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Abstract:We study the fine properties of a class of weak solutions u of the eikonal equation arising as asymp-
totic domain of a family of energy functionals introduced in [T. Rivière and S. Serfaty, Limiting domain wall
energy for a problem related to micromagnetics, Comm. Pure Appl. Math. 54 (2001), no. 3, 294–338]. In par-
ticular, we prove that the entropy defect measure associated to u is concentrated on a 1-rectifiable set, which
detects the jump-type discontinuities of u.
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1 Introduction
We consider a bounded simply connected domain Ω ⊂ ℝ2 and we investigate the fine properties of the fol-
lowing class of divergence free unit vector fields:

Definition 1.1. We denote by Mdiv(Ω) the set of vector fields u : Ω → ℂ for which the following conditions
hold:
(i) div u = 0 in the sense of distributions.
(ii) There exists ϕ ∈ L∞(Ω) such that u = eiϕ and

⟨Uϕ , ψ(x, a)⟩ := ∫
Ω×ℝ

ei(ϕ(x)∧a) ⋅ ∇xψ(x, a) dx da ∈M(Ω × ℝ),

whereM(Ω × ℝ) denotes the set of finite Radon measures on Ω × ℝ.

The spaceMdiv(Ω) is the conjectured asymptotic domain as ε → 0 of the following family of energy function-
als introduced in [20] in the context of micromagnetics:

Eε(u) := ε∫
Ω

|∇u|2 + 1
ε ∫
ℝ2

|Hu|2,

where u ∈ W1,2(Ω, 𝕊1) and the so-called demagnetizing field Hu ∈ L2(ℝ2;ℝ2) is such that curlHu = 0 and
div(ũ + Hu) = 0 inD󸀠(ℝ2), where

ũ(x) =
{
{
{

u(x) if x ∈ Ω,
0 otherwise.
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The following compactness result was proven in [21]: let ϕεn be a bounded sequence in L∞(Ω) such that
Eεn (uεn ) is uniformly bounded, where uεn = eiϕεn and εn → 0; then ϕεn is relatively compact in Lp(Ω) for
every p ∈ [1,∞) and for every limit point ϕ̄ it holds

eiϕ̄ ∈Mdiv(Ω) and |Uϕ̄|(Ω × ℝ) ≤ lim inf
n→∞

Eεn (uεn ). (1.1)

Although the Γ-lim inf inequality (1.1) was proved in full generality, the corresponding Γ-lim sup inequality
was obtained only in special cases. In particular, the energy-minimizing configurations were characterized
by the results in [5, 21]. It is expected that the energy Eε is concentrated on lines at a scale ε > 0 around the
lines, allowing for sharper and sharper jumps as ε → 0; the latter correspond in three dimensions to jumps
across surfaces, called domain walls in the theory of micromagnetism (see [20]). These lines are detected by
themeasure Uϕ: in particular, if we denote by px : Ω × ℝ → Ω the standard projection on the first component
and if ϕ ∈ BV(Ω), then the measure

ν := (px)♯|Uϕ|

is concentrated on the 1-rectifiable jump set of ϕ.
However, vector fields in Mdiv(Ω) do not have necessarily bounded variation and a study of their fine

properties must therefore be independent of the theory of BV functions. This program was announced in [5]
and carried on in [4] leading to the following result.

Theorem 1.2. Let ϕ be a lifting of u ∈Mdiv(Ω) as in Definition 1.1. Then the following assertions hold:
(1) The jump set J of ϕ is countably H 1-rectifiable and coincides, up to H 1-negligible sets, with

Σ := {x ∈ Ω : lim sup
r→0

ν(Br(x))
r
> 0}. (1.2)

Moreover, for every a ∈ ℝ it holds

div(eiϕ∧a)⌞ J = 1ϕ−<a<ϕ+ (eia − eiϕ−
) ⋅ nJH 1⌞ J,

where nJ denotes the normal to J.
(2) Every x ∈ Ω \ Σ is a vanishing mean oscillation point of ϕ, namely

lim
r→0

1
r2
∫

Br(x)

|ϕ − ϕr(x)| = 0,

where ϕr(x) is the average of ϕ on Br(x).
(3) The measure ν⌞(Ω \ J) is orthogonal to H 1, namely

B ⊂ (Ω \ J) Borel with H 1(B) < ∞ implies ν(B) = 0.

We observe that for functions ϕ ∈ BVloc(Ω) the above properties (2) and (3) can be improved to the following:
(2’) H 1-a.e. point in Ω \ J is a Lebesgue point of ϕ.
(3’) The measure ν⌞(Ω \ J) is identically 0.
In [4], it was conjectured that both (2’) and (3’) hold for every u ∈Mdiv(Ω). The following weaker version
of (2’) was recently obtained in [14] in the close setting of weak solutions u with finite entropy production of
the Burgers equation:
(2*)The set of non-Lebesgue points of u has Hausdorff dimension at most 1.
This result was extended for general conservation laws in [18], implying in particular that property (2*) holds
in the setting of this paper, namely for functions ϕ ∈ L∞ corresponding to vector fields u ∈Mdiv(Ω).

The main result of this paper is the proof of property (3’) for general vector fields u ∈Mdiv(Ω).

Theorem 1.3. Let ϕ be a lifting of u ∈Mdiv(Ω) as in Definition 1.1. Then the measure ν is concentrated on the
countably H 1-rectifiable set Σ defined in (1.2). In particular, for every a ∈ ℝ it holds

div(eiϕ∧a) = 1ϕ−<a<ϕ+ (eia − eiϕ−
) ⋅ nJH 1⌞ J.

Theorem 1.3 establishes that the concentration property expected for the Γ-limit functional of Eε as ε → 0
holds for the candidate Γ-limit; this property is also considered as a fundamental step to complete the
Γ-lim sup analysis (see [16]).
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1.1 Main tool and strategy of the proof

The strategy of the proof of Theorem 1.3 was introduced in [19] to prove the analogous result for weak solu-
tions with finite entropy production of the Burgers equation (or, more generally, 1D scalar conservation laws
with uniformly convex flux). Indeed, there is a strong analogy between weak solutions to conservation laws
with finite entropy production and the solutions to the eikonal equation arising in this model or the related
model introduced by Aviles and Giga in [6]. In particular, Theorem 1.2 has an analogous version for scalar
conservation laws (see [11, 15]) and for the model by Aviles and Giga [10]. In order to compare the setting of
this paper and the one of conservation laws, we observe that for u = eiϕ ∈Mdiv(Ω) it holds

∂x1 cosϕ + ∂x2 sinϕ = 0.

Let us assume that ϕ takes values in (0, π) so that the cosine is invertible in the range of ϕ and v = cosϕ
satisfies the equation

∂x1v + ∂x2 (sin(cos−1(v))) = 0.

Since the map sin ∘ cos−1 is convex on (−1, 1), it is possible to transfer the results obtained for conserva-
tion laws with convex fluxes to solutions of the eikonal equation taking values in (0, π). When instead the
oscillation of ϕ is larger than π, the approach above fails and more refined arguments are needed.

The main tool used to prove Theorem 1.3 is the so called Lagrangian representation, which was intro-
duced in [7] for entropy solutions to general conservation laws and then extended in [18] to weak solutions
with finite entropy production. This Lagrangian representation (see Definition 3.1) is an extension of the
classical method of characteristics to this non-smooth setting and it is strongly inspired by Ambrosio’s super-
position principle in the context of positive measure valued solutions to the linear continuity equation (see,
for example, [1]). Roughly speaking, the evolution of the solution is obtained as superposition of single tra-
jectories traveling with characteristic speed. This tool is well suited for our purposes since also the kinetic
measure Uϕ can be decomposed along the characteristic trajectories detected by the Lagrangian representa-
tion. In Section 3, we prove the existence of a Lagrangian representation for vector fields inMdiv(Ω) building
on the following kinetic formulation obtained in [21] (see also [13] in the study of the model by Aviles and
Giga, and the fundamental paper [17] in the setting of entropy solutions to scalar conservation laws): by
setting χ(x, a) := 1ϕ(x)≥a, it holds

ieia ⋅ ∇xχ = −∂aUϕ inD󸀠(Ω × ℝ). (1.3)

The proof of the existence of a Lagrangian representation follows the strategy of [18], but additional work is
required since we consider here solutions on bounded domains instead of the wholeℝ2.

Once a Lagrangian representation is available for vector fields in Mdiv(Ω), we implement the strategy
introduced in [19] to prove Theorem 1.3. Since the oscillation of ϕ is bigger than π, the argument does not
apply straightforwardly. Still a partial result is obtained in Section 4.2 by covering the image of ϕwith finitely
many intervals (Il)Ll=1 of length less than π and appropriately localizing the argument of [19]. A new reg-
ularity estimate is proven in Section 4.3 and this allows to conclude the proof of Theorem 1.3, relying on
Theorem 1.2.

2 Preliminaries

2.1 Duality for L1-optimal transport

In this section, we recall a few facts about L1-optimal transport. We state the results in the form that we will
need in Section 3. Given a metric space X, we denote byM+(X) the set of finite non-negative Borel measures
on X.
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Definition 2.1. Let (X, d) be a complete and separable metric space and let μ1, μ2 ∈M+(X) be such that
μ1(X) = μ2(X). The Wasserstein distance of order 1 between μ1 and μ2 is defined by

W1(μ1, μ2) := inf
π∈Π(μ1 ,μ2)

∫
X

d(x, y) dπ(x, y), (2.1)

where Π(μ1, μ2) is the set of transport plans from μ1 to μ2, i.e.

Π(μ1, μ2) := {ω ∈M+(X2) : π1♯ω = μ1, π2♯ω = μ2},

denoting by π1, π2 : X2 → X the two natural projections.

Notice thatW1 can take the value +∞.
In order to prove the existence of a Lagrangian representation for vector fields in Mdiv(Ω), we will take

advantage of the dual formulation of the L1-optimal transport. The following duality formula can be found,
for example, in [22].

Proposition 2.2. For any μ1, μ2 ∈M+(X) with μ1(X) = μ2(X), it holds

W1(μ1, μ2) = sup
ψ∈L1(μ1),‖ψ‖Lip≤1

(∫
X

ψdμ1 − ∫
X

ψdμ2).

Since it will be convenient to allow that the two measures μ1, μ2 have different masses, we deduce from
Proposition 2.2 the following result.

Corollary 2.3. Let (X, d) be bounded and let μ1, μ2 ∈M+(X). Assume that there exist C1, C2 > 0 such that for
every ψ ∈ Lip(X) it holds

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
X

ψdμ1 − ∫
X

ψdμ2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C1|ψ|Lip + C2‖ψ‖L∞ . (2.2)

Then there exist μ̃1 ≤ μ1, μ̃2 ≤ μ2 such that ‖μ1 − μ̃1‖ ≤ C2, ‖μ2 − μ̃2‖ ≤ C2 and

W1(μ̃1, μ̃2) ≤ C1 + C2 diam(X). (2.3)

Proof. Weassumewithout loss of generality that α := ‖μ1‖ − ‖μ2‖ ≥ 0. Let μ̄2 = μ2 + αδx̄ for some x̄ ∈ X. Then
we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
X

ψdμ1 − ∫
X

ψdμ̄2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
X

(ψ − ψ(x̄))dμ1 − ∫
X

(ψ − ψ(x̄))dμ̄2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
X

(ψ − ψ(x̄))dμ1 − ∫
X

(ψ − ψ(x̄))dμ̄2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ C1|ψ|Lip + C2|ψ|Lip diam(X).

By Proposition 2.2, it follows that W1(μ1, μ̄2) ≤ C1 + C2 diam(X). Let π ∈M(X2) be an optimal plan with
marginals μ1 and μ̄2 and let π̃ ≤ π be such that (p2)♯π̃ = μ2. Then we check that the statement is true for
μ̃1 = (p1)♯π̃ and μ̃2 = μ2: indeed, π̃ is an admissible plan between μ̃1 and μ̃2 by construction. Since π̃ ≤ π
andW1(μ1, μ̄2) ≤ C1 + C2 diam(X), inequality (2.3) holds true. Moreover,

‖μ2 − μ̃2‖ = 0 and ‖μ1 − μ̃1‖ = μ1(X) − μ̃1(X) = α

since μ̃1 ≤ μ1. Finally, we observe that, by choosing ψ ≡ 1 in (2.2), we obtain α ≤ C2. This shows that
‖μ1 − μ̃1‖ ≤ C2 and completes the proof.

The next theorem from [8] provides the existence of an L1-optimalmapwith respect to quite general distances
onℝN .
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Theorem 2.4. Let X = ℝN with N ∈ ℕ be the Euclidean space equipped with the distance induced by a con-
vex norm | ⋅ |D∗. Let μ1, μ2 ∈ P(ℝN) be two probability measures such that μ1 ≪ L N and the infimum in (2.1)
is finite. Then there exists an optimal plan π in (2.1) induced by a map, i.e. there exists a measurable map
T : ℝN → ℝN such that T♯μ1 = μ2 and

W1(μ1, μ2) = ∫
X

|T(x) − x|D∗dμ1(x).

2.2 Weak convergence of measures

We will say that a sequence of measures (μn)n∈ℕ ⊂M+(X) is narrowly convergent to μ ∈M+(X) if

lim
n→∞
∫
X

fdμn = ∫
X

fdμ for all f ∈ Cb(X),

where Cb(X) denotes the set of continuous real-valued bounded functions on X. Moreover, we say that
a bounded family F ⊂M+(X) is tight if for every ε > 0 there exists a compact set K ⊂ X such that for every
μ ∈ F it holds

μ(X \ K) < ε.

The following classical theorem characterizes the relatively compact families inM+(X) (see [9]).

Theorem 2.5 (Prokhorov). Let X be a metric space. If a bounded familyF ⊂M+(X) is tight, then it is relatively
compactwith respect to the narrowconvergence. Ifmoreover X is complete and separable, thenalso the converse
implication holds.

3 Lagrangian representation for vector fields inMdiv

In this section, we introduce the notions of Lagrangian representations of the hypograph and of the epi-
graph for the liftings ϕ of vector fields in Mdiv(Ω). Moreover, we provide a suitable decomposition along
characteristics of the kinetic measure Uϕ introduced in (1.3).

3.1 Notation and main definition

We will consider the standard decomposition of the measure Df ∈M(ℝ), where f ∈ BV(ℝ,ℝ) (see, for
example, [2]). We will adopt the following notation:

Df = Dacf + Dc f + Dj f = D̃f + Dj f,

where Dacf , Dc f and Dj f denote the absolutely continuous part, the Cantor part and the atomic part of Df ,
respectively; we refer to D̃f as the diffuse part of Df .

For every function ϕ : Ω → [0,M], we denote its hypograph and its epigraph by

Hϕ := {(x, a) ∈ Ω × [0,M] : a ≤ ϕ(x)} and Eϕ := {(x, a) ∈ Ω × [0,M] : a ≥ ϕ(x)},

respectively.
We denote by BR an open ball of radius R such that BR ⊂ Ω and we set

Γ := {(γ, t−γ , t+γ ) : 0 ≤ t−γ ≤ t+γ ≤ 1, γ ∈ BV((t−γ , t+γ ); BR × [0,M]), γx is Lipschitz}.

In order to fix a representative, we will always assume that γ is continuous from the right. For every t ∈ (0, 1),
we consider the section

Γ(t) := {(γ, t−γ , t+γ ) ∈ Γ : t ∈ (t−γ , t+γ )}.
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and we set
et : Γ(t) → BR × [0,M],
(γ, t−γ , t+γ ) 󳨃→ γ(t).

Sometimes we will identify the triple (γ, t−γ , t+γ ) ∈ Γ with the curve γ itself to make the notation less heavy.

Definition 3.1. Suppose u ∈Mdiv(Ω) and ϕ ∈ L∞(Ω) as in Definition 1.1. We say that the Radon measure
ωh ∈M(Γ) is a Lagrangian representation of the hypograph of ϕ on BR if the following conditions hold:
(1) For every t ∈ (0, 1), it holds

(et)♯[ωh⌞Γ(t)] = L 3⌞Hϕ .

(2) The measure ωh is concentrated on the set of curves γ ∈ Γ such that forL 1-a.e. t ∈ (t−γ , t+γ ) the following
characteristic equation holds:

γ̇x(t) = ieiγa(t). (3.1)

(3) It holds the integral bound

∫
Γ

TotVar[0,1) γa dωh(γ) < ∞.

Similarly, we say that ωe ∈M(Γ) is a Lagrangian representation of the epigraph of u on BR if conditions (2)
and (3) hold and (1) is replaced by

(et)♯[ωe⌞Γ(t)] = L 3⌞Eϕ for every t ∈ (0, 1).

In the following, we will adopt the slight abuse of notation

(et)♯ωh := (et)♯(ωh⌞Γ(t)).

A fundamental property of the Lagrangian representations ωh , ωe above is that it is possible to decom-
pose the Radon measure Uϕ along the characteristic curves.

Given γ ∈ Γ, we consider

μγ = (I, γ)♯D̃tγa +H 1⌞E+γ −H 1⌞E−γ ∈M((0, 1) × BR × [0,M]),

where

E+γ := {(t, x, a) : γx(t) = x, γa(t−) < γa(t+), a ∈ (γa(t−), γa(t+))},
E−γ := {(t, x, a) : γx(t) = x, γa(t+) < γa(t−), a ∈ (γa(t+), γa(t−))},

I : [0, 1) → [0, 1) denotes the identity and D̃tγa denotes the diffuse part of the measure Dtγa.
The main result of this section is the following theorem.

Theorem 3.2. Let u ∈Mdiv(Ω) and ϕ ∈ L∞(Ω) as in Definition 1.1. Let BR be an open ball of radius R such that
BR ⊂ Ω and H 1-a.e. x ∈ ∂BR is a Lebesgue point of ϕ. Then there exist Lagrangian representations ωh , ωe of
the hypograph and of the epigraph of u, respectively, on BR enjoying the additional properties:

∫
Γ

μγ dωh(γ) = L 1 × Uϕ = −∫
Γ

μγ dωe(γ), (3.2)

∫
Γ

|μγ| dωh(γ) = L 1 × |Uϕ| = ∫
Γ

|μγ| dωe(γ). (3.3)

Equations (3.2) and (3.3) are equalities in the spaceM((0, 1) × BR × [0,M]); equation (3.2) asserts that the
measure L 1 × Uϕ can be decomposed along characteristics and equation (3.3) says that it can be done
minimizing

∫
Γ

TotVar(0,1) γa dωh(γ) and ∫
Γ

TotVar(0,1) γa dωe(γ).
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Moreover, it follows from (3.2) and (3.3) that we can separately represent the negative and the positive parts
of L 1 × Uϕ in terms of the negative and positive parts of the measures μγ:

∫
Γ

μ−γ dωh(γ) = L 1 × U−ϕ = ∫
Γ

μ+γ dωe(γ) and ∫
Γ

μ+γ dωh(γ) = L 1 × U+ϕ = ∫
Γ

μ−γ dωe(γ). (3.4)

The proof of Theorem 3.2 follows the strategy used in [18] to deal with general conservation laws;
some additional work is required to obtain representations of solutions defined on BR and not on the whole
Euclidean space.

3.2 An L1-transport estimate

In this section, we prove an L1-transport estimate that will be used as building block in the construction of
approximate characteristics. First, we need the following lemma.

Lemma 3.3. Let x̄ ∈ Ω and let BR be an open ball of radius R centered at x̄ such that BR ⊂ Ω and H 1-a.e.
x ∈ ∂BR is a Lebesgue point of ϕ. Let ̄t > 0 be such that ̄t < dist(BR , ∂Ω) and let χ, Uϕ be as in (1.3). We define
χ1, χ2 : [0, ̄t] × Ω × [0,M] → {0, 1} by

χ1(t, x, a) = χ(x, a)1BR (x) and χ2(t, x, a) = χ(x − ieia t, a)1BR (x).

Then there exist two Radon measure μ1̄t , μ
2
̄t ∈M([0, ̄t] × Ω × [0,M]) absolutely continuous with respect to

H 3⌞([0, ̄t] × ∂BR × [0,M]) such that

{{{{{
{{{{{
{

∂tχ1 + ieia ⋅ ∇xχ1 = −∂a(1[0,T]×BR×[0,M]Uϕ) + μ1̄t ,

∂tχ2 + ieia ⋅ ∇xχ2 = μ2̄t ,

ε ̄t :=
‖μ1̄t − μ

2
̄t ‖
̄t
→ 0 as ̄t → 0.

(3.5)

Proof. Let δ ∈ (0, R) and let ψδ ∈ C1([0, +∞);ℝ) be such that

ψδ ≡ 1 in (0, Rδ), ψδ ≡ 0 in (R, +∞), ‖ψ󸀠δ‖C0 ≤
2
δ
.

Let us consider χ1δ(t, x, a) := χ(x, a)ψδ(|x − x̄|). SinceH 1-a.e. x ∈ ∂BR is a Lebesgue point of ϕ, we have that
H 2-a.e. (x, a) ∈ ∂BR × [0,M] is a Lebesgue point of χ. Therefore, testing (1.3) with ψδ(| ⋅ − x̄|) and letting
δ → 0+, we get

ieia ⋅ ∇x(χ(x, a)1BR (x)) = −∂a(1BR×[0,M]Uϕ) + gH 2⌞(∂BR × [0,M]),

where g(x, a) := ieia ⋅ n(x)χ(x, a) and n denotes the inner normal to BR. Since χ1(t, x, a) = χ(x, a)1BR (x) for
every t ∈ [0, T], system (3.5) holds for

μ1̄t = ḡH
3⌞([0, ̄t] × ∂BR × [0,M]) with ḡ(t, x, a) = ieia ⋅ n(x)χ(x, a).

From the definition of χ2, the second equation in (3.5) holds with

μ2̄t = ie
ia ⋅ n(x)χ(x − ieia t, a)H 3⌞([0, ̄t] × ∂BR × [0,M]).

Since H 2-a.e. (x, a) ∈ ∂BR × [0,M] is a Lebesgue point of χ, for L1-a.e. a ∈ [0,M] we have that H 1-a.e.
x ∈ ∂BR is a Lebesgue point of χ( ⋅ , a). In particular, for L1-a.e. a ∈ [0,M] it holds

lim
̄t→0

1
̄t

̄t

∫
0

∫
∂BR

|χ(x, a) − χ(x − ieia t, a)| dH 1(x) dt = 0. (3.6)

Since for every t ∈ [0, ̄t] and every a ∈ [0,M] it holds

∫
∂BR

|χ(x, a) − χ(x − ieia t, a)| dH 1(x) ≤ |∂BR|,
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by integrating (3.6) with respect to a, it follows by the dominated convergence theorem that

‖μ1̄t − μ
2
̄t ‖ =

̄t

∫
0

M

∫
0

∫
∂BR

|χ(x, a) − χ(x − ieia t, a)| dH 1(x) da dt = o( ̄t) as ̄t → 0

since H 1-a.e. x ∈ ∂BR is a Lebesgue point of ϕ, and therefore H 2-a.e. (x, a) ∈ ∂BR × [0,M] is a Lebesgue
point of χ.

Proposition 3.4. In the setting of Lemma 3.3, let ψ ∈ C1c (Ω × ℝ). Then

∫
Ω×ℝ

ψ(x, a)(χ1( ̄t) − χ2( ̄t)) dx da ≤ ( ̄t‖∂aψ‖L∞ +
̄t2

2 ‖∇xψ‖L
∞)ν(BR) + ‖ψ‖L∞ε ̄t ̄t.

Proof. We set χ̃ := χ1 − χ2 and ψ̃(t, x, a) := ψ(x + ieia( ̄t − t), a). It is straightforward to check that

∂t(χ̃ψ̃) + ieia ⋅ ∇x(χ̃ψ̃) = −ψ̃∂a(L 1 × Uϕ) + ψ̃(μ1̄t − μ
2
̄t ) inD󸀠((0, ̄t) × Ω × ℝ). (3.7)

Let g : [0, ̄t] → ℝ be defined by
g(t) = ∫

Ω×ℝ

χ̃(t)ψ̃(t) dx da.

It follows from (3.7) that
g󸀠(t) = − ∫

Ω×ℝ

∂aψ̃(t) dUϕ + ∫
Ω×ℝ

ψ̃(t) d(μ1̄t − μ
2
̄t )t

holds in the sense of distributions, where (μ1̄t − μ
2
̄t )t denotes the disintegration of the measure μ1̄t − μ

2
̄t in

t ∈ (0, ̄t) with respect to L 1⌞(0, ̄t). Therefore, g ∈ C1([0, ̄t]). Since g(0) = 0, it holds

∫
Ω×ℝ

ψ(χ1( ̄t) − χ2( ̄t)) dx da = g( ̄t) − g(0)

=

̄t

∫
0

g󸀠(t) dt

= −

̄t

∫
0

∫
Ω×ℝ

∂aψ̃(t) dUϕ dt + ∫
(0, ̄t)×Ω×ℝ

ψ̃ d(μ1̄t − μ
2
̄t )

= −

̄t

∫
0

∫
Ω×ℝ

(∂vϕ − ( ̄t − t)eia ⋅ ∇xψ) dUϕ dt + ∫
(0, ̄t)×Ω×ℝ

ψ̃ d(μ1̄t − μ
2
̄t )

≤ ( ̄t‖∂aψ‖L∞ +
̄t2

2 ‖∇xψ‖L
∞)ν(BR) + ‖ψ‖L∞‖μ1̄t − μ

2
̄t ‖,

and this concludes the proof.

We set L ̄t = (ε ̄t ∨ ̄t)−
1
2 and we consider the anisotropic distance

d ̄t : (BR × [0,M])2 → [0, +∞),
((x1, a1), (x2, a2)) 󳨃→ L ̄t|x1 − x2| + |a1 − a2|.

A test function ψ : BR × [0,M] → ℝ is 1-Lipschitz with respect to d ̄t if and only if

‖∂aψ‖L∞ ≤ 1 and ‖∇xψ‖L∞ ≤ L ̄t .

Applying Corollary 2.3 to μ1 = χ1( ̄t)L 3 and μ2 = χ2( ̄t)L 3 on the space (BR × [0,M], d ̄t), we obtain the fol-
lowing result as a consequence of Proposition 3.4 and Theorem 2.4.
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Corollary 3.5. There exist ρ1̄t ≤ χ
1( ̄t) and ρ2̄t ≤ χ

2( ̄t) such that

∫
BR×[0,M]

(χ1( ̄t) − ρ1̄t ) dx da ≤ ε ̄t ̄t, ∫
BR×[0,M]

(χ2( ̄t) − ρ2̄t ) dx da ≤ ε ̄t ̄t

and
W1(ρ1̄t L

3, ρ2̄t L
3) ≤ ( ̄t + ̄t

3
2 )ν(BR) + ε

1
2
̄t
̄t(2R + ε

1
2
̄t M).

In particular, there exists
T = (Tx , Ta) : BR × [0,M] → BR × [0,M]

such that T♯(ρ2̄t L
3) = ρ1̄t L

3 and

∫
BR×[0,M]

(L ̄t|Tx(x, a) − x| + |Ta(x, a) − a|)ρ2̄t (x, a) dx da ≤ ( ̄t + ̄t
3
2 )ν(BR) + ε

1
2
̄t
̄t(2R + ε

1
2
̄t M). (3.8)

Remark 3.6. Now, we observe that in order to build a Lagrangian representation as in Theorem 3.2, the use
of Theorem 2.4 can be replaced by a more elementary argument: indeed, the infimum in (2.1) can be equiva-
lently taken only on the plans induced by transportmaps (see, for example, [3]). In particular, the second part
of the statement in Corollary 3.5 can be replaced by the following slightly weaker version: for every ε󸀠 > 0,
there exists a map

T = (Tx , Ta) : BR × [0,M] → BR × [0,M]

such that T♯(ρ2̄t L
3) = ρ1̄t L

3 and

∫
BR×[0,M]

(L ̄t|Tx(x, a) − x| + |Ta(x, a) − a|)ρ2̄t (x, a) dx da ≤ ( ̄t + ̄t
3
2 )ν(BR) + ε

1
2
̄t
̄t(2R + ε

1
2
̄t M) + ε

󸀠.

The only property that we will use of (3.8) is that the right-hand side is of the form ̄tν(BR) + o( ̄t) as ̄t → 0. In
particular, choosing ε󸀠 = o( ̄t), we can avoid the use of Theorem 2.4.

3.3 Construction of approximate characteristics

3.3.1 Building block

For a fixed ̄t > 0, we consider the following sets:

E1 := {(x, a) ∈ BR × [0,M] : x + ieia ̄t ∈ BR},
E2 := {(x, a) ∈ BR × [0,M] : x + ieia ̄t ∉ BR},
E3 := {(x, a) ∈ (Ω \ BR) × [0,M] : x + ieia ̄t ∈ BR}.

For every (x, a) ∈ E1, we define γ ̄t,x,a : [0, ̄t] → BR × [0,M] by

γ ̄t,x,a(t) =
{
{
{

(x + ieia t, a) if t ∈ [0, ̄t),
T(x + ieia ̄t, a) if t = ̄t,

where the transport map T is defined in Corollary 3.5. For every (x, a) ∈ E2, we set

t+(x, a) := sup{t ∈ [0, ̄t] : x + ieia t ∈ BR}

and we define γ ̄t,x,a : [0, t+(x, a)) → BR × [0,M] by

γ ̄t,x,a(t) = (x + ieia t, a).

For every (x, a) ∈ E3, we set
t−(x, a) := inf{t ∈ [0, ̄t] : x + ieia t ∈ BR}

and we define γ ̄t,x,a : (t−(x, a), ̄t] → BR × [0,M] by

γ ̄t,x,a(t) =
{
{
{

(x + ieia t, a) if t ∈ (t−(x, a), ̄t)
T(x + ieia ̄t, a) if t = ̄t.
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3.3.2 Approximate characteristics

Fix n ∈ N and set ̄tn = 2−n. For every (x, a) ∈ E2, we consider the curve

γ0,nx,a : (t−γ0,nx,a , t
+
γ0,nx,a
) → BR × [0,M]

with
t−
γ0,nx,a
= 0, t+

γ0,nx,a
= t+(x, a), γ0,nx,a(t) = γ2−n ,x,a(t) for all t ∈ (t−

γ0,nx,a
, t+
γ0,nx,a
).

For every (x, a) ∈ E1, we define

γ0,nx,a : (t−γ0,nx,a , t
+
γ0,nx,a
) → BR × [0,M]

with
t−
γ0,nx,a
= 0, t+

γ0,nx,a
≥ 2−n

to be determined in the construction and

γ0,nx,a(t) = γ2−n ,x,a(t) for all t ∈ (t−
γ0,nx,a

, 2−n].

For every k = 1, . . . , 2n and for every (x, a) ∈ E3, we introduce a curve

γk,nx,a : (t−γk,nx,a
, t+
γk,nx,a
) → BR × [0,M]

with
t−
γk,nx,a
= (k − 1)2−n + t−(x, a), t+

γk,nx,a
≥ k2−n

to be determined and

γk,nx,a(t) = γ2−n ,x,a(t − (k − 1)2−n) for all t ∈ (t−
γk,nx,a

, k2−n].

It remains to define the evolution of the curves γ0,nx,a for (x, a) ∈ E1 and t ≥ 2−n and of the curves γk,nx,a for
(x, a) ∈ E3 and t ≥ k2−n. Let us fix k = 1, . . . , 2n and (x, a) ∈ E3. We define the evolution of γk,nx,a by recursion:
assume that γk,nx,a is defined on

(t−
γk,nx,a

, l2−n] for some l ≥ k.

If l = 2n, then we set
t+
γk,nx,a
= 1.

Otherwise, if l < 2n, then we distinguish two cases.
If γk,nx,a(l2−n) ∈ E2, then we set

t+
γk,nx,a
= l2−n + t+(γk,nx,a(l2−n))

and
γk,nx,a(t) = γ2−n ,γk,nx,a(l2−n) (t − l2

−n) for all t ∈ (l2−n , t+
γk,nx,a
).

If instead γk,nx,a(l2−n) ∈ E1, then we extend γk,nx,a on the whole interval (l2−n , (l + 1)2−n] by setting

γk,nx,a(t) = γ2−n ,γk,nx,a(l2−n)(t − l2
−n) for all t ∈ (l2−n , (l + 1)2−n].

The extension of the curves γ0,nx,a for (x, a) ∈ E1 is defined by the same procedure described above for the
curves γk,nx,a for (x, a) ∈ E3 with k = 1.

3.4 Approximate Lagrangian representation

The approximate characteristics built in the previous section belong to the space

Γ̃ := {(γ, t−γ , t+γ ) : 0 ≤ t−γ ≤ t+γ ≤ 1, γ ∈ BV((t−γ , t+γ ); BR × [0,M])}.
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For every n ∈ ℕ sufficiently large, we define ωn ∈M(Γ̃) by

ωn = ∫
(BR×[0,M])∩Hϕ

δγ0,na,x ,t−
γ0,na,x

,t+
γ0,na,x

dx da +
2n

∑
k=1
∫

E3∩Hϕ

δγk,na,x ,t−
γk,na,x

,t+
γk,na,x

dx da, (3.9)

where the curves γk,nx,a are defined in Section 3.3.2.

Lemma 3.7. Let ωn be defined in (3.9). Then the following estimates hold:

eh(n) := ∫
Γ̃

sup
t∈(t−γ ,t+γ )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
γx(t) − γx(t−γ ) −

t

∫

t−γ

ieiγa(s) ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dωn(γ) = o(1) as n →∞, (3.10)

ev(n) := ∫
Γ̃

TotVar(t−γ ,t+γ ) γa dωn(γ) ≤ ν(BR) + o(1) as n →∞. (3.11)

Proof. Since for ωn-a.e. (γ, t−γ , t+γ ) ∈ Γ̃ it holds

γ̇x(t) = ieiγa(t) for all t ∈ (γ, t−γ , t+γ ) \ 2−nℕ,

we have

sup
t∈(t−γ ,t+γ )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
γx(t) − γx(t−γ ) −

t

∫

t−γ

ieiγa(s) ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
l+(γ)
∑
l−(γ)
|γx(l2−n) − γx(l2−n−)|

=
l+(γ)
∑
l−(γ)
|Tx(γ(l2−n−) − γx(l2−n−)|, (3.12)

where

l−(γ) = 2n inf(2−nℤ ∩ (t−γ , t+γ )),
l+(γ) = 2n sup(2−nℤ ∩ (t−γ , t+γ )).

Integrating (3.12) with respect to ωn, it follows by Corollary 3.5 with ̄t = 2−n that

eh(n) ≤
2n−1
∑
l=1
∫
X

|Tx(x, a) − x| d(el2−n−)♯ωn

≤
2n−1
∑
l=1
(∫
X

|Tx(x, a) − x|ρ2̄t (x, a) dx da + 2R‖((el2−n−)♯ωn − ρ
2
̄t L

3)+‖)

≤
2n
L2−n
(2−n + 2

−3n
2 )ν(BR) + ε

1
2
2−n (2R + ε

1
2
2−nM) + 2R

2n−1
∑
l=1
‖((el2−n−)♯ωn − ρ2̄t L

3)+‖, (3.13)

where X = BR × [0,M] and et− : Γ̃(t) → X is defined by et−(γ) = limt󸀠→t− γ(t󸀠). Since, by construction,

(el2−n−)♯ωn ≤ χ2( ̄t)L 3 and ρ2̄t ≤ χ
2( ̄t)

with

‖(χ2( ̄t) − ρ2̄t )L
3‖ ≤ 2−nε2−n ,

for every l = 1, . . . , 2n − 1 it holds

‖((el2−n−)♯ωn − ρ2̄t L
3)+‖ ≤ 2−nε2−n . (3.14)

Plugging (3.14) into (3.13), we immediately get (3.10).
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Now, we prove (3.11). Since γa is constant in each connected component of (t−γ , t+γ ) \ 2−nℕ for ωn-a.e. γ,
it follows by Corollary 3.5 that

∫

Γ̃

TotVar(t−γ ,t+γ ) γa dωn(γ) =
2n−1
∑
l=1
∫

Γ̃(l2−n)

|Ta(γ(l2−n−)) − γa(l2−n−)| dωn(γ)

=
2n−1
∑
l=1
∫
X

|Ta(x, a) − a| d(el2−n−)♯ωn

≤
2n−1
∑
l=1
∫
X

|Ta(x, a) − a|ρ2̄t (x, a) dx da +M‖((el2−n−)♯ωn − ρ
2
̄t L

3)+‖

≤ 2n[(2−n + 2
−3n
2 )ν(BR) + ε

1
2
2−n
̄t(2R + ε

1
2
2−nM)] +Mε2−n ,

which implies (3.11).

Now, we show that (et)♯ωn approximates χL 3 in the strong topology of measures for every t ∈ 2−nℕ ∩ [0, 1).
This property and the weak continuity estimate provided in Proposition 3.4 will guarantee Definition 3.1 (1).

Lemma 3.8. For every l = 0, . . . , 2n − 1, it holds

‖(el2−n )♯ωn − χL 3‖ ≤ 2−n+1lε2−n . (3.15)

Moreover, for every t ∈ [l2−n , (l + 1)2−n) and every ψ ∈ C∞c (BR × [0,M]), it holds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
X

ψ d(et)♯ωn − ∫
X

ψ d(el2−n )♯ωn
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2−n(2MH 1(∂BR)‖ψ‖L∞ + ‖∇ψ‖L∞L 3(Hϕ)). (3.16)

Proof. First, the case l = 0 follows by the definition of ωn. In order to get (3.15), we prove that for every
l = 0, . . . , 2n − 2 it holds

‖(e(l+1)2−n )♯ωn − χL 3‖ ≤ ‖(el2−n )♯ωn − χL 3‖ + 2−n+1ε2−n .

Indeed,

‖(e(l+1)2−n )♯ωn − χL 3‖ ≤ ‖(e(l+1)2−n )♯ωn − ρ1̄t L
3‖ + ‖ρ1̄t L

3 − χL 3‖

= ‖T♯(e(l+1)2−n−)♯ωn − T♯(ρ2̄t L
3)‖ + ‖ρ1̄t L

3 − χL 3‖

≤ ‖(e(l+1)2−n−)♯ωn − ρ2̄t L
3‖ + 2−nε2−n

≤ ‖(e(l+1)2−n−)♯ωn − χ2( ̄t)L 3)‖ + ‖(χ2( ̄t) − ρ2̄t L
3)‖ + 2−nε2−n

≤ ‖(el2−n )♯ωn − χL 3‖ + 2 ⋅ 2−nε2−n .

Inequality (3.16) follows by
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
X

ψ d(et)♯ωn − ∫
X

ψ d(el2−n )♯ωn
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
X

ψ d(et)♯ωn⌞{t−γ > l2−n}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
X

ψ d(el2−n )♯ωn⌞{t+γ < t}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
X

ψ d(et)♯ωn⌞{t−γ ≤ l2−n} − ∫
X

ψ d(el2−n )♯ωn⌞{t+γ > t}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2 ⋅ 2−nH 1(∂BR)M‖ψ‖L∞ + ‖∇ψ‖L∞2−nωn(Γ̃(t))
≤ 2−n+1H 1(∂BR)M‖ψ‖L∞ + ‖∇ψ‖L∞2−nL 3(Hϕ),

as desired.

3.5 Compactness of ωn and existence of a Lagrangian representation

We consider on Γ̃ the topology τ that induces the following convergence: (γn , t−γn , t
+
γn ) converges to (γ, t

−
γ , t+γ ) if

t±γn → t±γ with respect to the Euclidean topology inℝ and there exist extensions γ̃, γ̃n of γ, γn defined on (0, 1)
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such that the horizonal components γ̃n,x converge to γ̃x uniformly and the vertical components γ̃n,a converge
to γ̃a in L1(0, 1).

Lemma 3.9. The sequence of measures ωn defined in (3.9) is bounded and tight inM(Γ̃), namely for every ε > 0
there exists a compact Kε ⊂ Γ̃ such that for every n ∈ ℕ it holds

ωn(Γ̃ \ Kε) < ε.

Proof. We prove first that the sequence ωn is bounded: for every n it holds

|E3,n ∩ Hϕ| ≤ |E3,n| ≤ MH 1(∂BR)2−n .

In particular,

lim sup
n→∞
|ωn|(Γ̃) = lim sup

n→∞
L 3(Hϕ) + 2n|E3,n ∩ Hϕ| ≤ L 3(Hϕ) +MH 1(∂BR).

In order to prove the tightness of the sequenceωn, we consider for every n ∈ ℕ and C > 0 the set of curves
(γ, t−γ , t+γ ) ∈ Γ̃n,C ⊂ Γ̃ satisfying the following properties:
(i) TotVar(t−γ ,t+γ ) γa ≤ C.
(ii) One has

l+(γ)
∑

k=l−(γ)
|γx(2−nk) − γx(2−nk−)| ≤ Ceh(n)1/2,

where eh(n) is defined in Lemma 3.7, and

l−(γ) := 2n inf 2−nℤ ∩ (t−γ , t+γ ) and l+(γ) := 2n sup 2−nℤ ∩ (t−γ , t+γ ).

(iii) Lip γ⌞([(k − 1)2−n , k2−n)) ≤ 1 for every k = l−(γ), . . . , l+(γ).
Since eh(n) tends to 0 as n →∞, for every C > 0 the space

Γ̃(C) :=
∞
⋃
n=1

Γ̃n,C

is compact with respect to the topology τ introduced above. Moreover, it follows by Lemma 3.7 and the
Chebychev inequality that for every ε > 0 there exists C > 0 sufficiently large such that for every n ∈ ℕ,

ωn(Γ̃ \ Γ̃(C)) ≤ ε.

By Theorem 2.5, it follows that the sequence ωn is precompact with respect to the narrow convergence. We
show in the next lemma that every limit point of ωn is a Lagrangian representation of the hypograph of ϕ
on BR.

Lemma 3.10. Every limit point ω of the sequence ωn is a Lagrangian representation of the hypograph of ϕ
on BR.

Proof. We need to check that the three conditions in Definition 3.1 are satisfied and that ω ∈M+(Γ), namely
that ω is concentrated on Γ.

Condition (1). We prove that for every t ∈ (0, 1) the following two limits hold in the sense of distributions:

lim
n→∞
(et)♯ωn = L 3⌞Hϕ and lim

n→∞
(et)♯ωn = (et)♯ω. (3.17)

For every t = 2−kℕ ∩ (0, 1) for some k ∈ ℕ, the first limit holds true thanks to Lemma3.8 since χL 3 = L 3⌞Hϕ
by thedefinitionof χ. The continuity in time stated in (3.16) implies that the limit holds true therefore for every
t ∈ (0, 1) in the sense of distributions. We observe that the second limit in (3.17) is not trivial since et is not
continuous on Γ̃ with respect to the topology introduced above. In order to establish it, we need to check that
for every ψ ∈ C∞c (BR × [0,M]) it holds

lim
n→∞
∫

Γ̃(t)

ψ(γ(t)) dωn = ∫
Γ̃(t)

ψ(γ(t)) dω.
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Let I ⊂ (0, 1)beanon-emptyopen interval. Then consider the continuousandbounded function Tψ,I : Γ̃ → ℝ
defined by

Tψ,I(γ, t−γ , t+γ ) := ∫
I∩(t−γ ,t+γ )

ψ(γ(t)) dt.

By the definition of narrow convergence and by the Fubini theorem, it follows that

lim
n→∞
∫
I

∫

Γ̃(t)

ψ(γ(t)) dωn dt = lim
n→∞
∫

Γ̃

Tψ,I dωn = ∫
Γ̃

Tψ,I dω = ∫
I

∫

Γ̃(t)

ψ(γ(t)) dω dt.

This proves that the second limit in (3.17) holds forL 1-a.e. t ∈ (0, 1). In order to prove that the limit is valid
for every t ∈ (0, 1), we observe thatω is concentrated on curves with endpoints in ∂BR and for every t ∈ (0, 1)
it holds

ω({(γ, t−γ , t+γ ) ∈ Γ̃ : t ∈ (t−γ , t+γ ) and γa(t−) ̸= γa(t+)}) = 0.

Indeed, assume by contradiction that there exist ̄t ∈ (0, 1) and ε > 0 such that

ω({(γ, t−γ , t+γ ) ∈ Γ̃ : ̄t ∈ (t−γ , t+γ ) and |γa( ̄t−) − γa( ̄t+)| > ε}) > ε. (3.18)

Inequality (3.18) implies that for every t1, t2 ∈ (0, 1) such that t1 < ̄t < t2 it holds

ev(t1, t2) := ∫
Γ̃

TotVar(t−γ ,t+γ )∩(t1 ,t2) γa dω(γ) ≥ ε
2. (3.19)

On the other hand, by localizing in (t1, t2) the same argument as in the proof of Lemma 3.7 to obtain (3.11),
we have that

ev(n, t1, t2) := ∫
Γ̃

TotVar(t−γ ,t+γ )∩(t1 ,t2) γa dωn(γ) ≤ (t2 − t1)ν(BR) + o(1) as n →∞. (3.20)

By choosing

t2 − t1 <
ε2

1 + ν(BR)
,

the two conditions in (3.19) and (3.20) contradict each other.
In particular, t 󳨃→ (et)♯ω is continuous in the sense of distributions on BR × [0,M], and therefore the

second limit in (3.17) holds for every t ∈ (0, 1).

Condition (2). The function g : Γ̃ → ℝ defined by

g(γ, t−γ , t+γ ) := sup
t∈(t−γ ,t+γ )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
γx(t) − γx(t−γ ) −

t

∫

t−γ

ieiγa(s) ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

is lower semicontinuous. Therefore,

∫

Γ̃

g(γ)dω ≤ lim
n→∞
∫

Γ̃

g(γ)dωn ,

which is equal to 0 by (3.10).

Condition (3). This follows similarly from (3.11). In particular, ω is concentrated on Γ and this concludes the
proof.

3.6 Representation of the defect measure and good curves selection

In the following proposition, we show that the kinetic measure Uϕ can be decomposed along the character-
istic trajectories detected by the Lagrangian representation ωh.
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Proposition 3.11. Let ωh be a Lagrangian representation of the hypograph of ϕ on BR obtained as limit point
of ωn as in the previous section. Then

L 1 × Uϕ = ∫
Γ

μγ dωh(γ) and L 1 × |Uϕ| = ∫
Γ

|μγ| dωh(γ).

Proof. Let
ψ̄(t, x, a) = φ(t)ψ(x, a) ∈ C∞c ((0, 1) × BR × [0,M]).

Then

− ∫
(0,1)×X

φ∂aψ dUϕ dt = ∫
(0,1)×Hϕ

ieia ⋅ ∇xψφ dx da dt

=
1

∫
0

∫
Γ(t)

ieiγa(t) ⋅ ∇xψ(γ(t))φ(t) dωh(γ) dt

=
1

∫
0

∫
Γ(t)

̇γx(t) ⋅ ∇xψ(γ(t)) dωh(γ)φ(t) dt

= ∫
Γ

t+γ

∫

t−γ

̇γx(t) ⋅ ∇xψ(γ(t))φ(t) dt dωh(γ). (3.21)

For every γ ∈ Γ, we consider the map ψγ := ψ ∘ γ : (t−γ , t+γ ) → BR × [0,M]. Since ωh-a.e. γ ∈ Γ has bounded
variation on its domain, also ψγ ∈ BV((t−γ , t+γ );ℝ), and we have the following chain rule:

Dtψγ = ∇ψ(γ(t)) ⋅ D̃tγ + ∑
tj∈Jγ
(ψ(γ(tj+)) − ψ(γ(tj−)))δtj

= ∇xψ(γ(t)) ⋅ D̃tγx + ∂aψ(γ(t))D̃tγa + ∑
tj∈Jγ
(ψ(γ(tj+)) − ψ(γ(tj−)))δtj . (3.22)

Since for ω-a.e. γ it holds Dtγx = γ̇x(t)L 1, plugging (3.22) into (3.21), we obtain

− ∫
(0,1)×X

φ∂aψ dUϕ dt = ∫
Γ

( ∫

(t−γ ,t+γ )

φ(Dtψγ − ∂aψ(γ(t))D̃tγa − ∑
tj∈Jγ
(ψγ(tj+) − ψγ(tj−))δtj)) dωh

= ∫
Γ

( ∫

(t−γ ,t+γ )

φ(Dtψγ − ∂aψ(γ(t))D̃tγa) − ∑
tj∈Jγ

φ(tj)(ψγ(tj+) − ψγ(tj−))) dωh .

We observe that, by construction, if t−γ > 0, then γ(t−γ ) ∈ ∂BR × [0,M], and therefore ψ(γ(t−γ )) = 0. Similarly,
if t+γ < 1, then ψ(γ(t+γ )) = 0. Therefore,

∫
Γ

∫

(t−γ ,t+γ )

φ(t)Dtψγ dωh(γ) = −∫
Γ

∫

(t−γ ,t+γ )

φ󸀠(t)ψ(γ(t)) dt dωh(γ)

=
1

∫
0

∫
Hϕ

φ󸀠(t)ψ(x, a) dx da dt = 0.

Since for ωh-a.e. γ and every tj ∈ Jγ it holds γx(tj+) = γx(tj−), it follows from the definition of μγ that

− ∫
(0,1)×X

φ∂aψ dUϕ dt = ∫
Γ

( ∫

(t−γ ,t+γ )

(−φ(t)∂aψ(γ(t))D̃tγa) − ∑
tj∈Jγ

φ(tj)(ψ(γ(tj+)) − ψ(γ(tj−)))) dωh

= −∫
Γ

∫
(0,1)×X

φ∂aψdμγdωh(γ).

This proves the first equality in the statement when tested with functions of the form φ∂aψ for two test func-
tionsφ, ψ. Since bothUϕ and∫ μγ dωh are supported on [0, 1] × BR × [0,M], the equality holds true for every
test function.
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The inequality
L 1 × |Uϕ| ≤ ∫

Γ

|μγ| dωh

follows immediately from the already proved first equality in the statement. In order to prove the opposite
inequality, it is enough to prove the global inequality

(L 1 × |Uϕ|)((0, 1) × BR × [0,M]) ≥ ∫
Γ

|μγ|((0, 1) × BR × [0,M]) dωh .

We observe that |μγ|((0, 1) × BR × [0,M]) = TotVar(t−γ ,t+γ ) γa and that the map

(γ, t−γ , t+γ ) 󳨃→ TotVar(t−γ ,t+γ ) γa

is lower semicontinuous on Γ̃. Therefore, it follows from (3.11) that

∫
Γ

|μγ|(BR × [0,M]) dωh = ∫
Γ

TotVar(t−γ ,t+γ ) γa dωh

≤ lim inf
n→∞
∫

Γ̃

TotVar(t−γ ,t+γ ) γa dωn

≤ (L 1 × |Uϕ|)((0, 1) × BR × [0,M]).

With the result above, the proof of the part of Theorem 3.2 concerning the hypograph of ϕ is complete; the
statement for the epigraph of ϕ can be proven in the same way.

The following lemma is an application of the Tonelli theorem and it is already proven in [19], to which
we refer for the details.

Lemma 3.12. For ωh-a.e. γ ∈ Γ and for L 1-a.e. t ∈ (t−γ , t+γ ), the following assertions hold:
(i) γx(t) is a Lebesgue point of ϕ.
(ii) γa(t) < ϕ(γx(t)).
We denote by Γh the set of curves γ ∈ Γ such that the two properties above hold. Similarly, for ωe-a.e. γ ∈ Γ and
for L 1-a.e. t ∈ (t−γ , t+γ ), the following assertions hold:
(i) γx(t) is a Lebesgue point of ϕ.
(ii) γa(t) > ϕ(γx(t))
We denote the set of these curves by Γe.

4 Rectifiability of the measure ν
In this section, we prove that the measure ν := (px)♯|Uϕ| is concentrated on a 1-rectifiable set. The rectifiabil-
ity of ν is equivalent to the rectifiability of both the measures (px)♯U−ϕ and (px)♯U

+
ϕ. Since these two cases are

analogous, we only provide the proof of the rectifiability of (px)♯U−ϕ.

4.1 Pairing between ωh and ωe and its decomposition

In the following lemma, we introduce a pairing between the two representations ωh ⊗ μ−γ and ωe ⊗ μ+γ of the
negative part of the defect measure L 1 × U−ϕ. We will denote by X the set BR × [0,M].

Lemma 4.1. Denote by p1, p2 : (Γ × [0, 1] × X)2 → Γ × [0, 1] × X the standard projections. Then there exists
a plan π− ∈M((Γ × [0, 1] × X)2) with marginals

{
(p1)♯π− = ωh ⊗ μ−γ ,
(p2)♯π− = ωe ⊗ μ+γ ,

(4.1)
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concentrated on the set

G := {((γ, t−γ , t+γ , t, x, a), (γ󸀠, t−γ
󸀠, t+γ
󸀠, t󸀠, x󸀠, a󸀠)) ∈ (Γ × X)2 : t ∈ (t−γ , t+γ ), t󸀠 ∈ (t−γ

󸀠, t+γ
󸀠), t = t󸀠,

γx(t) = x = x󸀠 = γ󸀠x(t󸀠), a = a󸀠, a ∈ [γa(t+), γa(t−)] ∩ [γ󸀠a(t󸀠−), γ󸀠a(t󸀠+)]}.

Proof. First, we observe that, by definition, ωh ⊗ μ−γ is concentrated on the set

G−h := {(γ, t
−
γ , t+γ , t, x, a) ∈ Γ × [0, 1] × X : t ∈ (t−γ , t+γ ), γx(t) = x, a ∈ [γa(t+), γa(t−)]}

and ωe ⊗ μ+γ is concentrated on the set

G+e := {(γ, t−γ , t+γ , t, x, a) ∈ Γ × [0, 1] × X : t ∈ (t−γ , t+γ ), γx(t) = x, a ∈ [γa(t−), γa(t+)]}.

By denoting by p2,3 : Γ × [0, 1] × X → [0, 1] × X the standard projection, it follows from (3.4) that

(p2,3)♯(ωh ⊗ μ−γ ) = L 1 × U−ϕ = (p2,3)♯(ωe ⊗ μ
+
γ ).

By the disintegration theorem (see, for example, [2]), there exist two measurable families of probability
measures

(μ−,ht,x,a)(t,x,a)∈X , (μ
+,e
t,x,a)(t,x,a)∈X ∈ P(Γ × [0, 1] × X)

such that
ωh ⊗ μ−γ = ∫

[0,1]×X

μ−,ht,x,adL
1 × U−ϕ and ωe ⊗ μ+γ = ∫

[0,1]×X

μ+,et,x,adL
1 × U−ϕ (4.2)

and for L 1 × U−ϕ-a.e. (t, x, a) the measures μ−,ht,x,a and μ
+,e
t,x,a are concentrated on the set

p−12,3({t, x, a}) = {(γ, t
−
γ , t+γ , t󸀠, x󸀠, a󸀠) ∈ Γ × [0, 1] × X : t󸀠 = t, x󸀠 = x, a󸀠 = a}.

Moreover, since ωh ⊗ μ−γ is concentrated on the set G−h and ωe ⊗ μ
+
γ is concentrated on the set G+e , we have that

for L 1 × U−ϕ-a.e. (t, x, a) the measure μ−,ht,x,a is concentrated on p
−1
2,3({t, x, a}) ∩ G

−
h and μ

+,e
t,x,a is concentrated

on p−12,3({t, x, a}) ∩ G+e . Eventually, we set

π− := ∫
[0,1]×X

(μ−,ht,x,a ⊗ μ
+,e
t,x,a) d(L

1 × U−ϕ).

From (4.2), directly (4.1) follows. By the above discussion, forL 1 × U−ϕ-a.e. (t, x, a) ∈ [0, 1] × X the measure
μ−,ht,x,v ⊗ μ

+,e
t,x,v is concentrated on (p

−1
2,3({t, x, a}) ∩ G

−
h) × (p

−1
2,3({t, x, a}) ∩ G+e ). Therefore, π− is concentrated on

⋃
(t,x,a)∈[0,1]×X

(p−12,3({t, x, a}) ∩ G
−
h) × (p

−1
2,3({t, x, a}) ∩ G

+
e ) = G,

and this concludes the proof.

Now, we split the set G introduced in Lemma 4.1 in finitely many components. First, we set

G−h,jump := {(γ, t
−
γ , t+γ , t, x, a) ∈ G−h : γa(t+) < γa(t−)},

G+e,jump := {(γ, t
−
γ , t+γ , t, x, a) ∈ G+e : γa(t−) < γa(t+)}.

Moreover, we consider the following covering with overlaps of [0,M]. Let L = ⌊2Mπ ⌋ and for every l = 0, . . . , L
set

Il = (l
π
2 −

π
8 , (l + 1)

π
2 +

π
8 )

and

G−h,l := {(γ, t
−
γ , t+γ , t, x, a) ∈ G−h : γa(t+), γa(t−) ∈ Il},

G+e,l := {(γ, t
−
γ , t+γ , t, x, a) ∈ G+e : γa(t−), γa(t+) ∈ Il}.

Then we define

π−l := π
−⌞(G−h,l × G

+
e,l), π−jump = π

−⌞((G−h,jump × G
+
e ) ∪ (G

−
h × G
+
e,jump)).

We prove separately that ν−jump := (p1x)♯π
−
jump is 1-rectifiable and that ν

−
l := (p

1
x)♯π−l is rectifiable for every

l = 0, . . . , L.
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γx(t )

γ̄x( ̄t )

γx(t )

γ̄x( ̄t )

el

e⊥l

Figure 1: The blue curve γ represents an element of Gcr( ̄γ, ̃t−̄γ , ̃t
+
̄γ ):

in this particular case, l = 4k for some k ∈ ℕ.

4.2 Rectifiability of ν−l
The proof of the rectifiability of ν−l follows the strategy used in [19]. In particular, the first step is to identify
a countable family of Lipschitz curves where we will prove that ν−l is concentrated.

4.2.1 Shock curves

For shortness, we set
el := iei(l

π
2 +

π
4 ) and e⊥l := iel .

The following proposition establishes the intuitive fact that a curve of the epigraph cannot cross from
below a curve of the hypograph. Since the same proposition and the following corollary were proven in [19]
in the case of the Burgers equation, we only sketch the arguments here.

Proposition 4.2. Let (γ̄, t−γ̄ , t
+
γ̄ ) ∈ Γh and let ( ̃t

−
γ̄ , ̃t
+
γ̄ ) ⊂ (t

−
γ̄ , t
+
γ̄ ) be such that

γ̄a(( ̃t−γ̄ , ̃t
+
γ̄ )) ⊂ Il .

We denote by Gcr(γ̄, ̃t−γ̄ , ̃t
+
γ̄ ) the set of curves

(γ, t−γ , t+γ ) ∈ Γe

for which there exist ̄t1, ̄t2 ∈ ( ̃t−γ̄ , ̃t
+
γ̄ ) and t1, t2 ∈ (t

−
γ , t+γ ) such that the following conditions are satisfied (see

Figure 1):
(i) t1 < t2 and ̄t1 < ̄t2.
(ii) γa((t1, t2)) ⊂ Il.
(iii) γx(t1) ⋅ el = γ̄x( ̄t1) ⋅ el and γx(t1) ⋅ e⊥l > γ̄x( ̄t1) ⋅ e

⊥
l .

(iv) γx(t2) ⋅ el = γ̄x( ̄t2) ⋅ el and γx(t2) ⋅ e⊥l < γ̄x( ̄t2) ⋅ e
⊥
l .

Then
ωe(Gcr(γ̄, ̃t−γ̄ , ̃t

+
γ̄ )) = 0.

Proof. Let
s− := γ̄x( ̃t−γ̄ ) ⋅ el and s+ := γ̄x( ̃t+γ̄ ) ⋅ el .

Since γ̄a(( ̃t−γ̄ , ̃t
+
γ̄ )) ⊂ Il and γ̇x(t) = ie

iγ̄a(t) for L 1-a.e. t ∈ ( ̃t−γ̄ , ̃t
+
γ̄ ), the map

hγ̄ : ( ̃t−γ̄ , ̃t
+
γ̄ ) → (s

−, s+),

t 󳨃→ γ̄x(t) ⋅ el
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is bi-Lipschitz. For every s ∈ (s−, s+), we set gγ̄(s) = γx(h−1γ̄ (t)) ⋅ e
⊥
l . Let δ > 0 and let ψδ : ℝ → ℝ be the

Lipschitz approximation of the Heaviside function defined by ψδ(v) = 0 ∨ (v/δ ∧ 1). Let us consider a mea-
surable selection of t1, t2 in Gcr(γ̄, ̃t−γ̄ , ̃t

+
γ̄ ) and let us set

Gcr(γ̄, ̃t−γ̄ , ̃t
+
γ̄ , δ) := {(γ, t

−
γ , t+γ ) ∈ Gcr(γ̄, ̃t−γ̄ , ̃t

+
γ̄ ) : γx(t1,γ) ⋅ e

⊥
l − gγ̄(hγ̄(γx(t) ⋅ el)) > δ}.

For every t ∈ (0, 1) and γ ∈ Gcr(γ̄, ̃t−γ̄ , ̃t
+
γ̄ , δ), set

f(γ, t) :=
{{{
{{{
{

0 if t < t1,γ ,
1 − ψδ(γx(t) ⋅ e⊥l − gγ̄(γx(t) ⋅ el)) if t ∈ (t1,γ , t2,γ),
1 if t > t2,γ .

Finally, we consider the functional

Ψδ(t) := ∫

Γcr(γ̄, ̃t−γ̄ , ̃t
+
γ̄ ,δ)

f(γ, t) dωe(γ).

A straightforward computation shows that

Ψ󸀠δ(t) ≤
C
δ ∫
G(δ,t)

[γ̄a(h−1γ̄ (γx(t) ⋅ el)) − γa(t)]
+ dωe(γ), (4.3)

where

G(δ, t) = {(γ, t−γ , t+γ ) ∈ Gcr(γ̄, ̃t−γ̄ , ̃t
+
γ̄ , δ) : t ∈ (t1,γ , t2,γ) and

γx(t) ⋅ e⊥l ∈ (gγ̄(γx(t) ⋅ el), gγ̄(γx(t) ⋅ el) + δ)}.

Let us set
Sδ := {x ∈ BR : x ⋅ el ∈ (gγ̄(x ⋅ el), gγ̄(x ⋅ el) + δ)}.

Since
(et)♯ωe⌞G(δ, t) ≤ L3⌞(Eϕ ∩ (Sδ × [0,M]))

and for L 1-a.e. t ∈ ( ̃t−γ̄ , ̃t
+
γ̄ ) the point γ̄x(t) is a Lebesgue point of ϕ with value larger than γ̄a(t), we obtain

from (4.3) that Ψ󸀠δ(t) ≤ o(1) as δ → 0. By the definition of the functional Ψδ it holds

ωe(Gcr(γ̄, ̃t−γ̄ , ̃t
+
γ̄ )) ≤ lim inf

δ→0
Ψδ(1) = 0.

Corollary 4.3. Let x̄ ∈ BR and denote by Γ−l (x̄) the set of curves (γ, t
−
γ , t+γ ) ∈ Γh for which there exists t1 ∈ (t−γ , t+γ )

such that
γx(t1) ⋅ el = x̄ ⋅ el and γx(t1) ⋅ e⊥l < x̄ ⋅ e

⊥
l .

Similarly, let Γ+l (x̄) be the set of curves (γ, t
−
γ , t+γ ) ∈ Γe for which there exists t󸀠1 ∈ (t−γ , t+γ ) such that

γx(t󸀠1) ⋅ el = x̄ ⋅ el and γx(t󸀠1) ⋅ e
⊥
l > x̄ ⋅ e

⊥
l .

Then there exists a Lipschitz function fx̄,l : [x̄ ⋅ el , +∞) → ℝ such that

{
ωh({(γ, t−γ , t+γ ) ∈ Γ−l (x̄) : ∃t2 ∈ (t1, t

+
γ ) s.t. γa((t1, t2)) ⊂ Il and γx(t2) ⋅ e⊥l > fx̄,l(γx(t2) ⋅ el)}) = 0,

ωe({(γ, t−γ , t+γ ) ∈ Γ+l (x̄) : ∃t
󸀠
2 ∈ (t
󸀠
1, t
+
γ ) s.t. γa((t󸀠1, t

󸀠
2)) ⊂ Il and γx(t

󸀠
2) ⋅ e
⊥
l < fx̄,l(γx(t

󸀠
2) ⋅ el)}) = 0,

(4.4)

where t1, t󸀠1 are as above.

Proof. Let I ⊂ [x̄ ⋅ el , +∞) be the set of values y for which there exist γ ∈ Γ−l (x̄) and t ∈ (t1, t2) such that
γx(t) ⋅ el = y, where t1 < t2 are such that γa((t1, t2)) ⊂ Il. Let ̃fx̄,l be defined on I by

̃fx̄,l(s) := sup{γx(t) ⋅ e⊥l : γ ∈ Γ−l (x̄), t ∈ (t1, t2), γx(t) ⋅ el = s} = sup gγ(s), (4.5)
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where we used the same notation as in the proof of Proposition 4.2: we set gγ(s) := γx(t) ⋅ e⊥l , where t is the
unique value in (t1, t2) for which γx(t) ⋅ el = s. Since γa((t1, t2)) ⊂ Il, it is straightforward to check that gγ
is Lipschitz with Lipschitz constant bounded by tan(3π8 ). The function fx̄,l is then defined as the smallest
biggest C-Lipschitz function such that fx̄,l ≥ ̃fx̄,l on I and fx̄,l(x̄ ⋅ el) = x̄ ⋅ e⊥l , where C > tan(3π/8). The first
equation in (4.4) follows from the fact that fx̄,l ≥ ̃fx̄,l on I. Now, we prove the second equation in (4.4): given
(γ, t−γ , t+γ ) ∈ Γ−l (x̄) and t, t1, t2 as above, let us consider the set Γ

󸀠(γ, x̄) of curves (γ󸀠, t󸀠−γ , t󸀠+γ ) ∈ Γ for which
there exist t󸀠1 < t

󸀠
2 in (t󸀠−γ , t󸀠+γ ) such that the following conditions are satisfied:

(i) γ󸀠a(t) ∈ Il for every t ∈ (t󸀠1, t
󸀠
2).

(ii) γ󸀠x(t󸀠1) ⋅ el = x̄ ⋅ el and γ󸀠x(t
󸀠
1) ⋅ e
⊥
l > x̄ ⋅ e

⊥
l .

(iii) γ󸀠x(t󸀠2) ⋅ el < γx(t2) ⋅ el.
By Proposition 4.2, it follows that

ωe(Γ󸀠(γ, x̄)) = 0. (4.6)

Since the functions gγ in (4.5) are equi-Lipschitz, the supremum in (4.5) can be realized by taking only
countably many curves in Γ+l (x̄). Therefore, it follows from (4.6) that

ωe({(γ, t−γ , t+γ ) ∈ Γ+l (x̄) : ∃t
󸀠
2 ∈ (t
󸀠
1, t
+
γ ) such that γa((t󸀠1, t

󸀠
2)) ⊂ Il and γx(t

󸀠
2) ⋅ e
⊥
l <
̄fx̄,l(γx(t󸀠2) ⋅ el)}) = 0. (4.7)

Finally, since for every (γ󸀠, t󸀠−γ , t󸀠+γ ) ∈ Γ󸀠(γ, x̄) the associated map gγ󸀠 : (γ󸀠x(t󸀠1) ⋅ el , γ󸀠x(t
󸀠
2) ⋅ el) → ℝ is Lipschitz

with Lipschitz constant bounded by tan(3π8 ), we can replace ̄fx̄,l with fx̄,l in (4.7). This gives the second
equation in (4.4) and it concludes the proof.

The following elementary lemma is about functions of bounded variation of one variable: we refer to [2] for
the theory of BV functions.

Lemma 4.4. Let v : (a, b) → ℝ be a BV function and denote by D−v the negative part of the measure Dv. Then
for D̃−v-a.e. x̄ ∈ (a, b) there exists δ > 0 such that

v̄(x) > v̄(x̄) for all x ∈ (x̄ − δ, x̄), and v̄(x) < v̄(x̄) for all x ∈ (x̄, x̄ + δ).

We are now in the position to prove the rectifiability of ν−l .

Proposition 4.5. The measure ν−l is concentrated on the set

⋃
x̄∈ℚ2∩BR

Cfx̄,l , where Cfx̄,l := BR ∩ ⋃
s>x̄⋅e⊥l

{se⊥l + fx̄,l(s)el}.

Proof. We prove this proposition in four steps.

Step 1. For every x̄ ∈ BR ∩ ℚ2 and every (γ, t−γ , t+γ ) ∈ Γh, we consider the open set I+x̄,l,γ ⊂ (t
−
γ , t+γ ) defined by

the following property: we say that t ∈ I+x̄,l,γ if there exists t
󸀠 ∈ (t−γ , t) such that

γa((t󸀠, t)) ⊂ Il , γx(t󸀠) ⋅ e⊥l = x̄ ⋅ e
⊥
l , γx(t󸀠) ⋅ el > x̄ ⋅ el .

Moreover, we set
G>x̄,l := {(γ, t

−
γ , t+γ , t, x, a) ∈ Γh × (0, 1) × BR × [0,M] : t ∈ I+x̄,l,γ}.

Similarly, for every (γ, t−γ , t+γ ) ∈ Γe, we let I−x̄,l,γ ⊂ (t
−
γ , t+γ ) be the set of t for which there exists t󸀠 ∈ (t−γ , t) such

that
γa((t󸀠, t)) ⊂ Il , γx(t󸀠) ⋅ e⊥l = x̄ ⋅ e

⊥
l , γx(t󸀠) ⋅ el < x̄ ⋅ el

and we set
G<x̄,l := {(γ, t

−
γ , t+γ , t, x, a) ∈ Γe × (0, 1) × BR × [0,M] : t ∈ I−x̄,l,γ}.

We consider
π−x̄,l := π

−⌞(G>x̄,l × G
<
x̄,l)

and we prove that (p1x)♯π−x̄,l is concentrated on Cfx̄,l , where

p1x : (Γ × (0, 1) × BR × [0,M])2 → BR ,

(γ, t−γ , t+γ , t, x, a, γ󸀠, t−γ
󸀠, t+γ
󸀠, t󸀠, x󸀠, a󸀠) 󳨃→ x.
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Trivially, it holds
(p1x)♯π−x̄,l ≤ (p

1
x)♯[π−⌞(G>x̄,l × (Γ × (0, 1) × BR × [0,M]))].

From Corollary 4.3 it follows that for ωh-a.e. (γ, t−γ , t+γ ) ∈ Γh it holds

γx(t) ⋅ e⊥l > x̄ ⋅ e
⊥
l and γx(t) ⋅ el ≥ fx̄,l(γx(t) ⋅ e⊥l ) for all t ∈ Ix̄,l,γ .

Therefore,

(p1x)♯π−x̄,l({x ∈ BR : x ⋅ e
⊥
l ≤ x̄ ⋅ e

⊥
l } ∪ {x ∈ BR : x ⋅ e

⊥
l > x̄ ⋅ e

⊥
l and x ⋅ el < fx̄,l(x ⋅ e

⊥
l )}) = 0. (4.8)

In the same way, we get

(p2x)♯π−x̄,l({x ∈ BR : x ⋅ e
⊥
l ≤ x̄ ⋅ e

⊥
l } ∪ {x ∈ BR : x ⋅ e

⊥
l > x̄ ⋅ e

⊥
l and x ⋅ el > fx̄,l(x ⋅ e

⊥
l )}) = 0, (4.9)

where

p2x : (Γ × (0, 1) × BR × [0,M])2 → BR ,

(γ, t−γ , t+γ , t, x, a, γ󸀠, t−γ
󸀠, t+γ
󸀠, t󸀠, x󸀠, a󸀠) 󳨃→ x󸀠.

Finally, since π− is concentrated on G,

(p1x ⊗ p2x)♯π− ∈M(([0, T] × ℝ)2)

is concentrated on the graph of the identity on BR and in particular (p1x)♯π−x̄,l = (p
2
x)♯π−x̄,l. Therefore, it follows

from (4.8) and (4.9) that (p1x)♯π−x̄,l is concentrated on

{x ∈ BR : x ⋅ el > x̄ ⋅ el and x ⋅ e⊥l = fx̄,l(x ⋅ el)} = Cfx̄,l .

Step 2. We prove that for π−l -a.e.

Z = (γ, t−γ , t+γ , t, x, a, γ󸀠, t−γ
󸀠, t+γ
󸀠, t󸀠, x󸀠, a󸀠) ∈ (Γ × (0, 1) × BR × [0,M])2

there exists δ > 0 such that for every s ∈ (t − δ, t) and s󸀠 ∈ (t󸀠 − δ, t󸀠) the following properties hold:
(i) γa(s) ∈ Il and γa(s) > a.
(ii) γ󸀠a(s󸀠) ∈ Il and γ󸀠a(s󸀠) < a󸀠.
It is sufficient to prove the properties in (i) since the ones in (ii) can be shown analogously. The statement
is trivial for elements Z for which γa(t−) > a, and it follows immediately by Lemma 4.4 applied to γa if γa is
continuous at t. Since π− is concentrated on points Z for which γa(t+) ≤ γa(t−), it is sufficient to check that

π−l ({Z ∈ (Γ × (0, 1) × BR × [0,M])
2 : γa(t−) = a > γa(t+)}) = 0.

This follows immediately from the facts that for ωh-a.e. γ the measure μ−γ has no atoms and the set

(t, x, a) ∈ (0, 1) × BR × [0,M]

for which γx(t) = x and γa(t−) = a > γa(t+) is at most countable.

Step 3. We prove that for π−l -a.e. Z ∈ (Γ × (0, 1) × BR × [0,M])
2 there exists x̄ ∈ ℚ2 ∩ BR such that

Z ∈ G>x̄,l × G
<
x̄,l .

Let us consider δ > 0 from step 2. From property (i) and (3.1), it follows that for every s ∈ (t − δ, t) it holds

γx(s) ⋅ el > γx(t) ⋅ el − ieia ⋅ el(γx(t) ⋅ e⊥l − γx(s) ⋅ e
⊥
l ), (4.10)

and similarly for every s󸀠 ∈ (t󸀠 − δ, t󸀠),

γ󸀠x(s󸀠) ⋅ el < γ󸀠x(t󸀠) ⋅ el − ieia
󸀠
⋅ el(γ󸀠x(t󸀠) ⋅ e⊥l − γ

󸀠
x(s󸀠) ⋅ e⊥l ). (4.11)
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Since π− is concentrated on G, for π−l -a.e.

Z ∈ (Γ × (0, 1) × BR × [0,M])2

it also holds a = a󸀠 and γx(t) = x = γ󸀠x(t󸀠). Let us consider

y ∈ (γx(t) ⋅ e⊥l −
δ

100 , γx(t) ⋅ e
⊥
l ) ∩ √2ℚ.

Then there exist s ∈ (t − δ, t) and s󸀠 ∈ (t󸀠 − δ, t󸀠) such that γx(s) ⋅ e⊥l = y = γ
󸀠
x(s󸀠) ⋅ e⊥l . It follows from (4.10)

and (4.11) that

γ󸀠x(s󸀠) ⋅ el < γ󸀠x(t󸀠) ⋅ el − ieia
󸀠
⋅ el(γ󸀠x(t󸀠) ⋅ e⊥l − γ

󸀠
x(s󸀠) ⋅ e⊥l )

= x ⋅ el − ieia
󸀠
⋅ el(x ⋅ e⊥l − y)

= γx(t) ⋅ el − ieia ⋅ el(γx(t) ⋅ e⊥l − γx(s) ⋅ e
⊥
l )

< γx(s) ⋅ el .

Let z ∈ (γ󸀠x(s󸀠) ⋅ el , γx(s) ⋅ el) ∩ √2ℚ and set x̄ = zel + ye⊥l . By construction, it holds

Z ∈ G>x̄,l × G
<
x̄,l .

Since el , e⊥l ∈ (√2ℚ)
2, we obtain x̄ ∈ ℚ2.

Step 4. It follows by step 3 that
π−l ≤ π

−
⌞ ( ⋃

x̄∈ℚ2∩BR

G>x̄,l × G
<
x̄,l). (4.12)

Since by step 1 we have that (p1x)♯π−x̄,l is concentrated on Cfx̄,l , the statement of the proposition follows
from (4.12).

4.3 Rectifiability of ν−jump
In the next lemma, we prove a regularity density estimate at a point x̄ provided that the entropy dissipation
measure decays faster than in a shock point.

Lemma 4.6. Let (γ̄, t−γ̄ , t
+
γ̄ ) ∈ Γh, ̄t ∈ (t

−
γ̄ , t
+
γ̄ ), and set x̄ = γ̄x( ̄t) and ā = γ̄a( ̄t−) ∨ γ̄a( ̄t+). Then there exists an

absolute constant c > 0 such that for every δ ∈ (0, π/2) at least one of the following holds true:

lim inf
r→0

L2({x ∈ Br(x̄) : ϕ(x) ≥ ā − δ})
r2

≥ cδ,

lim sup
r→0

ν(Br(x̄))
r
≥ cδ3. (4.13)

Proof. We assume without loss of generality that ā = γ̄a( ̄t−), and we let δ1 > 0 be such that for every
t ∈ ( ̄t − δ1, ̄t) it holds

γ̄a(t) ∈ (ā −
δ
5 , ā +

δ
5).

Moreover, we set ̄r = δ1/2 so that for every r ∈ (0, ̄r) there exists tr ∈ ( ̄t − δ1, ̄t) such that γ̄x(tr) ∈ ∂Br(x̄) and
γx(t) ∈ Br(x̄) for every t ∈ (tr , ̄t). Since γ̄ ∈ Γh and γ̄a(t) ≥ ā − δ/5 for every t ∈ (tr , ̄t), there exists ε > 0 (pos-
sibly depending on r) such that

L 2({x ∈ Sε,r : ϕ(x) ≥ ā −
δ
5}) ≥ εr, where Sε,r := γ̄x((tr , ̄t)) + Bε(0).

For every (γ, t−γ , t+γ ) ∈ Γ, we consider the nontrivial interiors (t−γ,i , t
+
γ,i)

Nγ
i=1 of the connected components of

γ−1a ((ā − δ), ā − 2
5 δ), which intersect

γ−1(Sε,r × (ā −
4
5 δ, ā −

3
5 δ)).

Notice that we have the estimate
Nγ ≤ 1 +

5
δ
TotVar γa .
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For every i ∈ ℕ, we consider
Γi := {(γ, t−γ , t+γ ) ∈ Γ : Nγ ≥ i}

and the measurable restriction map

Ri : Γi → Γ,
(γ, t−γ , t+γ ) 󳨃→ (γ, t−γ,i , t

+
γ,i).

We finally consider the measure

ω̃h :=
∞
∑
i=1
(Ri)♯(ωh⌞Γi).

We observe that ω̃h ∈M+(Γ) since for every N > 0,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

N
∑
i=1
(Ri)♯(ωh⌞Γi)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ ∫

Γ

Nγ dωh ≤ ∫
Γ

(1 + 5δ TotVar γa) dωh(γ) < ∞.

The advantage of using the restrictions introduced above is in the following estimate: by an elementary
transversality argument, there exists an absolute constant c̃ > 0 such that for ω̃h-a.e. (γ, t−γ , t+γ ) ∈ Γ it holds

L 1({t ∈ (t−γ , t+γ ) : γ(t) ∈ Sε,r × (ā −
4
5 δ, ā −

3
5 δ)}) ≤ c̃

ε
δ
. (4.14)

By construction, we have that for every t ∈ (0, 1) it holds

(et)♯ω̃h ≥ L 3⌞{(x, a) ∈ Sε,r × (ā −
4
5 δ, ā −

3
5 δ) : ϕ(x) ≥ a}. (4.15)

Since the measure of this set is at least εrδ/5, it follows by (4.14) and (4.15) that

ω̃h(Γ) ≥ εr
δ
5 ⋅

δ
c̃ε
=
δ2

5c̃ r. (4.16)

We consider Γ = Γ1 ∪ Γ2, where

Γ1 := {(γ, t−γ , t+γ ) ∈ Γ : t+γ − t−γ ≥ r} and Γ2 := {(γ, t−γ , t+γ ) ∈ Γ : t+γ − t−γ < r}.

For ω̃h-a.e. (γ, t−γ , t+γ ) ∈ Γ1 it holds

L 1({t ∈ (t−γ , t+γ ) : γ(t) ∈ B2r(x̄) × (ā − δ, ā −
2
5 δ)}) ≥ r,

while for ω̃h-a.e. (γ, t−γ , t+γ ) ∈ Γ2 we have

γx(t−γ , t+γ ) ⊂ B2r(x̄) and TotVar γa ≥
2
5 δ.

It follows from (4.16) that at least one of the following holds:

ω̃h(Γ1) ≥
δ2

10c̃ r or ω̃h(Γ2) ≥
δ2

10c̃ r. (4.17)

If the second condition holds, then we have that

ν(B2r(x̄)) ≥ |Uϕ|(B2r(x̄) × (ā − δ, ā)) ≥
δ3

25c̃ r,

so that the second condition in the statement is satisfied. Otherwise, we assume that the first condition
in (4.17) holds: since for every t ∈ (0, 1),

(et)♯ω̃h ≤ χL 3

it follows from (4.17) and the Fubini theorem that

L 2({x ∈ B2r(x̄) : ϕ(x) ≥ ā − δ}) ≥
δ2

10c̃ r ⋅
5r
3δ =

δ
6c̃ r

2,

so that the first condition in the statement holds true.

Remark 4.7. We observe that the third power in (4.13) is optimal; this is related to the fact that the optimal
regularity of ϕ is B1/3,3∞,loc(Ω); see [12].

We also state the same result for curves in Γe, whose proof is analogous to the one of Lemma 4.6.
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Lemma 4.8. Let (γ, t−γ , t+γ ) ∈ Γe, t ∈ (t−γ , t+γ ), and set x̄ = γx(t) and ā = γa(t−) ∧ γa(t+). Then there exists an
absolute constant c > 0 such that for every δ ∈ (0, π/2) at least one of the following holds true:

lim inf
r→0

L2({x ∈ Br(x̄) : ϕ(x) ≤ ā + δ})
r2

≥ cδ,

lim sup
r→0

ν(Br(x̄))
r
≥ cδ3.

The main result of this section is the following proposition.

Proposition 4.9. For ν−jump-a.e. x ∈ BR,

lim sup
r→0

ν(Br(x))
r
> 0. (4.18)

Proof. For ν−jump-a.e. x̄ ∈ BR, one of the following assertions holds:
(i) There exist (γ, t−γ , t+γ , t, x, a) ∈ G−h,jump and (γ

󸀠, t−γ
󸀠, t+γ
󸀠, t󸀠, x󸀠, a󸀠) ∈ Γe such that

x = x󸀠 = x̄ and γ󸀠a(t󸀠+) ≤ a󸀠 = a < γa(t−).

(ii) There exist (γ󸀠, t−γ
󸀠, t+γ
󸀠, t󸀠, x󸀠, a󸀠) ∈ G+e,jump and (γ, t−γ , t+γ , t, x, a) ∈ Γe such that

x = x󸀠 = x̄ and γ󸀠a(t󸀠+) < a󸀠 = a ≤ γa(t−).

Since the two cases are equivalent, we consider only the first one. We apply Lemma 4.6 to the curve γ and
Lemma 4.8 to the curve γ󸀠 with δ = (γa(t−) − a)/3. If condition (ii) holds in at least one of the two cases, then
the statement follows; otherwise both of the following inequalities are satisfied:

lim inf
r→0

{x ∈ Br(x̄) : ϕ(x) ≥ γa(t−) − δ}
r2

≥ cδ2, lim inf
r→0

{x ∈ Br(x̄) : ϕ(x) ≤ γa(t−) − 2δ}
r2

≥ cδ2.

This condition excludes that x̄ is a point of vanishingmean oscillation of ϕ. Therefore, x̄ ∈ Σ by Theorem 1.2,
i.e. (4.18) holds true.

4.4 Conclusion

Collecting the results in Sections 4.2 and 4.3, we obtain the rectifiability of the measure (px)♯U−ϕ.

Proposition 4.10. The measure (px)♯U−ϕ is 1-rectifiable.

Proof. First, we observe that since π− is concentrated on G and

G ⊂ (G−h,jump × G
+
e ) ∪ (G

−
h × G
+
e,jump) ∪ (

L
⋃
l=0
(G−h,l × G

+
e,l)),

it follows from the definitions of π−l and π
−
jump that

π− ≤ π−jump +
L
∑
l=0
π−l .

In particular,

(px)♯U−ϕ = (p
1
x)♯π− ≤ (p1x)♯π−jump +

L
∑
l=0
(p1x)♯π−l .

Since (p1x)♯π−l is 1-rectifiable for every l = 0, . . . , L by Proposition 4.5 and (p
1
x)♯π−jump is 1-rectifiable by Propo-

sition 4.9 and Theorem 1.2, also (px)♯U−ϕ is 1-rectifiable.

As mentioned at the beginning of this section, the rectifiability of the positive part (px)♯U+ϕ can be proven
following the same procedure. Therefore, this concludes the proof of Theorem 1.3.
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