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Abstract 

Thermal expansion is a ubiquitous phenomenon that represents an issue in engineering design 

contexts. Even if its control is of paramount importance and has been pursued for a long time, it is 

still an open problem with only particular solutions, mainly involving composite materials or 

components with a shape designed to counteract the thermal expansion. 

The existence of materials with anomalous thermal expansion properties has been acknowledged 

long ago; recently it was found that there are compounds with values of the coefficient of thermal 

expansion with absolute value at least large as those of common metals, but negative in sign. This 

sparked great scientific interest, leading to the discovery that the coefficient of thermal expansion 

can radically change when the atoms occupying specific crystal sites are substituted, even going from 

negative to positive.  

An outstanding application of this anomalous behavior could be that of tuning the thermal 

expansion. This would be achieved by preparing single phase materials with a coefficient of thermal 

expansion tailored to a particular engineering setting. However, it was also found that the 

intercalation of small chemical species into certain framework structured compounds turns their 

thermal expansion from negative to positive or almost zero.  

Further, in materials displaying order to disorder phase transitions, a close relationship is observed 

between the phase transition and anomalous thermal expansion. Other aspects of materials design 

(e.g. nanostructuration, valence state change) have been found to be relevant in this respect. 

It is expected that a variety of microscopic mechanisms are necessary to describe them. In this work 

we will focus on the vibrational contribution to thermal expansion: EXAFS spectroscopy offers 

extraordinary insight on the local dynamics of atomic pairs. This is due to the EXAFS sensitivity to the 

atomic species and to the correlation of the motions of atoms: the former allows to independently 

study the local neighborhoods of different atoms, while the latter, combined with diffraction 

measurements, can give information on the anisotropy of thermal vibrations. 

We have obtained information on the local dynamics of some analogues of the Prussian blue with 

brute formula MM’(CN)6. Intercalating these compounds with small chemical species can turn 

thermal expansion from negative to positive. EXAFS spectroscopy has been employed to ascertain a 

suppression of the transverse vibrations has been observed upon intercalation, with a predominant 

role of the vibrations of M-N atomic pairs. 
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We have also studied a series of zirconium alloys of brute formula Zr2M (M=Fe, Co, Ni) with body 

tetragonal crystal structure. The relation between the thermal expansion coefficient along the c-axis, 

with values ranging from largely negative to positive and the anisotropy of thermal expansion of Zr-

M atomic pairs; a negative correlation between the anisotropy and both the average atomic volume 

and the c-axis lattice parameter is found. 

EXAFS studies of analogues of copper pyrophosphate Cu2P2O7, inexpensive and facile to synthesize, 

are a challenging subject. Substituting copper with zinc and/or phosphorus with vanadium has 

striking effects on the crystal structure, on the thermal expansion and on the local dynamics of 

atomic pairs. Our analysis corroborates the microscopic mechanism of hindering of vibrations 

transverse to bonds in correspondence to suppression of negative thermal expansion. 

Classical molecular dynamics simulations of spherical gold nanoparticles have been performed. 

Molecular dynamics can study the vibrational dynamics in solids and is thus complementary to EXAFS 

analysis. The spherical gold nanoparticles of different diameters that have been investigated are 

simple yet non-trivial systems, a case study of the effect of nanostructuration on the phonon 

contribution to thermal expansion. 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
   

Contents 
 

 

Introduction ................................................................................................................................................. 1 

List of publications from this PhD thesis .................................................................................................... 3 

Chapter 1: Negative Thermal Expansion .................................................................................................... 4 

1.1 Rigid Unit Modes ................................................................................................................................ 7 

1.2 Classification of NTE materials ......................................................................................................... 12 

1.2.1 Chemical composition and crystal structure ............................................................................ 13 

1.2.2 Phase transitions ....................................................................................................................... 13 

1.2.3 Microscopic excitations............................................................................................................. 14 

1.3 Tuning thermal expansion ............................................................................................................... 16 

Bibliography ............................................................................................................................................... 19 

Chapter 2: Experimental methods ............................................................................................................ 22 

2.1 Storage rings and synchrotron light ................................................................................................. 22 

2.2 X-ray Absorption Fine Structure ...................................................................................................... 24 

2.2.1 The EXAFS equation .................................................................................................................. 26 

2.2.2 EXAFS dependence on local vibrational dynamics .................................................................... 28 

2.3 Sample preparation ......................................................................................................................... 29 

2.4 Data acquisition ............................................................................................................................... 30 

2.5 Data analysis procedure ................................................................................................................... 31 

2.5.1 Preprocessing ............................................................................................................................ 32 

2.5.2 Model building and fitting......................................................................................................... 33 

2.6 Results elaboration .......................................................................................................................... 34 

Bibliography ............................................................................................................................................... 36 

Chapter 3: Local dynamics and intercalation effects in Prussian Blue Analogues .................................. 38 

3.1 Prussian blue analogues ................................................................................................................... 38 

3.2 TiCo(CN)6∙2H2O ................................................................................................................................. 39 

3.3 LuFe(CN)6.......................................................................................................................................... 44 

3.4 Discussion and conclusions .............................................................................................................. 47 

Bibliography ............................................................................................................................................... 49 

Chapter 4: Thermal expansion and local dynamics of zirconium alloys.................................................. 51 

4.1 Stoichiometric Zr2M alloys ............................................................................................................... 51 

4.2 Zr2Fe ................................................................................................................................................. 53 

4.3 Zr2Co ................................................................................................................................................. 57 



 

iv 
   

4.4 Zr2Ni ................................................................................................................................................. 61 

4.5 Discussion and conclusions .............................................................................................................. 64 

Bibliography ............................................................................................................................................... 67 

Chapter 5: Chemical substitution and local dynamics of copper pyrophosphate analogues ................ 68 

5.1 Copper pyrophosphate analogues ................................................................................................... 68 

5.2 Cu2V2O7............................................................................................................................................. 70 

5.3 Cu1.25Zn0.75P2O7 ................................................................................................................................. 75 

5.4 Discussion and conclusions .............................................................................................................. 78 

Bibliography ............................................................................................................................................... 81 

Chapter 6: Nanosize effects on thermal expansion: a molecular dynamics study ................................. 82 

6.1 EXAFS spectroscopy and molecular dynamics ................................................................................. 82 

6.2 Physical quantities ........................................................................................................................... 85 

6.3 Test in gold bulk ............................................................................................................................... 86 

6.4 Gold nanoparticles ........................................................................................................................... 89 

6.5 Conclusions ...................................................................................................................................... 95 

Bibliography ............................................................................................................................................... 96 

Conclusions ................................................................................................................................................ 98 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
   

Introduction 

 

Thermal expansion is a ubiquitous phenomenon that represents an issue in engineering design 

contexts. Even if its control is of paramount importance and has been pursued for a long time, it is 

still an open problem with only particular solutions, mainly involving composite materials or 

components with a shape designed to counteract the thermal expansion. 

The existence of materials with anomalous thermal expansion properties has been acknowledged 

long ago with the discovery of the iron-nickel Invar alloy that gained Guillaume a Nobel prize in 

Physics and which displays a near zero thermal expansion around room temperature. Simple 

materials as crystalline silicon and germanium show mildly negative thermal expansion (NTE, i.e. 

contraction with increasing temperature) at cryogenic temperatures and also water contracts with 

increasing temperature in a narrow range of temperature slightly above its freezing point at 

atmospheric pressure.  

Recently it was found that there are compounds with values of the coefficient of thermal expansion 

with absolute value at least large as those of common metals (i.e. of order of magnitude 1E-5·K-1), 

but negative in sign. This sparked great scientific interest, leading to the discovery that the coefficient 

of thermal expansion can radically change when the atoms occupying specific crystal sites are 

substituted, even going from negative to positive, encompassing the intermediate values with partial 

substitution.  

An outstanding application of this anomalous behavior could be that of tuning the thermal expansion. 

This would be achieved by preparing single phase materials with a coefficient of thermal expansion 

tailored to a particular engineering setting, for example to minimize shocks due to thermal expansion 

mismatch or to reduce the effect of temperature fluctuations on high precision instrumentation. 

However, it was also found that the intercalation of small chemical species into certain framework 

structured compounds turns their thermal expansion from negative to positive or almost zero.  

Further, in materials displaying order to disorder phase transitions (e.g. ferroelectric, ferromagnetic) 

a close relationship is observed between the phase transition and anomalous thermal expansion (e.g. 

the thermal expansion coefficient behaves normally in the disordered phase). Other aspects of 

materials design (e.g. nanostructuration, valence state change) have been found to be relevant in 

this respect. 
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Given the wide array of compounds displaying these unusual properties, it is expected that a variety 

of microscopic mechanisms are necessary to describe them. In this work we will focus on the 

vibrational contribution to thermal expansion: in this regard, EXAFS spectroscopy offers 

extraordinary insight on the local dynamics of selected atomic pairs. This opportunity stems from the 

EXAFS sensitivity to the atomic species and to the correlation of the motions of atoms: the former 

allows to independently study the local neighborhoods of different atoms, while the latter, combined 

with diffraction measurements, can give information on the anisotropy of thermal vibrations. 

This thesis is composed of six chapters, organized as follows: Chapter 1 contains a presentation of 

the topic of negative thermal expansion the relevant literature and an outline of the main avenues 

of description and classification of anomalous thermal expansion properties. 

Chapter 2 displays a brief but self-contained exposition of EXAFS spectroscopy, the main 

experimental technique employed in this work, with a focus on the information that it can provide 

regarding the local dynamics and the vibrational anisotropy of atomic pairs.  

After the contextualization of the systems at study and of the experimental technique used to 

investigate them, the following chapters present the results of this work, which traverse the main 

routes to tune thermal expansion. The selection of the samples has been performed to study the 

effect on thermal expansion of intercalation and chemical substitution, in collaboration with the 

research group of Prof. Jun Chen (Department of Physical Chemistry, University of Science and 

Technology Beijing), which has provided the samples.  

Intercalation of small chemical species in framework structured compounds is the focus of Chapter 

3; investigations on the chemical substitution are reported in Chapters 4 and 5; the effect of 

nanostructuration on thermal expansion is explored in Chapter 6. 

Chapter 3 reports on the findings regarding the local dynamics of some analogues of the Prussian 

blue, that are metal coordination polymers of cyanide displaying important crystal voids. 

Intercalating these compounds with small chemical species can turn thermal expansion from 

negative to positive. EXAFS spectroscopy has been employed to ascertain how this modifies the local 

dynamics of the local atomic neighborhood of the two types of metal atoms present in the 

compound.  

Chapter 4 regards a series of zirconium alloys of brute formula Zr2M (M=Fe, Co, Ni) with body 

tetragonal crystal structure. The relations between the thermal expansion coefficient along the c-

axis, with values ranging from largely negative to positive, the anisotropy of thermal expansion of Zr-

M atomic pairs and the average atomic volume are investigated. These zirconium alloys represented 
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an opportunity to start the study of a novel class of NTE materials with an anisotropic crystal 

structure. 

Chapter 5 presents the EXAFS study of analogues of copper pyrophosphate Cu2P2O7, inexpensive and 

facile to synthesize. Substituting copper with zinc and/or phosphorus with vanadium has striking 

effects on the crystal structure, on the thermal expansion and on the local dynamics of atomic pairs.  

In Chapter 6, the last one, the results of classical molecular dynamics simulations of spherical gold 

nanoparticles of various diameters are reported. Molecular dynamics is particularly well suited to 

study the vibrational dynamics in solids and is thus complementary to EXAFS analysis in the atomic 

description of materials vibrations. Spherical gold nanoparticles are simple yet non-trivial systems, a 

case study of the effect of nanostructuration on the phonon contribution to thermal expansion. 

A final section follows that summarizes the obtained results, draws conclusions and indicates 

perspectives of future research. 
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Chapter 1  

 

Negative Thermal Expansion 

 

Thermal expansion is a ubiquitous phenomenon, the control of which impacts on engineering and 

materials design and has been the focus of plenty of research. In recent times, the discovery that 

several compounds display anomalous (i.e. negative in sign and large in magnitude) thermal 

expansion has given the possibility of tuning the thermal expansion coefficient. However, a lot 

remains unclear on the various underlying mechanisms responsible for this anomalous property, 

giving both a scientific challenge and opportunities in the design of materials. 

 

Negative thermal expansion (NTE) is an unusual property of solid materials: contraction is observed 

with increasing temperature, in contrast with the usual trend for most materials, which expand upon 

heating (positive thermal expansion, PTE) [1], [2], [3], [4]. An NTE material contracts at least in one 

direction, but there may be directions along which the material expands, as in the case of PbTiO3 in 

its tetragonal phase, for which the c-axis contracts, while the a-axis expands [5]. However, isotropic 

NTE has been reported, for example in Zr2W2O8, a compound with a cubic crystalline structure and 

NTE from 0.3K to its temperature of decomposition, around 1050K [6], [7]. The physical quantities of 

relevance to the description of this phenomenon are the coefficients of thermal expansion (CTE), 

which are in general components of a symmetric rank two tensor, each component representing the 

corresponding component of strain due to a change in temperature at constant pressure per unit of 

temperature variation. The trace of this tensor is the volumetric expansion coefficient: these 

considerations make it especially interesting, both as a relevant quantity in the perspective of 

applications and as a way to compare the thermal expansion of materials with a different crystal 

symmetry. 

The coefficient of thermal expansion may be defined in slightly different ways, although in most 

practical cases they don’t differ significantly, given the fact that the thermal expansion itself is usually 

quite small compared to the absolute value of the lengths or volumes: sometimes it is defined as 
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𝛼𝑥,𝑇0
=

1

𝑥0

𝑑𝑥

𝑑𝑇
(𝑇), (1.1) 

where 𝑥 is any of the dimensions (lattice constants in a crystal or volume) of the system and 𝑥0 is 

the value of the dimension at an arbitrary temperature 𝑇0, while in a more rigorous sense it is 

defined as  

α𝑥(𝑇) =
𝑑(𝑙𝑛(𝑥))

𝑑𝑇
(𝑇). (1.2) 

During their usage, most technological components undergo temperature changes that are mostly 

detrimental to the durability and performance quality of instrumentation: mismatches in thermal 

expansion of components that are joined or in contact are often associated with thermal shocks, but 

even in and of itself thermal expansion may lead to dimensional instability and thus to errors 

intolerable for certain technological precision devices.  

 
Figure 1.1: Crystal structure of ZrW2O8 with the polyhedral quasi-rigid subunits ZrO6 and WO4 
highlighted. A unit cell is reported in the lower left corner 

Many workarounds have been developed to counter these unfavourable effects: particularly shaped 

components are able to accommodate for thermal expansion (e.g. expansion joints or loops), 

composite materials (often made of metals with a different thermal expansion coefficient) have 

widely been employed in devices (e.g. compensated rods to keep under control the swinging period 

of pendulum clocks) and more sophisticated examples are invented still nowadays as new 

technologies emerge (e.g. components to keep the focus of infrared optical systems stable against 

thermal fluctuations).  
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Another possibility, although recent and less explored, is to build composite systems exploiting the 

lateral contraction under tension of carefully matched and shaped parts. While these concepts might 

be useful in many contexts where performance quality and simplicity of design may be less important 

than other engineering variables, the possibility of having single phase materials with the required 

thermal properties is nonetheless exciting and promising. A classic case of anomalous thermal 

expansion is that of the iron-nickel alloys, which (near room temperature) generically display a 

coefficient of thermal expansion well below that predicted by the law of mixtures. In particular, a 

minimum is found at a stoichiometry characterized by a 36% Ni atomic content (also known as invar), 

with a CTE at room temperature an order of magnitude smaller than both those of iron and nickel 

(and of most usual metals) in their pure form at room temperature. This phenomenon is usually 

indicated with the term zero thermal expansion (ZTE). Since the discovery of these facts by Guillaume 

(which earned him the Nobel prize for Physics in 1920) a certain number of applications in horology, 

land-surveying practices, television technologies (CRT shadow masks) and liquid natural gas 

transportation have been developed [8]. In the last decades, NTE has been discovered in classes of 

chemical compounds exhibiting a framework crystal structure [9]. One of the most famous examples 

is Zr2W2O8: being an example of material displaying a large isotropic NTE in a wide temperature range, 

investigations about it highlighted the important role that a class of vibrational modes (known as rigid 

unit modes, RUM, or sometimes quasi-rigid unit modes) could play in large NTE (where “large” is 

intended as “large in absolute value as for usual materials”): this name is due to the fact that these 

normal modes consist in vibrations in which some subsets of atoms move in a rigid fashion. However, 

NTE appears also in simpler and more usual materials: silicon and germanium are examples of 

elemental materials displaying a tetrahedrally coordinated crystal structure which display NTE at 

cryogenic temperatures, while silver monoxide maintains NTE up to room temperature and beyond 

[10], [11], [12], [13]. In search of this intriguing property a variety of compounds have been 

investigated: among these there are oxides [14], fluorides [15], nitrides [16], cyanides [17], [18], 

metallic alloys [19]; in some of these cases (quasi-)rigid unit modes seem to be absent or to have little 

to no significance for NTE and, even when they have, their role and the descriptive accuracy of the 

so-called “tension effect” theory is difficult to fully ascertain. This is true both because not just one 

or two normal modes contribute to the CTE, but the whole phonon dispersion, and because the 



 

7 
   

description of lattice dynamics is mostly qualitative or only partially quantitative at the current level 

of theoretical calculations, even if in some relevant cases reliable and thorough results have been 

obtained [20], [21], [22], [23].  

An important attempt to formulate a theory relating thermal expansion to other experimentally 

accessible physical quantities and also potentially to a microscopic picture of matter has been due to 

Grüneisen in the 1920’s and may be summarized in the simple and powerful relation:  

𝛼 = 𝛾
𝑐𝑉,𝑚 ∙ ρ

𝑘𝑇

, 
(1.3) 

where α is the thermal expansion coefficient, where 𝑘𝑇 is the bulk thermal compressibility, 𝑐𝑉,𝑚 is 

the specific heat per unit mass at constant volume, ρ is the density of the material and 𝛾 is the 

Grüneisen parameter, which for many simple solids (e.g. elemental metals) is weakly dependent on 

temperature and can be approximately considered an intrinsic property of the material [24].  

 

Figure 1.2: Conceptual description of a framework structured chain of atoms. The polygons are 

reported to hint at a framework structure in the other directions. 

 

1.1 Rigid Unit Modes 

As mentioned before, RUMs are an important building block of models describing NTE in a wide array 

of materials. The underlying physical principles may be based on observation of a simple model, that 

of a periodically repeating chain of atoms linked rigidly, which is represented in Figure 1.2, where red 

and blue circles represent different atomic species. Extending this structure by cubic symmetry about 

the blue sites, a perovskite type crystal is obtained, as ScF3 and ReO3. Let us consider the case in 

which the “blue” atoms may slide along the crystal axis, but with their vertical coordinates fixed, 

“red” atoms instead are constrained to move along the vertical direction and, furthermore, the 

nearest neighbors’ distance (𝑙0) between the blue and red atoms is constant and is referred to as the 

bond length. Defining θ the angle of the vector difference of the positions of nearest neighbors red 
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and blue atoms with the crystal axis X, we have that the distance between two nearest blue atoms is 

𝑙(θ) = 2𝑙0𝑐𝑜𝑠(θ). 

The relevant quantity for our discussion is the lattice constant which in this case is the distance 

between the equilibrium positions of two nearest blue atoms, i.e. the thermal average 〈𝑙〉𝑇. Here the 

thermal average is intended as  

〈𝑙〉𝑇 = ∫𝑑θ 𝑙(θ)𝑒−𝛽𝐸(θ)/∫𝑑θ 𝑒−𝛽𝐸(θ), (1.4) 

with 𝛽 = 1/(𝑘𝐵𝑇), 𝑘𝐵 the usual Boltzmann’s constant and 𝐸(𝜗) a deformation potential energy, i.e. 

the energy required to deform the equilibrium configuration(s) into the configuration with angle θ 

[25], .  

Considering the particular case of small fluctuations around an equilibrium configuration at θ = 0, 

the potential energy due to this normal mode may be approximated as E(θ) ≈ 𝑏θ2/2, 𝑘 > 0 and 

𝑐𝑜𝑠(θ) ≈ 1 − θ2/2. With these assumptions one obtains the relation [26]: 

𝑏⟨θ2⟩𝑇/2 = 𝑘𝐵𝑇/2. (1.5) 

This implies that, at least at low enough temperatures, the coefficient of thermal expansion is 

negative and also that it doesn’t depend on third order force constants, as instead is usual for 

stretching modes.  

In the case in which the potential displays a minimum at θ0 ≠ 0, for low enough temperatures the 

expression of the thermal expansion can again be significantly simplified obtaining (δ𝑙 ≔ 𝑙 −

2𝑙0cos(θ0)): 

⟨δ𝑙⟩𝑙𝑜𝑤𝑇 = ∫𝑑θ 2𝑙0 𝑐𝑜𝑠(θ)
ℝ

∙ 𝑒−β𝐸(θ)/∫dθe−βE(θ)

ℝ

≈ 2𝑙0 (𝐸′′′(θ0)∙𝑠𝑖𝑛(θ0) −
𝑐𝑜𝑠(θ0)

2𝐸′′(θ0)
)𝑘𝐵𝑇 

(1.6) 

Thus, in the case of phase transitions related to flexural instabilities it can be expected the CTE to 

change sign between the phases. A particular case is the one in which 𝐸(θ) = 𝑏 ∙ θ2 + 𝑐 ∙ θ4, 𝑏 <

0, 𝑐 > 0. The sign of the thermal expansion is independent from which side the flexural instability 

occurs (i.e. it is invariant by inversion θ0 → −θ0). Also, in the limit θ0 → 0 the previous case is 

recovered. 

In the particular instance in which 𝑏 = 0, the potential is the quartic one 𝐸(θ) = 𝑐 ∙ θ4, which, always 

in the low temperature regime, yields: 
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〈δ𝑙〉𝑙𝑜𝑤𝑇 ≈ −(βc)−1/2 ∫𝑑θ 𝑙0
ℝ

(βc)1/2θ2 ∙ 𝑒−βcθ4
/∫dθe−βcθ4

ℝ

  (1.7) 

thus, 

〈δ𝑙〉𝑙𝑜𝑤𝑇 = −S ∙ 𝑙0
(𝑘𝐵𝑇)1/2

𝑐1/2
⇒ αlowT = −S

𝑘𝐵
1/2

2𝑇1/2𝑐1/2
, (1.8) 

with 𝑆 a (positive) numeric constant that can be found comparing Eqs. (1.7) and (1.8). This case is 

interesting due to the divergence of the thermal expansion coefficient for 𝑇 → 0+, which might be 

of interest in the description of systems near a structural phase transition. Even if quantum effects 

(which will make the CTE go to zero for 𝑇 → 0+) have to be considered to properly describe the 

thermal properties at very low temperatures, the negative thermal expansion is expected to be 

enhanced at low temperatures.  

A more thorough and rigorous analysis that doesn’t assume anything on the angular range of the 

fluctuations might be performed considering the fact that the linear thermal expansion coefficient 

sign is the same of  
𝑑〈𝑙〉𝑇

𝑑𝑇
, which is the same of 

∫dθ E(θ)cos(θ)e−βE(θ) ∙ ∫dθ e−βE(θ) − ∫dθ cos(θ)e−βE(θ) ∙ ∫dθ E(θ)e−βE(θ) (1.9) 

In the case 𝐸(θ) = αθ2, α > 0 with the approximation 𝑐𝑜𝑠(θ) ≈ 1 − θ2/2 the sign of the thermal 

expansion is that of the quantity  

[−∫𝑑θ θ4𝑒−𝛽αθ2
∙ ∫ 𝑑θ 𝑒−𝛽αθ2

+ (∫𝑑θθ2𝑒−𝛽αθ2
)2] (1.10) 

which is negative due to the Cauchy-Schwarz inequality, applied to the functions 𝑒−𝛽αθ2/2 and 

θ2𝑒−𝛽αθ2/2. 

More generally, the quantity in Eq. ((1.9) is negative if 𝐸(θ) is taken symmetric with respect to θ =

0, increasing for positive values of θ and temperature is low enough to guarantee that 𝐸(θ)𝑒−𝛽𝐸(θ) 

is an increasing function for all angle values, as can be seen considering the following inequalities:  

∫𝑑θ𝐸(θ)𝑐𝑜𝑠(θ)𝑒−βE(θ) ∙ ∫ 𝑑θ 𝑒−βE(θ)

≤ (∫𝑑θ𝐸(θ)𝑒−βE(θ) ∙ ∫𝑑θ cos(θ) ∙ ∫𝑑θ 𝑒−βE(θ)) /𝛥θ 

                                       ≤ ∫𝑑θ𝐸(θ)𝑒−βE(θ) ∙ ∫ 𝑑θ 𝑐𝑜𝑠(θ)𝑒−βE(θ), 

(1.11) 

where 𝛥θ is the angle range width and the inequalities are particular cases of the integral Chebyshev 

inequality, which requires that 𝐸(θ) is positive and increasing for positive values of θ.  
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These models, clearly strong simplifications, lack several aspects which are necessary for description 

of real materials: a realistic model must account for the fact that the normal modes usually aren’t 

RUMs and thus there are contributions due to bond stretching, it must incorporate quantum effects 

(especially at very low temperatures); also, the lattice motion occurs in three dimensions.  

A simple toy model follows that illustrates what happens if the rigidity constraint is removed: the 

situation of Figure 1.2 immediately becomes complicated by the presence of the phonon dispersion, 

but the main results are formally correct even when treating the lattice dynamics in a very simplified 

way, i.e. considering atomic pairs bound to their lattice sites, but with vibrations decoupled from 

each other. The deformation energy of a nearest neighbours’ atomic pair is expanded up to third 

order in the deformations, removing the rigidity constraint, i.e. adding the possibility of stretching 

the bonds between nearest neighbour atoms:   

       𝐸(ϵ∥, ϵ⊥) ≈ 𝑘∥ϵ∥
2/2 + 𝑘⊥ϵ⊥

2/2 + μϵ∥
3 + ηϵ∥ϵ⊥

2  (1.12) 

with ϵ∥ the stretching deformation of the bond length, that satisfies  

ϵ∥
2 ≈ 𝑥2 + xϵ⊥

2/𝑙0 + 𝑥3/𝑙0, (1.13) 

while 𝑦 ≔ ϵ⊥is the relative vertical displacement of the red and blue type atoms, 𝑙0 is the equilibrium 

bond length and 𝑥 is the relative displacement of nearest neighboring atoms projected along the 

equilibrium lattice direction, while 𝑦 is the vertical displacement of the red atom. The 𝑘∥ and 𝑘⊥ 

quantities have a role similar to that of effective force constants, although this nomenclature is to be 

understood as only indicative. The absence of terms linear and cubic in ϵ⊥ is justified by the symmetry 

of the system upon the inversion ϵ⊥ → −ϵ⊥. In this case the thermal expansion of a nearest 

neighbors’ atomic pair is, at first order in the temperature 𝑇: 

⟨𝑥⟩𝑇,𝑙𝑜𝑤𝑇 ≈
∫ 𝑑𝑥𝑑𝑦 
ℝ2 −

(μ̃𝑥4 + η 𝑥2𝑦2 +
𝑘∥𝑥

2𝑦2

2𝑙0
)

𝑘𝐵𝑇
𝑒−β(𝑘∥𝑥

2+𝑘⊥𝑦2)/2

∫ 𝑑𝑥𝑑𝑦 𝑒−β(𝑘∥𝑥
2+𝑘⊥𝑦2)/2

ℝ2

= −((
3μ̃

𝑘∥

+
η

𝑘⊥

)
1

𝑘∥

+
1

2𝑙0𝑘⊥

)𝑘𝐵𝑇,  

(1.14) 

with μ̃ = μ +
𝑘∥

2𝑙0
. A flexural instability analogous to buckling arises upon application of a pressure 

high enough: informally speaking, if ϵ∥ is negative enough, i.e. if the bond is shrunk enough, the 

effective transverse frequency becomes imaginary and a crystal structure transition occurs. In that 

case, the calculation follows the one made in the case of asymmetric equilibrium state seen before. 
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The extreme case of rigid unit motions is obtained by taking the limit k∥ → +∞. We see that what 

controls the sign of the thermal expansion is in fact the ratio between the longitudinal and transverse 

force constants, as can be checked inspecting the sign of the expression in Eq. (1.14) when μ < 0, as 

generically is.  

Although this calculation exemplifies how the tension effect arises from atomic motions, it must be 

generalized to describe the lattice dynamics correctly, also considering its three-dimensional nature: 

a complete treatment is obtained by formulating the relative displacements in terms of normal 

modes and correctly representing the total deformation potential energy of the lattice. For the RUMs 

seen before 𝑏 can be expressed as 𝐼ωRUM
2  in Eq. (1.5), where 𝐼 is the moment of inertia of the Rigid 

Unit along the axis about which it rotates in the RUM.  

We can outline the strategy when considering the complete dispersion of lattice vibrations, also all 

those with no particular longitudinal or transverse characteristic. As a starting point, the deformation 

energy might be expanded to third order in deformations of atomic pairs; the deformations can then 

be further expressed in terms of the displacements, giving rise, among others, to the same type of 

third order terms (giving negative contributions to the CTE) seen before. The lattice thermal 

expansion will be expressed as the thermal average of a suitable sum of those displacements and the 

calculations that follow are analogous to those presented above.  

 
Figure 1.3: Crystal structure of ScF3 both presented as a ball and stick model (left) and with the 
polyhedral quasi-rigid subunits highlighted (right).  

As for the importance of quantum effects, it is usually well estimated by considering the ratios 

ℎν/𝑘𝐵𝑇 for the various frequencies ν, where ℎ is the Planck constant: if the ratio is small enough the 

classical model can be reliably employed, as the states might be considered equipartitioned. The 
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main quantum effect is that, in accordance with the third law of thermodynamics, the thermal 

expansion coefficient tends to zero at 𝑇 → 0+.  

The integral averages must be changed into traces over a basis of states: using the virial theorem we 

obtain  

⟨θ2⟩

2
=

⟨𝐸⟩

2α
=

ℎν

2α
(
1

2
+

1

𝑒ℎν/𝑘𝐵𝑇−1
),    (1.15) 

which leads to a zero CTE at 𝑇 = 0𝐾 and the correct classical limit 
⟨θ2⟩

2
≈

kBT

2α
 at high T. Considering 

the case of ScF3, for which the 𝑀-mode (�⃗� = [0.5,0.5,0]) has energy 2.8 𝑚𝑒𝑉 at 𝑇 = 0𝐾 [27],  

corresponding to an effective temperature of around 30𝐾, so in this case due to the “softness” of 

the RUMs the non-quantum models are reliable even at temperatures significantly lower than room 

temperature. This whole analysis highlights two points: symmetry plays a crucial role in the NTE due 

to phonons, as evidenced by the simple cases of RUMs with symmetric and non-symmetric 

equilibrium, and harmonic properties of materials (i.e. second order force constants) are not only 

crucial to vibrational NTE, but also useful in the assessment of the potentiality of selected materials 

as NTE materials candidates. Indeed, the first fact is enough to understand why large or even giant 

NTE are so uncommon phenomena among materials even if, as we have briefly mentioned, 

contributions to thermal expansion due to the tension effect are commonly present [25], [28]; the 

second fact significantly simplifies the theoretical efforts to direct the search for these anomalous 

property: going back to the case of ScF3, we can estimate how negative the CTE would get if the 𝑀 

mode was the only mode present, α𝑙𝑖𝑛𝑒𝑎𝑟,𝑅𝑈𝑀 ≈ −𝑘𝐵/(8𝐼π2ν𝑀
2 ) ≈ −73 𝑝𝑝𝑚 ∙ 𝐾−1 with 𝐼 the 

moment of inertia of the ScF6 octahedra along one of the three axes passing through collinear F-Sc-F 

atoms, to be compared with an experimental minimum of approximately −10 𝑝𝑝𝑚 ∙ 𝐾−1. The 

discrepancy is due to the fact that all normal modes contribute (positively or negatively) to the 

thermal expansion. 

 

1.2 Classification of NTE materials 

Simplified models allow to intuitively understand specific significative aspects, but to develop a better 

understanding of any physical property it is also necessary to have a broader view at what types of 

materials exhibit it and to what extent. 
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1.2.1 Chemical composition and crystal structure 

A first practical way to categorize NTE materials is by their chemical composition: observation of 

patterns and relationships in particular classes of compounds sharing chemical strong chemical 

similarities has proven fruitful to the understanding of the basic mechanisms underlying this 

phenomenon. Also, as we have seen in the previous section, crystal structure plays an important role. 

The two aspects are often intertwined: for example, studying tetrahedrally coordinated compounds, 

it has been observed the fact that the CTE is negatively correlated with the ionicity of the compound 

[29], [30]; a similar observation has been deduced from the study of cyanides and this gives precious 

insights regarding assessment of NTE in candidate materials [31].  
 

1.2.2 Phase transitions 

Another approach starts from the phase diagram of materials: in relevant instances of NTE materials 

radical changes in the CTE might be observed in different phases of the system. Coming back to the 

Fe64Ni36 alloy, which is ferromagnetic (FM), it was observed already by Guillaume that the anomalous 

thermal behavior only appears at temperatures below the Curie temperature of the alloy. This isn’t 

an isolated case and this radical change is observed also in other invar alloys (e.g. iron-platinum alloys 

and iron-chromium alloys) at the magnetic ordering phase transition. The important case of PbTiO3 

has already been mentioned: upon transition from the tetragonal ferroelectric phase to the cubic 

(non-ferroelectric) phase the anisotropic NTE disappears. It has been observed that a positive 

correlation exists between the square of the spontaneous polarization of NTE ferroelectrics and the 

anomalous contributions to the CTE, quantified by means of the spontaneous electrostriction 

parameter 𝜔𝑠 =
𝑉𝑓−𝑉𝑛

𝑉𝑛
, where 𝑉𝑓 and 𝑉𝑛 are respectively the volumes of the system in the 

ferroelectric state and extrapolated from the paraelectric phase. An analogous relationship is 

available for magnetic alloys with anomalous CTE, with the figure of merit being the spontaneous 

magnetostriction [32]. 

We can go a little further in exploring this theoretical framework by introducing in it Ginzburg-Landau 

theories of critical phenomena, which can be very useful as a starting point of description of phase 

transitions: the free energy of the system in the vicinity of the critical point of the transition is 

expanded in powers of the order parameter in accordance with the group of symmetries of the 

system. 
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For a system symmetric upon inversion of the order parameter the Landau free energy near the 

critical point is approximately of the form:  

𝐹(𝑇, 𝑂, 𝑒) = 𝐴(𝑇) + 𝐵 ∙ (𝑇 − 𝑇𝐶)𝑂
2 + 𝐶𝑂4 + 𝐷𝑒2/2 − 𝐸𝑒𝑂2,  (1.16) 

where 𝑒 is the spontaneous strain with respect to the disordered/normal phase, 𝑇𝐶 is the critical 

temperature and 𝐵, 𝐶, 𝐷 and 𝐸 are quantities that don’t depend on temperature, on 𝑂 nor on 𝑒 (𝐵, 

𝐶, 𝐷 are positive). Important example of quantities employable as 𝑂 in this scheme are the modulus 

of the magnetization for ferromagnets, the modulus of the polarization for ferroelectrics, and the 

modulus of the complex 𝛹 O(1) order parameter for superconductors [33]. The spontaneous strain 

introduced here is indeed a generalization of the ones defined when describing the ferroelectric and 

ferromagnetic cases. Minimizing the free energy with respect to the strain gives an interesting 

quadratic relation between the spontaneous strain and the order parameter, i.e. 𝑒 = (𝐸/𝐷)𝑂2 [34], 

as is observed in the available experimental data. 
 

1.2.3 Microscopic excitations 

Observing that the aforementioned mechanisms underlying NTE are strongly tied to a kind of 

microscopic excitations allows to introduce another possible classification of NTE materials. In fact, 

in many NTE materials one type of excitations gives the greatest contribution and, even in the cases 

of multiple sources of NTE, understanding the roles and interplay of the excitations is crucial. In 

addition to the already mentioned structural thermal disorder related to soft phonons and the 

excitations arising in long-range ordered ferroelectric or magnetic phases, also variations of the 

electronic structure may induce a change in sign of the CTE: changes in atomic valence with 

temperature, charge carrier doping in semiconductors and electron confinement in metal 

nanoparticles may also lead to NTE or its enhancement. 

In general, the problem of relating thermal expansion to microscopic quantities may be framed in 

the context of thermodynamics and statistical mechanics starting from the following fundamental 

relationships: 

αV =
1

V

∂V

∂T
|P = kT

∂P

∂T
|V = −kT

∂2A

∂V∂T
, 1.17 

where 𝐴 is the free energy and 𝑘𝑇 is the isothermal bulk compressibility. 
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The Grüneisen theory follows by using the quasi-harmonic approximation (QHA), obtaining in the end 

a formula specifying the contributions from single normal modes:  

1

𝑘𝑇∙𝑉
∑ 𝛾𝑖𝑐𝑉,𝑖𝑖 = 𝛾

𝑐𝑉

𝑘𝑇∙𝑉
 , (1.18) 

defining  𝛾𝑖 = −
𝑉

𝜔𝑖

𝜕𝜔𝑖

𝜕V
 to be the Grüneisen parameter relative to the 𝑖-th normal mode,  

𝑐𝑉,𝑖 = 𝑘𝐵(
ħ𝜔𝑖

𝑘𝐵𝑇
)2

𝑒𝑥𝑝(−ħ𝜔𝑖 𝑘𝐵𝑇⁄ )

(1 − 𝑒𝑥𝑝(−ħ𝜔𝑖 𝑘𝐵𝑇⁄ ))
2 (1.19) 

is the contribution to the specific heat capacity at constant volume of the 𝑖-th normal mode and 𝑉 

the specific volume. The normal modes are specified by a wavevector (that for crystals belongs to 

the first Brillouin zone) and a phonon band index. 

Due to the ubiquitous nature of phonons in solids, the QHA is the theoretical framework from which 

to start the analysis of lattice dynamics and its contributions to thermodynamically relevant 

quantities (e.g. free energy, specific heat, CTE) in a way capable of describing properties intrinsically 

related to the anharmonicity of the interatomic potential energy. In fact, as a simple corollary of this 

description of thermal expansion, we see that in harmonic crystals the thermal expansion is exactly 

zero. 

We can see from this that if the bulk modulus and the (average) Grüneisen parameter weakly 

depended on the temperature, the thermal expansion would approximately have the same trend in 

temperature of the heat capacity at constant volume. However, it must be noted that while this might 

be a good approximation for many simple materials, for example solid bulk copper or gold, it is not 

for many NTE compounds for which the full phonon dispersion must be considered, especially given 

the fact that in interesting cases (e.g. ScF3, ZrW2O8) the negative contributions come mainly from 

limited regions of the first Brillouin zone. In particular, in the neighborhood of high-symmetry 𝑘-

points low energy modes (usually quasi-RUMs) have been found to be endowed with a large negative 

Grüneisen parameter. Limitations of the QHA are easy to point out and are mainly related to the fact 

that in QHA anharmonicity is accounted for only at the implicit level, i.e. the normal mode 

frequencies are assumed to depend only on structural parameters (e.g. specific volume, lattice 

constants) and not on temperature or other state variables. 

In order to develop particular considerations from the general theoretical starting points, different 

strategies are deployed to calculate the various contributions to free energy and then derive the 
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thermal expansion along with all the relevant thermal quantities. An approach is to calculate the 

energy contributions only from certain types of microscopic excitations (for example phonons), 

keeping fixed the degrees of freedom related to the others (for example keeping the electrons in the 

ground state or imposing a value of the magnetization). In mathematical terms (𝑂 stands for the 

considered degrees of freedom, e.g. magnetization or polarization): 

𝑑𝑉

𝑑𝑇
=

∂𝑉

∂𝑇
|𝑂 +

∂𝑉

∂𝑂
∙
∂𝑂

∂𝑇
 (1.20) 

If ∂𝑂/ ∂𝑇 < 0 (as usually is the case for ferromagnets and ferroelectrics, in which 𝑂 may be 

respectively taken as the magnetization or the polarization), the sign of the second term is 

determined by the sign of ∂𝑉/ ∂𝑂, which in the case of ferromagnetism is the magnetostriction. After 

completion of the necessary calculations, it is possible to estimate the difference between the 

computed result and the experimental data, thus making the necessity of including particular 

excitations clear; it is also possible to try to repeat the operation with different degrees of freedom 

fixed and then combining the results to obtain a more realistic description [35], [36]. 
 

1.3 Tuning thermal expansion 

A better understanding of the mechanisms behind NTE in some relevant cases (e.g. ScF3, ZrW2O8), 

paved the way to new methods to tune the thermal expansion, in the sense of producing materials 

with CTE determined by design (in a reasonable range of values).  

 
Figure 1.4: Examples of effect of intercalation of water molecules (left) and alkaline ions (right) on 
thermal expansion in framework structured compounds (Data acquired by the research group of 
Prof. Jun Chen) 
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This provides a way of exploiting this exotic behavior of matter. Up to now, three main processes 

have been developed to obtain materials with a specific CTE: intercalation of small species, chemical 

substitution and nano-structuration. 

Intercalation of framework structured materials with small species can be performed by 

electrochemical means.  The CTE of framework structured compounds that display significant voids 

in their structure increases as these are filled with small chemical species, such as alkaline ions or 

water molecules. According to the analysis in the previous chapter, the hindrance of RUMs due to 

the presence of the intercalated species is a plausible candidate for this mechanism of NTE 

suppression. However, a lot remains to be understood about this method, especially regarding the 

specific roles of the various atoms in the framework structures and how the intercalated species 

interfere with the lattice dynamics. Compounds with similar crystal structure and chemical 

composition, as mentioned before, can display a CTE different from the pure versions of the 

compounds: this has been highlighted by studies involving families of compounds mainly differing by 

the stoichiometry of elements occupying specific lattice sites. An example among framework 

structured compounds is the family of compounds Zr1-xSnxMoO8, which displays NTE or PTE 

depending on the value of x [37]. This approach allows to systematically tune the thermal expansion 

coefficient in between the extreme values. However, the substitution of atomic species with others 

is a process significantly more invasive than intercalation and can cause changes to the materials that 

are in general more difficult to predict and control, from the distortion of the local structure to crystal 

structure transitions. 

The third process that can radically change the thermal expansion of a material is nano-structuration: 

it is well-known that materials with nanometric dimensions can display different properties than their 

bulk correspondent and they usually do [38]. In various cases (e.g. Au, CuO, MnF2, ScF3 and PbTiO3) 

the thermal expansion coefficient of the nanoparticles strongly depends on the particle size, to the 

point of changing sign with respect to the bulk value with sufficiently small size [39]. This 

phenomenon is often accompanied by (local) phase transitions (ScF3 and PbTiO3) and/or by a peculiar 

magnetic structure, both of which are very hard to fully understand [40], [41], [42]. Magnetic 

nanoparticles present important case studies in which the interplay between different mechanisms 
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might give non-negligible contributions to the thermal expansion. Applications of this phenomenon 

may be found for nanoparticles embedded in particular matrices [43]. 

Among the great quantity of information collected up to now, those regarding the relation between 

thermal expansion and simpler properties of materials are especially relevant to further improve 

thermal expansion control. For example, the specific volume per atom (closely related to the concept 

of average atomic volume, AAV) of the crystal structure, the ionic radius of particular atoms and the 

anisotropy of thermal vibrations have been found to be negatively correlated to the coefficient of 

thermal expansion in several cases [44], [45].  

As for the potentiality of these approaches, the lines of research are various: on one side it is 

interesting to fully explore the classes of materials where NTE has been found, because, while many 

of the materials found up to now are not widely employable in technological applications, exploiting 

the acquired knowledge it might be possible to find materials more favourable to applications, for 

example displaying chemical stability and good mechanical and/or chemical resistance with an 

affordable production cost. On the other side the thermal expansion control strategies are 

interesting. In fact, it is important to have results on the efficacy of the procedures for thermal 

expansion control that are as complete as possible. Thus, a variety of relatively simple compounds 

are required to be thoroughly investigated.   

At this point it must be clear that in general the question of whether and how much the negative 

contributions to thermal expansion are caused by one mechanism or another is hard to answer, but 

also interesting, both from the scientific and applicative point of view. 
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Chapter 2  

 

Experimental methods 

 

The EXAFS spectroscopy is a technique which allows to investigate the local vibrational dynamics of 

materials at the atomic scale. It is the main focus of this work to use the experimental data from this 

technique to inquire materials displaying anomalous thermal expansion. Thus, in this chapter the 

technique is briefly presented and theoretically contextualized, together with the data analysis 

procedure that will be extensively employed in the following chapters. 

 

2.1 Storage rings and synchrotron light 

Synchrotrons are devices capable of accelerating charged particles by using a magnetic field 

increasing in intensity across a vacuum chamber together with the particle kinetic energy, which at 

the end is usually in the ultra-relativistic regime, i.e. 𝐸𝑘𝑖𝑛 ≫ 𝐸𝑟𝑒𝑠𝑡 = 𝑚𝑐2, where 𝑚 is the particle’s 

mass and 𝑐 is the speed of light [1], [2], [3], [4]. After the development of the first synchrotrons it was 

discovered that they emitted a peculiar type of electromagnetic radiation, also called synchrotron 

light.  

When the particles (in this case electrons) have reached their target energy, they are injected in a 

storage ring, where they are maintained as long as possible in orbit by use of electro-cavities in which 

electric oscillations are synchronized with the orbit of the electrons; synchrotron radiation is emitted 

as the electrons subjected to magnetic forces accelerate following a curved orbit. The beam of 

electrons, subdivided in bunches, must remain in a very high vacuum in order to minimize 

interactions with gas atoms, which are detrimental to the beam: the electric current circulating in 

the storage ring tends to decrease over time and eventually the beam has to be refilled according to 

one of the various filling modes available (e.g. in the top-up mode the refill occurs so frequently that 

the current in the storage ring only slightly fluctuates during operation). 

What distinguishes the storage rings from the X-ray tubes as a radiation source, apart from the 

physical mechanism leading to X-ray emission and the sophisticated methods of X-rays manipulation, 

is the brilliance, a parameter characterizing the performance of a source of X-rays in terms of its 

emission bandwidth, flux and angular distribution. Nowadays, the fourth-generation of synchrotron 
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light sources is being developed (e.g. the ESRF, a third-generation source, has been upgraded to ESRF-

EBS), with the intention of ultimately pushing their design concepts to their fundamental limits.  

The relativistic γ factor of the electrons affects the synchrotron light properties, e.g. its emission 

frequency spectrum. In the case of ESRF in Grenoble, France γ ≈ 12000 and in the case of ELETTRA 

synchrotron in Trieste, Italy γ ≈ 4000  [5], [6]. The spectrum of the radiation emitted by the electrons 

also strongly depends on the type of magnetic configuration employed. Bending magnets, which 

consist of a single dipole magnet, are usually employed whenever there is need for a smooth and 

wide range of photon energies: all the data reported on in this work have been collected at beamlines 

using the bending magnet configuration. There are however other magnetic configurations, i.e. 

wigglers and undulators, employing periodic arrays of magnets rather than a single dipole magnet as 

in bending magnets: they are referred to as insertion devices.  

Storage rings are surrounded by beamlines, each dedicated to certain types of measurements. 

Beamlines usually have these common elements: starting from the joint with the storage ring, usually 

called the source (as X-rays come from it) there is the optical hutch, which contains the instruments 

(mirrors,  

 
 

Figure 2.1: Schematics of a typical XAS beamline in the transmission configuration (not in scale). 

The X-ray beam is in blue; in the optical hutch there might be X-ray mirrors that are not indicated 

here 
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monochromator, slits) devoted to focus, reduce, align and/or monochromatize the radiation coming 

from the source; then the experimental hutch, where the sample is kept in the conditions required 

by the experiment and the measurements are performed [6], [7]. 

The experimental setup employed in this work is that of X-ray Absorption Spectroscopy (XAS) in 

transmission geometry, that is, the detectors are positioned behind the sample, thus measuring the 

flux of the X-ray beam after its interaction with the sample itself. In this simple setup it is 

straightforward to extract the absorbance in accordance with Lambert-Beer law: 

𝐼(d) = 𝐼0𝑒
−μ𝑑 ,  (2.1) 

where μ is the absorption length, 𝑑 the width of the system in the direction traversed by the X-rays 

beam and 𝐼0 and 𝐼(d) are the intensity of the X-ray beam respectively before and after its interaction 

with the system. So, two ionization chambers are needed in order to measure the intensity of the 

radiation before and after its interaction with the sample. The pressure and chemical composition of 

the gas mixture inside the ionization chambers are determined in order to have the radiation beam 

attenuated by a known factor. To properly calibrate the energy of the incident photons a reference 

sample is placed after the second ionization chamber. 

 

2.2 X-ray Absorption Fine Structure 

When hard X-rays irradiate a sample their predominant interaction with it is the photoelectric effect: 

photons are absorbed by the sample and the electrons in the sample are excited.  
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Figure 2.2: An absorption spectrum of 𝑇𝑖𝐶𝑜(𝐶𝑁)6 ∙ 2𝐻2𝑂 @ 𝑇𝑖 K-edge acquired at XAFS beamline, 

ELETTRA at 100K with the interesting energy regimes highlighted 
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This fact allows to approximate the extinction coefficient with the absorption one. While the 

photoelectric effect in solids requires in general a quite involved theory, it admits a simple description 

in the high energy range of the absorption spectrum, so called extended range, due to several key 

aspects leading to significant simplifications in the theoretical description of the phenomenon, 

ultimately allowing to reliably extract physical quantities from spectroscopic measurements. The 

absorption coefficient of materials shows edge displays a discontinuity in correspondence with 

atomic transitions from deep core states. The absorption spectrum regime near the edge is called 

XANES (X-ray Absorption Near Edge Structure). Beyond the absorption edge, the absorption 

coefficient of matter (from molecular gases to solids and liquids) shows oscillations, called Extended 

X-ray Absorption Fine Structure (EXAFS). A simple illustration of this taxonomy is presented in Figure 

2.2. In the early EXAFS studies [8], it was recognized at an empirical level that the X-ray Absorption 

Fine Structure (XAFS) was well described as a sum of terms of the form: 

χ(𝑘) =
N ∙ 𝑆0

2 ∙ 𝑓𝑒𝑓𝑓(k) ∙ 𝑒−2𝑅/𝜆(𝑘) ∙ 𝑠𝑖𝑛(2𝑘𝑅 + 𝜙(𝑘))

𝑘 ∙ 𝑅2
 (2.2) 

where  𝑘 = √
2𝑚𝑒

ℏ2
(𝐸 − 𝐸0) is the photoelectron wavevector modulus, λ(𝑘) is the inelastic mean free 

path of the photoelectron, 𝑅 is the distance between the absorber and the scatterer, 𝑁 is the 

degeneracy of the scatterers, 𝑓𝑒𝑓𝑓 and ϕ are the scattering amplitude and phase. This functional 

form, called the EXAFS equation, can be given a more theoretical context as follows. The 

phenomenon can be described using the formalism of multiple scattering, which can be developed 

starting from the following expression, related to the Fermi’s Golden rule: 

μ ∝ ∑|⟨f|ϵ ∙ d⃗ |𝑖⟩|
2

f

δ(ω + 𝐸𝑖 − 𝐸𝑓) (2.3) 

where ϵ  is the polarization vector of the vector potential of the incident electromagnetic field, d⃗  is 

the appropriate dipole operator for the system in question, ω is the energy of the incident photon 

and 𝐸𝑖 and 𝐸𝑓 are respectively the initial and final energy of the (many-body) system.  

A convenient method to perform calculations in this context is based on the reformulation of the 

absorption coefficient in terms of a (generalized) single-particle electronic Green’s function, as in: 

𝜇(𝐸) ∝ 𝐼𝑚[⟨𝑖|𝜖 ∙ 𝑟 𝐺(𝑟, 𝑟′, 𝐸) 𝜖 ∙ 𝑟′|𝑖⟩], (2.4) 

where 𝐺 is the electron Green’s function. The Green’s function is calculated solving (perturbatively) 

the Dyson’s equation: 

𝐺 = 𝐺0(1 − 𝑇𝐺0)
−1, 

(2.5) 
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where 𝐺0 is the Green’s function for the free electron, while 𝑇 is the transition matrix relative to the 

optical potential, accounting for the interaction of the emitted photo-electron with all the others and 

the ions. Then, formally, 𝐺 = ∑ 𝐺0(𝑇𝐺0)
𝑖

𝑖 , where each term has a remarkable form inspiring the 

concepts of path expansion and multiple scattering. Indeed, in the case 𝑖 = 1 it is 𝐺0𝑇𝐺0, where 𝑇 

can be further expanded in terms of the muffin tin core effective potentials as 𝑇 = ∑ 𝑡𝑖𝑖 , the index 𝑖 

running over all atoms surrounding the absorber; while in principle all of them should be accounted 

for, in practice only those not farther than 10Å from the absorbing atom give relevant contributions. 

Usually, the EXAFS analysis results weakly depend on the details of the potential chosen in the 

interstitial regions between atom cores. The electronic structure is strongly related to chemical 

properties of the materials and to the electronic density of states, influencing other strongly related 

properties, e.g. the XANES. In fact, the kinetic energy of the EXAFS photoelectrons is too high for 

them to be significantly influenced by the slowly varying details of the electron structure between 

atoms that dictate the chemical properties of the material [9]. This is usually employed in 

considerably simplifying the potential in a muffin-tin form. The absolute value of the absorption 

coefficient is not very important for this discussion, since in the end only the fine structure  

χ(𝑘) =
μ − μ0

μ0

 (2.6) 

will be considered; it is however important to consider the role of the background absorption signal 

μ0, due to the absorber atom alone (but in general not the isolated specie) [10], [11]. 

 

2.2.1 The EXAFS equation 

The EXAFS equation is available to describe how the XAFS depends on the photoelectron wavevector. 

It is immediately evident that, to practically employ it, either the scattering amplitudes and phases 

must be obtained in a reliable way or removed from the problem (e.g. by the ratio method) [12], [13]. 

We will illustrate and use the first approach. The X-ray Absorption Fine Structure contribution due to 

the i-th path is: 

χ𝑖(𝑘) =
𝑁𝑖 ∙ 𝑆0

2 ∙ 𝑓𝑒𝑓𝑓,𝑖(k) ∙ 𝑒−2𝑅𝑖/𝜆𝑖(𝑘) ∙ 𝑠𝑖𝑛(2𝑘Ri + 𝜙𝑖(𝑘))

𝑘 ∙ 𝑅𝑖
2  (2.7) 

where 𝑅𝑖, 𝑓𝑒𝑓𝑓,𝑖, ϕ𝑖 are referred to the 𝑖-th path. 

The final result, which is the one to be compared to experimental results, is both an average over 

time (usually substituted by a suitable ensemble average) and over all the absorbing atoms, here 

indicated with angle brackets ⟨. . . ⟩: 
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⟨𝜒(𝑘)⟩ = 𝐼𝑚[𝑒𝑖𝜙(𝑘)𝑓𝑒𝑓𝑓(𝑘) ⟨𝑒2𝑖𝑘𝑅𝑖 ∙ 𝑒−2𝑅/𝜆(𝑘)/𝑅2⟩] (2.8) 

that can be rewritten using the cumulants (𝐶𝑛) of an effective atomic pairs distance distribution: 

⟨𝜒(𝑘)⟩ =

𝑁 ∙ 𝑆0
2 ∙ 𝑓𝑒𝑓𝑓(𝑘) ∙ 𝑒−2𝑅/𝜆(𝑘)−2𝑘2𝐶2−

2
3
𝑘4𝐶4 ∙ 𝑠𝑖𝑛 (2𝑘C1 +

4
3
𝐶3𝑘

3 + 𝜙(𝑘))

𝑘 ∙ 𝐶1
2  

(2.9) 

At this point the problem of path proliferation emerges, since the number of paths rapidly increases 

as the number of the included atomic shells surrounding the absorbing atom increases and with it 

the number of free parameters needed.  

The cumulants of a distribution of the atomic distances are defined using the following equation: 

𝑒∑ 𝐶𝑛(𝑖𝑡)𝑛∞
𝑖=0 /𝑛! = ⟨𝑒𝑖𝑡𝑋⟩ (2.10) 

It is possible to express the n-th cumulant in terms of the moments by taking the n-th derivative with 

respect to t and evaluating it at 𝑡 = 0, as in 
𝑑𝑛

𝑑𝑡𝑛
𝑙𝑛⟨𝑒𝑖𝑡𝑋⟩|𝑡=0 = 𝐶𝑛. The first cumulant is the first 

moment, the second and third cumulants are respectively the second and third central moments; 

however, this simple trend doesn’t hold for higher order cumulants: e.g. 𝐶4 = ⟨(𝑋 − ⟨𝑋⟩)4⟩ −

3(𝐶2)
2. The difference between the real distance distribution cumulants of order higher than the 

first and the effective ones is usually negligible in EXAFS spectroscopy. The first cumulant however 

must be corrected: a good approximation is given by the expression 𝐶1
∗ = 𝐶1 +

2𝐶2

𝐶1
(1 + 𝐶1/λ), where 

λ is the central value of the inelastic free path [14]. At this point it will be clear that the absolute 

values of the cumulants have little physical meaning in general, since they are strongly correlated 

with the 𝑆0
2 and 𝐸0 quantities, which have to be fitted. This conclusion doesn’t hold if the 𝑆0

2 and 𝐸0 

parameters can be reliably known by other means (e.g. calibration on known substances containing 

the same atomic specie with a similar electronic structure).  

However, if the goal of the analysis is to obtain the values of the cumulants relative to those of one 

spectrum (usually the one at the lowest temperature), then a trend in temperature or other relevant 

quantities may be reliably extracted. The basic assumption on the 𝑆0
2 and 𝐸0 quantities for this 

procedure to yield correct results is that they must be (at least approximately) considerable as equal. 

This is usually the case if the temperature changes don’t imply changes in valence state of the 

absorbing atom. The visual inspection of the XANES is usually sufficient to ascertain the validity of 

these assumptions. The alignment of the sample spectra allows to assign the same 𝐸0 parameter to 

all spectra during the fitting procedure: this fact is crucial to compare the first cumulants at different 

temperatures, since they are strongly correlated with the 𝐸0 parameter. 
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2.2.2 EXAFS dependence on local vibrational dynamics 

Dynamic thermal disorder might be understood as the deviation from ideality of the crystal structure 

due to thermal motion, which give contributions to the EXAFS second cumulant. In general, though, 

the second cumulant doesn’t receive contributions only from the atomic motions, as can be deduced 

from the  
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Figure 2.3: A schematic pair of atoms displaced from their equilibrium positions 

definition, but also in the case of atomic (average) positions not arranged in a regular crystal. The 

difference between the second cumulant and its contributions due to thermal motions is referred to 

as static second cumulant and can be intuitively thought as arising from a static disorder.  

A few definitions may clarify the notation of the following remarks, illustrated in Figure 2.4: 𝑋 1 and 

𝑋 2 are the positions of the atoms in the selected atomic pair, �⃗� 𝑐𝑟𝑦𝑠𝑡 ≔ ⟨𝑋 2 − 𝑋 1⟩ is the average 

position difference of the atomic pair, that will also be referred to as �⃗�  for brevity, while �⃗� 1 and �⃗� 2 

represent the displacements of atoms from the respective average positions, i.e. �⃗� 𝑖 ≔ 𝑋 𝑖 − ⟨𝑋 𝑖⟩. 

In the following chapters, two approximations will allow us to access the longitudinal and transverse 

𝑀𝑆𝑅𝐷𝑠 starting from the EXAFS real distribution cumulants will be employed extensively: it is thus 

important to understand their origin and validity. In particular, the 𝑀𝑆𝑅𝐷∥, defined as 

〈((�⃗� 2 − �⃗� 1) ∙ �̂�𝑐𝑟𝑦𝑠𝑡)
2
〉, is approximated to a good amount by the second cumulant: 

𝐶2 ≔ ⟨(𝑟 − ⟨𝑟⟩)2⟩ ≈ 𝑀𝑆𝑅𝐷∥, (2.11) 

while the 𝑀𝑆𝑅𝐷⊥, defined as ⟨|(�⃗� 2 − �⃗� 1)|
2⟩ − 𝑀𝑆𝑅𝐷∥, is approximated by the expression: 

𝑀𝑆𝑅𝐷⊥ ≈ 2 ∙ 𝑅 ∙ (𝐶1
∗ − 𝑅).  (2.12) 

In this context, the anisotropy γ of thermal disorder is defined as: 

γ ≔
𝑀𝑆𝑅𝐷⊥

𝑀𝑆𝑅𝐷||

 (2.13) 
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In many relevant cases the data analysis might show complications even in the simplest case, that of 

single scattering: the atomic neighborhood of the absorbing atom might consist of different atomic 

species with only slightly different atomic number or inequivalent atoms of the same type with 

distances from the absorber that don’t differ enough to be treatable as different paths in the fit, both 

for the obvious proliferation of fitting parameters and for the physical limits on resolution of 

distances by EXAFS experiments. A pragmatic solution is to employ an average (weighted with 𝑓𝑒𝑓𝑓 

values) of similar paths. In this case the static thermal disorder gives an important component to the 

second cumulant. Also, the weighted mean must be reasonably performed, usually comprising only 

paths with very similar transition amplitudes dependence on the wavevector.  

It is worth to elaborate a little more on the fact expressed in Eq. (2.12), as the existence of two 

different yet similar quantities could be confusing on the experimental side of the issue. The 

equilibrium lattice parameters and interatomic distances are usually extracted using (X-rays or 

neutrons) diffraction techniques; those access the “apparent” atomic distances, i.e. 𝑅 in Eq. (2.12). 

This follows from the general theory of diffraction: the field scattered from an atom is of the form 

𝑒𝑖�⃗� ∙�⃗�  and the total scattered field is proportional to ∑ 𝑒𝑖�⃗� ∙�⃗� 𝑖
𝑖  (with the index 𝑖 running over all atoms 

in the crystal), thus, all that the technique can probe is the apparent distance, because, taking a 

suitable thermal average of the total scattered field we obtain  

⟨∑ 𝑒𝑖�⃗� ∙�⃗� 𝑖
𝑖 ⟩ ≈ ∑ 𝑒𝑖�⃗� ∙⟨�⃗� 𝑖⟩𝑒−𝑘2𝜎𝑖

2/2
𝑖 , (2.14) 

where 𝜎𝑖
2 is the Debye-Waller factor, so the interference conditions are determined by the ⟨�⃗� 𝑖⟩ and 

for example the measured distances between crystal planes are “apparent” distances, |⟨�⃗� 𝑛 − �⃗� 𝑚⟩|. 

Instead, the EXAFS equation contains the first cumulant (the “real” interatomic distance, 𝐶1
∗ =

⟨|𝑋 2 − 𝑋 1|⟩), which differs from 𝑅 (the “apparent” interatomic distance, 𝑅 = |⟨𝑋 2 − 𝑋 1⟩|) due to the 

correlations of the atomic motions. The physical origin of this difference between these techniques 

relies on the different time period of atomic oscillations and of lifetime of the photoelectron in the 

EXAFS excited states. 
 

2.3 Sample preparation 

One of the main assumptions behind the use of the Lambert-Beer law in the form presented before 

is that the sample is uniform (at least in the region irradiated by the beam). Thus, inhomogeneities 

in the sample might hinder the success of the measurement: what is sought after is the absorption 

constant of the sample compound, but what is measured is the absorbance, which is in general an 
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integrated quantity depending on the values along optical paths, not easily related to the absorption 

constant apart from the case of homogenous materials. In order to avoid this issue, the following 

procedure has been followed: the samples, always in form of powders, have been ground in a mortar 

for the amount of time necessary to reduce as much as possible the coarse textures of the sample. 

The sample powder has then been thoroughly mixed with boron nitride powder and the mixture 

reduced in form of pellet with the use of a pelletizer device and hydraulic press (usually producing 13 

mm diameter pellets). The amount of sample powder and boron nitride are determined by imposing 

that the absorption edge jump be approximately Δμedge ∙ 𝑑 ≈ 1 (employing the XAFSmass software 

[15]): if the absorption is too strong the intensity after the sample will be small and thus the spectrum 

too noisy, whilst if the absorption is too weak the absorbance will be too small and noisy to extract 

the XAFS reliably. 

It must also be considered that the pellet must be fixed to the sample holder with a metallic mask 

(and eventually Kapton film): it must thus be enough mechanically resistant to endure the procedure 

without an excessive risk of breaking. In this work this is achieved by the homogenization of the pellet 

and avoiding abrupt stresses during the pressing process: typical values for the pellet mass are in the 

range 120 ÷ 150 𝑚𝑔, most of which is boron nitride, a compound that is almost transparent to hard 

X-rays if compared to usual samples; however a compromise must be made between stability and 

homogeneity of the pellet: the higher the filler to sample powder ratio, the longer and more 

thoroughly the powder mixture must be mixed (also with more chances of obtaining inhomogeneous 

samples).  

To further lower the error due to inhomogeneities an alignment procedure is performed before 

initiating the acquisition process: the samples are scanned both horizontally and vertically after 

having diminished the beam size in the direction of the scanning to find the most homogeneous 

region. In this type of setup, the beam size during the data acquisition is as wide as it can be to take 

advantage of the high photon flux emitted from the source. 

 

2.4 Data acquisition 

Once the samples are allocated in their holder a high vacuum is produced inside of it both to avoid 

intolerable absorption of the X-ray beam and for thermal insulation of the sample. The temperature 

of the sample is controlled using a helium cryostat at lower than ambient temperatures and by Joule 

heating to reach temperatures higher than ambient temperatures. Temperature control is crucial for 
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the success of the experiments described in this work: the temperatures are usually to be intended 

with a 0.1 𝐾 uncertainty.  

The measured quantities are the time-integrated photon fluxes in the ionization chambers; thus, the 

measure is sustained for a determined period of time (integration time), ensuring a precise value of 

the measured intensity. An integration time not lower than 2 seconds is employed during the data 

acquisition (lower integration times are employed during alignment and calibration procedures). 

Further, various absorption spectra should be acquired for each state (e.g. temperature) of each 

sample to allow for a simpler treatment of the uncertainties on the final results of the data analysis; 

it is usually unfeasible to acquire more than 2 or 3 repeated spectra due to the time constraints of 

these experiments, since typical acquisition requires 30-45 minutes without the dead times due to 

temperature change and equilibration.  

The beam flux is usually sampled at an evenly spaced mesh of energy points, coarse in the pre-edge 

( ≈ 10 𝑒𝑉 with the exception of the presence of pre-edge peaks), dense in the edge region (≈ 0.2 𝑒𝑉 

or larger depending on the energy resolution at the chosen energy), where the intensity changes 

rapidly with energy; in the post-edge range (from approximately 50 eV above the edge energy) the 

sampling mesh is non-uniform in energy and uniform in the wavevector modulus instead: this is 

useful because it  both simplifies the Fourier transform of the XAFS signal and helps significantly 

quickening the measurement procedure by sampling less densely in the high energy regime, where 

the noise to signal ratio is higher.  

 

2.5 Data analysis procedure 

Returning to the EXAFS data analysis, it can be described as follows. After the energy scale has been 

calibrated, the absorption spectra must be aligned and eventual glitches removed. Since the 

absorbance is proportional to the sample thickness, the XAFS oscillations must be normalized as  

χ(𝑘) = (μ − μ0)/μ0, (2.15) 

extracting the XAFS signal. The subtraction of the background μ0 is a crucial passage, since the quality 

of the resulting XAFS signal depends on it: to perform this and other preprocessing operations on the 

acquired spectra a number of software are available, in this work we have used the ATHENA software 

from the DEMETER package [16]. The EXAFS fitting procedure that follows is implemented in this 

work using the FEFFIT software [13], which combines the output of the previous calculations of 

scattering amplitudes, phases and inelastic mean free paths performed by the FEFF software [17] 
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with the parametric model defined by the user. Regarding the latter, a number of choices must be 

made, which comprise the number of paths to be included in the fit, the number of parameters for 

each path and which constraints between the various cumulants are to be enforced. If this procedure 

is successful, the fit results (most importantly the cumulants of the atomic pair distance distribution) 

may be elaborated to obtain the desired quantities regarding vibrational anisotropy. Where several 

absorption spectra have been acquired at the same temperature, the mean of the resulting 

cumulants has been used in the data analysis [18], [19], [20], [21], [22]. 
 

2.5.1 Preprocessing 

The data analysis procedure begins with the calibration of one of the reference spectra, which yields 

a correct energy scale, and the alignment of the various reference spectra to the calibrated one, 

which is necessary if they are to be compared, especially considering the strong correlation of the 

first and third cumulants with the edge energy 𝐸0. The calibration is performed by assigning the edge 

of the reference spectrum its literature value: the edge is identified conventionally as the point of 

maximum of the first derivative of the (smoothed, if necessary) normalized absorbance. The 

reference spectra are taken on a known substance, maintained at room temperature, after the 

sample along the beam trajectory. The sample spectra can thus be aligned by and aligning the 

reference spectra.  

In the absence of reference spectra or if they are of too low quality to be calibrated and/or aligned, 

the procedure might be performed with the sample spectra themselves, usually employing the 

spectrum at the lowest temperature as a reference for calibration and then aligning the others to it: 

in this case the energy scale is probably incorrect, but the relative values of the physical results (in 

particular the first cumulants) are not affected, as they are not correlated to the edge energy, 

differently from their absolute values. However, this might not be always possible, since the edge 

structure can depend on the temperature, as the valence state of the absorbing atoms changes or 

for other subtler reasons, e.g. changes in the effective coordination geometry and/or in the symmetry 

of the atomic neighborhood of the absorber. 

As pointed out before, the XAFS signal is obtained by subtraction of a background signal from the 

absorption spectrum, which is to be intended not as the absorption due to the isolated atom, but the 

contribution in the case in which the photoelectron is not scattered by the atoms surrounding the 

absorbing one. The method employed in this work, as implemented in the ATHENA software, exploits 

the fact that the background (apart from the near edge region) varies more slowly with energy than 
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the fine structure which is a rapidly oscillating function of energy. In other terms, it is composed by 

low Fourier components in the 𝑅-space (the reciprocal to the 𝑘-space). In particular, it is a well-

established fact that in most experimental cases Fourier components in the 𝑅-space with 𝑅 ≲ 1 Å 

are not related to the XAFS signal, but are instead contributing to the background absorption. This 

might be understood considering the typical values of the atomic distances, which are rarely lower 

than 1 Å for the atomic neighborhoods of heavy absorber atoms. 
  

2.5.2 Model building and fitting 

Once the background has been removed, the scattering amplitudes and phases must be calculated 

to use the EXAFS equation presented above. In this case, this is obtained by the use of the FEFF 

software, which takes as input a crystallographic structure in the form of an atomic cluster centered 

on the absorber atom. This must be obtained in an independent way, in this case by diffraction 

techniques. In the case of EXAFS spectroscopy, the results of these calculations are weakly dependent 

on the crystallographic input and other computational details, such as the cluster size. As an aside, 

as can be understood from the discussion above, this is different from the case of XANES 

spectroscopy, where the convergence with cluster size and other computational parameters must be 

carefully ascertained.  

To initiate the fitting procedure the Fourier transform of the properly weighted XAFS data χ(𝑘) is 

calculated: 

χ̃(𝑅) =
1

√2π
∫ 𝑑𝑘 ∙ χ(𝑘)𝑘𝑤𝑒−𝑖2𝑘𝑅

𝑘𝑚𝑎𝑥

𝑘𝑚𝑖𝑛

𝑊(𝑘) (2.16) 

To complete the input to the fitting procedure, a number of settings must be carefully chosen: the 

range of values of 𝑘 and 𝑅 considered, the window function type 𝑊(𝑘) and its parameters, the 𝑘-

weight 𝑤, the number of paths, the cumulants for each path, the constraints among the cumulants. 

In the case of multiple scattering the first and second cumulants are assigned as follows: the first 

cumulant is the weighted sum of the first cumulants of the partial paths (one half per leg), while the 

second cumulant is the weighted sum of the second cumulants of the partial paths (again one half 

per leg) [23]. While the first procedure is quite robust, the second heavily relies on the assumption 

that the motions of the atoms involved as scatterers in the path are uncorrelated, which is of course 

not exact.  
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2.6 Results elaboration 

As previously indicated, the longitudinal MSRD may be well approximated by the dynamical second 

cumulant, while the transverse MSRD is recovered from the comparison of the first cumulant 

obtained by EXAFS spectroscopy and the (average) crystallographic distance obtained by diffraction 

techniques. 

However, in order to obtain the thermal vibration anisotropy γ, the absolute values of the MSRD 

transverse and longitudinal are required. Since only the relative values of the cumulants are (reliably) 

obtainable from the EXAFS fitting procedure, a procedure is needed to recover the absolute values 

from the temperature trend of the relative values. This is obtained fitting the temperature trend of 

the MSRDs with a given function that approximates them well: in this work the Einstein model (plus 

an additional constant that is later subtracted) has been employed, which for the longitudinal and 

transverse 𝑀𝑆𝑅𝐷s is: 

𝑀𝑆𝑅𝐷dyn,∥(𝑇) =
ℏ

2μωE,∥

𝑐𝑜𝑡ℎ (
ℏωE,∥

𝑘𝐵𝑇
) (2.17) 

𝑀𝑆𝑅𝐷dyn,⊥(𝑇) =
ℏ

μωE,⊥

𝑐𝑜𝑡ℎ (
ℏωE,⊥

𝑘𝐵𝑇
) 

(2.18) 

where μ is the reduced mass of the atomic pair. The factor of two of difference in the functional form 

accounts for the presence of two transverse normal modes for each wavevector.  It should be noted 

that although the Debye model for the dispersion of phonons in solids is more realistic, the Einstein 

model displays almost the same fit results with the same number of free parameters and the benefit 

of a much simpler functional form. 

A common case is that in which the considered paths are not crystallographically equivalent, but only 

similar in length and atomic configuration. If their length is too similar the acquired data might be 

insufficient to distinguish their contributions to the EXAFS signal, thus requiring their fitting 

parameters to be dependent upon each other. Therefore, the resulting quantities are to be 

considered as a mean of the individual cumulants, appropriately weighted with path degeneracy and 

effective scattering amplitude: if the first cumulant is referred to a weighted average of similar paths, 

it must be compared to the average, weighted in the same way, of the involved crystallographic 

distances. As the effective scattering amplitude depends on the photoelectron wavevector, this 

procedure is best suited to paths that have scattering amplitudes with a similar trend with the 

wavevector.  
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Further, the resulting second cumulant usually has a non-negligible static component, which can 

show an important variation with temperature. This static component can be estimated as the 

standard deviation of the different distances at each temperature, weighted in the same way as the 

average of bond lengths. The dynamic component of the second cumulant is obtained by subtracting 

the static component from the second cumulant obtained from the fits, at last allowing to calculate 

the γ anisotropy ratio. 

As a further effort, the effective bond-stretching force constant κ are calculated using the following 

formulas:  

κ∥ = μωE,∥
2  (2.19) 

while the effective bond-bending force constant can be expressed as: 

κ⊥ = μωE,⊥
2  

(2.20) 

These quantities allow the quantification of the stiffness of atomic pairs in a temperature-

independent way, although in general they are not actual interatomic force constants, which are 

usually defined starting from a microscopic theory of the crystal, as was done in the previous chapter. 

A useful relation between the effective force constants and the γ ratio, valid in the harmonic 

approximation, is   

𝑙𝑖𝑚𝑇→∞γ(𝑇) = 2
κ∥

κ⊥
.   (2.21) 
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Chapter 3  

 

Local dynamics and intercalation effects  
in Prussian Blue Analogues 

 

Experimental results and the relative data analysis regarding the EXAFS of Prussian blue analogues 

are presented. This class of compounds has been of recent interest due to various of its members 

displaying anomalous thermal expansion coefficients and promising electrochemically properties. 

Indeed, it has been proven that by intercalation of small chemical species the thermal expansion 

coefficient drastically changes: EXAFS spectroscopy, allowing to characterize the local vibrational 

dynamics, is an invaluable tool in clarifying the mechanism of this phenomenon. 

  

3.1 Prussian blue analogues 

Prussian Blue Analogues (PBAs) are a class of compounds comprising metal sites coordinated with 

cyanide units, arranged in a crystalline structure (e.g. hexagonal: LuFe(CN)6, cubic: TiCo(CN)6, 

YFe(CN)6, FeFe(CN)6, Zn(CN)2). These compounds can present defects of metal atoms and of the 

relative cyanide units, but even in the ideal form they display significant crystal voids, allowing for 

intercalation of small chemical species: this is an interesting aspect due to its implications for 

electrochemistry, as PBAs have the potential to be materials for non-toxic battery cathodes with 

facile synthesis routes [1], [2], [3], [4], [5].  

 

 
Figure 3.1: Simplified 2D depiction of a (symmetry bearing) portion of crystalline cell undergoing a 
breathing mode in a cubic hexacoordinated Prussian blue analogue 
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Several PBAs with negative or zero thermal expansion have been reported [6], [7], [8], [9]: owing to 

their framework structure, these compounds display relevant RUMs, where the “rigid” units are the 

polyhedral units consisting in metal atoms and their coordinated nearest neighbors. For example, in 

the cubic hexacoordinated PBAs (with formula MM’(CN)6) the “rigid” units are the MN6 and M’C6 

octahedra, which undergo breathing motions as depicted in Figure 3.1. in a simplified manner; 

another example is the normal mode of Zn(CN)2 involving tetrahedral units investigated in [10].  

Intercalation with small species in these compounds has been achieved in two ways: electrochemical 

insertion of small ions and inclusion of water of hydration. The intercalated species are found in the 

crystal voids typical of these framework structured materials, which inhibits motions of the cyanide 

groups transverse to their equilibrium axis, thus, if these are the motions relevant to NTE, the CTE 

should consequently increase. Interstitial water molecules can also be coordinated to the defective 

sites [11].  

In this chapter we report on the EXAFS analysis of two compounds in the PBA class, TiCo(CN)6∙2H2O 

and  LuFe(CN)6, with the goal of studying the vibrational anisotropy of the M-N and M’-C atomic pairs. 

Images of crystal structures are obtained with the VESTA software [12]. 

 

3.2 TiCo(CN)6∙2H2O 
 

 

(a)    

 

(b) 

 

Figure 3.2: (left) Cubic unit cell of TiCo(CN)6∙2H2O defect-free with all water sites occupied. 
Hydrogen atoms are not shown; (right) local atomic neighborhood of (a) Ti K-edge and (b) Co K-
edge         

The anhydrous PBA with M=Ti and M’=Co displays NTE, but when its crystal is intercalated with water 

molecules the NTE changes to ZTE [13], as is shown in Figure 3.3.  

XAS data has been acquired at the Ti K-edge (4966 eV) from 100 to 350K with steps of 50K and at Co 

K-edge (7709 eV) from 100 to 300K with steps of 50K at the XAFS beamline of the ELETTRA 
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synchrotron light facility. In the EXAFS region the absorption spectrum has been sampled with energy 

steps that result in a constant k-step of around 0.035 Å-1.  

 
Figure 3.3: Effect of intercalation of water molecules on the thermal expansion of TiCo(CN)6•2H2O 

The extracted (k-weighted) XAFS signals have been reported in Figure 3.4: clear oscillations are visible 

in the lowest temperature (100K) XAFS signal up to k=16 Å-1.  

The cubic crystal structure of TiCo(CN)6 is displayed in Figure 3.2, where there is also depicted the 

local neighborhood of titanium, comprising six nitrogen atoms in the first shell and six carbon atoms 

in the second shell; conversely, cobalt atoms have six carbon atoms as first shell of neighbors and six 

nitrogen atoms as a second shell (both atomic neighborhoods are shown): cyanide units link titanium 

and cobalt atoms, in the Ti-N≡C-Co arrangement.  
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Figure 3.4: Example of EXAFS signals k-weighted for (a)  K-edge and (b) Co K-edge 
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Index Path Legs Degeneracy reff [Å] Amplitude Parameters 

1 Ti-N 2 6 2.0345 100.00 𝑟1, 𝜎1
2, 𝐶31 

2 Ti-C 2 6 3.1336 31.807      𝑟2, 𝜎2
2 

3 Ti-N-C 3 12 3.1336 184.787     𝑟1 2⁄ + 𝑟2 2⁄ + 𝑟3 2⁄  
𝜎1

2 2⁄ + 𝜎2
2 2⁄ + 𝜎3

2 2⁄  
4 Ti-N-C-N 4 6 3.1336 292.070      𝑟1 + 𝑟3 

𝜎1
2 + 𝜎3

2 
5 Ti-N-N 3 24 3.4730 30.368     Neglected 

6 Ti-N-N 3 6 4.0689 21.996      Neglected 

Table 3.1: Scattering paths for Ti K-edge 

Index Path Legs Degeneracy reff [Å] Amplitude Parameters 

1 Co-C 2 6 1.9843 100.00 𝑟1, 𝜎1
2, 𝐶31 

2 Co-O 2 6 2.9878 50.008      Neglected 

3 Co-N 2 6 3.0784 36.679      𝑟2, 𝜎2
2 

4 Co-C-N 3 12 3.0784 200.866     𝑟1 2⁄ + 𝑟2 2⁄ + 𝑟3 2⁄  
𝜎1

2 2⁄ + 𝜎2
2 2⁄ + 𝜎3

2 2⁄  
5 Co-C-N-

C 
4 6 3.0784 275.059      𝑟1 + 𝑟3 

𝜎1
2 + 𝜎3

2 

6 Co-C-C 3 24 3.3874 25.029     Neglected 

7 Co-O-C 3 48 3.7127 53.138     Neglected 

Table 3.2: Scattering paths for Co K-edge 

A collection of the Fourier transformed EXAFS signals is given in Figure 3.5 for both edges, while in 

Figure 3.6 an example of fit has been given for the Fourier transform of the weighted XAFS signals at 

the lowest temperature for both edges. 
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Figure 3.5: Fourier transform of k-weighted XAFS signals for (a) Ti K-edge and (b) Co K-edge 

 

The linear chain structure of the metal-cyanide-metal structure leads to the phenomenon of linear 

focusing in EXAFS, in which multiple scattering paths can give contributions comparable (if not 

greater) to those of single scattering paths (as is in this case, see the FEFF amplitudes in Table 3.1 and 

Table 3.2):  



 

42 
   

thus, it was necessary to include the single scattering from the second shell and the double scattering 

from the cyanide unit. The third peak is due to contributions from the third shell (the other metal 

atomic specie) and more complicated multiple scattering paths involving the cyanide unit (again with 

the linear focusing phenomenon).   

In the cobalt K-edge spectra the contributions to the second peak due to oxygen were neglected, 

even if the FEFF calculation gives a high contribution to the signal (see Table 3.1). However, these 

estimates are calculated assuming a complete occupation of the water sites, as per the crystal 

structure in Figure 3.2, which is not realistic. The EXAFS data analysis has been conducted including 

the paths reported in Table 3.1 for Ti K-edge, while for data at Co K-edge in Table 3.2.  

(a) 

0 2 4 6

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

  

 

 
R [Å]

|F
T

[k
c
(k

)]
| 
[Å

-2
]

 Fit |FT(kc(k))| Ti 100K

 Fit Im[FT(kc(k))] Ti 100K

 Data

 

(b) 

0 2 4 6
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

 Fit |FT(kc(k))| Co 100K

 Fit Im[FT(kc(k))] Co 100K

 Data

  

 

 
R [Å]

|F
T

[k
c
(k

)]
| 
[Å

-2
]

 
Figure 3.6: Examples of fits of Fourier transformed k-weighted XAFS signals of (a) Ti K-edge and (b) 
Co K-edge at 100K 
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Figure 3.7: Comparison between ΔC1 and ΔR at different temperatures for (a) Ti K-edge and (b) Co 
K-edge 
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Having obtained the cumulants, the longitudinal and transverse MSRDs can be calculated; as can be 

seen in Figure 3.7, the “real” and “apparent” nearest neighbors distances indeed display a difference 

that can be ascribed to transverse motions (as discussed in Chapter 2, see Eq. 2.12), which, as already 

mentioned in Chapter 1, can play a fundamental role in NTE. The MSRD⊥ has been reconstructed by 

means of an Einstein fit and is presented for Ti and Co K-edges respectively in Figure 3.8, together 

with the reconstructed MSRD‖ and their ratio γ: the vibrational anisotropy of the Ti-N atomic pairs is 

only slightly greater than that of the Co-C atomic pairs, contrary to the case of the anhydrous form 

TiCo(CN)6 [13].  A summary of the vibrational anisotropy parameters is presented in Table 3.3. Further 

details and a report on other experimental characterization of TiCo(CN)6 (and its anhydrous form) are 

present in [13]. 
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Figure 3.8: Thermal disorder parameters for Ti and Co K-edge (a) MSRD longitudinal and 
transverse; (b) anisotropy  

 

Ti-N Co-C 

Stretching 

ν∥ = (14.44 ± 0.22)𝑇𝐻𝑧 

𝑘∥ = (9.25 ± 0.28)𝑒𝑉 ∙ Å−2 

Stretching 

ν∥ = (15.90 ± 0.91)𝑇𝐻𝑧 

𝑘∥ = (10.32 ± 1.18)𝑒𝑉 ∙ Å−2 

Bending 

ν⊥ = (4.46 ± 0.38)𝑇𝐻𝑧 

𝑘⊥ = (0.88 ± 0.15)𝑒𝑉 ∙ Å−2 

Bending 

ν⊥ = (5.35 ± 0.26)𝑇𝐻𝑧 

𝑘⊥ = (1.17 ± 0.11)𝑒𝑉 ∙ Å−2 

Anisotropy 

γ= (15 ± 2)@300K 

𝑘⊥ 𝑘∥⁄ = (0.096 ± 0.016) 

Anisotropy 

γ=(12 ± 1)@300K 

𝑘⊥ 𝑘∥⁄ = (0.11 ± 0.03) 

Table 3.3: Vibrational anisotropy parameters for TiCo(CN)6 
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3.3 LuFe(CN)6 

LuFe(CN)6 is instead a PBA with a negative volumetric thermal expansion, displaying a hexagonal 

crystal structure, which is presented in Figure 3.9, together with the atomic local neighborhoods of 

Fe and Lu atoms. XAS data have been acquired at XAFS beamline of ELETTRA synchrotron light source 

at temperatures from 300 to 525K with steps of around 40K at both the Lu L3-edge (9244 eV) and Fe 

K-edge (7112 eV); the relative XAFS signals are shown in Figure 3.10. In the EXAFS region the 

absorption spectrum has been sampled with energy steps that result in a constant k step of around 

0.035 Å-1. 

Assuming the aforementioned crystal structure, FEFF calculations for Lu L3-edge were performed 

including the scattering paths in Table 3.5; the FEFF scattering paths for Fe K-edge are reported in 

Table 3.4, respectively. 

 

(a) 

 

(b) 

 

Figure 3.9: Crystal structure of (defect-free) LuFe(CN)6; Atomic local neighborhood for (a) Fe and (b) 
Lu atoms 
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Figure 3.10: Example of XAFS signals k2-weighted for (a)  Lu L3-edge and (b) Fe K-edge 
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A collection of Fourier transforms of XAFS signals is in Figure 3.11: the first peak is contributed by the 

scattering from the first shell, the second mainly by the second shell single scattering and the 

important linear focused path and the third by the third shell single scattering (the other metal atomic 

specie) and other multiple scattering paths. 

Index Path Legs Degeneracy Reff (Å) Amplitude Parameters 

1 Lu-N-Lu 2 6 2.3003 100.0 𝑟1, 𝜎1
2, 𝐶31 

2 Lu-C-Lu 2 6 3.4493 28.9 𝑟2, 𝜎2
2 

3 Lu-N-C-Lu 3 12 3.4498 116.8 
𝑟1 2⁄ + 𝑟2 2⁄ + 𝑟3 2⁄  

𝜎1
2 2⁄ + 𝜎2

2 2⁄ + 𝜎3
2 2⁄  

4 
Lu-N-C-N-

Lu 
4 6 3.4503 115.5 

𝑟1 + 𝑟3 
𝜎1

2 + 𝜎3
2 

5 Lu-N-N-Lu 3 12 3.8396 9.6 Neglected 

Table 3.5: Scattering paths for LuFe(CN)6 Lu L3-edge 

Examples of fits at room temperature at Lu L3-edge and Fe K-edge are shown in Figure 3.12. The R-

range for the fit has been selected to include the first two peaks: since the goal of the analysis is the 

study of the first shell vibrational properties, the first peak has to be included, but also the second, 

being too near and too intense to be neglected.  
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Figure 3.11: Fourier transform of k2-weighted XAFS signals (a) Lu L3-edge and (b) Fe K-edge 

Index  Path Legs  Degeneracy reff (Å) Amplitude Parameters 

1 Fe-C-Fe 2 6 1.9311   100.0 𝑟1, 𝜎1
2, 𝐶31 

2 Fe-N-Fe 2 6 3.0809 35.4 𝑟2, 𝜎2
2 

3 Fe-C-N-Fe 3 12 3.0809 169.2 𝑟1 2⁄ + 𝑟2 2⁄ + 𝑟3 2⁄  
𝜎1

2 2⁄ + 𝜎2
2 2⁄ + 𝜎3

2 2⁄  
4 Fe-C-N-C-

Fe 
4 6 3.0809 202.1 𝑟1 + 𝑟3 

𝜎1
2 + 𝜎3

2 

5 Fe-C-C-Fe 3 24 3.2964 26.0 Neglected 

Table 3.4:Scattering paths for LuFe(CN)6 Fe K-edge 



 

46 
   

The comparison between “real” and “apparent” nearest neighbors’ distance is in Figure 3.13. The 

resulting MSRDs (longitudinal and transverse to bond direction) are reported in Figure 3.14 (both Lu 

L3-edge and Fe K-edge), together with their respective Einstein fit and the resulting anisotropy ratio 

γ: again we see that, as in the case of TiCo(CN)6, in this NTE Prussian blue analogue the vibrational 

anisotropy γ of the Lu-N atomic pairs, together with the transversal MSRD, is definitely greater than 

that of the Fe-C atomic pairs, suggesting a prominence of the M-N atomic pairs in the NTE 

mechanism.  
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Figure 3.12: Examples of fits Fourier transform of (a) Lu L3-edge and (b) Fe K-edge data at 300K 
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Figure 3.13: Comparison between ΔC1 and ΔR at different temperatures for (a) Lu L3-edge and (b) 
Fe K-edge 
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A summary of the vibrational anisotropy parameters can be found in Table 3.6. Other experimental 

determinations and further details, also comprising a comparison of LuFe(CN)6 with other rare earth 

PBAs (La, Y, Ho, Sm), are present in [14]. 

 

 
Lu-N Fe-C 

Stretching 

ν∥ = (11.65 ± 0.09)𝑇𝐻𝑧 

𝑘∥ = (7.21 ± 0.11)𝑒𝑉 ∙ Å−2 

Stretching 

ν∥ = (17.38 ± 0.26)𝑇𝐻𝑧 

𝑘∥ = (12.24 ± 0.37)𝑒𝑉 ∙ Å−2 

Bending 

ν⊥ = (2.91 ± 0.08)𝑇𝐻𝑧 

𝑘⊥ = (0.45 ± 0.02)𝑒𝑉 ∙ Å−2 

Bending 

ν⊥ = (4.79 ± 0.24)𝑇𝐻𝑧 

𝑘⊥ = (0.93 ± 0.09)𝑒𝑉 ∙ Å−2 

Anisotropy 

γ= (30.0 ± 1.6)@500K 

𝑘⊥ 𝑘∥⁄ = (0.0624 ± 0.0034) 

Anisotropy 

γ=(22.6 ± 2.2)@500K 

𝑘⊥ 𝑘∥⁄ = (0.0758 ± 0.0079) 

Table 3.6: Vibrational anisotropy parameters for LuFe(CN)6 

 

3.4 Discussion and conclusions 

Our analysis was limited to two Prussian blue analogues, one with ZTE and one with NTE. However, 

these can be viewed in a broader context, by examining the relationship between the CTE and the 

anisotropy of thermal vibrations, quantified in a temperature independent way by using the ratio of 

the effective force constants it is also interesting to ascertain the different roles of the atomic pairs 

M-N and M’-C: this is an advantage made available by the EXAFS sensitivity to the local neighborhood 

of the different atomic species in an independent fashion. In Figure 3.15, these relationships are 
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Figure 3.14: Thermal disorder parameters longitudinal and transverse MSRD for (a) Lu-N and Fe-C 
atomic pairs; (b) anisotropy  
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presented for both the atomic pair types: the effect of the intercalation seems to be more relevant 

to the M-N atomic pairs vibrational anisotropy, suggesting a prominent role of those in the NTE 

mechanism [13], [15], [16].  

This is corroborated by the case study of TiCo(CN)6: the significantly different effects of  hydration on 

Ti-N and Co-C atomic pairs are presented in Figure 3.16. While Ti-N transverse vibration are greatly 

hindered by occupation of the crystal voids, those of Co-C pairs are unaffected. 
 

Both theoretical and experimental investigations of series of PBAs differing by the element bound to 

nitrogen have been performed [17], [14], [18], [7]: LuFe(CN)6 belongs indeed to a series of rare earth 

PBAs of brute formula REFe(CN)6, thus having analyzed its vibrational anisotropy allows to conclude 

that even in this class of compounds, RE-N vibrations are more important than Fe-C. 

 
Figure 3.16: Different effect of water intercalation in TiCo(CN)6 on Ti-N and Co-C atomic pairs 
vibrational anisotropy 
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Figure 3.15: The ratio of force constants against the volumetric coefficient of thermal expansion 
(CTE) for several PBAs for M-N atomic pairs (left) and M’-C atomic pairs (right) with dashed straight 
lines as guides to the eye 
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An important role in determining the NTE has been assigned to the ionicity of the M-N bond and the 

average atomic volume (or the ionic radius of the M specie), however those properties affect NTE 

indirectly by inhibiting or enhancing M-N transverse vibrations. 

 

 

Bibliography  

 

[1]  Y. Lu et al., "Prussian blue: a new framework of electrode materials for sodium batteries," Chem. 

Commun., vol. 48, pp. 6544-6546, 2012.  

[2]  S. Kjeldgaard et al., "Strategies for synthesis of Prussian blue analogues," R. Soc. Open Sci., vol. 8, 

p. 201779, 2021.  

[3]  K. Hurlbutt et al., "Prussian Blue Analogs as Battery Materials," Joule, vol. 2, no. 10, pp. 1950-1960, 

2018.  

[4]  K. Itaya et al., "Electrochemistry of Polynuclear Transition Metal Cyanides: Prussian Blue and Its 

Analogues," Acc. Chem. Res., vol. 19, pp. 162-168, 1986.  

[5]  J. Chen et al., "Prussian blue, its analogues and their derived materials for electrochemical energy 

storage and conversion," Energy Storage Materials, vol. 25, pp. 585-612, 2020.  

[6]  C. Wang et al., "Large and tunable negative thermal expansion induced by a synergistic effect in 

M2II[MIV(CN)8] Prussian blue analogues," Phys. Chem. Chem. Phys., vol. 22, pp. 18655-18662, 

2020.  

[7]  K. W. Chapman et al., "Compositional Dependence of Negative Thermal Expansion in the Prussian 

Blue Analogues MIIPtIV(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd)," J. Am. Chem. Soc., vol. 128, no. 21, 

pp. 7009-7014, 2006.  

[8]  N. Shi et al., "Negative thermal expansion in cubic FeFe(CN)6 Prussian blue analogues," Dalton 

Trans., vol. 48, pp. 3658-3663, 2019.  

[9]  S. Adak et al., "Thermal expansion in 3d-metal Prussian Blue Analogs—A survey study," J. Solid 

State Chem., vol. 184, pp. 2854-2861, 2011.  

[10]  S. J. Hibble et al., "Local and Average Structure in Zinc Cyanide: Toward an Understanding of the 

Atomistic Origin of Negative Thermal Expansion," J. Am. Chem. Soc., vol. 135, p. 16478−16489, 

2013.  

[11]  F. Herren et al., "Neutron Diffraction Study of Prussian Blue, Fe4[Fe(CN)6]3*xH20. Location of 

Water Molecules and Long-Range Magnetic Order," Inorg. Chem., vol. 19, pp. 956-959, 1980.  

[12]  K. Momma and F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and 

morphology data," J. Appl. Cryst. , vol. 44, pp. 1272-1276, 2011.  



 

50 
   

[13]  Q. Gao et al., "Effect of H2O Molecules on Thermal Expansion of TiCo(CN)6," Inorg. Chem., vol. 59, 

no. 20, p. 14852–14855, 2020.  

[14]  Q. Gao et al., "The role of average atomic volume in predicting negative thermal expansion: The 

case of REFe(CN)6," Sci. China Mater., vol. 65, pp. 553-557, 2022.  

[15]  Q. Gao et al., "Tunable Thermal Expansion from Negative, Zero, to Positive in Cubic Prussian Blue 

Analogues of GaFe(CN)6," Inorg. Chem., vol. 57, no. 22, pp. 14027-14030, 2018.  

[16]  Q. Gao et al., "Low-Frequency Phonon Driven Negative Thermal Expansion in Cubic GaFe(CN)6 

Prussian Blue Analogues," Inorg. Chem., vol. 57, no. 17, pp. 10918-10924, 2018.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

51 
   

Chapter 4  

 

Thermal expansion and local dynamics  
of zirconium alloys 

 

In this chapter the EXAFS analysis of Zr2M alloys (M=Fe, Co, Ni) is presented. These alloys, characterized 

by a body-centered tetragonal crystal structure, display a remarkable dependence of the thermal 

expansion coefficient along the crystalline c-axis from the transition metal indicated with M: αc is strongly 

negative for Zr2Fe, moderately negative for Zr2Co and even positive for Zr2Ni. Apart from this striking 

difference though, the three alloys have analogous crystal structures: this, together with the absence of 

an ordered magnetic phase allows for a fruitful comparison among the local vibrational dynamics of these 

alloys to uncover the relevant factors in the mechanism for negative thermal expansion. 

 

4.1 Stoichiometric Zr2M alloys 

The zirconium alloys of stoichiometric composition Zr2M with M a transition metal ( [1], [2]) have 

been investigated for their relevance to components employed in nuclear power plants [3], for their 

interesting hydrogen storage properties [4], [5] and for their peculiar superconducting properties [6], 

[7], [8]. 

(a) 

 

(b) 

 
Figure 4.1: (a) Crystal structure of the Zr2M body centered tetragonal alloys considered in this 
chapter; (b) breathing mode of the crystal structure highlighting motions of “rigid” units 

In addition to these interesting properties, these alloys are also characterized by anomalous thermal 

expansion properties. Having the same body-centered tetragonal crystal structure, displayed in 
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Figure 4.1, they allow for an interesting comparison among them, especially considering that the 

thermal expansion coefficient of the alloys along the c-axis strongly depends on the transition metal 

here indicated as M. 

(a) 

 

(b) 

 
Figure 4.2: Atomic neighborhoods for (a) Zr and (b) M atoms: the first and second atomic shells are 
protrayed separately, but with the same point of view. The colour code is the same as in Figure 4.1, 
apart for the absorber atom, which is in grey for clarity. 

In this chapter the local vibrational dynamics of the three alloys with M=Fe, Co, Ni have been 

investigated by temperature-dependent EXAFS spectroscopy. These alloys are interesting due to 

their different thermal expansion properties, encompassing various possibilities for the coefficient of 

thermal expansion, from large NTE to PTE. Since they differ mainly by the transition metal M, the 

study of their local dynamics allows to extract important information, both individually and as a series 

of compounds. 

The local neighborhoods of the two atomic species, Zr and the transition metal (indicated as M), are 

presented in Figure 4.2. While the treatment of scattering from cobalt atoms doesn’t present any 

complication as they are in crystallographically equivalent positions, the situation is quite different 

for zirconium atoms, which occupy crystallographically non-equivalent positions: the photoelectron 

scattering paths don’t differ enough to be distinguishable in the EXAFS analysis and thus they have 

been assigned the same parameters, with the first cumulant weighted with the length of the 

corresponding path.  

The perspective from different edges (M and Zr K-edges) gives a more complete picture and allows 

to check the self-consistency of the data analysis, i.e., the same physical quantities measured in the 

two ways must be compatible. However, as will be further detailed in the next sections, the M-M 

atomic pairs distances are generally similar to those of the M-Zr pairs, which, together with the 
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significantly smaller contribution to EXAFS scattering (caused by the neat difference in the atomic 

number), renders the data analysis on the vibrational properties of Fe-Fe atomic pairs unreliable. 

 

4.2 Zr2Fe 
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Figure 4.3: 𝑘2𝜒(𝑘) signals for Zr2Fe at Zr K-edge collected at (a) ELETTRA and (b) APS 

In the case M=Fe the coefficient of thermal expansion along the c-axis is the most negative of the 

three alloys (α𝑐 ≈ −37 𝑝𝑝𝑚 ∙ 𝐾−1). The XAFS data at the Fe K-edge has been acquired at the ELETTRA 

synchrotron light facility, while that at the Zr K-edge has been collected in part at the ELETTRA and in 

part at the APS synchrotron facility by the research group of Prof. Jun Chen.  

The EXAFS spectra (as indicated in Figure 4.3 and Figure 4.4) have been collected at different 

temperatures using a variable energy step in the extended range, so as to have a constant step in the 
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Figure 4.4: 𝑘2𝜒(𝑘) signals for Zr2Fe at Fe K-edge collected at ELETTRA. 
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momentum of Δ𝑘 ≈ 0.035Å−1. The extracted XAFS signals are displayed in Figure 4.3 (Zr K-edge, 

both datasets) and Figure 4.4 (Fe K-edge). An EXAFS fitting model has been developed performing a 

FEFF calculation on an atomic cluster built starting from the structural information obtained by the 

research group of Prof. Jun Chen from diffraction experiments.  
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Figure 4.5: Fourier Transform of the k2-weighted Zr EXAFS signals vs Temperature collected at (a) 

ELETTRA and at (b) APS 

The resulting scattering paths can be found in Table 4.2 and Table 4.1: in the case of the Fe K-edge, 

the amplitude due to scattering from zirconium atoms is clearly dominant over that from iron atoms 

and the two contributing photoelectron paths have similar length, thus making it unfeasible to 

reliably single out the contribution of the scattering from Fe atoms.  
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Figure 4.6: Fourier Transform of the k-weighted Fe K-edge EXAFS signals at different temperatures 
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The first three cumulants have been employed to accurately extract the first cumulant of the first 

shell at both edges; the higher order shells considered in the fitting have been described with the 

first two cumulants.  

Index Path Legs Degeneracy reff [Å] Amplitude Parameters 

1 Fe-Zr 2 8 2.7290 100.00 𝑟1, 𝜎1
2, 𝐶31 

2 Fe-Fe 2 2 2.7877 18.96 𝑟2, 𝜎2
2 

Table 4.1: Scattering paths for the EXAFS fitting procedure of Fe K-edge data of Zr2Fe 

In Figure 4.5 and Figure 4.6, where the Fourier transforms of the weighted EXAFS signals are reported, 

the peak structure visible at around 2÷2.5Å consists of the contributions from scattering from both 

Zr and Fe atoms; it is clearly distinguishable from the signal at higher R values, which is due to 

scattering from outer atomic shells. Examples of the resulting fits are presented in Figure 4.7. 
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Figure 4.7: Fits of the Fourier transform of the low temperature EXAFS data at (a) Zr K-edge and (b) Fe 

K-edge 

The comparison between the temperature variation with respect to the lowest temperature of the 

first cumulant (indicated as the “real” distance variation) and the thermal expansion (indicated as the 

Index Path Legs Degeneracy reff [Å] Amplitude Parameters 

1 Zr-Fe 2 4 2.7290 100.00 𝑟1, 𝜎1
2, 𝐶31 

2 Zr-Zr 2 3 3.1091 63.45 

𝑟2, 𝜎2
2 3 Zr-Zr 2 4 3.3181 71.91 

4 Zr-Zr 2 4 3.5505 60.29 

Table 4.2: Scattering paths for the EXAFS fitting procedure of Zr K-edge data of Zr2Fe 
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“apparent” distance variation with temperature and measured by diffraction techniques) of the Zr-Fe 

atomic pairs is reported in Figure 4.8: as mentioned in the beginning of this chapter, the fact that 

physical quantities, in this case the first cumulant, obtained from data acquired at different edges, are 

compatible constitutes an important self-consistency test of the fitting model. 
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Figure 4.8: Comparison between first cumulant (“true” distance) and thermal expansion (“apparent” 

distance) for the nearest neighbors Zr-Fe atomic pairs  

 The MSRDs and the anisotropy of thermal vibrations of Zr-Fe atomic pairs, measured at both the Zr 

K-edge and the Fe K-edge, are reported in Figure 4.9: as in the case of the first cumulant, the 

accordance between the results obtained from data at different edges is good.  
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Figure 4.9: (a) MSRDs longitudinal and transverse and (b) anisotropy ratio for the nearest neighbors’ Zr-Fe 

atomic pairs 
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 The vibrational properties of the Zr-Fe atomic pairs, consisting of the longitudinal and transverse 

Einstein frequencies and the relative effective force constants can be found in Table 4.3. 
 

Fe-Zr atomic pairs 

Stretching 

𝜈|| = 4.41 ±  0.02 THz 

𝑘|| = 2.76 ±  0.03 eV/Å2 

Bending 

𝜈⊥ = 1.67 ±  0.04 THz 

𝑘⊥ =  0.40 ±  0.02 eV/Å2 

Anisotropy (𝟐𝒌∥/𝒌⊥) 

(13.95 ± 0.68) 

Table 4.3: Transversal and longitudinal vibrational properties (Einstein frequencies ν and 

effective force constants κ) of the Fe-Zr nearest neighbors’ atomic pairs in Zr2Fe 

 

4.3 Zr2Co 

In the case M=Co the coefficient of thermal expansion along the c-axis is again negative (α𝑐 ≈

−20 𝑝𝑝𝑚 ∙ 𝐾−1), but less than in the Zr2Fe case.  

XAFS data at Co and Zr K-edges has been acquired at the BM08 (LISA) beamline of the ESRF 

synchrotron light facility. The absorption spectra have been collected at different temperatures using 

a variable energy step in the extended range, to have a constant step in the momentum of Δ𝑘 ≈

0.035Å−1.  
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Figure 4.10: 𝑘2𝜒(𝑘) XAFS signals for Zr2Co at (a) Zr K-edge and (b) Co K-edge 
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 The extracted XAFS signals are displayed in Figure 4.10 (both Zr and Co K-edge): the EXAFS signals, 

especially at higher temperatures, present a considerable amount of noise in the high-k range, which 

adds a layer of complication to the overlapping of EXAFS contributions to the first peak due to 

scattering from both Zr and Co atoms. 

FEFF calculations have been performed employing the scattering paths reported in Table 4.4 and 

Table 4.5: in the case of the Co K-edge the scattering amplitude due to zirconium atoms is dominant 

over that from cobalt atoms. Also, the scattering amplitudes due to Zr atoms become even more 

important in the high-k range of the signal, which is also considerably noisy at high temperatures.  

To properly treat the fitting procedure and at the same time get rid of unphysical low-R artifacts, the 

Rbkg parameter, used in the background removal procedure, was raised to around 1.3-1.5 and the 𝑘-

range was chosen with a lower 𝑘max of around 13Å−1. An excessive value of the Rbkg parameter can 

Index  Path Legs  Degeneracy reff [Å] Amplitude Parameters 

1 Zr->Co->Zr 2 4 2.7347 100 𝑑𝑟1, 𝐶21, 𝐶31 

2 Zr->Zr->Zr 2 1 3.0672 22.654 

𝑑𝑟2, 𝐶22 
3 Zr->Zr->Zr 2 2 3.1089 43.840 

4 Zr->Zr->Zr 2 4 3.3394 73.279 

5 Zr->Zr->Zr 2 4 3.5094 64.390 

Table 4.4: Scattering paths for the EXAFS fitting procedure of Zr K-edge data of Zr2Co 

Index  Path Legs  Degeneracy reff [Å] Amplitude Parameters 

1 Co->Zr->Co 2 8 2.7347 100 𝑑𝑟1, 𝐶21, 𝐶31 

2 Co->Co->Co 2 2 2.7590 18.667 𝑑𝑟2, 𝐶22 
Table 4.5: Scattering paths for the EXAFS fitting procedure of Zr K-edge data of Zr2Co 
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Figure 4.11: Fourier transforms of k2-weighted EXAFS data of Zr2Co at (a) Zr K-edge and (b) Co K-

edge 
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distort the EXAFS signals at low-R, but in this case, due to the relatively long nearest interatomic 

distances, these concerns are outweighed by the necessity to filter out background and noise. 

The Fourier transform of the XAFS signals are in Figure 4.11: at both edges the first peaks at around 

2÷2.5 Å, well distinguishable from the signals at higher-R values, receive contributions from both the 

scattering from Fe and Zr atoms, though, in the same sense as it was pointed out in the section 

dedicated to Zr2Fe, for scattering from Fe atoms, the analysis of Co-Co atomic pairs is unfeasible. 

Examples of the resulting fits are presented in Figure 4.12.  
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Figure 4.13: Comparison between first cumulant and thermal expansion (continuous line) for the 
nearest neighbors’ Zr-Fe pairs obtained using both the Zr and Co K-edges data 
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Figure 4.12: Fits of the Fourier transform of the low temperature EXAFS data at (a) Zr K-edge and 
(b) Co K-edge 
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The comparison between the temperature variation with respect to the lowest temperature of the 

first cumulant and the thermal expansion of the Zr-Co atomic pairs, measured at both Zr K-edge and 

Co K-edge, is shown in Figure 4.13: the difference between them is employed to estimate the 

transverse MSRD, which, together with the MSRD|| and the anisotropy of the thermal vibrations of 

Zr-Co atomic pairs can be found in Figure 4.14.  

As in the case of Zr2Fe, there is good compatibility between analogous quantities calculated at 

different edges. A summary of the vibrational properties characterizing the anisotropy of thermal 

vibrations of Zr-Co atomic pairs is presented in Table 4.6. 
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Figure 4.14: (a) MSRDs longitudinal and transverse and (b) anisotropy ratio for the nearest 
neighbors’ Zr-Co atomic pairs 

Zr-Co atomic pairs 

Stretching 

ν∥ = (4.56 ± 0.08)𝑇𝐻𝑧 

𝑘∥ = (3.05 ± 0.10)𝑒𝑉 ∙ Å−2 

Bending 

ν⊥ = (2.10 ± 0.13)𝑇𝐻𝑧 

𝑘⊥ = (0.65 ± 0.08)𝑒𝑉 ∙ Å−2 

Anisotropy 

2𝑘⊥ 𝑘∥⁄ = (9.4 ± 1.2) 

Table 4.6: Transversal and longitudinal vibrational properties (Einstein frequencies ν and 

effective force constants κ) of the Co-Zr nearest neighbors’ atomic pairs in Zr2Co 
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4.4 Zr2Ni 

If M=Ni the coefficient of thermal expansion along the c-axis is instead positive (α𝑐 ≈ 4 𝑝𝑝𝑚 ∙ 𝐾−1). 

As in the case of Zr2Co, the XAFS data at Ni and Zr K-edges has been acquired at the BM08 (LISA) 

beamline of the ESRF synchrotron light facility. The EXAFS spectra have been collected at different 

temperatures using a variable energy step in the extended range, so to have a constant step in the 

momentum of Δk ≈ 0.035Å−1.  

The extracted XAFS signals are displayed in Figure 4.15 (both Zr and Ni K-edge). As in the case of 

Zr2Co, a proper treatment of the noisy high-𝑘 range of the EXAFS signals has been performed raising 

the Rbkg parameter and lowering the 𝑘max for the EXAFS fitting procedure. 
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Figure 4.15: 𝑘2𝜒(𝑘) XAFS signals for Zr2Ni at (a) Zr K-edge and (b) Ni K-edge 

Index  Path Legs  Degeneracy reff [Å] Amplitude Parameters 

1 Ni->Ni->Ni 2 2 2.6335 100 𝑑𝑟2, 𝐶22 

2 Ni->Zr->Ni 2 8 2.7611 495.947 𝑑𝑟1, 𝐶21, 𝐶31 
Table 4.7: Scattering paths for the EXAFS fitting procedure of Zr K-edge data of Zr2Ni 

Index Path Legs Degeneracy reff [Å] Amplitude Parameters 

1 Zr->Ni->Zr 2 4 2.7611 100 𝐶11, 𝐶21, 𝐶31 

2 Zr->Zr->Zr 2 1 2.9889 25.526 

𝐶12, 𝐶22 
3 Zr->Zr->Zr 2 2 3.0790 47.512 

4 Zr->Zr->Zr 2 4 3.3767 75.338 

5 Zr->Zr->Zr 2 4 3.4322 72.210 

Table 4.8: Scattering paths for the EXAFS fitting procedure of Zr K-edge data of Zr2Ni 
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FEFF calculations have been performed employing the scattering paths reported in Table 4.8 and 

Table 4.7: in the case of the Ni K-edge the scattering amplitude due to zirconium atoms is again 

dominant over that from nickel atoms. The Fourier transform of the XAFS signals are in Figure 4.16 

and examples of the resulting fits are presented in Figure 4.17. 

The comparison between temperature variation of the first cumulant and the thermal expansion is 

in Figure 4.18: it is worth noting that they are well compatible at most of the investigated 

temperatures, clearly indicating that transverse vibrations of Zr-Ni are significantly smaller than in 

the case of the other alloys. This is also clear from Figure 4.19, where the MSRDs and the anisotropy 
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Figure 4.16: Fourier transforms of k2-weighted EXAFS data of Zr2Ni at (a) Zr K-edge and (b) Ni K-
edge 
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Figure 4.17: Fits of the Fourier transform of the low temperature EXAFS data at (a) Zr K-edge and 
(b) Ni K-edge 
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for Zr K-edge and Ni K-edge are reported, considering that the anisotropy is considerably closer to 

the isotropic value (γ=2) than the other alloys. Quantities obtained at different edges are compatible. 

Vibrational anisotropy properties of the Ni-Zr atomic pairs are reported in Table 4.9; the fact that 

uncertainties on these quantities are greater than in the two previous cases is mainly due to two 

factors: the considerable amount of noise present in the EXAFS spectra, but also the transverse 

vibrations being smaller renders the estimate of the MSRD⊥ less accurate. 
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Figure 4.18: Comparison between first cumulant and thermal expansion for the nearest neighbors’ 
(a) Zr-Fe pairs obtained using both the Zr and Ni K-edges data 
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Figure 4.19: (a) MSRDs longitudinal and transverse and (b) anisotropy ratio for the nearest 
neighbors’ Zr-Ni atomic pairs 
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Zr-Ni atomic pairs 

Stretching 

ν∥ = (5.08 ± 0.07)𝑇𝐻𝑧 

𝑘∥ = (3.78 ± 0.10)𝑒𝑉 ∙ Å−2 

Bending 

ν⊥ = (2.77 ± 0.44)𝑇𝐻𝑧 

𝑘⊥ = (1.12 ± 0.35)𝑒𝑉 ∙ Å−2 

Anisotropy 

2𝑘∥ 𝑘⊥⁄ = (6.7 ± 2.2) 

Table 4.9: Transversal and longitudinal vibrational properties (Einstein frequencies ν and effective 

force constants κ) of the Ni-Zr nearest neighbors’ atomic pairs in Zr2Ni 

 

4.5 Discussion and conclusions 

The zirconium alloys of stoichiometric composition Zr2M that have been subjected to EXAFS 

investigations encompass the various possibilities of coefficient of thermal expansion values from 

those of large NTE to PTE passing through intermediate values, with the main difference among them 

being the transition metal, here indicated with M.  
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Figure 4.20: Anisotropy for the three alloys compared to the respective thermal expansion 
coefficient along the c-axis 

Since the crystal structure is very similar for the three alloys with M=Fe, Co, Ni, the comparison 

among them is physically motivated and is relatively simple and clear, allowing to extract important 

information regarding the relation between vibrational anisotropy, the coefficient of thermal 

expansion and the crystal structure. 
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Figure 4.21: Comparison between the CTE and (a) the AAV and (b) the lattice parameters (measured 
by SXRD at around 0°C by the research group of Prof. Jun Chen) 

Thus, in Figure 4.20 the CTE along the c-axis has been plotted against the vibrational anisotropy of 

thermal vibrations of Zr-M atomic pairs: a negative correlation between the two quantities is 

observed, consistently with the results obtained for the compound family of Prussian blue analogues 

and presented in the previous chapter. This suggests a phononic nature of the NTE mechanism, 

similarly to many other framework structured compounds. 

Other factors are worth mentioning: the absence of an ordered magnetic phase in these alloys 

strengthens the presented results and, together with the presence of breathing modes, further 

supports the indication of the phononic NTE mechanism in this class of alloys.  
 

 
Figure 4.22: The ratio of the effective force constants and the M-M distance (measured by SXRD 
at around 200K by the research group of Prof. Jun Chen) 
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Following the investigation conducted in [95], the role of the AAV in materials with anisotropic 

thermal expansion is of great interest due to the high number of such systems, at least with respect 

to those with isotropic thermal expansion. These results indicate that, even in this case, the AAV 

seems to be relevant to NTE; in Figure 4.21, the comparison between the CTE along the c-axis and 

the average atomic volume (AAV) is presented: it displays a negative correlation between the two 

quantities, as in the case of PBAs and other classes of compounds [10]. 

However, we have to mention that while the CTE along the c-axis is strongly dependent on the 

transition metal M, the volumetric CTE is instead positive for all of the investigated alloys; thus, it 

seems more natural to compare the c lattice parameter to the CTE along the c-axis. Indeed, as can be 

also seen in Figure 4.21, where the lattice parameters are plotted, a correlation is indeed found also 

between the CTEc-axis and the c lattice parameter; this, together with the absence of a similar clear 

trend for the a lattice parameter of the alloys, suggests that even if the concept of AAV may still be 

applicable to strongly anisotropic materials, an evaluation involving the lattice parameters seems to 

be in general required. 

To further clarify and corroborate the previous considerations, in Figure 4.22 the comparison is made 

between the anisotropy of thermal vibrations, quantified using the ratio of the effective force 

constants, and the M-M distances, which is related to the c lattice parameter in these alloys by a 

proportionality relation: consistently with what has been reported so far, these two quantities are 

positively correlated. 
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Chapter 5  

 

Chemical substitution and local dynamics  

of copper pyrophosphate analogues 

 

In this chapter, the EXAFS analysis of compounds analogous to copper pyrophosphate Cu2P2O7 is reported. 

Their facile and inexpensive production processes opened up avenues for applications. We will report on 

two interesting examples, Cu2V2O7 and Cu1.25Zn0.75P2O7: substituting the Cu and the P with respectively Zn 

and V allows to investigate the difference between the resulting samples, which display moderately or 

mildly negative thermal expansion, and Cu2P2O7, which instead has large negative thermal expansion over 

a wide temperature range. The crucial role of EXAFS is to highlight the different roles played by the thermal 

vibrations of Cu/Zn-O and V-O atomic pairs and the effect on the local vibrational dynamics by the 

chemical substitution.  
 

5.1 Copper pyrophosphate analogues 

A number of compounds with the brute formula A2M2O7, analogue to copper pyrophosphate 

(Cu2P2O7), have been found to exhibit anomalous thermal expansion properties [1], [2], [3], [4], [5], 

[6], [7], [8], [9], [10], [11], [12], [13].  

The relevance of Cu2P2O7 and its chemical analogues stems from its facile and inexpensive synthesis 

process, at least when compared to many other large NTE compounds the cost of which is strongly 

influenced by the heavy metals or rare-earths that they contain and which can also make them toxic.  

(a) 

 

(b) 

 
Figure 5.1: Crystal structures of (a) α-phase; (b) β-phase of Cu2P2O7 
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The availability of these compounds opens opportunities for applications: composite materials have 

been investigated in this regard [1], making it possible to tame the high thermal expansion of epoxy 

by mixing it with copper pyrophosphate, obtaining epoxy composites of significantly lower coefficient 

of thermal expansion (see [14] for a review of composite containing NTE materials). 

100 200 300 400 500 600 700 800 900 1000
-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

R
e

la
ti
v
e
 v

o
lu

m
e
 e

x
p
a

n
s
io

n
 (
D

V
/V

)

T [K]

 Cu2P2O7

 Cu2V2O7

 
Figure 5.2: Relative thermal expansion of Cu2P2O7 and Cu2V2O7, highlighting the difference in the 
polymorphic transition temperatures (indicated approximately by the arrows) and of the thermal 
expansion itself. 

The structure of the two polymorphs of Cu2P2O7 is shown in Figure 5.1. Even if quite involved, it can 

be broken down to fundamental units, the MO4 tetrahedra, two by two linked by an oxygen atom to 

form the pyrophosphate units M2O7, and the AO5 units two by two sharing an O-O edge, forming a 

layered structure. The rocking modes of these units, mainly involving large vibrations of oxygen 

linking atoms transverse to their bond directions with metal atoms, are a plausible candidate for the 

NTE mechanism in Cu2P2O7. The low-temperature α-phase (with C2/c symmetry) is the one displaying 

the anomalous thermal expansion properties, while the high-temperature β-phase (with C2/m 

symmetry) shows normal thermal expansion coefficient. 

Some of the analogues of Cu2P2O7 display different crystal symmetry, but retain the MO4 and AO5 

units; thus, it can be expected that those fundamental units partake in the NTE mechanism. 

The EXAFS spectroscopy of these compounds is complicated by three factors: it is unfeasible to obtain 

EXAFS spectroscopy data at the P K-edge due to it being at too low energy, the complicated local 

atomic neighborhoods around both A and M atomic sites and the presence of the alpha to beta phase 

transition.  

The first point is mitigated by studying copper pyrophosphates in which the phosphorus is partially 

substituted by a heavier element with the same valence state (in this case vanadium will be 
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employed), the second will be accounted for in the following sections regarding the EXAFS data 

analysis and the third one requires a different treatment of the photoelectron scattering processes 

for each phase. 

 

5.2 Cu2V2O7 

The A=Cu and M=V pyrophosphate analogue, i.e. Cu2V2O7, is a compound that shows volumetric NTE 

and a highly anisotropic linear thermal expansion (αa≈1.5·10-6 K-1, αb≈-17.44·10-6 K-1, αc≈5.8·10-6 K-1, 

αV≈-10.19·10-6 K-1). A comparison with Cu2P2O7 regarding the volumetric NTE is drawn in Figure 5.2. 

There is a difference between the crystal phase transition temperatures (which however are between 

different crystal symmetries for the two compounds); also, the extent of the thermal expansion itself 

is considerably different.  

(a) 

 

(b) 

 
Figure 5.3: Weighted EXAFS signals of Cu2V2O7 measured at the (a) Cu K-edge and (b) V K-edge 

(a) 

 

(b) 

 
Figure 5.4: Fourier transforms of the weighted EXAFS signals of Cu2V2O7 at the (a) Cu K-edge and 
(b) V K-edge 
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Its crystal structure has an orthorhombic (space group Fdd2) symmetry in its alpha phase, that 

presents volumetric NTE up to 500K. Having substituted the phosphorus with vanadium gives the 

opportunity to investigate both A and M-sites, which would otherwise be unfeasible due to the P K- 

edge being at too low energy: XAS data has been acquired at the XAFS beamline of the ELETTRA 

synchrotron light facility at both the Cu and V K-edges.  

Index  Path  Legs  Degeneracy  𝐫𝐞𝐟𝐟 (Å)  Amplitude Parameters 

1 𝐶𝑢 − 𝑂1 2 1 1.8820 100.00 

𝑟1, 𝜎1
2, 𝐶3 

2 𝐶𝑢 − 𝑂2 2 1 1.9328 93.68 

3 𝐶𝑢 − 𝑂3 2 1 1.9515 91.49 

4 𝐶𝑢 − 𝑂4 2 1 1.9671 89.73 

5 𝐶𝑢 − 𝑂5 2 1 2.5326 47.880 Neglected 

Table 5.1: Shortest scattering paths and amplitudes for Cu2V2O7 at Cu K-edge as calculated with 
the FEFF software 

Index Path Legs Degeneracy 𝐫𝐞𝐟𝐟 (Å) Amplitude Parameters 

1 𝑉 − 𝑂1 2 1 1.6251 100.00 

𝑟1, 𝜎1
2, 𝐶3 

2 𝑉 − 𝑂2 2 1 1.6899 91.20 

3 𝑉 − 𝑂3 2 1 1.7368 85.49 

4 𝑉 − 𝑂4 2 1 1.8061 77.96 

Table 5.2: Shortest scattering paths and amplitudes for Cu2V2O7 at V K-edge as calculated with the 
FEFF software 

(a) 

 

(b) 

 

Figure 5.5: Examples of fits of the Fourier transforms of the EXAFS signals at the (a) Cu K-edge and (b) 
V K-edge. In both graphs the dashed lines represent the fitting curves (blue is the imaginary part, red 
the modulus), while the continuous lines are the Fourier transform of the k2-weighted EXAFS signals 
data. 
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Various spectra have been measured at different temperatures in the range 148-498K at regular 

intervals of 50K; the extracted weighted EXAFS signals are reported in Figure 5.3. The crystal structure 

information obtained by the research group of Prof. Jun Chen using diffraction techniques has been 

employed as input for FEFF calculations of the scattering amplitudes, which are reported in Table 5.2 

and Table 5.1, together with the paths that have been considered for the EXAFS fitting procedure. 

The EXAFS fitting model had to consider the complication of the local neighborhood of both Cu and 

V atoms, consisting of several oxygen atoms at distances that are different, yet not distinguishable in 

their contribution to the EXAFS signals.  
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Figure 5.7: Comparison between the variation in temperature of the first cumulant and of the 
average thermal expansion of the bond lengths of (a) Cu-O and (b) V-O atomic pairs 

Thus, the same parameters were assigned to each path, the first cumulant being weighted by the 

corresponding scattering path length. The first three cumulants have been employed in both cases. 

(a) 

 

(b) 

 
Figure 5.6: Thermal expansion of the (a) Cu-O and (b) V-O bond lengths in Cu2V2O7, together with 
the average employed in the estimation of the MSRD⊥ 
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A collection of the Fourier transformed signals are reported in Figure 5.4, while examples of fits in 

Figure 5.5: scattering form the near oxygen atoms give contributions to the first peak, which is 

considered in this analysis, while the peak structure at higher-R are mainly due to scattering from 

phosphorus and copper atoms. It can immediately be noted that in the Fourier transforms of the V 

K-edge EXAFS signals (Figure 5.4) the first peak displays little variation with temperature, contrary to 

the Cu K-edge case, indicating either very rigid V-O bonds or the presence of a static disorder that is 

significantly dependent on temperature.  
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Figure 5.9: (a) Average MSRD transverse and longitudinal for both V-O and Cu-O atomic pairs in 
Cu2V2O7; (b) Vibrational anisotropy (MSRD⊥/MSRD||) for both V-O and Cu-O atomic pairs in 
Cu2V2O7. In both cases the Einstein fits are also reported. 

The thermal expansion of Cu-O and V-O bond lengths is shown in Figure 5.6, together with the 

weighted mean value, which has been employed in the comparison between the true and apparent 

thermal expansion, shown in Figure 5.7. 
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Figure 5.8: Comparison of the total second cumulant variation in temperature and its static and 
dynamic components of (a) Cu-O and (b) V-O atomic pairs. 
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While in the case of Cu-O the first cumulant follows the thermal expansion of the bond length, in the 

case of V-O pairs the first cumulant increases with temperature, while the thermal expansion of the 

bond decreases, a sign indicating that the transverse vibrations of these pairs are particularly strong. 

The variation in temperature of the second cumulant, together with its static and dynamic 

components is reported in Figure 5.8: the static component has been estimated as the standard 

deviation of the bond lengths.  
 

 

 

 

 

 

 

 

 

 

The V-O atomic pairs display a considerable variation in temperature of the static component of the 

second cumulant, compensating the variation in temperature of the dynamic second cumulant. We 

have emphasized in Chapter 2 § 2.6 (Results elaboration) that this is an estimation of the static 

component of the second cumulant and should be considered accordingly as an approximation 

necessary to tame the crystallographic complication of these compounds from the point of view of 

EXAFS analysis.  

On the contrary, the variation in temperature of the static second cumulant is negligible for Cu-O 

pairs. The MSRDs transverse and longitudinal and their ratio, quantifying the vibrational anisotropy, 

are in Figure 5.9: V-O transverse vibrations are significantly more intense than those of Cu-O. A 

summary of the vibrational properties is given in Table 5.3. Information regarding the synthesis 

process and further data obtained through other characterization techniques can be found in [3]. 

Cu-O V-O 

Stretching 

𝜈|| = 11.98 ±  0.55 THz 

𝑘|| = 7.50 ±  0.69 eV/Å2 

Stretching 

𝜈|| = 15.03 ±  1.33 THz 

𝑘|| = 11.3 ±  2.0 eV/Å2 

Bending 

𝜈⊥ = 7.06 ±  1.13 THz 

𝑘⊥ =  2.61 ±  0.83 eV/Å2 

Bending 

𝜈⊥ = 4.95 ±  0.31 THz 

𝑘⊥ =  1.22 ±  0.15 eV/Å2 

Anisotropy 
𝛾 ~ 4.9 ± 2.5 @300K 

2𝑘||/𝑘⊥ = 5.8 ± 1.9 

Anisotropy 

𝛾 ~ 13.5 ± 2.8 @300𝐾 

2𝑘||/𝑘⊥ = 18.5 ± 4.0 

Table 5.3: Vibrational anisotropy parameters for Cu2V2O7, comprising transverse and 
longitudinal Einstein frequencies, the corresponding effective force constants and the 
vibrational anisotropy 
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5.3 Cu1.25Zn0.75P2O7 

A series of solid mixtures (in some cases solutions) Cu2-xZnxP2O7 can be produced if zinc partially 

replaces copper. In the x=0.75, the volumetric CTE is negative (αV≈-6.17·10-6 K-1, 100-225 K) and as in 

other cases, no crystalline alpha to beta phase transition is observed in the temperature ranges that 

have been investigated, while the crystal structure has the symmetry of the beta phase of Cu2P2O7 

(monoclinic with C2/m space group).  

XAS data has been acquired at the XAFS beamline of the ELETTRA synchrotron light facility at both Cu 

and Zn K-edges. Various spectra have been measured in the temperature range 100-340K at regular 

intervals of 40K. A collection of the resulting k2-weighted EXAFS signals can be seen in Figure 5.10. 

The crystal structure information obtained by the research group of Prof. Jun Chen using diffraction 

techniques has been employed as input for FEFF calculations of the scattering amplitudes, which are 

reported in Table 5.4, together with the paths that have been then considered for the EXAFS fitting  

(a) 

 

(b) 

 
Figure 5.10: Weighted EXAFS signals of Cu2V2O7 measured at the (a) Cu K-edge and (b) Zn K-edge 

Index Path Legs Degeneracy reff (Å) Amplitude Parameters 

1 Cu/Zn-O1 2 1 1.9315 100.00  

 

C1, C2, C3, C4 

2 Cu/Zn-O2 2 1 1.9851 93.772 

3 Cu/Zn-O3 2 1 1.9912 93.099 

4 Cu/Zn-O4 2 1 2.0162 90.408 

5 Cu/Zn-O5 2 1 2.4948 54.268 Neglected 

6 Cu/Zn-O6 2 1 2.5664 50.643 Neglected 

Table 5.4: Shortest scattering paths and amplitudes for Cu1.25Zn0.75P2O7 as calculated using FEFF 
software and employed to fit the Cu/Zn K-edge EXAFS data 
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procedure. As in the case of Cu2V2O7, the local neighborhoods of Cu and Zn atoms display several 

oxygen atoms at slightly different distances, whose scattering paths have been assigned the same 

parameters, the first cumulant being weighted by the scattering path lengths. In this case, though, 

the addition of the fourth cumulant proved necessary to obtain fits of quality.  

A collection of the Fourier transforms is reported in Figure 5.11: the first peak structure has been 

considered for the fitting procedure and is due to scattering from the near oxygen atoms; the second 

peak, between 2 and 3 Å-1  is mainly due to scattering from copper, zinc and phosphor atoms.  
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Figure 5.12: Comparison between the variation in temperature of the first cumulant and of the 
average thermal expansion of the bond lengths of (a) Cu-O and (b) Zn-O atomic pairs, together 
with their average 

Comparison between real and apparent thermal expansion is in Figure 5.12: diffraction techniques 

are unable to distinguish between Cu-O and Zn-O atomic pairs in Cu2-xZnxP2O7, but only allow to  

(a)

 

(b) 

 
Figure 5.11: Fourier transforms of the weighted EXAFS signals of Cu2V2O7 at the (a) Cu K-edge and 
(b) Zn K-edge 
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obtain a weighted average of their bond length. Thus, to obtain the MSRD⊥ by the method described 

in Chapter 2, the mean of the variations of the first cumulants obtained from the two K-edges 

weighted with the corresponding stoichiometric coefficients was employed using Eq. 2.12. 

As in the case of Cu-O atomic pairs in Cu2V2O7, the variation in temperature of the static second 

cumulant was negligible. The average Cu/Zn-O MSRDs transverse and longitudinal and anisotropy are 

in Figure 5.14. In both transverse MSRD and anisotropy, a sudden decrease is observed at around 

225K, in correspondence to the change of the sign of the volumetric thermal expansion coefficient: 

it is difficult to interpret this fact given the fact that no crystal phase transition is observed by SXRD 

(Synchrotron X-Ray Diffraction). 
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Figure 5.14: (a) Average transverse and longitudinal MSRD and (b) average vibrational anisotropy 
of Cu/Zn-O atomic pairs in Cu1.25Zn0.75P2O7 
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Figure 5.13: Unit cell volume of Cu2P2O7 and Cu1.25Zn0.75P2O7 versus temperature. While the α->β 
transition of Cu2P2O7  is visible at around 350 K, no such change is evident for the other curve.  
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This can be seen in Figure 5.13, where the unit cell volume trend with temperature is reported and 

compared to that of Cu2P2O7: the comparison highlights the difference in both the value of the CTE 

and the value of the unit cell volume. However, it is still worth noting that such a discontinuous 

behavior doesn’t occur for the longitudinal MSRD, indicating that transverse vibrations are 

suppressed in correspondence with the CTE becoming positive, in accordance with observations 

made in the other chapters of this work. 

To fit the average MSRDs obtained as described above with an Einstein function a weighted reduced 

mass has been employed: μCu/Zn=(1.25∙μCu+0.75∙μZn)/2. A summary of the obtained vibrational 

properties, to be intended as averages for the Cu/Zn-O atomic pairs, can be found in Table 5.5. 

Further details regarding the structural characterization and synthesis of the Cu2-xZnxP2O7 compounds 

are available in [5]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Discussion and conclusions 

The broad context of the copper pyrophosphates analogues gives the opportunity to observe a wide 

set of interesting thermal expansion properties: apart from strongly changing the CTE, the chemical 

substitution has an important effect on the polymorphic properties and it surely has on the 

polymorphic transition temperature, even suppressing the transition.  Generically, the effect of P 

substitution with V is that of widening the temperature range of NTE, while maintaining it to a 

considerable amount. Cu substitution increases the volumetric CTE from negative to positive in 

correspondence with a reduction of the AAV; it also strongly changes the polymorphic transition, up 

to the point of suppressing it completely. 

Cu/Zn-O 

Stretching 

𝜈|| = 12.20 ±  0.23 THz 

𝑘|| = 7.80 ±  0.29 eV/Å2 

Bending 

𝜈⊥ = 5.83 ±  0.59 THz 

𝑘⊥ =  1.78 ±  0.36 eV/Å2 

Anisotropy 
𝛾 ~ 6.2 ± 1.2 @300K 

2𝑘||/𝑘⊥ = 8.8 ± 1.8 

Table 5.5:  Vibrational anisotropy parameters for Cu1.25Zn0.75P2O7, comprising 
transverse and longitudinal Einstein frequencies, the corresponding effective force 
constants and the vibrational anisotropy 
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Much can be learnt by investigating of some relevant members of this class of materials, since they 

display complicating factors that all together take EXAFS spectroscopy to its extreme capabilities: 

various crystallographically inequivalent atoms with similar distances from the absorber atom, 

significant static disorder variation with temperature, a crystal phase transition and short bond 

lengths requiring careful background removal.  

But they also present aspects that are difficult to model theoretically: the polyhedral units VO4 and 

CuO5 that perform rocking motions in Cu2V2O7 are not rigid, a fact that challenges the theories that 

require or strongly depends on rigid units; a phase transition and soft phonon modes are both 

present and can be expected to give crucial contributions to thermal expansion, as pointed out in 

Chapter 1. Therefore, these materials seem the perfect place to apply EXAFS spectroscopy to extract 

novel information on the issue; also, the possibility of a common mechanism for NTE in materials 

with quite different crystal structures is indeed an interesting one. 

In this chapter, the EXAFS analysis of two compounds of this family has been presented. From the 

results regarding Cu2V2O7, we can expect that Cu-O and V-O atomic pairs play different roles in 

determining the thermal expansion properties, given the significant difference between the 

anisotropy of their thermal vibrations. In particular, V-O atomic pairs, having stronger transverse 

vibrations, are expected to play a major role in the NTE mechanism.  

Here few words must be spent on the estimation of the static component of the second cumulant: 

since the total second cumulant shows little variation with temperature and the static second 

cumulant can be expected to be great, it is difficult to clearly establish the quantitative validity of the 
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Figure 5.15: Thermal vibrations anisotropy of Cu-O or Cu/Zn-O atomic pairs in Cu2P2O7 and its 
analogues that have been presented in this chapter 
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results regarding the V-O atomic pairs. However, the comparison between the anisotropy of thermal 

vibration of the V-O and Cu-O atomic pairs, together with the fact that the same estimation 

procedure has been employed for the static second cumulant, allows to be confident in the 

semiquantitative conclusion that V-O atomic pairs are indeed stiffer to bending than Cu-O. In this 

complicated picture EXAFS spectroscopy gives simple yet crucial information that sheds light on the 

microscopic mechanism of NTE: an example can be seen in Figure 5.15, where the anisotropy of 

Cu/Zn-O or Cu-O atomic pairs is reported to highlight that, once again, the anisotropy of thermal 

vibrations of linking atoms is suppressed as NTE is diminished. This information, combined with SXRD 

and total scattering measurements, reported in [5], [1], [3] and [4], allowed to conclude that the NTE 

is mainly determined by transverse vibrations of linking oxygen atoms.  
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Chapter 6  

 

Nanosize effects on thermal expansion:  

a molecular dynamics study 

 

Nanostructuration has an important effect on thermal expansion coefficient, which can even change sign 

with respect to the bulk value. It has been proposed that in the case of metallic nanoparticles the electronic 

excitations play a crucial role, remarkably complicating the description of the phenomenon: to simplify the 

matter it is interesting to simulate the behavior of vibrations in model nanosystems, spherical gold 

nanoparticles, neglecting the electronic degrees of freedom. In this chapter molecular dynamics 

simulations regarding this matter are presented. 

 

6.1 EXAFS spectroscopy and molecular dynamics 

After having reported on the experimental investigations regarding NTE materials, theoretical work 

on systems of interest to the study of NTE is described. In particular, Molecular Dynamics (MD) 

simulations have been performed to clarify the role of thermal vibrations in gold nanoparticles of 

various diameters, given their importance as a model system, and the effect of nanostructuration on 

thermal expansion phononic contributions. 

An interesting characteristic of EXAFS spectroscopy is its strong dependence on crystal structure and 

lattice dynamics rather than electronic structure. This allows to formulate the EXAFS equation in 

terms of cumulants of the atomic pair distribution function. So, if the cumulants are calculated, it is 

possible to compare them to EXAFS fits results of the system under scrutiny. This approach can 

complement the EXAFS analysis by allowing the investigation of quantities that are difficult to directly 

access by experiment: for example, distances which are not directly accessible due to atoms having 

too little atomic number or atoms having too similar atomic number to be resolvable in the EXAFS 

signals. The dependence on temperature of the cumulants of the real distribution can also be 

calculated if the lattice dynamics is known. In this regard, molecular dynamics is a very useful 
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computational technique: the fundamental idea behind it is to sample the statistical ensemble 

describing a system of bodies (atoms or molecules) by solving the equations of motions and saving 

the resulting coordinates (and velocities). If this process is given enough time, ensemble averages 

can be appropriately substituted by time averages and the related uncertainties can be estimated. 

The software GULP [1], [2] has been employed to perform classical molecular dynamics calculations. 

The Leapfrog-Verlet solution scheme for the equations of motion has been employed: this ensures 

energy conservation within levels acceptable for this type of calculations. 

In this chapter all the cumulants are intended as relative to the real distribution since the molecular 

dynamics algorithm effectively samples the real distribution of atomic pair distances. Only cumulants 

up to the fourth are usually employed in EXAFS fitting procedures; their expressions are  

𝐶1 = ⟨𝑟⟩, (6.1) 
 

𝐶2 = ⟨(𝑟 − ⟨𝑟⟩)2⟩, (6.2) 
 

𝐶3 = ⟨(𝑟 − ⟨𝑟⟩)3⟩, (6.3) 
 

𝐶4 = (⟨𝑟 − ⟨𝑟⟩)4 − 3𝐶2
2, (6.4) 

where 𝑟 is the atomic pair distance and the angular brackets indicate the ensemble average.  

Calculation of other quantities is available with the molecular dynamics results, e.g. the difference 

between the average real interatomic distance, the first cumulant (〈|𝑟1⃗⃗⃗  − 𝑟2⃗⃗  ⃗|〉, where 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗ are 

the positions of the atoms in the considered pair), and the apparent one (|〈𝑟1⃗⃗⃗  〉| − |〈𝑟2⃗⃗  ⃗〉|), the modulus 

of the average difference of positions of two atoms.  

To build a theoretical framework in which to interpret the results, it is possible to consider a (rather 

simplified) potential energy of atomic pair deformation  

𝑉(𝑟) = 𝑉(𝑟0) +
𝑘

2
(𝑟 − 𝑟0)

2 + 𝑘3(𝑟 − 𝑟0)
3 + 𝑘4(𝑟 − 𝑟0)

4, (6.5) 

where 𝑟 is the distance between the two atoms; the classical expressions for the cumulants of a 

system with this interatomic potential energy are then obtained as integral averages. So, for example, 

the cumulants for a system whose dynamics is described by the (classical) potential in Eq.(6.5) at 

leading order in temperature T:  

𝐶1 ≈ 𝑟0 − 3𝑘3𝑘𝐵𝑇/𝑘2, (6.6) 



 

84 
   

 

𝐶2 ≈ 𝑘𝐵𝑇/𝑘, (6.7) 
 

𝐶3 ≈–6𝑘𝐵
2𝑇2𝑘3/𝑘

3. (6.8) 

These results are obtained in the Quasi-Harmonic Approximation (QHA) and may be compared with 

the results obtained using the molecular dynamics. While the classical trend in temperature is linear 

for the second cumulant and quadratic for the third cumulant, quantum expressions for the 

cumulants are more expressed as more complicated functional forms, which are also available and 

reduce to the expressions above in the high temperature limit. Quantum effects on EXAFS cumulants 

are evident at very low temperatures, but the classical results obtained through these numerical 

simulations may be extrapolated to very low temperatures using simple models, as usually in the 

EXAFS data analysis the dynamical second cumulant and the extracted MSRD⊥ are interpolated with 

an Einstein (like in this work) or Debye model [3], [4], [5], [6]. 

We will now detail the steps for a complete molecular dynamics simulation. First, the system under 

investigation must be defined: the atoms or molecules composing it must be specified and assigned 

initial positions inside a simulation volume with boundary conditions.  

After this the equations of atomic/molecular motions must be specified: for this it is usually sufficient 

to define the interaction potential energy. In this work the Sutton-Chen potential for gold has been 

employed: it is a particular case of Finnis-Sinclair potentials described by the following formula 

𝐸𝑝𝑜𝑡,𝑆𝐶 = 𝜀 ∑[ ∑𝑉𝑖𝑗

𝑗≠𝑖

/2

𝑖

− 𝑐√ρi],  (6.9) 

where 𝑉𝑖𝑗(𝑟) = (
𝑎

rij
)
n

 and ρ𝑖 = ∑ (
𝑎

rij
)
m

j≠i , with 𝑟𝑖𝑗  the distance between the atoms i and j. Thermal 

properties of noble metals are well described employing these simple potentials, requiring a total of 

4 independent parameters. Additionally, a cutoff distance for the repulsive power law interactions 

(𝑉𝑖𝑗) is set to quicken and simplify calculations (12 Å for all nanoparticles in this work).  

 

𝜀 [𝑒𝑉] 𝑎[Å] 𝑐 𝑚 𝑛 

1.2793E-2 4.08 34.408 8 10 

Table 6: Parameters for the Sutton-Chen potential employed in the present work, as 

presented in [7] 
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The parameters defining the potential are presented in Table 6. This potential correctly predicts an 

fcc ground state structure for bulk gold. To define the statistical ensemble to sample it is necessary 

to simulate the effect on the system of a thermostat and/or barostat: their parameters regulate how 

the dynamics must be changed and ultimately determine the equilibration process (in this case in the 

Nosé-Hoover scheme). It is also necessary to determine how often the thermostat/barostat 

intervenes, through the scaling timestep. The timesteps for other important processes must then be 

decided: the evolution timestep and the sampling timestep. The evolution timestep, which is the 

timestep by which the time coordinates are discretized, should be significantly smaller than the 

period of fastest oscillation: usually for atomic systems it is sufficient to set the timestep slightly 

smaller than 1 𝑓𝑠, considering the typical vibrational frequencies of such systems. The equilibration 

and simulation time must also be defined: the equilibration time should be set to allow the sampling 

distribution to converge to the desired one; the simulation time should at least be longer than the 

period of the slowest oscillations and as long as possible to let the system visit the allowed phase 

space the most possible. The period of the slowest motions is dictated by the boundary conditions: 

as the size of the simulation volume increases the minimum simulation time to obtain acceptable 

results also increases. 

 

6.2 Physical quantities 

At last, the physical quantities of interest can be extracted; to do so a subset of atomic pairs is 

selected: in this work this is obtained by specifying a range of instantaneous distances and eventually 

also conditions on their distance from the center of the nanoparticles. The main physical quantities 

of concern here are: the cumulants (both static and dynamic) of the real distribution of atomic pair 

distances, the average (crystallographic) relative position of the atomic pairs, the longitudinal and 

transverse MSRD and the anisotropy of the thermal vibrations. 

As has been pointed out in the EXAFS spectroscopy analysis section, a physically relevant distinction 

can be operated between total, dynamic and static cumulant: in the context of molecular dynamics, 

the first is the average of the individual pair contributions to the cumulant at all times and over all 

the atomic pairs, while the second is defined as the average over pairs of the time averages of the 

individual pair contributions to the cumulant. The static cumulant is defined as the difference 

between total and dynamic cumulant. As a relevant illustrative example: 
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𝐶1,𝑡𝑜𝑡 =
∑ ∑ 𝑟𝑖(𝑡𝑗)

𝑁𝑡𝑖𝑚𝑒𝑠
𝑗

𝑁𝑝𝑎𝑖𝑟𝑠

𝑖

𝑁𝑝𝑎𝑖𝑟𝑠 ∙ 𝑁𝑡𝑖𝑚𝑒𝑠

  (6.10) 
 

𝐶2,𝑡𝑜𝑡 ≔
∑ ∑ (𝑟𝑖(𝑡𝑗) − 𝐶1,𝑡𝑜𝑡)

2𝑁𝑡𝑖𝑚𝑒𝑠
𝑗

𝑁𝑝𝑎𝑖𝑟𝑠

𝑖

(𝑁𝑝𝑎𝑖𝑟𝑠 ∙ 𝑁𝑡𝑖𝑚𝑒𝑠 − 1)
 (6.11) 

 

𝐶2,𝑑𝑦𝑛 ≔
∑ ∑ (𝑟𝑖(𝑡𝑗) − ⟨𝑟𝑖⟩time)

2𝑁𝑡𝑖𝑚𝑒𝑠
𝑗

𝑁𝑝𝑎𝑖𝑟𝑠

𝑖

(𝑁𝑝𝑎𝑖𝑟𝑠 − 1) ∙ (𝑁𝑡𝑖𝑚𝑒𝑠 − 1)
 (6.12) 

 

𝐶2,𝑠𝑡𝑎𝑡 ≔ 𝐶2,𝑡𝑜𝑡 − 𝐶2,𝑑𝑦𝑛 (6.13) 

where ⟨𝑟𝑖⟩time represents the time average of the 𝑖-th considered atomic pair. Similar relationships 

hold for third and fourth cumulants. These results may then be compared with those extracted from 

EXAFS spectroscopy analysis. 
 

6.3 Test in gold bulk 

To give a reference system for the performance of the chosen potential, gold bulk has been 

investigated. It will also prove useful in illustrating the procedure and the results in a concrete way. 

Constant volume canonical ensemble calculations have been performed and will be presented. The 

volume has been fixed using experimental data [8]. 
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Figure 6.1: Dependence on simulation time of (a) 𝑀𝑆𝑅𝐷∥ 𝑎𝑛𝑑 (b) anisotropy ratio γ @300K 

T [K] Supercell Sampling/simulation timestep NN distances sampling range 

100,200,300,413,513 8x8x8 (512 atoms) 0.01/0.0005 ps [1.5,3.7] Å 

Table 7: Simulations parameters for gold bulk 
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Figure 6.2: Comparison of first shell interatomic “real” and “apparent” distances 

The constant volume ensemble has been preferred over the constant pressure one, because the 

number of atoms introduced in the periodic cell is too small to render those simulations stable. The 

simulation settings for these simulations are reported in (scaling timestep is the same as simulation 

timestep). Several quantities of interest to EXAFS spectroscopy are then presented: the comparison 

between the first cumulant and the “apparent” distance at various temperatures is shown in Figure 

6.2, which, as expected, are clearly different. The anisotropy ratio γ at different temperatures and 

the longitudinal and transverse MSRDs are shown in Figure 6.4: the agreement with experimental 

values (around 2.78) is remarkable and indicates that, as expected in a fcc crystal, the vibrational 

properties are quasi-isotropic. 
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Figure 6.3: (a) Difference between the dynamical second cumulant and its estimated value as the 
𝑀𝑆𝑅𝐷∥; (b) difference between the 𝑀𝑆𝑅𝐷⊥ and its estimated value using the real and apparent 
distances 
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A collection of physical quantities is presented in Table 8 and compared to experimental values: in 

particular the Einstein frequencies longitudinal and transverse is defined respectively as 

ν∥ = √𝑘∥/μ (6.14) 

ν⊥ = √𝑘⊥/μ (6.15) 

The third order force constant, which is also reported there, is obtained by fitting the dynamical third 

cumulant using the approximation in Eq. (6.8), that is a quadratic power law in temperature: the 

discrepancy with the experiment is remarkable, but the strong dependence on the second order force 

constant in Eq. (6.8) probably plays a role in it. 
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Figure 6.4: (a) Transverse and longitudinal MSRDs; (b) anisotropy ratio 𝛾 as a function of 
temperature 
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Figure 6.5: Third cumulant dynamic component versus temperature fitted with a quadratic function, 
compared with the experimental results from [9] (corrected according to the quantum theory) 
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Quantity Calculated value Experimental value 

𝜈|| (2.41±0.01) THz 2.82 THz  

𝜈⊥ (2.03±0.01) THz 2.17 THz  

𝜈⊥/𝜈|| (0.842±0.008) 0.77  

𝑘3 (-1.06±0.05) eV Å−3 -1.94 eV Å−3  

Table 8: Collection of quantities calculated using molecular dynamics results for gold bulk; 
experimental values are taken from [9] 

The simulated 𝐶3,𝑑𝑦𝑛 is shown in Figure 6.5 together with the experimental results from [9], increased 

by a constant so as they tend to the correct value dictated by the quantum theory at 0K, in order to  

allow comparison with the simulation results: again, although the results of the simulations 

qualitatively reproduce the experimental ones, a certain degree of discrepancy is evident.  

In conclusion, although the employed model is quite simplistic, it can still be expected to be useful in 

answering questions regarding the effect of nanostructuration on gold, giving semi-quantitative or 

even quantitative results in accordance with experiment. 

 

6.4 Gold nanoparticles 

After having established some simple reference results, we turn to the main subject of this numerical 

investigation: the effect of nanostructuration on phonons and their contribution to the thermal 

expansion coefficient. To do so, we explore the vibrational dynamics of model systems, gold 

nanoparticles of various diameters, ignoring the electronic degrees of freedom. It has been 

mentioned before that electronic thermal excitations may be relevant to NTE: in the particular case 

of metallic nanoparticles, following the approach of Kubo [10], electronic excited states with a 

discrete energy  

 
T [K] Diameter [nm] (#atoms) Sampling/Simulation timestep NN distances sampling range 

 1.3 (80)   

 2 (250)   

50,100,200,300 3 (888) 0.01 ps/0.0005 ps [1.5,3.7] Å 

 4 (1986)   

 5 (3926)   

 8 (15947)   

Table 9: Simulation parameters for gold spherical nanoparticles 



 

90 
   

spectrum with a fixed spacing comparable to the thermal energy at cryogenic temperature appear 

above the Fermi surface: 

Δ𝐸𝑛 ≈
4𝑛𝐸𝐹

3𝑁
 (6.16) 

where 𝑛 is the excitation level index, 𝑁 is the number of atoms in the nanoparticle and 𝐸𝐹 is the 

Fermi energy of the bulk metal [11]. 

The relative thermal excitation energy of electrons, while negligible for bulk materials, becomes 

relevant for nanoparticles and can negatively contribute to thermal expansion [121].  

 

Figure 6.7: Radial distribution function in a 4nm diameter nanoparticle at 300K 

 

Figure 6.6: Example of sampling processes for a 4 nm diameter gold nanoparticle at 300K: 

instantaneous nearest neighbors’ distance of 5 randomly chosen atomic pairs 
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The phonon contributions to the thermal expansion though, which are taken in consideration in this 

chapter, constitute the basis to understand physical anomalies (especially in the thermal expansion) 

in metallic and non-metallic nanoparticles, also considering that they are also more thoroughly 

theoretically understood. That is what we will try to accomplish with these simulations.  

 The setting parameters for these simulations are reported in Table 9 (scaling timestep is the same 

as simulation timestep). Gold spherical nanoparticles are built starting as a spherical fcc gold cluster; 

the system then undergoes through a phase of thermal and mechanical equilibration and then the 

sampling of states is performed [11]. An example of the equilibration and sampling processes for a 

nanoparticle is given in Figure 6.6, regarding a 4nm diameter at 300K. The resulting distribution of 

distances is reported in Figure 6.7: as is expected, and in accordance with experimental results [121] 

which report a fcc structure in gold nanoparticles, peaks related to a “crystalline” fcc structure are 

visible, even if they are significantly smeared. Using the sampled positions of the atoms constituting 

the nanoparticles, physical quantities may be extracted to check the quality of the performed 

calculations. For example, the first neighbors’ distance in nanoparticles can be successfully compared 

to experiment (see Figure 6.8).  

The NN distance in nanoparticles is shorter than in the bulk, in particular  

Δ𝑅𝑒𝑞 = −
4𝑓 ∙ 𝐾𝑏𝑢𝑙𝑘 ∙ 𝑅𝑏𝑢𝑙𝑘

3𝐷
 (6.17) 
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Figure 6.8: Comparison between experimental results of apparent NN distances [13] 
and the numerical simulations on gold nanoparticles at low temperatures 
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 where Δ𝑅𝐸𝑞 is the contraction of the nearest neighbors’ distance, 𝐾𝑏𝑢𝑙𝑘 is the bulk compressibility 

(taken as 180 GPa-1), 𝑅𝑏𝑢𝑙𝑘 is the nearest neighbors’ distance in the bulk (taken as 2.87792 Å), 𝐷 is 

the diameter of the nanoparticle.  

 Thus, the surface tension can be extracted, giving 𝑓 = (3.9 ± 0.2) 𝐽𝑚−2, to be compared to the 

experimental value (3.8 ± 0.3) 𝐽𝑚−2 [13], while the bulk value is 2.7 𝐽𝑚−2 [14]. In Figure 6.9 the 

static second cumulant and the thermal expansion coefficients (calculated using both the “apparent” 

and “real” NN distances) are reported: the thermal expansion coefficient (only due to phonons) is 

significantly higher than the corresponding experimental bulk value (αlin≈1.4E-5 𝐾−1) and is  
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Figure 6.9: (a) Static second cumulant for gold nanoparticles at various temperatures and (b) 
thermal expansion versus diameter 
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Figure 6.10: Nearest neighbors’ “apparent” distance at different distances from the center 
(normalized by the nanoparticle radius Rnp) in nanoparticles of diameter (a) 5 nm and (b) 8 nm 
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 dependent on the nanoparticle diameter; also, nanoparticles with greater diameter display less 

static disorder, which is expected as the surface area over bulk volume is lower. To see if this is indeed 

the case and as an interesting example of calculation of quantities that are usually inaccessible to 

direct analysis, we present here the quantities at different radial distances from the center for the 

largest nanoparticles. The quantities are estimated in layers that are 1 nm thick. The nearest 

neighbors’ “apparent” distances in these layers at different distances from the center are reported 

in Figure 6.10 for nanoparticles of diameter 5 and 8 nm. In Figure 6.11 the static second cumulant 

contributions from the different layers are disaggregated in the nanoparticles of greater size: as  
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Figure 6.11: Static second cumulant at different distances from the center (normalized by the 
nanoparticle radius Rnp) in nanoparticles of diameter (a) 5nm and (b) 8nm 
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Figure 6.12: Comparison between the static, dynamic and total second cumulants at different 
distances from the center (normalized by the nanoparticle radius Rnp) in nanoparticles of diameter 
(c) 5nm and (d) 8nm 
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expected, the static disorder is mainly due to near-surface regions of the nanoparticles. However, 

also the 𝐶2,𝑑𝑦𝑛 displays a variation near the surface (Figure 6.12), which is a less trivial fact. Thus, the 

dynamical disorder quantities (MSRDs) was also investigated in this regard: the radial distributions of 

the Einstein frequencies (longitudinal and transverse), reported in Figure 6.13, indeed shows a 

variation near the surface of both the transversal and longitudinal MSRDs.  
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Figure 6.13: Einstein frequencies at different distances from the center (normalized by the 
nanoparticle radius Rnp) in nanoparticles of diameter (a) 5nm and (b) 8nm 
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Figure 6.14: a) Anisotropy of thermal vibrations (estimated as double the ratio of longitudinal to 
transverse force constants) and b) thermal expansion linear coefficient as a function of distance 
from the center (normalized by the nanoparticle radius Rnp) 
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What is unclear at this point is if the vibrational anisotropy changes near the surface: as visible in 

Figure 6.14, where the radial dependence of the ratio of the longitudinal over transverse effective 

force constant is reported, the anisotropy increases near the surface with respect to the center. 

 

6.5 Conclusions 

Molecular dynamics simulations have been performed that, employing a simple embedded atom 

potential, give a semiquantitative description of the vibrational dynamics of spherical gold 

nanoparticles: being able to correctly understand how nanostructuration affects phonons is a crucial 

first step towards the description of anomalous thermal expansion in gold nanoparticles, which is 

complicated by the relevance of electronic thermal excitations (cf. Kubo gap in metallic 

nanoparticles).  

The radial disaggregation of physical quantities offers a rich perspective on the interplay of phonon 

confinement, vibrational anisotropy and static disorder occurring in nanostructured materials: this 

powerful point of view, very hard to experimentally access, gives precious insights on the dynamics 

at the nanoscale. These numerical simulations indicate greater phononic contributions to the positive 

thermal expansion (CTE) in spherical gold nanoparticles than in the bulk form, especially in the 

regions near the surface. 

 

 

 

 

 

 

 

 

 

 

 



 

96 
   

Bibliography  

 

[1]  J. G. Gale and A. L. Rohl, "The General Utility Lattice Program (GULP)," Molecular Simulation , vol. 

29:5, pp. 291-341, 2003.  

[2]  J. D. Gale, "GULP: A computer program for the symmetry-adapted simulation of solids," J. Chem. 

Soc., Faraday Trans., vol. 93, pp. 629-637, 1997.  

[3]  T. Yokoyama, "Path-integral effective-potential theory for EXAFS cumulants compared with the 

second-order perturbation," j. Synchrotron Rad. , vol. 6, pp. 323-325, 1999.  

[4]  N. Abd el All and e. al., "Accuracy evaluation in temperature-dependent EXAFS measurements of 

CdTe," J. Synchrotron Rad., vol. 20, pp. 603-613, 2012.  

[5]  E. A. Stern and e. al., "Thermal vibration and melting from a local perspective," Phys. Rev. B, vol. 

43, no. 11, 1991.  

[6]  "J. Chem. Phys.," no. 81, p. 511, 1984.  

[7]  A. Sutton and J. Chen, "Long-range Finnis-Sinclair potentials," Phil. Mag. Lett., vol. 61:3, pp. 139-

146, 1990.  

[8]  M. G. Pamato and e. al., "The thermal expansion of gold: point defect concentrations and pre-

melting in a face-centered cubic metal," J. Appl. Cryst. , vol. 51, pp. 470-480, 2018.  

[9]  T. Comaschi and e. al., "Thermal dependent anharmonicity effects on gold bulk studied by 

extended x-ray-absorption fine structure," j. Phys. Condens. Matter, vol. 21, p. 325404, 2009.  

[10]  R. Kubo, "Electronic Properties of Metallic Fine Particles. I.," J. Phys. Soc . Jpn., vol. 17, pp. 975-986, 

1962.  

[11]  W. P. Halperin, "Quantum size effects in metal particles," Reviews of Modern Physics, vol. 58, no. 

3, 1986.  

[12]  W.-H. Li and e. al., "Thermal contraction of Au nanoparticles," Phys. Rev. Lett., vol. 89, p. 135504, 

2002.  

[13]  T. Comaschi and e. al., "Temperature dependence of the structural parameters of gold 

nanoparticles investigated with EXAFS," Phys. Rev. B , vol. 77, p. 075432, 2008.  

[14]  R. J. Needs and M. Mansfield, "Calculations of the surface stress tensor and surface energy of the 

(111) surfaces of iridium, platinum and gold," J. Phys.: Condens. Matter, vol. 1, p. 7555, 1989.  

[15]  O. M. Roscioni and e. al., "Computational prediction of L_3 EXAFS spectra of gold nanoparticles 

from classical molecular dynamics simulations," Phys. Rev. B, vol. 83, p. 115409, 2011.  

[16]  N. Van Hung and e. al., "Anharmonic correlated Debye model Debye–Waller factors," Physica B: 

Condensed Matter, vol. 405, no. 11, pp. 2519-2525, 2010.  



 

97 
   

[17]  A. I. Frenkel and J. J. Rehr, "Thermal expansion and x-ray-absorption fine-structure cumulants," 

Phys. Rev. B, vol. 48, no. 1, pp. 585-588, 1993.  

[18]  F. D. Vila and e. al., "Theoretical x-ray absorption Debye-Waller factors," Phys. Rev. B, vol. 76, p. 

014301, 2007.  

[19]  O. L. Anderson and e. al., "Anharmonicity and the equation of state for gold," J. Appl. Phys., vol. 

65, p. 1534, 1989.  

[20]  P. Fornasini and R. Grisenti, "On EXAFS Debye-Waller factor and recent advances," J. Synchrotron 

Rad., vol. 22, pp. 1242-1257, 2015.  

[21]  A. Quong, "First-principles determination of the interatomic-force-constant tensor of Au," Phys. 

Rev. B, vol. 49, no. 5, 1994.  

[22]  N. Shi and e. al., "Negative thermal expansion in cubic FeFe(CN)6 Prussian blue analogues," Dalton 

Trans., vol. 48, pp. 3658-3663, 2019.  

[23]  Q. Gao and e. al., "Effect of H2O Molecules on Thermal Expansion of TiCo(CN)6," Inorg. Chem., vol. 

59, no. 20, p. 14852–14855, 2020.  

[24]  J. Chen, Q. Gao, A. Sanson and e. al., "Tunable thermal expansion in framework materials through 

redox intercalation," Nat. Commun., vol. 8, p. 14441, 2017.  

 

 

 

 

 

 

 

 

 

 

 



 

98 
   

Conclusions 

In this work the opportunities to tune the vibrational contribution to thermal expansion have been 

reviewed and explored from both the experimental and theoretical point of view.  

The recent discovery of several classes of materials with widely varying coefficients of thermal 

expansion, from largely negative to positive encompassing the intermediate values, has sparked 

great interest. Technological applications could imply the reduction of shocks in components 

undergoing thermal processes and of the detrimental effect of temperature fluctuations on high 

precision instrumentation. The theoretical description of the microscopic mechanisms underlying 

anomalous thermal expansion is also challenging, due to the wide array of materials displaying it. 

In light of these enticing premises, we proposed to establish experimental facts clarifying the phonon 

contributions to anomalous thermal expansion properties, particularly relevant in the case of 

framework structured materials, where it usually is the determining factor. We have presented the 

state-of-the-art of the matter and the classifications of anomalous thermal expansion materials, 

together with the corresponding (at least tentative) theories.  

On the experimental side, the anisotropy of thermal vibrations of specific atomic pair has been 

measured combining EXAFS spectroscopy and diffraction techniques. The investigated samples have 

been prepared and provided by the research group of Prof. Jun Chen from the Department of Physical 

Chemistry, University of Science and Technology Beijing, which also studied the samples by 

diffraction techniques. The data collection was performed at the synchrotron light facilities ELETTRA 

(Italy), ESRF (France) and in minor part APS (United States of America, data acquired by the research 

group of Prof. Jun Chen). 

EXAFS spectroscopy analysis has been presented for Prussian blue analogues (PBAs), zirconium-

transition metals alloys and copper pyrophosphate analogues. 

Intercalation of small chemical species into PBAs with brute formula MM’(CN)6 has been shown to 

strongly hinder the negative thermal expansion, even turning it positive. In this work we studied the 

effect of water intercalation in TiCo(CN)6.  

The EXAFS sensitivity to atomic species allowed to independently study the dynamics in the local 

neighborhood of M and M’ atoms, revealing that the intercalation strongly hinders the transverse 

thermal vibrations of M-N atomic pairs, while leaving those of the M’-C atomic pairs practically 

unscathed. This fact has an impact on the synthesis and search for new NTE materials in this class of 
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materials, which is now simplified by focusing on the choice of the M atomic specie, while the M’ 

specie can be chosen to minimize costs or optimize other desirable properties. A wider perspective 

has also been elaborated on the PBAs, finding a negative correlation between the volumetric 

coefficient of thermal expansion and the ratio of effective force constants transverse and 

longitudinal, a quantity characterizing thermal vibrations of atomic pairs in a temperature 

independent manner. In this sense, LuFe(CN)6 has been investigated as an important member of the 

rare earths containing PBAs (with M’=Fe and M=Lu, Ho, Y, Sm, La), the study of which has taken 

further the knowledge on the dependence of the NTE on the M atomic specie, bound to nitrogen. 

Zirconium alloys with brute formula Zr2M (M=Fe, Co, Ni) display a common body centered tetragonal 

crystal structure, allowing a meaningful and clear comparison among them. Thus, studying them has 

been the occasion to put to test emergent patterns in an unusual context of anisotropic thermal 

expansion. The main findings are the observation of negative correlation between anisotropy of Zr-

M atomic pairs and the CTE along the c-axis, the validity of the average atomic volume even in this 

extreme case and the possibility to extend it as a relation between the value of the lattice parameter 

and the corresponding CTE to materials with highly anisotropic thermal expansion. 

Large negative thermal expansion in a wide temperature range has been discovered in copper 

pyrophosphate (Cu2P2O7), a compound facile and inexpensive to synthesize, thus very promising for 

applications. These substances display a rich variety of behaviors, which complicate the quest to 

unravel the underlying mechanism of their NTE. Thermal expansion and the crystal structure are 

strongly changed by substitution of copper with zinc and of phosphorus with vanadium; the latter 

allowed to study both Cu-O and V-O atomic pairs, revealing that the latter have a much higher 

vibrational anisotropy than the former, suggesting that they are more relevant in the determination 

of the NTE magnitude. The comparison of Cu-O pairs anisotropy with those of Cu2P2O7 confirms once 

again the role of transverse thermal vibrations in NTE: transverse vibrations of Cu-O pairs are 

suppressed upon substitution of the phosphorus and/or the copper.  

On the theoretical side, with the hope of clarifying the effect of nanostructuration on the phonon 

contribution to thermal expansion, classical molecular dynamics simulations of spherical gold 

nanoparticles of various diameters have been performed. The accuracy of the simulations was 

assessed by comparing their predictions to EXAFS and diffraction experimental data, finding an 

agreement level sufficient to ensure the correctness of the results at the semi-quantitative level. The 

thermal expansion coefficient was found to increase with decreasing nanoparticle size. To further 

investigate the matter, we have studied how the local dynamics of gold atomic pairs varies at 
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different distances from the center of the nanoparticle: the near surface section represents the 

source of the increased thermal expansion, also displaying a change in the dynamical thermal 

disorder and the anisotropy of thermal vibrations. 

We can now look at the obtained results with a wider breadth of view. Consistently with early 

observations, negative correlation between anisotropy of thermal vibrations and the thermal 

expansion is established. However, it has also been clearly pointed out that different types of atomic 

pairs play a significantly different role in the NTE mechanism, some of them being practically inert. 

The average atomic volume has been confirmed as an important factor in determining the NTE, even 

if, in cases of strongly anisotropic thermal expansion, an evaluation also involving the lattice 

parameters yields valuable information. 

Yet, several issues remain unclear and deserve future attention, for example a satisfactory theoretical 

justification for the observed relations between the average atomic volume (or more in general the 

lattice parameters or bond length), the coefficient of thermal expansion and anisotropy of thermal 

vibrations. More in general, the great interest and effort up to now seem to have opened a vast 

scientific field, since the variety and quantity of NTE materials, which not long ago seemed just a 

curiosity, grow rapidly as more is known about them and their promising applications. Having 

established important results on the phonon contribution to NTE and its control, this work finds its 

place in the quest for the smart search for new materials with tuned thermal expansion and their 

production. 

 
 

 


