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Abstract

Recent years have witnessed a growing adoption of machine learning techniques
for business improvement across various fields. Among other emerging applica-
tions, organizations are exploiting opportunities to improve the performance of
their business processes by using predictive models for runtime monitoring.

Predictive analytics leverages machine learning and data analytics techniques
to predict the future outcome of a process based on historical data. Therefore,
the goal of predictive analytics is to identify future trends, and discover potential
issues and anomalies in the process before they occur, allowing organizations to
take proactive measures to prevent them from happening, optimizing the overall
performance of the process.

Prescriptive analytics systems go beyond purely predictive ones, by not only
generating predictions but also advising the user if and how to intervene in a
running process in order to improve the outcome of a process, which can be de-
fined in various ways depending on the business goals; this can involve measur-
ing process-specific Key Performance Indicators (KPIs), such as costs, execution
times, or customer satisfaction, and using this data to make informed decisions
about how to optimize the process.

This Ph.D. thesis research work has focused on predictive and prescriptive
analytics, with particular emphasis on providing predictions and recommenda-
tions that are explainable and comprehensible to process actors. We first propose
a prescriptive framework that, given a running process that will be eventually
completed, associates an expected KPI value to each of the possible process con-
tinuations, based on a predictive model that is trained on historical process execu-
tions. Finally, it recommends the continuations that are associated with the best
expected KPI values.

However, while the priority remains on giving accurate predictions and rec-
ommendations, the process actors need to be provided with an explanation of the
reasons why a given process execution is predicted to behave in a certain way and
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they need to be convinced that the recommended actions are the most suitable
ones to maximize the KPI of interest; otherwise, users would not trust and fol-
low the provided predictions and recommendations, and the predictive technology
would not be adopted. To address this gap, we proposed an explainable frame-
work based on the Shapley Values game theory approach, which can be adapted to
explain any predictive model and any generic KPI, numerical or nominal. On the
one hand, we equipped our predictive-monitoring framework with explainable
capabilities, in order to highlight every aspect that significantly affects the pre-
dicted process outcome. On the other hand, also the prescriptive framework was
equipped with explainable capabilities; here, differently from predictions, we fo-
cused on highlighting the principal factors that had a negative impact on the KPI,
but whose influence could be also largely mitigated by following the proposed
recommendations. In order to show the validity of the explanations provided, our
explanation strategy was applied to several publicly available datasets; after ana-
lyzing the data, the evidence in the explanations demonstrated that the developed
predictive framework leveraged attributes that were found to be relevant from a
domain viewpoint.

Afterwards, in order to demonstrate the practical application of the research
conducted in this Ph.D. thesis, we integrated our explainable predictive frame-
work as a module of a commercial software, the IBM Process Mining Suite. This
enabled us to provide process stakeholders with a ready-to-use module that pro-
visions online operational support for their processes. Moreover, we conducted a
user evaluation to assess the efficiency and effectiveness of the proposed explain-
able predictive framework; the evaluation confirmed that the predictions were
actually explained in a form that is effective and intelligible for process analysts
and that the process stakeholders were satisfied with the explainable predictive
process framework.

Finally, a new paradigm, called object-centric, is rapidly gaining popularity in
industry; here, the object-centric process is the result of the interactions of many
different objects, each with its own life-cycle. These life-cycles are sub-processes
that work in concert to carry out process instances, periodically synchronizing
and exchanging messages. The existing literature on predictive analytics cannot
be directly applied to predict the outcome of object-centric processes, because
it relies on a single flow of executions. To address this gap, this Ph.D. thesis
proposes an approach to enable predictive analytics in object-centric processes;
furthermore, in order to improve the predictive accuracy, we also considered in-
cluding attributes that synthesize additional information related to the interaction



v

of the different sub-processes, which is a crucial aspect in object-centric pro-
cesses. By conducting several experiments on real-life datasets, we observed that
an increased predictive accuracy was often associated with the adoption of the at-
tributes representing the sub-processes interaction; this aspect was also validated
by our proposed explainable framework, which was leveraged to confirm that the
designed included attributes were often among the most important ones that were
leveraged by our predictive framework.
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Chapter 1

Introduction

Process-aware Recommender systems (hereafter shortened as PAR systems) are
a specific class of Information Systems that aim to monitor and predict how pro-
cess instances are going to evolve, and to recommend the corrective actions to
recover the instances with higher risk to not achieve the desired levels of perfor-
mance (e.g., costs, time deadlines, customer satisfaction). Conceptually, a PAR
system is constituted by three main blocks: monitoring, predictive analytics and
prescriptive analytics.

Process monitoring refers to the practice of tracking and observing a process
to ensure that it is performing as expected and to detect any deviations or issues
that may occur. The goal of process monitoring is to maintain control over a
process, thus ensuring that the desired process outcome is achieved. The outcome
of a process can be defined in various ways depending on the business goals; this
can involve measuring process-specific Key Performance Indicators (KPIs), such
as costs, execution times, or customer satisfaction, and using this data to make
informed decisions about how to optimize the process.

Predictive process monitoring aims to overcome the limitations of traditional
monitoring practices by using data produced during process execution to continu-
ously monitor processes performance [84]. In particular, predictive process mon-
itoring leverages machine learning (ML) and data analytics techniques to predict
the future outcome of a process based on historical data. Therefore, the goal of
predictive process monitoring is to identify future trends, and discover potential
issues and anomalies in the process before they occur, allowing organizations to
take proactive measures to prevent them from happening, optimizing the overall
performance of the process.

Prescriptive analytics goes a step further and recommends the best actions that
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2 Introduction

should be taken in order to optimize the outcome of a process. Overall, PAR sys-
tems focus on improving the outcome of processes, hereafter modelled as KPIs.
This Ph.D. thesis research work has focused on the predictive and prescriptive
blocks, with particular emphasis on providing predictions and recommendations
that are explainable and comprehensible to process actors.

In the last years, a lot of research has been on the first two blocks (commonly
referred as Predictive Business Process Monitoring techniques) and several ap-
proaches have been proposed (see e.g. [63, 106]). Conversely, the prescriptive
analytics block has been overlooked, assuming that the users, after being alerted
of a potential failure, are able to find the proper corrective actions. However, it
has been demonstrated by some on-the-field experts [17] that the assumption of
selecting an effective corrective action is not always met in reality. This is due
to the fact that, without support, process actors make decisions on the basis of
their subjective perception of the process, rather than relying on objective data. In
particular, the authors illustrated that, even if the developed predictive-analytics
module was able to predict the process outcome rather well, the subsequent in-
terventions selected by the users did not bring significant improvements on the
process outcome. This demonstrated that accurate predictions are crucial, but
their effect is nullified if it is not matched by effective recommendations, which
must be based on objective evidence from historical process data. Therefore, the
first goal of this PhD thesis is summarized by the following research question:
Research Question 01 How can we build a prescriptive business process analyt-
ics block that effectively maximizes a given reference KPI?

Another field that has been overlooked in the last years is explainable arti-
ficial intelligence (AI), assuming that a good level of prediction’s accuracy is
sufficient for the process’ stakeholders to trust the recommender system (as well
as the prediction system). However, while the priority remains on giving accurate
predictions and recommendations, the process actors need to be provided with
an explanation of the reasons why a given process execution is predicted to be-
have in a certain way; moreover, they need to be convinced that the recommended
actions are the most suitable ones to maximize the KPI of interest. Previous stud-
ies [21, 72] have shown that a necessary condition to build trust is to explain the
reason of the provided predictions and recommendations; otherwise, users would
not trust the predictive-monitoring technology, they would not follow the sug-
gestions given, and the PAR system would not be adopted. This leads us to the
second goal of this PhD thesis:
Research Question 02 How can users trust the predictions and the recommenda-
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tions provided by a PAR system?
In literature, predictive monitoring has traditionally focused on processes that

are composed by a single flow of execution. However, the experience in industry
has shown that a new paradigm, called object-centric, is rapidly gaining popular-
ity, since it is observed in many application scenarios. Here, the object-centric
process is the result of the interactions of many different objects, each with its
own life-cycle. These life-cycles are sub-processes that work in concert to carry
out process instances, periodically synchronizing and exchanging messages. The
existing literature on predictive monitoring cannot be directly applied to predict
the outcome of object-centric processes, because it relies on a single flow of ex-
ecutions. This Ph.D. thesis also focuses on providing a framework to analyze
object-centric processes, where the process is carried out through the interaction
of different sub-processes. The inclusion of the interaction information in the pre-
diction models is certainly beneficial and increases the accuracy of the predictive
model, leading us to the third goal of this Ph.D. thesis:
Research Question 03 How can one perform predictive analytics of object-centric
processes and exploit the information of the complex sub-processes interaction to
increase the prediction accuracy?

1.1 Contribution

In this thesis, we make several contributions to the fields of predictive and pre-
scriptive process monitoring as described below.

First, in order to address Research Question 01 and build a prescriptive busi-
ness process analytics framework that effectively maximizes a given reference
KPI, the predictive analytics block needs to be build as a first step. Therefore,
an assessment of the state of the art of predictive algorithms has been performed,
and an empirical evaluation on the accuracy of our predictive framework has been
reported. Moreover, the developed predictive monitoring framework has been ex-
tended in order to be able to predict a generic KPI of interest. Afterwards, we
addressed Research Question 01 by developing a prescriptive framework; in par-
ticular, given a running process that will be eventually completed, we first find all
the possible next actions that can be performed, based on the previously observed
completed process executions. Then, we leverage the aforementioned predictive
framework to associate an expected KPI value to each of the possible process
continuations; the recommended actions will be those associated with the best
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expected KPI values.
In order to address Research Question 02 and increase the trust in our PAR

system, we equipped our previously developed predictive monitoring framework
with explanation capabilities, which enabled us to explain any generic KPI, nu-
merical or nominal, by leveraging on current state of the art of Explainable Arti-
ficial Intelligence (XAI). In particular, by leveraging post-hoc explainability ap-
proaches to explain the outcome of a black box model, we returned for each run-
ning process the factors that influenced the prediction the most, with the corre-
sponding magnitude and indication whether the influence was towards increasing
or decreasing the predicted KPI’s value. The explanations have been validated
on several real-life datasets, and the intelligibility of the proposed explanation
strategy was assessed through a user study with several real and potential pro-
cess analysts from academia and industry. To this end, the implementation of the
framework is not limited to be an academic proof-of-concept prototype, but has
been incorporated into a commercial tool, the IBM Process Mining, in order to
provide further strength to the validation of the explanation’s understandability
by process analysts.

To complete addressing Research Question 02, also the prescriptive frame-
work was equipped with explainable capabilities. When explaining the predic-
tions, we focused on every aspect that significantly affects the expected process
outcome; here, conversely, we proposed an explanation strategy where we fo-
cused on highlighting the principal factors that had a negative impact on the KPI,
but whose influence could be also largely mitigated by following the proposed
recommendations.

Finally, to address Research Question 03, this Ph.D. thesis has proposed a
technique to transform object-centric event logs in order to enable predictive an-
alytics in object-centric processes. Afterwards, an empirical evaluation of the
accuracy of four different predictive algorithms on several real-life datasets has
been reported. In our evaluation, in order to improve the predictive accuracy,
we also considered including attributes that synthesize additional information re-
lated to the interaction of the different sub-processes, which is a crucial aspect in
object-centric processes. By conducting several experiments on real-life datasets,
we observed that an increased predictive accuracy was often associated with the
adoption of the attributes representing the sub-processes interaction; this aspect
was also validated by our proposed explainable framework, which was leveraged
to confirm that the designed included attributes were often among the most im-
portant ones that were leveraged by our predictive framework to increase the pre-
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diction accuracy.
The above contributions have been previously documented in publications that

are referenced at the end of the thesis (see Appendix B).

1.2 Thesis outline

Chapter 2 provides definitions, principles and basic concepts from process mining
and machine learning areas that will be referenced throughout the thesis. Addi-
tionally, we provide the relevant background on explainable AI and we illustrate
how machine learning models can be leveraged for predictive process analytics.

In Chapter 3, an assessment of the state of the art of predictive algorithms is
performed, and an empirical evaluation of two of the most promising predictive
algorithms is reported.

In Chapter 4, the developed predictive monitoring framework is equipped with
explanation capabilities, and an empirical evaluation of the provided explanations
is performed. In particular, a user evaluation is assessed in order to understand if
the explanations provided by the framework are intelligible to process stakehold-
ers. Moreover, the integration of our framework in the IBM Process Mining suite
is illustrated, consolidating the research contributions of this thesis.

In Chapter 5, the predictive framework is extended in order to be able to pre-
dict the outcome also for object-centric processes and an empirical evaluation of
the accuracy of four different predictive algorithms is reported. Moreover, the in-
formation about the object interactions is incorporated into the predictive model,
illustrating the benefits of their use on the prediction quality. Explainable AI tech-
niques are also leveraged to further confirm the importance of object-interaction.

Chapter 6 reports on the developed prescriptive framework, which not only
can recommend the corrective actions to recover the instances with higher risk
not to achieve the expected outcome, but can also accompany recommendations
with sensible explanations based on the process behavior and the context in which
the process is carried on.

Finally, Chapter 7 concludes this thesis by providing a summary of our con-
tributions and discussing possible avenues for future work.
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Chapter 2

Preliminaries

In this chapter we introduce the concepts that will be used in this
thesis. In particular, Section 2.1 introduces process mining and il-
lustrates the concepts of traditional and object-centric event logs.
Section 2.2 gives an overview about relevant concepts from the ma-
chine learning field and describes the predictive models that will be
used in this thesis. Section 2.3 provides a brief overview of works on
explainability of machine learning models. Finally, Section 2.4 con-
cludes the chapter by illustrating how machine learning models can
be leveraged for predictive process analytics.

2.1 Process Mining

Business Process Management (BPM) is a systematic approach to improving
the performance and efficiency of a company’s workflows, processes, and op-
erations [23]. It involves the identification, design, implementation, monitoring,
and improvement of business processes to optimize productivity, reduce costs,
increase customer satisfaction, and achieve organizational goals.

BPM aims to streamline business operations by mapping out workflows and
identifying areas for improvement. This involves analyzing and understanding
the current state of business processes, identifying inefficiencies, and developing
a plan to optimize them. BPM may also involve automating certain processes
using technology to reduce manual labor, errors, and costs.

In this context, a business process is viewed as a collection of inter-connected
events, activities and decision points that involve a number of human actors, soft-
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8 Preliminaries

Figure 2.1: BPM lifecycle model [23]

ware systems and physical and digital objects, and that collectively lead to an
outcome that adds value to the involved actors. Figure 2.1 illustrates the stages in
which BPM activities can be organized:

• Process identification: this phase consists in identifying the processes that
are relevant to the problem being addressed and critical to the relevant busi-
ness goals. The outcome of this phase is a process architecture that presents
an overview of the identified processes, along with their relations.

• Process discovery: it consists in manually or automatically constructing
a representation of the current state of an organisation’s business process.
The current state of a business process is also defined as-is.

• Process analysis: it consists in examining a process in order to identify
eventual issues related to the as-is process, thus discovering eventual possi-
ble improvements.

• Process redesign: it consists in identifying different potential changes to the
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as-is process in order to tackle the previously identified issues. The result
of this operation is the definition of a to-be process model.

• Process implementation: this phase consists in the concrete implementation
of the aforementioned modifications, in order to achieve the to-be process.

• Process monitoring: once the process has been redesigned, this phase con-
sists in collecting and analyzing the data related to the process execution,
in order to assess the process performance with respect to its performance
criteria.

Modern organizations use process-aware information systems that record in-
formation about the execution of business processes that can be extracted and
preprocessed to produce event logs [109]. The availability of event logs has lead
to a growing interest among organizations to improve their business processes
in a data-driven manner. Process mining is a research area within BPM that is
concerned with extracting useful insights from the aforementioned event logs. In
particular, process mining techniques are able to support various stages of busi-
ness process management tasks, such as process discovery, analysis, redesign,
implementation and monitoring. In this section, we introduce the key process
mining concepts. An IEEE standard for representing event logs, called XES (eX-
tensible Event Stream), has been introduced in [41]. The standard defines the
XML format for organizing the structure of traces, events and attributes in event
logs.

An event log (see example in Table 2.1) consists of a multiset of traces, i.e.
sequences of events that are related to the same case (an instance of a business
process). For example, a case can refer to all events related to the same purchase
order. An event carries information about the execution of a given activity. The
core mandatory elements of every event are the case identifier (e.g. the identifier
of the purchase order), the activity name (i.e. the type of the executed event), and
a timestamp indicating when the event occurred. In other words, every event rep-
resents the occurrence of an activity at a particular point in time and in the context
of a given case. Additionally, an event can contain other relevant data; as an ex-
ample, it can contain information about the payment, such as the order price, and
information about the resource, i.e. the process worker or the software system that
performed the specific activity. These additional relevant data are referred to as
event attributes. The value of these attributes can change dynamically throughout
the trace or it can be static and never change throughout the lifetime of the trace;
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Table 2.1: Example of a traditional event log. Each row is an event.

Event ID Case ID Activity Timestamp Customer Resource Product Order Price Order Quantity

e1 Case1 Order Creation 2017-07-16 15:00 Paul System P01 100 1
e2 Case1 Check Availability 2017-07-17 9:00 Paul Anna P01 100 1
e3 Case1 Prepare Order 2017-07-17 13:00 Paul Dennis P01 100 1
e4 Case1 Order Received 2017-07-20 17:00 Paul Delivery Company SPA P01 100 1
e5 Case2 Order Creation 2017-08-05 15:00 Laura System P02 50 3
e6 Case2 Check Availability 2017-08-06 9:00 Laura Jack P02 50 3
e7 Case2 Cancel Order 2017-08-10 13:00 Laura System P02 50 3

an example of the latter can be the type of the ordered product or the age of the
customer.

Formally, an event is defined as follows:

Definition 2.1.1 (Event). Let A be the set of process’ activities. Let T the set
of possible timestamps and let AN the set of process attributes. Let WAN be a
function that assigns a domain WAN (a) to each process attribute a ∈ AN . Let
W = ∪a∈ANWAN (a). An event is a tuple (act, t, val) ∈ A× T × (AN ̸→ W)1

where act is the event activity, val is a partial function assigning values to process
attributes with val(a) ∈ WAN (a), and t its timestamp.

In the remainder, given an event e = (act, t, val), we define πact(e) = act as the
function associating an event to its activity, πtime(e) = t as the function associat-
ing an event to its timestamp, and πvmap(e) = val as the function associating an
event to a variable-to-value assignment function val such that, for each attribute
a ∈ AN in the domain of val, val(a) indicates the value assigned to a by e.

A trace is a sequence of events. Note that the same event can potentially oc-
cur in different traces, namely attributes are given the same assignment in differ-
ent traces. This means that potentially the entire same trace can appear multiple
times. This motivates why an event log is to be defined as a multiset of traces:2

Definition 2.1.2 (Traces, Event Logs & Prefixes). LetE be the universe of events,
i.e. the set of all possible event identifiers. A trace σ is a sequence of events,
i.e. σ ∈ E∗. A traditional event-log L is a multiset of traces, i.e. L ⊂ B(E∗).
Moreover, given a trace σ = ⟨e1, . . . , en⟩, prefix(σ) denotes the set of all prefixes
of σ, including σ: {⟨⟩, ⟨e1⟩ , ⟨e1, e2⟩ , . . . , ⟨e1, . . . , en⟩}.

In Process Mining, we can distinguish between two types of Event Logs: tra-
ditional and Object-centric Event Logs. The former type has been described in

1The notation ̸→ indicates a partial function.
2Given a set X , B(X) indicates the set of all multisets with the elements in X , and X∗ indi-

cates the universe of all sequences over elements in X (Kleene’s Star).
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this section and illustrated in Table 2.1; in the following, when it is evident from
the context, with the term event log we refer to the traditional event log. In a
traditional event log, each trace describes the life-cycle of exactly one type of
process instance; as we can see in Table 2.1, each event is associated exactly to
one process type, i.e. the purchase order. Conversely, in an object-centric event
log, each event may refer to one or multiple process types; notice that it is pos-
sible to convert object-centric event logs into traditional event logs; more details
will be provided in Section 5.3.1.

2.1.1 Object-centric Process Mining

Object-centric processes (also known as Artifact-centric processes) are recently
gaining popularity in academia and industry, because their nature is observed in
many application scenarios. They are implementations of a paradigm where an in-
stance of one process is not executed in isolation but interacts with other instances
of the same or other processes. In fact, the situation is more similar to choreogra-
phies where one instance of a process P1 interacts and synchronizes with several
instances of a second process P2, and the other way around: one instance of P2

might synchronize with multiple instances of P1. The situation can be even more
complex: instances of P2 may in turn interact with instances of some P3, and so
on. For instance, consider a retail shop in Padua (Italy): several customers may
order products manufactured in a factory in Brisbane (Australia). The factory
associates many customer orders to a single manufacturer order to save money.
Also, the same customer orders can include products from different manufacturers
in different parts of the globe. Customer’s and manufacturer’s orders are managed
via instances of different processes: one instance of customer-order process can
be associated to several of manufacturer-order process, and the other way round:
each manufacturer-order process instance may be associated to many consumer-
order ones. The recent industrial experience is confirming that the assumption
of a single execution flow is unfortunately often not met in practice. This led to
the introduction of the paradigm of object-centric processes, which has recently
been gaining more and more attention because it can model inter-organizational
processes more naturally [54,110,111]. Any process execution materializes itself
as a set of instances of the same/different processes that represent the life cycles
of different objects (a.k.a. artifacts) that contribute to the process execution (e.g.,
the order and the delivery object). These processes for the different objects run
independently and synchronize through some bridging events to exchange data
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needed to progress further.
Object-centric processes are carried on with the support of one or more in-

formation systems. It is possible to extract the history of past executions into a
transactional data set organized in form of object-centric event logs [28]. In a
typical object-centric event log, each event may refer to one or multiple objects
(i.e. each event can be associated to one or multiple object identifiers). Therefore,
it is not possible to group events to form traces by picking the same identifier for
every event.

Example 2.1.1. Table 2.2 shows an excerpt of an object-centric event log of an
Italian utility provider company. It consists of five object types, each with its own
object identifier: Contract, Requisition, Order, Receipt, Invoice.
The first is Contract, which is the process concerning the stipulation of a con-
tract with a customer, possibly followed by a Requisition, which is an op-
tional process executed when the order needs a purchase requisition. The Order
process consists of several activities representing mainly quantity, price, or date
modifications of the order, eventually approved by the Head of the department.
The Receipt process is then related to the receiving of the goods or the services
requested, followed by the Invoice process, which includes everything related
to payments. Some events are associated to a single object identifier, others have
multiple (i.e., the so-called bridge events) that enable the synchronization and
data exchange between objects.

Figure 2.2 illustrates how objects are related to each other for synchronization
and data exchanges. Note that relationships can be of many-to-many or many-
to-one nature. Events are associated with attributes, features based on the prop-
erties of requisitions, orders (e.g., order price), receipts (e.g., receipt
quantity), and invoices. In order to better understand how the different ob-
jects interact with each other, we represent in Figure 2.3 the excerpt of object-
centric event log in Table 2.2 as a sequence diagram. In particular, each column
represents a different object of our object-centric event log (e.g., the column with
label RQ1 identifies a process of type Requisition with identifier RQ1). The inter-
action and the exchange of messages between the objects is made possible by the
bridge events, which are events that are associated with multiple object identi-
fiers. In this diagram, each bidirectional arrow represents an interaction between
the objects, and it is associated with the related bridge event that enabled this
communication. The box over each column represents the life-cycle of a particu-
lar object; as an example, the life-cycle of object C1 is started at the event e1 and
it is concluded at event e5, after interacting with the object O1.
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Table 2.2: Example of an object-centric event log. Each row is an event, and the
blank spaces represent attributes’ missing values.

ID Activity Timestamp Contract Requisition Order Receipt Invoice User Order Price Order Purch Group Rec Quantity

e1 Contract Line Creation 2017-07-11 9:00 c1 CO01
e2 Purch Contract Item Material Group Changed 2017-07-14 11:00 c1 CO01
e3 Purchase Requisition Line Created 2017-07-15 12:00 c1 rq1 A456
e4 Contract Line Creation 2017-07-15 14:00 c2 CO01
e5 Purchase Requisition Line Created 2017-07-15 17:00 c2 rq2 A457
e6 Purchase Order Line Creation 2017-07-16 15:00 c1 o1 A458 100 100 L50
e7 Contract Line Creation 2017-07-16 16:00 c3 CO01
e8 Purchase Order Line Creation 2017-07-17 15:00 rq1 o2 A458 200 100 L51
e9 Purchase Order Line Creation 2017-07-18 15:00 rq2 o3 A458 300 100 L52
e10 Goods Line Registered 2017-07-22 15:00 o1 r1 A456 100 100 L50 10
e11 Invoice Receipt 2017-07-22 16:00 i1 A125
e12 Purchase Requisition Group Changed 2017-07-22 19:00 rq1 A456
e13 Purchase Order Line Creation 2017-07-23 9:00 rq1 o4 A458 600 100 L52
e14 Purchase Order Line Creation 2017-07-23 12:00 c3 o5 A458 700 100 L50
e15 Goods Line Registered 2017-07-23 15:00 o2 r2 A456 100 100 L50 10
e16 Invoice Registered 2017-07-29 11:00 r1,r2 i1 A125 10
e17 Invoice Cleared 2017-07-30 12:00 i1 A125
e18 Goods Line Registered 2017-07-31 15:00 o4 r3 A456 600 100 L52 10
e19 Goods Line Registered 2017-08-09 15:00 o5 r4 A456 700 100 L50 10
e20 Invoice Registered 2017-08-10 11:00 r2,r3,r4 i2 A125 10
e21 Invoice Cleared 2017-08-15 14:00 i2 A125
e22 Goods Line Registered 2017-08-16 15:00 o3 r5 A456 300 100 L52 5
e23 Purchase Requisition Supplier Changed 2017-08-16 17:00 rq2 A456
e24 Invoice Registered 2017-08-18 11:00 r5 i3 A125 5
e25 Invoice Cleared 2017-08-20 14:00 i3 A125

Figure 2.2: Diagram representing cardinality between the different object types
in the considered object-centric event log, taken from an Italian utility provider
company. For each object type, the cardinality with the subsequent or the previous
object type is represented as (min cardinality, max cardinality)

Literature proposes the following definition of object-centric events:

Definition 2.1.3 (Object-Centric Event Log [28]). Let T be the universe of the
timestamps. An object-centric event log is a tuple L = (E, T,A,AN,AV,AT,OT,

O, πtyp, πact, πtime, πvmap, πomap, πotyp, <) such that:

• E is the set of event identifiers,

• T is the set of timestamps,
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Figure 2.3: Object-centric event log represented in the form of a sequence dia-
gram. Each column represents a different object in the object-centric event log.
Each bidirectional arrow represents an interaction between the objects, and it is
associated with the related bridge event that enabled the communication. The box
over each column represents the life-cycle of a particular object.

• A is the set of activity names,

• AN is the set of attributes names,

• AV is the set of attribute values (with the requirement that AN ∩AV = ∅),

• AT is the set of attribute types,

• OT is the set of object types,

• O is the set of object identifiers,

• πtyp : AN ∪ AV → AT is the function associating an attribute name or
value to its corresponding type,

• πact : E → A is the function associating an event identifier to its activity,

• πtime : E → T is the function associating timestamps to event identifiers,
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• πvmap : E → (AN ̸→ AV ) is the function associating every event identifier
e ∈ E to a variable-to-value assignment function val such that, for each
attribute a ∈ AN in the domain of val, val(a) indicates the value assigned
to a by e,

• πomap : E → 2O is the function associating an event identifier to a set of
related object identifiers,

• πotyp : O → OT assigns precisely one object type to each object identifier,

• < ⊆ (E × E) is a partial order of events.3

2.2 Machine Learning

In this section, we explain the relevant concepts from the machine learning field.
Section 2.2.1 describes the concept of machine learning and introduces potential
different types of predictive tasks. Section 2.2.2 describes the predictive models
that will be used later in the thesis.

2.2.1 Overview

Machine learning is a rapidly growing field of computer science that focuses on
designing algorithms and models that can learn patterns and make predictions
based on data. It is a subset of artificial intelligence and involves teaching ma-
chines to recognize patterns in data and use those patterns to make predictions or
decisions without explicitly encoding the decision logic into the machines. Nowa-
days, data are becoming one of the most important crucial assets for companies
and, since the amount of data generated is growing consistently, machine learn-
ing is becoming increasingly important for businesses and organizations to gain
insights from data and thus drive decision-making. In machine learning, large
datasets are often used to train the predictive algorithms, which then leverage
the knowledge gained from that data to make predictions or decisions about new
data. This allows machines to learn from experience, similarly to human learning
process.

Machine learning has been applied to a wide range of applications; in this
thesis, machine learning algorithms are leveraged in order to predict the outcome

3Typically, the partial order is induced by the timestamp, i.e., e′ < e′′ ⇐⇒ πtime(e
′) <

πtime(e
′′). However, we do not require to make that assumption.
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in the context of business processes. The desired outcome is usually defined by
process analysts, process owners and stakeholders, who have a primary interest in
monitoring how process instances are going to evolve, in order to promptly being
alerted on the instances with higher risk to not achieve the expected outcome; as
an example, a delivery company could have the desire to monitor and be alerted
whether there is a high probability to not deliver the package on time. Therefore,
in this thesis, we will deal with supervised learning, which is an approach that
involves training a predictive model on label data. More formally, training data is
represented as n labeled samples:

D = {(x1, y1), . . . , (xn, yn) : n ∈ N} (2.1)

where xi ∈ X are m-dimensional feature vectors (with m ∈ N) and yi ∈ Y
are the corresponding labels, i.e. the values of the target variable. The feature vec-
tors extracted from the labeled training data are used to train a predictive model;
afterwards, the trained predictive model will assign labels to new testing data, and
the prediction will be compared with the expected label, assessing the accuracy
of the predictive model. In other words, a model generalizes a pattern, providing
a mapping f : X → Y . The labels can be either continuous, e.g. when indicating
the total time of a process, or discrete, e.g. when indicating the risk classification
of a given loan. In the former case, the model will be defined as a regression,
while in the latter case it will be defined as a classification, which can be further
split into two types: multiclass and binary classification. As the name suggests,
the latter indicates a classification between only two classes.

From a probabilistic perspective, the machine learning objective is to infer
a conditional distribution P (Y|X ). A standard approach to tackle this problem
is to represent the conditional distribution with a parametric model, and then to
obtain the parameters using a training set containing {xn, yn} pairs of input fea-
ture vectors with corresponding target output vectors. The resulting conditional
distribution can be used to make predictions of y for new values of x. Since the
conditional distribution discriminates between the different values of y, this is de-
fined as a discriminative approach [49], which tries to define a decision boundary
that divides the feature space into areas containing feature vectors belonging to
the same class (see Figure 2.4).
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Figure 2.4: Example of discriminative model

2.2.2 Learning algorithms

Predictive process monitoring methods have employed a variety of classification
and regression algorithms. In this thesis, we relied on different types of predictive
models. The first one, Catboost, performs Gradient Boosting on Decision Trees
and belongs to the group of Ensemble Learning algorithms, while the remain-
ing algorithms, namely Long Short-Term Memory (LSTM) network, and Graph
Neural Network (GNN), belong to the group of Deep Learning algorithms. In the
following, we provide a detailed description of the predictive algorithms that have
been used in this thesis.

Decision Trees

One of the main predictive algorithms that will be used in this thesis, Catboost,
is based on gradient boosting on decision trees. Therefore, before discussing
Gradient Boosting algorithms, Decision Trees are introduced.

Decision Trees are hierarchical structures where each internal node has a con-
dition which is evaluated when an example is being classified [8]. Based on the
outcome, the example is sent either to the left or to the right child of the node. The
process is repeated until a leaf node is reached, and a prediction has been made
about the example’s class. Thus, decision making is organized hierarchically. A
binary classification tree categorizing a person as healthy or unhealthy is shown
in Figure 2.5. The algorithm finds the relationship between the response variable
and the predictors and expresses this relation in the form of a tree-structure. As
an example, if a person is over 30 years old and does not exercise a lot, it is clas-
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Figure 2.5: Example of Decision Tree model

sified as unhealthy. The model is trained by creating a top-down tree and then this
trained decision tree is used to classify and assign a category to new unseen data
examples.

Decision tree learning employs a divide and conquer strategy by conducting
a greedy search to identify the optimal split points within a tree. This process
of splitting is then repeated in a top-down, recursive manner until the data points
have been classified under specific class labels. In order to select at each node
the best attribute that will be used to split and classify data examples, one of the
most common methods is to rely on the information gain; however, the concept
of entropy needs to be introduced first. Entropy is a concept that stems from in-
formation theory, which measures the impurity of the sample values. It is defined
as:

H(X) = −
N∑
i=1

pi ∗ log2(pi) (2.2)

where i iterates through the possible categories and pi refers to the probabil-
ity of the category i; since our example refers to a binary classification, i = 2.
Entropy values ranges between 0 and 1. If all the samples in the dataset, X, refer
to one category, then the entropy will be equal to zero and the uncertainty will be
the lowest possible; conversely, if half of the samples belong to one category and
the other half to the second category, then the entropy will be 1, i.e. the highest
possible.
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Table 2.3: Example of dataset. The last column indicates the target variable

Age Exercise Eat Pizza Healthy
40 Yes Yes Yes
50 No Yes No
20 Yes No Yes
25 No No Yes
23 No Yes No

Information gain can now be represented as the entropy difference before and
after a split on a given attribute. The attribute that is associated with the highest
information gain (i.e. that reduces the entropy the most) will be selected as the
best split in a particular node of the tree, since it indicates the split that will best
classify the training data according to the target classification. More formally,
information gain is usually defined as:

IG(X, a) = H(X)–H(X|a) (2.3)

where H(X) is is the entropy for the dataset before splitting (i.e. it is the
entropy associated with the parent node), and H(X|a) is the conditional entropy
for the dataset after splitting leveraging the attribute a (i.e. it is the entropy as-
sociated with the child nodes). In the following, we provide a concrete exam-
ple showing how information gain is calculated given the sample dataset in Ta-
ble 2.3. The last column, indicating whether a person is classified as healthy
or unhealthy, is the target variable. Here, the entropy is 0.97; it can be calcu-
lated by finding the proportion of healthy people, which is 3/5, and the propor-
tion of unhealthy people, which is 2/5. Applying the entropy formula we obtain
H(Healthy) = −((3/5)log2(3/5) + (2/5)log2(2/5)) = 0.97. We can then com-
pute the information gain for each of the attributes individually. As an example,
the information gain obtained by splitting on the attribute “Exercise” would be the
following: IG(Healthy, Exercise) = (0.97)−(2/5)∗(0)–(3/5)∗(0.91) = 0.42,
where 2/5 and 3/5 represent the proportion of values where Exercise=yes and Ex-
ercise=no, respectively. 0 represents the entropy when Exercise=yes, while 0.91
is the entropy when Exercise=No. After computing the information gain for all
the attributes, the attribute associated with the higher information gain will be
selected.

Ideally, the leaf nodes should be homogeneous in the dependant variable, i.e.
each leaf node should contain examples related to exactly one category. How-
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ever, if the size of the tree grows considerably, this usually results in too little data
points falling within a given subtree; this problem is known as data fragmenta-
tion, and it can often lead to overfitting, which is the impossibility to generalize
predictions also for new unseen data points. As a result, it is usually preferrable to
have small decision trees; in order to reduce the complexity and prevent overfit-
ting, pruning is usually employed, since it removes branches that split on features
with low importance.

Gradient Boosting Trees (Catboost)

Gradient boosting is a machine learning technique that belongs to the family of
ensemble learning methods. Typically, in ensemble methods, multiple base (or
”weak”) learners are trained for the same task, and the predictions are then com-
bined together in order to obtain the final prediction. In gradient boosting, pre-
dictions from base learners are combined by following a gradient learning strat-
egy [34]. The main difference with other ensemble methods, such as Random
Forest [9], is that instead of having parallel weak learners trying to give a predic-
tion for the assigned task, the learners are built in a sequential manner. A base
learner is firstly fit to the whole space of data; afterwards, each subsequent learner
is trained to correct the errors of the previous one. In particular, in each iteration,
the residuals (the differences between the predicted and the target values) are cal-
culated and the next learner is fitted on these residuals, resulting in a boosted
version of the previous model. This process is repeated until some stopping cri-
terion is reached. Finally, the output of the gradient boosting model is a kind of
weighted mean of the individual predictions of each base learner. Decision trees
are typically selected as base learners [108].

To give a better intuition, we illustrate in Figure 2.6 the general idea behind
gradient boosting. Let us suppose that we aim to learn a function that is able to
divide the ”+” symbols from the ”-” symbols; however, instead of leveraging a
unique ”strong” learner, we rely on multiple ”weak” learners, which are able to
divide the plane only by drawing vertical or horizontal lines. In box 1, it can
be seen that the first learner, D1, divides the plane by drawing a vertical line,
correctly classifying the ”+” on the left and the ”-” on the right. The three ”+”
on the right side of the line are instead not correctly classified; therefore, more
weight will be assigned to them, as it can be seen by the larger size assigned to
them in box 2. At this point, the second classifier, D2, draws another vertical
line. This time, the two ”-” on the right and the five ”+” on the left are correctly



2.2 Machine Learning 21

Figure 2.6: Example of a Gradient Boosting model

classified; conversely, the three ”-” on the left side are not correctly classified, and
more weight will be given to them in box 3. Finally, the third classifier, D3, draws
an horizontal line in box 3, correctly classifying the ”+” above and the ”-” below.
As it can be seen, each classifier is predicting by giving more attention to the
errors of the previous classifier, but none of them is able to solve the task alone.
However, when they are combined together, the task can be correctly solved, as it
can be seen in box 4.

In this thesis, as one of the primary prediction algorithms, we rely on Cat-
boost [20], which is a high-performance open source framework for Gradient
Boosting on Decision Trees. It is backed by solid theoretical results that explain
how strong predictors can be built by iteratively combining weaker models (base
predictors) in a greedy manner and it outperforms and solves limitations of cur-
rent state-of-the-art implementations of gradient boosted decision trees. Catboost
performs at each iteration t a random permutation of the features and a tree is con-
structed on the basis of it. Moreover, for each split of a tree, Catboost combines
(concatenates) all categorical features (and their combinations) already used for
previous splits in the current tree with all categorical features in the dataset.

Neural Networks

Before discussing deep neural networks models that have been adopted in this
thesis, neural networks must be introduced first. A neural network consists of a
set of nodes (also called neurons). Figure 2.7 illustrates an example of a neural
network node. The equation of a neural network node can be expressed as:
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Figure 2.7: Example of a Neural Network node

N∑
i=1

wixi + b (2.4)

Here, each node receives n inputs xi, wi represents the weight assigned to the
input xi and b is the bias term. The result is then passed to a non-linear acti-
vation function ϕ, which produces the output of the neural network cell. Sev-
eral activation functions can be adopted. Common adopted activation functions
are the sigmoid, the tanh and the rectified linear unit (Relu) activation func-
tions, which are represented by sigmoid(x) = 1

1+e−x , tanh(x) = ex−e−x

ex+e−x and
relu(x) = max(0, x), respectively. In this thesis, we relied on the Relu function,
which is proven to better model the non-linear relationships between the input
and output variables [29].

The nodes are connected into a network using edges between them. Specifi-
cally, a network consists of several layers of nodes, namely the input layer, one
or several middle hidden layers and the output layer. A network is activated after
receiving input data; afterwards, the output of the input layer constitutes the input
of the first hidden layer; this procedure is repeated until the final output layer is
reached and the output ŷ is produced. The weights wi and the bias term b are
learned iteratively during the training of the neural network using an optimization
algorithm to minimize a loss function L(ŷ, y), which measures the difference be-
tween the predicted output and the actual output. In particular, the weights and
the bias are typically learned using the backpropagation algorithm [85]. In a nut-
shell, during the forward pass, given n inputs xi, the output is propagated until
the final prediction ŷ is produced. This value is then compared with the expected
target value y (also defined ground truth), and the error is calculated based on the
defined loss function L. During the backward pass, this error is then used in order
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Figure 2.8: Example of a Recurrent Neural Network

to adjust the weights through gradient-based optimization.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a special type of neural networks where
the connections between neurons form a directed cycle. In fact, unlike traditional
neural networks, RNNs have a feedback loop that allows them to take into ac-
count not only the current input, but also previous inputs and their context. This
feedback loop enables RNNs to maintain an internal state, or ”memory”, that al-
lows them to model temporal dependencies and patterns in the input data. RNNs
can be unfolded, as shown in Figure 2.8. RNNs can take as input sequences with
a variable length; after unfolding, each step is referred to as a time step, where xt
represents one element of the sequence and it is the input at time step t. ht is the
hidden state at time step t and serves as a summary of the information extracted
from previous time steps. The hidden state h is updated with information of the
new input xt after each time step: ht = ϕ(Uxt+Wht−1), where ϕ is the activation
function and U and W are vectors of weights that are applied to the new input and
to the previous state, respectively. ot is the output at step t and V is the vector of
weights that is applied to the output.

Long Short-Term Memory Networks

One limitation of standard RNNs is the ”vanishing gradient” problem, which
causes RNN to perform rather poorly on longer temporal dependencies. As a
result, it is difficult for the network to learn long-term dependencies, and the in-
put at the beginning of the sequence may not affect the output at the end. A
LSTM network [36] is a special type of recurrent neural network architecture that
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is designed to address the problem of vanishing gradients. In this thesis, LSTM
networks have been considered when evaluating different predictive monitoring
frameworks, since the literature has shown that they are among the most suitable
methods for predictive business monitoring (cf. Section 3.2).

The main distinction between a regular RNN and a LSTM is that the latter has
a more complex memory cell Ct. Here, the amount of information that should
be retained in the cell state Ct is controlled via several control gates, which take
into consideration both the current input xt and the previous hidden state ht−1. In
particular:

it = sigmoid(Wi ∗ [ht−1, xt] + bi)

ft = sigmoid(Wf ∗ [ht−1, xt] + bf )

C̃t = tanh(WC ∗ [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

(2.5)

Here, it represents the input gate, which controls the amount of information re-
lated to the new input that should be added to the state cell. As already mentioned,
it considers the previous hidden state (ht−1) and the current input (xt) as inputs
and applies a linear transformation using the vector of weights Wi and the bias
bi (please note that in all the formulas illustrated above and hereafter described,
the vectors of weights W the biases b are both learned during the training phase).
The result is then passed through the sigmoid activation function to obtain a value
between 0 and 1. In a similar way, ft represents the forget gate, which determines
how much of the previous cell state should be retained. C̃t is the candidate cell
state, which represents the new information that should be added to the cell state.
Finally, we can illustrate the cell state Ct, which is the memory unit in charge of
storing the information from previous time steps. Ct is updated by considering
two elements. The first is ft ∗ Ct−1, where the forget gate controls the amount of
information of the previous state cell Ct−1 that should be considered. We recall
that the forget gate ft values ranges between 0 and 1, where 0 and 1 indicate that
the information from the previous state cell should not or should be considered,
respectively. The second element that updates the state cell is it ∗ C̃t, where it,
similarly to ft, controls the amount of information related to the new candidate
cell state that should be saved to the state cell. Finally, the information of the state
cell Ct will be propagated to the output ht based on the activation of the output
gate ot:
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ot = sigmoid(Wo ∗ [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)
(2.6)

Graph Neural Networks

Graph Neural Networks (GNNs) are a type of neural network that is designed to
operate on graph data structures, which are used to represent complex relation-
ships between entities. A graph is a data structure that consists of a finite set of
nodes and a set of edges connecting them. Formally, graphs, nodes and edges are
defined as follows:

Definition 2.2.1 (Graph, Node, Edge). A graph G is a two-element tuple (V,EM),
where V is the set of nodes and EM is the set of edges. A node v ∈ V is repre-
sented by a single value, and a set of node features can be assigned to it. An edge
ê is a tuple (v, v′) ∈ V × V , and a set of edge features can be assigned to it.

Graphs can be used to solve real-life problems that involve representing the
problem space as a network. As an example, let us suppose that we want to seg-
ment the users of a social network (Figure 2.9); we can model this problem by
representing a single user as a node, with the edges between the nodes highlight-
ing their social connection with other users of the social network. Furthermore,
each node can contain information about the users, such as the name, the gender,
and other sensitive data. In this example, the graph is defined undirected, since
the nodes are connected by edges that are all bidirectional. Conversely, in di-
rected graphs, the nodes are connected only by directed edges. In this thesis, we
rely on directed graphs, since we assume a temporal ordering between the events
of a business case (more details will be provided in Section 5.3.4).

Figure 2.10 illustrates three different types of prediction tasks on graphs:
node-level, edge-level and graph-level prediction tasks [118]. Node-level tasks
are concerned with either classifying each node or assigning a value to each node
within a graph. With node-level tasks, we may want to divide nodes into distinct
classes based on common properties, grouping together similar nodes. With edge-
level tasks, the objective is to predict whether or not there is an edge between two
or more nodes in a graph. As an example, in a typical recommender system,
where the nodes represent the users and the items while the edges represent the
user-item interaction, we may want to recommend items that users might like. Fi-
nally, in a graph-level task, our goal is to predict the property of an entire graph.
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Figure 2.9: Graph illustrating a social network, where the nodes represent the
users and the edges the social connections between the users

Figure 2.10: Different types of prediction tasks on graphs

As an example, given a graph representing the structure of a molecule (where the
nodes represent the atoms and the edges the chemical bonds between the atoms),
we may want to classify the smell of the molecule.

In order to train a graph neural network, a message-passing technique is ap-
plied. Initially, the embeddings of the nodes are initialized with the input feature
vectors xv, i.e. h(0)v = xv,∀v ∈ V , where h(0)v is the hidden representation of a
node. Afterwards, the message passing operation consists in iteratively updating
the previous hidden representation vector hv of each node v by aggregating mes-
sages M (n)

N(v) from the neighboring nodes N(v) of node v based on some pooling
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strategy (such as Max, Mean, etc.); here, n represents the nth step of the mes-
sage passing. The message passing aggregation and update operations can then
be summarized as:

M
(n)
N(v) = Aggregate(h

(n)
v′ ,∀v

′ ∈ N(v))

h(n+1)
v = Update(h(n)v ,M

(n)
N(v))

(2.7)

Here, the Aggregate function takes the set of representations (embeddings) of
the neighboring nodes N(v) of node v and creates a message M (n)

N(v) based on the
aggregated neighbourhood information at nth iteration. The Update function then
combines the message M (n)

N(v) with prior embedding h(n)v of node v to produce the

updated embedding h(n+1)
v .

More formally, the message passing function illustrated in Equation 2.7 can
be also represented as:

h(n+1)
v = ϕ

W (n+1)
v h(n)v +

∑
v∈N(v)

W (n+1)
v h(n)v + b(n+1)

 (2.8)

where ϕ is the non-linear activation function, W (n+1)
v are the trainable parameter

matrices of the node v and its neighboring nodes N(v) and b(n+1) is the bias term.

2.3 Explainability in Machine Learning

The training of machine- and deep-learning models for predictive process ana-
lytics are typically based on black-box models (e.g. neural networks), which are
proven to be more accurate, compared to those based on explicit rules (e.g. classi-
fication/regression trees). For instance, in this thesis, Catboost, LSTM, and graph
neural networks have been employed.

While the priority remains on giving accurate predictions, users need to be
provided with an explanation of the reasons why a given process execution is
predicted to behave in a certain way. Black-box models fail to achieve this goal.
Previous studies have shown that a necessary condition to build trust is to ex-
plain the reason of the provided predictions; otherwise, users would not trust the
predictive-monitoring technology, and hence, adopt it [21, 72].
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Therefore, it has become more and more evident that conventional perfor-
mance measures of predictive models, such as accuracy or F-score, are insuffi-
cient, and model interpretability/explainability needs to be incorporated into this
assessment [98]. Section 2.3.1 summarizes the main strategies for Explainable
AI, while Section 2.3.2 details the idea behind Shapley values, which have been
leveraged in this thesis for explaining predictive models.

2.3.1 Review of Explainable AI techniques

In the last years, two main strategies have been proposed in order to address the
problem of explaining the outcome of predictive models. The first group of re-
search proposals focuses on directly designing a transparent classifier that solves
the same classification problem. This principle is known as “Transparent Box De-
sign” problem [31] and is often solved by means of interpretable predictors based
on extracted rule sets [119, 126]. These models are naturally interpretable; ex-
amples are linear regression, logistic regression and decision trees models, from
which decision rules can be easily extracted. However, these models often have
a significantly lower predictive accuracy. This category also includes attention-
based models, which are more accurate and can also provide an underlying mech-
anism for interpretability [92]. Since these models require the computation of a
distribution of weights over inputs, the attention weights can provide some in-
sights to a decision-maker of why a certain prediction was computed by means
of not manipulating directly the input features, but rather by manipulating the
distribution of weights, which are associated to the input [92].

The second group of research proposals focuses on explaining how the model
makes certain predictions. To this end, reverse engineering is typically exploited
to understand the black box model. These approaches are also known as post-hoc
explainability, and they provide interpretations based on natural language expla-
nations, visualizations or by examples. Thus, we can separate two processes – de-
cision making (prediction) and decision explaining. Post-hoc interpretations are
also most suitable to provide intuition for complex non-transparent models, such
as deep neural networks. Multiple strategies have been proposed for post-hoc
explainability of black box models. Firstly, model explanation methods seek to
provide globally explainable models that are able to mimic the behavior of black
boxes and that are also understandable by humans. These methods adopt decision
trees, sets of rules and linear models as comprehensible global predictors [40].
For example, neural networks can be approximated with decision trees [48] or
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symbolic rules [127]. Secondly, outcome explanation methods provide a locally
explainable model that is able to explain the prediction of the black box in under-
standable terms for humans for a specific instance or record. In other words, rather
than explaining the entire model, the focus is on explaining individual predictions.
An example is the Local Interpretable Model-agnostic Explanations (LIME) ap-
proach [81], which uses local approximations based on generated random samples
near the sample for which the prediction needs to be explained. In the context of
image and text analysis, a common approach to explain why neural networks pre-
dict a certain outcome is based on designing saliency masks that visually highlight
the determining aspects of the analyzed record [96]. Finally, model inspection
methods aim to provide a textual or visual representation for understanding some
specific property of a black box model or of its predictions. Common properties
of interest include sensitivity to attribute changes, and identification of compo-
nents of the black box (e.g., neurons in a neural network) responsible for specific
decisions.

2.3.2 The Theory of Shapley Values

The Shapley Values [93] is a game theory approach to fairly distribute the payout
among the players that have collaborated in a cooperative game. This theory can
be adapted as an approach to explain a predictive model. In this context, the
assumption is that the game is the prediction task, the features from an instance
correspond to the players, and the payout is the difference between the prediction
made by the predictive model and the average prediction (also called base value).

To give a better intuition about how the algorithm works, let us suppose as an
example that we want to predict if a patient will be affected by lung cancer. Figure
2.11a reports on the predicted probability to develop lung cancer for a 65 years
old woman that usually smokes but also practices physical activity on a daily
basis. The predicted probability can range between 0 and 1. These values can
be interpreted as percentages (from 0% to 100%); in the following example, for
readability purposes, we will refer to the predicted probabilities as percentages.
Here, the probability is estimated as 40% (compared to an average prediction of
10%), and the objective is to find out how much has each feature value contributed
to the prediction compared to the average prediction. The answer could be that
the feature sex=woman contributed -20%, age=65 contributed +30%, sporty=yes
contributed -40% and smoke=yes contributed +60%. The contributions add up to
+30%, which is the result of the final prediction (40%) minus the average pre-
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(a) Predicted probability to develop lung cancer for a 65 years old woman
that usually smokes but also practices physical activity on a daily basis.

(b) Predicted probability to develop lung cancer for a 65 years old
woman that does not smoke and practices physical activity on a daily
basis.

Figure 2.11: Predicted probability to develop lung cancer under different condi-
tions

dicted probability (10%).

The Shapley value, which can be defined as the amount of contribution of the
feature value to the model prediction [68], is calculated as the average marginal
contribution of a feature value across all possible coalitions. In the following,
we explain how a Shapley Value is calculated for one feature. Let us suppose
that we want to discover the marginal contribution of the feature smoke=yes.
This can be done by discovering the contribution when this feature is added to
a coalition of sex=woman, age=65 and sporty=yes; therefore, the first step is to
remove smoke=yes from the coalition and replacing it with another value of the
smoke feature taken from the dataset (for example smoke=no). Now the pre-
dicted probability to develop lung cancer for the coalition sex=woman, age=65
and sporty=yes, which is reported in Figure 2.11b, is 5%. This means that the
contribution of adding the feature smoke=yes is 40% - 5% = 35%. In order to get
a better estimation of the influence of this feature value, we need to repeat this
computation for all possible coalitions. The Shapley value is the average of all
the marginal contributions to all possible coalitions. In this example, the possible
combinations of feature values that are needed to determine the Shapley value for
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smoke=yes are:

• No feature values

• Sex=Woman

• Age=65

• Sporty=yes

• Sex=Woman ∧ Age=65

• Sex=Woman ∧ Sporty=yes

• Age=65 ∧ Sporty=yes

• Sex=Woman ∧ Age=65 ∧ Sporty=yes

For each of these coalitions we compute the predicted cancer probability
with and without the feature value smoke=yes and take the difference to get the
marginal contribution. The Shapley value is the (weighted) average of marginal
contributions.

More formally, given a prediction model, the Shapley Value of a feature can
be defined as:

Definition 2.3.1 (Shapley Value). Let F = {f1, . . . , fm} be a set of features
defined over the domain X1 × . . . × Xn. Let’s consider a prediction model Φ :

X1 × . . . × Xn → Y . The Shapley value for feature fi which assumes value
xi ∈ Xi is defined as:

ψi =
∑

F ′⊆F\{fi}
|F ′|!(m−|F ′|−1)!

m!
(val (F ′ ∪ {fi})− val(F ′))

where val(F ′) is the so-called payout for only using the set of feature values in
F ′ ⊂ F in making the prediction.

Intuitively, the formula in Definition 2.3.1 evaluates the effect of incorporating
the value xi ∈ Xi of the feature fi into any possible subset of the feature values
considered for prediction. In the equation, set F runs over all possible subsets
of feature values, the term val (F ′ ∪ {fi})− val(F ′) corresponds to the marginal
value of adding the feature fi which assumes value xi in the prediction using only
the set of feature values in F , and the term |F ′|!(m−|F ′|−1)!

m!
corresponds to all the

possible permutations with subset size |F ′|, to weight different sets in the formula.
This way, all possible subsets of attributes are considered, and the corresponding
effect is used to compute the Shapley Value of xi.
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2.4 Predictive Analytics

This section illustrates how machine learning models can be leveraged for pre-
dictive process analytics. In literature, predictive analytics aims to estimate the
future KPI values of the running cases. Here, we aim to be generic, meaning that
KPIs can be of any nature:4

Definition 2.4.1 (KPI). Let E be the universe of events defined over a set AN
of attributes. Let WK be the domain of the KPI values. A KPI is a function
K : E∗×N ̸→ WK such that, given a trace σ ∈ E∗ of an event log and an integer
index i ≤ |σ|, K(σ, i) returns the KPI value of σ after the occurrence of the first i
events.

Since our goal is to estimate (and ultimately optimize) a KPI, depending on
the business requirements and on the KPI’s type, we define =K as follows: given
two values a, b ∈ R, we refer to a =K b meaning that a is better than b for K’s
definition. Note that our KPI definition assumes it to be computed a posteriori,
when the execution is completed and leaves a complete trail as a certain trace σ.
In many cases, the KPI value is updated after each activity execution, which is
recorded as next event in trace; however, other times, this is only known after the
completion. We aim to be generic and account for all relevant cases. Given a
trace σ = ⟨e1, . . . , en⟩ that records a complete process execution, the following
are three potential KPI definitions:

Remaining Time. Kremaining(σ, i) is equal to the difference between the times-
tamp of en and that of ei.

Total Time. Given a trace σ of n events, Ktotal(σ, n) measures the difference
between the timestamp of the last event of the trace and the timestamp of
the first event (i.e., πtime(en)− πtime(e1)).

Activity Occurrence. It measures whether a certain activity is going to eventu-
ally occur in the future, such as an activity Open Loan in a loan-application
process. The corresponding KPI definition for the occurrence of an activ-
ity act is Koccur act(σ, i), which is equal to true if activity act occurs in
⟨ei+1, . . . , en⟩ and i < n; otherwise false.

Customer Satisfaction. This is the typical KPI to analyze the customer jour-
ney [107]. Let us assume, without losing generality, to have a trace σ =

4Given a sequence X , |X| indicates the length of X .
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⟨e1, . . . , en⟩ where the satisfaction is known at the end, e.g. through a ques-
tionnaire. Assuming the satisfaction level is recorded with the last event -
say en(sat) - then, Kcust satisf (σ, i) = en(sat).

The following definition states the prediction problem:

Definition 2.4.2 (The Prediction Problem). Let L be an event log that records the
execution of a given process, for which a KPI K is defined. Let σ = ⟨e1, . . . , ek⟩ be
the trace of a running case, which eventually will complete as σT = ⟨e1, . . . , ek,
ek+1 . . . , en⟩. The prediction problem can be formulated as forecasting the value
of K(σT , i) for all k < i ≤ n.

Predictive process analytics falls into the problem of supervised learning that
aims to learn the model from a training set, for which the values of the dependent
variables are known, whereas the value of an independent variable needs to be
predicted. Training sets are composed by pairs (x, y) ∈ X×Y where X represents
the independent variables (also known as features) with their values, and Y is the
value observed for the dependent variable (i.e. the value to predict).

Predictive process analytics requires a KPI definition K to be specified (cf.
Definition 2.4.1). The dependent variable Y takes on a value from the domain of
possible KPI values, which corresponds to the image of K: namely Y = img(K).
Conversely, the characteristics and nature of X depends on the AI technique that
is used for prediction. In abstract terms, each prediction technique requires the
definition of the domain X and, a trace-to-instance encoding function ρ : E∗ →
X , which maps each (prefix of a) trace σ in an element ρ(σ) ∈ X .

The prediction model is trained off-line via a dataset D that is created from
an event log L as follows. Each prefix σ′ of each each trace σ ∈ L generates one
distinct item in D consisting of a pair (x, y) ∈ (X × Y) where x = ρ(σ′) and
y = K(σ, |σ′|), where y is the value of the KPI K evaluated over the prefix σ′ of
the trace σ. Once the dataset item of every trace prefix is created, the model is
trained. The resulting prediction model (a.k.a. predictor) can be abstracted as an
oracle function ΦD : X → Y .

The on-line phase aim is to predict the KPI of interest for a set of running
cases of the process, identified by a set L′ of partial traces (i.e., a log). It relies on
the process predictor ΦD: for each σ′ ∈ L′, the predicted KPI value of the process
instance identified by σ′ is ΦD(ρ(σ

′)).
The definition of the trace-to-instance encoding function requires the interme-

diate concept of an event-to-tuple function ζL : E → A × T × (AV )|AN |, which
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encodes each event of the event log L, whereAN is the set of attributes defined in
the event log L. Depending on the prediction model, different encodings are pos-
sible. In this thesis, the oracle function ΦD has been learnt differently depending
on the adopted predictive model. Section 2.4.1 illustrates the sequence encod-
ing adopted for Catboost, while Section 2.4.2 describes the sequence encoding
adopted for LSTM models.

2.4.1 Sequence encoding for the Catboost model

In the domain of Catboost learning, X (the independent variables) consists of a
tuple with a certain number n of dimensions, i.e. X = (Rn). The event-to-tuple
encoding function ζL : E → Rn is defined as follows: given an event e in L,
ζL = πact(e)

⊕
v∈AN

[πvmap(e)]
5, where ⊕ denotes the concatenation of two tuples.6

Moreover, since the final outcome of the process may be influenced by the
previously occurred events, it could be important to also take into consideration
the history of the process. Therefore, the function ρ is defined differently de-
pending on the number of past events considered. Given a trace ⟨e1, . . . , em⟩ and
a number 0 ≤ k < m of past events considered, we define ρk(⟨e1, . . . , em⟩) =

⟨ζ(em−k)
⊕

. . .
⊕

ζ(em)⟩, where 1 ≤ k < m represents the number of latest
events to be considered. The parameter k can be optimized depending on the
dataset using hyper-parameter optimization techniques; an example of applica-
tion will be discussed in Chapter 3. Note that, if k = 0, only the last occurred
event is used.

Alternatively, an aggregated history of each trace σ can also be considered,
encoding the number of times that each activity has been performed in σ. To this
aim, we define a function ρaggrL (⟨e1, . . . , em⟩); here, for each activity act ∈ A,
one dimension exists in ρaggrL (σ) : E∗ → (N)|A| that takes on a value equal
to the number of events e ∈ σ that refers to act, i.e., such that πact(e) = act.
The function ρL, supposing that k = 0, is then defined as: ρL(⟨e1, . . . , em⟩) =

ρaggrL (⟨e1, . . . , em⟩)
⊕

ζL(em).

5To keep the explanation simple, we assume that the enumerations of all variables v in AN are
always returned consistently as if there is a total order among the variables (e.g., the alphabetical
order).

6Considering
⊕

as the concatenation of vectors e.g. [1, 3,′ request created′]
⊕

[2, T rue] =

[1, 3,′ request created′, 2, T rue]
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2.4.2 Sequence encoding for LSTM networks

Let us recall the intermediate concept of an event-to-tuple function ζL : E →
A × T × (AV )|AN |, which encodes each event of the event log L; in the LSTM
learning domain, each numerical and boolean attribute a becomes one feature,
element of tuple ζL(e). Each literal attribute a is instead represented through
the so-called one-hot encoding: one different dimension exists for each value
v ∈ WAN(a), and the dimension referring to value e(a) takes on value 1, with the
other dimensions be assigned value 0.

Here, X consists of sequences of tuples with a certain number n of dimen-
sions, i.e., X = (Rn)∗.7 Function ρ is then defined as ρ(⟨e1, . . . , em⟩) = [ζ(e1),

. . . , ζ(em)].

7In literature, LSTMs are often trained based on matrices. However, a sequence of m vectors
in Rn can be seen, in fact, as a matrix in Rn×m. We use here the data set representation as vectors
to simplify the formalization.
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Chapter 3

Evaluation of Different Models for
Predictive Process Analytics

Predictive Process Analytics is becoming an essential aid for orga-
nizations, providing online operational support of their processes. It
aims to monitor the running instances of a given process and to alert
on those that risk to not meet the desired outcome, such as taking too
long, costing too much, not sufficiently satisfying customers. Predic-
tive process analytics techniques are typically based on machine- or
deep-Learning models that are trained over process’ event data.

This chapter reports on the results of the empirical evaluation of our
predictive monitoring framework. We acknowledge that a large share
of the novelty lays on providing predictions with explanations of the
factors that influence them; however, it is also important to report on
the quality of the predictions, to illustrate that the explanations are
based on high-quality predictions.

3.1 Motivation

Predictive Process Analytics is becoming an essential aid for organizations, pro-
viding online operational support of their processes. It aims to overcome the lim-
itations of traditional monitoring practices by using data produced during process
execution to continuously monitor processes performance; in particular, it aims
to monitor the running instances of a given process and to alert on those that risk
to not meet the desired outcome. Therefore, the goal of predictive process analyt-

37
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ics is to identify future trends, and discover potential issues and anomalies in the
process before they occur, allowing organizations to take proactive measures to
prevent them from happening, optimizing the overall performance of the process.

Predictive process analytics techniques are typically based on machine- or
deep learning models that are trained over historical process’ event data. In this
chapter, we perform an analysis of the state of the art of predictive analytics tech-
niques, which revealed that Long Short-Term Memory networks are among the
most leveraged models, since they generally outperform other methods. However,
since in production environments also the time is an important constraint, we also
evaluated alternative models that could be trained in a shorter amount of time,
such as Catboost, which was also proposed by other research works in the process
management domain. Therefore, this chapter reports on the empirical evaluation
of the quality of the predictions produced by LSTM and Catboost models; the
experiments conducted on 6 datasets and 17 different KPIs highlighted that Cat-
boost not only can be trained in a shorter amount of time, but it can also generally
outperform LSTM models.

We acknowledge that a large share of the novelty lays on providing explana-
tions for the given predictions, highlighting the factors that influenced the predic-
tive model. However, it is also important to report on the quality of the predic-
tions, to illustrate that the explanations are based on high-quality predictions. In
fact, while explainability is a necessary condition to build trust, also the predictive
accuracy must be taken into account; otherwise, users would not trust and adopt
the predictive-monitoring technology.

Section 3.2 summarizes the most relevant works in the field of predictive pro-
cess analytics. Section 3.3 provides details on the datasets that have been used
to assess the predictive accuracy of LSTM and Catboost models. Section 3.4
discusses the experimental setup and reports on the empirical evaluation of the
quality of the predictions produced. Finally, Section 3.5 concludes the chapter.

3.2 Related Works

This section reports on the state of the art of Predictive Process Monitoring tech-
niques. Note that predictive process analytics is also related to predictive main-
tenance [51, 59]. Predictive process analytics can actually be used to predict the
eventual defects of machines, and it is especially beneficial when these defects
are somewhat influenced by the activities that have previously been carried out
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through the machine.
The predictive-monitoring survey of Márquez et al. [63] reports on the large

repertoire of techniques and tools that were developed to address this problem.
In [47], an objective overview of state-of-the-art IoT developments is provided,
and it is observed that most researchers’ focus is on predicting the system’s future
state; however, little attention has been given to explaining the prediction values
to the users, which is necessary in order to convince the users to trust and adopt
the predictive-monitoring technology. Dinis et al. [19] propose a decision support
tool for maintenance capacity planning, addressing the problem of forecasting the
workload of future maintenance interventions. Conversely, Lughofer et al. [60]
propose a self-adaptive predictive algorithm that can effectively suggest modifica-
tions in the machine parameters in an online chip production process. However,
these works focus only on proposing an improved predictive algorithm, com-
pletely overlooking the aspect of explaining why certain predictions were given
to the user.

Predictive monitoring has been built on different machine and deep-learning
techniques, and also on their ensemble [63]. Different research works have re-
cently illustrated that Long Short-Term Memory networks generally outperform
other methods (see, e.g., [70, 73, 104]). However, since in production environ-
ments also the time is an important constraint, we wanted to leverage predictive
models that could be trained in a shorter amount of time. In particular, we decided
to rely on Catboost, which is a high-performance open source framework for gra-
dient boosting on decision trees [20] that showed competitive performances. In
fact, several research works in the domain of process management proposed to
adopt Catboost for predictive monitoring; in particular, Catboost was shown to
have a better accuracy compared to other types of classifiers in [125], where the
authors introduced an approach for predicting loan default in peer-to-peer money
lending processes, and in [30], where a comparison between different predictive
models in order to detect Non-Technical Losses (NTL) in power industries was
performed.

3.3 Datasets

For our assessment we used 6 real-life event logs, which are described below,
while the event-logs statistics are shown in Table 3.1.

• Bank Account Closure is a process executed at an Italian banking institu-
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Table 3.1: Event logs statistics

Event Log # traces # activities
mean

events/trace
median

events/trace
mean

duration
std deviation

duration
Bank Account Closure 32429 15 5.5 7 15.5 days 33 days

BPIC 2012 12369 23 14 8 7.9 days 11.7 days
BPIC 2012 - W 9658 6 7.5 6 11.4 days 12.7 days

BPIC 2013 7554 13 8.7 6 12.1 days 28.6 days
HelpDesk 2017 4580 14 4.7 4 40.9 days 8.4 days

Fine Management 125926 11 4 5 384 days 362 days

tion. The process deals with the closure of customer’s accounts, which may
be requested either by the customer or by the bank, for several reasons.

• BPI Challenge (BPIC) 20121 is a real-life log of a Dutch Financial Insti-
tute. It represents an application process for a personal loan or overdraft
within a global financing organization.

• BPIC 2012-W is the dataset derived from bpi12 challenge, and it represents
the subprocess containing only the states of the work items belonging to the
application.

• BPIC 20132 is a dataset extracted from Volvo IT Belgium incident man-
agement system.

• HelpDesk 20173 is a real-life log of SIAV s.p.a. company in Italy, and
represents instances of a ticketing process in the company helpdesk area.

• Road Traffic Fine Management Process4 is a real-life event log of an in-
formation system managing road traffic fines.

3.4 Experimental Setup & Assessment of the qual-
ity of the Predictions

The framework for predictive monitoring has been implemented in Python, using
Pandas to elaborate the data. For the LSTM implementation we relied on the

1http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
2http://dx.doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
3https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
4http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
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Keras framework and we built an implementation based on the work done by
Navarin et al. [70]. In particular, as learning algorithm, we adopted ADAM with
Nesterov Momentum (NAdam) [22]. We also selected 200 training epochs with
a patience of 40, a learning rate of 0.001 and a batch size of 32. For the Catboost
implementation, instead, we leveraged the open source library available.5

We used two/thirds of the traces as training, and one third as test set. More-
over, in order to improve the quality of the trained models, we used hyperparame-
ter optimization, with 20% of the training data employed for this (validation set).
Therefore, the training set was used to fit the predictors using combinations of
hyperparameters, while the validation set was used to evaluate the performance
of each combination. For LSTM, in particular, we tested different network con-
figurations on the validation set, validating the number of LSTM neurons used
for each layer (which varied between 100 and 250), and the number of layers (1,
2 and 4), with a 20% dropout for each layer. For Catboost, conversely, 3 differ-
ent hyperparameters were tuned on the validation set: the number of trees used
(which varied between 1500, 3000 and 4000), the depth of each single tree (3, 6
and 10) and the number of past events to be considered in a partial trace when
predicting. In fact, as stated in Section 2.4, a particular encoding is needed in
tree-based models in order to include information about past events (i.e. the his-
tory of the partial trace); here, in the last observed event of the partial trace, for
every event-level attribute of each past event that previously occurred, a different
dimension (feature) is added. Therefore, since LSTM naturally leverages infor-
mation about past events, before proceeding to the comparison between Catboost
and LSTM, a preliminary study was necessary in order to understand how many
past events we should consider when predicting using the Catboost model. In par-
ticular, we focused on the scores obtained on the validation set; ideally, we should
take the number of events associated to the point with the lowest Mean Absolute
Error (MAE) (when predicting a numerical KPI) or associated to the point with
the highest F1 score (when predicting a boolean KPI). The number of considered
events varies from 0 (no information related to past events is used) to the average
number of events per case, which was observed considering all completed process
executions. Moreover, we also considered in our evaluations a different encoding
of the history of each partial trace σ called aggregated history (cf. Section 2.4).

Figure 3.1 shows how the trained model evaluates on the validation set when
an increasing number of events is considered for the remaining time prediction
in the datasets described in Section 3.3. The y-axis represents the MAE of the

5https://catboost.ai/
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predictive model on the validation set (i.e. the lower the better) and the scale is
expressed in hours for remaining time prediction. The blue line indicates the ac-
curacy obtained by the predicting model varying the number of historical events
considered, while the red dashed line is related to the quality of the predictions
obtained by the model leveraging only aggregated historical information. Includ-
ing historical information does not always improve the predictive quality of the
model. In particular, in Fine Management process (Figure 3.1a) and in BPIC 2013
(Figure 3.1b), it is beneficial to consider historical information when predicting
remaining time; here, compared to the situation where no previous events are
considered, considering also information about the two previously last occurred
events lowers the MAE by 200 and 40 hours, respectively. However, as shown
in Figures 3.1c, 3.1d, 3.1e and 3.1f, encoding historical information shows no or
very limited improvements in Bank Account Closure, HelpDesk, BPIC 2012 - W
and BPIC 2012 processes, respectively.

Figure 3.2 reports on the quality of the predictions when predicting whether or
not a given activity is going to eventually occur, when varying the number of past
events considered for prediction. The name of the activity to predict clearly varies
with the domain, and it is shown in Figure 3.2 in the legend. In particular, each
line represents a different boolean KPI that was considered in our analysis. The
values on the y-axis here indicate the F1 score (the higher the better). The results
highlight that the quality of the prediction of whether or not a certain activity
is going to occur is not increased if we consider features related to events that
precede the last. This is likely due to the fact that the last event is already a good
summary of the history. We also compared the scenario where we optimized the
number k of past events (cf. encoding function ρk in Section 2.4) and when the
aggregated history encoding function was used (cf. encoding function ρaggr in
Section 2.4). This is shown in Figure 3.3: the use of the aggregated history
shows no or limited improvement.

However, training and calculating the scores for each predictive model based
on a different configuration of considered past events is a heavy procedure (espe-
cially in production environments). Therefore, we elaborated a more lightweight
strategy; in particular, if the predictive quality does not improve (i.e. it is worse
compared to the previous configuration or it improves by a percentage lower than
1%) for two consecutive steps, we stop our research and we take the best pre-
dictive model that was observed until that moment. We then compared the two
approaches in order to understand if our heuristic was able to find an optimal ac-
curacy without trying all possible combinations, and we reported the results in
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(a) Fine Management process (b) BPIC 2013 process

(c) Bank Account Closure process (d) HelpDesk process

(e) BPIC 2012 - W process (f) BPIC 2012 process

Figure 3.1: Remaining time prediction accuracy for Catboost model when con-
sidering the history of the trace

Table 3.2, where we also highlight the comparison with the model that was not
leveraging historical information. The first two columns indicate the event log
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Figure 3.2: Activity occurrence prediction accuracy for Catboost model when
considering the history of the trace

and the considered KPI, while the last three columns show the results obtained by
Catboost models without considering history, considering the history according
to our heuristic and according to the complete procedure respectively. We recall
that when the KPI is numerical, then the scores represent the MAE (expressed
in days for Remaining Time prediction and in Euros for Total Cost prediction);
conversely, when the KPI is Boolean (Activity occurrence prediction), the scores
represent the F1. In the last two columns it is also reported the number of pre-
vious events considered by the predictive model that were found to have the best
predictive quality on the validation set. We can clearly see that in 11 cases out of
17 our heuristic approach found the same number of past events as the complete
procedure, with a similar predictive quality in other cases, showing that our ap-
proach can be used to find a good configuration but reducing the computational
time at the same moment. Moreover, in half of the cases, leveraging historical
information can help to achieve a slightly higher accuracy.

After discovering how many past events we should consider when predicting
using the Catboost model, we illustrate in Table 3.3 the comparison between the
Catboost model (shown in the last column) and the LSTM model (shown in the
second last column), which naturally leverages information about past events. As
it can be seen, for the KPIs with identifier 1, 2, 6, 10, 11, 14 and 15, which are
numerical KPIs, Catboost performs consistently better than LSTM. Moreover,
with the exception of the boolean KPIs 3,4 and 17, where LSTM shows a better
predictive accuracy, for the other boolean KPIs 5, 7, 8, 9, 12, 13 and 16 Catboost
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Figure 3.3: Comparison between the result obtained by Catboost with the optimal
amount of historical events and the result obtained considering only aggregated
historical information when predicting activity occurrence
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Table 3.2: Catboost predictive quality when leveraging historical information.
The scores represent the MAE when the KPI is numerical; conversely, when the
KPI is Boolean (Activity occurrence prediction), the scores represent the F1.

Event Log KPI Catboost
(no history)

Catboost
(heuristic)

Catboost
(complete)

Bank Account Closure Remaining Time (MAE) 4.18 4.20 (History: 3) 4.20 (History: 3)
Bank Account Closure Total Cost (MAE) 0.92 0.92 (History: aggr) 0.92 (History: aggr)
Bank Account Closure Activity Authorization Requested (F1) 0.95 0.96 (History: 1) 0.96 (History: 1)
Bank Account Closure Activity Pending Request for acquittance of heirs (F1) 0.88 0.88 (History: aggr) 0.88 (History: aggr)
Bank Account Closure Activity BO Adjustment Requested (F1) 0.66 0.66 (History: 0) 0.67 (History: 6)
BPIC 2012 Remaining Time (MAE) 6.61 6.56 (History: aggr) 6.53 (History: 4)
BPIC 2012 Activity A ACCEPTED (F1) 0.69 0.69 (History: 1) 0.70 (History: 3)
BPIC 2012 Activity A CANCELLED (F1) 0.55 0.56 (History: 1) 0.56 (History: 1)
BPIC 2012 Activity A DECLINED (F1) 0.56 0.56 (History: 0) 0.56 (History: 13)
BPIC 2012 - W Remaining Time (MAE) 7.38 7.36 (History: 1) 7.36 (History: 1)
BPIC 2013 Remaining Time (MAE) 9.74 9.58 (History: 2) 9.58 (History: 2)
BPIC 2013 Activity Push to front (2°/3° line) (F1) 0.87 0.87 (History: 0) 0.87 (History: 2)
BPIC 2013 Activity Wait User (F1) 0.69 0.69 (History: 0) 0.69 (History: 5)
HelpDesk Remaining Time (MAE) 5.27 5.27 (History: 0) 5.27 (History: 0)
Fine Management Remaining Time (MAE) 196.93 185.69 (History: 2) 185.69 (History: 2)
Fine Management Activity Send for Credit Collection (F1) 0.81 0.81 (History: aggr) 0.81 (History: aggr)
Fine Management Activity Send Appeal to Prefecture (F1) 0.43 0.37 (History: aggr) 0.37 (History: aggr)

Table 3.3: Predictive quality comparison between Catboost and LSTM. The
scores represent the MAE (expressed in days for Remaining Time prediction and
in Euros for Total Cost prediction) when the KPI is numerical; conversely, when
the KPI is Boolean (Activity occurrence prediction), the scores represent the F1.

ID Event Log KPI LSTM Catboost
1 Bank Account Closure Remaining Time (MAE) 4.37 4.18
2 Bank Account Closure Total Cost (MAE) 0.95 0.92
3 Bank Account Closure Activity Authorization Requested (F1) 0.99 0.96
4 Bank Account Closure Activity Pending Request for acquittance of heirs (F1) 0.90 0.88
5 Bank Account Closure Activity BO Adjustment Requested (F1) 0.65 0.67
6 BPIC 2012 Remaining Time (MAE) 6.66 6.53
7 BPIC 2012 Activity A ACCEPTED (F1) 0.60 0.70
8 BPIC 2012 Activity A CANCELLED (F1) 0.37 0.56
9 BPIC 2012 Activity A DECLINED (F1) 0.51 0.57
10 BPIC 2012 - W Remaining Time (MAE) 7.84 7.36
11 BPIC 2013 Remaining Time (MAE) 11.82 9.58
12 BPIC 2013 Activity Push to front (2°/3° line) (F1) 0.81 0.87
13 BPIC 2013 Activity Wait User (F1) 0.45 0.69
14 HelpDesk Remaining Time (MAE) 5.96 5.27
15 Fine Management Remaining Time (MAE) 233 185.69
16 Fine Management Activity Send for Credit Collection (F1) 0.77 0.81
17 Fine Management Activity Send Appeal to Prefecture (F1) 0.52 0.43

can generally outperform LSTM models. In the light of these results, we opted to
adopt Catboost, and to put LSTM models away. In the next chapter, explanations
will be also reported for our case studies using Catboost, only.
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3.5 Summary

In the recent years, organizations are exploiting opportunities to improve the per-
formance of their business processes; to this end, Predictive Process Analytics
is becoming an essential aid for organizations, allowing to monitor the running
instances of a given process and to alert on those that risk to not meet the desired
outcome. This allows discovering potential anomalies before they occur, allowing
organizations to take proactive measures to prevent them from happening.

A lot of research has been devoted towards increasingly accurate frameworks
for predictive process monitoring; in this chapter, we performed an analysis of
the state of the art of predictive analytics techniques, which revealed that Long
Short-Term Memory networks are among the most leveraged models, since they
generally outperform other methods. However, since in production environments
also the time is an important constraint, we also evaluated alternative models that
could be trained in a shorter amount of time, such as Catboost, which was also
proposed by other research works in the process management domain.

The high popularity of LSTM models in Predictive Business Process Ana-
lytics is due to the fact that it has always been considered crucial to take into
account the history of the process when predicting the outcome of a running pro-
cess instance, and LSTM models naturally leverage information about past events.
Therefore, before performing the comparison between Catboost and LSTM, a
preliminary study was necessary in order to understand how many past events
we should consider when predicting using Catboost. However, the experiments
conducted on six different datasets revealed that considering historical informa-
tion shows no or limited improvements in 4 datasets out of 6 when predicting the
remaining time, while the quality of the predictions when predicting whether or
not a certain activity is going to occur is not increased (or it is very marginally
increased) if we consider features related to events that precede the last in all the
datasets; therefore, considering the last event or the aggregated historical infor-
mation is in many cases already a good summary of the history. The comparison
performed in this chapter on the quality of the predictions produced by LSTM
and Catboost models on 6 processes and 17 different KPIs seems to confirm this
finding, since the experiments revealed that Catboost not only can be trained in a
shorter amount of time, but it can also generally outperform LSTM models.

We acknowledge that a large share of the novelty lays on providing explana-
tions for the given predictions, highlighting the factors that influenced the predic-
tive model. However, it is also important to report on the quality of the predic-
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tions, to illustrate that the explanations are based on high-quality predictions. In
fact, while explainability is a necessary condition to build trust, also the predictive
accuracy must be taken into account; otherwise, users would not trust and adopt
the predictive-monitoring technology.

In the next chapter, our aim is to explain the reasons why a given process
execution is predicted to behave in a certain way by leveraging on explainable
AI techniques, in order to enhance the trustability of the predictive-monitoring
technology.



Chapter 4

Explainable Predictive Process
Analytics

We mentioned in Chapter 3 that Predictive Process Analytics is be-
coming an essential aid for organizations, providing online opera-
tional support of their processes. However, process stakeholders need
to be provided with an explanation of the reasons why a given pro-
cess execution is predicted to behave in a certain way. Otherwise,
they will be unlikely to trust the predictive monitoring technology
and, hence, adopt it. In this chapter, the predictive analytics frame-
work described in Chapter 3 is equipped with explanation capabili-
ties based on the game theory of Shapley Values. The framework has
been implemented in the IBM Process Mining suite and commercial-
ized for business users. Furthermore, while in the previous chapter
we assessed the quality of the predictions, in this chapter we tested
the corresponding evaluations on real-life event data. In particu-
lar, a user evaluation has been performed in order to understand if
the explanations provided by the system were intelligible to process
stakeholders.

4.1 Motivation

Predictive process analytics techniques are typically based on Machine- or Deep-
Learning models that are trained over process’ event data (cf. Section 3.2 and
Chapter 3). However, the majority of these techniques are based on black-box
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models (e.g. neural networks), which are proven to be more accurate, compared
to those based on explicit rules (e.g. classification/regression trees), which tend to
be significantly less accurate.

While the priority remains on giving accurate predictions, users need to be
provided with an explanation of the reasons why a given process execution is
predicted to behave in a certain way. Black-box models fail to achieve this goal.
Previous studies have shown that a necessary condition to build trust is to ex-
plain the reason of the provided predictions; otherwise, users would not trust the
predictive-monitoring technology, and hence, adopt it [21, 72].

Therefore, it has become more and more evident that conventional perfor-
mance measures of predictive models, such as accuracy or F-score, are insuffi-
cient, and model interpretability/explainability needs to be incorporated into this
assessment [98]. Stierle et al. [100] report on the repertoire of techniques that have
been developed to address the problem of interpreting/explaining the predictive
process model. However, they claim that the explanation techniques should be
deployed in real-world tools, and should be also assessed with end-users.

In this chapter, we propose a process-monitoring framework that is also able
to explain any generic KPI, numerical or nominal, by proposing an explainable
framework based on the Shapley Values game theory approach, which can be
adapted to explain any predictive model. For the process-monitoring part, in light
of the results obtained after comparing Catboost and Long Short Term Mem-
ory (LSTM) networks (cf. Chapter 3), we decided to rely on Catboost, which
demonstrated comparable results with a drastically reduced model’s training time,
making it more suitable for production environments. After assessing the intel-
ligibility of the proposed explanation strategy with internal IBM stakeholders, a
user study was conducted, where several real and potential process analysts, from
academia and industry, were confronted with the implementation of the explain-
able predictive process analytics framework. In particular, the implementation of
the framework is not limited to be an academic proof-of-concept prototype, but
has been incorporated into a commercial tool, the IBM Process Mining, and made
available to the customers; in this way, it can be easily used also by business users
that do not have a technical knowledge, obtaining results in a few hours of auto-
matic computations, instead of running long analyses. Moreover, the user study
using a commercial tool provides further strength to validation of the explana-
tion’s understandability by process analysts.

Experiments were conducted on different benchmarks and on several real-life
datasets, with the aim of explaining the predictions of different outcome indica-
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tors (KPIs). The framework returns explanations at a global level, aiming to dis-
cover the principal factors driving the predictive model, but also at a local level
of each running process instance. The global-level and local-level explanations
were provided to 20 users to fulfill 18 tasks related to predictive process analytics:
the user study shows that the explanation framework can be understood by users
and provides valuable insights into the factors that affect predictions. The chapter
is organized as follows. Section 4.2 summarizes the most relevant works related
to Explainable AI in the BPM field, illustrating how our explainable framework
advances the current state of the art. Section 4.3 describes how Shapley Values
can be applied for explainable predictive monitoring, while Section 4.4 reports
on our framework for explainable predictive process monitoring. Section 4.5 de-
scribes the outcome of our explanation strategy applied on a real-world case study.
Section 4.6 provides an overview of the integration of the explainable predictive
process monitoring framework with the IBM process mining suite, while Sec-
tion 4.7 reports on the user evaluation conducted with process analysts. Finally,
Section 4.8 concludes the chapter.

4.2 Related Works

This section compares our framework with the literature. In particular, Section
4.2.1 discusses explainability approaches that have been applied to explain the
outcome of machine learning models, while Section 4.2.2 focuses on the appli-
cation of explainability techniques in the Business Process Monitoring (BPM)
field.

4.2.1 Explanation of Machine-Learning Models

Some approaches exist in the literature to explain machine learning models, arisen
from the need to understand complex black-box algorithms like ensembles of De-
cision Trees and Deep Learning [4, 61, 62, 65, 81, 94, 95, 102]. Conversely, other
approaches exist in the literature that are naturally explainable [6, 11, 117], but
these works do not really discuss the relevance and the quality of these explana-
tions.

The survey of Jagatheesaperumal et al. [42] provides an overview of appli-
cations and challenges related to Big Data and AI in Industry 4.0, highlighting
explainability as one of the main challenges in order to increase machine learning
models adoption in industry. The adoption of explanatory methods in industry is
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at an early stage; one of the most relevant works is by Rehse et al. [79], which
also aims at providing a dashboard to process participants with predictions and
their explanation. However, the paper does not provide sufficient details on the
actual usage of the explainable AI literature, and the very preliminary evaluation
is based on one single artificial process that consists of a sequence of five activ-
ities. Sachan et al. [86] apply a rule-based method in order to explain the chain
of events leading to a decision for a loan application, but the approach requires
the support of an expert’s domain knowledge and the evaluation is based on a
single business case study. In [95] an approach of fake news detection grounded
in explainability is introduced.

Some research works have started addressing the issue of guaranteeing that the
explanation plots provided to experts convey the information required to establish
causality between feature values and process outcomes. In this direction, anchors
[80] are a post-hoc explanation technique that yields if-then rules explaining the
behavior of the underlying model, together with an indication of the precision
and coverage of the rules. As far as we are aware, an approach customizing
anchors in the BPM domain is missing in the literature. However, in order to yield
meaningful results, anchors perturbation function needs to be explicitly designed
for each particular domain/use case and many scenarios require discretization as
otherwise results are too specific, have low coverage, and do not contribute to
understanding the model.

A significant amount of work in literature is focused on healthcare applica-
tions. We highlight the work of Lundberg et al. [62], which proposes an imple-
mentation of the Shapley Values in healthcare where the explanatory method is
used to prevent hypoxaemia during surgery, and the work of Meacham et al. [65],
where explainability is used for analysis of patience re-admittance. In [15], Shap-
ley Values are leveraged in order to validate the correctness of the predictive ap-
proach in a utility company. As already mentioned in Section 2.3, in this thesis
we relied on the SHapley Additive exPlanations (SHAP) implementation of the
Shapley values, which has the strong theoretical foundation of the original game
theory approach, with the advantage of providing offline explanations that are
consistent with the online explanations. Moreover, SHAP avoids the problems in
consistency seen in other explanatory approaches (e.g. the lack of robustness seen
in the online surrogate models [3]).
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4.2.2 Explanations in the BPM field

As already mentioned in Section 3.2, several works focused on predicting the
system’s future state or forecasting the workload of future maintenance interven-
tions [19, 47]. However, these works focus only on proposing an improved pre-
dictive algorithm, completely overlooking the aspect of explaining why certain
predictions were given to the user. These are in fact the problems tackled in this
chapter, so as to ensure that the predictive-monitoring system is trusted, and thus
used.

The need to incorporate interpretability in addition to conventional perfor-
mance measures (such as accuracy) when evaluating predictive models has been
strongly emerging [98] and several works have been focusing in comparing and
evaluating explanations produced by different frameworks [24, 25, 99, 114, 115].
We also highlight [58], whose focus is on stimulating and integrating human feed-
back into the model exploiting fuzzy rule-based systems; however, no assessment
of the intelligibility of the explanations is made.

The explainable survey of Stierle et al. [100] reports on the repertoire of tech-
niques that were developed to address this problem; however, it is observed that
the explanation techniques should be deployed in real-world tools, and should
be also assessed with end-users. Rizzi et al. [82] are among the first to inves-
tigate whether users actually understand the explanation plots returned by XAI
techniques in the context of Predictive Process Monitoring. In particular, they
investigated the intelligibility of several explanation plots, but only relying on
8 participants, and without employing a consolidated user-interface evaluation
methodology.

This chapter does not only propose a framework able to solve some state-of-
the-art current limitations, but also evaluates with process analysts (both from the
academia and the industry domains) if they actually understand and feel com-
fortable with the results returned by our explainable predictive monitoring frame-
work; moreover, the framework is also deployed in a real company, providing
business stakeholders with online operational support of their processes.

Breuker et al. [10] also try to tackle the problem, but their attempt is not in-
dependent of the actual technique employed for predictions; furthermore, their
explanations are only based on the activity names, while the explanations can
generally involve resources, time, and more (cf. the case studies reported in Sec-
tion 4.5). Hsieh et al. [38] and Huang et al. [39] apply a counterfactual approach,
which provides an understanding on what could have been done differently in
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order to achieve the desired outcome (e.g. having a loan approved), but their
approach focuses only on providing explanations for categorical KPIs. Rizzi et
al. [83] propose an approach based on LIME, but they can provide explanations
only for nominal KPIs and their main focus is on improving predictive model ac-
curacy rather than highlighting model drivers. Also Coma-Puig and Carmona [14]
proposed an approach based on LIME as a rule-based double-checking method to
discard high-scored customers with unreliable explanations; however, the authors
decided in a subsequent research work [15] to discard LIME in favour of SHAP
due to the well-known problems of robustness [3], because of the random com-
ponent of the algorithm but also the difficulty of having an optimal configuration.

The framework proposed in this chapter specializes the use of Shapley val-
ues to the problem of providing explanations for predictive analytics. Further-
more, the use of SHAP enabled us to provide explanations independently from the
leveraged predictive model (model agnostic), while model specific approaches are
specifically designed for certain model types; in particular, some approaches [32,
33,74,97,103,122,123] can provide explanations only for neural network models.
The study by [66] proposed to generate causal explanations for deep learning-
based process outcome predictions by using a global post-hoc explanation ap-
proach, called partial dependence plots (PDP); however, because PD plots only
show the global average marginal effects of the features, the effect of the features
with local heterogeneous effects (for example positively influencing the outcome
in half of the cases while negatively influencing the outcome in the other half)
might be hidden. Moreover, PDP tend to be hard to read when more than two
dimensions are used. Other works [4, 97] use attention mechanisms, which also
have the limitation that is linked to the lack of consensus that attention weights
are always correlated to feature importance. Using attention weights, especially
when complex encoders are used, is found questionable by [87], while [92] claim
that attention weights often fail in the task of finding the factors influencing the
model’s final decisions.

4.3 Explainable Predictions through Shapley Val-
ues for Catboost

In this thesis, we leverage the idea of using post-hoc explainability approaches to
explain the outcome of a black box model; in particular, for each running case, we
aim to return the set of attributes that influence its prediction the most, with the
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corresponding magnitude and with the indication whether the attributes increase
or decrease the predicted KPI’s value. Note that increasing the KPI value does not
necessarily have a positive connotation because higher values do not necessarily
mean better values. For instance, if the KPI is the process-instance cost, it is
usually desirable to reduce the value.

In the light of the above, for each trace σ, the problem can be stated as finding
a function T(σ,K) such that T(σ,K)(a, v) indicates how much the fact that a = v

influences the KPI prediction. The positive or negative sign of T (a, v) indicates
whether the influence is towards increasing or decreasing the KPI value.

Definition 4.3.1 (The Prediction-Explanation Problem). Let L be an event log
over a set AN of attributes, with domains WAN . Let σ = ⟨e1, . . . , ek⟩ be a run-
ning case with a KPI prediction K. Let be W = ∪a∈AN WAN(a). Explaining the
prediction is the problem of computing a function T(σ,K) : AN ×W ̸→ R defined
over a subset of attributes of AN that affects the prediction, where T(σ,K)(a, v) is
defined only if v ∈ WAN(a).

In this thesis, in order to explain the outcome of a black box model, we rely
on the SHAP implementation of the Shapley values [61], which explains the pre-
dictions by assuming that for every instance each feature value of the instance
is a player in a game where the prediction is the payout. It has the advantage
of providing offline explanations that are consistent with the online explanations,
and avoids the problems in consistency seen in other explanatory approaches (e.g.
the lack of robustness seen in the online surrogate models [3]); moreover, it can
provide explanations independently from the leveraged predictive model (model
agnostic), while model specific approaches are specifically designed for certain
model types. Section 2.3.2 introduced the theory of Shapley values, while this
chapter illustrates its application and adaptation for predictive process monitor-
ing.

While the proposed explainable predictive framework is independent of the
specific technique used for prediction, only explanations of predictions for the
Catboost method are reported. This choice is motivated by the fact that, as dis-
cussed in Chapter 3, Catboost is preferrable to LSTM for prediction, due to the
increased speed to build the model while keeping a better accuracy. Moreover,
when comparing the performances of four different predictive models for Object-
centric predictive Analytics (cf. Chapter 5), Catboost achieves the highest predic-
tive accuracy in almost all the considered KPIs.

The starting point to build the explainable framework is the trace-to-instance
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encoding function ρ : E∗ → X , which maps each (prefix of a) trace σ in an
element ρ(σ) ∈ X (cf. Section 2.4); given a trace σ = ⟨e1, . . . , em⟩, ρ(σ) =

[x1, . . . , xn], where each feature f i has an associated value xi.
When applied for explainable predictive monitoring, the Shapley values for

a trace σ are computed over ρ(σ) = [x1, . . . , xn], thus resulting in a tuple of
Shapley values Ψ = [ψ1, . . . , ψn], with ψi being the Shapley value of feature f i.
In accordance with the Shapley values theory, the explanation of ψi is as follows:
since feature f i = xi, the KPI prediction deviates ψi units from the average
KPI value observed in the executions recorded in the event-log. Please note that
any Shapley value ψi can be either positive or negative. A positive or negative
value indicates that the feature contributes to increasing or decreasing the value,
respectively.

Definition 4.3.2 (Shap Function). Let σ be a (prefix of a) trace of an event log and
ΦK : X1 × . . . ×Xm → R the oracle function trained as defined in 2.4. We can
define the SHAP function ΨΦK : E∗ → Rm as the vector of Shapley associated to
prediction ΦK(σ).

In the remainder, we use ΦK(σ)[fi] to refer to the Shapley value of feature
fi which assumes a certain value xi ∈ Xi, which is the i-th entry of the vector
ρ(σ) ∈ X1 × . . .×Xm.

The computation is the Shapley value is repeated for each trace of L. How-
ever, if f i is numerical, several different values can be observed for f i, yield-
ing a large number of explanations f i = xi1, . . . f

i = xik. Some of these ex-
planations are equivalent from a domain viewpoint: e.g., amount = 10000,
amount = 10050 might be referring to the same class of amount in a loan appli-
cation. Therefore, q representative values wi

1, . . . , w
i
q are selected out of values

xi1, . . . x
i
k (namely, with q ≪ k) so as to obtain explanations of type f i < wi

1,
wi

1 ≤ f i < wi
2, . . ., f

i ≥ wi
q. Values wi

1, . . . , w
i
q can be obtained taking the

boundaries of the buckets obtained via discretization techniques. In particular,
our implementation operationalizes a discretization of each feature f i on the ba-
sis of decision/regression as follows. The training set consists of tuple with only
two features: f i used as the independent variable, and the KPI as target/dependent
variable. The values observed at the splits of the tree nodes induce the boundaries
and, consequently, the buckets.

While an exact computation of the Shapley values requires to consider all
combinations of features (hence, the algorithm is exponential on the number of
features), efficient estimations can be obtained through polynomial algorithms
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that use greedy approaches [68].

4.4 Overall Approach for Explaining Generic KPI
Predictions

Explanations can be calculated both offline (i.e. on cases that have been already
completed) and online (on cases that have not been completed yet). When used
offline they are calculated on the test dataset, a part of the dataset not used for
training the model (information about the division between train and test sets
have been provided in Chapter 3). Moreover, they can be used with different
goals; on one hand, explanations for a set of cases can be aggregated, to provide
the stakeholder a global picture of what are the features/factors that the trained
model uses to make predictions. This type of explanation is called Global, and is
very important for gaining trust on predictive process monitoring. On the other
hand, Local online explanations of a certain prediction can be provided, when
there is the need to focus on single running cases with a high risk of failing the
desired KPI.

4.4.1 Global Explanations

Our global explanation strategy is to provide a bar chart that overviews the im-
portance of each factor influencing the predictive model. The global explanation
strategy can be applied both during the offline and the online phase.

In the offline phase, given an event log L, we consider each prefix σ′ of each
completed trace in L related to the test set. Then, we compute the explanations
as defined in Section 4.3. At this point, for each explanation we consider the
vector of all the Shapley values Ψ associated to it and we compute the average,
obtaining the average influence of a particular explanation over all the instances;
we then sort the explanations by descending influence, allowing us to find the
most relevant explanations influencing the predictive model. In this way, not
only do we aim to find the most relevant features, but we also report on their
contribution to the output of the predictive model.

Figure 4.1 shows an example of our global explanation strategy for the re-
maining time prediction, represented as a bar chart reporting the most relevant
explanations influencing the prediction during the offline phase. The y axis lists
different explanations of types attr = value, namely a combination of an at-



58 Explainable Predictive Process Analytics

Figure 4.1: Example of global offline explanations for remaining time prediction

tribute with an associated value that was found to be relevant for the predic-
tive model, while the x axis represents the average influence on the predicted
time for the considered traces. For instance, let us consider the explanation Clo-
sure type=Inheritance, which is associated with a red bar with length greater than
2 days. This indicates that when this association attribute-value (explanation) oc-
curs, then it contributes to increase the KPI value by more than 2 days (i.e. when
an instance of a process with Closure type Inheritance occurs, then more time will
be needed on average to finish the process).

A similar reasoning can be repeated for global explanations referring to the
online phase. For each running case we take the vector of the Shapley values
Ψ and associated explanations related to the last observed prefix (which has also
the information about previous prefixes); afterwards, for each explanation, we
calculate the average value, to obtain the average influence of the explanation
over all running cases.
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4.4.2 Local Explanations

Our explanation strategy can be also applied in order to generate Local explana-
tions of a certain prediction. This is particularly useful when there is the need to
focus on single running cases that present a high risk of failing the desired KPI.
When we focus on single running cases, we generate a bar chart in the same way
we described in the previous section; the only difference is that in order to an-
alyze single running cases, we need to use an interactive tool that enables us to
easily perform our analysis. We also considered several alternatives to visualize
local explanations, such as representing the explanations in a table or representing
them with natural language expressions; however, after an initial interview phase,
business process stakeholders indicated to prefer having an uniform view for both
local and global explanations.

Further details on the visualization of local explanations will be provided in
Section 4.6.

4.5 Explanation evaluation

The previous section showed that the explanations for a learnt prediction model
are given as a bar chart, where the y axis lists the different explanations, while the
x axis represents the average influence on the considered KPI. However, when
predicting a boolean KPI, the values on the x axis represent a probability in the
domain [0 : 1]; therefore, in order to have a representation of the influence of
the explanations that was the same independently from the considered KPI, we
shifted the probability in the domain [−1 : +1]. As shown in Figure 4.3, this
allowed us to give a more clear interpretation of the influence of the explanations.

This section is intended to describe the outcome of our global explanation
strategy during the offline phase, in order to show the validity of the explanations
provided. In particular, only the explanations of the KPIs related to the bank ac-
count closure dataset (cf. Section 3.3) are reported here; additional experiments
with different KPIs also on the other publicly-available event logs will be dis-
cussed in Appendix A.

4.5.1 Bank Account Closure

For the bank, which deals with the closure of customer’s accounts, it is of interest
to obtain an estimate of the remaining time until the end for running cases. This



60 Explainable Predictive Process Analytics

allows the bank to decide which cases require special attention, in order to not
postpone them too much further. Also, the bank wants to be informed whether
there are high chances that one or more of the following activities will occur: Au-
thorization Requested, Pending Request for Acquittance of heirs, and Back-Office
Adjustment Requested. They are linked to contingency actions, which should be
avoided because they would cause inefficiencies in terms of time, costs, and re-
source utilization. Finally, the bank is also interested in obtaining an estimate
of the total cost of a running case, in order to detect in advance which cases re-
quire particular attention. Each trace is associated with an attribute Closure Type,
which encodes the type of procedure that is carried out for the specific account
holder, and the Closure Reason, namely the reason triggering the closure’s re-
quest.

Global Offline Explanations for Remaining Time Prediction

Figure 4.1 was used in Section 4.4.1 to give an impression on how global expla-
nations are given. Here, we give some more information: it reports on the appli-
cation of our explainable framework for remaining time prediction. The fact that
the closure type is Inheritance (Closure Type=Inheritance) is one of the largest
factors that influences the prediction; the color red of the bar and the information
that the value is positive (i.e. greater than 2 days) indicates that the influence is
towards increasing the remaining time. From a domain viewpoint, when the type
of procedure is Inheritance, the bank-account holder is passed away. A further
analysis of the data confirms this finding: if the type is Inheritance, the process
duration is 29 days, versus 14 days when the type is different. Also when the
closure type is Porting (Closure type=Porting), the influence is towards increas-
ing the remaining time, and this is also confirmed analyzing the data, since the
process duration related to this closure type is 24 days. The evidence in the expla-
nations illustrates that Catboost allowed learning a prediction model that correctly
leverages on the closure type to estimate the remaining time.

Other important explanations are related to the activities performed and the
resources involved. When activities are performed by a resource director (such
as Authorization Requested) or when the activity performed is Network Adjust-
ment Requested (that only occurs when an error is made in the early stages of
the process), the behaviour is considered as exceptional; consequently, the cases
usually take longer to complete. This is indicated by the two red bars in the
rows ACTIVITY=Authorization Requested and ACTIVITY=Network Adjustment
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Figure 4.2: Offline explanations for Cost prediction (Bank Account Closure)

Requested, which indicate that the average influence is towards increasing the
remaining time by 1 day. Even in this case our framework was able to learn to
correctly identify the influencers of the process.

Finally, some explanations are not related to an exceptional behaviour, but
rather to the structure of the process; for example, the activity Request Created
is always performed at the beginning of the process, therefore its influence is
towards increasing the remaining time, while explanation Role=Back-office is a
role associated to resources performing back-office activities, which are generally
executed in the final part of the process, thus reducing the remaining time.

Global Offline Explanations for Cost Prediction

Figure 4.2 shows the application of our framework for the case cost prediction.
The main factor that contributes to decrease the cost of a case is represented by
Closure type=Bank Recess, which is indicated when the closure of the bank ac-
count is requested by the bank. The information that the value is negative (i.e. -2
Euros) indicates that the influence is towards decreasing the cost. This is mainly
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caused by the fact that most of the times here the director does not need to care-
fully evaluate the request before proceeding and, since the hourly director’s wage
is certainly higher than that of other bank employees, the predicted case cost will
be smaller. The director is similarly not involved when customers, for different
reasons, decide to close only one of their bank accounts (labeled respectively as
Closure Reason=4 - Open new bank account. Same dip, Closure Reason=3 -
Keep bank account. Different dip and Closure Reason=2 - Keep bank account.
Same dip), which is a factor that yields lower costs. Another reason is that when
only one between different bank accounts of a customer is closed, then the process
carried out in the bank is simpler and less Back-office adjustment activities need
to be performed compared to when all bank accounts need to be closed, leading to
minor costs. The other main factors that contribute to increase the cost of the case
are represented by Activity=Network Adjustment Requested and Activity=Back-
Office Adjustment Requested. The information that the values are positive (i.e. 2
Euros) indicates that the influence is towards increasing the cost. This is mainly
caused by the fact that these activities should be avoided, since they are only per-
formed when some problem has occurred during the processing of the customer’s
request and a rework needs to be done, leading to inefficiencies in terms of time,
costs, and resource utilization.

Global Offline Explanations for Activity Occurrence Prediction

We mentioned that the financial institute aims to avoid activities related to inef-
ficiencies (e.g. rework), such as Authorization Requested, Pending Request for
Acquittance of Heirs and Back-Office Adjustment Requested. The explanations
related to the first activity are shown in Figure 4.3. It can be easily seen that the
attributes related to the Closure type and Closure reason are largely influencing
the prediction. In particular, when it is the bank that decides to close the bank ac-
count (explanation Closure type=Bank Recess), there is a high probability (0.70)
that the director’s approval will be necessary; this is also indicated by the red
color of the bar, which indicates that the influence is towards predicting that the
activity will be performed, and it is confirmed in the data: when the Closure type
is Bank Recess, then the authorization is requested in the 71% of cases (5117
out of 7174). Conversely, when Closure type=Porting, it is highly unlikely that a
director’s authorization to proceed further is needed, as it is indicated by the blue
bar associated with a very high negative probability (-0.80).

Other important attributes are related to the reason triggering the closure’s
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Figure 4.3: Offline explanations for Authorization Requested prediction (Bank
Account Closure)

request (indicated by the attribute Closure reason). When there is the need to
close the old bank account and open a new one in the same department (Clo-
sure reason=4 - Open new bank account. Same dip) or when there is the need
to keep the same bank account, but transfer the control of it to another depart-
ment (Closure reason=3 - Keep bank account. Different dip), then there is a high
probability that an authorization from the director is needed; these are, in fact,
exceptional situations, which need to be managed carefully. A further analysis of
the data confirmed that the authorization is needed in the 75% of cases (383 out
of 504 cases with the first closure closure) for the first closure reason, and in the
84% of cases (177 out of 209 cases) for the second closure reason.

Finally, when the cost of the case is very low, then the probability to predict
that the director’s authorization will be needed increases considerably (as it is
shown by the red bars associated to the explanations 1.83 < case cost < 3.33

and case cost < 1.83); this is due to the fact that the authorization to proceed
further is usually requested to a director in the early stages of the process, when
the cost of the case is still very low.
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Figure 4.4: High level overview of the main components involved in the explain-
able decision support system

In order to confirm the findings reported here, we conducted additional exper-
iments with different KPIs also on the other publicly-available event logs, which
have been described in Section 3.3. The results are discussed in Appendix A.

4.6 A Software System for Explainable Predictive
Process Analytics

This section describes the integration of the developed explainable predictive
framework within the IBM Process Mining suite1. This enables us to provide
process stakeholders with a ready-to-use module that provisions online opera-
tional support for their processes, as well as the influencers driving them, without
requiring any specific technical knowledge.

The back-end of the predictive monitoring is based on the Azure infrastruc-
ture, which enables us to deploy the technique in the cloud and develop a whole
system around it. Figure 4.4 provides a high level overview of the main compo-
nents involved in the explainable decision support system. IBM Process Mining is
represented on the right side, while the Azure infrastracture (also called Machine
Learning Platform) hosting our framework is shown on the left. The latter is in
charge of processing the requests coming from IBM Process Mining, preparing a
compute instance to execute our framework, and delivering the results back. In

1https://www.ibm.com/it-it/cloud/cloud-pak-for-business-automation/process-mining
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particular, the Machine Learning Platform has been tested to work with datasets
up to 10 million events, it can handle multiple requests coming from different
users and, in case a customer requests it, multiple compute instances can be eas-
ily provided by allocating new clusters, enabling to scale on demand.

The router is the component responsible to process the incoming requests and
verify if the domain and the user related to the request are authorized; if the check
is positive, the Process Mining suite uploads the event log on the Azure Datalake,
which is the component responsible for storing and archiving the data. Once the
data has been fully uploaded, the router forwards the request to another compo-
nent (here shown as Virtual Machine (VM)), which is responsible to create a vir-
tual machine with the necessary computational power and copy the event log data
inside the virtual machine; at this point, the code of our explainable predictive
framework (which is located in a repository inside Azure DevOps component)
is downloaded inside the virtual machine, where it will be executed. The output
produced by our explainable predictive framework executed in the VM compo-
nent will be stored inside the Azure Datalake and then sent to the database of the
Process Mining suite via the Result Delivery component. Finally, the results will
be shown in the Analytics dashboard via the Application server.

Figure 4.5: The IBM Analytics dashboard for Explainable Predictive Process
Monitoring.

Figure 4.5 shows a screenshot of the Analytics Dashboard within the IBM
Process Mining suite for prediction of the total cost of cases, namely the cost nec-
essary to complete a case. The use case presented here is related to the Bank
Account Closure process process, which deals with the closure of customer’s
accounts, which may be requested by the customer or by the bank, for several
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Figure 4.6: Explanations related to one running case. An explanation is visible
by passing over with the mouse when a corresponding bar is too short.

reasons.
The upper-left corner reports on general process statistics, such as the number

of running cases and the average case total time (here labeled as Completed Time)
and cost. In the bottom-left corner, the widget shows how many running cases
are predicted to cost too much (indicated by the red portion of the pie chart) and
what is the average foreseen overcost for those cases. The bottom-right corner
lists the running cases, each associated with the case identifier and the last per-
formed activity; since this dashboard refers to the process total cost, each case
is also associated with the current cost, the expected total cost as forecasted by
the predictive monitor, and its difference wrt. the average completion cost, here
also named as target. When a user clicks on a specific running case (e.g. with id
201811010127), it is possible to see the Local explanations for that case, named
influencers in the tool (see Figure 4.6).

Let us consider again the all-cases dashboard in Figure 4.5: the bar chart in the
top-right corner provides an helicopter view of the explanations (Global). In par-
ticular, each row of the bar chart represents an explanation, and extends towards
left or right, depending whether the average Shapley value for the explanation is
negative or positive. The colour indicates the frequency of an explanation, with
darker colours indicating a large number of running cases with that explanation.

As an example, explanation ACTIVITY=Network Adjustment Requested has a
large bar with a light colour: this means that, for a small number of cases, the fact
that the latest activity has been a Network Adjustment Requested has contributed
to reduce the predicted total case cost by an average value of 2.99 Euros. The ex-
planation CLOSURE TYPE=Bank Recess is conversely associated with a darker
colour, namely with a large number of cases. The average shapley value is equal
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to -2.12 Euros: when the closure of the bank account is requested directly by the
bank, the total cost reduces by 2.12 Euros wrt. the average.

4.7 Evaluation of the Human Understandability of
the Predictions and Explanations

Chapter 3 has shown an evaluation of the quality of the predictions, while Sec-
tion 4.5 has shown an evaluation of the quality of the explanations produced by
the aforementioned framework. However, it needs to be ultimately used by pro-
cess analysts, for whom it must be effective and comprehensible. To this aim,
we carried out an empirical user evaluation of the explanations produced by our
explainable predictive monitoring framework. In particular, for the user evalua-
tion we involved real and potential process analysts, in order to assess whether or
not they would understand the explanations and, consequently, trust the whole ex-
plainable predictive monitoring framework. The integration between our frame-
work and the IBM Process Mining (which has been described in the previous
section) enabled us to perform a complete user evaluation: we did not only ana-
lyze the results produced by our framework in isolation, but we also considered
the context in which these results were produced.

Section 4.7.1 reports on the methodology carried out for the user evaluation,
while Section 4.7.2 discusses the feedback obtained by the process analysts who
participated in the user evaluation.

4.7.1 Methodology of the evaluation

A user study was run to test the usability of the Explainable Predictive Analyt-
ics module and the users’ experience. Below, we report on the characteristics of
the users that participated in the experimental session and we describe the exper-
imental settings and the questionnaires that have been adopted to carry out the
evaluation session.

Participants

Twenty users were involved in the case study, equally split between males and
females, with an average age of 31.20 and Standard Deviation (SD) of 8.43. On
average, they had an educational level (years of school) of 18.15 years, with a
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standard deviation of 1.42. Out of the 20 users, five were Master’s or PhD stu-
dents in Data Science or a related field, 13 were employees in an international
IT services company, and two were both students and employees of the same
company. Eleven participants were Italian, while nine were not. Experiments
were conducted in Italian or English according to the favourite language of each
subject.

All participants had some previous knowledge about Process Mining: students
had previously taken a course on Process Mining, while employees had already
applied Process Mining in their analysis work. Indeed, we asked them about
self-evaluating their process mining knowledge on a 5-point Likert Scale (with
1 = superficial knowledge, 2 = basic knowledge, 3 = medium knowledge, 4 =
good knowledge, 5 = advanced knowledge), reporting an average score of 3.5 (SD
= 1.36). Eighteen out of 20 users reported a previous experience with process
mining tools, with an average use frequency of 3.39 and SD of 1.14 (the scale
points were 1 = almost never, 2 = rarely, 3 = sometimes, 4 = often, 5 = always).
However, none of them had previous experience with the specific module being
analyzed.

Materials and Methods

The user study was designed in accordance with the Declaration of Helsinki and
approved by the ethics committee for psychological research at the University
of Padova (protocol number 4259). All participants were required to read and
provide informed consent before starting the experiment. After providing demo-
graphic data and some information related to their previous knowledge of process
mining, users were presented with an 8-minute video explaining the main struc-
ture and functionalities of the Explainable Predictive Analytics module. Then,
participants were asked to complete 18 tasks within the module. The tasks were
aimed at testing the intelligibility of the information provided by the Explainable
Predictive Analytics module regarding the process related to the closure of the
customers’ bank accounts. Example of tasks are: “According to the prediction
of the algorithm, how many cases will cost more than the average?”, “What is
the most frequent influencer affecting cost prediction?”. The complete list of the
tasks is reported in Table 4.1.

After each task, participants were asked about the difficulty of the task, which
was measured according to the 1-item questionnaire proposed by Tedesco and
Tullis (“Overall this task was”, 1 = very easy, 2 = easy, 3 = neither easy nor diffi-



4.7 Evaluation of the Human Understandability of the Predictions and
Explanations 69

Table 4.1: List of the tasks completed by the users within the Explainable Predic-
tive Analytics module. The third and fourth columns report respectively the aver-
age (and Standard Deviation) accuracy obtained by participants in completing the
task and the evaluation of the task difficulty according to the 1-item questionnaire
by Tedesco and Tullis [105]

.
N. Task Accuracy

(Average, SD)
Difficulty

(Average, SD)
1 In the Overview widget, what is the meaning of AVG Completed Cost? 0.83 (0.37) 2.10 (0.79)
2 According to the prediction of the algorithm, how many cases will cost more than the average? 0.95 (0.22) 2.25 (0.85)
3 Focus now on case 20183009672. What is the current case cost? 1.00 (0.00) 1.60 (0.68)
4 Always consider the case 20183009672. According to the algorithm, what will be the total cost of the case? 1.00 (0.00) 1.80 (0.77)
5 In “Influencers & Predictions Cost” widget, what does the column “Expected vs AVG (Target)” represent? 0.70 (0.41) 2.75 (1.02)

6 Click on the practice 20183009672 and write below which is the influencer, relative to the costs, most significant
for this case.

0.95 (0.22) 2.70 (0.57)

7 Still in relation to the 20183009672 case, does the most significant influencer raise or lower the prediction of the
cost of the case?

0.90 (0.31) 2.25 (0.79)

8 Still in relation to the 20183009672 case, how much does the most significant influencer raise the prediction of
the cost of the case?

0.90 (0.31) 2.10 (0.97)

9 How much, on average, is the cost of the process influenced by the Closure type “Bank Recess”? 0.88 (0.28) 2.60 (0.88)
10 How many cases are influenced by the ”Bank Recess” influencer? 1.00 (0.00) 1.95 (1.00)

11 Does the fact that a Network Adjustment Requested (an activity that consists of reworking the file following an
error) has been carried out in the process influence the prediction of the total cost?

0.95 (0.22) 2.10 (0.72)

12 How much is the total cost prediction affected by a ”Network Adjustment Requested”? 0.85 (0.37) 1.85 (0.88)
13 What is the most frequent influencer affecting cost prediction? 0.70 (0.47) 2.45 (1.00)

14 Order Influencers bar chart for median influence instead of mean influence. Look at the graph sorted by the median.
What is the explanation that most influences cost prediction?

0.90 (0.31) 2.80 (1.15)

15 Order Influencers bar chart again for mean influence. What information provides the ACTIVITY = Back-Office
Adjustment Requested histogram?

0.75 (0.30) 2.50 (0.76)

16 In the ”Influencers & Predictions Cost” widget, filter for the influencer relating to the CLOSURE TYPE Bank Recess.
What are the two influencers that best explain cost prediction when the CLOSURE TYPE is Bank Recess?

0.80 (0.38) 3.10 (0.91)

17 View influencers related to case 20183009672. Focus on the influencers related to the case 20183009672. Explain
what information the first histogram provides (Current Cost > 18.82).

0.58 (0.37) 3.55 (1.15)

18 Change the settings, setting the display of ”Completed cases”. In this new view of completed cases, who is the most
frequent influencer?

0.80 (0.41) 2.55 (1.10)

cult, 4 = difficult, 5 = very difficult). Previous literature reports this questionnaire
to be the most reliable on small subject’s sample in terms of its correlation with
performance measures, if compared with other questionnaires on task difficul-
ties [105]. Finally, at the end of the evaluation session, the users filled out two
questionnaires for the assessment of usability and user experience [37, 88]:

• Post-Study System Usability Questionnaire (PSSUQ) [52]: it is a 19-items
questionnaire that assesses user satisfaction with system usability. In ad-
dition to the overall satisfaction score, the PSSUQ provides sub-scores for
three specific dimensions: System Usefulness (SysUse), Information Qual-
ity (InfoQual), Interface Quality (InterQual). Responses are given on a
7-point Likert Scale from 1 = strongly agree to 7 = strongly disagree.

• User Experience Questionnaire (UEQ) [50]: it includes 26 items testing the
users’ experience with the product they interacted with. Items are made
up of pairs of opposite adjectives (e.g., “impractical – practical”, “boring
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– exciting”), with a response scale on seven points. The UEQ measures
both pragmatic and hedonic components of the user experience, providing
a score for six different dimensions: Attractiveness (overall impression of
the product: do users like or dislike the product?), Perspicuity (is it easy
to get familiar with the product? Is it easy to learn how to use the prod-
uct?), Efficiency (can users solve their tasks without unnecessary effort?),
Dependability (does the user feel in control of the interaction), Stimulation
(is it exciting and motivating to use the product?), Novelty (is the product
innovative and creative? Does the product catch the interest of users?) [90].

The literature proposes normative data for these questionnaires [53]. This has
allowed us to derive sound conclusions on the goodness of the numerical results
obtained. For PSSUQ, we considered satisfactory the scores that are in or above
the normative range reported by Lewis [53]: the mean of the overall satisfaction
rating is 2.82 with a 99% Confidence Interval (CI) ranging from 2.62 to 3.02.
More specifically going into the three dimensions, the means for the subscales
are 2.80 (99% CI 2.57–3.02) for System Usefulness, 3.02 (99% CI 2.79–3.24) for
Information Quality, and 2.49 (99% CI 2.28–2.71) for Interface Quality.

For UEQ, an interpretation of the level of satisfaction of the outcome can
be achieved by comparing the obtained scores with those of a benchmark data
set [89], which contains data from 20190 users from 452 studies concerning dif-
ferent products (business software, web pages, web shops, social networks). In
particular, the comparison with the benchmark dataset allows us to qualitatively
classify the product for each analyzed dimension as:

• Excellent: the score obtained for the evaluated product is in the range of the
10% best results.

• Good: 10% of the products in the benchmark data set have a better score,
while 75% of the products are worse.

• Above average: 25% of the products in the benchmark have a better score
than the score obtained for the evaluated product, while 50% of the products
are worse.

• Below average: 50% of the products in the benchmark have a better score
than the score obtained for the evaluated product, while 25% of the products
are worse.
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• Bad: the score obtained for the evaluated product is in the range of the 25%
worst results.

4.7.2 Evaluation results

This section discusses the results of the usability study, which has focused on four
dimensions: accuracy to carry out the tasks, perceived task difficulty, usability of
the module and user experience.

Task Accuracy

The task accuracy was calculated as the percentage of tasks correctly fulfilled
by the users. For each task, one point was assigned if the task was completed
correctly, 0 when the user failed, and 0.5 points if the user’s response was partially
correct; as an example, 0.5 points were assigned when the user had to find the two
main influencers for a particular case, but only one was indicated.

On average, users obtain an accuracy of 0.86 (with SD of 0.11), with the 17 be-
ing the most failed task (0.58). The accuracy for each task is reported in the third
column of Table 4.1. This level of accuracy can be reasonably considered good;
since most of the tasks requires one to leverage on the prediction’s explanations,
we can conclude that explanations are generally comprehensible to correctly
carry out analysis’ tasks. One should also take into account that users were con-
fronted for the first time with the idea of explainable predictive process analytics
and with its operationalization in the IBM Process Mining software suite.

As shown in Table 4.1, tasks 5, 13, 17 have the lowest scores, respectively
0.70, 0.70, 0.58.

Task 5 investigated whether the users could understand the meaning of the
column Expected vs AVG (Target), i.e. the last column of the Table in Figure 4.5.
In particular, the value for a certain process instance (i.e., case) shows the dif-
ference between the predicted value for that process instance (shown in the same
Table under the column Expected Total Cost) and the actual observed average cost
(which is shown in the Overview widget in the top-left corner). The low accuracy
for task 5 is likely related to the fact that this value is calculated using the infor-
mation contained in two different widgets. We plan to show a tooltip explaining
the meaning of this column. However, it is worthwhile observing that this task is
not related to using the explanations, but is rather related to the visualization of
the prediction.
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Conversely, task 13 focuses on whether or not the users could correctly in-
dicate the most frequent explanation affecting the cost prediction. An accurate
answer to this task should be obtained by inspecting the colours of the bars of
the different explanations and focusing on those with darker colours, which mean
greater frequencies. Note that the meaning of coloring is consistent with other
modules of the IBM Process Mining suite (e.g., in a process model, darker colours
are given to the activities that occur more frequently). Indeed, breaking the users
down in two groups, composed respectively by users familiar and unfamiliar with
other parts of the IBM Process Mining suite, we observed that task 13 was gener-
ally answered incorrectly by subjects that never used IBM Process Mining before
(among the 6 users that answered incorrectly, 5 users out of 6 never used IBM
Process Mining before).

Task 17 had the lowest accuracy, whose perceived difficulty was certainly the
highest (cf. last column of Table 4.1). This was reported in some of the user’s
feedback: ”It was not clear the meaning of the influencer related to the Current
Cost, if this is the cost then the influence on the cost is...”. The Current Cost is
an attribute that encodes the cost of a case after each event occurred in a process;
it is an attribute that is not part of the original event log, but it has been added in
order to increase the predictive accuracy of the model.

To address the issue with this type of task, we plan to show in separated views
explanations related to process attributes already present in the original event log
and explanations related to encoded attributes not present in the original event
log (such as the cost). This also came as a comment from one of the users in
the feedback: ”For me it was difficult to understand the relations between the
influencers related to process attributes and those related to the cost; I would
rather prefer to analyze them separately”). It is also rather important to facilitate
users to interpret the semantics of the encoded attributes: a tooltip could then be
useful to explain their semantics.

Task Difficulty

Last column of Table 4.1 shows the perceived task difficulty for each of the tasks.
The average task difficulty is 2.39, with standard deviation of 0.41. This means
that most of the responses given by participants fall in the range between ”easy”
and ”neither easy nor difficult”, leading us to conclude that users have found
most of the tasks reasonably easy.

We also illustrate a graphical distribution of the responses for each task in
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Figure 4.7: Distribution of the responses in the 1-item questionnaire on task dif-
ficulty for each task. For each task, the height of the several boxplots varies
depending on the percentage of users reporting the corresponding task difficulty.

Figure 4.7. Consistently with what was observed in the accuracy assessment de-
scribed in Section 4.7.2, the task perceived as the most difficult was the task 17.

Usability

The analysis of the results of the Post-Study System Usability Questionnaire
(PSSUQ) is summarized in Figure 4.8: the bars are the values obtained in our
evaluation, while the depicted ranges show the normative values with confidence
interval (cf. Section 4.7.1). The overall satisfaction score of 2.83 (with SD of
1.24) is within the normative range, thus testifying a good level of user satis-
faction of the interface. In the three subscales, participants obtain the following
scores: System Usefulness = 2.70 (SD = 1.23), Information Quality = 3.07 (SD =
1.61), Interface Quality = 2.82 (SD = 1.38); these scores fall within the normative
range as well.

In other words, no critical issues emerged regarding the system usefulness,
the quality of the information provided by the system, and the quality of the
interface (i.e. no major issues regarding the intelligibility of the explanations
were found).

User Experience

As concerns the User eXperience (UX), the six dimensions measured by the UEQ
have obtained the following scores: Attractiveness = 1.45 (SD = 1.06), Perspicuity
= 1.24 (SD = 1.20), Efficiency = 1.71 (SD = 1.16), Dependability = 1.49 (SD =
0.94), Stimulation = 1.55 (SD = 0.99), Novelty = 1.10 (SD = 1.26). Comparing
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Figure 4.8: Average scores in PSSUQ subscales and their collocation compared
to the normative range (mean; CI). Responses are given on a 7-point Likert Scale
from 1 = strongly agree to 7 = strongly disagree. Ideally, the scores should be the
lowest possible.

these scores with those of the benchmark data set (cf. Section 4.7.1), it should be
noted that the Explainable Predictive Analytics module is evaluated as good for
Efficiency, Dependability, and Stimulation (see Figure 4.9). It is above average
compared to other products for Attractiveness and Novelty. Instead, Perspicuity
is just below average; this could be due to the fact that most of the users were not
particularly familiar with the adopted process mining tool. Therefore, in order to
improve the Perspicuity of the Explainable Predictive Analytics module, it could
be important in the future to plan a training phase beforehand, in which users get
familiar with the process mining tool. In 4.10, the distribution of the responses
for each item of the questionnaire is reported.

Summarizing, we conducted a rigorous user evaluation to understand if pro-
cess analysts (both from the academia and the industry domains) were comfort-
able with the results returned by our explainable predictive monitoring frame-
work. Several points emerged from our study; we summarize the main findings
here.
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Figure 4.9: Average scores obtained by the users in the UEQ subscales (repre-
sented by the black line), and their collocation with respect to other products of
the benchmark data set (represented by the coloured blocks). Note that “good”
means that 75% of products of the benchmark data set perform worse; “above
average” means that 50% of products of the benchmark data set perform worse;
“below average” indicates that 25% of the products of the benchmark data set
perform worse.

4.7.3 Concluding Remarks

The user study has showed that overall the users achieved a good score and could
find the answer for most of the questions without particular problems: cf. an
average accuracy of 0.86 out of 1, and an average, perceived task difficulty of
2.39 out of 5. Considering that most of the tasks focus on the explanations, this
shows that predictions are actually explained in a form that is effective and
efficient for process analysts. However, the lower accuracy observed in some
tasks has highlighted points for improvement, but these improvements are not
related to prediction’s explanations, except for task 17 where users did not well
understand explanations that relate to features that are not directly mapped to
process’ attributes. However, the problem could likely be overcome by adding a
tooltip that indicates the semantics of these additional features.

The Post-Study Usability Questionnaire pointed out that the usability of the
explainable predictive process analytics framework and of its operationalization
was good, beyond the minimum usability level that literature indicates as suitable.
This confirmed that the proposed explainable framework was considered in-
telligible by the users.

Last but not least, the User Experience Questionnaire also showed levels
of user satisfaction with the framework that literature consider as appropriate:
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Figure 4.10: Distribution of the responses for each item of the User Experience
Questionnaire (UEQ). Each row is an item and reports pairs of opposite adjec-
tives, which are mapped to a response scale on seven points. For each row, the
width of the several boxplots varies depending on the percentage of users report-
ing the corresponding score.

this indicates that users were satisfied with the explainable predictive process
framework. A slight lower value, still within the boundaries, was observed about
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perspicuity: this is likely related to the fact that users were confronted for the first
time with the framework, and a short training phase beforehand would be benefi-
cial.

4.8 Summary

A lot of research has been devoted towards increasingly accurate frameworks for
predictive process monitoring. Moreover, in the last years, growing attention has
been paid to ensure that the resulting predictive-monitoring system is workable in
practice. With practical workability, here we intend that the process analysts and
stakeholders need to trust the system and its predictions. Previous studies have
already shown that a necessary condition to build trust is to explain the reason of
the provided predictions; proposals that do not put explanation as a core feature
are not going to be adopted in practice.

Several works have recently put forward methods to explain the predictions,
using a plethora of different techniques (see Section 4.2). However, as also stated
by Stierle et al., none of these works verified whether prediction’s explanations
are provided to process analysts in a form that is intelligible and that can give
them actionable insights easily, effectively and efficiently. Furthermore, most of
the frameworks have stopped at a prototype phase and have not been deployed
in real software suites. Rizzi et al. [82] were the first that previously attempted
to conduct some user studies on explainable predictive process analytics, but this
attempt was limited to 8 subjects, and without using a commercial, fully-fledged
operationalization.

This chapter attempts to address the issues above: assessing the quality of pre-
diction explanations with users and developing the framework into a commercial
software. In particular, the chapter’s contributions are the following:

1. A framework for explainable predictive process analytics has been intro-
duced. Afterwards, the outcome of our global explanation strategy has been
illustrated, in order to show the validity of the explanations provided; in par-
ticular, after analyzing the data, the evidence in the explanations demon-
strated that Catboost allowed learning a prediction model that leveraged
attributes that were found to be relevant from a domain viewpoint.

2. The explainable predictive process framework has been implemented as a
module of a commercial software, the IBM Process-Mining software suite
(cf. Section 4.6).



78 Explainable Predictive Process Analytics

3. A user study has been conducted on the IBM Process-Mining suite to as-
sess the efficiency and effectiveness of the proposed explainable predictive
process analytics module. Results have shown that, indeed, the module and
the form in which explanations are provided are efficient, effective, usable,
and satisfactory from a final-user viewpoint (see Section 4.7).

As future work, we aim to perform an assessment against the quality evalua-
tion criteria for Explainable AI introduced in literature (see, e.g. [56]). Moreover,
as stated in Section 4.2, many different explainable frameworks have been pro-
posed in these years; it would be interesting to compare the different explanations
that would be produced by different (model-agnostic) explainable frameworks for
a given trained predictive model, and evaluate the quality of the explanations with
users that have a knowledgeable business understanding about the process, possi-
bly empirically identifying strength and weaknesses of the different approaches.
Finally, while the explainable framework presented in this chapter focuses on ex-
plaining the provided predictions, it can be extended from predictive to prescrip-
tive analytics. In the latter case, the framework needs to suggest which activities
to perform as next (and explain why) in order to recover those cases that, oth-
erwise, are predicted to not meet satisfactory KPI values. This extension will be
illustrated in Chapter 6. In the next chapter, we aim at developing a framework for
object-centric predictive analytics, and enhancing the accuracy of the predictive
model by including the information about object interactions. We also leverage on
explainable AI techniques to further confirm the importance of object-interaction
for improving the prediction quality.



Chapter 5

Object-centric Predictive Process
Analytics

Object-centric processes are recently gaining popularity in academia
and industry, because their nature is observed in many application
scenarios. They are an implementation of a paradigm where an in-
stance of one process is not executed in isolation but interacts with
other instances of the same or other processes. Existing research is
unable to directly exploit the benefits of these interactions, thus lim-
iting the prediction quality.

Therefore, in this chapter, an approach is first proposed to flatten
object-centric event logs (i.e., event logs of object-centric processes)
into single-identifier event logs (i.e., event logs of single-flow pro-
cesses). This enables us to perform predictive analytics in object-
centric processes. Afterwards, this chapter proposes an approach to
enrich the single-identifier event logs in order to maintain a meaning-
ful abstraction of the object interactions, and the approach is com-
pared with a naı̈ve approach that overlooks the object interactions,
illustrating the benefits of their use on the prediction quality. More-
over, this chapter reports on the experience of comparing the quality
of the predictions obtained by leveraging four different techniques to
tackle predictive analytics in object-centric processes. In particular,
one technique is based on Gradient Boosting on Decision Trees, and
three are based on Deep Neural Networks, including graph-based
models. The four techniques were empirically evaluated on event
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logs related to three real object-centric processes and more than 30
different KPI definitions. The experimental results show that the tech-
nique based on Gradient Boosting performs consistently better than
those based on Deep Neural Networks, both in terms of accuracy and
training time, and that considering the object interactions often im-
proves the quality of the predictive model. Finally, Shapley Values
and Explainable AI techniques are leveraged to further confirm the
importance of object-interaction and aggregated features for improv-
ing the prediction quality.

5.1 Motivation

Object-centric processes are recently gaining popularity in academia and industry,
because their nature is observed in many application scenarios. They are imple-
mentations of a paradigm where an instance of one process is not executed in
isolation but interacts with other instances of the same or other processes. These
processes for the different objects run independently and synchronize through
some bridging events to exchange data needed to progress further.

The IEEE Task Force on Process Mining has recently published a survey
with academics, practitioners, consultants and vendors in Process Mining that
has shown the importance of object-centric process approaches in the domain of
Process Mining [124]. In particular, only 33% of the respondents has indicated to
be a minor problem to be forced to analyze processes as if they are composed of
a single execution flow (namely with a single case identifier). As mentioned, an
object-centric process model removes this limitation, allowing for parallel execu-
tions of different sub-processes that periodically synchronize.

This chapter focuses on object-centric predictive process analytics. This is a
challenging problem due to the complex intricacy of the process instances that
relate to each other via many-to-many associations. Existing research is unable
to directly exploit the benefits of these interactions, thus limiting the prediction
quality. Moreover, current research in predictive process analytics often relies
on the assumption that the instances refer to a single process. Therefore, in this
chapter, an approach is proposed to flatten object-centric event logs (i.e., event
logs of object-centric processes) into single-identifier event logs (i.e., event logs
of single-flow processes), which are enriched to maintain a meaningful abstrac-
tion of the object interactions. The complex object interaction is unfolded in
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traces; in a nutshell, the core idea is that a trace is created for each cluster of
events that are connected to each other (i.e. that share an object identifier, either
directly or transitively). As an example, let us suppose that an order object with
identifier o1 (representing the life-cycle of the process related to an order pur-
chased by a customer) is associated with multiple receipts r1, r2 and r3 (i.e.
the items purchased by the customer and associated with the order o1 have been
splitted in multiple deliveries, r1, r2 and r3). The association is established
via the so-called bridge events, which contain o1, r1, r2 and r3 as object
identifiers. Consequently, the order object o1 is directly associated to the receipt
objects with identifier r1, r2 and r3, and the events containing the aforemen-
tioned identifiers will be part of the same trace. Afterwards, let us suppose that
each of the three items received (identified by the three different receipt identi-
fiers) is payed separately in different invoices, with identifiers i1, i2 and i3.
The events containing these invoice identifiers among the different identifiers will
be part of the same trace as well, since they are directly related to the receipts
with identifiers r1, r2, r3 and transitively related to order o1. Finally, the
events will be temporally ordered according to their timestamps. A graphical rep-
resentation will be illustrated in Section 5.3.1. When the complex interaction is
unfolded in a multiset of traces, we can specialize the current state of the art in
predictive analytics.

After specializing predictive analytics for object-centric event logs, this chap-
ter reports on the experience of comparing the quality of the predictions obtained
by leveraging four different techniques to tackle predictive analytics in object-
centric processes. In particular, one technique is based on Gradient Boosting on
Decision Trees, and three are based on Deep Neural Networks, including graph-
based models. Moreover, when flattening the event log, our first approach for
object-centric process analytics does not consider the information about the at-
tributes associated with correlated objects, and their respective value. Neither
does it consider the number of objects involved in the execution of a process.
This information can improve the quality of the predictions. For instance, the
total processing time of a requisition might depend on the number of orders as-
sociated with the requisition. Feeding this information into the prediction model
can increase the prediction’s accuracy, illustrating that the complex interactions of
object-centric processes need to be taken into account when predicting, as this al-
lows to consistently improve the predictive performances over simpler techniques.
Therefore, when flattening the event log, a second approach is additionally pro-
posed for object-centric predictive process analytics, where the information about
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object interactions is explicitly encoded as features in the predictive model, with
the aim of increasing the predictive model accuracy. Note, however, that the
inclusion of this information might not always improve the accuracy, due to over-
fitting phenomena. The first approach without this additional information is still
beneficial on its own when overfitting is detected.

To reasonably generalize the drawn conclusions, the four predictive tech-
niques were empirically evaluated on event logs related to three real object-centric
processes, and 30 different KPI definitions. The experimental results illustrate
that the technique based on Gradient Boosting performs consistently better than
those based on Deep Neural Networks, both in terms of accuracy and training
time, and that considering the object interactions often improves the quality of
the predictive model. The Gradient Boosting technique guarantees higher pre-
diction quality, while the training time is several orders of magnitude lower than
those based on Deep neural networks. In sum, the flattening abstraction retains
the important information to guarantee high accuracy, and even prevents some
degree of overfitting observed for graph neural networks.

Section 5.2 provides an overview of our contributions with respect to the state
of the art, while Section 5.3 presents our proposal to enable predictive analytics
in object-centric processes; furthermore, it reports on the results of the empir-
ical evaluation of our predictive monitoring framework for object-centric pro-
cesses, comparing the results obtained with different predictive techniques. In
Section 5.4, we leverage Shapley Values and Explainable AI techniques to assess
the importance of object-interaction and aggregated features. Finally Section 5.5
concludes this chapter.

5.2 Related Works

A body of research exists on object-centric processes. Several research works
focus on modelling object-centric processes (e.g. [13]) and the verification of the
correctness of these models [12, 69]. In the realm of Process Mining, techniques
are proposed to discover object-centric process models and behavioral dependen-
cies between objects (i.e. artifacts) [57, 77, 112, 113], and to tackle the problem
of the object-centric process conformance checking [2,27]. However, none of the
existing works consider object-centric predictive process analytics.

Predictive analytics (and the approach proposed in this chapter) is gener-
ally applicable to any domain where concepts of process executions, namely se-
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quences of executions of activities/steps of any nature that brings from the ini-
tial to a final state, can be identified. However, the case studies reported in this
chapter refer to business processes, which indeed triggered this line of research.
The idea proposed here could be easily extended to processes in other domains.
In [35], e.g., predictive process analytics is applied to forecast attacks to IoT
systems. However, traditional process analytics assume a single flow of execu-
tion with a clear start and end, which means in IoT domains that the IoT system
is assumed to be a single execution flow (i.e., an IoT process execution). The
reality is in fact different: IoT systems are composed of different autonomous
components, each with a different independent life-cycle, which periodically syn-
chronize. Explicitly considering these interactions is certainly relevant for good
predictions of, e.g., attacks. In network security, [43, 44] introduce a concept of
object. These works compute temporal-association-causal rules in order to dis-
cover how human-expert interventions can mitigate security vulnerabilities. The
object concept used here is more related to the concept of attributes of events of
a log, rather than the concept of object used in this thesis, which is conversely
intended as a complex entity with a state and with activities (namely transitions)
that takes from one to another state.

A few works consider interactions among different instances of a process
[18, 46, 91], but they still rely on the notion of a single process flow (i.e., sin-
gle case identifier). While some of these works provide valuable insights into
inter-case features, their extension to object-centric processes is in fact the goal
of the technique proposed in this chapter. Berti and van der Aalst [5] propose
an approach to extract object-centric event logs from the data stored in relational
databases; however, their work is not aimed at predictive process analytics, which
is indeed the primary objective of this chapter.

The approach presented here was built under the assumption that no severe
data issues, such as missing events or incorrect timestamps, are present in the
event log. In case this happens, correction techniques should be applied in order
to resolve these issues [64, 75].

Adams et al. [1] is the only research work on object-centric predictive pro-
cess analytics. It performs a comparison of graph-based and more traditional
machine-learning techniques, and it suggests that the latter does not preserve the
whole graph-like structure of object-centric event logs, but only an approxima-
tion; however, the comparison between the several techniques is based only on
one KPI and one process, and thus the results could not be considered of gen-
eral applicability. Furthermore, even for one single process and one KPI, the
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techniques by Adams et al., which rely on graph-based networks, do not show
significant improvements. In fact, the improvement was just by 2%, which we
have also sometimes observed when comparing techniques based on LSTM and
graph neural networks. However, the latter typically requires a large training time
(more details will be provided in Section 5.3.5. Furthermore, Adams et al. sug-
gested that the problems caused by flattening the event log, namely convergence
and divergence [26, 110]), can possibly strengthen existing directly-follows rela-
tionships and make it impossible to apply Process Mining techniques designed
for single-flow processes that heavily rely on the directly-follows relationships,
such as those for model discovery and conformance checking. However, it has to
be noticed that unfolding causes no problem in our process prediction approach
because we do not leverage directly-follows relationships.

We also considered several KPIs in our experiments while focusing on dif-
ferent starting and ending points to consider different perspectives of the two
object-centric event logs. This idea was inspired by Berti and van der Aalst [5],
who introduced a similar concept of viewpoint to extract event logs from the data
stored in relational databases. However, the concept of viewpoint did not aim at
predictive process analytics.

We already mentioned in Section 3.2 that several research works shown that
LSTM and Catboost generally outperform other methods for predictive process
monitoring [30, 63, 73, 104, 125]. Therefore, when developing an approach for
object-centric predictive process analytics, we decided to include them in our
evaluation. About the choice of graph-based neural networks, some works [76,
101, 116] have also proven GNNs to be useful as the control flow of process
instances can intuitively be represented as graphs, and the relationships between
process activities and between the objects involved can explicitly be modeled.

5.3 Predictive Analytics in Object-centric Processes

This section reports on the results of the empirical evaluation of our predictive
monitoring framework for object-centric processes, comparing the results ob-
tained with different predictive techniques. Section 5.3.1 presents our proposal
to create single-id event logs from object-centric event logs and enable predic-
tive analytics in object-centric processes. Furthermore, we illustrate the study
design for our comparison, which consists of five analysis phases. The first one,
which provides details on the three object-centric datasets that have been used to
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assess the accuracy of the different predictive approaches, is detailed in Section
5.3.2, while Section 5.3.3 describes data preprocessing steps and data selection
options that have been used for the prediction models. The third phase, which
provides details about the encoding used for each predictive model will be il-
lustrated in Section 5.3.4, while the fourth phase, which illustrates the adopted
predictive models, have been already detailed in Section 2.2.2. The fifth phase,
containing details on the evaluation in terms of predictive accuracy and run-time
performance, will be illustrated and discussed in Section 5.3.5.

5.3.1 Enablement of Object-Centric Predictive Process Ana-
lytics: From Object-Centric to Single-Id Event Logs

The starting point is an object-centric log L = (E, T,A,AN,AV,AT,OT,O,

πtyp, πact, πtime, πvmap, πomap, πotyp, <) (cf. Section 2.1.1). Our object-centric
process prediction requires analysts to decide a so-called viewpoint, which is an
object type ot ∈ OT of the process (e.g., Requisition). This defines how the events
in an object-centric event log are aggregated to form traces of a single-id event log
L = (E ′, T ′, A′, AN ′, AV ′, AT ′, π′

typ, π
′
act, π

′
time, π

′
vmap). Notice that the single-

id event log definition given in this chapter is equivalent to the traditional event
log definition given in Section 2.1.

A single-id event log is created from a chosen viewpoint ot ∈ OT as follows.
We start by considering each object o ∈ O such that πotyp(o) = ot. At this point,
we compute the timestamp of the first event in E that has o as one of the object
identifiers with type ot:

to = min
e∈E. o∈πomap(e)∧πotyp(o)=ot

πtime(e) (5.1)

After finding the object o that has the earliest timestamp among the objects
with type ot, trace σo will include every event e ∈ E such that it at least contains
o as identifier (namely, such that {o} ⊆ πomap(e)) or contains an identifier of
an object o′ in a certain set R+

L (o) of related objects (namely such that R+
L (o) ∩

πomap(e) ̸= ∅).
The set R+

L (o) is constructed as follows. Let us define R1
L,ot

(o) as the set of
objects directly related to o:

R1
L,ot(o) = {o′ ∈ O : ∃e ∈ E. {o, o′} ⊆ πomap(e)}.

We can also define the set of objects that are indirectly related o via a “bridge”
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object o′:
R2

L,ot(o) =
⋃

o′∈R1
L,ot

(o)

R1
L,ot(o

′) (5.2)

The definition above can also be extended for any Ri
L,ot

(o) with i > 1 as follows:

Ri
L,ot(o) =

⋃
o′∈Ri−1

L,ot
(o)

R1
L,ot(o

′) (5.3)

The set R+
L (o) can thus be defined as the union, for all integer indexes i ≥ 1, of

the sets of the objects that are related to o via (i− 1) briding events:

R+
L (o) =

∞⋃
i=1

Ri
L,ot(o) (5.4)

After applying the aforementioned procedure, the result is a trace in which all
the events contain the identifier of an object that is connected to o, either directly
or transitively. Afterwards, we exclude from the set E the events that have been
already considered as part of the first identified trace. We then repeat the same
procedure illustrated above, finding another object o′ with type ot that has the
earliest timestamp among the objects with type ot; the second trace will include
every event e ∈ E such that it at least contains o′ as identifier, and we include
all the events associated to objects that are directly or indirectly related to o′ via
bridge events.

This procedure creates the set T of traces, which in turn induces the other
elements of the L tuple as follows. The set E ′ = ∪σo∈T ∪ e′ ∈ σoe of event iden-
tifier contains the event identifiers in T . The domain of attribute names, values
and types is the same as in the object-centric log: AN ′ = AN , AV ′ = AV ,
AT ′ = AT , and π′

typ = πtyp. Functions π′
act, π

′
time, π

′
vmap are restricted over

domain E ′, namely for each e′ ∈ E ′ π′
act(e) = πact(e), π′

time(e) = πtime(e),
π′
vmap(e) = πvmap(e).

Example 5.3.1. As an example, let us consider the Requisition as a view-
point. The outcome of applying our technique to the object-centric event log rep-
resented in Table 2.2 can be seen in Table 5.1, where the white and blue coloured
rows refer to two separate identified traces. In particular, the first (white) trace
contains all the events that are associated to objects directly or indirectly related
to the first requisition, rq1; therefore, we first considered the events contain-
ing rq1 as identifier, namely e3, e8, e12, e13); afterwards, we considered
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Table 5.1: Single-id event log obtained from unfolding the object-centric event
log in Table 2.2 when applying our object-centric approach and considering the
Requisition viewpoint. Each row is an event, which is labelled with a different
colour based on the trace identified. The identifier of the trace is also reported in
the first column. The blank spaces represent attributes missing values.

Case ID ID Activity Timestamp Contract Requisition Order Receipt Invoice User Order Price Order Purch Group Rec Quantity

1 e3 Purchase Requisition Line Created 2017-07-15 12:00 c1 rq1 A456
2 e5 Purchase Requisition Line Created 2017-07-15 17:00 c2 rq2 A457
1 e6 Purchase Order Line Creation 2017-07-16 15:00 c1 o1 A458 100 100 L50
1 e7 Contract Line Creation 2017-07-16 16:00 c3 CO01
1 e8 Purchase Order Line Creation 2017-07-17 15:00 rq1 o2 A458 200 100 L51
2 e9 Purchase Order Line Creation 2017-07-18 15:00 rq2 o3 A458 300 100 L52
1 e10 Goods Line Registered 2017-07-22 15:00 o1 r1 A456 100 100 L50 10
1 e11 Invoice Receipt 2017-07-22 16:00 i1 A125
1 e12 Purchase Requisition Group Changed 2017-07-22 19:00 rq1 A456
1 e13 Purchase Order Line Creation 2017-07-23 9:00 rq1 o4 A458 600 100 L52
1 e14 Purchase Order Line Creation 2017-07-23 12:00 c3 o5 A458 700 100 L50
1 e15 Goods Line Registered 2017-07-23 15:00 o2 r2 A456 100 100 L50 10
1 e16 Invoice Registered 2017-07-29 11:00 r1,r2 i1 A125 10
1 e17 Invoice Cleared 2017-07-30 12:00 i1 A125
1 e18 Goods Line Registered 2017-07-31 15:00 o4 r3 A456 600 100 L52 10
1 e19 Goods Line Registered 2017-08-09 15:00 o5 r4 A456 700 100 L50 10
1 e20 Invoice Registered 2017-08-10 11:00 r2,r3,r4 i2 A125 10
1 e21 Invoice Cleared 2017-08-15 14:00 i2 A125
2 e22 Goods Line Registered 2017-08-16 15:00 o3 r5 A456 300 100 L52 5
2 e23 Purchase Requisition Supplier Changed 2017-08-16 17:00 rq2 A456
2 e24 Invoice Registered 2017-08-18 11:00 r5 i3 A125 5
2 e25 Invoice Cleared 2017-08-20 14:00 i3 A125

Table 5.2: Single-id event log obtained from unfolding the object-centric event
log in Table 2.2 when considering the Requisition viewpoint and with the exist-
ing approach, assuming each instance belongs to a single process. Each row is
an event, which is labelled with a different colour based on the trace identified.
The identifier of the trace is also reported in the first column. The blank spaces
represent attributes missing values.

Case ID ID Activity Timestamp Contract Requisition Order Receipt Invoice User Order Price Order Purch Group Rec Quantity

1 e3 Purchase Requisition Line Created 2017-07-15 12:00 c1 rq1 A456
2 e5 Purchase Requisition Line Created 2017-07-15 17:00 c2 rq2 A457
1 e8 Purchase Order Line Creation 2017-07-17 15:00 rq1 o2 A458 200 100 L51
2 e9 Purchase Order Line Creation 2017-07-18 15:00 rq2 o3 A458 300 100 L52
1 e12 Purchase Requisition Group Changed 2017-07-22 19:00 rq1 A456
1 e13 Purchase Order Line Creation 2017-07-23 9:00 rq1 o4 A458 600 100 L52
2 e23 Purchase Requisition Supplier Changed 2017-08-16 17:00 rq2 A456

the events related transitively to rq1, i.e. with at least one identifier of an ob-
ject in R+

L (rq1). For instance, we considered event e6 because it contains the
contract identifier c1 that is related to rq1 via event e3, which contains both
rq1 and c1 among the identifiers. The second (blue) trace contains instead
all the events that are associated to objects directly or indirectly related to the
second requisition, rq2. It is worth noting that, since we are considering the
Requisition viewpoint, the first events of the two traces will be the ones as-
sociated with the earliest timestamp among the objects that contain an object
identifier of type Requisition, namely e3 for the first trace and e5 for the
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second trace.
Conversely, existing techniques would be unable to deal with multiple object

types, namely with multiple interleaving processes; they would only restrict to
one single process, which would likely be the process related to objects of type
Requisition. Therefore, there would again be two traces, one per requisition.
Differently from our approach, the event log would only contain the events that
present the first or the second requisition among the identifiers. The resulting log
is in Table 5.2.

e1

e3

e2

e6

e10

e11

e8

e12 e13 e18

e15

e20 e21
e16

e17

e7 e14 e19

Figure 5.1: Directed graph representing the connections between the events of the
first (white) trace illustrated in Table 5.1. The nodes highlighted in gray represent
the events considered when the viewpoint is Requisition and the selected target
activity is the last Invoice Registered.

To give a better intuition about how we extract traces from an object-centric
event log, our technique can be also visually described by relying on graphs.
Given the event log L represented in Table 2.2, where no indication about traces
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exists, each event becomes a node of the graph, and the object identifiers associ-
ated with each event are added as properties of the node. Finally, an edge exists
between two nodes ei and ej if there is at least one object identifier that is both in
ei and ej . This edge is directed since the events are temporally ordered according
to their timestamps. The procedure is then repeated for all the events on the event
log.

A visual representation of the connections between the events of the first iden-
tified trace can be found in Fig. 5.1. Let us recall that, for each object o of the
viewpoint, we find the earliest event e that has o among its objects; since we are
considering the Requisition as viewpoint, e3 will be the first event of the trace
and a node of the aforementioned graph. We then create a trace for object o by
navigating the graph from node e, following the edge directions, and by selecting
every node that is encountered in the navigation. As an example, the node repre-
sented by the event identifier e3 is connected to node e6 because c1 is a property
that is in common between these two nodes, and it is connected to nodes e8, e12,
e13 as the object identifier rq1 is a property that is in common between these four
nodes.

The concept of viewpoint has a direct influence on the number of events that
are included. An example is provided in Fig. 5.1. Here, the gray colour indicates
the nodes that are included when the selected viewpoint is the Requisition, and
the selected target activity is the last Invoice Registered. Statistics describing the
impact of the several viewpoints considered in our evaluation on the number of
events included will be provided in Section 5.3.5.

Summarising, the approach starts from an object-centric event log L = (E, T,

A,AN,AV, AT,OT,O, πtyp, πact, πtime, πvmap, πomap, πotyp, <), which is unfolded
to a single-id event log L = (E ′, T ′, A′, AN ′, AV ′, AT ′, π′

typ, π
′
act, π

′
time,

π′
vmap) around a viewpoint, which defines how the events in an object-centric

event log are aggregated to form traces of a single-id event log.
These traces can be used to train and test a proper prediction model using the

off-the-shelf techniques discussed in Section 2.2.2. However, this unfolding to
a single-id event log does not preserve information about the number of objects
correlated to the viewpoint object. In fact, it excludes the information about the
attributes associated with correlated objects, and their respective value. Let us
suppose again that we aim to use the total processing time of requisitions as KPI,
and this time is somehow correlated to the number of orders associated to the
requisitions (e.g., a requisition for more orders takes longer to be processed). The
prediction of this KPI could be more accurate if the number of orders objects
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associated with the requisition were used to train and use the prediction model.
To mitigate this information loss, we extend our first approach to a richer one,

where we introduce aggregation attributes that synthesize additional interaction
information. Given a prefix σ′

o, of the trace σo for a viewpoint object o, the fol-
lowing aggregation attributes are included.

1. A given attribute a that can take different values v1, . . . , vn in a set {o′1, . . . ,
o′m} ⊆ R+

L (o) of objects related to o. The standard encoding would only
retain one value for a, namely the value observed in the latest event in σo
that assigns a value to a. We define:

• if a is numerical (i.e., πtyp(a) ⊆ R), one feature f is added to the fea-
ture set that contains an aggregated value ψ(v1, . . . , vn) summarizing
observed values. The aggregation function ψ(v⃗) may be customized
depending on the domain, such as the average value in v⃗;

• if a is categorical, a feature is added for each pair (a, vi) with value
defined as the ratio between the number of attribute assignments to
the value vi over the total assignments of a.

2. For each object type o′t ∈ OT , one feature encodes the number of objects of
type o′t associated with events of σ′

o, namely |{o′ ∈ O : πotyp(o) = o′t∧∃e ∈
σ′
o. o

′ ∈ πomap(e)}|.

3. For each object type o′t ∈ OT and for each activity a ∈ A one feature is
added with value equal to the percentage of objects of type o′t for which
activity a has occurred at least once in trace σ′

o.

Example 5.3.2. The result of introducing the aggregation attributes to the feature
set is presented in Table 5.3:

• The first type of aggregation attribute that was introduced is represented
by the column Avg order price, which represents the average order
price (indicated by the column order price) considering all the or-
ders in place in the specific trace. It can be seen that event e6 is asso-
ciated to an Avg order price of 100, since there is only one order
with order price 100; conversely, event e8 is associated to an Avg

order price of 150, since there is one order (o1) with order price

100 and one order (o2) with order price 200.
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• The second type of aggregation attribute that was introduced is represented
by the column %order purchase group=100 L50, which indicates
the fraction of objects correlated with objects of type order where attribute
order purchase group takes on value 100 L50: in particular, it in-
dicates the fraction of the orders that are related to the purchase group
100 L50, compared to the total number of orders. As an example, the
event e6 is associated with a %order purchase group=100 L50 of
1, since there is only one order with purchase group 100 L50; conversely,
event e8 is associated with a %order purchase group=100 L50 of
0.5, since there is one order (o1) with purchase group 100 L50 and one
order (o2) with purchase group 100 L51.

• The third type of aggregation attribute introduced is represented by the col-
umn #Orders, which represents the number of concurrent processes (ob-
jects) of type order in the specific trace. In the event e6 there is only one
order (o1), while in the event e8 there are two orders (o1 and o2) that are
being executed in parallel in the specific trace.

• Finally, the fourth type of aggregation attribute introduced is represented
by the column Order, %Goods Line Registered, which indicates
the percentage of orders that have performed the activity Goods Line

Registered at least once; as an example, it has a value of 0.5 for event
e10, since among the two orders (o1 and 02) there is only one order (o1)
that has performed Goods Line Registered.

5.3.2 Datasets

We previously mentioned that our study design for comparing the performances
of different predictive models in the object-centric case consists of five analysis
phases, which are detailed in Figure 5.2. This section describes the first phase,
which provides details on the object-centric datasets that have been used to assess
the accuracy of the different predictive approaches.

The first object-centric process, which has been already illustrated in Sec-
tion 2.1.1, was executed by a well-known Italian utility-provider company, one
of the major energy companies in Europe. The company focuses on the produc-
tion/extraction of electricity and gas and on their distribution in different parts of
the world. As mentioned in Section 2.1.1 and shown in Figure 2.2, this object-
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Figure 5.2: Study design for comparing Machine-Learning-based techniques for
predictive analytics in object-centric processes.

centric process runs through the intertwining of five different processes (i.e., ob-
ject types): the Requisition, the Order, the Invoice, the Contract, and the Receipt.

The second object-centric process was executed by a well-known American
technology company, one of the major companies worldwide. This object-centric
process runs through the intertwining of three different processes (i.e., object
types), the Requisition, the Order, and the Invoice; Figure 5.3 illustrates how
objects are related to each other for synchronization and data exchanges.

Figure 5.3: Diagram representing cardinality between the different object types
in the IT object-centric event log. For each object type, the cardinality with
the subsequent or the previous object type is represented as (min cardinality,
max cardinality)

Finally, the third object-centric process was executed by a well-known Amer-
ican manufacturing company, whose aim is to sell processed consumer foods
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through retail stores. This object-centric process runs through the intertwining
of three different processes (i.e., object types), the Order, the Receipt, and the
Invoice; Figure 5.4 illustrates how objects are related to each other for synchro-
nization and data exchanges.

Figure 5.4: Diagram representing cardinality between the different object types in
the manufacturing object-centric event log. For each object type, the cardinality
with the subsequent or the previous object type is represented as (min cardinality,
max cardinality)

5.3.3 Data Preprocessing and Selection

The second phase begins with a data preprocessing procedure consisting of three
steps. First, we removed attributes with missing values in more than 80% of the
cases or attributes with the same values in all cases. Second, we used domain
knowledge to remove the somehow duplicated attributes. For example, the event
log contains an attribute that refers to the order plant name, which is unique, and
a second related to the plant identifier. Thus, one of the two can be removed.
Third, the large dimension of both companies is also reflected in the cardinality
of some categorical attributes. For instance, for the utility-provider company, the
codes of the materials shipped worldwide (order material code) are stored in an
attribute that counts up to 4, 179 different values. We applied the 80-20 rule to
reduce the cardinality of the attributes with thousands of different values [71].
Specifically, we kept the most frequent attribute values that covered 80% of the
cases and labeled the remaining values as ”other”.

After data preprocessing, we considered three different feature settings, vary-
ing in the number of features used. First, All Features, indicates that all features
are leveraged for prediction. This setting has been used for LSTM and Catboost
models. Second, All+Aggregated Features, including also aggregated features,
which synthesize additional information about object interaction and which were
encoded according to the procedure that has been already described in Section
5.3.1. This setting has been selected as the previous one for both Catboost and
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LSTM models. Third, Only Essential Features, including activity features, the
four temporal features calculated based on the events’ timestamps (as proposed
by Tax et al. [104]), and five features specifying the object type of the events.
This setting has been used for graph-based models. Note that the selection of the
feature setting and the selection of the models’ architecture (that will be illus-
trated in the Section 5.3.5) were selected based on the best predictive accuracy
that was observed on the validation set. For Catboost and LSTM models, we
decided to include 2 different feature settings (All Features and All+Aggregated
Features), since in most of the times Catboost and LSTM showed a better accu-
racy when leveraging also the aggregated features; however, there were cases in
which leveraging them did not improve the predictive accuracy, due to overfitting
phenomena. The approach without the additional information about aggregated
features is still beneficial on its own when overfitting is detected.

5.3.4 Sequence encoding for Graph Neural Networks

The sequence encoding adopted for Catboost models and LSTM networks has
been already described in Section 2.4.1 and Section 2.4.2, respectively. Here, we
limit ourselves to illustrate the sequence encoding that has been adopted for graph
neural networks.

Graph neural networks, which have been introduced in Section 2.2.2), require
a graph-oriented representation as input.

Graph neural networks cannot be directly trained on raw graphs; therefore,
an adaptation needs to be done in order to leverage graph neural networks for
predictive process analytics. In particular, we transformed raw graphs into in-
stance graphs. When graph neural networks are employed for predictive process
analytics, each prefix of every event-log trace is encoded as an instance graph.
Since nodes and edges of an instance graph can be interpreted in different ways,
there are different forms of how an instance graph can encode a trace prefix; in
this thesis, an instance graph assumes (time-ordered) events of a prefix as graph
nodes and considers edges between the prefix’s events. Regarding edge types, we
differ between (1) Repeat (activity of a target event is equal to an activity of a
source event), (2) Backward (activity of a target event was observed in a previous
event of the current prefix), and (3) Forward (activity of a target event was not
observed in previous events of the current prefix). In the following, we provide
a concrete example illustrating how a trace prefix can be encoded as an instance
graph. Given the prefix σ′ (which can be also represented with a graph struc-



96 Object-centric Predictive Process Analytics

ture, as it can be seen in Figure 5.5), where each row represents an event of the
prefix, with the first attribute representing the case identifier, the second attribute
representing the performed activity, the third the timestamp, and the last one the
resource that has performed the activity:

Figure 5.5: Graph structure representing the prefix example 5.5. Each box illus-
trates the attributes of the related event.

σ′ = ⟨(1, A, 2017/07/16 09:00, Anna),

(1, B, 2017/07/17 09:00, Paul),

(1, B, 2017/07/17 15:00, Dennis),

(1, C, 2017/07/19 15:00, Laura)⟩

(5.5)

the process instance graph Iσ′ for the prefix σ′ can be represented as follows:

Iσ′ =



0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 ,

A 0.0 7 Anna

B 1.0 1 Paul

B 0.25 1 Dennis

C 2.0 3 Laura

 ,
1 2 Forward
2 3 Repeat
3 4 Forward


 (5.6)

Here, the first matrix of the instance graph Iσ′ is the adjacency matrix, which
stores the connection between nodes, which are events in our setting. For exam-
ple, the first row [0, 1, 0, 0] indicates that an edge goes from the first event to
the second event of the prefix. The second is the node matrix, which stores all
information (features) related to the nodes. In this small example, we considered
as features the activity, the time since the previous event in the process instance
calculated based on the events’ timestamps (in days format), the day of the week,
and the resource that performed the activity. The third matrix is the edge matrix,
which stores the event identifier of the source node, the identifier of the target
node, and the type of edge defined by the source and target node.

More formally, instance graph, adjacency matrix, node matrix, and edge ma-
trix can be defined as:
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Definition 5.3.1 (Instance Graph, Adjacency Matrix, Node Matrix, Edge Matrix).
An instance graph I is a three-element tuple (AM,V,EM). AM is an adjacency
matrix storing which nodes of the graph are connected by an edge and lies in
R|V |×|V |, where |V | is the number of nodes of the graph. V is a node matrix
storing features that describe the graph’s nodes and lies in R|V |×q, where q is the
number of node features. EM is an edge matrix that is added in order to store
features that describe the edges of the graph and lies in R|V |×p, where p refers to
the number of features describing the edge, i.e., the source node, the target node,
and features describing the edge.

After describing the required preliminary concepts, we can finally illustrate
the sequence encoding adopted for graph neural networks. In particular, in this
thesis, we relied on two different graph neural networks: GCN (Graph Convo-
lutional Network) and GGNN (Gated Graph Neural Networks) [55]. The main
difference between the two models lies in the fact that the edge matrix of the in-
put graph for the GCN is omitted as the original GCN from [45] does not allow
it to compute it. When leveraging the former, X is represented by a two-element
tuple (AM,V ), where AM is the adjacency matrix and V is the node matrix;
conversely, for the GGNN, X represents a three-element tuple (AM,V,EM),
where EM is the edge matrix that is added in order to store features that describe
the edges of the graph. In the example reported above, which was referring to
a traditional process, the edge types described in the edge matrix were encoded
with respect to the activity; however, when dealing with object-centric processes,
these edge types are defined taking into consideration also the object identifiers.
For example, an edge in an object-centric process is of type Backward iff the
activity has already been observed in previous events of the current prefix for
the same object identifier. Finally, please notice that, for each node (event) of the
GCN and GGNN, the node features have been encoded in the same way as LSTM.
In particular, let us recall the intermediate concept of an event-to-tuple function
ζL : E → A× T × (AV )|AN |, which encodes each event of the event log L; here,
each numerical and boolean attribute a becomes one feature, element of tuple
ζL(e). Each literal attribute a is instead represented through the so-called one-hot
encoding: one different dimension exists for each value v ∈ WAN(a), and the
dimension referring to value e(a) takes on value 1, with the other dimensions be
assigned value 0.
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5.3.5 Evaluation & Results

Our comparison includes prediction models constructed with four different ma-
chine learning algorithms. The first three algorithms, namely GCN, GGNN, and
LSTM, belong to the group of Deep Learning algorithms, whereas the remaining
one, namely Catboost, belongs to the group of Ensemble Learning algorithms.
We already described the architectures and parameters that have been evaluated
for both LSTM and Catboost models in Section 3.4; in the following, we provide
a quick overview about the architectures and parameters that have been evaluated
for the GCN and the GGNN models.

In particular, we used the Tensorflow framework for the GCN and the GGNN
implementation. For both algorithms, we leveraged ADAM as learning algorithm,
we selected 200 training epochs with a patience of 20, a learning rate of 0.001 and
a batch size of 32. In each experiment, we used 2/3 of the traces as a training set
and 1/3 of the traces as a test set. During training, a hyperparameter optimization
was performed, in which we used the last 20% of the training set as a validation
set.

Regarding the GCN implementation, the architecture was inspired by the work
of [116]; the original architecture included a GCN layer with one channel, fol-
lowed by a Global Average Pooling layer, a Dropout layer with a dropout rate
of 50%, two Dense layers with 256 neurons and tanh activation, and a second
Dropout layer with the same dropout rate. We tested different network configu-
rations on the validation set, validating the number of channels in the GCN layer
(which varied between 1, 2, and 4), the number of final Dense layers (we con-
sidered keeping the two layers or removing them) and the number of neurons for
each Dense layer (which varied between 100 and 250).

Conversely, the architecture of the second algorithm (GGNN), which inte-
grates a Gated Recurrent Unit (GRU) cell that explicitly considers the temporal
aspect of sequences, was inspired by the work of [120]; the original architecture
included a Gated Graph layer with four GRU cell iterations and tanh activation,
followed by a Global Attention layer with 100 output channels and three Dense
layers with a dropout rate of 50% each and with 300, 200 and 100 neurons, respec-
tively. We tested different network configurations on the validation set, validating
in particular the number of GRU cell iterations in the Gated Graph layer (which
varied between 1, 2, and 4), the number of final Dense layers (which varied be-
tween 1, 2, 3 or no layers at all) and the number of neurons for each Dense layer
(which varied between 100 and 250).
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All the KPIs were defined wrt. a viewpoint and considering different target
activities. We considered several KPIs in our evaluation, which can be grouped
into three categories:

• Elapsed Time between the first occurrence of the considered object and
the last occurrence of a selected target activity. From the customers’ per-
spective, it is of interest to predict the time required to complete the last
occurrence of some selected activity, considering starting from different
viewpoints. Regarding the utility-provider company, the first target activity
of interest is SES Line Registered. It indicates that the service requested by
the customer is provided. However, as the customer can require several ser-
vices, it is of interest to know when all the services requested are provided.
The second target activity, SES Line Released, indicates that a further step
is performed, which is the confirmation from the manager that everything
is received correctly. Another interesting activity to be monitored is In-
voice Receipt, which indicates that the invoice is correctly charged to the
customer; conversely, Invoice Cleared indicates that the invoice is paid.
Similar target activities were of interest for the manufacturing company, in
particular Invoice Receipt, Invoice Cleared, SES Line Registered and Goods
Line Registered; the last one indicates that the materials requested by the
customer are provided and, since the customer can require several materi-
als, it is of interest to know when all the materials requested are provided.
Also for the technology company, two interesting activities to be monitored
were Invoice Receipt and Invoice Reconciled; the last one, similarly to In-
voice Cleared, indicates that the invoice is paid. The third target activity
of interest is Invoice Submit, which indicates that the Invoice is registered
into the system. The last interesting activity to be monitored is Invoice Ap-
proved, which indicates that the invoice that is submitted for registration is
approved by a manager.

• Pay Delay estimation. It refers to the number of days exceeding the planned
payment date, starting from the contract’s creation to the last occurrence of
Invoice Cleared.

These two categories are defined over a numerical domain and descriptive
statistics relevant to understanding predictive accuracy are summarized in
Table 5.4a.1

1Please notice that the selection of the cases and the observed average standard deviation of
the cases greatly vary depending on the selected KPI.
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Table 5.4: Descriptive statistics of selected KPIs.

(a) Numerical KPIs. AVG stands for Average Value, SD stands for Standard
Deviation. Log 1 refers to the energy company, while Log 2 refers to the IT
company.

Log ID Viewpoint KPI # Cases # Events
Avg
(Days)

SD
(Days)

1 1 Contract Elapsed Time from Contract to the last SES Line Registered 2,960 148,685 278.22 230.96
1 2 Contract Elapsed Time from Contract to the last SES Line Released 2,960 153,572 279.42 230.94
1 3 Contract Elapsed Time from Contract to the last Invoice Receipt 6,821 372,918 237.11 218.61
1 4 Contract Elapsed Time from Contract to the last Invoice Cleared 6,880 427,606 287.14 229.69
1 5 Contract Pay Delay estimation from Contract to the last Invoice Cleared 6,880 427,606 11.41 53.57
1 6 Order Elapsed Time from Order to the last Invoice Receipt 28,798 465,488 28.34 38.20
1 7 Order Elapsed Time from Order to the last Invoice Cleared 35,896 622,868 45.89 51.89
1 8 Requisition Elapsed Time from Requisition to the last Invoice Receipt 2,366 92,781 61.58 49.44
1 9 Requisition Elapsed Time from Requisition to the last Invoice Cleared 2,436 111,077 115.68 60.18
1 10 Requisition Elapsed Time from Requisition to the last SES Line Released 1,310 51,526 50.76 52.44
1 11 Requisition Elapsed Time from Requisition to the last SES Line Registered 1,310 49,510 49.79 52.25
2 12 Requisition Elapsed Time from Requisition to the last Invoice Reconciled 87,722 671,296 28.95 54.94
2 13 Requisition Elapsed Time from Requisition to the last Invoice Receipt 86,702 567,387 26.57 53.06
2 14 Requisition Elapsed Time from Requisition to the last Invoice Submit 87,525 589,172 27.65 54.31
2 15 Requisition Elapsed Time from Requisition to the last Invoice Approved 87,566 594,500 27.99 54.74
2 16 Order Elapsed Time from Order to the last Invoice Reconciled 92,674 755,384 37.65 71.45
2 17 Order Elapsed Time from Order to the last Invoice Submit 92,378 667,973 36.29 70.93
2 18 Order Elapsed Time from Order to the last Invoice Approved 92,392 674,461 36.74 71.40
3 19 Order Elapsed Time from Order to the last Invoice Receipt 50,178 1,187,587 105.49 240.92
3 20 Order Elapsed Time from Order to the last Invoice Cleared 85,936 1,884,186 86.03 193.08
3 21 Receipt Elapsed Time from Receipt to the last Invoice Receipt 37,626 107,249 30.11 84.50
3 22 Receipt Elapsed Time from Receipt to the last Invoice Cleared 73,463 385,689 39.54 68.22
3 23 Invoice Elapsed Time from Invoice to the last Goods Line Registered 36,703 149,089 10.87 8.75
3 24 Invoice Elapsed Time from Invoice to the last SES Line Registered 1558 56,517 28.28 98.21

(b) Categorical KPIs. Column % Cases is the percentage of cases in which the
activity or the attribute is present with that value.

Log ID Viewpoint KPI # Cases # Events % Cases

1 25 Contract Occurrence of Activity Purchase Order Blocked (from Contract to the last Invoice Cleared) 6,880 427,606 27%
1 26 Contract Occurrence of Activity Pay Method Changed (from Contract to the last Invoice Cleared) 6,880 427,606 26%
1 27 Contract Occurrence of Attribute Pay Type Assuming Value Late (from Contract to the last Invoice Cleared) 6,880 427,606 61%
3 28 Order Occurrence of Attribute Pay Type Assuming Value Late (from Order to the last Invoice Cleared) 85,936 1,884,186 60%
3 29 Order Occurrence of Activity Pay Method Changed (from Order to the last Invoice Cleared) 85,936 1,884,186 20%
3 30 Order Occurrence of Activity Invoice Released (from Order to the last Invoice Cleared) 85,936 1,884,186 3%

• Occurrence of activity / occurrence of attribute with a particular value.
It refers to whether a certain activity or condition (e.g., a late payment)
will occur in the future. It is calculated after selecting the path from the
creation of the contract to the last occurrence of Invoice Cleared for the
utility-provider company and from the creation of the order to the last oc-
currence of Invoice Cleared for the manufacturing company. This category
is boolean, with true indicating the occurrence, and false the absence. In
particular, this category includes six boolean KPIs related to activities that
the utility-provider and the manufacturing companies want to prevent, as
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Table 5.5: Predictive accuracy for KPIs and prediction models. Regression-like
and classification-like KPIs are measured with MAE and F1-Score, respectively.
Training times are reported in brackets.

Log ID Viewpoint KPI GCN GGNN
LSTM w.out
aggr. features

LSTM w.
aggr. features

Catboost
naive

Catboost w.out
aggr. features

Catboost w.
aggr. features

1 1 Contract Elapsed Time from Contract to the last SES Line Registered 42.85 (1h 5m) 41.17 (1h 45m) 45.22 (3h 34m) 51.70 (7h 50m) 50.62 (5m) 33.94 (20m) 31.9 (11m)
1 2 Contract Elapsed Time from Contract to the last SES Line Released 42.31 (1h 13m) 47.99 (3h 12m) 50.77 (4h 9m) 59.64 (3h 54m) 48.94 (1m) 34.14 (19m) 33.09 (21m)
1 3 Contract Elapsed Time from Contract to the last Invoice Receipt 42.64 (2h 59m) 41.19 (8h 7m) 37.72 (5h 23m) 40.53 (12h) 39.43 (2m) 29.44 (30m) 30.78 (42m)
1 4 Contract Elapsed Time from Contract to the last Invoice Cleared 47.86 (6h 12m) 44.37 (9h 17m) 39.05 (12h 6m) 43.05 (9h) 44.81 (2m) 34.06 (35m) 34.4 (49m)
1 5 Contract Pay Delay estimation from Contract to the last Invoice Cleared 17.09 (2h 12m) 18.47 (10h 4m) 14.05 (8h 53m) 14.69 (18h 11m) 16.16 (1m) 12.88 (8m) 12.36 (11m)
1 6 Order Elapsed Time from Order to the last Invoice Receipt 27.51 (2h 29m) 36.44 (5h 45m) 26.71 (2h 47m) 28.31 (7h 25m) 23.77 (5m) 20.6 (12m) 19.15 (21m)
1 7 Order Elapsed Time from Order to the last Invoice Cleared 29.95 (7h 56m) 37.04 (11h 50m) 23.22 (4h 19m) 25.48 (8h 22m) 24.19 (12m) 22 (56m) 20.08 (1h 21m)
1 8 Requisition Elapsed Time from Requisition to the last Invoice Receipt 34.39 (41m) 45.62 (33m) 41.36 (56m) 41.98 (1h 43m) 35.57 (1m) 31.72 (7m 25s) 31.08 (5m)
1 9 Requisition Elapsed Time from Requisition to the last Invoice Cleared 35.33 (16m) 67.04 (27m) 40.96 (2h 15m) 37.61 (2h 47m) 42.97 (1m) 32.10 (22m) 36.71 (17m)
1 10 Requisition Elapsed Time from Requisition to the last SES Line Released 32.23 (5m) 75.21 (20m) 55.4 (49m) 41.87 (1h 48m) 37.74 (1m) 29.5 (3m 45s) 26.96 (3m)
1 11 Requisition Elapsed Time from Requisition to the last SES Line Registered 31.52 (5m) 81.62 (14m) 48.97 (48m) 39.48 (1h 15m) 38.25 (1m) 28.05 (1m 57s) 31.2 (6m)
2 12 Requisition Elapsed Time from Requisition to the last Invoice Reconciled 45.86 (2h 56m) 42.12 (4h 47m) 40.5 (1h 16m) 39.29 (3h 40m) 20.36 (2m) 29.7 (11m) 27.5 (13m)
2 13 Requisition Elapsed Time from Requisition to the last Invoice Receipt 48.16 (3h 10m) 44.31 (4h 17m) 49.06 (1h 9m) 41.81 (1h 52m) 18.34 (2m) 31.53 (9m) 29.44 (12m)
2 14 Requisition Elapsed Time from Requisition to the last Invoice Submit 47.88 (1h 45m) 43.02 (5h 12m) 43 (1h 3m) 41.79 (1h 58m) 18.93 (2m) 30.21 (10m) 27.82 (13m)
2 15 Requisition Elapsed Time from Requisition to the last Invoice Approved 47.81 (3h 54m) 43.87 (3h 50m) 42.53 (1h 2m) 41.63 (2h) 19.42 (2m) 30.83 (7m) 28.75 (8m)
2 16 Order Elapsed Time from Order to the last Invoice Reconciled 51.3 (2h 50m) 46.6 (8h) 50.60 (1h 28m) 51.64 (2h 44m) 36.43 (3m) 26.99 (7m) 25.48 (9m)
2 17 Order Elapsed Time from Order to the last Invoice Submit 53.13 (4h 51m) 46.89 (10h 31m) 45.23 (42m) 44.84 (2h 22m) 36.45 (3m) 25.97 (11m) 24.02 (14m)
2 18 Order Elapsed Time from Order to the last Invoice Approved 51.61 (5h 14m) 47.14 (5h 3m) 47.49 (42m) 46.01 (2h 15m) 37.66 (3m) 27.13 (12m) 25.26 (14m)
3 19 Order Elapsed Time from Order to the last Invoice Receipt 48.10 (17h 37m) 41.28 (1d 5h) 53.30 (10h 48m) 56.62 (11h 47m) 59.41 (10m) 33.58 (25m) 37 (31m)
3 20 Order Elapsed Time from Order to the last Invoice Cleared 31.49 (2d 15h) 24.66 (1d 15h) 37.86 (23h 16m) 37.49 (18h 11m) 48.81 (21m) 20.26 (47m) 21.77 (52m)
3 21 Receipt Elapsed Time from Receipt to the last Invoice Receipt 37.68 (1h 4m) 32.83 (37m) 30.76 (19m) 29.61 (40m) 38.98 (2m) 22.83 (2m) 22.73 (3m)
3 22 Receipt Elapsed Time from Receipt to the last Invoice Cleared 28.94 (4h 25m) 18.09 (6h 46m) 47.72 (2h 53m) 16.98 (1h 41m) 19.98 (6m) 11.47 (9m) 11.42 (10m)
3 23 Invoice Elapsed Time from Invoice to the last Goods Line Registered 4.31 (50m) 1.93 (2h 39m) 2.59 (1h 15m) 2.49 (1h 41m) 4.18 (1m) 1.05 (3m) 1.06 (4m)
3 24 Invoice Elapsed Time from Invoice to the last SES Line Registered 18.37 (20m) 19.14 (1h 28m) 26.06 (1h 9m) 16.59 (1h 8m) 22.09 (2m) 17.14 (2m) 17.32 (3m)
1 25 Contract Occurrence of Activity Purchase Order Blocked 0.33 (4h 45m) 0.37 (9h 12m) 0.51 (6h 4m) 0.52 (9h) 0.53 (2m) 0.48 (15m) 0.60 (20m)
1 26 Contract Occurrence of Activity Invoice Pay Method Changed 0.38 (3h 35m) 0.50 (13h) 0.64 (6h 22m) 0.66 (12h 39m) 0.67 (2m) 0.70 (14m) 0.74 (20m)
1 27 Contract Occurrence of Attribute Pay Type Late 0.73 (1h 6m) 0.75 (5h 38m) 0.82 (7h 12m) 0.82 (14h) 0.80 (2m) 0.82 (14m) 0.82 (19m)
3 28 Order Occurrence of Attribute Pay Type Late 0.76 (1d) 0.78 (1d 2h) 0.75 (15h 45m) 0.76 (18h 50m) 0.80 (16m) 0.83 (39m) 0.83 (42m)
3 29 Order Occurrence of Activity Invoice Pay Method Changed 0.34 (1d 9h) 0.47 (1d 4h) 0.47 (16h 12m) 0.50 (17h 29m) 0.46 (15m) 0.58 (39m) 0.60 (41m)
3 30 Order Occurrence of Activity Invoice Released 0.06 (4d) 0.12 (1d 12h) 0.50 (16h) 0.28 (18h 27m) 0.56 (30m) 0.62 (1h 15m) 0.63 (1h 17m)

summarized in Table 5.4b.2 First, they were both interested to know in ad-
vance whether there would be changes to the payment method (represented
by the activity Invoice Pay Method Changed). When this activity happens,
there are usually delays in payments. Moreover, they were interested to
know whether there will be delays with the payments (represented by the
attribute Pay Type assuming value Late). Lastly, the former company was
also interested in predicting whether there will be problems with the order
(represented by the activity Purchase Order Blocked) since this situation
can bring additional delays caused by the reworks needed to fix the prob-
lem. Similarly, for the latter company, it was interesting to know whether
there will be problems with the invoice since this situation can bring ad-
ditional delays caused by the reworks (represented by the activity Invoice
Released) needed to fix the problem.

We calculated the MAE for the 24 numerical KPIs as values were reasonably
well balanced. By contrast, we calculated the F1-Score for the last six boolean
KPIs. Finally, we report between parenthesis the training time required to train
every prediction model for each KPI of interest.

2The last column reports the distribution of the classes. For example, the activity Invoice Pay
Method Changed in the utility event log was performed in 26% of the cases.
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Table 5.5 summarizes the results of our comparison. As mentioned before,
our comparison takes into account four different predictive models, namely GCN,
GGNN, LSTM, and Catboost.

As described in Section 5.3.3 and illustrated in Figure 5.2, the selection of the
feature setting that have been used for the several prediction models have been
chosen based on the best predictive accuracy that was observed on the validation
set. For Catboost and LSTM, however, we included two different feature settings
(All Features and All+Aggregated Features), since both of them were beneficial
depending on the selected KPI. Moreover, we also included a baseline (Catboost
naive) representing an example of existing technique that focuses only on one
single process, thus being unable to deal with multiple interleaving processes.
The baseline relied on Catboost, since the comparison illustrated in Chapter 3
highlighted a better accuracy compared to LSTM models when predicting the
outcome in traditional processes.

First of all, examining the last three columns in Table 5.5, which refer to
the results obtained with three different settings adopted for Catboost predictive
model, we can immediately observe that overlooking the object interactions has
a great impact on the predictive accuracy: the approach that considers all the
events directly or indirectly connected to objects of the selected viewpoint and
the approach that also considers the aggregated features have the best predictive
accuracy in almost all the considered KPIs. The only exception is related to
the results obtained for the second event log when considering the Requisition
viewpoint (KPIs 12 to 15).

Moreover, examining the accuracy obtained when leveraging or not the ag-
gregated attributes, it can be observed that leveraging the aggregated attributes
improved LSTM model accuracy in 19 cases out of 30 (especially in the KPIs
related to the second and the third case study), while it improved Catboost accu-
racy in 22 cases out of 30; this further confirms that taking into account the object
interactions can often improve the accuracy, independently from the type of the
adopted predictive model (LSTM attributes’ encoding substantially differs from
the encoding adopted by Catboost).

Furthermore, we observe that Catboost achieves the highest predictive accu-
racy among the four prediction models in almost all the considered KPIs; there
is only one case (KPI 9) where the GCN obtains a slightly better predictive ac-
curacy compared to Catboost with the aggregated features, while there are two
cases (27 and 24) where, compared to Catboost, the LSTM obtains an equivalent
and slightly better predictive accuracy, respectively. However, Catboost models
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are generally learned significantly faster compared to other predictive models.
We further compare the obtained results with the statistics of the selected KPIs

in Table 5.4; in particular, for the first case study, we noticed that the event logs
obtained for the numerical KPIs 3 to 7 and for the categorical KPIs 25 to 27 are
those that contain more events. In these settings, the predictive accuracy of LSTM
is closer to that of Catboost, and considerably outperforms those of GGNN and
GCN. However, for the numerical KPIs 12 to 18 related to the second case study,
while GGNN and LSTM consistently perform better than GCN and, except for
one case (KPI 16), LSTM performs consistently better than GGNN, Catboost
systematically outperforms other methods. Linked to the point above, LSTM can
naturally learn from sequences of events, thus learning from the interaction among
process objects. By contrast, GGNN and GCN tend to focus on adjacency matri-
ces of nodes (i.e., events) in proximity, being less capable of reason on events that
are indirectly connected. However, while the LSTM does not always outperform
GGNN, Catboost systematically performs better than the other models because of
the aggregated features, designed to capture the object-interaction. Conversely,
for the numerical KPIs 8 to 11, which are characterized by fewer events, the
GCN outperforms LSTM and shows a predictive accuracy relatively compara-
ble to Catboost. Also for numerical KPIs 1 and 2, which are characterized by
fewer events, the GGNN and GCN consistently outperform LSTM models. From
this, we can conclude that the GCN can occasionally have slightly better perfor-
mances in the presence of limited amount of data (which instead poses an issue
with LSTM) but, if enough data is provided, Catboost systematically outperforms
graph-based approaches, which conversely struggle to learn more complicated
interaction patterns.

When the KPI is related to the (non) occurrence of a process’ activity (e.g.,
Occurrence of Activity Purchase Order Blocked) that is seldom observed (see
KPIs 25 and 26), we observed that Catboost models and LSTM networks sig-
nificantly surpass graph-based neural networks. Particularly relevant is KPI 30,
where the target activity to be monitored, Invoice Released, is very rare (it was
observed only in the 3% of cases); here, the predictive accuracy of graph-based
neural networks drops dramatically, and both Catboost and LSTM networks out-
perform graph neural networks. When the activity is more common (see KPIs
27 and 28), graph-based neural networks show better predictive accuracy (in KPI
28 graph-based models even perform slightly better than LSTM); however, their
predictive accuracy remain poorer than that of Catboost models.

Finally, when the KPI is related to the (non) occurrence of a process’ activity
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(KPIs 25 to 30), we can see that the designed aggregated attributes can consis-
tently increase the accuracy of the predictive model; in fact, it improves in 4 cases
out of 6 for LSTM (in another case it achieves the same accuracy), while it im-
proves in 4 cases out of 6 for Catboost (in the remaining two cases it achieves the
same accuracy).

5.4 Explanations of Object-centric Process Predic-
tions

As a further confirmation of the importance of object-interaction and aggregated
features, we computed the Shapley Values in accordance to the framework dis-
cussed in Chapter 4; in particular, explanations were calculated on the test dataset.
While the adopted explainability framework is independent of the actual tech-
nique employed to make the predictions, we reported here only on the explana-
tion of predictions for the Catboost method. This choice is motivated by the fact
that, as discussed in the previous section, Catboost is preferrable both to LSTM
and graph neural networks for prediction, due to the increased speed to build the
model and increased accuracy.

Figure 5.6 illustrates the boxplot representing the distribution of the Shapley
values over the different trace prefixes for some of the most important features
influencing the prediction of the KPI Elapsed Time from Contract to the last In-
voice Receipt in the first event log for the approach with the aggregated features.
In particular, each boxplot is ordered by the average Shapley value on the selected
KPI considering the absolute value. Each row of the boxplot is linked to an ex-
planation, which extends towards left or right, depending whether the observed
Shapley values for the explanation were negative or positive. It can be clearly
seen in Figure 5.6 that many aggregated features are indeed considered relevant
by the predictive model; as an example, the most important explanation is %
ORDER PURCH GROUP=100 L50 > 0.33 and the average associated Shapley
value is -15 days: this means that, when more than the 33% of the orders are
related to the purchase group 100 L50, the estimated Elapsed Time from the sig-
nature of the Contract to the last Invoice Receipt reduces on average by 15 days.

A similar reasoning can be applied to Figure 5.7, which reports on some of
the most important features influencing the prediction of the KPI Elapsed Time
from Contract to the last Invoice Cleared for the approach without the aggre-
gated features. As it can be seen, several features were added after considering
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Figure 5.6: Boxplot representing the impact of some of the most important ag-
gregated features that were added to the predictive model in order to improve the
accuracy for the KPI Elapsed Time from Contract to the last Invoice Receipt re-
lated to the first event log in the approach with aggregated features.

the object interaction and were considered useful by the predictive model, such
as PAY DUE MONTH ADJ and the occurrence of the activity Invoice Due Date
Changed; these are attributes related to the Invoice object type, whose values are
related to the last opened invoice (or to the last performed activity).

However, since we do not use aggregated features, we miss several factors
significantly influencing the prediction. Indeed, when we consider the aggre-
gated features for the same KPI (Elapsed Time from Contract to the last In-
voice Cleared) and compute the significance of the influence (i.e. the average
Shapley value), we obtain the boxplots in Figure 5.8. It can be clearly seen
that the aggregation attributes are now among the most important factors sig-
nificantly influencing the prediction. As an example, the two most important
factors that are contributing to increase the estimated time are represented by
%Order planned delivery month=7 > 0.18 and 318 < #Orders < 966. The for-
mer is associated with an average Shapley value of 20, which means that when
more than 18% of the orders are delivered in July (month 7), the estimated time
to clear the last invoice is 20 days larger that the average. The latter, associated
with an average Shapley value of 8, indicates that when there are a lot of orders
that needs to be managed at the same time (between 318 and 966), the estimated
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Figure 5.7: Boxplot representing the impact of some of the most important fea-
tures that were added to the predictive model (such as the attributes related to the
Invoice object type) in order to improve the accuracy for the KPI Elapsed Time
from Contract to the last Invoice Cleared related to the first event log in the ap-
proach without aggregated features.

time to clear the last invoice is 8 days larger that the average. Conversely, one of
the most important factors contributing to decrease the estimated time is ORDER,
%Goods Line Registered > 0.97, which is associated with an average Shapley
value of -10; this means that, when the activity Goods Line Registered (which
represents the fact that the goods have been received) has been performed at least
once in more than 97% of the orders, the estimated time reduces on average by
10 days.

Figure 5.9 illustrates the boxplot representing the distribution of the Shapley
values over the different trace prefixes for some of the most important features
influencing the prediction of the KPI Elapsed Time from Order to the last Invoice
Submit in the second event log for the approach with the aggregated features.
It can be clearly seen that many aggregated features are indeed considered rel-
evant by the predictive model; as an example, the most important explanation
is % INVOICE ID VENDOR=100 1000197058 > 0.17 and the average associ-
ated Shapley value is +70 days: this means that, when more than the 17% of
the invoices are related to the vendor 100 1000197058, the estimated Elapsed
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Figure 5.8: Boxplot representing the impact of some of the most important ag-
gregated features that were added to the predictive model in order to improve the
accuracy for the KPI Elapsed Time from Contract to the last Invoice Cleared in
the approach with aggregated features.

Time from the request of the Order to the last Invoice Submit increases on aver-
age by 70 days. A further analysis of the data confirms this finding: when this
Invoice Vendor is involved, the average duration of the process is 157d 9h, com-
pared to an average process duration of 36d. Other important explanations are
associated to the average number of items purchased by the customers, calculated
considering all the orders that are being managed (represented by the attribute Avg
ORDER LINE AMOUNT). As an example, the second most important explana-
tion is Avg ORDER LINE AMOUNT < 659 and it is associated with an average
Shapley value of -34 days, while the third most important explanation is Avg OR-
DER LINE AMOUNT> 25666 and it is associated with an average Shapley value
of +26 days. This means that when the average number of purchased items (con-
sidering all the orders) is high (> 25666), the time needed to fulfill all the orders
is increased by 26 days; conversely, when the average number of purchased items
is lower (< 659) the time needed to fulfill all the orders is decreased on average
by 34 days.

Regarding the third case study, we mentioned that the manufacturing com-
pany aims to avoid activities related to inefficiencies, such as Invoice Pay Method
Changed (when this activity happens, there are usually delays in payments), and
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Figure 5.9: Boxplot representing the impact of some of the most important ag-
gregated features that were added to the predictive model in order to improve the
accuracy for the KPI Elapsed Time from Order to the last Invoice Submit related
to the second event log in the approach with aggregated features.

Invoice Released (i.e. the activity that needs to be performed when problems
with the invoice occur). The explanations related to the first activity are shown
in Figure 5.10. As it can be seen, the two most important aggregated features
that are contributing to decrease the probability that the Payment Method will be
changed are Avg ORDER LINE AMOUNT < 8 and INVOICE, % INVOICE Send
Payment> 0.72. The former indicates that when the average number of purchased
items (calculated considering all the orders) is low (< 8), then the probability that
the payment method will be changed is decreased by 37%. The latter means
that when the payment has been already sent for more than 72% of the invoices,
then the probability that the payment method will be changed is decreased by
30%. Analyzing the process, we noticed that when the Payment Method has to be
changed, it is usually changed immediately after registering the invoice but before
sending the payment; therefore, if the payment has been already sent for a lot of
invoices, the probability that the payment method changes decreases. Conversely,
the aggregated attribute # Order > 996 associated with a Shapley value of 0.22
indicates that when there are a lot of orders that need to be managed at the same
time (more than 966), the probability that the payment method will be changed is
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Figure 5.10: Boxplot representing the impact of some of the most important ag-
gregated features that were added to the predictive model in order to improve the
accuracy for the KPI Occurrence of activity Invoice Pay Method Changed related
to the third event log in the approach with aggregated features.

increased by 22% compared to the average.

Finally, the explanations related to the occurrence of the second activity (In-
voice Released), which is related to the third case study, are shown in Figure
5.11. Here, the two most important explanations are 0.08 < INVOICE, % Invoice
Blocked: Locked for payment < 0.75 and INVOICE, % Invoice Blocked: Locked
for payment > 0.75; they indicate that, when the percentage of blocked invoices
among all the considered invoices is between 8% and 75% or is greater than 75%,
then the probability of the occurrence of Invoice Released is increased by 65%
and 63%, respectively. While these two explanations could seem trivial at a first
glance (if one of the invoices is blocked, there will be the need to unblock it,
i.e. to perform the activity Invoice Released), the evidence in the explanations
demonstrates that Catboost allowed learning a prediction model that leverages on
the aggregated attributes to correctly estimate the occurrence of Invoice Released.
Notice also that, when one or more invoices have performed an Invoice Released
at least once, the probability that also other invoices will perform Invoice Re-
leased is increased; this is represented by the two explanations 0.26 < INVOICE,
% Invoice Released < 0.62 and 0.62 < INVOICE, % Invoice Released < 0.78,
which are associated with a probability of 58% and 48%, respectively.
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Figure 5.11: Boxplot representing the impact of some of the most important ag-
gregated features that were added to the predictive model in order to improve the
accuracy for the KPI Occurrence of activity Invoice Released related to the third
event log in the approach with aggregated features.

5.5 Summary

The lion’s share of attention in (Business) Process Management has traditionally
been on designing and analyzing processes that are based on a unique notion of
case identifier, with a single flow of execution from an initial state to one of the
potential final states. In practice, organizations execute more complex processes
that are often interacting with each other: one instance of a given process syn-
chronizes with instances of other processes, possibly exchanging data. In light of
the above, the object-centric process paradigm is nowadays attracting more and
more attention in academia and industry. In this paradigm, the process is seen as
the interplay of numerous sub-processes that constitute the life cycles of different
objects, which periodically synchronize with each other.

This chapter tackles the problem of predictive analytics over object-centric
processes. The large share of research in predictive analytics cannot be directly
applied here, because it traditionally focuses on the problem of predicting the
outcome of cases (i.e., process instances) that run in isolation. Also recent tech-
niques that capture the inter-case dynamics assume instances to be of the same
process, namely referring to the same object type. If the valuable information of
the interaction between objects of the same or different type is not fed into the
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construction of prediction models, the resulting model might be of low accuracy.
A first viable solution proposed in this chapter, is to flatten object-centric event

logs into single-identifier event logs and to enrich the latter via features that en-
code the object interactions. This solution approximates the graph-like structure
of the object interactions, with some degree of information loss. The accuracy of
the proposed approach that also encodes the object interactions has been firstly
compared with that of a naı̈ve approach, which only considers the events related
to the process of the viewpoint objects. Experiments have shown that the naı̈ve
approach performs rather poorly, confirming the importance of our approach to
consider the object interactions when predicting.

Typically, the operation of flattening the event log typically leads to a dupli-
cation of events, possibly strengthening existing directly-follows relationships or,
even, adding new relationships that do not exist in reality. These problems, known
as convergence and divergence [26, 110], make it impossible to apply process-
mining techniques designed for single-flow processes that heavily rely on the
directly-follow relationships, such as those for model discovery and conformance
checking. Conversely, unfolding causes no problem in our process-prediction ap-
proach, because we do not use the direct-follow relationships.

After flattening the object-centric event logs into single-identifier event logs,
this chapter reports on the experience of comparing the quality of the predictions
obtained by leveraging four different techniques to tackle predictive analytics in
object-centric processes. In particular, one technique is based on Gradient Boost-
ing on Decision Trees, and three are based on Deep Neural Networks, including
graph-based models. The four techniques were empirically evaluated on event
logs related to three real object-centric processes, and 30 different KPI defini-
tions. The experimental results show that the technique based on Gradient Boost-
ing performs consistently better than those based on Deep Neural Networks, both
in terms of accuracy and training time, and that considering the object interactions
often improves the quality of the predictive model. Finally, Shapley Values and
Explainable AI techniques have been leveraged to further confirm the importance
of object-interaction and aggregated features for improving the prediction qual-
ity. In the next chapter, we illustrate how our framework for explainable predictive
process monitoring can be extended from predictive to prescriptive analytics.
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Chapter 6

Explainable Prescriptive Process
Analytics

Process-aware Recommender systems (PAR systems) are informa-
tion systems that aim to monitor process executions, predict their
outcome, and recommend effective interventions to have better ends.
Recent literature puts forward proposals of PAR systems that return
valuable, practical recommendations. However, recommendations
without sensible explanations prevent process owners from feeling
engaged in the decision process or understanding why these inter-
ventions should be carried out. Therefore, the risk of process owners
to not trust the PAR system and overlook these recommendations is
high.

This chapter proposes a framework to accompany recommendations
with sensible explanations based on the process behavior, the intrin-
sic characteristics, and the context in which the process is carried
on. The potential relevance of these explanations for process owners
is illustrated in two use cases.

6.1 Motivation

Recent literature has put forward a number of proposals of prescriptive analytics,
whose focus is mostly on recommending the corrective actions, without providing
the reasons that led the systems to propose the suggested recommendations [16,
121]. However, recommendations without sensible explanations prevent process

113
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actors from feeling engaged in the decision process of the recommendations, and
from understanding the rationale behind; in this scenario, process actors tend to
not follow the suggested corrective actions, which are based on data, but rather
to enact contingency actions that are subjective and, thus, can even potentially
worsen the KPI outcome [17].

This chapter proposes a framework to extend PAR systems with explanations
that provide process actors with the rationale behind the choice of the recom-
mended activities. Explanations are based on process-related characteristics, such
as the values of process variables (e.g., the customer is requesting a loan of 70
KC), the activities performed in process (e.g., the loan assessment has already
been repeated twice), or the resources that performed activities (e.g., the loan
application was validated by Alex, who is a manager).

Our framework for explaining the selected recommendations leverages on cur-
rent state of the art of Explainable AI, specifically on the Shapley Values game-
theory approach (cf. Section 2.3.2). The proposed framework is independent of
the machine- or deep-learning technique that is employed to generate the recom-
mendation. However, we aim to instantiate the framework to prove its effective-
ness. Therefore, we extended the PAR system proposed in [16] with our expla-
nation framework, using gradient boosting on decision trees as machine-learning
model for generating predictions and recommendations.

Experiments were run on two real-life datasets, which referred to instances of
one process in an Italian bank, and one at Volvo Belgium. The experiments first
confirmed the quality of the recommendations to improve the KPIs of interest
in relevant process instances, then illustrated the typical shapes of the accordant
explanations generated by our framework proposal.

6.2 Related works

Literature has largely focused on predicting the future outcome of process in-
stances (cf. Section 3.2). A recent body of research has been focusing on recom-
mending which activities to work on as next, to improve process’ KPIs of interest,
or to suggest the most common continuations [7, 16, 67, 121].

In parallel, several research works focused on explaining the reasons of these
predictions and the affecting factors, using several approaches (cf. Section 4.2 and
our approach based on leveraging the Shapley Values, which has been described
in Chapter 4).
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However, none of the existing works provide an explanation of the recom-
mendations, in addition to the rationale of the predicted KPI values. Note that ex-
plaining predictions is certainly different than explaining recommendation: while
explaining the predictions focuses on every aspect that significantly affects the
expected process’ outcome, explaining the recommendations should solely focus
on those aspects whose negative impact on the KPI values is much more mitigated
by the recommendations than by other actions.

In this chapter, we always decided to rely on the Shapley Values in order to
build our framework. As already mentioned in Section 4.2, we also considered
using attention-based mechanisms. However, this type of approach can provide
explanations only for neural network models; moreover, attention mechanisms
are disputed whether or not they are always correlated to feature importance [87],
while Serrano and Smith [92] claim that attention weights often fail in the task of
finding the factors influencing the model’s final decisions.

6.3 A Framework for Generating Recommendations

A process aware recommender-system aims to recommend the k-top best next
activities in order to improve the relevant KPI. However, these activities need to
be valid from a domain viewpoint. We avoid the strong assumption of having a
process model in order to prescribe how process instances must be executed. We
also assume an activity to be valid in a certain process state if it has been previ-
ously observed in other executions for the same state. This requires to provide a
state-representation function.

Definition 6.3.1 (State-representation function). Let σ be a trace, and R a set of
the possible representations. The function lstate : E∗ → R that for each (prefix of
a) trace returns the state, is called state-representation function.

The determination of the activities allowed after the occurrence of a sequence
of events requires to build a Transition System where nodes are the state observed
in the log and arcs are activities observed in those states [109].

Definition 6.3.2 (Transition system). Let lstate be a state-representation function,
L an event log and E its set of events. A transition system abstracting L is a tuple
TSL = (S, T ) ⊆ R× (R× E ×R) where

• S = ∪σ∈L ∪σ′∈ prefix (σ) l
state (σ′)
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Figure 6.1: Transition system based on the example log Lex =

{⟨a, b, c, d⟩, ⟨a, b, c, e⟩, ⟨a, b, c, f⟩, ⟨a, b, c, g⟩, ⟨a, c, d, f⟩}

• T = {(lstate (σ′) , e, lstate (σ′ ⊕ ⟨e⟩)) s.t. ∃σ ∈ L : σ′ ⊕ ⟨e⟩ ∈ prefix(σ)}

Fig 6.1 shows an example of a transition system in accordance with Def. 6.3.2.
It has been built on an event log Lex = {⟨a, b, c, d⟩, ⟨a, b, c, e⟩, ⟨a, b, c, f⟩,
⟨a, b, c, g⟩, ⟨a, c, d, f⟩}1, using a sequence-based state-representation function
lstatesq (⟨e1, . . . , en⟩) = ⟨πact(e1), . . . , πact(en)⟩. Through this function, the state
of a (prefix of a) trace is identified with its ordered list of activities. For the
example with Lex, the set of possible states is thus S = {⟨a, b, c, d⟩, ⟨a, b, c, e⟩,
⟨a, b, c, f⟩, ⟨a, b, c, g⟩, ⟨a, c, d, f⟩, ⟨a, c, d⟩, ⟨a, b, c⟩, ⟨a, b⟩, ⟨a, c⟩, ⟨a⟩}.

Transitions systems are built by the recommender system in order to deter-
mine, based on the history, which activities are allowed after observing a sequence
of activities. The transition system can naturally be extremely large and not in-
telligible, but this poses no threat because it is only used internally and it is never
shown to process’ actors.

Let us assume that a process instance leaves a trail of events as per trace
σR = ⟨e1, . . . , ek⟩. The trace is running: new activity executions are still ex-
pected before completion. We want to recommend the best next activities that
optimizes a KPI K. Let us assume a transition system TSL = (SL, TL) and an
oracle function ΦK, both constructed from an event log L. We aim to recom-
mend what to do next for σR. First, we build the set of next possible activi-

1Here, for simplicity, events are just referred to through the activity name.
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ties AσR
that are allowed to occur after observing the events in σR, assuming

those coincide with what observed in L and thus modelled by TSL: AσR
=

{πact(e) : ∃ (lstate (σ′) , e, lstate (σ′ ⊕ ⟨e⟩)) ∈ T}. Then, for every activity act ∈
AσR

, we evaluate the expected KPI of σR ⊕ act using the oracle function (i.e.
ΦK(σ

′⊕act)). Here and later, σ⊕act indicates the trace σ extended with an event
(act, t,V) where t is the timestamp of the last event in σ, and V : AN → {⊥}
with V(a) = ⊥ for all a ∈ AN . Here, the attributes are given a value ⊥ to
indicate that a value was not assigned for the specific event. The definition of V
reflects the uncertainty on the values that are going to be assigned to attributes
through the execution of activity act. As many other predictive methods, Cat-
boost is able to interpret and deal with these missing values, namely attributes
whose value is unknown. 2

This procedure associates each activity with the corresponding expected KPI
value, establishing a ranking of possible next activities; afterwards, we recom-
mend the first k best activities actrec (with k customizable), namely those associ-
ated with the best expected KPI values.

To give a better intuition of how our recommender system works, let us sup-
pose that we have a running trace σ′ = ⟨a, b, c⟩ and that we aim to estimate
what will be the total time of the trace upon completion. According to our tran-
sition system illustrated in Fig 6.1, the possible next activities allowed for this
trace could be only d, e, f or g. Afterwards, we leverage our Catboost model,
which has been previously trained on the completed traces, in order to give a to-
tal time estimation for each of the possible continuations ⟨a, b, c, d⟩, ⟨a, b, c, e⟩,
⟨a, b, c, f⟩, ⟨a, b, c, g⟩. Finally, we can establish a ranking of the possible contin-
uations, suggesting the ones (depending on the threshold k) associated with the
lowest predicted total time. Let us suppose that the threshold k is configured to
1; in the example represented in Tab 6.1, it would be recommended to perform
the activity f as next activity, since it is associated with an expected total time of
261h 56min, which is the lowest one among all the possible continuations.

6.4 A Framework for Explaining Recommendations

Our recommendations are given choosing the activity that has the best KPI pre-
dicted between all the possible next activities reported in the transition system.

2See https://catboost.ai/en/docs/concepts/

algorithm-missing-values-processing

https://catboost.ai/en/docs/concepts/algorithm-missing-values-processing
https://catboost.ai/en/docs/concepts/algorithm-missing-values-processing
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Possible next activity Expected total time
d 311h 32min
e 404h 10min
f 261h 56min
g 467h 1min

Table 6.1: Ranking for a given trace σ′ = ⟨a, b, c⟩. In this example, relative to the log L described in the transition
system in Fig6.1, the KPI is the total time, and so we aim to minimize it (=K assumes the value of the < operator). In
this example, we would recommend f, d and e, in this order of preference (assuming k to be set to 3).

We now aim to use the Shapley values theory to provide an explanation of the
reason why we suggest that activity. The proposed framework leverages on com-
paring the difference between the Shapley values of the features before and after
the recommendation. This allows the user to receive explanations and under-
stand how the contribution of each variable would change following or not the
recommendation that we are providing. Given an event log L, a (prefix of a)
running trace σ′ ∈ L, and one of the next recommended activities actrec as de-
fined in the previous section, we first evaluate the vector of its associated Shapley
values ΨK(σ

′), using the SHAP function as described in 4.3.2. We then com-
pute the vector ∆(σ′, actrec) of the element-wise difference between ΨK(σ

′) and
ΨK(σ

′ ⊕ actrec), namely between the Shapley values before and after executing
actrec:

∆(σ′, actrec) = ΨK(σ
′)−ΨK(σ

′ ⊕ actrec) (6.1)

Reminding that Aσ′ is the set of possible next activities and ΦK : X1, . . . , Xm →
R the oracle function. Let us assume, without loss of generality, that the =K op-
erator is equal to <, i.e. we aim to decrease the KPI (a similar discussion could
be carried out if =K is equal to >). We have two possible scenarios :

1. It is possible to improve the KPI performing one of the activities in Aσ′ . So
∃act ∈ Aσ′ s.t. ΦK(σ

′) > ΦK(σ
′ ⊕ act), and actrec is therefore the activity

that provides the largest KPI’s improvement.

2. It is not possible to improve the KPI performing one of the activities in Aσ′ ,
namely ∄act ∈ Aσ′ s.t. ΦK(σ

′) > ΦK(σ
′ ⊕ act). In this case, the provided

recommendation actrec is the activity that worsens the KPI the least.

Explaining recommendation is especially relevant for the first scenario, namely
when the recommended activity is predicted to improve (decrease, in the exam-
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ple) the KPI values. In this case, we take the dimensions of vector ∆(σ′, actrec)

associated with the top-k larger values, namely the Shapley values that decrease
the most after executing actrec. Let us assume feature fi to be one of the features
for which the Shapley values increase the most. The associated explanation can be
interpreted as follows: “The execution of recommendation actrec reduces the in-
fluence of feature fi = xi of a quantity equal to ∆(σ′, actrec)[fi]”. As an example,
let us consider that the KPI is the total time of a process execution (the lower the
value the better it is). If ∆(σ′, Send Letter)[Customer Type = Gold] = 200,
the performance of activity Send Letter after σ′, it is expected to reduce the in-
fluence of Customer Type = Gold on the total time of 200 time units (e.g.,
hours).

Each recommendation should be associated with at least one explanation,
namely at least one feature fi for which ∆(σ′, actrec)[fi] > 0. Theorem 6.4.2
below guarantees that it is always the case. The proof requires one intermediate
lemma:

Lemma 6.4.1 (Disequation’s properties). Given a, b ∈ Rm, if
∑m

i=1 ai >
∑m

i=1 bi
there exists at least a j ∈ {1, . . . ,m}, such that aj > bj

Proof. Suppose by contradiction that

∀i ∈ {1, . . . ,m} ai ≤ bi

Applying then the summation for all i ∈ {1, . . . ,m} ai ≤ bi, we get the hypothe-
sis falsified, and then the thesis.

The theorem of the presence of at least one explanation can now be formulated
and proven:

Theorem 6.4.2. Let σ1, σ2 ∈ E∗ two different traces, ΦK : X1 × . . .×Xm → R
be the oracle function and ΨΦK : E∗ → Rm be the associated SHAP function. If
ΦK(σ1) > ΦK(σ2), then exists at least an i ∈ {1, . . . ,m} such that ΨΦK(σ1)[fi] >

ΨΦK(σ2)[fi]

Proof. Let ΦK(X )) the average value (a.k.a. base value) for the prediction of
elements belonging to the domain set X . From [68] we know that the sum of
the elements of the Shapley Values vector is equal to the difference between its
relative predicted value and the base value, analitically

m∑
i=1

ΨΦK(σ)[fi] + ΦK(X )) = ΦK(σ) ∀σ ∈ E∗ (6.2)
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Applying this formula to both σ1 and σ2 we obtain the system
m∑
i=1

ΨΦK(σ1)[fi] + ΦK(X )) = ΦK(σ1)

m∑
i=1

ΨΦK(σ2)[fi] + ΦK(X )) = ΦK(σ2)

. (6.3)

By subtracting the second from the first equation we obtain

ΦK(σ1)− ΦK(σ2) =
m∑
i=1

ΨK(σ1)[fi]−
m∑
i=1

ΨK(σ2)[fi]

Since ΦK(σ1) > ΦK(σ2) by hypothesis, we get that ΦK(σ1) − ΦK(σ2) > 0, and
so

m∑
i=1

ΨK(σ1)[fi] >
m∑
i=1

ΨK(σ2)[fi]

Then, applying the lemma 6.4.1, we obtain that exists at least a feature fj for
which ΨΦK(σ1)[fj] > ΨΦK(σ2)[fj]

This ensures that at least a value exists for which we can provide the change
in Shapley value as an explanation, and it is the one at the j − th entry. It is
also important to note that since the theorem also holds when inverting both the
inequalities, we can apply the same procedure if =K operator is equal to > (i.e.
we aim to maximize the KPI) and providing as explanations the features with
lower ∆(σ′, actrec) associated.

The discussion above corresponds to the scenario where there is a recommen-
dation that predicts to improve the KPI. In the alternative scenario where there is
no recommendation for KPI improvement, we do not have formal guarantee that
an explanation exists. The framework’s implementation in order to train the ora-
cle function has been already described in Chapter 3; in particular, we leveraged
the libraries Pandas and NumPy. The explanations are provided using the library
provided by SHAP, in its framework dedicated to CatBoost3.

6.5 Recommendations results

Although this chapter’s focus is on the explanations of the recommendations, it is
clear that explanations only make sense for recommendations that can positively

3https://catboost.ai/en/docs/concepts/shap-values
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affect the process’ KPIs. Section 6.5.1 discusses how the event log has been split
in a training log, which is used to build the Catboost model and the transition
system, and in a test log, used for the evaluation. This section concludes by illus-
trating the test-log usage to assess the quality of recommendations. Section 6.5.2
provides details on the considered datasets, while Section 6.5.3 reports on the
evaluation of the recommendations’ quality.

6.5.1 Experimental Settings and Recommender Evaluation

The starting point for an evaluation is an event log L. From this, we first extract
the training log Lcomp, used to train the recommender system as a whole, namely
the oracle function and the transition system. Then, we create the test log Lrun of
the running cases on which the system is evaluated.

To extract the training log Lcomp ⊂ L and test log Lrun ⊆ L \ Lcomp, we
compute the earliest time t in which 65% of the traces of L are completed, see,
e.g. the example in Fig 6.2. Then, we compute the time tsplit ≥ t with the largest
number of running cases. This allows us to define Lcomp as the set of traces of L
completed at time tsplit, and Lrun as the set of traces of L running at time tsplit.

The traces of test log Lrun are truncated to a set Ltrunc that is obtained from
Lrun by removing every event with a timestamp larger than tsplit: Ltrunc only
contains the events occurred before time tsplit. This procedure tries to mimic the
reality at time tsplit.

The accuracy of recommending the activity act for the running trace σ′ ∈
Ltrunc is evaluated as the average KPI of traces similar to σ′ ⊕ act, belonging to
Lrun:

acc(act, σ′) = avgσ∈Lsim
act,σ′

K(σ) (6.4)

where

Lsim
act,σ′ = {σ ∈ Lrun : ∃σp ∈ prefix(σ) ∧ lstatesq (σp) = lstatesq (σ′ ⊕ act)}

And lstatesq is the sequence state-representation function (cf. Section 6.3).

6.5.2 Datasets

The validity of our approach was assessed using two different event logs. The
first is so called Bank Account Closure (BAC), a log referring to a process of an
Italian Bank Institution that deals with the closures of bank accounts. We already
provided statistics about this event log in Chapter 3. here, we obtained 22,013
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Figure 6.2: The orange and blue lines represent the number of completed and
active traces, respectively. The vertical red bar is the timestamp t when the 65%
of traces have completed.

for training and 10,286 for testing. Let us recall that each trace is associated with
an attribute, Closure Type, which encodes the type of procedure that is carried
out for the specific account holder, and the Closure Reason, namely the reason
triggering the closure’s request. In this considered use case, we aimed to avoid
the occurrence of the activity Pending Liquidation Request. The KPI value can be
1 or 0 if the activity occurs or not, while the oracle function ΦK is represented by
the probability of the activity occurring (i.e. ΦK(σ) ∈ [0, 1]). Note that one wants
to reduce the activity-occurrence probability: the activity Pending Liquidation
Request is considered as rework, thus being an inefficiency in time and costs.

The second log was used by the BPI challenge in 20134. It is provided by
Volvo Belgium and contains events from an incident and problem management
system called VINST. We extracted 7,456 completed traces and 64,975 events. It
contains 13 different activities. When selecting the traces from the log in order to
obtain a train and test set, we generated a training log of 5,103 traces and a test
log of 2,236 traces. In this considered use case, we aimed to decrease the total
execution time.

4https://www.win.tue.nl/bpi/doku.php?id=2013:challenge
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Use Case
Average KPI value when best recommendations are

∆
not followed followed

Occurrence of activity PLR 0.96 0.34 64.4%
Total Time for the VINST process 484h 46min 441h 14min 9.4%

Table 6.2: Comparison of the average KPI value observed when the process exe-
cution is carried out without recommendation, versus the scenario when the best
recommendation is always followed. The KPI value of the first use case is given
as probability of occurrence, while the second is the actual time value. Activity
PLR is a shortcut name for Pending Liquidation Request

6.5.3 Evaluation results

Table 6.2 reports on the results that we obtained using the recommender system.
In the first column, the use cases are reported. The second and third column
reports on the average KPI value observed (cf. Equation 6.4) when recommen-
dations are or are not followed, respectively. Given a trace σ′, the average KPI
value acc(act, σ′) is computed for the activity act that is the top recommended
activity. Conversely, the average KPI value acc(act′, σ′) is computed for the non-
recommended activity act′ that follows in the trace σ of which σ′ is prefix. Last
columns highlights the percentage improvement between the second and the third
column, computed as ∆ = (1− followed/not followed) ∗ 100% with followed
and not followed being the average KPI value when recommendations are fol-
lowed or not followed. Results show a sensitive improvement for both cases,
especially for the minimization of the occurrence of the rework activity Pending
Liquidation Request. Further investigation is out of scope for this chapter: we
only aimed to illustrate the validity of the recommendations on which explana-
tions are computed. The latter is the novel contribution that is illustrated in this
Chapter.

6.6 Provision and Display of Recommendations Ex-
planations

Figure 6.3 shows how explanations are expected for our PAR system, for the use
case of the process of Bank Account Closure, where we aim to minimize the oc-
currence of the activity Pending Liquidation Request. The outcome is a list that,
for each running case, illustrates the expected KPI value when the recommenda-
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tion is or is not followed, respectively. Figure 6.3 illustrates an excerpt of this list
with two running cases: for the first case, 20185005985, the probability of the oc-
currence of activity Pending Liquidation Request is 91% (namely, the KPI value
is 0.91), while the probability drops to 42% if the best recommended activity is
performed. For case 20185005985, it is possible to significantly reduce the prob-
ability. When the process actor decides to intervene and focuses on the specific
case, a list of potential recommendations is offered, each with the expected KPI
value (see table in the middle of Figure 6.3). Let us assume that the process actor
opts to perform the second best recommended activity, circled in red in figure;
in this way, by performing the activity Evaluating Request (No Registered Let-
ter), the probability of the occurrence of Pending Liquidation Request would be
reduced to 52%. In this example, we decided to consider the second best action
to highlight the fact that the process actor might have reasons based on aspects
not modelled in the process to not choose the recommendation that minimizes
the probability (e.g., performing the activity could require accesses to systems
that are currently under maintenance). When the recommendation is selected, the
explanations are provided in the form of a bar chart (see bottom of Figure 6.3):

• Currently, the fact that the activity Service closure Request with BO respon-
sibility has been executed twice contributes to increasing the probability of
the occurrence of the undesired activity by ca. 15% (value 0.15); conversely,
by following the recommendation and executing the activity Evaluating Re-
quest (No Registered Letter), the aforementioned contribution would be nul-
lified. In fact, we can clearly see that the double occurrence of the activity
Service closure Request with BO responsibility would become a positive
contribution, reducing the probability of the occurrence of the undesired
activity.

• In the second explanation, we can see that the fact that the reason for the
bank account closure is unknown contributes to an increase of ca. 41% of
the probability of the undesired activity to occur. By executing the rec-
ommended activity, this contribution lowers to ca. 38% and can be partly
mitigated.

• Similarly to the point above, following the recommended activity allows
mitigating the influence of the type of the bank account closure (Inheri-
tance); in fact the probability contribution to the occurrence of the unde-
sired activity drops from an original value of ca. 45% to ca. 11%.
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Figure 6.3: Example of output produced by the PAR system when providing
recommendations in order to minimize the KPI value related to the (undesired)
occurrence of the target activity Pending Liquidation Request. Explanation la-
bel #ACTIVITY=actname=actnumber means that the activity named ”act
name” happened ”act number” times
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Figure 6.4: Example of the procedure followed for providing recommendations
and explanations for the KPI value ”Total time” for VINST process. The x-axis
scale of the bar chart is in hours.
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The explanations were visualized in accordance with the frameworks for Explain-
able AI of black-box models (cf. Section 4.2). Here, we also aim to pinpoint the
individual contribution of each of the different process’ features to the predicted
KPI value, but with the notable difference that we want to just focus on those fea-
tures whose influence on the KPI values can be largely impacted by performing
a recommendation activity. In fact, we are not interested in returning explana-
tions for those features that have a large impact on the KPI values but that are
not influenced by the recommendations. Note that, for the specific example in
question, the pairwise sum of the difference of the Shapley’s values of these three
explanations is accounting for ca. 48% of the positive contribution to reducing
the KPI value (recall that the overall expected KPI value improvement with the
recommendation is of ca. 52%). These are indeed the first three more relevant
explanations. Other explanations could have been selected, but with a smaller
impact on reducing the probability for the activity to occur.

Figure 6.4 shows a similar output for the VINST process (cf. Section 6.5.2),
where the aim was to minimize the KPI of the total execution time. The recom-
mendation of activity Assigned for case 1-529067006 allows the total execution
time to be reduced from 712 hours and 43 minutes to 487 hours and 24 min-
utes. Four explanations are present, and the most significant (i.e. enabling a larger
decrease of the total time) is Product=PROD542: performing the activity As-
signed allows one to mitigate the negative impact of the product being PROD542
from almost 400 hours to ca. 280 hours.

6.7 Summary

Existing research on PAR systems has focused on providing recommendations
that can bring executions back on track. However, recent literature has overlooked
the problem of ensuring that process actors feel engaged, trust these recommen-
dations, and consequently follow them. Engagement and trust pass through com-
bining recommendations with understandable explanations for process actors.

This chapter presents the first attempt to report on a framework that explains
process’ recommendations. As discussed, the explanations are given in terms of
values of process characteristics that process actors would understand. In partic-
ular, the explanations focus on those characteristics that affect the process’ out-
come, and whose negative influence can be mitigated by the recommendations.

Explaining the given recommendations is beneficial to gain a better insight
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into how the performance of certain activities in a given process’ state can influ-
ence the relevant KPI. This provides further insights for process actors into how
to improve these process executions.

This chapter showcases how explanations would look in two use cases related
to real-life processes. As future work, the utmost priority will be given to assess
the framework with real process actors, thus determining whether the shape in
which explanations are given is insightful and increases the trust of the suggested
recommendation. The intuition seems to support this, but the definitive answer
can only be given through an extensive user study. Moreover, we aim to test our
explainable prescriptive framework on other publicly available datasets and KPIs,
in order to further validate the findings reported in this chapter. In parallel, we
aim to more objectively verify the validity of the explanations against the quality
criteria for Explainable AI introduced in literature (see, e.g. [56]).



Chapter 7

Conclusions

Process monitoring consists in analyzing historical process execution data in or-
der to gauge process performance with respect to a set of performance objectives,
providing a realtime overview of process performance and identifying perfor-
mance issues as they arise. Recently, the rapid adoption of enterprise systems
with logging capabilities has increased the development of data-driven predictive
process monitoring, which exploits historical process execution data to predict
the future outcome of ongoing business process instances. Thus, potential de-
viations from the expected process behaviour can be anticipated and proactively
addressed. To this end, various approaches have been proposed to tackle typi-
cal predictive monitoring problems, such as whether a package will be correctly
delivered in a delivery company or if the customer will be satisfied.

The analysis of several research proposals in predictive business process mon-
itoring revealed that Long Short-Term Memory networks generally outperform
other methods. However, since in production environments also the time is an im-
portant constraint, we wanted to evaluate alternative models that could be trained
in a shorter amount of time, such as Catboost, which was also proposed by other
research works in the process management domain. Afterwards, we empirically
evaluated the quality of the predictions produced by LSTM and Catboost models;
the experiments conducted on 6 datasets and 17 different KPIs highlighted that
Catboost not only can be trained in a shorter amount of time, but it can also gen-
erally outperform LSTM models. Therefore, we decided to leverage Catboost for
our predictive monitoring framework.

The purpose of a predictive process monitoring system is to provide opera-
tional decision support for process actors. Namely, given a prediction, the user
can decide to mitigate the effects of a likely undesired outcome. However, the
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analysis of the literature has shown that the prescriptive part has often been over-
looked, assuming that the users, after being alerted of a potential failure, are able
to autonomously find the proper corrective actions. Therefore, the first contribu-
tion of this thesis consisted in developing a process-aware recommender system
that not only aims to monitor and predict how process instances are going to
evolve, but also recommends the corrective actions to recover the instances with
higher risk to not achieve the desired outcome. In particular, we developed a
PAR system able to recommend actions not only for improving a specific KPI
(e.g. reducing the total time of a process), but also for improving a generic, user-
customizable KPI. Note that we aimed at recommending the best actions that
could be performed in order to optimize a particular KPI, instead of recommend-
ing just the next likely ones. Experiments were run on two real-life datasets,
which confirmed the quality of the recommendations to improve the KPIs of in-
terest.

The literature review also revealed that predictive process monitoring tech-
niques are traditionally evaluated in terms of conventional performance mea-
sures, such as accuracy or F-score; however, in order to gain the trust of users,
a necessary condition is to explain the reason of the provided predictions and
recommendations; otherwise, the PAR system would not be trusted and adopted.
Therefore, it has become more and more evident that conventional performance
measures of predictive models are insufficient, and model interpretability/explain-
ability needs to be incorporated into this assessment. Explainable AI techniques
have been overlooked, assuming that a good level of prediction’s accuracy is suf-
ficient for the process’ stakeholders to trust the recommender system (as well as
the prediction system). As a second contribution, in this thesis we equipped our
predictive-monitoring framework with explainable capabilities, by proposing an
explainable framework based on the Shapley Values game theory approach, which
can be adapted to explain any predictive model. In order to show the validity of
the explanations provided, our explanation strategy was applied to several pub-
licly available datasets; after analyzing the data, the evidence in the explanations
demonstrated that the developed predictive framework leveraged attributes that
were found to be relevant from a domain viewpoint.

Afterwards, in order to demonstrate the practical application of the research
conducted in this thesis, we integrated our explainable predictive framework as a
module of a commercial software, the IBM Process Mining Suite. This enabled
us to provide process stakeholders with a ready-to-use module that provisions
online operational support for their processes, as well as the influencers driving
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them, without requiring any specific technical knowledge.
Moreover, we conducted a user evaluation to assess the efficiency and effec-

tiveness of the proposed explainable predictive process analytics module. The
evaluation confirmed that predictions are actually explained in a form that is ef-
fective and efficient for process analysts and that the proposed explainable frame-
work was considered intelligible by the users; furthermore, process stakeholders
were satisfied with the explainable predictive process framework.

The analysis of the literature also highlighted that none of the existing works
could provide an explanation of the recommendations. As a further contribution,
we extended our proposed PAR system with explainable capabilities, to provide
process actors with the rationale behind the choice of the recommended activi-
ties; in fact, recommendations without sensible explanations prevent process ac-
tors from feeling engaged in the decision process of the recommendations, thus
not following the suggested corrective actions. Let us recall that explaining rec-
ommendations is certainly different than explaining predictions: while explaining
the predictions focuses on every aspect that significantly affects the expected pro-
cess’ outcome, when explaining the recommendations we principally focused on
highlighting the principal factors that had a negative impact on the KPI, but whose
influence could be also largely mitigated by following the proposed recommen-
dations.

The last contribution of the thesis is the proposal and application of a predic-
tive analytics framework to predict the outcome of object-centric processes. In
this paradigm, the process is seen as the interplay of numerous sub-processes that
constitute the life cycles of different objects, which periodically synchronize with
each other. The large share of research in predictive analytics could not be di-
rectly applied here, because it traditionally focuses on the problem of predicting
the outcome of cases (i.e., process instances) that run in isolation. Moreover, if
the valuable information of the interaction between objects of the same or dif-
ferent type is not fed into the construction of prediction models, the resulting
model might be of low accuracy. Therefore, after proposing an approach to en-
able predictive analytics in object-centric processes, we enriched our predictive
framework by exploiting the information of the complex sub-processes interac-
tion; the experiments conducted on three real object-centric processes and 30
different KPI definitions indeed showed an increased prediction accuracy when
considering the object interactions. Finally, we also leveraged our explainable
framework to further confirm that the principal factors influencing the predictive
model were indeed related to attributes that were designed to describe the com-
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plex object interactions.

7.1 Future Work

This thesis has laid the foundations of an explainable predictive and prescriptive
process monitoring framework for custom business KPIs. At the same time, our
research contributions open up a number of directions for future research.

In particular, we have designed and evaluated a technique for explainable pre-
dictive and prescriptive process monitoring based on the Shapley Values game
theory approach, which leverages the idea of fairly distributing the payout among
the players (features) that have collaborated in a cooperative game (i.e. the pre-
diction task). The first future direction could be to evaluate alternative explainable
approaches that have been emerging such as counterfactual approaches; here, the
focus is on explaining the outcome of a black-box model through a hypotheti-
cal ‘what-if’ scenario, understanding what features should be changed in order to
achieve a desired outcome [78]. To give a better intuition, an example of a coun-
terfactual explanation would be: if the person’s income were higher than $15,000,
then he/she would have been granted a loan? Therefore, it could be worth com-
paring several explanations strategies in order to understand potential limitations
and advantages of different explainable approaches.

To this end, another interesting future direction would be to define a clear
quality criteria for Explainable AI techniques and objectively verify the validity
of the explanations against it (see, e.g. [56]). In fact, there are numerous crite-
ria to choose from that have been emerging in the last years; as an example, in
literature several popular criteria are mentioned to assess the quality of an expla-
nation method, such as performance, appropriate trust, explanation satisfaction
and fidelity. However, there is no general consensus on which criteria should be
used.

Afterwards, the approach proposed in this Ph.D. thesis to enable predictive
analytics on object-centric event logs relies on flattening object-centric event logs
into event logs of single-flow processes, which are enriched to maintain a mean-
ingful abstraction of the object interactions. However, different techniques could
have been used to extract and calculate process executions from object-centric
event logs, discovering potentially different and novel insights.

Finally, a natural extension of the proposed recommender system would be
to integrate it inside the IBM Process Mining suite, and assess what would be an



7.1 Future Work 133

optimal user experience that would help process workers and operational man-
agers adopt it. Therefore, a future direction would be to validate if the provided
recommendations would be understandable and easy to use for the end users, and
how explainable the resulting recommendations are. In fact, the reasoning be-
hind the recommendations must be clear in order to increase the trust, otherwise
users would not follow and adopt the recommended actions. Similarly, we plan
on leveraging the feedbacks received from the conducted user evaluation on the
explainable predictive framework, in order to improve the general user experience
in IBM Process Mining and improve our explanation strategy.
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Appendix A

Additional explanations evaluations

This appendix is intended to report on the outcome of our global explanation
strategy during the offline phase, in order to show the validity of the explanations
provided. In particular, we extend the description provided in Section 4.5 by
including additional experiments with different KPIs also on the other publicly-
available event logs.

A.1 Bank Account Closure

The bar chart related to Back-Office Adjustment Requested prediction (Figure A.1)
shows that the attributes related to the type and the reason of bank account closure
are influencing the most.

When the closure type is Porting, it indicates that the customer has decided
to move one or more services and the current-account balance from one bank
account to another. Here, it is the most influential factor and its influence is
towards strongly increasing the probability that a Back-Office Adjustment will be
requested (as it can be seen by the red bar associated with a value of 0.85). Also
the influence of Closure type=Bank Recess is towards increasing the probability;
a further analysis of the data confirmed that more than 2/3 of the total back-
office adjustments is performed when the process is characterized by one of these
two closure types. When a customer decides to open a new bank account in
the same department of the previous bank account and decides to close the old
one, it is less likely that a Back-office Adjustment will be performed; this can be
seen by looking at the explanation Closure reason=4 - Open new bank account.
Same dip, which is associated with a negative probability of -0.20. Finally, an
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Figure A.1: Offline explanations for Back-Office Adjustment Requested prediction
(Bank Account Closure)

interesting thing to be noticed is that when one or more of the activities previously
performed in the process were performed on Saturday, then it’s more likely that
a Back-Office Adjustment will be needed in the future, as highlighted by the
explanation weekday=Saturday associated with the positive value 0.20.

The results for the third activity on which the bank decided to focus (Pending
Request for Acquittance of Heirs) are reported in Figure A.2. Here, the closure
type is one of the most influential factors. In particular, the fact that the clo-
sure type is Inheritance (Closure Type=Inheritance) strongly influences towards
predicting that a Pending Request for Acquittance of Heirs will occur; this can
be seen by the large red bar associated with a value that is near 1. Analyzing the
data, it has been seen that a Pending Request for Acquittance of Heirs is performed
most of the times when the closure type is Inheritance, while it is very unlikely
to be performed when other closure types are performed. This also reflects in the
blue bars related to the other three types of closure type (Closure Type=Client
Recess, Closure Type=Bank Recess and Closure Type=Porting), which are asso-
ciated with a value -0.60. Moreover, in the lower part of the plot, it can be seen
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Figure A.2: Offline explanations for Pending Request for Acquittance of Heirs
prediction (Bank Account Closure)

that other attributes that are influencing the prediction by slightly increasing the
probability are related to the resource (shown in the plot as Ce Uo) that has per-
formed one or more of the activities preceding Pending Request for Acquittance
of Heirs.

A.2 BPIC 2012

This is the dataset from BPI 2012 challenge, and it represents an application pro-
cess for a personal loan or overdraft within a global financing organization. The
event log is a composition of three merged intertwined sub processes. The first
letter of each task name identifies from which sub process (source) it originated
from. Figure A.3 shows the application for the remaining time prediction in the
bpi12 dataset.

It can be clearly seen by the color blue of the bars and the negative values
that the influence of the principal factors is towards decreasing the remaining
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Figure A.3: Offline explanations for Remaining time prediction (BPIC 2012)

time prediction. In particular, the fact that a particular activity has been pre-
viously performed in the process, is one of the largest factors that influences
the prediction. This can be seen in the explanations event=A CANCELLED,
event=A DECLINED, and event=O DECLINED, which are associated to the val-
ues -7.5, -6.5, and -3.5 respectively. From a domain viewpoint, the application for
a personal loan can be rejected by the financial organization (action represented
by the task A DECLINED), or it can be directly closed because the user decides
to cancel the request (represented by the task A CANCELLED); therefore, when
these actions are performed, the loan application process will be suddenly inter-
rupted and it will finish earlier compared to the average duration of the application
process, motivating the very high negative impact on the remaining time predic-
tion. This also happens when the offer that has been sent by the organization is
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Figure A.4: Offline explanations for A ACCEPTED prediction (BPIC 2012)

rejected by the user (action represented by the task O DECLINED); the negative
impact on the remaining time is motivated by the fact that the organization can
still make a counter-proposal to the customer, but it can also lead to the closure of
the application process. However, since this action is generally performed later in
the process compared to the two previous actions (which occur in the early stages
of the process), it has a lower impact on the remaining time (-3.5 compared to
-6.5 and -7.5). The other attributes that are influencing the prediction are related
to the resources that have performed one or more activities in the process.

In this process we also focused on three activities, namely A ACCEPTED,
A DECLINED, and A CANCELLED, whose occurrence would be interesting to
be predicted beforehand since they indicate if the application has been accepted,
declined or cancelled respectively.

Figure A.4 reports on the outcome of the application of our explainable frame-
work for activity A ACCEPTED occurrence prediction. It can be easily seen that
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the attributes related to the activity performed are largely influencing the predic-
tion. The most influential factor here is event=A DECLINED. When this activity
is performed, there is a very high probability (-0.80) that the loan application is
not going to be accepted. Conversely, as it can be seen by the red bars, the in-
fluence of event=A PREACCEPTED and event=W Completeren aanvraag is to-
wards highly increasing the probability to have the application accepted; these are
in fact activities which are usually performed immediately before proceeding with
the acceptance of the application. Moreover, other activities similarly influence
the prediction but, since in the process they are usually performed after the accep-
tance of the application, their influence is towards lowering the probability that the
application will be accepted afterwards, as it can be seen by the blue bars related
to the explanations event=W Nabellen incomplete dossiers,event=W Nabellen of-
fertes, event=O SENT, event=O SENT BACK, event=A ACTIVATED and
event=O DECLINED and associated with values -0.50 and -0.60. Finally, since
the application is usually accepted in the initial part of the process, the time
elapsed since the beginning of the process is a crucial feature. As it can be seen,
when the time elapsed is above a certain threshold (time from start > 76.15h),
then the influence is towards lowering the probability that the application will
be accepted by -0.65; instead, when the time elapsed is below a certain thresh-
old (time from start < 0.57m), then the influence is towards increasing the
probability by 0.50.

The explanations related to the activity A DECLINED are shown in Figure
A.5. As before, attributes related to the activity performed are the most impor-
tant influencers for the prediction. When the application is declined (event=
A DECLINED), there is still a chance that the organization makes a counter-
proposal to the customer; however, since it is rare that an application is de-
clined twice, if A DECLINED is performed once, than the influence is strongly
towards not predicting that this activity will occur again in the future (as it can
be seen by the strong negative value -0.85). The same reasoning applies also
for event=A CANCELLED, which is associated with value -0.80. Moreover, also
when the acceptance process for the loan application has started, the probability to
predict that the loan will be declined decreases; this is highlighted by the blue bars
associated with the explanations event=A ACTIVATED, event=A REGISTERED,
event=A APPROVED, event=O ACCEPTED, with values -0.65, -0.60, -0.50, -
0.45, respectively. Conversely, activity O DECLINED can be directly followed
by A DECLINED; therefore when activity O DECLINED is performed (event=
O DECLINED), the influence is towards predicting that the application will be
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Figure A.5: Offline explanations for A DECLINED prediction (BPIC 2012)

declined (as underlined by the red bar with value 0.40).

Finally, Figure A.6 reports on the explanations for A CANCELLED occur-
rence prediction, which are very similar to the explanations shown in Figure A.5.
Since it is rare that an application is cancelled twice, if A CANCELLED is per-
formed once, than the influence is strongly towards not predicting that this activity
will occur again (as it can be seen by the strong negative value -0.85). The same
reasoning applies also for event=A DECLINED and event=O DECLINED, which
is associated with value -0.80. Additionally, as it was previously mentioned, when
the acceptance process for the loan application has started, the probability to pre-
dict that the loan will be cancelled decreases; this is underlined by the blue bars
associated with the explanations event=A ACTIVATED, event=A REGISTERED,
event=A APPROVED, and event=O ACCEPTED, with values -0.60, -0.60, -0.55,
-0.55, respectively. Conversely, activity O DECLINED can be directly followed
by A DECLINED; therefore when activity O DECLINED is performed (event=
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Figure A.6: Offline explanations for A CANCELLED prediction (BPIC 2012)

O DECLINED), the influence is towards predicting that the application will be
declined (as underlined by the red bar with value 0.40).

A.3 BPIC 2012 - W

Figure A.7 shows the application for the remaining time prediction in the Bpi12
- W dataset, which is the dataset derived from bpi12 challenge, representing the
subprocess containing only the states of the work items belonging to the applica-
tion. Here, the most important influencers are the attributes related to the activity
and the resource performing the activity. The main factor that contributes to de-
crease the remaining time of a case is represented by concept:name=W Nabellen
incomplete dossiers. The information that the value is negative (i.e. -4.5 days)
indicates that the influence of performing the activity W Nabellen incomplete
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Figure A.7: Offline explanations for Remaining Time prediction (BPIC 2012 -
W)

dossiers is towards decreasing the remaining time. This is mainly caused by the
fact that this activity is usually performed in the final part of cases, therefore the
remaining time to finish the case will be smaller. This also regards other activ-
ities performed in the final part of cases (concept:name=W Valideren aanvraag
and concept:name=W Beoordelen fraude) and the related resources performing
these activities, which influence is towards decreasing the remaining time. Con-
versely, concept:name=W Completeren aanvraag is one of the first activities that
are performed in this process, therefore the contribution is towards increasing the
remaining time prediction, as it can be seen by the red bar associated with a value
of 3 days.
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Figure A.8: Offline explanations for Remaining Time prediction (BPIC 2013)

A.4 BPIC 2013

This is a dataset from BPI 2013 challenge, extracted from Volvo incident manage-
ment system. Here, we focused on obtaining an estimate of the remaining time
until the end for running cases, to detect the cases requiring special attention.

Figure A.8 reports on the outcome of the application of our explainable frame-
work for remaining time prediction in Bpi13 dataset. The fact that the country in
which the incident is managed is Netherlands (Country=nl) is one of the largest
factors that influences the prediction; the color red of the bar and the information
that the value is positive ( 50 days) indicates that the influence is towards increas-
ing the remaining time. A further analysis of the data confirms this finding: if
the country is Netherlands, the process duration is 197 days, versus 12.1 days
when the type is different. This also applies to the situation where the incident
is managed in South Korea (Country=kr) or in Turkey (Country=tr), where the
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influence is towards increasing the remaining time by 8 and 6 days respectively;
again, this finding was supported by the data, since it was observed a longer du-
ration of the process (16d 4h and 19d 9h respectively). Other important attributes
are related to the resource of the support team (indicated by Owner First Name)
in charge of working on the incident. Here, for example, the fact that one or mul-
tiple activities were performed by Luc, Ilona or Olga, contributed to increase the
remaining time prediction by 10 days. Also the support team that is in charge of
solving the problem can influence the remaining time. Here, the fact that a 3rd
level support team has been involved (indicated by Involved Org line 3=Org line
V7, Involved Org line 3=Org line V7n) increased the remaining time by 7 days;
this is probably due to the fact that only the problems of a certain severity level
are passed to the 3rd level support team, hence requiring more time to be solved.

This leads us to analyze one of the KPIs in which the company was interested
in, the push to front strategy. In particular, the company wanted to resolve most of
the incidents with the first line support teams without involving 2nd or 3rd support
line teams (strategy called push to front), in order to have a more efficient process
and avoid having too much work concentrated on 2nd and 3rd line support teams.
Therefore, we also focused on predicting if at least one activity is going to be
performed by a resource not belonging to the first line support team.

The bar chart related to the push to front prediction is shown in Figure A.9;
It can be clearly seen that the attributes related to the product that presented a
problem or that was involved in an incident are the most important ones. The
influence for all of them is towards strongly predicting that a resource from the
2° or 3° line support team will be involved in the management of the incident,
as it can be seen by the color red of the bars and the very high positive values
(0.80). The data confirmed that the products reported in these explanations (such
as (Product=PROD691)) were always associated to the involvement of a resource
from the 2° or 3° level support team, thus confirming the findings reported here.

Finally, the company had also an interest in understanding if people working
in the company were abusing the Wait - User substatus to hide inefficiencies in
the process, which would otherwise being detected by KPIs measuring the total
resolution time of an incident. Therefore, the main objective here is to try to
detect as soon as possible if this status will be set.

Figure A.10 shows the results for the Wait - User substatus prediction. Here,
the fact that the Resolved substatus has been set (labeled as Sub Status=Resolved)
is the most important factor, and its contribute is towards strongly decreasing the
probability that a Wait - User substatus will be set (as it can be seen by the blue
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Figure A.9: Offline explanations for Push to Front prediction (BPIC 2013)

bar and the associated value -0.80). The analysis of the process confirmed that it
is unlikely that a Wait - User status is set after the Resolved status, which is indeed
the status indicating that the incident has been already solved. Other important
attributes are related to the product that presented a problem or that was involved
in an incident; the influence for all of them is towards strongly predicting that
the Wait - User substatus will not be set during the resolution of the problem.
The data also confirmed that the products reported in these explanations (such as
Product=PROD691) were never associated to the setting of the status Wait - User,
thus confirming the findings reported here.
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Figure A.10: Offline explanations for Wait - User prediction (BPIC 2013)

A.5 HelpDesk 2017

This dataset is a real-life log of SIAV s.p.a. company in Italy, and represents
instances of a ticketing process in the company helpdesk area.

Figure A.11 refers to the application for the remaining time prediction. It
can be clearly seen by the color blue of the bars and the negative values that the
influence of the principal factors is towards decreasing the remaining time predic-
tion. In particular, the time elapsed since the beginning of the process is a crucial
feature. As it can be seen, when the time elapsed is between certain thresholds
(199.01h < time from start < 960.51h), then the influence is towards lower-
ing the predicted remaining time by -12 days. Moreover, when the time elapsed
is larger than the average process duration (which was 40 days, the same duration
highlighted in time from start > 960.51h), the influence towards lowering the
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Figure A.11: Offline explanations for Remaining Time prediction (HelpDesk
2017)

predicted remaining time becomes even stronger (-16 days); this is mainly caused
by the fact that when the elapsed time is above the average process duration, it
is highly probable that the case is going to be closed soon, thus lowering the re-
maining time prediction. Conversely, when the process is still in the initial phases
(time from start < 47.79h), the influence is towards predicting a higher re-
maining time (+5 days). Other important attributes are related to the performed
activity. In this process a ticket, after having been opened and after assigning a
seriousness level, is usually taken in charge by a resource and resolved; however,
after having been taken in charge, some activities can occur, such as Schedule
intervention, Require upgrade, Create SW anomaly and Wait. These are all ex-
ceptional activities that are rarely performed, thus increasing the remaining time
prediction, as it can be seen by the red bars associated to Activity=Schedule in-
tervention, Activity=Require upgrade, Activity=Create SW anomaly and Activ-
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Figure A.12: Offline explanations for Remaining Time prediction (Fine Manage-
ment)

ity=Wait.

A.6 Road Traffic Fine Management

This dataset is a real-life event log of an information system managing road traffic
fines.

Figure A.12 reports on the outcome of the application of our explainable
framework for remaining time prediction in Fine Management dataset. The fact
that the fine is related to a parking ticket (notificationType=C) is one of the largest
factors that influences the prediction; the color blue of the bar and the infor-
mation that the value is negative (-270 days) indicates that the influence is to-
wards strongly decreasing the remaining time. This is principally due to the fact
that parking tickets can be paid immediately after the ticket creation, in which
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Figure A.13: Offline explanations for Send for Credit Collection prediction (Fine
Management)

case the paperwork is bypassed and unnecessary administration time and costs
are avoided. A similar explanation can be given for the second largest factor
(Resource > 861.50), which is decreasing the remaining time prediction by -
200 days. The resource here is the person responsible to notify the fine; a high
identification code indicates that the resource belongs to a local police depart-
ment, which is usually responsible to notify the fines related to parking tickets.
Other important attributes that are influencing the prediction are related to the
performed activity. In particular, on the other side of the spectrum, explanation
Activity=Appeal to Judge has the largest positive shapley value (145 days). This
can also be justified: when the offender appeals against the payment of the fine,
the execution takes longer due to the involvement of the judge.

Finally, Figure A.13 reports on the explanations for Send for Credit Collection
occurrence prediction, which is the activity performed when the case is sent to an
external credit collection agency that will contact the offender to collect the pay-
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ment. Here, when an appeal against the fine is initiated within 60 days and it is
correctly registered by the corresponding prefecture (Activity=Insert Date Appeal
to Prefecture) is the most influential factor and its influence is towards strongly
decreasing the probability that a Send for Credit Collection will be performed (as
it can be seen by the blue bar and the associated probability of -0.85). A further
analysis of the data confirmed this finding: when an appeal is sent to the prefec-
ture, the external credit collection agency is alerted only in the 7% of cases (282
over 4043 cases). A similar situation happens when, after receiving the results
of the appeal, the offender appeals against the result (Activity=Appeal to Judge):
the influence is again towards decreasing the probability that the external credit
collection agency will be alerted (-0.50). The data confirmed that when the judge
is appealed, activity Send for Credit Collection will be performed only in the 27%
of cases (148 over 541 cases). Other attributes contributing to decrease the proba-
bility that a Send for Credit Collection will be performed are notificationType=C
and Resource > 860.50, which are decreasing the probability respectively by
-0.80 and -0.65. As it was previously said, these factors indicate that the fine is
related to a parking ticket and that the resource belongs to a local police depart-
ment, which represents a simpler case in which tickets can be paid immediately
after the ticket creation, thus not usually requiring the involvement of an external
agency responsible for the credit collection. Conversely, when the payment has
been already performed (Activity=Payment) the influence is towards increasing
the probability that a Send for Credit Collection will be performed (0.65); this
was actually surprising, but a further analysis of the data confirmed that there is
a small chance that after performing the payment, a Send for Credit Collection
action is initiated in the 3% of cases (2126 out of 65800 cases). This means that
there could be cases where an action is initiated by the external credit collector
agency even if the payment has been already made, indicating a possible lack of
synchronization between the accounting department and the external credit col-
lection agency.
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Appendix B

Publications

This research activity has led to several publications in international journals and
conferences. These are summarized below.1

International Journals

1. Galanti, R., de Leoni, M., Monaro, M., Navarin, N., Marazzi, A., Di Stasi, B.,
Maldera, S., “An Explainable Decision Support System for Predictive Process An-
alytics”, Engineering Applications of Artificial Intelligence, vol. 120, p. 105904,
2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S095219762300088X

2. Galanti, R., de Leoni, M., Navarin, N., Marazzi, A., “Object-centric Process Pre-
dictive Analytics”, Expert Systems with Applications, vol. 213, p. 119173, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0957417422021911

International Conferences and Workshops

1. Padella, A., de Leoni, M., Dogan, O., Galanti, R., “Explainable Process Pre-
scriptive Analytics”, the 4th International Conference on Process Mining (ICPM),
Bolzano, Italy, IEEE Computational Intelligence Society, 2022, pp. 16–23.

2. Galanti, R., de Leoni, M., Marazzi, A., Bottazzi, G., Delsante, M., Folli, A., “Inte-
gration of an Explainable Predictive Process Monitoring System into IBM Process

1The author’s bibliometric indices are the following: H-index = 2, total number of citations =
80 (source: Google Scholar on May 27, 2023).
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Mining Suite”. Proceedings of the ICPM Doctoral Consortium and Tool Demon-
stration Track 2021 collocated with the 3rd International Conference on Process
Mining (ICPM), Eindhoven, Netherlands, 2021. CEUR Workshop Proceedings,
vol. 3098, pp. 53-54.

3. Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., Navarin, N., “Explain-
able Predictive Process Monitoring”, the 2nd International Conference on Pro-
cess Mining (ICPM), IEEE Computational Intelligence Society, 2020, pp. 1-8.
DOI:10.1109/ICPM49681.2020.00012

4. Galanti, R., “Explainable Prescriptive Process Analytics (Extended Abstract)”.
Proceedings of the ICPM Doctoral Consortium and Tool Demonstration Track
2020 co-located with the 2nd International Conference on Process Mining (ICPM),
Padova, Italy, 2020. CEUR Workshop Proceedings, vol. 2703, pp. 1-2. (Best PhD
Proposal)
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