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Abstract

We consider the singularly perturbed problem Fε(u,�) := ∫
�

ε|∇2u|2 +
ε−1|1 − |∇u|2|2 on bounded domains � ⊂ R

2. Under appropriate boundary con-
ditions, we prove that if � is an ellipse, then the minimizers of Fε(·,�) converge
to the viscosity solution of the eikonal equation |∇u| = 1 as ε → 0.

1. Introduction

1.1. The Main Result

We consider the family of functionals

Fε(u,�) :=
∫

�

(

ε|∇2u|2 + 1

ε

∣
∣
∣1 − |∇u|2

∣
∣
∣
2
)

dx, (1.1)

where� ⊂ R
2 is aC2 boundedopen set, ε > 0 andu ∈ W 2,2

0 (�). These functionals
were introduced in [4] and proposed as a model for blistering in [27]. In these cases
we are interested in the minimizers uε of Fε in the space

�(�) :=
{

u ∈ W 2,2
0 (�) : ∂u

∂n
= −1 on ∂�

}

,

where n denotes the outer normal to �. The final goal is the understanding of the
behavior of uε as ε → 0. In [27] (and more explicitly in [5]) it is conjectured that

uε → ū := dist(·, ∂�), (1.2)
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at least for convex domains �. A first partial result in this direction was obtained
in [16, Theorem 5.1], where the authors proved that if � is an ellipse, then

lim
ε→0

min Fε(·,�) = F0(ū,�), (1.3)

where F0 is the candidate asymptotic functional that we are going to introduce in
(1.4).

The main result of this paper is the proof of (1.2) in the same setting as in [16],
namely

Theorem 1.1. Let � ⊂ R
2 be an ellipse and, for every ε > 0, let uε be a minimizer

of Fε(·,�). Then

lim
ε→0

uε = dist(·, ∂�) in W 1,1(�).

This result is obtained as a corollary after showing that ū is the uniqueminimizer
of a suitable asymptotic problem for Fε(·,�) as ε → 0. In order to rigorously
introduce it, we recall some previous results (see also the introduction of [10] for
a presentation of the history of the problem).

1.2. Previous Results

In what follows, � denotes a C2 bounded open subset of R2. Independently
from the validity of 1.2, it is conjectured already in [4] that

(1) if uε is such that lim supε→0 Fε(uε,�) < ∞, then uε converges up to subse-
quences to a Lipschitz solution u of the eikonal equation |∇u| = 1;

(2) if uε is a sequence of minimizers of Fε(·,�), then any limit u of uε minimizes
the functional

F0(v,�) := 1

3

∫

J∇v

|∇v+ − ∇v−|3dH1, (1.4)

among the solutions of the eikonal equation. Here, J∇v denotes the jump set of
∇v and ∇v± the corresponding traces.

A positive answer to the first point was obtained independently in [12] and [2].
A fundamental notion in this analysis and in particular in [12] is the one of entropy,
borrowed from the field of conservation laws.

Definition 1.2. We say that � ∈ C∞
c (R2;R2) is an entropy if for every open set

� ⊂ R
2 and every smooth m : � → R

2 it holds that

(
divm = 0 and |m|2 = 1

)
⇒ div(�(m)) = 0. (1.5)

We will denote by E the set of entropies.



Characterization of Minimizers of Aviles–Giga Functionals 1291

We will consider the following family of entropies introduced first in [6,16]:

�α1,α2(z) := 4

3

(
(z · α2)

3α1 + (z · α1)
3α2

)
.

there (α1, α2) is an orthonormal system in R2.
Collecting the results of [12] and [2] we get the following statement:

Theorem 1.3. Let εk → 0and uk ∈ W 2,2
0 (�)be such that lim supk→∞ Fεk (uk,�) <

∞. Then mk := ∇⊥uk is pre-compact in L1(�). Moreover if mk converges to m in
L1(�), then |m| = 1 a.e. in �, for every entropy � ∈ E it holds that

μ� := div�(m) ∈ M(�),

where M(�) denotes the set of finite Radon measures on �, and
⎛

⎝
∨

(α1,α2)

|div�α1,α2(m)|
⎞

⎠ (�) ≤ lim inf
k→∞ Fεk (uk,�),

where
∨

denotes the supremum operator on non-negative measures (see for exam-
ple [3, Def. 1.68]).

Theorem 1.3 motivates the introduction of the following space of vector fields,
which contains all the limits of sequences ∇⊥uεk , where uεk have equi-bounded
energy.

Definition 1.4. We denote by A(�) the set of all m ∈ L∞(�;R2) such that

divm = 0 in D′(�), |m|2 = 1 L 2-a.e. in �

and such that for every entropy � ∈ E it holds that

μ� := div (�(m)) ∈ Mloc(�),

namely μ� is a locally finite Radon measure on �. We moreover set

F̃0(u,�) :=
⎛

⎝
∨

(α1,α2)

∣
∣
∣div�α1,α2

(
∇⊥u

)∣∣
∣

⎞

⎠ (�).

Finally we denote by

�0(�) :=
{

u ∈ W 1,∞
0 (�) : ∇⊥u ∈ A(�)

}
.

The functional F̃0(·,�) coincideswith F0(·,�) in the subspaceof�0(�)whose
elements have gradient in BVloc(�) (see [2]) and it is the natural candidate to be
the 	-limit of the functionals Fε(·,�) as ε → 0+.

Although A(�) �⊂ BVloc(�), elements of A(�) share with BV functions most
of their fine properties.
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Theorem 1.5. [11] For every m ∈ A(�) there exists a H 1-rectifiable set J ⊂ �

such that

(1) for H 1-a.e. x /∈ J it holds that

lim
r→0

1

r2

∫

Br (x)

|m(y) − m̄x,r |dy = 0,

where m̄x,r denotes the average of m on Br (x), namely x is a vanishing mean
oscillation point of m;

(2) for H 1-a.e. x ∈ J there exist m+(x), m−(x) ∈ S
1 such that

lim
r→0

1

r2

(∫

B+
r (x)

|m(y) − m+(x)|dy +
∫

B−
r (x)

|m(y) − m−(y)|dy

)

= 0,

where B±(x) := {y ∈ Br (x) : ±y ·n(x) > 0} and n(x) is a unit vector normal
to J in x;

(3) for every � ∈ E it holds that

μ��J = [n · (�(m+) − �(m−))]H 1�J,

μ��K = 0 ∀K ⊂ � \ J with H 1(K ) < ∞.

The analogywith the structure of elements in A(�)∩BVloc(�) is not complete:
for these functions properties (1) and (3) can be improved to

(1’) H 1-a.e. x /∈ J is a Lebesgue point of m;
(3’) for every � ∈ E

μ� = [n · (�(m+) − �(m−))]H 1�J. (1.6)

In order to prove (3’) from (3) one should show that μ� is concentrated on J . This
is considered as a fundamental step towards the solution of the 	-limit conjecture
and it remains open. Notice moreover that by means of Theorem 1.5 we can give
a meaning to the definition of the functional F0(·,�) even for solutions u to the
eikonal equation with ∇⊥u ∈ A(�) \ BVloc(�); Property (3’) would imply that
F0 coincides with F̃0 on the whole �0(�).

A fundamental tool in the study of fine properties of elements of A(�) is the
kinetic formulation [18] (see also [23] in the framework of scalar conservation
laws). Here we use a more recent version obtained in [13].

Theorem 1.6. Let m ∈ A(�). Then there exists σ ∈ Mloc(�×R/2πZ) such that

eis · ∇xχ = ∂sσ in D′(� × R/2πZ), (1.7)

where χ : � × R/2πZ is defined by

χ(x, s) =
{
1 if eis · m(x) > 0,

0 otherwise.
(1.8)
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We observe that if σ solves (1.7), then

σ + μ ⊗ L1

also solves (1.7) for every μ ∈ Mloc(�). This ambiguity is resolved in [13] by
considering the unique σ0 solving (1.7) such that

∫

�×S1
ϕ(x)dσ0(x, s) = 0, ∀ϕ ∈ C∞

c (�).

The above kinetic formulation encodes the entropy production of the family of
entropies

Eπ :=
{

� ∈ E : d

ds
�(eis)|s=s̄ = − d

ds
�(eis)|s=s̄+π

}

.

Condition (1.5) is equivalent to d
ds �(eis) · eis = 0 for every s ∈ R/2πZ, therefore

for every � ∈ E we can define ψ� : R/2πZ → R such that

d

ds
�(eis) = 2ψ�

(
s + π

2

)
ei(s+ π

2 ) ∀s ∈ R/2πZ.

Notice that � ∈ Eπ if and only if ψ� is π -periodic. Rephrasing the construction
in [13], we have the following identity: for every � ∈ Eπ and every ζ ∈ C1

c (�) it
holds that

〈div�(m), ζ 〉 = 〈∂sσ, ζ ⊗ ψ�〉, (1.9)

namely
∫

�

�(m) · ∇ζdx =
∫

�×R/2πZ
ζ(x)ψ ′

�(s)dσ.

A possibly weaker version of (3’) is the following:

(3”) Eq. (1.6) holds for every � ∈ Eπ .

This is equivalent to require that ν0 := (px )�|σ0| ∈ Mloc(�) is concentrated on J
andmoreover it would be sufficient to establish the equality F0 = F̃0. The following
proposition is a partial result in this direction for general m ∈ A(�); we remark
here that a key step of the proof of Theorem 1.1 is to establish (3”) for a class of
m including the limits of ∇⊥uε, where uε is a minimizer of Fε(·,�) and � is an
ellipse.

Proposition 1.7. Let m ∈ A(�) and (σ0,x )x∈� ⊂ M(R/2πZ) be the disinte-
gration of σ0 with respect to ν0 defined for ν0-a.e. x ∈ � by the properties
|σ0,x |(R/2πZ) = 1 and

∫

�×R/2πZ
ϕ(x, s)dσ0(x, s) =

∫

�

∫

R/2πZ
ϕ(x, s)dσ0,x (s)dν0(x)

for every ϕ ∈ C∞
c (�×R/2πZ). Then for ν0-a.e. x ∈ �\ J there exists s̄ = s̄(x) ∈

R/2πZ such that

σ0,x = ±1

4

(

δs̄ + δs̄+π − 1

π
L1
)

.
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Among other results, the same expression for σ0,x has been obtained very
recently in [22] under the additional assumption that div�(m) ∈ L p(�) for every
� ∈ E . As the authors point out, it is still not known if this additional assumption
is sufficient to establish that indeed σ0 vanishes.

1.3. The Asymptotic Problem

Adapting the argument in [30] for scalar conservation laws to this context, it is
possible to prove that the elements of A(�) with finite energy have strong traces
in L1 at the boundary of �. However, the conditions

uε ∈ �(�), lim sup
ε→0

Fε(uε,�) < ∞, and u = lim
ε→0

uε in W 1,1

do not guarantee that ∂u
∂n = −1 on ∂�; in other words we can have boundary layers.

In order to take them into account we slightly reformulate the minimum problem
for Fε(·,�): given δ > 0 we define

�δ = {x ∈ R
2 : dist(x,�) < δ}, and Sδ := �δ \ �̄.

Being � of class C2, we can take δ > 0 sufficiently small so that the function
− dist(x, ∂�) belongs to W 2,2(Sδ). We therefore consider the minimum problems
for the functionals Fε(·,�δ) on the space

�δ(�) :=
{

u ∈ W 2,2(�δ) : u(x) = − dist(x, ∂�) for a.e. x ∈ Sδ

}
.

Notice that for every u ∈ �(�) the function uδ : �δ → R defined by

uδ(x) :=
{

u(x) if x ∈ �,

− dist(x, ∂�) if x ∈ �δ \ �
(1.10)

belongs to �δ(�) and

Fε(u
δ,�δ) = Fε(u,�) + ε

∫

Sδ

|∇2 dist(x, ∂�)|2dx .

Similarly the restriction to � of any function in �δ(�) belongs to �(�), so that
the two minimum problems are equivalent. We will also denote by

Aδ(�) :=
{

m ∈ A(�δ) : m = −∇⊥ dist(·, ∂�) in Sδ

}
.

We will prove the following result:

Theorem 1.8. Let � be an ellipse. Then the function ūδ , defined by (1.10) with
ū = dist(x, ∂�), is the unique minimizer of F̃0(·,�δ) in the space

�0
δ (�) :=

{
u ∈ W 1,2(�δ) : ∇⊥u ∈ A(�δ) and u = ūδ in Sδ

}
.
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We show now that Theorem 1.1 is a corollary of Theorem 1.8 and the previous
mentioned results: indeed let εk → 0 as k → ∞ and for any k let uεk be aminimizer
of Fεk (·,�) on �(�). By Theorem 1.3 and (1.3) we have that every limit point u0
of uεk belongs to �0(�) and moreover it holds

F̃0(u
δ
0,�δ) ≤ lim inf

k→∞ Fεk (u
δ
εk

,�δ) = lim inf
k→∞ Fεk (uεk ,�)

= lim
k→∞ min

�(�)
Fεk (·,�) = F̃0(ū,�) = F̃0(ū

δ,�δ).

Since ūδ is the onlyminimizer of F̃0(·,�δ) in�0
δ (�), then uδ

0 = ūδ , namely u0 = ū.

1.4. Related Results

1.4.1. Zero-Energy States The only case in which the behavior of minimizers of
Fε(·,�) as ε → 0 is completely understood is when limε→0 min Fε(·,�) = 0. All
the sets � admitting sequences with vanishing energy were characterized in [17]
andwith the appropriate boundary conditions the limit function is in these cases ū =
dist(·, ∂�). A quantitative version of this result is proven in [20] (see also [19]). In a
different direction, it was shown in [21] that the vanishing of the two entropy defect
measures div�e1,e2(m) and div�ε1,ε2(m) is sufficient to establish div�(m) = 0
for every � ∈ E . Here we denoted by (e1, e2) the standard orthonormal system in
R
2 and by

(ε1, ε2) :=
((

1√
2
,

1√
2

)

,

(

− 1√
2
,

1√
2

))

the orthonormal system obtained by performing a rotation of (e1, e2) by π/4.

1.4.2. States with a Vanishing Entropy Defect Measure The case when � is
an ellipse is special since we know a priori that there exists an orthonormal system
(α1, α2) in R

2 for which the minimizers uδ in A(�δ) of the asymptotic problem
F̃0(·,�δ) satisfy

div�α1,α2

(
∇⊥uδ

)
= 0 in D′(�δ). (1.11)

This situation has been considered more extensively in [14,15], where in particular
the authors proved the minimizing property of the viscosity solution (1.3) for more
general domains and functionals. In this direction we only mention here that the
same arguments of this paper allow to prove Theorem 1.1 also in the case where �

is a stadium, namely a domain of the form

� = {x ∈ R
2 : dist(x, [0, L] × {0}) < R} for some L , R > 0.

We finally mention that under the additional assumption (1.11) we can prove Prop-
erty (3”).
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1.4.3. A Micromagnetics Model A family of functionals Eε strictly related to
(1.1) was introduced in [28,29] in the context of micro-magnetics. An analogous
result to Theorem 1.1 was proved in [8] even for general smooth domains �, while
the 	-limit conjecture is still open also in this setting. Although Theorem 1.5 has
a perfect analogue for the elements in the asymptotic domain of Eε (see [7]), the
main difficulty seems to be a still not complete understanding of the fine properties
of these elements. In this direction we notice that the method used here to establish
Proposition 1.7 gives the analogue in this setting of the concentration property (3’)
(see [25]).

2. Lagrangian Representation of Elements in A(�)

The Lagrangian representation is an extension of the classical method of char-
acteristics to the non-smooth setting: it was introduced in the framework of scalar
conservation laws in [9,24] building on the kinetic formulation from [23]. This
approach is strongly inspired by the decomposition in elementary solutions of
non-negative measure valued solutions of the linear transport equation, called su-
perposition principle (see [1]). Indeed by Theorem 1.6, the vector fields m ∈ A(�)

are represented by the solution χ of the linear transport equation (1.7). The main
difficulty in this case is due to the source term which is merely a derivative of a
measure. This issue is reflected in the lack of regularity of the characteristics de-
tected by our Lagrangian representation, which have bounded variation but they
are in general not continuous. A fundamental feature for our analysis is that we can
decompose the kinetic measure σ in (1.7) along the characteristics.

2.1. Lagrangian Representation

We introduce the following space of curves: given T > 0, we let

	 :=
{
(γ, t−γ , t+γ ) : 0 ≤ t−γ ≤ t+γ ≤ T, γ = (γx , γs) ∈ BV((t−γ , t+γ );

� × R/2πZ), γx is Lipschitz} .

We will always consider the right-continuous representative of the component γs .
Moreover we will adopt the notation from [3] for the decomposition of the measure
Dv where v ∈ BV(I ;R) for some interval I ⊂ R,

Dv = D̃v + D jv,

where D̃v denotes the sum of the absolutely continuous part and the Cantor part
of Dv and D jv denotes the jump part of Dv. We will need to consider also D̃v

for functions v ∈ BV(I ;R/2πZ). In this case D̃v = D̃w where w is any function
in BV(I ;R) such that for every z ∈ I the value w(z) belongs to the class v(z) in
R/2πZ. For every t ∈ (0, T ) we consider the section

	(t) :=
{(

γ, t−γ , t+γ
)

∈ 	 : t ∈
(

t−γ , t+γ
)}

,
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and we denote

et : 	(t) → � × R/2πZ

(γ, t−γ , t+γ ) �→ γ (t).

Definition 2.1. Let m ∈ A(�) and �′ be a W 2,∞-open set compactly contained in
� We say that a finite non-negative Radon measure ω ∈ M(	) is a Lagrangian
representation of m in �′ if the following conditions hold:

(1) for every t ∈ (0, T ) it holds that

(et )� [ω�	(t)] = χL 2 × L 1, (2.1)

where χ is defined in (1.8);
(2) the measure ω is concentrated on curves (γ, t−γ , t+γ ) ∈ 	 such that forL 1-a.e.

t ∈ (t−γ , t+γ ) the following characteristic equation holds:

γ̇x (t) = eiγs (t); (2.2)

(3) it holds the integral bound

∫

	

Tot.Var.(0,T )γsdω(γ ) < ∞;

(4) for ω-a.e. (γ, t−γ , t+γ ) ∈ 	 it holds that

t−γ > 0 ⇒ γx (t
−
γ +) ∈ ∂�′, and t+γ < T ⇒ γx (t

+
γ −) ∈ ∂�′.

For every curve γ ∈ 	 we define the measure σγ ∈ M((0, T )×�′ ×R/2πZ)

by

σγ = (id, γ )� D̃tγs + H 1�E+
γ − H 1�E−

γ , (2.3)

where

E+
γ := {(t, x, s) ∈ (0, T ) × � × R/2πZ : γx (t) = x and γs(t−)

≤ s ≤ γs(t+) ≤ γs(t−) + π},
E−

γ := {(t, x, s) ∈ (0, T ) × � × R/2πZ : γx (t) = x and γs(t+)

≤ s ≤ γs(t−) < γs(t+) + π}.

(2.4)

Notice that since R/2πZ is not ordered, given s1 �= s2 ∈ R/2πZ the condition
s1 < s2 is not defined. Nevertheless we use the notation s ∈ (s1, s2) or s1 < s < s2
to indicate the following condition (depending only on the orientation of R/2πZ):
if t1, t2 ∈ R are such t1 < t2 < t1 + 2π , eit1 = eis1 and eit2 = eis2 then there exists
t ∈ (t1, t2) such that eit = eis .
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Lemma 2.2. Let ω be a Lagrangian representation of m ∈ A(�) on �′. Let us
denote by

σω := −
∫

	

σγ dω

and by χ̃ : (0, T )×�×R/2πZ → R the function defined by χ̃ (t, x, s) = χ(x, s)
for every t ∈ (0, T ). Then it holds that

eis · ∇x χ̃ = ∂sσω ∈ D′((0, T ) × �′ × R/2πZ). (2.5)

Proof. We show that (2.5) holds when tested with every function of the form
φ(t, x, s) = ζ(t)ϕ(x, s) with ζ ∈ C∞

c ((0, T )) and ϕ ∈ C∞
c (�′ × R/2πZ). It

follows from (2.1) and (2.2) that

〈eis · ∇x χ̃ , φ〉 = −
∫

eis · ∇xϕ(x, s)ζ(t)χ̃(t, x, s)dtdxds

= −
∫

(0,T )

∫

	(t)
eiγs (t) · ∇xϕ(γ (t))dωζ(t)dt

= −
∫

	

∫ t+γ

t−γ

d

dt
γx (t) · ∇xϕ(γ (t))ζ(t)dtdω.

(2.6)

By the chain-rule for functions with bounded variation we have the following
equality between measures:

d

dt
ϕ ◦ γ = ∇xϕ(γ (t)) · d

dt
γx (t) + ∂sϕ(γ (t))D̃tγs +

∑

t j ∈Jγ

(
ϕ(t j , γ (t j+))

−ϕ(t j , γ (t j−))
)
δt j ,

where Jγ denotes the jump set of γ . Therefore, proceeding in the chain (2.6), we
have

〈eis · ∇x χ̃ , φ〉 = −
∫

	

∫ t+γ

t−γ

d

dt
ϕ(γ (t))ζ(t)dtdω +

∫

	

∫ t+γ

t−γ
∂sϕ(γ (t))ζ(t)d D̃tγs(t)dω

+
∫

	

∑

t j ∈Jγ

(
ϕ(t j , γ (t j+)) − ϕ(t j , γ (t j−))

)
ζ(t j )dω.

By definition of σγ in (2.3) it holds that

∫ t+γ

t−γ
∂sϕ(γ (t))ζ(t)d D̃tγs(t) +

∑

t j ∈Jγ

(
ϕ(t j , γ (t j+)) − ϕ(t j , γ (t j−))

)
ζ(t j )dω

=
∫

∂sϕ(x, s)ζ(t)dσγ ,

therefore in order to establish 〈eis · ∇x χ̃ , φ〉 = 〈∂sσω, φ〉 it suffices to prove that
∫

	

∫ t+γ

t−γ

d

dt
ϕ(γ (t))ζ(t)dtdω = 0.
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By Point (4) in Definition 2.1 for ω-a.e. γ ∈ 	 it holds that ϕ(γ (t−γ +)) =
ϕ(γ (t+γ −)) = 0, and, in particular,

∫

	

∫ t+γ

t−γ

d

dt
ϕ(γ (t))ζ(t)dtdω = −

∫

	

∫ t+γ

t−γ
ϕ(γ (t))ζ ′(t)dtdω

=
∫

(0,T )×�×R/2πZ
χ̃ϕ(x, s)ζ ′(t)dtdxds

= 0,

where we used (2.1) in the second equality and that χ̃ does not depend on t in the
last equality. This concludes the proof.

Definition 2.3. We say that σ ∈ Mloc(�
′ ×R/2πZ) is a minimal kinetic measure

if it satisfies (1.7) and for every σ ′ solving (1.7) it holds that

νσ := (px )�|σ | ≤ (px )�|σ ′| =: νσ ′ .

We moreover say that ω is a a minimal Lagrangian representation of m if it is a
Lagrangian representation of m according to Def. 2.1 and

σω = L 1 ⊗ σt

with σt minimal kinetic measure for L 1-a.e. t ∈ (0, T ).

The existence of a minimal kinetic measure is proven in the following lemma:

Lemma 2.4. For every m ∈ A(�) there exists a minimal kinetic measure σ . More-
over there exists νmin ∈ Mloc(�) such that for every minimal kinetic measure σ it
holds that νmin = (px )�|σ |.
Proof. Since ∂sσ is uniquely determined by (1.7), we have that a kinetic measure
σ is minimal if and only if for νσ -a.e. x ∈ � the disintegration σx satisfies the
following inequality:

1 = ‖σx‖ ≤
∥
∥
∥σx + αL 1

∥
∥
∥ ∀α ∈ R. (2.7)

Therefore all minimal kinetic measures are of the form

νσ0 ⊗
(
(σ0)x + α(x)L1

)
,

where α : � → R is a measurable function such that for νσ0 -a.e. x ∈ � it holds
that

∥
∥
∥(σ0)x + α(x)L1

∥
∥
∥ ≤

∥
∥
∥(σ0)x + cL1

∥
∥
∥ ∀c ∈ R. (2.8)

The existence of such an α is trivial and in particular it holds that

νmin =
(

min
α∈R

∥
∥
∥(σ0)x + αL1

∥
∥
∥

)

ν0.
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In Sect. 3 we will show that for every m ∈ A(�) there exists a unique minimal
kinetic measure σmin, namely that for νmin-a.e. x ∈ � there exists a unique α(x)

such that (2.8) holds.
The main result of this section is

Proposition 2.5. Let � ⊂ R
2 be a bounded open set, m ∈ A(�) and �′ be a W 2,∞

open set compactly contained in � be such that H 1-a.e. x ∈ ∂�′ is a Lebesgue
point of m. Then there exists a minimal Lagrangian representation ω of m on �′.
In particular it holds that

|σω| =
∫

	

|σγ |dω. (2.9)

The existence of a Lagrangian representation for weak solutions with finite
entropy production to general conservation laws on the whole (0, T )×R

d has been
proved in [24]. The case of bounded domains when �′ is a ball was considered in
[25] for the class of solutions to the eikonal equation arising in [29]. The extension
to the case where �′ is a W 2,∞ open set does not cause any significant difficulty.
In particular the argument proposed in [25] applies here with trivial modifications
and leads to the following partial result:

Lemma 2.6. In the setting of Proposition 2.5, let σ ∈ Mloc(� × R/2πZ) be a
locally finite measure satisfying (1.7). Then there exists a Lagrangian representation
ω of m on �′ such that

∫

	

Tot.Var.(t−γ ,t+γ )γsdω ≤ T |σ |(�′ × R/2πZ).

We now prove Proposition 2.5 relying on Lemma 2.6.

Proof of Proposition 2.5. Let m ∈ A(�) and let σ̄ be a minimal kinetic measure.
By Lemma 2.6, there exists a Lagrangian representation ω of m such that

∫

	

Tot.Var.(t−γ ,t+γ )γsdω ≤ T ‖σ̄‖. (2.10)

By definition of σω it holds that

‖σω‖ ≤
(∫

	

|σγ |dω

)
(
(0, T ) × � × R/2πZ

) =
∫

	

Tot.Var.(t−γ ,t+γ )γsdω.

(2.11)

By Lemma 2.2, the measure σω satisfies (2.5); being σ̄ a minimal kinetic measure
for m, it follows that T ‖σ̄‖ ≤ ‖σω‖. In particular the inequalities in (2.10) and
(2.11) are equalities and (2.9) follows.

The following lemma is a simple application of Tonelli theorem and (2.1); since
it is already proven in [26], we refer to it for the details.

Lemma 2.7. For ω-a.e. (γ, t−γ , t+γ ) ∈ 	 it holds that for L 1-a.e. t ∈ (t−γ , t+γ )

(1) γx (t) is a Lebesgue point of m;
(2) eiγs (t) · m(γx (t)) > 0.

We denote by 	g the set of curves γ ∈ 	 such that the two properties above hold.
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3. Structure of the Kinetic Measure

The main goal of this section is to prove Proposition 1.7. As a corollary we will
obtain the concentration property (3”) presented in the introduction for solutions
m ∈ A(�) with a vanishing entropy defect measure. The key step is the following
regularity result (the strategy of the proof is borrowed from [25], where an analo-
gous statement was proved for the solutions to the eikonal equation arising in the
micromagnetics model mentioned in the introduction, and we finally observe that
in that situation this result is sufficient to establish the concentration property (3’),
while it is not the case here):

Lemma 3.1. Let γ̄ ∈ 	g and t̄ ∈ (t−γ̄ , t+γ̄ ), and set x̄ := γ̄x (t̄) and s̄ := γ̄s(t̄+).
Then there exists c > 0 such that for every δ ∈ (0, 1/2) we have at least one of the
following:

(1) the lower density estimate holds true:

lim inf
r→0

L 2
({

x ∈ Br (x̄) : ei s̄ · m(x) > −δ
})

r2
≥ cδ;

(2) the following lower bound holds true:

lim sup
r→0

νmin(Br (x̄))

r
≥ cδ3.

The same statement holds by setting s̄ := γ̄s(t̄−).

Proof. We prove the lemma only for s̄ = γ̄s(t̄+), being the case s̄ = γ̄s(t̄−)

analogous. Let δ1 > 0 be sufficiently small so that for L 1-a.e. t ∈ (t̄, t̄ + δ1) it
holds that

ei γ̄s (t) · ei s̄ ≥ cos

(
δ

5

)

. (3.1)

Since γ̄x satisfies (2.2), then for every r ∈
(
0, δ1

2

)
there exists tr ∈ (t̄, t̄ + δ1) such

that

γ̄x (t) ∈ Br (x̄) ∀t ∈ (t̄, tr ), and γ̄x (tr ) ∈ ∂ Br (x̄).

Moreover since cos(δ/5) ∈ (1/2, 1), then (3.1) implies

r ≤ tr − t̄ ≤ 2r.

For every r ∈
(
0, δ1

2

)
we denote by

E+(r) := {t ∈ (t̄, tr ) : m(γ̄x (t)) · ei(γ̄s (t)+δ) > 0},
E−(r) := {t ∈ (t̄, tr ) : m(γ̄x (t)) · ei(γ̄s (t)−δ) > 0}.

Since γ ∈ 	g , for L 1-a.e. t ∈ (0, tr ) it holds that

m(γ̄x (t)) · ei γ̄s (t) > 0,
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therefore, being δ ∈ (0, 1
2

)
, we have

(t̄, tr ) ⊂ E+(r) ∪ E−(r).

In particular

L 1(E+(r)) + L 1(E−(r)) ≥ tr − t̄ ≥ r.

In the remaining part of the proof we assume that L 1(E−(r)) > r/2, being the
case L 1(E+(r)) > r/2 analogous.

Given ε > 0, we consider the strip

Sr,ε := {x ∈ �δ : ∃t ∈ (t̄, tr ) : |γ̄x (t) − x | < ε
}
. (3.2)

For every (γ, t−γ , t+γ ) ∈ 	 let (t−γ,i , t+γ,i )
Nγ

i=1 be the nontrivial interiors of the con-

nected components of γ −1
s

(
(s̄ − δ) , s̄ − 2

5δ
)

which intersect
γ −1

(
Sr,ε × (s̄ − 4

5δ, s̄ − 3
5δ
))
. Notice that we have the estimate

Nγ ≤ 1 + 5

δ
Tot.Var.γs .

For every i ∈ N we consider

	i := {(γ, t−γ , t+γ ) ∈ 	 : Nγ ≥ i}
and the measurable restriction map

Ri : 	i → 	.

(γ, t−γ , t+γ ) �→ (γ, t−γ,i , t+γ,i )

We finally consider the measure

ω̃ :=
∞∑

i=1

(Ri )� (ω�	i ) .

We observe that ω̃ ∈ M+(	), since, for every N > 0,
∥
∥
∥
∥
∥

N∑

i=1

(Ri )� (ω�	i )

∥
∥
∥
∥
∥

≤
∫

	

Nγ dω ≤
∫

	

(

1 + 5

δ
Tot.Var.γs

)

dω(γ ) < ∞,

by Point (3) in Definition 2.1. The advantage of the measure ω̃ is that it is concen-
trated on curves whose x-components are transversal to γ̄x on the whole domain
of definition. This property allows us to prove the following claim:

Claim 1. There exists an absolute constant c̃ > 0 such that for ω̃-a.e. (γ, t−γ , t+γ ) ∈
	 it holds

L 1
({

t ∈ (t−γ , t+γ ) : γ (t) ∈ Sr,ε ×
(

s̄ − 4

5
δ, s̄ − 3

5
δ

)})

≤ c̃
ε

δ
.
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Proof of Claim 1. It follows from (3.1) and the characteristic equation (2.2) that
there exists a Lipschitz function fγ̄ : R → R such that

{
γ̄x (t) : t ∈ (t̄, t̄ + δ1)

} ⊂
{

zei s̄ + fγ̄ (z)ei(s̄+ π
2 ) : z ∈ R

}
and

Lip( fγ̄ ) ≤ tan

(
δ

5

)

. (3.3)

Similarly for ω̃-a.e. (γ, t−γ , t+γ ) ∈ 	 there exists a Lipschitz function fγ such that

{
γx (t) : t ∈ (t−γ , t+γ )

} ⊂
{

zei s̄ + fγ (z)ei(s̄+ π
2 ) : z ∈ R

}
and

d

dz
fγ (z) ∈

(

− tan δ,− tan

(
2

5
δ

))

for L 1-a.e. z ∈ R. By the definitions of Sr,ε in (3.2) and of fγ̄ in (3.3), it easily
follows that

Sr,ε ⊂
{

x ∈ �δ : fγ̄
(

x · ei s̄
)

− ε

(

cos

(
δ

5

))−1

≤ x · ei(s̄+ π
2 ) ≤ fγ̄

(
x · ei s̄

)

+ ε

(

cos

(
δ

5

))−1
}

. (3.4)

Given (γ, t−γ , t+γ ) ∈ 	 let us consider the function gγ : (t−γ , t+γ ) → R defined by

gγ (t) = γx (t) · ei(s̄+ π
2 ).

By construction of ω̃, for ω̃-a.e. (γ, t−γ , t+γ ) ∈ 	 and L 1-a.e. t ∈ (t−γ , t+γ ) it holds
that

d

dt
gγ (t) ≤ − sin

(
2

5
δ

)

. (3.5)

On the other hand

d

dt
fγ̄ (γx (t) · ei s̄) ≥ − sin

(
δ

5

)

. (3.6)

By (3.4), for every t ∈ (t−γ , t+γ ) such that γx (t) ∈ Sr,ε it holds that

fγ̄ (γx (t) · ei s̄) − ε

(

cos

(
δ

5

))−1

≤ gγ (t) ≤ fγ̄ (γx (t) · ei s̄) + ε

(

cos

(
δ

5

))−1

.

Therefore, by (3.5) and (3.6), we have

L 1 ({t : γx (t) ∈ Sr,ε}
) ≤ 2ε

(
cos
(

δ
5

))−1

∣
∣sin

( 2
5δ
)− sin

(
δ
5

)∣∣
≤ c̃

ε

δ
,

for some universal c̃ > 0. This concludes the proof of the claim.
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By construction we have

(et )�ω̃ ≥ L 3�
{

(x, s) ∈ Sr,ε ×
(

s̄ − 4

5
δ, s̄ − 3

5
δ

)

: m(x) · eis > 0

}

for every t ∈ (0, T ). Therefore

TL 3
({

(x, s) ∈ Sr,ε ×
(

s̄ − 4

5
δ, s̄ − 3

5
δ

)

: m(x) · eis > 0

})

≤
∫

	

L 1
({

t : γ (t) ∈ Sr,ε ×
(

s̄ − 4

5
δ, s̄ − 3

5
δ

)})

dω̃

≤ c̃
ε

δ
ω̃(	).

(3.7)

On the other hand, since γ̄ ∈ 	g and L 1(E−(r)) > r/2 there exists ε̄ > 0 such
that for every ε ∈ (0, ε̄) it holds that

L 3
({

(x, s) ∈ Sr,ε ×
(

s̄ − 4

5
δ, s̄ − 3

5
δ

)

: m(x) · eis > 0

})

≥ 1

2
L 3

(

Sr,ε ×
(

s̄ − 4

5
δ, s̄ − 3

5
δ

))

≥ εrδ

5
.

(3.8)

By (3.7) and (3.8) it follows that

ω̃(	) ≥ εrδ

5
· δT

c̃ε
= rδ2

5c̃
T .

We consider the split 	 = 	> ∪ 	<, where

	> := {(γ, t−γ , t+γ ) ∈ 	 : t+γ − t−γ ≥ r}, and

	< := {(γ, t−γ , t+γ ) ∈ 	 : t+γ − t−γ < r}.
We will prove the following claim, from which the lemma follows immediately:

Claim 2. There exists an absolute constant c1 > 0 such that the two following
implications hold true:

(1) if ω̃(	>) ≥ rδ2T
10c̃ , then

L 2
({

x ∈ B2r (x̄) : ei γ̄s (t̄+) · m(x) > −δ
})

≥ c1δr2;

(2) if ω̃(	<) ≥ rδ2T
10c̃ , then

ν(B2r (x̄)) ≥ c1δ
3r.
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Proof of (1). By definition of 	> and the assumption in (1) we have

T
r2δ2

10c̃
≤
∫

	

L 1
({

t ∈ (t−γ , t+γ ) : γ (t) ∈ B2r (x̄) ×
(

s̄ − δ, s̄ − 2

5
δ

)})

dω̃

≤ TL 3
({

(x, s) ∈ B2r (x̄) ×
(

s̄ − δ, s̄ − 2

5
δ

)

: m(x) · eis > 0

})

≤ T δL 2
({

x ∈ B2r (x̄) : m(x) · ei s̄ > −δ
})

.

Proof of (2). For ω̃-a.e. (γ, t−γ , t+γ ) ∈ 	<, the image of γx is contained in B2r (x̄)

and Tot.Var.(γs) ≥ δ
5 . Since ω is a minimal Lagrangian representation, this implies

that

T νmin(B2r (x̄)) = |σω|((0, T ) × B2r (x̄)) ≥
∫

	<

Tot.Var.γsdω̃ ≥ δ

5
ω̃(	<) ≥ T rδ3

50c̃
.

Proposition 3.2. Let m ∈ A(�) and σ ∈ M(� × R/2πZ) be a minimal kinetic
measure. Then for νmin-a.e. x ∈ � \ J it holds that

supp ∂sσx = {s, s + π} for some s ∈ R/2πZ. (3.9)

Proof. Let ω be a minimal Lagrangian representation and let s, s′ ∈ R/2πZ; from
the explicit expression of σω we have that for L1 × νmin-a.e. (t, x) ∈ (0, T ) × �

such that supp(∂s(σω)t,x )) ∩ (s, s′) �= 0 there exists (γ, t−γ , t+γ ) ∈ 	g such that

t ∈ (t−γ , t+γ ), γx (t) = x, and
[
γs(t−) ∈ (s, s′) or γs(t+) ∈ (s, s′)

]
.

Given s1, s2 ∈ πQ/2πZ with s1 �= s2 and s1 �= s2 + π , we set

δs1,s2 = 1

3
min {|s1 − s2|, |s1 + π − s2|}

so that the intervals I1 := (s1 − δs1,s2 , s1 + δs1,s2) , I2 := (s2 − δs1,s2 , s2 + δs1,s2),
I3 := (s1 + π − δs1,s2 , s1 + π + δs1,s2) and I4 := (s2 + π − δs1,s2 , s2 + π + δs1,s2)

are pairwise disjoint and the distance between any two of these intervals is at least
δs1,s2 . We denote by

E(s1, s2) := {(t, x) ∈ (0, T ) × � : supp(∂s(σω)t,x )) ∩ I j �= ∅ for j = 1, 2, 3, 4
}
.

It was shown in [13] that the constraint forces σ to be π -periodic in s, in
particular for L1 × νmin-a.e. (t, x) ∈ (0, T ) × � the support of ∂sσω is π -periodic.
Therefore if (t, x) ∈ (0, T ) × � is such that (3.9) does not hold, then there exist
four distinct points s̄1, s̄2, s̄1+π, s̄2+π ∈ R/2πZ belonging to supp(∂s(σω)t,x ). In
particular L1 × νmin-a.e. (t, x) ∈ (0, T )×� for which (3.9) does not hold belongs
to

⋃

s1,s2∈πQ/2πZ

E(s1, s2).
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By the discussion at the beginning of the proof, we have that for L1 × νmin-a.e.
(t, x) ∈ E(s1, s2) and every j = 1, 2, 3, 4 there exists (γ j , t−γ j

, t+γ j
) ∈ 	g such that

t ∈ (t−γ j
, t+γ j

), (γ j )x (t) = x, and
[
(γ j )s(t−) ∈ I j or (γ j )s(t+) ∈ I j )

]
.

We show that if (t, x) ∈ E(s1, s2), then x is not a vanishing mean oscillation
point of m. Let us assume by contradiction that x is a VMO point of m and there
exists t ∈ (0, T ) such that (t, x) ∈ E(s1, s2); by applying Lemma 3.1 for every
j = 1, 2, 3, 4 there exists s̄ j ∈ I j such that

lim inf
r→0

L 2({x ′ ∈ Br (x) : ei s̄ j · m(x ′) > −δs1,s2})
r2

≥ cδs1,s2 .

Since it does not exist any value m̄ ∈ R
2 with |m̄| = 1 such that m̄ · ei s̄ j > −δs1,s2

for every j = 1, 2, 3, 4, this proves that x is not a vanishing mean oscillation point
of m. Thm 1.5 implies thatH1-a.e. x ∈ � \ J is a VMO point of m, therefore since
νmin � H1, then the set of points x ∈ � \ J for which there exists t ∈ (0, T ) such
that (t, x) ∈ E(s1, s2) is νmin-negligible.

Letting s1, s2 vary in πQ/2πZ, this proves the claim.

Remark 3.3. Proposition 1.7 states for the measure σ0 the same property we ob-
tained here for a minimal kinetic measure σ . Although σ0 is not always a minimal
kinetic measure, the two statements are equivalent since νmin ≤ ν0 � νmin and
∂sσ0 = ∂sσ (see the discussion in Lemma 2.4).

Corollary 3.4. For every m ∈ A(�) there exists a unique minimal kinetic measure
σmin of m. In particular for every minimal Lagrangian representation ω of m on
�′ ⊂ � it holds that

σω = L 1�(0, T ) ⊗ σmin��′.

Moreover the disintegration of σmin with respect to νmin has the following structure:

(1) for νmin-a.e. x ∈ � \ J it holds that

(σmin)x = 1

2
(δs̄− π

2
+ δs̄+ π

2
), or (σmin)x = −1

2
(δs̄− π

2
+ δs̄+ π

2
)

for some s̄ ∈ R/2πZ.
(2) for νmin-a.e. x ∈ J let m+, m− and n denote the traces and the normal to J at

x as in Theorem 1.5 and let β ∈ (0, π) and s̄ ∈ R/2πZ be uniquely determined
by

m+ = ei(s̄+β), and m− = ei(s̄−β).

Then

(σmin)x = n · ei s̄ ḡβ(s − s̄)L 1,
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where ḡβ : R/2πZ → R is π -periodic and for every s ∈ [0, π ] is defined by

ḡβ(s) :=

⎧
⎪⎪⎨

⎪⎪⎩

c(β)
[
(sin s − cosβ)1[π/2−β,π/2+β](s)

]
if β ∈ (0, π/4]

c(β)
[
(sin s − cosβ)1[π/2−β,π/2+β](s) + cosβ −

√
2
2

]
if β ∈ (π/4, π/2]

ḡπ−β(s) if β ∈ (π/2, π),

(3.10)

and where c(β) > 0 is such that
∫ 2π

0

∣
∣ḡβ(s)

∣
∣ ds = 1.

Proof. In particular let σ be a minimal kinetic measure; since σ is π -periodic in
the variable s, it follows from Proposition 3.2 that for νmin-a.e. x ∈ � \ J it holds
that

σx = 1

2 + 2πc
(δs̄− π

2
+ δs̄+ π

2
+ cL 1), or

σx = − 1

2 + 2πc
(δs̄− π

2
+ δs̄+ π

2
+ cL 1)

for some s̄ ∈ R/2πZ and some c ∈ R depending on x . The necessary and sufficient
condition (2.7) for minimality trivially implies c = 0. By Theorem 1.5 and (1.9) it
holds that

n · (�(m+) − �(m−)
)
H 1�J = (px )� (−∂sψ�σ�J × R/2πZ) .

The following identity was obtained in Sect. 4.2 of [13]: for every β ∈ [0, π/2] it
holds that

e1 · (�(eiβ) − �(e−iβ)) = −
∫ 2π

0
gβ(s)∂sψ�(s)ds, (3.11)

where gβ : R/2πZ → R is a π -periodic defined by

gβ(s) = (sin s − cosβ)1[π/2−β,π/2+β](s) − 2

π
(sin β − β cosβ) ∀s ∈ [0, π ].

Observe that the constraint divm = 0 implies that for H 1-a.e. x ∈ J it holds
m+ ·n = m− ·n. Therefore, with the notation introduced in the statement, we have
n = ±ei s̄ . We prove (3.10) first in the case β ∈ [0, π/2].

Choosing �̃ such that ψ�̃(s) = ψ�(s + s̄), we deduce from (3.11) that

n · (�(m+) − �(m−)
) =

(
n · ei s̄

)
ei s̄ ·

(
�
(

ei(s̄+β)
)

− �
(

ei(s̄−β)
))

=
(
n · ei s̄

)
ei s̄ ·

∫ β

−β

ψ�

(
s + s̄ + π

2

)
ei(s+s̄+ π

2 )ds

=
(
n · ei s̄

)
e1 ·

∫ β

−β

ψ�

(
s + s̄ + π

2

)
ei(s+ π

2 )ds
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=
(
n · ei s̄

)
e1 ·

(
�̃
(

eiβ
)

− �̃
(

e−iβ
))

= −
(
n · ei s̄

) ∫ 2π

0
gβ(s)ψ ′

�̃
(s)ds

= −
(
n · ei s̄

) ∫ 2π

0
gβ(s − s̄)ψ ′

�(s)ds.

This shows that for νmin-a.e. x ∈ J with β ∈ (0, π/2) there exist two constants
c1 > 0 and c2 ∈ R such that σx = c1(gβ(· − s̄) + c2)L 1. It is a straightforward
computation to check that the choice in (3.10) is the unique that satisfies the con-
straint in (2.7). In particular σx is uniquely determined for νmin-a.e. x ∈ J such
that β ∈ (0, π/2).

The case β ∈ (π/2, π), can be reduced to the previous case exchanging m+
with m−, and therefore changing the sign of n and replacing s̄ with s̄ + π . Since
∂sψ� and gβ for β ∈ (0, π/2] are π -periodic, then the same computations as above
leads to

n · (�(m+) − �(m−)
) = −

(
n · ei s̄

) ∫ 2π

0
gπ−β(s − s̄)∂sψ�(s)ds.

Similarly the choice in (3.10) is the unique that satisfies the constraint (2.7). σx

being uniquely determined for νmin-a.e. x ∈ �, the measure σmin is unique.

The following lemma links the jump set of the characteristic curves with the
jump set of m ∈ A(�):

Lemma 3.5. Let m ∈ A(�) and �′ be a W 2,∞ open set compactly contained in
�. Let moreover ω be a minimal Lagrangian representation of m on �′. Then for
ω-a.e. (γ, t−γ , t+γ ) ∈ 	 the following property holds: for every t ∈ (t−γ , t+γ ) such
that γs(t+) �= γs(t−) it holds that γx (t) ∈ J .

Proof. Since ω is a minimal Lagrangian representation, by Proposition 2.5 and
Corollary 3.4 it holds that

∫

	

|σγ |dω = |σω| = L1 × |σmin| = L1 × (νmin ⊗ |(σmin)x |)

as measures in (0, T )×�′×R/2πZ. By Corollary 3.4 it follows that forL1×νmin-
a.e. (t, x) ∈ (0, T ) × (� \ J ), it holds that

supp
(
L1 × |σmin|

)

t,x
⊂ {s̄, s̄ + π} (3.12)

for some s̄ ∈ R/2πZ. Suppose by contradiction that there exists G ⊂ 	 with
ω(G) > 0 and ameasurable function t̃ : G → (0, T ) such that for every (γ, t−γ , t+γ )

in G it holds that

t̃(γ ) ∈ (t−γ , t+γ ), γs
(
t̃(γ )+) �= γs

(
t̃(γ )+) , and γx

(
t̃(γ )

) ∈ �′ \ J.

For every (γ, t−γ , t+γ ) ∈ G we set

σ̃γ = H1�E+
γ

(
t̃(γ )

)− H1�E−
γ

(
t̃(γ )

)
, where
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E±
γ

(
t̃(γ )

) := {(t, x, s) ∈ E±
γ : t = t̃(γ )},

and E±
γ are defined in (2.4). Let σ̃ω := ∫

	
|σ̃γ |dω ∈ M+((0, T ) × �′ ×R/2πZ);

by definition we have σ̃ω ≤ |σω|. Let us denote by ν̃ := (pt,x )�σ̃γ . Then by
definition of σ̃ω we have that ν̃ is concentrated on (0, T ) × �′ \ J and for ν̃-a.e.
(t, x) ∈ (0, T )×�′\J there exist no s̄ ∈ R/2πZ such that supp(σ̃ω)t,x ⊂ {s̄, s̄+π}.
Since ν̃(�′) > 0, this is in contradiction with (3.12).

3.1. Solutions with a Single Vanishing Entropy

The goal of this section is to prove the following result about solutions with
vanishing entropy production:

Proposition 3.6. Let� ⊂ R
2 be an open set and m ∈ A(�)be such thatdiv�ε1,ε2(m) =

0. Then J is contained in the union of countably many horizontal and vertical seg-
ments. Moreover νmin is concentrated on J .

The result follows from Proposition 3.2 and the following general result about
BV functions for which we refer to [3, Proposition 3.92]:

Lemma 3.7. Let f ∈ BV((0, T );R) be continuous from the right. Then for every
E ⊂ R at most countable it holds

∣
∣D̃ f

∣
∣
(

f −1(E)
)

= 0.

Proof of Proposition 3.6. We recall from [13] that

div�ε1,ε2(m) = −2(px )� [sin(2s)σ ] .

For νmin-a.e. x ∈ J it holds n = ±ei s̄ , therefore in order to show that J is contained
in a countable union of horizontal and vertical segments, it is sufficient to observe
that for every β ∈ (0, π) it holds that

∫

R/2πZ
gβ(s − s̄) sin(2s)ds = 0 �⇒ s̄ ∈ π

2
Z. (3.13)

This can be proven directly by using the explicit expression of gβ in (3.10). Al-
ternatively, we refer to [6, Lemma 2.4], where the authors show that for m ∈
A(�) ∩ BV (�) it holds that

|div�ε1,ε2(m)|�J = 1

3
cos(2α)|m+ − m−|3H1�J,

where α ∈ R/2πZ is such that n = ±ei(α+ π
4 ). Theorem 1.5 implies that the same

computation is valid for every m ∈ A(�). Since cos(2α) = 0 ⇒ α ∈ π
4 + π

2Z,
then div�ε1,ε2(m) = 0 implies that n = ei s̄ with s̄ ∈ π

2Z a.e. with respect to the
measure νmin�J .
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Now we prove that νmin is concentrated on J : by Corollary 3.4, for νmin-a.e.
x ∈ � \ J it holds that

∫

R/2πZ
sin(2s)d(δs̄ + δs̄+π ) = 0,

which trivially implies s̄ ∈ π
2Z. By Lemma 3.5, we have

L 1 × νmin�(� \ J ) ≤
∫

	

(γx )�|D̃tγs |
(
γ −1

s

(π

2
Z

))
dω(γ ) = 0,

where in the last equality we used Lemma 3.7.

Remark 3.8. The same argument shows that, in order to prove that νmin is concen-
trated on J , the assumption div�ε1,ε2(m) = 0 can be replaced with div�(m) = 0
for any � ∈ Eπ such that {s : ∂sψ�(s) = 0} is at most countable.

4. Uniqueness of Minimizers on Ellipses

The goal of this section is to prove Theorem 1.8. Since the functional F̃0 is
invariant by rotations, then we will assume without loss of generality that the major
axis of the ellipse is parallel to x-axis in the plane.

The next result is essentially contained in [16] (see also [15]); for completeness,
we give the proof here.

Proposition 4.1. Let ūδ be defined as in Theorem 1.8. Then ūδ is a minimizer of
F̃0(·,�δ) in �0

δ (�). Moreover, for every minimizer uδ of F̃0(·,�δ) in �0
δ (�) the

function m = ∇⊥uδ satisfies

div�ε1,ε2(m) = 0 and div�e1,e2(m) ≥ 0 in D′(�δ).

Proof. In [2], the authors noticed that for every u ∈ A(�δ) it holds that

F̃0(u,�δ) =
∥
∥
∥
∥

(
div�e1,e2(∇⊥u)

div�ε1,ε2(∇⊥u)

)∥∥
∥
∥ (�δ)

≥
((∣
∣
∣div�e1,e2(∇⊥u)

∣
∣
∣ (�δ)

)2 +
(∣
∣
∣div�ε1,ε2(∇⊥u)

∣
∣
∣ (�δ)

)2)
1
2

.

(4.1)

Let us denote by m̄ := ∇⊥ūδ . Since for every u ∈ �δ(�) it holds ∇⊥u = m̄ in Sδ ,
then it follows from (4.1) that

F̃0(u,�δ) ≥
((∣
∣
∣div�ε1,ε2(∇⊥u)

∣
∣
∣ (�δ)

)2 +
(∣
∣
∣div�e1,e2(∇⊥u)

∣
∣
∣ (�δ)

)2)
1
2

≥ div�e1,e2(∇⊥u)(�δ)

=
∫

∂�δ

�e1,e2(∇⊥u) · ndH1

= div�e1,e2(m̄)(�δ)

= F̃0(ū
δ,�δ),

(4.2)
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where in the last equality we used div�ε1,ε2(m̄) = 0 and div�e1,e2(m̄) ≥ 0. This
shows, in particular, that ūδ is a minimizer of F̃0(·,�δ) in �0

δ (�). Moreover for
every minimizer u of F̃0(·,�δ) in �0

δ (�), the inequality in (4.2) is an equality and
this completes the proof.

Theorem 4.2. Let � be an ellipse, and m ∈ Aδ(�) be such that

div�ε1,ε2(m) = 0, and div�e1,e2(m) ≥ 0. (4.3)

Then

m�� = ∇⊥ dist(·, ∂�). (4.4)

Proof. The proof is divided into three steps: in Step 1 we link the assumptions in
(4.3) with the sign of ∂sσmin relying on Corollary 3.4 and Proposition 3.6. Then we
will prove in Step 2 that the entropy defect measures of every m as in the statement
are concentrated on the axis of the ellipse. We finally prove in Step 3 that this last
condition forces m to satisfy (4.4).

Step 1. Let m ∈ Aδ(�) be as in the statement and σmin be its minimal kinetic
measure. Then, for every φ ∈ C1

c (�δ × R/2πZ) such that φ ≥ 0 and

suppφ ⊂ �δ ×
((

0,
π

2

)
∪
(

π,
3

2
π

))

,

it holds that

〈∂sσmin, φ〉 = −
∫

�×R/2πZ
∂sφdσmin ≥ 0.

Proof of Step 1. Since div�ε1,ε2(m) = 0, it follows from Proposition 3.6 that for
νmin-a.e. x ∈ J the normal to J at x is n(x) = eis(x) for some s(x) ∈ π

2Z. Up
to exchange m+ and m−, we can therefore assume without loss of generality that
n(x) = (1, 0) or n(x) = (0, 1) for νmin-a.e. x ∈ J . We denote by Jh ⊂ J the points
for which n = (0, 1) and Jv ⊂ J the points with n(x) = (1, 0). We consider these
two cases separately.

If n(x) = (0, 1), then

(
div�e1,e2(m)

)
�Jh = 1

3

(
(m+

1 )3(x) − (m−
1 )3(x)

)
H 1�Jh,

therefore m+
1 (x) = −m−

1 (x) > 0 for ν-a.e. x ∈ Jh . In particular, using the same
notation as inCorollary 3.4,we have s̄ = 3

2π .Weobserve that by the definition of ḡβ

in (3.10), for everyβ ∈ (0, π) it holds ∂s ḡβ(s) ≥ 0 forL1- a.e. s ∈ (0, π
2

)∪(π, 3
2π
)

and ∂s ḡβ(s) ≤ 0 for L1- a.e. s ∈ (
π
2 , π

) ∪ ( 32π, 2π
)
. In particular for every

β ∈ (0, π) and L1- a.e. s ∈ (0, π
2

) ∪ (π, 3
2π
)
it holds that

(
n · ei s̄

)
∂s ḡβ(s − s̄) = −∂s ḡβ(s − s̄) ≥ 0.
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Similarly, if n = (1, 0), then

(
div�e1,e2(m)

)
�Jv = 1

3

(
(m+

2 )3(x) − (m−
2 )3(x)

)
H 1�Jv,

therefore m+
2 (x) = −m−

2 (x) > 0 for νmin-a.e. x ∈ Jv . In particular s̄ = 0 so that
for every β ∈ (0, π) and L1- a.e. s ∈ (0, π

2

) ∪ (π, 3
2π
)
it holds that

(
n · ei s̄

)
∂s ḡβ(s − s̄) = ∂s ḡβ(s) ≥ 0.

Therefore by Corollary 3.4, it follows that

〈∂sσmin, φ〉 =
∫

�

∫ 2π

0

(
n · ei s̄

)
ḡ′
β(s − s̄)φdsdνmin ≥ 0.

Step 2. We prove that νmin is concentrated on the axis of the ellipse.
Let us denote by

� =
{

x ∈ R
2 : x21 + ax22 < r2

}

with r > 0 and a ≥ 1. Let us assume by contradiction that νmin(Jh ∩ {x ∈ R
2 :

x2 > 0}) > 0. Then there exists b > 0 such that νmin({x ∈ Jh : x2 = b}) > 0.
By the analysis in the proof of Step 1 there exists A ⊂ R such that L 1(A) > 0
and for H 1-a.e. x ∈ A × {b} it holds m−

1 (x) < 0. In particular we can choose
α ∈ (π, 3π/2) such that

| tan α| ≤ b

2(r + δ)
and

η := H 1
({

x ∈ � ∩ Jh : x2 = b and eiα · m−(x) > 0
})

> 0. (4.5)

Let x̄1 > 0 be such that (x̄1, b) ∈ ∂�δ and denote by

E := {x ∈ �δ : x2 ∈ (g(x1), b)}, (4.6)

where g(x1) = tan(α)(x1 − x̄1) + b. The first constraint in (4.5) implies that
E ⊂ {x2 > 0} (see Fig. 1).

We consider the following Lipschitz approximation of the characteristic func-
tion of E :

ψε(x) =
{
0 if x /∈ E

min
{
1, 1

ε
dist(x, ∂ E)

}
if x ∈ E .

We moreover consider ρ ∈ C∞
c (π + α−π

2 , α) such that ρ ≥ 0 and
∫
R

ρ(s)ds = 1
and we test (1.7) with ϕε(s, x) = ψε(x)ρ(s). If ε < δ, then the choice of α in (4.5)
and of ρ implies that
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x̄1 x1

x2

b

E

Fig. 1. The figure illustrates the definition of E in (4.6)

{(x, s) ∈ �δ × supp(ρ) : eis · ∇xψε < 0} ⊂ {(x, s) ∈ (�δ \ �) × supp(ρ) :
x2 > 0 and x1 < 0}.

Since m = m̄ on �δ \ �, then for L 2 × L 1-a.e. (x, s) ∈ (�δ \ �) × supp(ρ) it
holds χ(x, s) = 1eis ·m(x)>0 = 0. In particular, by the second condition in (4.5), we
have

lim inf
ε→0

∫

�×R/2πZ
eis · ∇xψε(x)ρ(s)χ(x, s)dsdx

≥
∫

{x∈�:x2=b}×R/2πZ
(− sin s)ρ(s)1eis ·m−(x)>0(x)dsdH1(x)

≥ η sin

(
α − π

2

)

> 0.

This contradicts Step 1, which implies that
∫

�×R/2πZ
eis · ∇xψε(x)ρ(s)χ(x, s)dsdx = −〈∂sσmin, ρ ⊗ ψε〉 ≤ 0.

A similar argument excludes that νmin({x ∈ Jh : x2 = b}) > 0 if b < 0 and that
νmin({x ∈ Jv : x1 = a}) > 0 if a �= 0; see Fig. 2 which illustrates the sets E that
need to be considered in these cases.

Step 3. We prove that the unique m ∈ Aδ(�) for which νmin is concentrated on
the axis of the ellipse satisfies (4.4). In particular we show that m = m̄ on

�̃δ = {x ∈ �δ : x1 < 0, x2 > 0},
this being the argument for the other analogous quadrants.

Let x̄ ∈ � be a Lebesgue point of m and let s̄(x̄) ∈ (π/2, π) be such that

ei s̄(x̄) = −∇ dist(x̄, ∂�).
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Fig. 2. The regions in blue indicate the sets E to be considered in order to repeat the presented
argument in the three cases not addressed in details

x̄

ys̄(x̄)

ys1

ys2

x1

x2

Fig. 3. The picture represents the points ys1 , ys̄(x̄), ys2 , while the arrows represent the values
of m̄ at these points

For every s ∈ (π/2, π) let ts > 0 be the unique value such that

ys := x̄ + tseis ∈ ∂�δ/2 ∩ �̃δ.

By elementary geometric considerations (see Fig. 3) the following properties
hold:

(1) m̄(ys) · eis > 0 for every s ∈ (π/2, s̄(x̄));
(2) m̄(ys) · eis < 0 for every s ∈ (s̄(x̄), π).

In particular for every ε ∈ (0, 1
2 min{s̄(x̄) − π/2, π − s̄(x̄)}) there exists r ∈ (0, δ

2 )

such that

(1) for every s ∈ (s̄(x̄)−2ε, s̄(x̄)−ε) and every y ∈ Br (ys) it holds m̄(y) ·eis > 0;
(2) for every s ∈ (s̄(x̄)+ε, s̄(x̄)+2ε) and every y ∈ Br (ys) it holds m̄(y) ·eis < 0.

By Step 2 we have that

eis · ∇xχ = 0 in D′(�̃δ)

therefore for L1-a.e. s ∈ R/2πZ the sets
{

x ∈ �̃δ : eis · m(x) > 0
}

and
{

x ∈ �̃δ : eis · m(x) < 0
}
are invariant by translations in the direction eis up to

negligible sets. Since m = m̄ in �̃δ \�, then it follows by the previous analysis that
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for every ε > 0 there exists r > 0 such that for L2-a.e. x ∈ Br (x̄) the following
two inequalities hold:

m(x) · eis > 0 for L1-.a.e. s ∈ (s̄(x̄) − 2ε, s̄(x̄) − ε),

m(x) · eis < 0 for L1-.a.e. s ∈ (s̄(x̄) + ε, s̄(x̄) + 2ε).
(4.7)

The two conditions in (4.7) implies that forL2-a.e. x ∈ Br (x̄) it holdsm(x) = eis(x)

for some s(x) ∈ [s̄(x̄) − π/2− ε, s̄(x̄) − π/2+ ε]. Since x̄ is a Lebesgue point of
m, letting ε → 0, we obtain

m(x̄) = s̄(x̄) − π

2
= m̄(x̄).

This concludes the proof.
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