure-string eigenvalue. Then, s = 0 and, from (3.9), aj = 0 and

bj+1 = −cbj for all j = 1, . . . , n+ 1. Hence, g(x) = sinh(ξν(λ)x).
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iii. Let λ ∈ SpVµ,ν be a string-pendula eigenvalue. From the expression of the transfer
matrix (3.8), with Q := 2ξPµ, and using the relation (B.1) for its powers, we have, for
j = 1, . . . , n,(

aj+1

bj+1

)
=

(
cUj−1(Ck)− Uj−2(Ck) sUj−1(Ck)

(s+Qc)Uj−1(Ck) (c+Qs)Uj−1(Ck)− Uj−2(Ck)

)(
a1

b1

)
, (3.23)

where we used (3.17). Therefore, since a1 = 0, for j ≥ 1,

aj+1 = sUj−1(Ck)

bj+1 = (c+Qs)Uj−1(Ck)− Uj−2(Ck) = Uj(Ck)− cUj−1(Ck),

where we set b1 ≡ 1 (an arbitrary constant), and used in the last equality the re-
currence (A.1) for the Chebyshev polynomials. Therefore, g1(x) = s and, for j ≥ 1,
gj+1(x) = (sUj−1(Ck)) cosh

(
ξν(λ)(x−xj−1)

)
+(Uj(Ck)−cUj−1(Ck)) sinh

(
ξν(λ)(x−xj−1)

)
.

Finally, using standard formulas for the sum of hyperbolic functions, we find expres-
sion (3.20).

Consider now the horizontal system, assume that c
(
Aeλt, feλt

)
, c 6= 0, is a horizontal

damped normal mode. Recall that we wrote fj := f |[xj−1,xj ], j = 1, . . . , n+ 1, as

fj(x) = aj cosh
(
ξν(λ)(x− xj−1)

)
+ bj sinh

(
ξν(λ)(x− xj−1)

)
,

and that A1, . . . , An, a1, b1, . . . , an+1, bn+1 satisfy (3.6).
iv. Let λ ∈ SpHα,µ,ν be a pure-string eigenvalue. Then, s = 0 and, from (3.6), provided

λ 6= ±iα, Aj = 0 for all j = 1, . . . , n, aj = 0 and bj+1 = −cbj for all j = 1, . . . , n + 1.
Hence, set b1 ≡ 1, A = 0 and f(x) = sinh(ξν(λ)x). We consider now the resonant
case. Fix ν = 0 and assume λ = ±iα with α = α̃(n + 1), for some α̃ ∈ Z+. By item
ii.2. in the proof of Proposition 3.2, aj = 0 for all j = 1, . . . , n + 1, and therefore
fj(x) = ibj(−1)α̃(j+1) sin(παx). Moreover, Ah = i

µαπ

(
(−1)α̃bh − bh+1

)
, h = 1, . . . , n.

Thus, we have n+ 1 linearly independent eigenfunctions obtained by setting all bj ’s to
zero except for one at the time, namely of the form (3.21).

v. Let λ ∈ SpHα,µ,ν be a string-pendula eigenvalue. Then, from (3.6), Aj = − λ2

α2+λ2 fj(xj),
j = 1, . . . , n. The computation is then analogous to the one in item iii., with the only
difference that in this case Q := 2ξPα,µ(λ).

i. follows from the items above.

We shall draw the profiles of the eigenfunctions in Section 4.2, after having determined
the eigenvalues in SpV

µ,0 and SpH
α,µ,0. We can, however, already make some comments on

the eigenfunctions described in Proposition 3.4.
As we had anticipated, the eigenfunctions associated to both the horizontal and vertical

pure-string eigenvalues correspond to the configurations in which the string vibrates as it
were alone and unloaded and the pendula stay still.

We note moreover that, conversely, the situation in which the pendula oscillate
while the string lies in the resting configuration is never attained. Indeed, in virtue of
Corollary 3.1 item iv., the expressions (3.22b) never vanish for string-pendula eigenvalues.
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Furthermore, we observe that any horizontal damped normal mode with string-pendula

eigenvalue λ, the ratios
(AH
ν,k,λ)h

(AH
ν,k,λ)h′

are fixed by k, since, from expression (3.22a), they equal
Uh−1(Ck)
Uh′−1(Ck) for every h, h′ = 1, . . . , n. In particular, these ratios depend on n only. We will
come back to this aspect in Chapter 5, where we focus on the dynamics of the pendula.

It is also worth highlighting the following symmetry property for the (AH
ν,k,λ)h’s. We

first notice that, exploiting definition (A.3) for the Chebyshev polynomials, for any n ≥ 1
and h, k = 1, . . . , n, we have

sin

(
πk

n+ 1

)
Un−h(Ck) = sin

(
(n− h+ 1)

πk

n+ 1

)
= (−1)k+1 sin

(
h
πk

n+ 1

)
= (−1)k+1 sin

(
πk

n+ 1

)
Uh−1(Ck).

Therefore, fixed n ≥ 1, for any horizontal string-pendula eigenvalue, solution of the k-th
equation (3.18), the following parity rule holds:

(AH
ν,k,λ)n−h+1 = (−1)k+1(AH

ν,k,λ)h ∀h = 1, . . . , n. (3.24)

Finally, we underline the peculiarity of the non-generic case in which α is resonant. In
such circumstances, which we recall might be attained only for ν = 0, by (3.21), each j-th
piece of string is independent of the others, and so are the amplitudes of each pendulum.
In particular, it could happen (depending on the initial conditions) that the string is
at rest in some of the intervals [xj−1, xj ] and the remaining parts of the system are in
motion (we refer to Figure 4.8 in the next chapter).





Chapter 4

The vertical and horizontal spectra

In this chapter, we present a detailed description of the spectra of the vertical and
horizontal systems, in the undamped and damped cases. They consist of the eigenvalues
λ ∈ C, roots of the eigenvalue equations (3.1) and (3.2). Therefore, this study is based
on the investigation of the solutions of these transcendental complex equations. In the
(undamped) conservative limit, we are able to analytically characterise the frequencies
of oscillation from graphical analyses. As for the dissipative regime, we provide explicit
expressions for the eigenvalues of the vertical system, while for the horizontal system we
partly resort to a numerical study.

4.1 The vertical and horizontal conservative spectra

We begin our spectral study from the conservative case, i.e. when ν = 0. First, it is
convenient to rename the eigenvalues of the unloaded string, whose spectrum will be a
reference for the undamped system. Indeed, it is useful to group them in bands (even
though these bands have no dynamical meaning for the string without pendula), since, as
we anticipated in Section 3.2.2, the eigenvalues of the vertical and horizontal systems form
families. Thus, we define ωS

0,0 := 0 (which is not a frequency) and rename the equally
spaced frequencies ωS

m = m, m ∈ Z+, of the vibrating string (see Section 2.1.4) as

ωS
`,k := ωS

(n+1)`+k , ` ∈ N , k = 0, . . . , n

The pure-string eigenvalues are then the ±iωS
`,0’s, ` ∈ Z+. We define the “vibrating string

bands” as BS
0 := {±iωS

0,1, . . . ,±iωS
0,n} and, for ` ≥ 1, BS

` := {±iωS
`,0, . . . ,±iωS

`,n}. All
bands, except BS

0 , contain a conjugate pair of pure-string eigenvalues and n conjugate
pairs of eigenvalues with frequencies to their closest right.

4.1.1 The vertical conservative spectrum

We characterise first the vertical conservative spectrum SpV
µ,0, for µ > 0.

45
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Proposition 4.1. Consider any n ≥ 1 and µ > 0. SpV
µ,0 consists of countably many

bands BV
` , ` ∈ N, each formed by the two pure-string eigenvalues ±iωS

`,0 =: ±iωV
`,0 (unless

` = 0) and by n pairs of conjugate purely imaginary eigenvalues ±iωV
`,k, k = 1, . . . , n, with

ωS
`,0 < ωV

`,1 < . . . < ωV
`,n < ωS

`+1,0 .

(See Figure 4.1.)
For each ` ≥ 0 and k = 1, . . . , n, limµ→0 ω

V
`,k = ωS

`,k and limµ→+∞ ω
V
`,k = (ωS

`,0)+.
The bands become narrower with `: for all k = 1, . . . , n, lim`→+∞ ω

V
`,k = ωS

`,0.

Figure 4.1: The frequencies ωV
`,k of the eigenvalues in the spectrum SpV

µ,0 (black dots, for n = 3). The
frequencies of the first two bands, BV

` (` = 0, 1), and the pure-string frequencies, ωS
`,0, are

explicitly labelled, and the latter are marked with a thicker point. To facilitate a comparison,
the grey dots represent the frequencies of the (unloaded) vibrating string. The numerical
value used in the generation of the picture is µ = 0.1.

Proof. By Proposition 3.1, the eigenvalues are purely imaginary, and come in conjugate
pairs. We thus determine those of the form λ = iω with ω ∈ R+. Since ξ0(λ) = πλ, the
eigenvalue equation (3.1) is (3.10). We thus write ω̃ := ω

n+1 , P̃µ = µ(n+1)
2 and as above

Ck = cos
(
kπ
n+1

)
, and look for the positive solutions of

P̃µπω̃ sin(πω̃) = cos(πω̃) + Ck, k = 1, . . . , n . (4.1)

Since P̃µ > 0 and |Ck| < 1, each equation (4.1) has exactly one solution ω̃V`,k in each
interval (`, `+ 1), ` ∈ N. (An elementary graphical analysis, see Figure 4.2, shows that
this is the case if Ck = 0 and that, if Ck 6= 0, then there is at least one solution in
each such interval. But the derivative π2P̃µω̃ cos(πω̃) + π(1 + P̃µ) sin(πω̃) of the function
P̃µπω̃ sin(πω̃)− cos(πω̃)−Ck is independent of Ck and a similar graphical analysis shows
that it has exactly one zero in each interval (`, `+ 1); the conclusion then follows from
Rolle’s theorem). Figure 4.2 also shows that, for ` even ω̃V`,1 < . . . < ω̃V`,n while for ` odd
ω̃V`,n < . . . < ω̃V`,1. This proves the band structure of the ωV

`,k := (n+ 1)ω̃V`,k. For ` odd,
we reorder the ωV

`,k so as to have them increasing with k.
A glance at Figure 4.2 shows that, as ` increases, the bands become narrower and

approach their lowest, pure string, frequency.
The limit behaviours are proven by observing that the solid line in Figure 4.2 becomes

steeper if µ increases and flatter if µ decreases.
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Figure 4.2: Determination of the rescaled string-pendula frequencies ω̃V`,k =
ωV
`,k

n+1
of SpV

µ,0 (for n = 3)
as intersection between the graphs of the function at the l.h.s. (solid curve) and of the n
functions at the r.h.s. (dashed curves) of equation (4.1).

The band structure of SpV
µ,0 has already been described in Proposition 4.1 and is

clearly visible in Figure 4.1. Figure 4.2, where the frequencies are the intersection points
of a graph of a function that depends linearly on µ and of a function independent of
µ, makes it evident that the eigenvalues depend continuously on µ. Thus, the vertical
spectrum SpV

µ,0 can be seen as a continuous deformation of the spectrum of the (unloaded)
vibrating string. As µ increases, the pure-string frequencies ωS

`,0 remain fixed while the
other frequencies ωV

`,k move toward the immediately lower pure-string frequency ωS
`,0 (or

zero, if ` = 0). In this way, well-defined bands are formed, which are µ-deformations of
the (artificial) bands of SpS introduced above.

4.1.2 The horizontal conservative spectrum

We determine now the spectrum of the horizontal conservative system SpH
α,µ,0, for α > 0

and µ > 0. As above, we define α̃ := α
n+1 and say that α is nonresonant if α̃ /∈ Z+ and

resonant otherwise.

Proposition 4.2. For any n ≥ 1, α > 0 and µ > 0, SpH
α,µ,0 consists of the countably

many pure-string eigenvalues ±iωS
`,0 =: ±iωH

`,0, ` ∈ Z+, and, for each ` ∈ N if α is
nonresonant and ` ∈ N \ {α̃} if α is resonant, of 2n purely imaginary eigenvalues ±iωH

`,k,
k = 1, . . . , n, which satisfy

ωS
`,0 < ωH

`,1 < . . . < ωH
`,n < min(α, ωS

`+1,0) if ` < α̃ (4.2a)

max(α, ωS
`−1,0) < ωH

`,1 < . . . < ωH
`,n < ωS

`,0 if ` > α̃ . (4.2b)

(See Figure 4.3).
Moreover, for each k = 1, . . . , n, ωH

`,k → ωS
`,k as ` → +∞, and, for any ` ∈ N

(` ∈ N \ {α̃} if α resonant), ωH
`,k → (ωS

`,0)+ (resp. (ωS
`,0)−) for ` < α̃ (resp. ` > α̃) as

µ→ +∞. (SpH
α,µ,0 has a band structure which is described after the proof.)
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Figure 4.3: The frequencies ωH
`,k of the eigenvalues in the spectrum SpH

α,µ,0 (black dots, for n = 3).
The frequencies of the first band, BH

0 , and the pure-string frequencies, ωS
`,0, are explicitly

labelled, and the latter are marked with a thicker point. To facilitate a comparison, the
grey dots represent the frequencies of the vibrating string. Top: Nonresonant case α

n+1
/∈ Z.

Bottom: Resonant case α
n+1
∈ Z. The numerical values used in the generation of the two

pictures are µ = 0.1 and, respectively, α = 5.5 and α = 4.

Proof. By Proposition 3.1, the eigenvalues are purely imaginary and come in conjugate
pairs. Thus, we determine those of the form λ = iω with ω ∈ R+. Since ξ0(λ) = πλ,
by Corollary 3.1, the solutions of (3.16) are the pure-string eigenvalues ±iωH

`,0, while
the string-pendula eigenvalues are the solutions of the n equations (3.18). Thus, we
write ω̃ := ω

n+1 and Ck = cos
(
kπ
n+1

)
, and look for the positive solutions ω̃ 6= α̃ of the n

equations
f(ω̃) sin(πω̃) = cos(πω̃) + Ck , k = 1, . . . , n , (4.3)

with f : R \ {α̃} → R given by

f(ω̃) =
πµα̃2

2(n+ 1)

ω̃

α̃2 − ω̃2
.

If α̃ /∈ Z+ then the function f has a vertical asymptote at ω̃ = α̃. If α̃ ∈ Z+, instead,
f extends to a continuous function on R which in ω̃ = α̃ has a strict maximum π

2 if α̃ is
odd and a strict minimum −π

2 if α̃ is even. Note also that, in all cases, the factor ω̃
α̃2−ω̃2

changes sign at ω̃ > α̃.
A graphical analysis, similar to that of the proof of Proposition 4.1, shows that, if

α̃ /∈ Z+, then, for each k = 1, . . . , n, the solutions of equation (4.3) form a sequence
ω̃H`,k, ` ∈ N, with ω̃H`,k ∈ (`, ` + 1) if ` < α̃ and ω̃H`,k ∈ (` − 1, `) if ` > α̃ and, moreover,
ω̃H`,k 6= ω̃H`,k+1 for all ` and k and ω̃Hbα̃c,k < α̃ < ω̃Hdα̃e,k for all k. For each ` we reorder the
ω̃H`,k so as to have them increasing with k. See Figure 4.4 top.

If α̃ ∈ Z+ the situation is analogous except that, for each k, equation (4.3) has a
sequence of solutions which can be labelled ω̃H`,k with ` ∈ N\{α̃} and satisfy ` < ω̃H`,k < `+1

if ` < α̃ and `− 1 < ω̃H`,k < ` if ` > α̃, etc. (see Figure 4.4 bottom).
The limit behaviours are proven by observing that the solid line in Figure 4.4 becomes

steeper if µ increases, and vice versa it flattens for `→ +∞.
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Figure 4.4: Determination of the rescaled string-pendula frequencies ω̃H`,k =
ωH
`,k

n+1
of SpH

α,µ,0 (for n = 3)
as intersection between the graphs of the function at the l.h.s. (solid curve) and of the n
functions at the r.h.s. (dashed curves) of equation (4.3). Top: Nonresonant case α

n+1
/∈ Z.

Bottom: Resonant case α
n+1
∈ Z. The numerical values used in the generation of the two

pictures are µ = 0.1 and, respectively, α = 13.5 and α = 12.

Band structure. The undamped horizontal spectrum is illustrated in Figure 4.3 and
has a band structure with bands BH

` , ` ∈ N, formed by all the eigenvalues ±iωH
`,k with that

`, which is similar to that of the undamped vertical spectrum, but with two qualitative
differences. First, when α is resonant, namely α

n+1 =: ¯̀∈ Z+, then the (¯̀+ 1)-th band
BH

¯̀ consists of the single pair of pure-string eigenvalues ωH
¯̀,k

= (n+ 1)¯̀. In such a case, as
seen in Proposition 3.4, each such eigenvalue has multiplicity n+ 1. This may be related
to the fact that, as a glance at Figure 4.4 shows, when α→ (n+ 1)¯̀with ¯̀∈ Z+, all the
n+ 1 frequencies ωH

¯̀,k
of the eigenvalues in the band BH

¯̀ collapse to (n+ 1)¯̀. Second, the
bands BH

` on the left of α, with 0 ≤ ` < α̃, and those on the right of α, with ` > α̃, are
arranged in different ways: the pure-string frequency ωS

`,0 (or ωS
0,0 = 0 if ` = 0) of the

former is the smallest frequency of the band, while it is the largest in the latter.
By comparing SpV

µ,0 and SpH
α,µ,0 (and Figures 4.1 and 4.3), we can notice some

additional differences in the band structure of the two. In particular, we remark that,
first, while in SpH

α,µ,0 the narrowest bands are those close to α
n+1 , in SpV

µ,0 the bands B`’s
get thinner as ` increases, and second, as already mentioned, all the frequencies of the
eigenvalues in SpV

µ,0 approach those of pure string from the right, while the opposite



50 Chapter 4. The vertical and horizontal spectra

happens in SpH
α,µ,0 for those frequencies larger than α

n+1 . Both these properties can be
understood by thinking of SpV

µ,0 as a limit case of SpH
α,µ,0 for α→ +∞.

Dependence on µ. Clearly, for any given ` ∈ N, when µ→ +∞ all ωH
`,k → ωS

`,0 (the
solid curve in Figure 4.4 becomes steeper and steeper). The behaviour for µ→ 0 of the
string-pendula frequencies is more complex, and in one feature depends on whether α
is resonant or not. If α is resonant, when µ→ 0 the solid curve in Figure 4.4 (bottom)
becomes flatter and flatter and each ωH

`,k tends to ωS
`,k if ` < α

n+1 and to ωS
`−1,k if ` > α

n+1 .
If α is nonresonant, then when µ→ 0 the solid curve in Figure 4.4 (top) becomes flatter
and flatter, retaining however the asymptote at ω̃ = α̃. This implies that the frequencies
ωH
`,k with ` = b α

n+1c remain at the left of α
n+1 and those with ` = d α

n+1e remain at the
right of α

n+1 . As a consequence, all the ωH
`,k have the same limit behaviours as in the

resonant case, except those with ` = b α
n+1c and those with ` = d α

n+1e. Of these 2n

frequencies, n tend to the ωS
b α
n+1
c,k’s and n tend to α (which ones tend to the formers and

which to the latter depends on the actual value of α
n+1).

4.2 The eigenfunctions of the conservative system

Now that we have determined the eigenvalues in SpV
µ,0 and SpH

α,µ,0, we can complete our
description of the eigenfunctions, obtained in Section 3.3, for the undamped vertical and
horizontal systems.

4.2.1 The vertical eigenfunctions

The vertical system describes a vibrating string, in the vertical plane XZ, periodically
loaded with n identical point masses located at (xh, f(xh)), with xh = h

n+1 and h =

1, . . . , n. By Propositions 3.4 and 4.1, for any pure-string eigenvalue iωV
`,0 (` ∈ Z+), f(xh)

is fKV
0,iωV

`,0
(xh) = 0, while for any string-pendula eigenvalue iωV

`,k (` ∈ N, k = 1, . . . , n), by

equation (3.20), f(xh) is

fV
0,k,iωV

`,k
(xh) = sin

(
πωV

`,k

n+ 1

)
Uh−1 (Ck) , h = 1, . . . , n. (4.4)

As expected, for small µ’s, the vibrating string profiles, and especially the low-frequency
normal modes, are weakly deformed by the masses. Vice versa, large values of µ and
high-frequency normal modes correspond to configurations in which the masses undergo
very small amplitude oscillations. Indeed, as µ or ` tend to +∞, ωV

`,k → ωV
`,0 and, by (4.4),

fV
0,k,iωV

`,k
(xh)→ 0 for every h = 1, . . . , n.

Figure 4.5 shows the profiles corresponding to the first few vertical normal modes,
from which the characteristics of the eigenfunctions under discussion emerge.

4.2.2 The horizontal eigenfunctions

The horizontal system is more interesting.
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Figure 4.5: The profiles of the vertical eigenfunctions for ν = 0, in the XZ-plane, associated to the
eigenvalues in the first band BV

` , ` = 0 (top) and to the first pure-string eigenvalues ±iωV
1,0,

` = 1, k = 0 (bottom), for n = 3. The numerical value used in the generation of the pictures
is µ = 0.1.

By Proposition 3.4, we already know that the pendula are at rest in the equilibrium
configuration in any pure-string normal mode. Conversely, by equation (3.22), they
undergo large amplitude oscillations, compared to the displacement of the string, for
string-pendula normal modes with frequencies close to α. Expression (4.2) suggests that
this occurs, aside from when α is resonant, for those eigenvalues in the bands BH

bα̃c and
BH
dα̃e. Proposition 4.2 also indicates that for high-frequency normal modes the string

is weakly affected by the pendula. We recall, moreover, that the ratio between the
oscillation amplitudes of the pendula is independent of the parameters α, µ, and that for
any string-pendula normal mode with frequency ωH

`,k, the relation (3.24) holds.
The (special) resonant case requires a separate discussion. Indeed, for specific values

of the parameter α, specifically for α = α̃(n + 1) with α̃ ∈ Z+, the pair ±iα belongs
to SpH

α,µ,0. When this is the case, there are n + 1 horizontal normal modes that have
frequency α, the eigenfunctions of which are (3.21). For any such eigenfunction, only one
piece of string of length 1

n+1 and the pendula at its extremities have nonzero amplitude
of oscillation, while the remaining parts of the system are at rest.

To conclude, we remark that the parameter µ enters in a similar way as in the vertical
system, namely as µ increases the profile of the string is more deformed and the amplitudes
of the pendula become smaller, with however the difference that, by Proposition 4.2, for
any µ > 0, every string-pendula normal mode has a frequency ωH

`,k which is higher than
ωS
`,k for ` > α

n+1 (∀k = 1, . . . , n).
Figures 4.6—4.8 show the profiles corresponding to some of the horizontal normal

modes, for different values of α, from which the characteristics of the eigenfunctions under
discussion emerge.



52 Chapter 4. The vertical and horizontal spectra

Figure 4.6: The profiles of the horizontal eigenfunctions for ν = 0, projected on theXY -plane, associated
to the first two bands BH

` , ` = 0 (top) and ` = 1 (bottom), for n = 2. The numerical values
used in the generation of the pictures are µ = 0.1 and α = 1.5.

4.3 The vertical and horizontal dissipative spectra

We now study the spectra of the vertical and horizontal systems for ν > 0.
First, it is useful to rename the eigenvalues of the (unloaded) viscoelastic string so as

to group them in bands as we did for the conservative case. For the Kelvin-Voigt string
we define λKV

0,0,± := 0 (which is not an eigenvalue) and, for all ` ∈ N and k ∈ {1, . . . , n},

λKV
`,k,± := λKV

(n+1)`+k,± ,

with the λKV
`,± ’s defined in (2.15). The pure-string eigenvalues are the λKV

`,0 ’s, ` ∈ Z+.
Next, we distinguish the nonreal eigenvalues from the real ones defining

λKV
`,k := λKV

(n+1)`+k,+ if (n+ 1)`+ k < 2
ν

rKV
`,k,± := λKV

(n+1)`+k,± if (n+ 1)`+ k ≥ 2
ν

so that, for all the `, k’s for which they are defined,

λKV
`,k , λ

KV
`,k ∈ C

∗
ν := Cν \

{
− 2

ν

}
, rKV

`,k,± ∈ R ,

where Cν , as before, is the circle of centre (− 1
ν , 0) and radius 1

ν . For each ` ≥ 0, we define
the (`+ 1)-th “Kelvin-Voigt band” BKV

` as formed by all the eigenvalues λKV
`,k , λ

KV
`,k , r

KV
`,k,±.

Thus, all bands consist of 2n string-pendula eigenvalues and those with ` ≥ 1 also of two
pure-string eigenvalues, either λKV

`,0 and λKV
`,0 or rKV

`,0,+ and rKV
`,0,−.

For reasons that will appear clear later, we will be particularly interested in the bands
contained in C∗ν and – except in the special case in which 2

(n+1)ν is an integer, so that − 2
ν
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Figure 4.7: The profiles of the horizontal eigenfunctions for ν = 0, projected on theXY -plane, associated
to the first two bands BH

` , ` = 0 (top) and ` = 1 (bottom), for n = 2. The numerical values
used in the generation of the pictures are µ = 0.1 and α = 4.

is a pure-string eigenvalue – to the first band which has (some) real eigenvalues. These
are the first ¯̀ bands BKV

0 , . . . , BKV
¯̀−1

, with

¯̀ :=
⌈ 2

(n+ 1)ν

⌉
≥ 1 . (4.5)

Indeed, if 2
(n+1)ν ∈ Z+ then rKV

¯̀,0,± = − 2
ν , the bands BKV

0 , . . . , BKV
¯̀−1

are entirely contained
in C∗ν and all other bands have only real eigenvalues. If 2

(n+1)ν < 1 then λKV
1,0,± = rKV

1,0,± ∈ R
and only BKV

0 may have eigenvalues in C∗ν (if it does and how many depends on ν).
Similarly, if 1 < 2

(n+1)ν /∈ Z+ then λKV
¯̀,0,± = rKV

¯̀,0,± ∈ R, the bands BKV
0 , . . . , BKV

¯̀−2
are

contained entirely in C∗ν while BKV
¯̀−1

has its pure-string eigenvalue λKV
¯̀−1,0

in C∗ν and,
depending on ν, all, some or none of its string-pendula eigenvalues in C∗ν .

4.3.1 The vertical spectrum

In this section, we determine the spectrum of the vertical system. As we shall see
in Lemma 4.1, there is a relation between this spectrum and the one we studied in
Section 4.1.1 for the conservative case. Indeed, the knowledge of the undamped one allows
us to understand the structure of the damped one.

Proposition 4.3. Consider any n ≥ 1, α > 0, and µ > 0. For any ν > 0, SpV
µ,ν contains

all the pure-string eigenvalues of the Kelvin-Voigt spectrum SpKV
ν and consists of a finite

(possibly zero) number of pairs of complex conjugate eigenvalues which belong to the
circle C∗ν and countably many real eigenvalues which belong to the interval (−∞,− 1

ν ) and
accumulate at −∞ and at − 1

ν . (SpV
µ,ν has a band structure, which is described after the

proof).
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Figure 4.8: The profiles of the horizontal eigenfunctions for ν = 0, projected on theXY -plane, associated
to the first (top) and second (bottom) resonance, for n = 2. The numerical values used in
the generation of the pictures are µ = 0.1, and α = 3 (top row), α = 6 (bottom row).

Proof. If ν > 0, then, by Proposition 3.1, the eigenvalues are not purely imaginary.
However:

Lemma 4.1. Assume ν > 0. Then, for any µ > 0, λ ∈ SpV
µ,ν if and only if λ 6= − 1

ν and
ξν(λ)
π ∈ SpV

µ,0.

Proof. By item i. of Proposition 3.2, λ ∈ SpV
µ,ν if and only if λ 6= 0, λ 6= − 1

ν and

sinh
( πξ̂

n+ 1

)
Un

(
Pµπξ̂ sinh

( πξ̂

n+ 1

)
+ cosh

( πξ̂

n+ 1

))
= 0 (4.6)

with ξ̂ := ξν(λ)
π = λ

(1+νλ)1/2 . It is easy to verify that, for all λ 6= − 1
ν , ξ̂ 6= −

1
ν (indeed,

ξ̂ = − 1
ν for λ = 1±

√
5

2ν ). Therefore, observing that ξ̂ = 0 if and only if λ = 0 and recalling
that ξ0(λ) = πλ, item i. of Proposition 3.2 implies that the two conditions λ = 0 and (4.6)
are equivalent to ξ̂ ∈ SpV

µ,0.

This has two consequences. First, for any λ ∈ SpV
µ,ν ,

ξν(λ)
π = λ

(1+νλ)1/2 is purely

imaginary. Therefore, λ2

1+νλ is real and hence (λ− λ̄)(λ+ λ̄+ νλλ̄) = 0. This implies that,
in the complex plane, the eigenvalues lie either on the real axis or on the circle Cν , or at
their intersection.

Second, provided that ωV
`,k, ` ∈ N and k = 0, . . . , n, denote the frequencies of the

(undamped) loaded string as in Proposition 4.1, it follows that λ ∈ SpV
µ,ν if and only if

λ 6= − 1
ν and ξν(λ) = ±iπωV`,k for some ` ∈ N, k = 0, . . . , n (except, as always, ` = k = 0),
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namely λ = λV
`,k,± with

λV
`,k,± = −

ν(ωV
`,k)

2

2
±

√√√√(ν(ωV
`,k)

2

2

)2

− (ωV`,k)
2. (4.7)

Thus, since the ωV
`,k’s grow unbounded with `, there is a finite (possibly zero) number of

pairs of nonreal eigenvalues λV
`,k = λV

`,k,+, λ
V
`,k = λV

`,k,− which belong to C∗ν (those with `, k
such that ωV

`,k <
2
ν ) and countably many real eigenvalues rV

`,k,± = λV
`,k,± (those with `, k

such that ωV
`,k ≥

2
ν ; they are all distinct, except possibly two in − 2

ν , because r
V
`,k,+ ≥ −

2
ν

strictly increases and rV
`,k,− ≤ −

2
ν strictly decreases with ωV

`,k). Since all ω
V
`,k → +∞ when

`→ +∞, it is easily seen that in such a limit all rV
`,k,− → −∞ and all rV

`,k,− → −
1
ν .

Figure 4.9: The eigenvalues (4.7) of the vertical spectrum SpV
µ,ν (black dots). To facilitate a comparison,

the grey dots represent the frequencies of the Kelvin-Voigt viscoelastic string. The numerical
values used in the generation of the picture are n = 3, µ = 0.1 and ν = 0.15. Countably
many eigenvalues, rV

`,k,± with ` ≥ 4 and k = 0, . . . , 3, belong to the negative real axis, and
four bands of conjugate pairs of eigenvalues, λV

`,k, λ
V
`,k with ` = 0, . . . , 3 and k = 0, . . . , 3

(except ` = k = 0), belong to the circle Cν .

Figure 4.9 illustrates the vertical spectrum SpV
µ,ν and compares it with the spectrum

SpKV
ν of the Kelvin-Voigt string.
Similarly to the undamped case, for each ν > 0, the vertical spectrum SpV

µ,ν can be
seen as a continuous µ-deformation of the Kelvin-Voigt spectrum SpKV

ν . Indeed, since
ωV
`,0 = ωS

`,0, λ
V
`,0,± = λKV

`,0,± are the pure-string eigenvalues, and, for k 6= 0, the λV
`,k,±’s

depend continuously on µ and tend to the λKV
`,k,±’s for µ→ 0. This follows from (4.7), the

continuity of the ωV
`,k’s on µ and the fact that all ωV

`,k → ωS
`,k as µ → 0. Similarly, all

λV
`,k,± tend to the pure-string eigenvalues λV

`,0,± = λKV
`,0,± for µ→ +∞.

Furthermore, the fact that the ωV
`,k’s are arranged in bands implies that SpV

µ,ν also has a
band structure, with bands formed by the λV

`,k,± with the same `. The bands are separated
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by the pure-string eigenvalues because the vertical eigenvalues λV
`,k,± are ordered in the

same way as the real Kelvin-Voigt eigenvalues λKV
`,k,±. (This follows from the monotonicity

properties of the real eigenvalues rV
`,k,± as functions of the ωV

`,k mentioned above, just
after formula (4.7), and from the fact that, for those in C∗ν , Re(λV

`,k) = −1
2ν(ωV

`,k)2). The
bands in SpV

µ,ν are µ-deformations of the bands of the Kelvin-Voigt spectrum in which, as
µ increases, the string-pendula eigenvalues of the Kelvin-Voigt band BKV

` move closer
to the pure-string eigenvalues λKV

`,0,± of that band (or to 0, if ` = 0). In doing so, all
Kelvin-Voigt bands in R remain in R and those in C∗ν remain in C∗ν , with the only possible
exception, when − 2

ν is not a pure-string eigenvalue, of the real eigenvalues of the band
denoted BKV

¯̀−1
in Section 3.2.2, see (4.5), which move towards each other along the real

axis until they meet in − 2
ν and enter C∗ν .

We also note that the fact that, when µ→ +∞, the vertical eigenvalues move towards
the pure-string Kelvin-Voigt eigenvalues has a simple mechanical explanation. If the
pendula are very massive and the energy of the oscillations of the system is fixed, then
necessarily the oscillation amplitudes of the pendula must be very small. In the limit
µ→ +∞ the pendula should remain still, which is exactly what happens in the pure-string
normal modes. We anticipate that we will find this limit behaviour also in the horizontal
spectrum, where, however, there will be also a different possibility.

Finally, we note that, as in the Kelvin-Voigt viscoelastic string, for ν not too large, the
least damped normal mode is that with eigenvalue λV

0,1, followed by that with eigenvalue
λV

0,2 (or λV
1,0 if n = 1), etc.

4.3.2 The horizontal spectrum

We now consider the horizontal system (2.22). For the horizontal spectrum, the fact that
the argument of the Chebyshev polynomials in (3.2b) contain the function Pα,µ of λ, and
not a constant, has the consequence that, unlike the vertical spectrum, it is no longer true
that λ ∈ SpH

α,µ,ν if and only if ξν ∈ πSpH
α,µ,0. Correspondingly, the study of the horizontal

spectrum in the presence of damping is significantly more complicated. In fact, it is not
difficult to obtain an analytic comprehension of the real component of the spectrum,
but for the component of the spectrum outside the real axis, we will have to resort to a
combination of a continuation argument from the case µ = 0 and numerical investigation.

Some analytical continuation results on the horizontal spectrum

We give here some preliminary analytical results on the horizontal spectrum.
By a smooth (resp. continuous) µ-continuation to SpH

α,µ,ν of a complex number λ0

we mean a smooth (resp. continuous) curve µ 7→ λ(µ) ∈ C which is defined for µ in a
neighbourhood of 0, satisfies λ(0) = λ0 and is such that, for each µ > 0, λ(µ) ∈ SpH

α,µ,ν ,
and there is a neighbourhood of λ(µ) in C which does not contain other points of SpH

α,µ,ν .
(Note that this implies that λ is not constant).

Proposition 4.4. Fix n ≥ 1, α > 0, and ν ≥ 0.



4.3. The vertical and horizontal dissipative spectra 57

i. For any µ > 0, SpH
α,µ,ν contains all the pure-string eigenvalues λKV

`,0,±, ` ∈ Z+.

ii. With the only possible exception of − 2
ν (if it is present in SpKV

ν ), each string-
pendula eigenvalue λKV

`,k,± (` ∈ N, k = 1, . . . , n) of the Kelvin-Voigt string has a
smooth µ-continuation λH

`,k,± to SpH
α,µ,ν .

iii. Each of the two numbers ±iα has n distinct smooth µ-continuations to SpH
α,µ,ν ,

unless ν = 0 and α is resonant.

Proof. (i.) This is already known from (3.16).
(ii.) We now consider the function

f(µ, λ) := Un

(
Pα,µ(λ)ξν(λ) sinh

( ξν(λ)

n+ 1

)
+ cosh

( ξν(λ)

n+ 1

))
, λ 6= ±iα ,

and prove that, for any α and µ:

1) the zeroes of f(0, λ) which satisfy sinh
( ξν(λ)
n+1

)
6= 0 are exactly the string-pendula

eigenvalues of the Kelvin-Voigt string, and

2) each of them, if different from − 2
ν , has a µ-continuation to SpH

α,µ,ν .

Recall that the eigenvalues of the Kelvin-Voigt string are the zeroes of sinh
(
ξν(λ)

)
. The

first statement follows from the fact that, using (A.3), sinh
(
ξν(λ)

)
= −i sin(iξν(λ)) =

−i sin
( iξν(λ)
n+1

)
Un

(
cos
( iξν(λ)
n+1

))
= sinh

( ξν(λ)
n+1

)
Un
(

cosh
( ξν(λ)
n+1

))
= sinh

( ξν(λ)
n+1

)
f(0, λ). The

second follows from the implicit function theorem, because

∂f

∂λ
(0, λ) =

∂

∂λ
Un

(
cosh

( ξν(λ)

n+ 1

))
= U ′n

(
cosh

( ξν(λ)

n+ 1

))
sinh

( ξν(λ)

n+ 1

) π

2(n+ 1)

2 + νλ

(1 + νλ)3/2

which, if λ is a zero of Un
(

cosh
( ξν(λ)
n+1

))
which satisfies sinh

( ξν(λ)
n+1

)
6= 0, is zero if and only

if λ = − 2
ν (see (A.5)).

(iii.) We consider now the n functions

fk(µ, λ) :=
1

2
µα2ξν(λ) sinh

( ξν(λ)

n+ 1

)
+
(
α2 + λ2

)(
cosh

( ξν(λ)

n+ 1

)
−Ck

)
, k = 1, . . . , n ,

with, as usual, Ck = cos
(
kπ
n+1

)
. Each fk(0, λ) has the zero λ = iα. Since, for each k,

∂fk
∂λ

(0, iα) = 2iα
(

cosh
(ξν(iα)

n+ 1

)
− Ck

)
= 2iα

(
cos
( πα

(n+ 1)(1 + iαν)1/2

)
− Ck

)
is nonzero (just note that if ν 6= 0 then (1 + iαν)1/2 /∈ R for α 6= 0 while, if ν = 0,
cos( πα

n+1) 6= Ck for α
n+1 /∈ Z) the implicit function theorem grants the existence of a

smooth curve µ 7→ λk(µ) through iα such that fk(µ, λk(µ)) = 0 for all µ. Since, for µ = 0
and α

n+1 ∈ Z,

∂fk
∂µ

(0, iα) =
1

2
α2 sinh

(ξν(iα)

n+ 1

)
=

1

2
iα2 sin

( πα

(n+ 1)(1 + iαν)1/2

)
6= 0 ,
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for µ small enough, λk(µ) 6= iα. Thus, for µ small enough λk(µ) is also a zero of
1

α2+λ2 f(µ, λ) and hence belongs to SpH
α,µ,ν . It only remains to prove that the n continua-

tions λ1, . . . , λn are, for small µ, pairwise distinct. This follows from the fact that the n
derivatives ∂fk

∂µ (0, iα) are all equal and nonzero while the n derivatives ∂fk
∂λ (0, iα) are pair-

wise distinct because Ck 6= Ch if k 6= h; therefore, the n derivatives ∂λk
∂µ (0) = −

∂fk
∂λ

(0,iα)
∂fk
∂µ

(0,iα)

are nonzero and pairwise distinct. The argument for −iα is the same.

The existence of the n µ-continuations of ±iα requires some comments because ±iα
do not belong to the Kelvin-Voigt spectrum. Recall that α is the (rescaled) frequency of
the small oscillations of the pendula. For small µ the pendula are very light compared
to the string and, intuitively the system can oscillate with the string staying almost at
rest and the pendula oscillating with a frequency close to α. For this reason, we will call
the µ-continuations of ±iα “almost-pure-pendula”. We will denote by λH

1 , . . . , λ
H
n these

µ-continuations of iα (hence those of −iα are λH
1 , . . . , λ

H
n ).

It should be noted that, for small µ, the decay rate of the almost-pure-pendula
eigenvalues is close to 0. Hence, it may happen that, for small µ, the corresponding
normal modes are the less dissipated among those of the horizontal spectrum. We will
come back to this later.

On the real component of the horizontal spectrum

Real eigenvalues of the horizontal spectrum come from both equations (3.2a) and (3.2b).
We do not try to give a detailed description of their distributions (our main interest is for
the nonreal eigenvalues) and only note that:

Proposition 4.5. For any n ≥ 1, α > 0, µ > 0 and ν > 0, SpH
α,µ,ν contains countably

many negative numbers which belong to the open interval (−∞,− 1
ν ) and accumulate to

its boundaries.

Proof. The real pure-string frequencies coincide with those of the Kelvin-Voigt system.
Hence, they are countably many, belong to the interval (−∞,− 1

µ) and accumulate to its
boundaries. We only need to prove that the real string-pendula frequencies are at most
countably many and are all < − 1

ν . They are the real solutions of the n equations (3.18),
and, by Proposition 3.1, they are all negative. To prove that they are in fact < − 1

ν note
that, if − 1

ν < λ < 0, then ξν(λ) = πλ√
1+νλ

< 0, the sum at the left-hand side of (3.18) is
> 1 (the first summand is > 0, the second is > 1) and, since cos( kπ

n+1) < 1, λ is not a
solution of (3.18). For λ < − 1

ν , the left-hand side of (3.18) is a real analytic function of
λ ∈ (−∞,− 1

ν ) and thus (3.18) has at most countably many solutions.

Numerical investigation of the non-real component of the horizontal spectrum

Proposition 4.4 gives some information on the nonreal component of SpH
α,µ,ν : it contains all

the Kelvin-Voigt pure-string eigenvalues in C∗ν and, at least for small µ, a µ-continuation
of every other nonreal Kelvin-Voigt eigenvalue and n distinct µ-continuations of ±iα (a
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continuous µ-continuation of a nonreal complex number is certainly nonreal for sufficiently
small µ).

Nevertheless, several questions remain open: Are these continuations global, that is,
defined for all µ > 0? Do they remain in C∗ν , as in the damped vertical spectrum? Are
there other nonreal eigenvalues, besides those in such continuations? The latter is not a
trivial question because, for instance, the argument of the Chebyshev polynomial in the
eigenvalue equation has, besides poles at ±iα from which n continuations come out, also
an essential singularity at − 1

ν : does it contribute any zeroes? And, most of all, what is
the global structure of the spectrum?

We tried to provide answers to these questions through a numerical study of the
solutions of the eigenvalue equation (3.2b). We report here those indications that we
drew from such a numerical analysis that appear to us as reasonably certain. Together,
they provide a reasonably clear picture of the spectrum.

1. The global structure of SpH
α,µ,ν \R. Recall that, with ¯̀ :=

⌈
2

(n+1)ν

⌉
≥ 1, the Kelvin-Voigt

spectrum has all its first ¯̀− 1 bands in C∗ν . The `-th band BKV
¯̀−1

is contained in C∗ν if − 2
ν

is a pure-string eigenvalue ( 2
(n+1)ν ∈ Z) but otherwise might have some real eigenvalue.

(Specifically, in B¯̀−1 there are 2b ≥ 0 distinct string-pendula real eigenvalues, counting
− 2
ν twice if it is a string-pendula eigenvalue ( 2

(n+1)ν /∈ Z, 2
ν ∈ Z), with b =

⌈
2

(n+1)ν

⌉
−
⌈

2
ν

⌉
).

These real eigenvalues of B¯̀−1 are important because they happen to have µ-continuations
that, at some point, leave the real axis. Indeed, our first numerical conclusions are the
following.

N.1 For all α, ν > 0:

1. All the string-pendula Kelving-Voigt eigenvalues which belong to C∗ν have a
global µ-continuation to SpH

α,µ,ν .

2. Each of the two points ±iα has n distinct global µ-continuations to SpH
α,µ,ν .

3. If − 2
ν is a string-pendula Kelvin-Voigt eigenvalue ( 2

ν ∈ Z, 2
(n+1)ν /∈ Z), then it

has two complex conjugate global µ-continuations to SpH
α,µ,ν .

4. If − 2
ν is not a pure-string Kelvin-Voigt eigenvalue ( 2

(n+1)ν /∈ Z), then the two
Kelvin-Voigt eigenvalues of each real pair rKV

¯̀−1,k,± 6= −
2
ν have global (only

continuous at µ = µk) µ-continuations that move towards each other along the
real axis until, at a value µk > 0, they collide at a point rk < − 2

ν and leave the
real axis, forming a complex conjugate pair.

There is a total of 2n(¯̀+ 1) of these µ-continuations, which of course form complex
conjugate pairs (except those of item 4. when real).

N.2 All these µ-continuations are pairwise distinct and have no intersection points with
C∗ν and (except those in item 4. for µ ≤ µk) with R.
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N.3 For µ → +∞, exactly n complex conjugate pairs of these µ-continuations go to
infinity in the complex plane, n complex conjugate pairs go to zero, and all others
tend to a pure-string eigenvalue in C∗ν .

N.4 For all α, µ, ν > 0, SpH
α,µ,ν \ R consists of the pure-string Kelvin-Voigt eigenvalues

in C∗ν , of a point in each of the µ-continuations of the Kelvin-Voigt eigenvalues 1.-3.
above and, for µ not too small (µ > µk for each k), also of a point in each of the
two µ-continuations of each pair of real eigenvalues of the band BKV

¯̀−1
.

An illustration of this global structure is given in Figure 4.10 which, for given α and
ν, shows the µ-continuations as images of curves µ 7→ λ(µ) ∈ C for µ ∈ [0, µmax] with
increasing values of µmax.∗ We note that Figure 4.10, and the following figures, show
intersections between the curves traced by different continuations; however, in all cases
we checked, the different continuations reach the intersection points at different values of
µ and therefore appear to retain their identity.

As we have already noticed, in the limit µ → 0, the n almost-pure-pendula µ-
continuations of ±iα can be thought of as oscillations of the pendula alone. Thus, the
previous numerical conclusions seem to indicate that globally, the nonreal component of
the spectrum is a µ-continuation of the two limiting cases of the string without the pendula
and of the pendula without the string.

We describe now some finer details of the spectrum, for some (but not all) of which
we may provide some explanation.

2. The limit µ→∞ and the band that goes to infinity. The presence of a band formed by
n eigenvalues which go to infinity as µ→ +∞ was quite unexpected to us. Dynamically,
for large µ, namely for very massive pendula, these normal modes describe high-frequency
oscillations of the pendula which are damped very quickly (as we note below, both
the frequency and the decay rate grow with µ as ∼ µ2/3, with a coefficient ∼ ν−1/3).
Interestingly, the numerics indicates that, for µ→ +∞, these continuations are asymptotic
to a straight line (see Figure 4.11) which, moreover, appears to be independent of all
parameters. Only the ‘speed’ ∂λ∂µ with which the eigenvalues move along the continuations
as µ→ +∞ appears to depend on ν. As we now show, assuming that an asymptotic line
exists, a simple asymptotic analysis accounts for almost all these facts.

Assume that there exists a smooth curve R+ 3 µ → λH
∞(µ) ∈ SpH

α,µ,ν which solves
one of the n equations (3.18) and goes to ∞ for µ→ +∞. For large µ, Pα,µ(λH

∞(µ)) =
1
2µ

α2

α2+λH
∞(µ)2 ∼ 1

2µλ
H
∞(µ)−2, ξν(λH

∞(µ)) ∼ π√
ν
λH
∞(µ)1/2, sinh

( ξν(λH
∞(µ))
n+1

)
∼ cosh

( ξν(λH
∞(µ))
n+1

)
∼

∗The figure is produced in the following way. Given α, µ, ν > 0, the string-pendula eigenvalues are
the solutions λ ∈ C of the n equations a(λ)µ + bk(λ) = 0 with a(λ) := 1

2
α2

α2+λ2 ξν(λ) sinh(
ξν(λ)
n+1

) 6= 0

and bk(λ) := cosh( ξν(λ)
n+1

)− cos( kπ
n+1

), that is, bk(λ)
a(λ)

= −µ. Given that µ is real, for each k, this complex

equation is equivalent to the system of two equations ρ(λ) := Re(bk(λ))Re(a(λ))+Im(bk(λ))Im(a(λ))

|a(λ)|2 = −µ,
ι(λ) := Re(bk(λ))Im(a(λ)) − Im(bk(λ))Re(a(λ)) = 0. Thus, given α, ν, µmax > 0 we used the standard
plotting capabilities of Mathematica to plot the zero set of ι(λ) = 0 in the region where 0 ≤ ρ(λ) ≤ µmax.
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Figure 4.10: A numerically computed illustration of the global structure of the horizontal spectrum
SpH

α,µ,ν , for fixed α > 0 and ν > 0 and increasing values of µ. The dots denote the
eigenvalues λKV

`,k , k = 1, . . . , n, of the first bands of the Kelvin-Voigt string—those which
have some eigenvalue on the circle Cν . The thicker dots mark the pure-string eigenvalues
λKV
`,0 . Each figure shows the curve described by the continuation of each λKV

`,k for µ between
0 and a maximum value which is specified in the legend. (Values used: n = 3, α = 4,
ν = 0.11).

1
2 exp

(
π

(n+1)
√
ν
λH
∞(µ)1/2

)
, and equation (3.18) can only be satisfied if

(π µλH
∞(µ)−3/2

2
√
ν

+ 1
)

exp
(π λH

∞(µ)1/2

(n+ 1)
√
ν

)
∼ µ0

which requires the asymptotic vanishing of the first factor. Assume now that, moreover,
λH
∞(µ) is asymptotic to the straight line Reiθ + a with some θ ∈ [0, 2π) and a ∈ C. Then,

for large µ, λH
∞(µ) ∼ z(µ)eiθ with a function z : R→ R such that limµ→+∞ z(µ) = +∞

and
π

2
√
ν
µλH
∞(µ)−3/2 + 1 ∼ π

2
√
ν
µz(µ)−3/2e−i

3
2
θ + 1
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Figure 4.11: Illustrating the four possible ‘origins’ (as µ → 0) of the eigenvalues that go to infinity.
The curves refer to n = 3 and have the same meaning as in Figure 4.10.

vanishes only if z(µ) ∼
(

π
2
√
ν
µ
)2/3, θ = 2π

3 . Hence,

λH
∞(µ) ∼ a +

( π

2
√
ν
µ
) 2

3
ei

2π
3

and the asymptotic line forms an angle of −π
6 with the imaginary axis, independent of all

parameters. For large µ, the eigenvalues move along such an asymptotic line with ‘speed’∣∣∂λH
∞

∂µ

∣∣ ∼ (ν µ)−1/3. We add that, numerically, it seems that the asymptotic line passes
through 0, namely a = 0.

Finally, we note that the numerics also indicates that, for ν not too large, so that
there are at least two complete Kelvin-Voigt bands in C∗ν , the eigenvalues in the band
which go to infinity are continuations of: (a) eigenvalues of the Kelvin-Voigt string near
the top of the circle Cν if α is smaller than a threshold which is ∼ 1

ν ; (b) ±iα if α is
larger than this threshold; (c) a mix of the two when α is near the threshold. Instead, for
ν large, some or all eigenvalues which go to infinity may also (d) come from the first real
Kelvin-Voigt eigenvalues outside Cν . See Figure 4.11.

3. Structure and reorganisation of the bands. Next, we say a few words about the finer
structure of the spectrum, and particularly how it is affected by the changes of the
parameters α and ν, which produce bifurcations and rearrangements of the bands. We
only consider cases with ν not too large, so that there are at least a couple of bands of
the Kelvin-Voigt spectrum in Cν . For definiteness, we consider only the upper half-plane
Im(λ) > 0.

First, we note that, for α not too large, up to ∼ 1
ν , the two bands formed by the

µ-continuations λH
k of iα and by the eigenvalues which go to infinity coming out of the

top of Cν are well identified and divide the spectrum into three parts which have different
asymptotic behaviours for µ→ +∞: the eigenvalues external to these two bands move
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towards the (less damped) pure-string eigenvalue to their right (or to 0, see below), while
the eigenvalues between them move towards the (more strongly damped) pure-string
eigenvalue to their left. For α in a range near ∼ 1

ν , the two bands coalesce and reorganise.
See again Figures 4.10 and 4.11.

Second, as α and ν change, the asymptotic behaviour for µ→ +∞ of the almost-pure-
pendula µ-continuations λH

k (k = 1, . . . , n) undergoes a number of bifurcations. If α is
resonant, namely α

n+1 =: α̃ ∈ Z+, then for any ν > 0 each λH
k is asymptotic to a pure-

string eigenvalue, which depends on k and ν. Specifically, for small ν all λH
k → λKV

α̃,0,+, but
as ν increases they become, one after the other, asymptotic first to λKV

α̃+1,0,+ (or to infinity),
then to λKV

α̃+2,0,+ (or to infinity), etc., and finally, when ν ∼ 1
α , they first mix with the

band which goes to infinity and then, eventually, go to infinity. The asymptotic behaviour
of the almost-pure-pendula eigenvalues when α is nonresonant is similar, but with an
important difference: for sufficiently small α, namely for approximatively α < Im(λH

0,1,+),
all λH

k ’s tend to 0. As α increases, one after the other they begin ‘jumping’ to λKV
1,0,+,

λKV
2,0,+, etc., and eventually to infinity, just as in the resonant case. See Figure 4.12.

Figure 4.12: The asymptotic behaviour as µ→ +∞ of the almost-pure-pendula. The limit point of
each one changes from 0 to infinity as α grows (at fixed ν; or equivalently, as ν decreases
at fixed α). The curves refer to n = 3 and have the same meaning as in Figure 4.10. The
resonant values of α are the multiples of 4.





Chapter 5

Analysis of synchronization of the
two-pendula system

We finalise the analysis of our model by studying synchronization phenomena in the
asymptotic dynamics of the pendula, for n = 2. We hence focus on the horizontal damped
normal modes, with the goal to answer the following question:

Q1. What does the long-term asymptotic dynamics of the pendula look like (in
particular, one with respect to the other)?

To this end, we investigate, by means of a numerical study, the dependence of the
decay rates of the eigenvalues in SpH

α,µ,ν on the parameters α and µ. We do that in
the regime of weak dissipation. Ultimately, we discuss the emergence of synchronous
behaviours for the pendula.

We note that similar reasonings could be easily extended to the case n > 2. Besides,
(in virtue of Proposition 3.1) as the amplitudes of the pendula become small, we expect
the full asymptotic dynamics of the pendula to be well-described – after a sufficiently
long transient – by such a linearised analysis.

5.1 On the Kelvin-Voigt model

We preliminarily highlight the following key peculiarity of the Kelvin-Voigt model for the
dissipation of the string with respect to the viscous model (see Sections 2.2.1 and 2.2.2
for the details). While all the nonreal eigenvalues of the viscous string have the same,
constant, decay rate, the decay rates of the eigenvalues of the Kelvin-Voigt string are
frequency-dependent. This implies that the damped small oscillations of the viscoelastic
string will evolve with multiple timescales and asymptotically will be dominated by the
few least-damped normal modes. The inclusion of a viscous term would add a constant
(the same one for every nonreal eigenvalue) to the decay rate of each eigenvalue and, as a
consequence, all damped normal modes would tend to the equilibrium at the same rate.

65
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A similar reasoning can be extended to the coupled string-pendula system. In
particular, we observe that, by adopting a viscoelastic string, the eigenvalues λV

`,k,±’s of
the vertical system inherit from the Kelvin-Voigt model the dependence on the frequencies
of the corresponding conservative system, ωV

`,k’s, with ` ∈ N and k = 0, 1, 2 (compare
equation (4.7) with (2.15)). In particular, for small ν and for any µ > 0, the eigenvalues
with `� 2

ν have decay rate |Re(λV
`,k,±)| ∝ (ωV

`,k)
2, and therefore,

min
`,k
|Re(λV

`,k,±)| = |Re(λV
0,1,±)|.

The dissipative horizontal system presents, on the other hand, some peculiarities. Indeed,
the analysis conducted in Section 4.3.2 suggests that, for a nonreal eigenvalue in SpH

α,µ,ν ,
the decay rate does not depend monotonically on the frequency, but rather in a complicated
way, which depends on the parameters of the system. In what follows, we discuss the
implications of this fact on the variety of asymptotic behaviours of the pendula.

5.2 The least-damped horizontal normal mode

Since, for our model, the long-term dynamics is dominated by the few least-damped
normal modes, the eigenvalues of which are the closest to the imaginary axis, our study
first tries to answer the following question.

Q2. Which is the least-damped horizontal normal mode?

First, we further discuss the results for the horizontal spectrum that we obtained in
the previous chapter, with now a greater focus on the real parts of the eigenvalues.

The numerical investigation that we conducted in Section 4.3.2 evidenced that, on
the one hand, for any α, µ, ν not too large,

|Re(λH
0,1,±)| < |Re(λH

0,2,±)| < |Re(λKV
1,0,±)| < min

`∈Z+, k=1,2
|Re(λH

`,k,±)| ,

on the other, the almost-pure-pendula eigenvalues λH
k ’s (and λ

H
k ’s) may have decay rates

smaller than the λH
0,k,±’s. Moreover, when this is the case, which one of the λH

k ’s (and

λH
k ’s) has the smallest decay rate depends on µ. See again Figures 4.10 and 4.12.
In particular, since the λH

k ’s are µ-continuations of iα (see Proposition 4.4), for µ
sufficiently small, |Re(λH

k )| is close to zero for both k = 1, 2. Thus, for µ small enough,
for any value of α, the eigenvalues with the smallest decay rates are λH

1 , λ
H
1 and λH

2 , λ
H
2 .

On the opposite, for µ→ +∞, we know (see N.3) that some µ-continuations tend to
zero and some others to a pure-string eigenvalue (either to their right or their left). More
specifically, for any α, precisely two conjugate pairs, among the λH

0,k,±’s and the λH
k , λ

H
k ’s,

tend to 0. In particular, whether each of the λH
0,k,±’s tends to λ

H
1,0,± or to zero depends

on α. We observe (Figure 4.12) that λH
0,k,± → 0 (k = 1, 2) for every α greater than

approximately Im(λKV
1,0,±); decreasing α, λH

0,2,± → λKV
1,0,± while λH

0,1,± and one complex pair
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among the λH
k , λ

H
k ’s tend to zero; eventually, for α smaller than approximately Im(λH

0,1,+),
all the almost-pure-pendula tend to zero.

Now, since for the other ranges of the parameters α and µ, to identify the eigenvalues
with the smallest decay rate may be more demanding, we slightly simplify question Q2
by recalling that we are ultimately interested in the relative sign of the amplitudes of the
pendula for the least-damped normal modes (see Q1).

Hence, we start from the following observation. We recall that, as discussed in
Section 3.3, for every string-pendula eigenvalue λ ∈ SpH

α,µ,ν (i.e. λH
`,k,± or λH

k , λ
H
k , ` ∈ N and

k = 1, 2), the ratio between the pendula components of the corresponding eigenfunction
is independent of all the parameters, and depends on k only. Namely, we have

(AH
ν,k,λ)2

(AH
ν,k,λ)1

=
U1(Ck)

U0(Ck)
= 2Ck = (−1)k+1, k = 1, 2,

where we now used the fact that n = 2, together with the recurrence definition (A.1) of
the Chebyshev polynomial and C1 = cos(π3 ) = 1

2 , C2 = cos(2π
3 ) = −1

2 . Hence, for any
α, µ, ν > 0, (AH

ν,k,λ)2 = (−1)k+1(AH
ν,k,λ)1.

Therefore, instead of Q2, we try to answer the following question.

Q2bis. Which is the index k of the horizontal least-damped normal mode?

We investigate this aspect in the regime of weak dissipation, that is, we now assume
that ν is small. This approach, on the one hand, simplifies the numerics, on the other,
enables us to rely on the well-defined ordering of the spectrum of the undamped horizontal
system. We refer, in particular, to Section 4.1.2.

5.2.1 Weakly dissipative regime

First, similarly to the approach of Section 4.3.2, we resort to a continuation argument,
now from the case ν = 0. Hence, we say that a smooth curve ν 7→ λ̂(ν) ∈ C is a smooth
ν-continuation to SpH

α,µ,ν of a complex number λ0 if it is defined for ν in a neighbourhood
of 0, satisfies λ̂(0) = λ0 and is such that, for each ν > 0, λ̂(ν) ∈ SpH

α,µ,ν and there is a
neighbourhood of λ̂(ν) in C which does not contain other points of SpH

α,µ,ν .
In this case, since the dependence in ν of the eigenvalue equation (3.2b) is more

complicated than its dependence in µ, we need to verify the continuability condition
numerically. Specifically, we have the following evidence.

Almost-Proposition 5.1. For every α > 0 and µ > 0 not too large,

i. each string-pendula eigenvalue ±iωH
`,k ∈ SpH

α,µ,0, with k = 1, 2, and ` ∈ N not
too large, has a smooth ν-continuation to SpH

α,µ,ν , which, at first order in ν, has
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frequency ωH
`,k and decay rate

εν(ωH
`,k) =

ν(ωH
`,k)

2

2
+

3νω4α2µ sin
(
πω
3

)
πω(α2 − ω2)α2µ cos

(
πω
3

)
+ (2(α2 − ω2)2 + 3(α2 + ω2)α2µ) sin

(
πω
3

)∣∣∣
ω=ωH

`,k

; (5.1)

ii. if α is resonant, each of the two numbers ±iα has two distinct smooth ν-continuations
to SpH

α,µ,ν , which, at first order in ν, have frequency α and decay rate

εrν,k(α) =
να4µπ2

24
(

1 + (−1)k−
α
3 + α2µπ2

12

) , k = 1, 2. (5.2)

Almost-Proof. (i.) We consider the n functions

fk(ν, λ) := Pα,µ(λ)ξν(λ) sinh
( ξν(λ)

n+ 1

)
+ cosh

( ξν(λ)

n+ 1

)
− cos

( kπ

n+ 1

)
, λ 6= ±iα ,

with k = 1, 2. The zeroes of each fk(0, λ) are the string-pendula eigenvalues of the
undamped horizontal system with frequencies ωH

`,k, ` ∈ N (see Proposition 4.2).
The ν-continuability of the eigenvalues ±iωH`,k ∈ SpHα,µ,0 (` ∈ N, k = 1, 2) to SpH

α,µ,ν

follows from the implicit function theorem, provided

∂fk
∂λ

(0,±iω)=
µα2πi

2(α2 − ω2)

(
α2 + ω2

α2 − ω2
sin
( πω

n+ 1

)
+

πω

n+ 1
cos
( πω

n+ 1

))
+

πi

n+ 1
sin
( πω

n+ 1

)
never vanishes for ω = ωH`,k, ` ∈ N, k = 1, 2. We we verified numerically that this
term is different from zero for ωH`,k’s with ` up to 4, for α ∈ [0, 4] and µ ∈ [0, 2] (see
Figure 5.1 below).∗ Hence, for the range of values for which we are confident that the
above derivative is not zero, by the implicit function theorem we have that each of the
eigenvalues ±iωH

`,k has a smooth ν-continuation to SpH
α,µ,ν . At the first order in ν, such

ν-continuations are ±iωH
`,k − εν(ωH

`,k), where

εν(ωH
`,k) := ν

∂fk
∂ν (0,±iωH

`,k)
∂fk
∂λ (0,±iωH

`,k)
,

which is expression (5.1). We note that εν(ωH
`,k) > 0 and therefore it is the decay rate, at

the first order in ν, of the eigenvalue of frequency ωH
`,k.

∗This is the only non-rigorous part of this ‘almost’ proof. As one of the referees indicated, the result
may be made rigorous by employing interval arithmetic. The computation would indeed allow one to
prove the statement within a limited but significant range of the parameters and for a reasonable number
of eigenvalues.
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(ii.) If α is resonant, α
(n+1) ∈ Z+. We consider now the two functions

f̃k(ν, λ) =
µ

2
α2ξν(λ) sinh

( ξν(λ)

n+ 1

)
+ (α2 + λ2)

(
cosh

( ξν(λ)

n+ 1

)
−cos

( kπ

n+ 1

))
, k = 1, 2.

For ν = 0 and α resonant, each fk has the zeros λ = ±iα. Since, for each k = 1, 2,

∂f̃k
∂λ

(0,±iα) = ±iα(−1)
α

(n+1)

(µ
2

π2α2

n+ 1
+ 2− 2(−1)

α
(n+1)Ck

)
is nonzero, the implicit function theorem grants the existence of a smooth curve ν 7→ λk(ν)
through iα such that f̃k(ν, λk(µ)) = 0 for all ν. At the first order in ν, such ν-continuations
are ±iα− εrν,k(α), where

εrν,k(α) := ν
∂f̃k
∂ν (0,±iα)

∂f̃k
∂λ (0,±iα)

,

which is (5.2). Since εrν,k(α) > 0, they are the decay rates, at the first order in ν, of the
two pairs of eigenvalues of frequency α.

We remark that, as expected, while for µ = 0, εν(ω) ∝ ω2 (namely we recover the
decay rate, for low frequencies, of the Kelvin-Voigt string), for µ > 0, ω → εν(ω) is not a
monotone function. Hereafter, we investigate numerically this aspect.

We compare the (first-order) decay rates as functions of the parameters α and µ, for
a fixed ν > 0 small. Our analysis focuses on a window of parameters with α ∈ [0, 4]
and µ ∈ [0, 2], and frequencies of string-pendula eigenvalues of the undamped horizontal
spectrum in the first two bands BH

` , ` = 0, 1. Preliminarily, we warn that, except for
some cases, we do not have (nor, necessarily, need) information about which eigenvalue in
SpH

α,µ,ν corresponds to each ν-continuation.
Figure 5.1 shows the contour plots, in the parameter space (α, µ), of the εν(ωH

`,k)’s for
k = 1, 2 and ` = 0, 1. From comparison of the four plots, we note the following qualitative
properties.

First, for a wide range of values of the parameters (specifically, for µ and α not too
small), the decay rates εν(ωH

0,k), k = 1, 2, are significantly smaller than the εν(ωH
1,k)’s.

Therefore, for these parameters, the lowest-frequency damped normal modes are the least
damped. This is in agreement with our preliminary discussion, where we observed that for
every α the first band would tend to zero as µ grows. In particular, if α is not too small,
we know that (see Figure 4.12) such damped normal modes are those corresponding to
the string-pendula eigenvalues λH

0,1,±, λH
0,2,±.

Second, Figure 5.1 also agrees with the fact that, as discussed in Section 4.3.2, the
eigenvalues with frequency close to α have the smallest decay rates when µ is small enough
(see Figure 4.10, top-left). In fact, for µ small, these ν-continuations correspond to the
almost-pure-pendula eigenvalues, λH

k and λH
k (k = 1, 2). We remark that, in these cases,

the longer-lasting damped normal modes may not have the lowest frequencies. In fact,
they have frequencies ∼ α, which may be large.
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Figure 5.1: Contour plots, in the parameter space (α, µ), for a fixed small value of ν, of the decay rates,
at the first order in ν, of the horizontal string-pendula eigenvalues in SpH

α,µ,ν , εν(ω
H
`,k) for

` = 0, 1 and k = 1, 2. Darker shades correspond to small decay rates. The numerical values
used in the generation of the picture are n = 2 and ν = 0.01.

This analysis, in addition, allows us to associate each decay rate with a precise index
k, and, correspondingly, the relative sign of the pendula component of the eigenfunction
corresponding to the least-damped normal mode. This information is highlighted in
Figure 5.2, where only min`,k εν(ωH

`,k) is taken into account and different colours correspond
to different εν(ωH

`,k) for ` = 0, 1, k = 1, 2. The relative sign of the pendula component
of the eigenfunctions, namely (AH

ν,k,λ)1 and (AH
ν,k,λ)2, associated to eigenvalues with the

(first-order) decay rate εν(ωH
`,k), is marked in the legend of Figure 5.2. From this, it

emerges that the orange region corresponds to the anti-phase configuration, whereas the
two pendula have concordant amplitudes in all the other regions displayed.

5.3 Asymptotic dynamics

Figure 5.2 provides an answer to question Q2bis (and Q2). However, such information
may be too coarse-grained. Indeed, to describe the asymptotic dynamics – and answer
Q1 – satisfactorily, it might not suffice to determine the very least damped normal mode,
since, in principle, various damped normal modes could have comparable decay rates.
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Figure 5.2: Region plots of min`,k εν(ω
H
`,k) for ` = 0, 1 and k = 1, 2, in the parameter space (α, µ). Each

colour marks the region in the parameter space in which the eigenvalue with the smallest
decay rate (at the first order in ν) is the one with frequency ωH

`,k described in the legend
(for example, for values of parameters corresponding to the region coloured in blue, the
eigenvalue with minimal decay rate is the one with the indexes ` = 0 and k = 1). In the
legend, the signature “++” and “+−” reminds that for k = 1 (resp. k = 2) the pendula are
concordant (resp. discordant). The numerical values used in the generation of the picture
are n = 2 and ν = 0.01.

Hence, we now try to estimate the separation in the spectrum SpH
α,µ,ν between ‘slowly-’

and ‘fast-decaying’ eigenvalues, and we study its dependence on the parameters α and
µ. To this end, we order the εν(ωH

`,k)’s (` ∈ N, k = 1, 2) increasingly and relabel them
min`,k εν(ωH

`,k) =: ε1 < ε2 < . . . , and define the quantity

gj := e(ε
j−εj+1), j ∈ Z+,

which quantifies the ‘gap’ in the (first-order) decay rates of the eigenvalues between two
nearest neighbours. By definition, it satisfies 0 < gj < 1 ∀j, and small values of the gj ’s
correspond to wide gaps, and vice versa.

Figure 5.3 shows the contour plots of the gaps g1 and g2 for the first three least-damped
normal modes, at variance of the parameters α and µ, for a fixed ν small. We note the
following aspects.

First, from a comparison of the two plots, we deduce that, for a wide range of values
of the parameters, two damped normal modes have decay rates considerably smaller than
the others. An exception emerges for values of α between, approximately, 1 and 2, and
µ small, in which case the damped small oscillation is a superposition of three damped
normal modes.

Second, the plot for j = 1 in Figure 5.3 shows that the decay rates of the first two
least-damped normal modes are always comparable and small for values of α below 1
(yellow-shaded region), as well as for µ large. Instead, the first gap is quite large in the
blue-shaded region (α greater than approximately 2 and µ < 1).
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Figure 5.3: Contour plots of gj , for j = 1, 2, in the parameter space (α, µ). g1 (resp., g2) quantifies
the difference in the decay rates, at the first order in ν, of the first two (resp., third and
second) least-damped horizontal normal modes. Darker shades indicate a wide gap, and,
correspondingly, an appreciable dichotomy in the decaying rate of the damped normal
modes. The numerical values used in the generation of the picture are n = 2 and ν = 0.01.

5.3.1 Regimes of synchronization

Finally, we summarise the collected numerical evidence and discuss the regimes of
synchronization for the two-pendula system predicted by our model.

In the hypothesis of weak dissipation, we evidenced that the long-term behaviour of
the pendula strongly depends on the parameters α and µ. Specifically, the asymptotic
dynamics is dominated by the two least-damped normal modes (Figures 5.1 and 5.3),
as the others decay much more quickly. Therefore, after a transient, the damped small
oscillation will be well-approximated by a superposition of these two modes only.

Figure 5.3 suggests that for values of α lower than approximatively 1, the two above-
mentioned damped normal modes will tend to the equilibrium configuration at an almost
identical rate. Moreover, since we observed that, for these values of the parameters, they
are associated to the almost-pure-pendula eigenvalues, which are µ-continuations of ±iα,
for µ small, their frequencies are both close to α. Therefore, we deduce that, for this
range of the parameters, the pendula undergo a beating behaviour. We also remark that
this implies, in particular, that anti-phase synchronization will not be observable, unless
for very small amplitudes (cf. Figure 5.2).

On the other side, Figure 5.3 indicates that, for some ranges of the parameters
(blue-shaded region), the decay rate of one of the two least-damped normal modes is
considerably smaller than the other: after some time, only one damped normal mode
will contribute to the dynamics. Hence, as Figure 5.2 suggests, the two pendula will
asymptotically synchronise in phase, with slowly decaying amplitudes of oscillation.

By recalling the physical meaning of the parameters α and µ (introduced in (2.19)),
we can conclude that long pendula hanging from a light (compared to the pendula) and
stretched string undergo a beating behaviour, while a mass ratio smaller than 1 (i.e. a
string heavier than the pendula) and a proper frequency of the pendula greater than the
fundamental frequency of the string favour in-phase synchronization of the pendula.
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Figure 5.4 summarises – in a schematic way – the asymptotic dynamics of the two-
pendula system.

Figure 5.4: Scheme of the asymptotic dynamics, for weak dissipation, of the two-pendula system.
Depending on the parameters α (frequency-ratio pendulum/string) and µ (mass-ratio
pendulum/string), the two pendula might undergo a beating motion, exhibit a quasi-
periodic behaviour with slowly-decaying amplitudes, or synchronise in phase.





Appendix A

Chebyshev polynomials

We recall here a few basic facts about the Chebyshev polynomials of the second kind
(see, e.g., [30] for more details). These are the (complex) polynomials Un defined by the
recurrence

U0(x) := 1, U1(x) := 2x, Un(x) := 2xUn−1(x)−Un−2(x) ∀n ≥ 2, x ∈ C. (A.1)

Clearly, Un has degree n and is real on real arguments. Moreover, Un is even if n is even
and odd if n is odd. Recurrence (A.1) can also be written in the matrix form

det



2x −1 0 0 . . . 0
−1 2x −1 0 . . . 0
0 −1 2x− 1 . . . . . .
. . . . . . . . . . . . . . . . . .
0 0 . . . −1 2x −1
0 0 0 . . . −1 2x

 = 0. (A.2)

An equivalent definition, for real arguments, is

sin(θ)Un−1(cos θ) = sin(nθ), n ≥ 1. (A.3)

For each n ≥ 1, Un has n simple roots given by

Ck := cos

(
k

n+ 1
π

)
, k = 1, . . . , n, (A.4)

and which all belong to the interval (−1, 1).
Explicit expressions are known. For instance,

Un(x) =

bn2 c∑
k=0

(−1)k
(
n− k
k

)
(2x)n−2k, n ≥ 1.

The derivative of Un is U ′n(x) = n+1
x2−1

Tn+1(x)− x
x2−1

Un(x) where, for each n ≥ 0, Tn
is the Chebyshev polynomial of the first kind of order n and satisfies Tn(cos(x)) = cos(nx)
for all x ∈ R. Hence, at a zero Ck of Un,

U ′n(Ck) =
n+ 1

C2
k − 1

Tn+1(Ck) =
n+ 1

C2
k − 1

cos(kπ) 6= 0 . (A.5)

75



76 Appendix A. Chebyshev polynomials

A.1 The beaded string

Here, we briefly describe the “beaded string” with equally-spaced masses, which is a
well-known example of system in which the Chebyshev polynomials naturally emerge (see
e.g. [48]). Such system consists of a finite number of point masses suspended on a massless
thread, and can be regarded as a finite-dimensional limit case of the loaded string for
negligible mass density. For this system, both the eigenvalues and the eigenvectors can
be expressed in terms of Chebyshev polynomials of the second kind.

We follow Rayleigh [40], and we consider n identical masses m which are equidistantly
distributed along a string of length Λ = (n + 1)a and tension τ . Let uj denote the
displacement of the j-th mass from its equilibrium configuration, for small transverse
displacements, the Lagrangian of the system is

L(u, u̇) =

n∑
j=1

[m
2
u̇2
j −

τ

2a
(uj+1 − uj)2

]
with u0 = un+1 ≡ 0. Thus, the equations of motion write

müj +
τ

a
(uj − uj−1 + uj − uj+1) = 0, j = 1, . . . , n

with u0 = un+1 = 0. The frequencies of the small oscillations of the system are the ω > 0
solutions of

det



2z −1 0 0 . . . 0
−1 2z −1 0 . . . 0
0 −1 2z −1 . . . . . .
. . . . . . . . . . . . . . . . . .
0 0 . . . −1 2z −1
0 0 0 . . . −1 2z

 = 0

with z := 1− ω2ma
2τ . By property (A.1), the determinant is the Chebyshev polynomial of

the second kind with argument z. Its roots are therefore equal to cos
(
kπ
n+1

)
, k = 1, . . . , n,

namely

ωk = 2

√
τ

ma
sin

(
kπ

2(n+ 1)

)
, k = 1, . . . , n.

The associated eigenvectors are the A(k) = (A
(k)
1 , . . . , A

(k)
n ), k = 1, . . . , n, which satisfy

the recurrence

A
(k)
0 = A

(k)
n+1 = 0, A

(k)
j−1 − 2zA

(k)
j +A

(k)
j+1 = 0, j = 1, . . . , n

which, by relation (A.1), gives

A
(k)
j = sin

(
j

kπ

(n+ 1)

)
, j = 1, . . . , n.



Appendix B

Transfer matrix method

The transfer matrix method is a classical technique employed in the study of the propaga-
tion of waves in layered media. Examples of such systems are numerous in solid-state
physics, as well in optics or acoustic. We refer to the classical manual [10]. Here, to fix the
ideas, we formulate the theory for mechanical waves, for which the layers are identified
by different densities, following, e.g., [15].

We restrict to one-dimensional systems and, in particular, we shall particularise the
study to locally periodic systems.

B.1 The transfer matrix

Consider a one-dimensional travelling wave and assume that at the position x = 0 the
system presents a discontinuity. To fix the ideas, think of a piecewise-homogeneous string,
or an electromagnetic wave travelling through a piecewise-constant potential. A wave
with frequency ω and wavelength k has the form

u(x, t) =

{
a−e

i(kx−ωt) + b−e
−i(kx+ωt), x < 0

a+e
i(kx−ωt) + b+e

−i(kx+ωt), x > 0

with a±, b± ∈ C constrained by suitable interface conditions at x = 0. Typically, these
are continuity conditions of u and ux and they inherit the linearity from the evolution
equation.

The transfer matrix M expresses the coefficients of the wave on the left-hand side of
the discontinuity in terms of the coefficients of the wave on the right-hand side:(

a+

b+

)
= M

(
a−
b−

)
.

For a multilayered system, the computation above repeats at every interface. The
coefficients of the outcoming wave, which crossed j layers, are expressed in terms of the
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coefficients of the incoming wave as(
aj+1

bj+1

)
= MjMj−1 . . .M1︸ ︷︷ ︸

M

(
a1

b1

)

with the transfer matrix M now given by the product of j matrices.

B.2 Locally periodic media

If the medium consists of a finite number of repeating layers, it is said to be locally
periodic [15]. In this case, the expression of the transfer matrix simplifies and its entries
can be expressed in terms of Chebyshev polynomials of the second kind Un.

Consider a locally periodic structure composed of a layer of length s alternated to a
different one of length ε. This corresponds, for example, to a homogeneous string with
periodic localized constant dishomogeneities, or a wave in a periodic localized potential
well. The wave has the form

u(x, t) =

{
aj+1e

i(k(x−jx̄)−ωt) + bj+1e
−i(k(x−jx̄)+ωt), jx̄ < x < (j + 1)x̄− ε

uε(x, t), (j + 1)x̄− ε < x < (j + 1)x̄

where x̄ := s+ ε and j ∈ Z. Since the system is periodic, Mj = M1 ∀j, and therefore(
aj+1

bj+1

)
= M j

1

(
a1

b1

)
.

From the Cayley-Hamilton theorem and the recursion for the Chebyshev polynomial (A.1),
the following identity can be proven (see [6]):

M j
1 = Uj−1(z)M1 − Uj−2(z)I, j ≥ 2 (B.1)

with z := 1
2Tr(M1) and I the 2× 2 identity matrix.



Part III

Future perspectives





Chapter 6

Partially damped mechanical
systems

The analysis that we conducted for the study of our model in Part II naturally raises
the question of what the dynamics of the (full) nonlinear system is. We observe that
the linearised system is a good approximation for asymptotically long times, since the
amplitudes of oscillation of the pendula decrease over time, as evidenced by the strictly
negative real parts of the eigenvalues of our linearised system. However, the nonlinear
system is in principle remarkably more complicated (for example, the vertical and the
horizontal systems are coupled). For the linearised system we were able to conclude that
the asymptotic dynamics is greatly influenced by the fact that the viscoelasticity of the
string leads to frequency-dependent decay rates of the damped normal modes. The phase
space is hence decomposable into invariant subspaces on which the ‘amount’ of dissipation
is different. As a consequence, any damped small oscillation tends exponentially fast
toward progressively lower-dimensional and less-damped subspaces.

In this concluding part, we enter the nonlinear framework and make an attempt to
describe the influence of dissipation on the nonlinear dynamics of mechanical systems
and, again, on the emergence of synchronization. We restrict the study now to finite-
dimensional systems. The analysis is very germinal and no conclusive results have been
found; however, we advance some recommendations for future studies.

6.1 Motivating examples

To begin, we introduce two very simple models which favour physical intuition and suggest
possible research strategies. The first one is a minimal degree-of-freedom example, where
two rigid pendula touch each other and are directly coupled through the contact friction.
The second is a more advanced example, where two identical pendula are placed on a
common moving rigid support, which is responsible for the coupling. Both examples share
the following key features with the more complex system described in Part II:

· dissipation is introduced by the coupling;
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· other concurrent dissipative contributions may be neglected.

6.1.1 Example 1

The first system we consider consists of two identical heavy L-shaped rigid bars. They
are constrained so that one leg of each bar lays horizontally and with the extremities in
contact, while the other leg is free to rotate in a perpendicular plane (see Figure 6.1). We
assume that the forces acting on the system are the gravity and dissipative forces given
by the friction between the two bars and the viscosity of the air.

The configuration manifold is diffeomorphic to T2, and we parameterise it by the angles
(θ1, θ2) measured from the downward vertical. In time-rescaled units, the Lagrangian of
the conservative system is

L(θ1, θ2, θ̇1, θ̇2) =
1

2
(θ̇2

1 + θ̇2
2) + (cos θ1 + cos θ2).

We include the following dissipative forces: the friction at the interface of the bars, which
we model as a linear term proportional to the relative velocity of the two bars, with
damping coefficient γ > 0, and the viscosity of the air, with damping coefficient ν > 0.
The equations of motion are therefore{

θ̈1 + sin θ1 + γ(θ̇1 − θ̇2) + νθ̇1 = 0

θ̈2 + sin θ2 + γ(θ̇2 − θ̇1) + νθ̇2 = 0.
(6.1)

It is intuitive that for ν � γ the two bars asymptotically synchronise in phase. Hence,
we are motivated to look for attracting submanifolds in the phase space on which the
dissipation is weak.

Figure 6.1: Sketch of the model of Example 1.

6.1.2 Example 2

The second system we consider is sketched in Figure 6.2 and consists of two identical
pendula on a common rigid support, which is constrained to move horizontally in one
dimension and is connected to a spring. We assume that the forces acting on the system
are the gravity and dissipative forces given by the viscous friction acting on the base
support and the viscosity of the air.

The configuration manifold of the system is diffeomorphic to R × T2. Let z and
φ = (φ1, φ2) be the generalised coordinates, representing the horizontal displacement
of the support and the angular displacements of the pendula about their pivot points,
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respectively. Letm andM denote the mass of each pendulum and the support, respectively,
l the length of the pendula and k the elastic constant of the spring.

The conservative system is described by a Lagrangian L = L(z, φ1, φ2, ż, φ̇1, φ̇2),

L=
1

2
(M + 2m)ż2 +

2∑
i=1

[m
2
l2φ̇2

i +mlżφ̇i cosφi +mgl cosφi

]
− k

2
z2.

Rescaling the variables z → lz, t→
√

l
g t and defining the parameters µ := M+2m

m and

α := kl
mg , the Lagrangian becomes

L =
1

2
µż2 +

2∑
i=1

[
1

2
φ̇2
i + żφ̇i cosφi + cosφi

]
− 1

2
αz2.

We include the following dissipative forces: the viscous friction acting on the base support,
with damping coefficient γ > 0, and the viscosity of the air, with damping coefficient
ν > 0.

The Lagrange equations with the inclusion of the dissipative forces are (see e.g. [46]){
µz̈ +

∑2
i=1

(
φ̈i cosφi − φ̇2

i sinφi

)
+ αz + (γ + ν)ż + ν

∑2
i=1(ż + φ̇i cosφi) = 0

φ̈i + z̈ cosφi + sinφi + ν(ż cosφi + φ̇i) = 0, i = 1, 2.
(6.2)

Intuition now suggests that, for ν � γ, the system will spontaneously tend, as t→ +∞,
to a state in which the bar stops and the two pendula oscillate, with decreasing amplitudes,
in anti-phase.

Figure 6.2: Sketch of the model of Example 2.

Note that this is a basic model for Huygens synchronization. Some versions of it are
indeed present in various studies (see Part I for some references).

6.2 LaSalle invariance principle

The two very simple examples introduced in the previous section suggest that a possible
approach to the nonlinear study is to first consider the case in which the dissipation is
only partial. For the two models, this corresponds to assuming ν = 0 and γ > 0. In
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particular, the study [38], which deals with a system analogous to Example 2, indicates
that the asymptotic dynamics in this case can be studied via LaSalle invariance principle.
In a different context, [4] uses the same theorem to analyse the asymptotic spin-orbit
synchronization for a celestial body.

Therefore, we are motivated to look for a systematic approach via the LaSalle invariance
principle to investigate the nonlinear dynamics of “partially damped” mechanical systems.

In this section, we recall some of the fundamental concepts needed in the study of the
asymptotic evolution of a generic dynamical system, while in the following section we
focus on mechanical systems. Preliminarily, we fix the notation.

Let M be a smooth m-dimensional manifold, X ∈ X(M) a smooth vector field on M,
and consider the autonomous differential equation in M

ż = X(z), z ∈M. (6.3)

We assume that X is complete, namely all its integral curves are defined for all times,
so that there exists a smooth map ΦX

t : M→ M – the flow of X at time t – such that

ΦX
0 = idM and

dΦX
t

dt
(z) = X(ΦX

t (z)) ∀t ∈ R and z ∈M. Namely, ΦX
t (z) is the solution

of (6.3) at time t through z. Then, (M,R,ΦX) is a differentiable dynamical system with
flow ΦX := {ΦX

t : t ∈ R}.

6.2.1 Preliminaries: invariance and stability

We recall here the basics for sets in the phase space which are invariant under the flow of
a vector field and their stability properties (see, e.g., [49]).

Definition 6.1. A subset N of M is invariant (resp. positively invariant) under the
flow of X if ΦX

t (N) ⊆ N ∀t ∈ R (resp. t ≥ 0). N is said to be locally invariant (resp.
positively locally invariant) under the flow of X in an open set U ⊂M if for any z ∈ N ∩U ,
ΦX
t (z) ∈ N ∀t ∈ R (resp. t ≥ 0) for which ΦX

t (z) ∈ U .

In particular, if the invariant set N is a smooth submanifold ofM, then (N,R,ΦX |R×N )
is a differentiable dynamical system, where ΦX |R×N : R×N → N is the restriction of
ΦX to the submanifold.

Definition 6.2. Let N ⊂M be a smooth submanifold of M. The vector field X on M is
said to be tangent to N if X(z) ∈ TzN ∀z ∈ N, while it is said to be transverse to N if
X(z) /∈ TzN ∀z ∈ N

Proposition 6.1. Let N be a smooth submanifold of M, and U ⊂M an open set.
N is locally invariant in U if and only if X(z) ∈ TzN ∀z ∈ N∩U and (N\N)∩U = ∅,

and in such a case, solutions starting in N ∩ U might leave N only by crossing U .
If N is closed and X is tangent to N, then N is invariant under the flow of X.

Examples.
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• The smallest invariant sets are equilibria, that is, points z∗ ∈M such that X(z∗) = 0.

• Any orbit Oz := {ΦX
t (z) : t ∈ R} (resp. positive semi-orbit O+

z := {ΦX
t (z) : t ≥ 0})

is a one-dimensional invariant (resp. positively invariant) submanifold. Conversely,
any connected invariant one-dimensional submanifold that does not contain equilibria
is an orbit.

• Each level set of a smooth submersion F : M → Rk whose components are first
integrals is a closed invariant smooth submanifold of M of codimension k.

The behaviour of orbits near an equilibrium point can be described in terms of their
stability properties. Consequently, we recall here the notions of Lyapunov-stability for
equilibria.

Definition 6.3. Let z∗ ∈M be an equilibrium of X.
z∗ is said to be stable if, for any neighbourhood U of z∗, there exists a neighbourhood

U0 of z∗ such that ΦX
t (U0) ⊆ U for all t ≥ 0.

z∗ is said to be attractive if there exists a neighbourhood U of z∗ such that limt→+∞ΦX
t (z) =

z∗ for all z ∈ U .
z∗ is said to be asymptotically stable if it is stable and attractive.

By extension, the definitions of stability and asymptotic stability for invariant sets
read as follows.

Definition 6.4. Let N be a closed invariant set of M.
N is stable if, for any neighbourhood U of N in M, there exists a neighbourhood U0

of N such that ΦX
t (U0) ⊆ U for all t ≥ 0.

N is an attracting set if there is a positively invariant neighbourhood U of N such that⋂
t>0 ΦX

t (U) = N . The set U is called a trapping region of N . The basin of attraction of
N is the open set given by

⋃
t≤0 ΦX

t (U) for any trapping region U of N , and it does not
depend on the choice of U .

6.2.2 Preliminaries: asymptotic behaviour

Next, we recall the notion of ω-limit set and the classical LaSalle invariance principle
(see [25–27]), which enables to get information regarding the ω-limit sets of positively
bounded solutions, by employing a Lyapunov function.

Preliminarily we give a few definitions.

Definition 6.5. Let z ∈M. A point p ∈M is called ω-limit point of z if there exists a
sequence {tn : tn ∈ R}n∈N such that tn → +∞ as n→∞ and limn→∞ΦX

tn(z) = p. The
collection ω(z) of all ω-limit points of z is called ω-limit set of z.

Proposition 6.2. If N ⊂M is a positively invariant compact (or positively precompact)
subset, then, for any z ∈ N , ω(z) is contained in N , is nonempty, compact, connected
and invariant under the flow of X.
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Denote by LX the Lie derivative along the vector field X, namely LX : C1(M) →

C1(M), LXf :=
d

dt
(f ◦ ΦX

t )
∣∣∣
t=0

. Sometimes we will also denote such time derivative of f

along the flow of X by ḟ .

Definition 6.6. Let W : M→ R be a C1 function on M, and Ω ⊂M. W is said to be a
Lyapunov function for X on Ω if LXW(z) ≤ 0 ∀z ∈ Ω.

Now, we state – and, for completeness, prove – LaSalle’s theorem.

Theorem 6.1 (LaSalle Invariance Principle). Let Ω ⊂M be a positively invariant open
set such that Ω is compact, and let W be a Lyapunov function for X on Ω. Let M be
the largest invariant subset in E = {z ∈ Ω : LXW(z) = 0}. Then, for any z0 ∈ Ω, there
exists w ∈ R such that ω(z0) ⊆M ∩W−1(w).

Proof. Let z0 ∈ Ω. Being W a Lyapunov function on a Ω positively invariant, the
function t 7→ W(ΦX

t (z0)) is decreasing for every t ≥ 0 and therefore it has a limit
limt→+∞W(ΦX

t (z0)) =: w, which belongs to Ω. Since Ω is compact, ω(z0) is nonempty
and contained in Ω. Hence, taking p ∈ ω(z0), by the continuity of W,

W(p) = W( lim
n→∞

ΦX
tn(z0)) = lim

n→∞
W(ΦX

tn(z)) = w.

Thus, for this w, W(p) = w for each p ∈ ω(z0), namely ω(z0) ⊆W−1(w). On the other
hand, the continuity of the flow gives

W(ΦX
t (p)) = W

(
ΦX
t ( lim

n→∞
ΦX
tn(z0))

)
= W

(
lim
n→∞

ΦX
t+tn(z)

)
= W(p)

and therefore t 7→ W ◦ ΦX
t (p) is constant and, by the definition of E, ω(z0) ⊆ E. Since

ω(z0) is an invariant set, it is contained in M .

Therefore, LaSalle invariance principle is a precious tool for the study of the asymptotic
behaviour of a dynamical system since it provides a method to localise the ω-limit sets.
Moreover, this result gives information on the size of the region of attractivity, which
strongly depends on the nonlinearities of the vector field and can hence be determined
only recurring to global objects, such as a Lyapunov function, and not from linear
approximations. In particular,

Corollary 6.1. In the hypotheses of Theorem 6.1, if M ⊂ Ω, then M is an attracting
set and Ω is a trapping region.

In addition, it is worth remarking that the Lyapunov function itself can often be used
to construct the trapping region. Indeed, if the open set Ωl ⊂M, defined by the condition
W < l, for some l > 0, is positively precompact (i.e. bounded for all t ≥ 0 and with no
limit points on the boundary), then Theorem 6.1 ensures that the ω-limit set of any point
in Ωl belongs to E = {z ∈ Ωl : LXW(z) = 0}.

Finally, we recall that, as a particular case for equilibria, from Theorem 6.1 the
following refinement of Lyapunov’s stability theorem follows.

Corollary 6.2 (LaSalle-Krasovskii principle). In the hypotheses of Theorem 6.1, let z∗

be an equilibrium for X in Ω which is a strict minimum point of W. If {z∗} is the only
positive semi-orbit orbit in E, then z∗ is asymptotically stable.
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6.2.3 Particular case

We now investigate the case in which the set E – locus of the zeroes of the Lie derivative
of the Lyapunov function – has a manifold structure.

Proposition 6.3. In the hypotheses of Theorem 6.1, if E is a smooth submanifold of M,
then, for any z0 ∈ Ω, ω(z0) belongs to the largest invariant subset of

T
(1)
E := {z ∈ E : X(z) ∈ TzE}. (6.4)

Proof. Let z0 ∈ Ω and take p ∈ ω(z0). By LaSalle’s theorem 6.1, p ∈ E. Since, by
Proposition 6.2, ω(z0) is invariant, then, for any t ∈ R, ΦX

t (p) ∈ ω(z0) ⊂ E. Therefore,
X(p) ∈ TpE, which proves the statement.

Define inductively T
(0)
E := E,

T
(j)
E := {z ∈ T

(j−1)
E : X(z) ∈ TzT(j−1)

E } , j ≥ 1.

Proposition 6.4. If T(1)
E , . . . ,T

(j−1)
E , for j ≥ 2, are smooth submanifold of E, then, for

any z0 ∈ Ω, ω(z0) belongs to the largest invariant subset of T(j)
E .

Proof. By induction.

6.3 Mechanical systems with partial viscous friction

We now focus on mechanical systems, motivated by Examples 1 and 2 introduced at
the beginning of the chapter. Specifically, we study finite-dimensional mechanical sys-
tems, holonomically constrained, subject to conservative forces and velocity-proportional
dissipative forces.

6.3.1 Setting

In this section, we fix the notation, mainly in accordance with [13], and set our working
hypotheses.

Let Q be a smooth d-dimensional manifold and TQ its tangent bundle. We consider a
mechanical system, subject to ideal holonomic constraints, with configuration manifold Q,
and described by a Lagrangian function L : TQ→ R of the form L(q, q̇) = T (q, q̇)− V (q)
with T a kinetic energy quadratic in the velocity and V : Q → R a smooth potential
energy independent from the velocity. Let g be the Riemannian metric on Q given by the
kinetic energy, namely T (q, q̇) = 1

2gq(q̇, q̇). In addition, we assume that on the system act
dissipative forces which are linear in the velocity, f : TQ→ T ∗Q, f(q, q̇) = −Γ(q)q̇ with Γ
a symmetric and positive semi-definite tensor. Forces of this type are commonly known
also as “forces of viscous friction” (e.g., [3]).
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The equations of motion, in lifted local coordinates (q1, . . . , qd, q̇1, . . . , q̇d) on TQ, are
the Lagrange equations with the inclusion of the damping force∗:(

d

dt

∂L

∂q̇i

)
(q, q̇, q̈)− ∂L

∂qi
(q, q̇) = fi(q, q̇) i = 1, . . . , d, (6.5)

which are a system of d second-order ordinary differential equations. Written as the
equivalent first-order system, equations (6.5) are{

q̇ = v
v̇ = ξ(q, v)− gradg V (q)− F (q, v)

(6.6)

where the i-th component of each term is ξi(q, v) := −1
2g
il(q)

(
∂gjl(q)

∂qk
+ ∂gkl(q)

∂qj
− ∂gjk(q)

∂ql

)
vjvk,

(gradg V (q))i = gij(q)∂V (q)
∂qj

and F i(q, v) := gil(q)Γlj(q)v
j , having adopted the conven-

tion of summation over repeated indexes. Equations (6.6) define a smooth vector field
X ∈ X(TQ),

X(q, v) := (v, ξ(q, v)− gradg V (q)− F (q, v))T .

We shall assume that X is complete, and we denote by ΦX
t : TQ → TQ the flow of

X at time t ∈ R. Then, (TQ,R,ΦX) is a differentiable dynamical system with flow
ΦX := {ΦX

t : t ∈ R}.
Finally, we require the following two conditions for the potential energy V and the
“damping tensor” Γ:

c)i. V has a strict (local) minimum at q∗. Without loss of generality, assume V (q∗) = 0;

c)ii. Γ(q) has constant rank d− k for all q ∈ Q, for some 0 ≤ k < d.

In this setting, we first derive the following basic properties for system (6.5).

Lemma 6.1. The energy function E : TQ→ R,

E(q, q̇) := T (q, q̇) + V (q), (6.7)

is a Lyapunov function for X on TQ.

Proof. Since E(q, q̇) =
∑d

i=1 q̇
i ∂L
∂q̇i

(q, q̇)− L(q, q̇), straightforwardly from equation (6.5)
it follows that

LXE(q, q̇) = −Γij(q)q̇
iq̇j .

Since Γ(q) is positive semi-definite for every q ∈ Q, LXE(q, q̇) ≤ 0 ∀(q, q̇) ∈ TQ.

Lemma 6.2. 1. (q∗, 0) is a stable equilibrium for system (6.6).

2. If Γ(q∗) has rank d, (q∗, 0) is asymptotically stable.
∗We use the same symbol to denote both an object in TQ and its local representative in a parametri-

sation of TQ.
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Proof. 1. From hypothesis c)i., since q∗ is a critical point for V , X(q∗, 0) = (0, 0),
and therefore q∗ is an equilibrium configuration. To prove its stability, use E as
Lyapunov function: (q∗, 0) is a strict minimum for E, since V has a strict minimum
in q∗ and T is a positive definite quadratic function in q̇ for any q; the conclusion
follows from Lyapunov stability criterion.

2. If Γ(q∗) has rank d, by hypothesis c)ii., k = 0 for any q ∈ Q and LXE = 0 if and
only if q̇ = 0. Being q∗ a strict local extremum of V , there exists a neighbourhood
of (q∗, 0) in which q∗ is a strict absolute extremum. The conclusion follows from
Corollary 6.2.

For the rest of the section, we will assume that the damping tensor has not full rank,
namely that, in c)ii., 0 < k < d. In this scenario, we want to describe the dynamics
sufficiently close to the stable equilibrium (q∗, 0).

6.3.2 Some results

For any q ∈ Q, ker Γ(q) := {q̇ ∈ TqQ : Γ(q)q̇ = 0} is a vector subspace of TqQ of
codimension equal to the rank of Γ(q). Thus, ker Γ defines a distribution D on Q, which,
by hypothesis c)ii., is regular, with rank k and fibers Dq := ker Γ(q) for any q ∈ Q. Then,
D ⊂ TQ defined as

D := {(q, q̇) ∈ TQ : q̇ ∈ ker Γ(q)}

is a smooth (d+ k)-dimensional manifold.
Now, since we are interested in the dynamics near the stable equilibrium, we define a

convenient neighbourhood of (q∗, 0) to which we shall restrict the study of the flow of X.
Note that since V (q∗) = 0, we have E(q∗, 0) = 0. For any E0 > 0, define the (nonempty)
open set ΩE0 ⊂ TQ as the connected component of the region {(q, q̇) ∈ TQ : E(q, q̇) < E0}
which contains (q∗, 0). We fix E0 sufficiently small (and, under the circumstances, this is
always possible) so that

c)iii. ΩE0 is precompact;

We have the following result (see Figure 6.3).

Proposition 6.5. For every (q0, q̇0) ∈ ΩE0, ω(q0, q̇0) belongs to the largest invariant
subset of T(1)

D ∩ ΩE0, where

T
(1)
D := {(q, q̇) ∈ D : X(q, q̇) ∈ T(q,q̇)D}.

Proof. First, we notice that ΩE0 is positively invariant under the flow of X, since it is a
(component of a) sublevel set of a Lyapunov function. Moreover, condition c)iii. implies
that for every (q, q̇) ∈ ΩE0 , t→ ΦX

t (q, q̇) is bounded for every t ≥ 0.
Next, we observe that D ∩ ΩE0 = LXE|−1

ΩE0
(0). Indeed, since Γ is symmetric and

positive semi-definite, LXE(q, q̇) = −Γij(q)q̇
iq̇j vanishes if and only if q̇ ∈ ker Γ(q), for

any (q, q̇) ∈ TQ, and in particular for (q, q̇) ∈ ΩE0 .
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The conclusion follows from Proposition 6.3, by taking Ω = ΩE0 , W = E, E =
D ∩ ΩE0 .

Figure 6.3: Schematic picture for the setting described in Proposition 6.5, for a three-dimensional
phase space TQ.

Let Ψ0 : TQ→ Rd−k, Ψ0(q, q̇) := Γ(q)q̇, so that D = Ψ−1
0 (0). Then

T
(1)
D = {(q, q̇) ∈ TQ : (Ψ′0X)|Ψ−1

0 (0)(q, q̇) = 0}.

In particular,

Corollary 6.3. If Γ(q) ≡ Γ ∀q ∈ Q, then, in the hypotheses of Proposition 6.5,

T
(1)
D := {(q, q̇) ∈ D : Γ (ξ(q, v)− gradg V (q)) = 0}.

Proof. If Γ(q) ≡ Γ ∀q ∈ Q, then Ψ′0(q, q̇) =
(
0 Γ

)
. Recalling that X|D(q, v) =

(v, ξ(q, v)−gradg V (q))T , the conditionX(q, q̇) ∈ T(q,q̇)D, which is equivalent to (Ψ′0X)|D =
0, gives the statement.

Next, we remark that whenever the damping tensor is constant, ker Γ defines an
integrable distribution on Q. Therefore, we are motivated to refine the result of Proposi-
tion 6.5 for when D is an integrable distribution on Q. Let Fq̄ be the integral manifold of
D though q̄, with q̄ ∈ Q, namely such that TqFq̄ = Dq for every q ∈ Fq̄. Then, D ⊂ TQ is
a foliated manifold with leaves the 2k-dimensional submanifolds

Dq̄ := {(q, q̇) ∈ TQ : q ∈ Fq̄, q̇ ∈ Dq} = TFq̄, q̄ ∈ Q.

Proposition 6.6. Assume D integrable. In the hypotheses of Proposition 6.5, for every
(q0, q̇0) ∈ ΩE0 , there exists a leaf Fq̄ of D (with any q̄ ∈ Q) such that ω(q0, q̇0) belongs to
the largest invariant subset of T(1)

Dq̄
∩ ΩE0, where

T
(1)
Dq̄

:= {(q, q̇) ∈ Dq̄ : X(q, q̇) ∈ T(q,q̇)Dq̄}.
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Proof. Since D is an integrable distribution, every solution t → q(t) ∈ Q of the second
order differential equations (6.5) necessarily belongs to a leaf Fq̄ whenever (q(t), q̇(t))
is contained in D. In particular, by Proposition 6.2, each ω-limit set is connected and
therefore it belongs to the tangent of a leaf.

Here too, there is an analogue of Proposition 6.4: for any j ≥ 2, we can recursively
define

T
(j)
D := {(q, q̇) ∈ T

(j−1)
D : X(q, q̇) ∈ T(q,q̇)T

(j−1)
D },

as long as T(1)
D , . . . ,T

(j−1)
D are submanifolds of TQ, and look for the largest invariant subset

within T
(j)
D . Moreover, if it happens that, for some j ≥ 1, T(j)

D is both a submanifold of TQ
and the largest invariant subset of D, then (T

(j)
D ,R,ΦX |R×T(j)

D

) is a conservative subsystem,

since T
(j)
D ⊂ D. Also, if, in addition, T(j)

D is the tangent bundle of a submanifold of Q,
then the dynamics on T

(j)
D is described by a Lagrangian L|

T
(j)
D

.

6.3.3 Examples

To conclude, we test the results found on the two models introduced at the beginning
of this chapter, assuming γ > 0 and ν = 0. In particular, this analysis will show how
asymptotic synchronization enters this context but also some of the shortcomings of the
method.

Example 1

We consider the system introduced in Section 6.1.1, consisting of two coupled rigid
pendula, and we neglect the viscosity of the air, namely we set ν = 0. Let Q = T2, the
vector field X ∈ X(TQ) is

X(θ1, θ2, θ̇1, θ̇2) =
(
θ̇1, θ̇2,− sin θ1 − γ(θ̇1 − θ̇2),− sin θ2 − γ(θ̇2 − θ̇1)

)T
, γ > 0.

Proposition 6.7. The ω-limit set of any initial condition belongs to the set

{(θ1, θ1, θ̇1, θ̇1)} ∪ {(0, π, 0, 0)} ∪ {(π, 0, 0, 0)}.

In particular, for any initial condition having negative energy, the two pendula synchronise
in phase.

Proof. To begin with, we observe the following facts.

- (θ∗1, θ
∗
2) = (0, 0) satisfies c)i. (up to an irrelevant constant translation of the potential

energy).

- The damping tensor is represented by the constant matrix Γ =

(
γ −γ
−γ γ

)
and

satisfies c)ii., with k = 1. In particular, ker Γ(θ1, θ2) = {θ̇1 = θ̇2}.
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- D = {(θ1, θ2, θ̇1, θ̇1)} is a three-dimensional submanifold of TQ. In particular, D =
Ψ−1

0 (0) with Ψ0 : TQ→ R,

Ψ0(θ1, θ2, θ̇1, θ̇2) := θ̇1 − θ̇2.

- The energy of the system is E(θ1, θ2, θ̇1, θ̇2) = 1
2(θ̇2

1 +θ̇2
2)−(cos θ1+cos θ2). In particular,

E(θ∗1, θ
∗
2, 0, 0) = −2. For any E0 > −2 finite, ΩE0 satisfies c)iii..

Next, we apply the result proved in Proposition 6.5 to locate the ω-limit sets of solutions in
ΩE0 . Moreover, since the damping tensor is constant, we compare such a procedure with
the one which exploits the integrability property, applying the result of Proposition 6.6.

Method 1.

step 1. We compute T
(1)
D . We have X|D(θ1, θ2, θ̇1, θ̇1) = (θ̇1, θ̇1,− sin θ1,− sin θ2)T ,

hence
T

(1)
D = {(θ1, θ2, θ̇1, θ̇1) : (Ψ′0X)(θ1, θ2, θ̇1, θ̇1) = 0}

= {(θ1, θ2, θ̇1, θ̇1) : sin θ1 = sin θ2}

= {(θ1, θ1, θ̇1, θ̇1)} ∪ {(θ1, π − θ1, θ̇1, θ̇1)} =: T
(1)−
D ∪ T

(1)+
D .

Therefore, T(1)
D is a two-dimensional submanifold of TQ, and so are T

(1)−
D and T

(1)+
D . To

find the largest invariant set within, we apply Proposition 6.5 once more.

step 2. We compute T
(2)
D . We have X|

T
(1)
D

(θ1, θ2, θ̇1, θ̇1) = (θ̇1, θ̇1,− sin θ1,− sin θ1)T .

Moreover, T(1)−
D = Ψ̂−1

1−(0) with Ψ̂1− : TQ→ R2, Ψ̂1− = (Ψ0,Ψ1−)T , where

Ψ1−(θ1, θ2, θ̇1, θ̇2) := θ1 − θ2.

Similarly, T(1)+
D = Ψ̂−1

1+(0) with Ψ̂1+ : TQ→ R2, Ψ̂1+ = (Ψ0,Ψ1+)T , where

Ψ1+(θ1, θ2, θ̇1, θ̇2) := θ1 + θ2 − π.

Hence, T(2)
D = T

(2)−
D ∪ T

(2)+
D with

T
(2)−
D = {(θ1, θ1, θ̇1, θ̇1) : (Ψ̂′1−X)(θ1, θ1, θ̇1, θ̇1) = 0} ≡ T

(1)−
D

and
T

(2)+
D = {(θ1, π − θ1, θ̇1, θ̇1) : (Ψ̂′1+X)(θ1, π − θ1, θ̇1, θ̇1) = 0}

= {(θ1, π − θ1, 0, 0)}.

Hence, T(1)−
D is an invariant two-dimensional submanifold of TQ in D. A further step is

required to determine the largest invariant subset of T(2)+
D , which is a one-dimensional

submanifold.



6.3. Mechanical systems with partial viscous friction 93

step 3. We compute T
(3)+
D . Since X|

T
(2)+
D

(θ1, π − θ1, 0, 0) = (0, 0,− sin θ1,− sin θ1)T ,

the only orbits in T
(2)+
D are the equilibria, namely

T
(3)+
D = {(0, π, 0, 0)} ∪ {(π, 0, 0, 0)}.

Hence, the largest invariant set in D is T(3)
D := T

(1)−
D ∪ T

(3)+
D .

Finally, we observe that T
(3)
D is not a manifold. However, if we bound the initial

energy by E0 = 0, then the ω-limit of every positive semi-orbit in ΩE0 belongs to T
(1)−
D ,

which is a two-dimensional submanifold of TQ. In fact, T(1)−
D is the tangent bundle of

a one-dimensional manifold S ⊂ Q, S := {(θ1, θ1)}. We can parametrise S with φ ∈ T1.
Then, the dynamics on TS ∩ ΩE0 is φ̈+ sinφ = 0, namely a pendulum.

Method 2.

We now exploit the integrability of the distribution defined by ker Γ(θ1, θ2) = {θ̇1 =
θ̇2}. For any θ̄ ∈ T1, the integral leaf through θ̄ in Q is the one-dimensional manifold
Fθ̄ = {(θ1, θ2) ∈ Q : θ1 − θ2 = θ̄}†. Hence,

Dθ̄ = TFθ̄ = {(θ1, θ1 − θ̄, θ̇1, θ̇1)}.

By Proposition 6.6, we have to determine, for each θ̄ ∈ T1, the largest invariant subset
contained in Fθ̄. Since X|Dθ̄(θ1, θ1 − θ̄, θ̇1, θ̇1) = (θ̇1, θ̇1,− sin θ1,− sin(θ1 − θ̄))T , we have,
using Corollary 6.3,

T
(1)
Dθ̄

= {(θ1, θ1 − θ̄, θ̇1, θ̇1) : sin θ1 = sin(θ1 − θ̄)}.

Therefore, the largest invariant set in D consists of the equilibria and the two-dimensional
submanifold T

(1)
D0

= TF0, which is the only invariant subbundle of TQ.

For this example, we are hence able to explicitly determine the largest invariant set
containing the ω-limits of any solution. In particular, we are able to predict the emergence
of asymptotic in-phase synchronization of the pendula, at least for low energies.

This is however a rather lucky case, and for more complicated systems the recursive
chain might stop earlier, due to a loss of smoothness, preventing the ultimate determination
of the largest invariant set following this methodology. The next example presents indeed
more difficulties.

Example 2

We consider now the second model, introduced in Section 6.1.1. This system consists of
two pendula coupled through a rigid support, and we neglect the viscosity of the air, that

†We implicitly mean the sums of angles to be defined mod2π.
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is, we set ν = 0. Let Q = R× T2 and (z, φ), φ := (φ1, φ2), local coordinates; the vector
field X ∈ X(TQ) is X(z, φ, ż, φ̇) = (ż, φ̇, Xv(z, φ, ż, φ̇))T with

Xv :=
1

c

 −γż − αz +
∑2

i=1(φ̇2
i sinφi + sinφi cosφi)

− cosφ1(−γż − αz +
∑2

i=1 φ̇
2
i sinφi)−(µ− cos2 φ2) sinφ1−cosφ1 cosφ2 sinφ2

− cosφ2(−γż − αz +
∑2

i=1 φ̇
2
i sinφi)−(µ− cos2 φ1) sinφ2−cosφ1 cosφ2 sinφ1


with c := µ−

∑2
i=1(cosφi)

2, and α > 0, µ > 2, γ > 0.
We apply Proposition 6.5 and try to determine the largest invariant set in the phase

space in which dissipation does not act.
As before, we first observe the following facts.

- (z∗, φ∗) = (0, 0) satisfies c)i. (up to an irrelevant constant translation of the potential
energy).

- The damping tensor is represented by the constant matrix Γ =

γ 0 0
0 0 0
0 0 0

 and

satisfies c)ii., with k = 2. In particular, ker Γ(z, φ) = {ż = 0}.

- D = {(z, φ, 0, φ̇)} is a five-dimensional submanifold of TQ. In particular, D = Ψ−1
0 (0)

with Ψ0 : TQ→ R,
Ψ0(z, φ, ż, φ̇) := ż.

- The energy of the system is E(z, φ, ż, φ̇)= 1
2µż

2+
∑2

i=1

(
1
2 φ̇

2
i +żφ̇i cosφi−cosφi

)
+1

2αz
2.

In particular, E(z∗, φ∗, 0, 0) = −2. For any E0 > −2 finite, ΩE0 satisfies c)iii..

Next, we apply the result proved in Proposition 6.5 to locate the ω-limit sets of solutions
in ΩE0 .

step 1. We compute T
(1)
D . Since Γ is constant, it is convenient to apply Corollary 6.3,

by which

T
(1)
D = {(z, φ, 0, φ̇) : ΓXv(z, φ, 0, φ̇) = 0}

=
{

(z, φ, 0, φ̇) : −αz +
2∑
i=1

(φ̇2
i sinφi + sinφi cosφi) = 0

}
.

In particular, T(1)
D = Ψ̂−1

1 (0) with Ψ̂1 : TQ→ R2, Ψ̂1 = (Ψ0,Ψ1)T , where

Ψ1(z, φ, ż, φ̇) := −αz +
2∑
i=1

(φ̇2
i sinφi + sinφi cosφi).

Therefore, T(1)
D is a four-dimensional submanifold of TQ, since Ψ̂1 is submersive. To find

the largest invariant set within, we apply Proposition 6.5 once more.
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step 2. We compute T(2)
D . We haveX|

T
(1)
D

(z, φ, 0, φ̇) =
(

0, φ̇1, φ̇2, 0,− sinφ1,− sinφ2

)T
.

Hence,

T
(2)
D =

{(
1
α

∑2
i=1(φ̇2

i sinφi + sinφi cosφi), φ, 0, φ̇
)

: (Ψ̂′1X)|
T

(1)
D

(z, φ, 0, φ̇) = 0
}

=
{(

1
α

∑2
i=1(φ̇2

i sinφi + sinφi cosφi), φ, 0, φ̇
)

:

2∑
i=1

φ̇i(φ̇
2
i ci + c2

i − 3s2
i ) = 0

}
where ci := cosφi and si := sinφi, i = 1, 2. Proposition 6.5 ensures that the ω-limit set
of every positive semi-orbit in ΩE0 belongs to the largest invariant subset in T

(2)
D .

We could carry on with the computation, however, it appears – at this step already
– that the calculation is quite involved and we still might be unable to extrapolate
information on the asymptotic dynamics, unlike the previous example.

Thus, on a critical note, this procedure allows one to obtain some information on
the location of the ω-limit sets of bounded solutions in some (simple) cases, however,
the sufficient condition provided by Proposition 6.5 appears to be too strong. Even so,
this discussion might stimulate further investigation in this direction and provide some
material useful for the definition of a more optimal strategy.
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