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Abstract: The difficulty of controlling the charging of electric buses (EBs) and their effects on network
demand are discussed in this study. The solutions suggest a call for worldwide, complex infras-
tructures that manage EVs and EBs equally. Additionally, the Distribution Network (DN) must
be prepared for an increased prevalence of reverse power flow caused by widespread distributed
renewable generation. This paper focuses exclusively on EBs since they have higher capacity and
predictable charging patterns, which makes them more significant for the DN in the context of a
transition to complete vehicle electrification and technologies that are mature enough to be hosted.
The proposed algorithm employs the Day-Ahead Energy Market (DAEM) in the Smart Charging
(SC) to forecast the network operating circumstances. Additionally, the technique makes it possible
to facilitate distributed photovoltaic (PV) generation, allowing network demand to be referenced
depending on net demand. It also identifies an appropriate individual charger current per vehicle
and per-time-step with load-levelling or peak-shaving as its primary goal. The final real demand
demonstrates that a coarse correction of the demand is possible. According to the analysis of the DN
voltage profile and associated line losses, the ideal node position location of the CS is dependent on
PV penetration.

Keywords: electric buses; distribution network services; charge management algorithm

1. Introduction

A major contribution across several sectors is required in the context of the general
transition to greener economies and smarter technologies. Transport and energy, for
example, account for 63% of worldwide CO2 emissions [1]. Furthermore, there is an
official obligation to attain Net-Zero-Emissions by 2050 in order to limit global warming to
1.5 °C [2]. These demands coexist with a rapidly increasing electrification of the automobile
sector and an increase in distributed and centralized renewable generation. As these
actors must be introduced into the electricity distribution system (Distribution Network
(DN)) if an energy transition strategy is to be realized, the question arises of whether
the distribution network is prepared to host them. Indeed, an uncontrolled introduction
could have an impact on how the network operates. As a result, there is considerable
study interest in appreciating solutions that handle the incorporation of Electric Vehicles
(EV) and Renewable Distributed Generation (RDG) [3–5]. Vehicle-to-Grid (V2G) systems,
Smart-Grids (SG), and Internet-of-Things (IoT) are examples of advancements that facilitate
and manage these elements. These new paradigms arise as fresh solutions to looming
needs. These proposals are often characterized by a high level of complexity, necessitating
the use of technologies, such as a capillary communication infrastructure, to maintain
real-time control. Furthermore, the DN, where EVs and RDG will be prevalent, will
require a radical intervention to be able to host forecasted EV and RDG expectations [6].
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These factors necessitate for improved implementation in transportation infrastructure and
electricity networks to be prioritized if climate change timelines and technology integration
goals are to be realized. As a result, a greater study effort is required to comprehend
the aforementioned (technical) issues associated with V2G in the context of the technical
restrictions of the (DN) and the regulatory aspirations set by governments. Moreover,
modelling V2G with an emphasis on public cars, using an approach that does not require
extreme measurement system modifications, could also align with Government goals. The
focus of this study was on public EVs, notably Electric Buses (EBs). The technology could
be applied to other types of electric vehicles that are expected in communities, such as
municipal refuse trucks or school buses. Iclodean et al. claim that public EV will be the
first prospective users of a V2G service [7]. The complete deployment of private EVs for
V2G prospects has various hurdles, including an effective economic reward system, more
robust demographic research and appreciation, and user behavior (including variables
such as “range anxiety”, etc.) [8]. EBs avoid such ‘difficulties’. They are supported by the
government, and as stated by P. Yannick et al. an EB storage system is distinguished by the
enormous capacity of the batteries and their standardization potential. Furthermore, public
EBs are governed by timetables, which may eliminate the (utilization) unpredictability that
characterizes private EVs. Prioritizing public EBs in the development of a V2G service
is expected to have the effect of incentivizing the transition to greater integration, which
could also support private EV with an overall impetus to encourage more renewable
RDG opportunities [9]. It has also been shown that public EBs can recoup their capital
expenditures by providing an energy (capacity) service during peak demand hours [10].

According to Uddin et al. [11], three primary methods are currently available to
control the electrical demand: the use of Battery Energy Storage Systems (BESS), De-
mand/Response (DR), or the management of Electric Vehicles (EV). The management of
the EV, is currently not feasible due to a lack of vehicles and infrastructure to provide an
adequate service. However, the number of EV sales shares in the Net Zero Scenario (NZS)
is expected to expand exponentially [12], implying that there will be a significant amount
of energy to manage (EV, in this regard, count as load and storage). Peak shaving and
load levelling may be accomplished by cleverly charging the vehicles (“Smart Charging”
techniques) to achieve the desired load at the grid side, while concurrently charging the
vehicles from the consumer/load side. This method has significant drawbacks as well
however, because EVs are only active on the grid while parked. A single car has little
effect on the load side, and charging synchronization is a difficult operation because it
is dependent on the user’s unpredictable behavior. Controlled charging infrastructures
are scarce, and developing them in metropolitan areas is particularly difficult. This offers
further justification why the research presented here concentrates primarily on EBs to facili-
tate V1G (or Unidirectional Smart Charging), because V1G has the potential to overcome
capacity, scheduling, and cost issues. Even though the IEA stated in [13] that there will be
less than 11% EB stock in the world by 2030, the trend for urban areas suggests the contrary.
In order to progress towards more environmentally friendly scenarios, some major cities,
as discussed in [14], have already begun to transition to (mostly) “car-free” cities and to
migrate to public transportation systems. In this regard, EBs offer a peak shaving or load
levelling service, which might be included in an Ancillary Service Market or subsidized by
the Government to make it competitive and easy for the CS [15]. This study, which is an
expanded version of our work that was published at the 57th International Universities
Power Engineering Conference [16], concentrated on a Smart-Charging (SC) algorithm that
makes use of demand data from the Day-Ahead-Electricity-Market (DAEM). The algorithm
provides a Load Leveling or Peak Shaving service by managing the current absorbed by
each EB in a Charging Station (CS), while satisfying the charging requirements of the EBs
and adhering to a reasonable connection pattern defined by the fleet limit of the EBs.
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2. Materials and Methods
2.1. Single Battery Modelling

Batteries are at the core of the CS system and this component plays a strategic role
in the EV field. Therefore, there is a plethora of studies on the topic [7,17–19]. Some
of the technologies employed include: Molten Salt (Na-NiCl2), Nickel Metal Hydride
(Ni-MH), Lithium Ion (Li-Ion) and Lithium Sulphur (Li-S). In the study undertaken by
Iclodean et al. a comparison among different type of batteries applied on the same vehicle
is considered. The most commonly used commercially is the Li-Ion battery [7], which has a
small “memory effect” that reduces the initial capacity over time. Even though the energy
density is higher, the tests demonstrated that, for the same conditions, the Li-Ion has less
autonomy (battery duration at a specific load level) than Ni-MH, which are the also widely
used because of their high energy/power density. Li-Ion is currently the most convenient
battery technology, even with the associated strong drawbacks related to the autonomy
and temperature sensitivity. Further, due to the fact that 25–50% of the entire cost of an
EV concerns the battery, it is essential to be cognisant of the associated implications. In
the context of a potential fast transition to EV, it is compulsory to implement technologies
that are economically competitive in order to incentivize such transition. Consequently, the
battery type that has been taken into account in this work is the Li-Ion since it has a strong
competitive price and it is the battery technology that applies most satisfactorily to the
relevant (technology) transition considerations. The Li-Ion batteries can be controlled by
adjusting: voltage, current, temperature and the load supplied by the battery. As suggested
in [20], this makes them suitable for electrical vehicles and grid applications. Generally, the
most important functions that define the state of the battery are Equations (1) and (2):

SoC% =
1

(CrVr)

t∫
0

i(τ)v(τ)dτ (1)

v = f (SoC%). (2)

Among the different typologies to model battery effects, the most suitable for EV’s
applications is the Equivalent Circuit Method (ECM). This method uses lumped electrical
components and controlled voltage sources in order to model the battery’s physics and
chemical reactions, therefore it is possible use to electrical circuits solvers, in particular the
one suggested by Tremblay in [10]. This model has the peculiarity that requires just three
points from the manufacturer’s discharge SoC-Voltage curve to obtain the parameters. In
addition to this, the SIMULINKTM software uses this model in the SimScape library as
the battery. This model is characterized by two components: a fixed internal resistance
Rint that models the complex physical and chemical reactions that causes voltages drop
and heat (modelled as Joule Effect). The latter is an ideal controlled voltage generator that
represents the Voc (Open Circuit Voltage) of the battery as presented in Equation (3). An
extraction of the battery modelled characteristic is contained in Table 1, starting from the
battery’s rated capacity and voltage. Zhang X et al. considers an ECM model that has some
limitations [21]. It is necessary to be aware of the hypothesis used by the model in order to
not overestimate the results of the algorithm. For the work presented here it is important to
consider how the voltage behaves during the charging pattern because it is focused only
on the unidirectional smart charging process. In order to compute the actual energy that is
stored in the battery, it is necessary to know the voltage at the terminals as it is possible to
see in Equation (1).

Table 1. Parameters Tremblay’s Equation.

E0[V] R[Ω] K[Ω, V/(Ah)] A[V] B[Ah]−1
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Vbatt = E0 − R · i− K
Q

Q− it
· it− K

Q
it− 0.1 ·Q · i + Aexp(−B · it). (3)

Li-Ion batteries are extremely sensitive to temperature [22]. Frequent charge/discharge
cycles also decrease the life cycle of the batteries [23,24]. In addition, the internal resistance
changes over time when the internal structure of the electrodes changes. The effects are
more intense when the batteries are operating at high C-rates (the unit used to measure
the speed at which a battery is fully charged or discharged). To avoid the aforementioned
adverse effects caused by the fast charging, it is common to restrict the battery’s operation
at their nominal C-rate, however Amietszajew et al. proved that it is possible to use the cells
in a wider C-rate range [15]. Since the batteries of an EV could be solicited to employ higher
currents (for example, an EB), it is necessary to know the SoC% range that could resist fast
charging. The first safety limit is to impose a lower limit on the SoC, since the voltage will
drop drastically when the SoC is close to the lowest tolerable value, for instance, an SoC of
20%. When the battery reaches the highest values of permitted SoC, the internal resistance
Rint of the battery tends to grow, increasing the over voltage, Joule Effect would result in a
degradation of the cathode. Therefore, a safety limit is imposed for a SoC of 80% to limit
the temperature, lithium planting and extreme polarization (which causes a voltage spike
when the SoC ∼= 100%). This is why a high Constant-Current (CC) charging for an SoC
of less than 80%, and a Constant-Voltage (CV) charging with SoC greater than 80% are
adopted in fast charging techniques. Even if this is the most common charging protocol,
it is also the least time-efficient. The possibility of charging the batteries at higher rates
when 20% ≤ SoC ≤ 80% is suggested by Amietszajew. To achieve a safe charging pattern,
it is not necessary to impose a gradual reduction of the C-Rate, as the current magnitude
will follow the Load demand, which increases and decreases naturally and gradually. In
addition, outside the periods where there is an under load demand (and for high currents
to facilitate some compensation), the charging current is less than or equal to nominal.

By considering just the polarization effects of the Tremblay model, a test on the voltage
increase of a Li-Ion battery pack with 650 V as rated voltage, 660 Ah capacity Q and a
charging current of 600 A was carried out. As the polarization effect is proportional to
the current Equations (4) and (5), it was selected as the worst case in order to verify the
discrepancy between the rated and distorted voltage.

VV.Pol = K
Q

Q− it
· it (4)

VR.Pol = K
Q

it− 0.1 ·Q · i. (5)

The result appreciable in Figure 1 shows that the divergence of this voltage during
the charging pattern is not significant since it is less than 5 V (0.77%) in the range bounded
between 20% and 80%, demonstrating that it is possible to use the rated voltage curve as a
reference. In addition, there is the possibility to consider the voltage constant during the
charging process as the error incurred can be neglected. For a more qualitative result, the
algorithm employs a (MATLABTM) polyfitted Voltage characteristic that is a function of the
SoC for more precise results when the battery is close to 80%.

2.2. Single Charger and Linearization

The charger choice has an important influence on how the batteries are employed. The
first difference is the possibility to have either an internal charger (On-Board Charger, in
practice a controlled rectifier) in the EBs or one that is accessed externally [25]. This method
is adopted primarily in private EVs that have to be charged in domestic environments
by connecting the EV directly to a low voltage AC supply via a plug-in receptacle [26].
Therefore, the capacity of the internal charges are limited to small powers/capacity and
it is not possible to have external control because the vehicle self-modulates the power
according to its charging protocol. For the purposes of this paper, there will be an emphasis
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on external chargers, which are primarily connected to a Charging Station (CS). This charger
typology can facilitate more power, and use higher voltage levels to reduce the current
magnitude, and as a result, the associated charging losses.
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Figure 1. Limited polarization effect between 20% and 80% SoC

There are two possibilities associated with external chargers and their control typolo-
gies. The first employs a combination of an inverter and a DC-DC converter per vehicle.
The alternative one employs a DC-DC per vehicle to connect all the converter primaries to a
common DC-Busbar and then a single larger inverter connects the vehicles to the grid. The
first method is mostly for isolated charging columns and has the peculiarity of a relatively
small inverter size. The typology is useful when there is the possibility to combine a small
size of renewable distributed generation, with an EV. By controlling the DC-DC and the
EV’s inverter, it is possible to track the power from the RDG (for example a domestic PV
generation) and compensate for the power produced to absorb more uniform power from
the distribution network [27]. The effectiveness of this method depends on the quality of
the power tracking system and the coordination between all the vehicles connected to the
specific node.

As the number of vehicles supplied by the same CS increases, the coordination of the
DC-DC and inverters becomes more complex, and the second configuration, as depicted in
Figure 2, is preferable, where the RDG is connected to the AC side and the vehicles are all
controlled with DC-DC converters and then connected to the AC grid with a single inverter.
With the second configuration, it is possible to modulate the current absorbed by each EV
by controlling the DC-DC converters and then by regulating the larger inverter capacity to
the grid’s requirements. The coordination in this case is simpler, but it is necessary to rely
on a more expensive inverter. Moreover, there is no redundancy if the inverter becomes
out-of-service. Since the energy that an EV could exchange is limited, the service provided
in this approach is more effective as “Power intensive” rather than “Energy Intensive”, to
accommodate any power fluctuations. The instantaneous value of the power generated
by the RDG has to be tracked and communicated rapidly in order to have an effective
control over the devices. Even if studies like [27], proved the effectiveness of the method,
the technology required is not yet available and the DN is not ready to host proficiently this
type of service. Therefore, since the goal of the present study is to focus on a technique that
is easily accessible from a technological and management perspective, mono-directional
power-flow is prioritized. In this regard, the choice of the DC-DC converter could be further
discussed in order to obtain a more efficient and economical service. The bi-directionality of
the half-bridge is possible with the introduction of more components rather than a DC-DC
Buck or Boost [28]. Thereby, the efficiency is sacrificed in order to obtain a bi-directional
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power flow, which is not a requirement for the algorithm proposed here. So a DC-DC Buck
converter is preferable both in terms of its efficiency (cost, complexity) and operability in
the context of the inevitable time available before a full transition involving the full range
of communications control is available.

Figure 2. Schematic EV DC-Bus [27].

The other problems involving EVs and the CS, include the uncertainty of the EV’s
parking pattern; plugging problems; different typologies and sizes of the batteries, etc. [27].
These aspects add randomness to the EV’s charge planning and management. EBs have:
higher battery capacity, same size and typology, scheduled mission. These characteristics
lead to a relatively higher involved power, the elimination of the diversified approach based
on vehicle’s model, and a reduction in the randomness of the charging pattern. In order to
have simpler relationships that involve constant parameters in the relative time-frame, it is
necessary to modify the behavior of the inputs in Equation (6).

E[Wh] =
t∫

0

i(τ)v(SoC(τ))dτ. (6)

Since the batteries are usually used in CC mode in the fast charging range, Equation (1)
can be expressed without the voltage terms and if the current is considered constant
with discrete time steps, it is possible to simplify the SoC expression as Equation (7).
Subsequently, since this SoC formulation is related to the [Ah] unit of measurement, it is
necessary to modify it in terms of energy in [Wh] to facilitate a comparison with the data
from the DAEM. To do so Equation (2) and more specifically the spline poly-fitted function,
is employed. Therefore, energy, as described in Equation (6), becomes Equation (8).

SoC∆t =
I · ∆t

Cr[Ah]
· 100 (7)

E[Wh] =
SoC · Cr[Ah]

100
·V(SoC(I)). (8)

With a view to achieving a process linearity in terms of power transfer, as it facilitates
the EBs to be operated separately while still having a unified end impact on the final CS’s
power, it is more useful to exploit the analytical expression to facilitate a forecast of the
actual energy on subsequent discrete time steps. With Equation (9), it is possible to find the
new SoC level and the linearity of the formulation is clear. The computation of the new
charge level is more accessible in SoC form, as provided in Equation (10).

SoCt+1 =

(
100 ·V(SoCt) · ∆t

Cr[Ah] ·Vr
·
)

I + SoCt (9)

Et+1[Wh] = Et +
SoCt+1 ·Vr · Cr[Ah]

100
. (10)
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The application of Equation (9) has been verified by simulating the charging process
and including the Buck Converter’s switching effect, with different constant currents to
confirm the linearity with a model built in SIMULINKTM. By controlling the current with
different values, the power, as illustrated in Figure 3, and the energy, as portrayed in
Figure 4, at the DC/DC Buck terminals, follows a relatively linear and ‘constant’ pattern
that is proportional to the current’s magnitude including the additional implications caused
by the Buck’s switching.

Figure 3. Buck converter power

Figure 4. Buck converter energy.

In conclusion, the approach advocates for linear relationships in the consideration of
battery energy and SoC. In achieving this approach, a more complex model that includes
the polarization effects, can adopt a linear energy/power with a step-wise current pattern,
if the battery operation is restricted within the 20–80% SoC range. Consequently, it is
possible to associate the current and power quantities through suitable vectors (developed
in MATLABTM) and compute the current required. This approach facilitates the opportunity
to test iteratively the energy to be provided to the EBs in the time step t + 1 until the entire
energy of the whole CS matches the one required to improve the DN demand’s shape.

2.3. The Functionality of the Smart-Charging Algorithm

Some methods for managing electric buses or charging stations can be found in the
literature. Zhuang P. and Liang H. proposed a stochastic method [29], Han B. et al. a



Electronics 2023, 12, 852 8 of 34

method that uses timetables and routing as constraints [30], and Hasan M.M. et al. a
method that improves electric motor efficiency [31]. Gkiotsalitisin K. emphasized the
necessity of regular charging periods for EBs in lowering passenger travel time [32]. Zhang
C. proposed a strategy for overall optimization of EB scheduling [33].

The algorithm presented in this study intends to propose a solution that may be
employed in a smart grid transition by leveraging readily available data (DAEM, data-
sheets, etc.) to construct a CS load profile and the EB scheduling, to achieve a given demand
shape in a restricted DN. Furthermore, exact currents and EB schedules are prepared every
15 min for general CS management purposes.

On the other hand, the algorithm could be used to forecast the effects of a given CS
and EB on different DN configurations (loads, PV, etc.). It allows for the photovoltaic (PV)
power and the penetration of self-consumption (allotment of PV power saved in batteries
during the day to be used during the night to reduce power absorbed by the grid ) to be
altered. To simulate alternative scenarios, the quota of the PV installed in the DN and
the self-consumption as a proportion of its rated installed power can be changed. As the
generated PV power saved for local consumption is not part of the usual load, it reduces the
PV curve magnitude, thereby mitigating the Duck Shape (a sinking impact of the demand
shape during the noon hours caused by increased PV generation, resulting in lower grid
energy demand ) [34]. The load is further decreased during the hours of darkness, when
demand is already low. Furthermore, the produced power can be adjusted from 0 to 100%
of the rated PV output to simulate varied weather situations.

The first operation is to polyfit the original demand curve in order to obtain Equa-
tion (11). The algorithm requires the target level for the relevant day, which could be partial
peak- shaving or total load-levelling, and produces a vector containing the objective de-
mand per time step, Pobjective. The Pobjective vector is in discrete form, to compare the actual
demand with the objective, and Equation (11) is discretized by computing the average
power in a ∆t = 0.25[h] time period, consistent with how DAEM is presented. Thereafter,
the equation represents its vectorial form Pload.

Pload = f (t). (11)

Thereafter, the energy difference between the actual demand and the aim is estimated
for each time step i long ∆t, resulting in the Eload, Equation (12) with n = 24[h]/∆t = 96
elements. The power absorbed by the charging station will be already incorporated in
Pload by taking into account each EB continuously absorbing the rated current Ir. During
the Pobjective, however, the vehicles will absorb a “smart current” Is based on their SoC%
status. The algorithm applies Ir, the current to each EB j at each time step by computing
the new SoC with Equation (9) and then translating it to [kWh] with Equation (10) to
acquire the energy Ej(r). To start the smart charging process, the initial current Is = 0 is
enforced to produce Ej(s). Then, in order to compute the difference in energy between the
normal operation and the smart process, the full CS’s energy transition with all m EBs is
expressed in Equation (13). The EBs will be charged with the same Is during the smart
charging process, with the exception of vehicles that, if charged with Is, would exceed the
SoC = 80%. As a result, the smart current for these vehicles will be charged with a current
Ie calculated using Equation (14).

Eload = (Pload − Pobjective) · ∆t, i ∈ [1, n] (12)

∆ECS = f (Is) =
m

∑
j=1

(Ej(r) − Ej(s)) (13)

Ie = (80− SoC%) · Cr ·Vr

100 ·V · ∆t
. (14)

The algorithm will first calculate the energy for each EB in order to obtain Equation (13)
for the i time step, and then the objective function Equation (15) will be tested. More
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specifically, it is checked if the chosen current Is achieves the correct reduction/increase in
CS energy at time step i. If the criterion is not met, the process is repeated by increasing
Is by 0.1A until the condition is fulfilled. The SoCi+1 generated by Equation (9) is then
assigned to SoCi for the next time steps i + 1, and the method is continued until the last
time step i = n for each element of Eload[i]. Figure 5 illustrates that it is the rise/reduction
of energy between each time step that affects the ultimate load form, and not the energy
already stored in the vehicles. In Figure 5 case, Is > Ir with Pload[i] « Pobjective[i], therefore the
vehicles start at a specific SoC% represented in yellow, the orange increment represents the
additional charge that should be achieved if the vehicles were charged with rated current
Ir. Thus, the blue level represents, in this case, the one that is required in order to achieve
the DN requirements by charging the EBs with the smart current Is (the initial demand
lower than the required one).

∆ECS(Is)− Eload[i] ≤ 0. (15)

SOC level of vehicles

0 10 20 30 40 50 60 70
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New energy with smart charging

New energy with rated currrent

Old energy level

Figure 5. EBs SoC at time step t and t + 1.

The smart current will have four cases as in Equation (16). The case that could present
difficulty is when the difference between the demand and the objective power is greater
than the one that achieves the proper CS (Pload[i]» Pobjective[i]). In such a case the algorithm
imposes Is = 0, so it turns off the entire CS and reduces the load as far as the CS can.

Pload[i]� Pobjective[i]⇒ Is = 0
Pload[i] < Pobjective[i]⇒ Is > Ir

Pload[i] > Pobjective[i]⇒ Is < Ir

Pload[i] = Pobjective[i]⇒ Is = Ir

, i ∈ [1, n] (16)

The Pload[i]« Pobjective[i] example could take a long time to compute because the current
only grows by 0.1A per iteration until it reaches the correct value or the maximum eligible
current. To improve this issue, an adaptive current increment could be employed. The last
unmarked instance with Is < 0 might be implemented with a DC/DC Half-Bridge and
is thus ignored. As a result, the currents (Is, Ie) and SoC% are saved in Equation (17) for
each iteration at step I for each EB j. Vehicles that achieve SoC = 80% at time step i are
then connected with vehicles that achieve SoC = 20% at i + 1, which is considered the
best situation.

SoC%[j, i], Is[i, j], i ∈ [1, n] j ∈ [1, m]. (17)

The tracking of vehicles that reach SoC = 80% is recorded in a vector Cnn Equation (18)
that contains the number of EBs that have reached the limit, zi < m. The entire fleet is
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then computed using Equation (19) to achieve perfect load levelling. The Cnn vector is
used to create the time slots represented by the bars in Figure 6, where the vehicles must be
connected in order to have the sufficient power in the CS for the DN’s load-levelling. There
is a need to have more EBs available to connect during the time steps where the number
of ideal exchanged vehicles is higher. In general, Equation (19) will generate numbers
that have no physical or economic meaning (e.g., 70 EBs in the CS with a total fleet of
1000 EBs), hence the value is normalized by inputting the actual size of the available fleet.
At this point, the method assigns the real number of EBs uniformly in the Cnn slots and
generates the Cnnreal Equation (20) vector, which will include z′i ≤ zi EBs as elements, with
the remainder set automatically in idle mode (Is = 0) by Equation (14).

In reality, some EBs with Is = 0 will remain in the CS as there will be a practical
constraint in the limitation on the number of EB available to exchange; however, vehicles
in idle mode (with SoC = 80% ) will be able to begin their mission. In other words, it is not
necessary to have m vehicles in the CS at all times. This vector might be used to build the
CS timetables, and it is possible to see graphically which time steps are most relevant to
actuate the exchange, in order to synchronise the mission with the electrical demand needs
(as illustrated in Figure 6). The blue bars in Figure 6 appear only in some time steps and
show the number of vehicles zi that must be connected at time step i in order to achieve an
appropriate load-leveling (within the CS’s power restrictions).

Cnn[1, n] = [z1, z2, ..., zn] (18)

Fideal = m +
n

∑
i

Cnn[i] (19)

Cnnreal [1, n] = [z′1, z′2, ..., z′n]. (20)

Furthermore, in order to avoid impractical connection patterns, the starting SoC%
value must be accurately adjusted. If all of the EBs are set to t = 0 with a SoC of 20%, the
connecting pattern will look like Figure 6, where the vehicles reach the SoC = 80% value at
once as it is possible to notice from the few high blue bars.
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Figure 6. Connection with initial SoC = 20% for all EBs.

However, a uniform distribution of the initial SoC in the range of [20–80%] will yield
a more realistic connection pattern (as illustrated in Figure 7) and produce an accessible
connection pattern, as it possible to notice from the number and the height of the blue bars.
Since the EBs are generally all charged with the same Is, by imposing this initial condition,
the number of the disconnected or connected ones are well distributed over 24 h.
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Figure 7. Connection with uniformly distributed SoC.

The ultimate mutual effects were computed in power terms and were compared to the
starting power demand. Equation (21) computes the power Pr(cs) of the CS when the EBs
absorb Ir, and Equation (22) computes Ps(cs), the total power absorbed by the CS with Is.
The final load was then calculated using Equation (23) and plotted to ensure the accuracy
of the load levelling/peak shaving.

Pr(CS)[i] =
1

∆t

m

∑
j=1

(Ei,j(r)), i ∈ [1, n] (21)

Ps(CS)[i] =
1

∆t

m

∑
j=1

(Ei,j(s)), i ∈ [1, n] (22)

Pnewload = Pload − (Pr(CS) − Ps(CS)). (23)

Holistically, Figure 8 illustrates a representation of the whole algorithm in operation.
Color maps are another type of output produced by the method by utilizing the data

stored in Equation (17). They are useful for providing a graphical global picture of the
entire charging operation during a 24-h period. Looking at the current’s color gradient
can provide information on the DN’s demand shape. The maps are generated from two
matrices of size [i, j], which may be transposed into EXCELTM tables to generate a charging
pattern plan for each EB at each time step. A graphical depiction is required to have a
global view of what is going on in the CS. Furthermore, the amount of the absorbed current
can be shown to represent the influence on the network. The Is matrix in the ideal scenario
and the SoC%, with the charging current Is and SoC level (with the color) of each vehicle j
at time step i.

Figure 9 depicts the illustration of Equation (14) when the EBs are nearly fully charged.
For example, at the row corresponding to 4am, it is possible to see that the charging current
is 140 A for most of the EBs. However, for the vehicles connected to the slots 20 to 50, the
current color is different, therefore those vehicles are charged with a lower current (from
20 A to 120 A) because they are close to the full charged state. That is, for the precise vehicle
j that will exceed the 80% SoC, the charging current will be tailored as Ie to achieve the exact
full charge. The following square has the same color as the others since it represents a newly
connected (discharged) EB that charges properly with Is. Aside from the nearly charged
vehicles, all of the others have the same charging current, which is why the color seems
uniform during time step i. It is possible to note that the color does not vary monotonously



Electronics 2023, 12, 852 12 of 34

during the day, which is due to the network requirements: when Pload[i] > Pobjective[i], the
indicator turns red (high Is) and progressively turns blue (low/zero Is).

Figure 8. Algorithm flowchart.
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Figure 9. Zoom of the Currents Ie for the nearly charged EBs.

Since the current is represented in Figure 9 as a percentage of the Is/Ir · 100, there are
some specific cases:

• Dark Blue when Is = 0;
• Light blue when Is < Ir;
• Green/Orange when Is ' Ir;
• Red when Is > Ir.

On the other hand, the SoC map Figure 10 can be used to depict the connection spots
and the charging process velocity. When the gradient takes longer to transition from blue
to red, the CS is absorbing less current, and vice versa. The map is handy for visually
verifying the amount of time that the EBs would require to be fully charged by looking at
the ∆t between the top blue square and the last red square.
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Figure 10. SoC color-map.

3. Results
3.1. Verification Criterion

As this article focuses on viable technologies, a standardized approach is required.
This is also stated in [35], where Farzam Far M. et al. suggest that a standard approach is
required to ensure a smooth transition in the increase deployment of the EB. The EB quota
in 2021 was 4% of the global bus fleet and it is forecasted that it is necessary to have at
least 20% of EB over the total fleet by 2030 in order to achieve the Net Zero Scenario [36].
This shows the necessity to have a common approach to incentivize the production of
universal components and methods. At present there are numerous commercially available
charging technologies that can be categorized as: conductive charging, wireless charging
and battery swapping. As the latter two technologies do not currently have a market in
Europe, the greatest solution for simplicity (both economically and constructively) is to
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employ conductive approaches. The conductive chargers might be via Plug-In service or
via Automated Connection Devices (ACDs), with the former being more suitable for small
private vehicles with a power range of 60–150 kW and the latter being preferable for public
EVs with a power range of 150–600 kW. The ACDs are categorized in the following ways:
infrastructure-mounted (Type A), roof-mounted (Type B), and floor-mounted (Type C).

Although the European Parliament Directive 2014/94/EU (AFI Directive) provides
some guidance for pricing infrastructures, there is (currently) no information relevant to
EBs. This is critical, especially as EBs are expected to be the first actual user fully integrated
into the electrical grid [9]. According to Farzam et al., there are programs such as ZeEUS
(Zero Emission Urban Bus System) that aim to establish a standardization approach to
EBs technology [35], and the CEN-CENELEC (European Committee for Electrotechnical
Standardization) has begun to apply the ZeEUS recommendations. Another project is
ASSURED, which attempts to create a common rapid charging strategy for all public
vehicles (EBs, electric garbage trucks, delivery trucks, and so on).

The ASSURED project is a continuation of the ZeEUS project and is primarily con-
cerned with the previously mentioned ACD charging techniques. There is also the AS-
SURED 1.0 initiative, which aims to develop an interoperability reference and test protocol
for charging infrastructures [37,38]. The issue of safety is very important because EBs
require more power than private EVs; hence, if a public infrastructure will enable EBs, it
is crucial to be aware of a preferred technique to ensure operational safety. It is possible
to receive information on what additional safety precautions are available that are purely
focused on the battery [39,40]. Other components, such as the connection, are crucial
because special care must be taken in the case of Plug-In services that come into touch with
people during the charging process. For example, the SAE J1772 standard limits the use of
connectors based on voltage type and magnitude as provided in Table 2.

Table 2. Chargers standards.

Charging Standards

Level Type Voltage Current Power

1 AC 120 V 16 A /
2 AC 208–240 V 80 A 19.2 kW
1 DC 50–1000 V 80 A /
2 DC 50–1000 V 400 A /

The article focuses on an ACD because of the enhanced performance (Type B). The
voltage and current levels are higher in this case because of the increased demand for
power from the EBs. Table 3 [41] of the IEC 68151 specifies the relative power, voltage, and
current that an ACD “Opportunity Charger” can support. The Volvo Opp Charger and EBs
as presented in Table 4 will be specifically considered in order to base the algorithm on
practical and achievable values [42].

Table 3. IEC levels.

Output Requirements

Power Levels (kW) 150, 300, & 450 kW
DC Voltage (V DC) 450–750 V

Frequency (Hz) 50/60 ± 2
0 to 200 A, 750 V, 150 kW

Output Current (A) 0 to 400 A, 750 V, 300 kW
0 to 600 A, 750 V, 450 kW
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Table 4. Volvo Charger and EB [42].

Volvo OppCharger

Maximum charging power level for EB (kW) 450
Output DC voltage (VDC) 500–750

Max output current at 750 VDC (A) 200/400
Ambient temperature (°C) 30

Volvo 7900 Electric Articulated

Battery type Li-Ion
Voltage (VDC) 600 V

Capacity (kWh) 264–396

As a comparative approach to verifying the algorithm’s performance is not viable with
the examples described in the literature aiming for different results, a separate criterion
must be used. The strategy used in this paper involves several stages. To begin, EB and
CS data that make physical sense are employed, but this approach will not always achieve
optimal results. The first goal is to determine which scenario fits with a relative random
EB and CS and to confirm that it fits with the tendency of the future DN’s composition
(moving towards DNs with prevalence of RDG and storage). The second stage prioritises
the ‘best’ scenario to determine the most suitable configuration or the EB/CS (charging
voltage, number of charging slots, fleet size, etc) and compare it to currently existing CS
regulations in Table 3 and EBs in Table 4.

3.2. Ideal Scenarios

The algorithm can simulate how the DAEM demand would be affected if smart
charging was enabled. Furthermore, the DAEM can be used to simulate various CS and
network scenarios. It is also possible to create scenarios with varying RDG and storage
levels. It is interesting to first examine how the CS and network respond to various RDG
scenarios in order to determine the best charging condition in the ideal case and to confirm
whether the algorithm produces meaningful values under different operational conditions.
The ideal case assumes that as many vehicles as needed can be connected, so when a
vehicle reaches SoC = 80%, the next time step is changed to SoC = 20%. This will produce
an impractical fleet size. When a practical/plausible fleet size is imposed, the behavior
will have a detrimental effect on the network. Therefore as an overview of the best-case
scenario, a study of the ideal condition is considered and then by imposing practical
considerations (such as fleet size) an analysis of more realistic network reactions can be
considered for an enhanced assessment of network limitations. As the algorithm requires
the ideal result in any case, studying scenarios with the ideal hypothesis requires half the
computational effort, because a more realist appreciation of network performance based on
the smart-charging of a practical EB fleet is achieved by a subsequent implementation of
the algorithm. In other words, a more practical assessment involves two steps: an ideal
charge management solution that is subsequently adjusted by a practical fleet size.

Three ideal scenarios will be considered: one without PV and storage, one with PV
only, and one with PV and storage for self-consumption. For the test, CS and EB parameters
that differ from those used by Volvo Table 4 will be used in the first stage, and a CS with
poorer performance will be used. This is done to determine the convenient scenario for a
CS with EB using a conservative technique that does not use the best CS and EB settings.
The data from Tables 3 and 4 will be utilized as a benchmark in the second stage, where the
goal is to determine which EB/CS values are the most appropriate. The test parameters are
in Table 5, where the voltage is lower than the higher one in Table 3 to verify how much the
EBs would be stressed on the current side. The PPV is the installed power of the PV, which is
modulated to simulate a cloudy day during the no-PV scenario. The PSel f % is considered as
quota of the installed PV, which has a mutual effect on the power produced by the PVs. The
energy used to charge the storage for the self-consumption is a quota taken from the PV’s
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production that will not satisfy the demand, therefore if the self consumption is included,
the power available from the PV is lower. The self-consumption is hypothesized as being
available during “dark hours”, i.e., when the PV’s output is zero. The ultimate goal of each
scenario is to achieve a load levelling at an average level between the highest and lowest
peak, therefore with a constant power of 25MW for 24 h. The summary of the all cases is
presented as a review in Table 6 where different objectives and the relative outcomes are
outlined. More specifically, the best scenario goal is one that seeks to validate how the DN
responds to a CS and whether the most appropriate scenario is consistent with the real
future DNs.

Table 5. Scenarios common parameters.

Pobjective Cr PPV PSel f %

25 MW 400 kWh 10 MW 20%

Table 6. Summary of the different scenarios’ results.

Scenario Case m Vr Ir Fleet Load L. Objective

Base Load Ideal 250 400 100 807 Not perfect Best Scenario
Base Load + PV Ideal 250 400 100 1112 Perfect Best Scenario

Base Load + PV + Storage Ideal 250 400 100 1106 Perfect Best Scenario
Base Load + PV + Storage Ideal 70 700 150 635 Perfect Best CS/EB specifics
Base Load + PV + Storage Real 70 700 150 350 Acceptable Load levelling accuracy

3.2.1. Scenario without PV and Storage (Baseline Consideration)

In the first scenario the load demand before the smart charging process assumes
a shape that could be that of a DN during a winter day or a DN without RDG. The
transformer is over-loaded during the peak demand at noon and there is a large difference
between the highest and lowest peaks. This represents a significant impact on the potential
for load levelling. It is assumed in Table 5 that during the working condition without
smart charging the CS assigns 100 A to each EB in order to have a low-performance CS as
portrayed in Table 3. The maximum power that the CS could manage is 10 MW. In this case,
the difference between the peak and the objective power is more than 10 MW, therefore
the CS is not able to achieve a proper load levelling (a straight characteristic representing
constant demand). In real conditions, the CS would absorb a variable power even with the
Ir imposed to each EB because the number of vehicles in the CS would not be always m.
It is expected that with a real fleet size the result would be worse because the difference
between the power Pr(cs) of a CS charged with Ir and the power Ps(cs) with smart current Is
should be lower, so there should be less power available for the ancillary service. The only
case that might achieve the objective is to not limit the Ps(cs) lower boundary (0 MW), in that
case the power will be negative so the vehicles will deliver power to the network. However
this is not possible with the unidirectional smart charging, but easily adaptable in the
algorithm. It just depends on the associated charger technology. In the analysis presented,
the technology is related to a current controlled DC/DC Buck The current follows anti-
symmetrically the load’s behavior as expected, with a complete shut down of the CS during
the noon’s peaks and an over-load of 120% of the Ir during the morning demand valley.
This is useful information because it was expected that for proper load levelling, the CS
would absorb less current during the highest load peaks and more current during the load
valleys, which is why an anti-symmetrical behavior in relation to the initial load shape is
a first validation of the algorithm’s efficacy. In the first scenario, the applicable fleet size
is 807 in order to achieve perfect load-leveling. During the valley (0–6 a.m.), the CS will
absorb up to 125% of the rated current. However, during peak demand hours at midday,
the CS will not absorb current in order to achieve the load levelling. This has resulted in a
large imbalance in the connection schedule, with no vehicles connected between 10 a.m.
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and 5 p.m. because they are not charging. In conclusion, in a base-line scenario, without
the support or benefit of PV capacity, it would be preferable to assign two different, less
restrictive peak and valley shaving objectives, rather than a single load-levelling objective.

3.2.2. Scenario with PV

In the scenario that includes the PV generation, it is assumed that the PVs are working
at normal operation during a sunny day, with the generated power proportional to the
insulation. The load levelling appears to be achieved in this scenario. This is because the PV
production creates the typical duck curve, and as a consequence, the noon peak is greatly
attenuated. The power difference between the peaks is also reduced as the CS is able to
remain engaged during the demand peaks. Therefore in such a scenario it is possible to
assign the load levelling task to the CS without compromising the charging process. In
respect to the EB charging current and SoC% considerations, it is possible to appreciate
the positive effects of the PV’s introduction. The main difference between Sections 3.2.1
and 3.2.2 is that the current is no longer zero at noon. With the PV scenario the CS has
two peaks of overload during the 24 h, with the second one proportional to the PV power
installed in the DN. The overload during the night time is unchanged. It is possible to
appreciate a relatively homogeneous distribution of EBs when compared with Section 3.2.1.
However the fleet necessary to actuate the load levelling with PV requires 1112 vehicles in
the ideal case. In this example, the fleet is larger than in the previous case since EBs are
charged (slowly) during the noon hours, thus even if the performance of the load levelling
is higher, more EBs are required to do it. As a result, if the actual fleet size is smaller than
the ideal one, greater care is required during the connection allocation. Moreover, the
greater the difference between the “ideal” and “real” scenarios, is the greater the risk for
not achieving accurate load levelling/peak shaving.

3.2.3. Scenario with PV and Storage

In the last scenario, it is assumed that the PV generation is fully engaged (100% of
their rated power, so a sunny day) and that 20% of PPV is stored as self consumption.
The relative load behavior before the load-levelling and the PV production is represented
in Figure 11 and in Figure 12 are depicted the algorithm’s results relatively to the final
regulated demand and the CS. Compared to Section 3.2.1, in Figure 11 it is possible to
appreciate the addition of the night self-consumption, and the decrease in the PV power
capacity available to reduce the demand. This has some effects on the initial demand.
Firstly, the load peak is reduced during the noon period and the night load’s valley depth
is increased. With this DN ‘s scenario it is possible to achieve a full load levelling; therefore,
both scenarios are suitable for such service. The corresponding currents are pictorially
represented in Figure 13.

The graph Figure 12 describes:

• The red line reflects the demand without smart charging;
• The blue line reflects the demand when the CS enables the smart charging;
• The green line highlights the PV production;
• The light blue line indicates the self consumption;
• The purple line indicates the CS’s absorbed power without smart charging;
• The yellow line indicates the CS’s absorbed power with smart charging.

The x axis of the current map Figure 13 represents the number of EB charging slots,
while the y axis represents the time in hours for a 24 h day. The charging current of each
EB is represented by a small colored square 1 with a gradient that reflects the size of the
charging current. Each EB’s slot is represented by a square in the color map, and the current
level by a different color. During a time step i, the squares have a consistent color since
every vehicle is charged with Is, save those that are practically fully charged. If the vehicles
were charged with Is, their SoC would exceed the 80% SoC level, hence their current (Ie) is
automatically regulated in order to achieve SoC = 80%.
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Figure 11. Demand with PV and storage.
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Figure 13. Smart current with PV and storage.
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The current absorbed by the EBs is better balanced during the noon’s hours because
PV’s power is reduced. On the other hand it is possible to notice that, in Figure 13, the
current during the night hours is increased by 150% rather than the previous 120%. This
is because the initial demand moves away from the normal demand due to the night
self-consumption. The connection distribution represented in Figure 14 shows that a total
fleet of 1106 EBs is required.
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Figure 14. Connection with PV and storage.

Even if the charging current is restrained during the noon period, during the night
hours, the number of EBs that are not charged during the day, are charged and connected
faster during the night.

3.3. Real Scenario

Finally, the method may be used to check how the EBs must be charged and exchanged
under various DN and CS situations. The final possibility is the most intriguing and should
be investigated. It enables the construction of the CS and EB patterns while keeping in
mind that the DN is evolving in that direction (storage and RES). The goal is to test various
voltage, current, and the number of charging slots m to determine which configuration is
the best when considering the Fideal , the difference between Pnewload and Pobjective. Because
the graphical interpretation is not strict, the load levelling achievement is evaluated by com-
puting the Root-Mean-Square of the error computed at each time step i with Equation (24),
which assigns a value to Table 7.

Error = RMS(Pnewload − Pobjective). (24)

Table 7. Numerical allocation of the load levelling graphical error.

Load Levelling

Error > 1 Not Perfect
0.3 < Error < 1 Not Perfect during the peaks

Error ≤ 0.3 Perfect

As the problem in this scenario involves three variables, it is challenging to create a
graph with two outputs to determine which combination minimises the Fideal and the error.

In addition to improving the CS and fleet parameters, it is useful to check where the
Volvo’s Table 4 ranks in terms of performance. Assuming that Volvo’s parameters are
designed to be ideal, it might be used as a test to validate the algorithm’s accuracy. If the
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chosen inputs yield more performant outcomes that are comparable to the Volvo’s, this
might be used to demonstrate the algorithm’s usefulness.

Several attempts involving the PV with self consumption scenario are reported in
Table 8. The table can be used to deduce information on how the DN responds to changes
in the CS settings. It is possible to see that CS with fewer m charging slots results in a
limited amount of EBs being required in the fleet. As a result, it is feasible to conclude
that a large CS (in terms of charging slots) is not required to achieve the best results. A
high charging voltage allows the CS to maintain a restrained peak of the smart charging
current (within the limits presented in Table 3), while maintaining a high absorbed power
(to be effective for load levelling). The test with the minor error on load levelling (0.3) was
chosen as a reference because it is expected to increase when a real fleet (less than 635 EBs)
is used. As a result, a working margin is established and the best scenario is defined as
Vr = 700 V, Ir = 150 A, and m = 70. Since the extracted parameters match those in Table 4,
the algorithm’s functioning is validated.

Table 8. CS input parameters test.

Cr[kWh] m Vr[V ] Ir[A] Fideal Error

400 250 400 50 614 0.6
400 250 300 50 529 1.1
400 250 300 100 864 0.3
400 50 400 100 228 2.1
400 50 500 200 404 0.6
400 50 600 300 754 0.3
400 50 600 200 488 0.4
400 50 700 200 582 0.3
400 50 700 100 306 1.2
400 50 700 150 427 0.6
400 70 700 150 635 0.3
400 70 700 100 432 0.6
400 60 700 150 532 0.3
400 55 700 125 404 0.7

The vehicles depicted in Figure 14 are unquestionably impractical in a real world
context. It is not able to adjust the fleet size based on the DN’s daily needs. As a result, the
Freal constraint is applied to the most convenient scenario (using the error as a reference)
from Table 8. It was decided on a Freal = 350 by considering the whole fleet of buses in
Dublin [43], when the real fleet is used, as expected, the inaccuracy on load levelling grows
to 0.6, which is acceptable except for some minor inaccuracies on the greatest peaks. In
this case, the total fleet size is more than 1000 vehicles, with garages that can host from 70
to more than 200 vehicles spread throughout the Dublin area. It is reasonable to assume
that a charging station with 70 charging slots and a small fleet of 350 EB’s are values
consistent with real-world data. The under-sizing of the provided values allows for a more
conservative approach. As a result, it is important to work with Figure 15, which shows
how many vehicles must be attached at each time step (orange). The orange bars over the
blue bars reflect the number of EBs that can be allocated when the fleet size is constrained
and fixed. In this scenario, uniform allocation was employed; however, different criteria
can be used to assign vehicles as long as they are less or equal to the ideal requirements
z′i ≤ zi. As a result, it is possible to appreciate how the application of the real fleet size
changes the curve from that presented in Figure 12 to the curve provided in Figure 16.

When compared to the ideal scenario, the new demand is not adequately levelled
throughout the most impactful peaks and dips. However, the error increased from 0.3 to 0.6,
therefore if a value with a lower Fideal and Error = 0.6 from Table 8 was chosen, the error
(and thus the final demand’s shape) would be worse when the realistic fleet was applied.
The CS’s load without smart charging (purple) from Figure 16 is no longer constant because
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the number of vehicles in the CS could be smaller than m at any time. Nonetheless, because
the difference between the purple and yellow (CS load with smart charging) has an effect
on demand rather than the number derived, the service can be provided.
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Figure 15. Real connection with PV and storage.
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Figure 16. New real demand with PV and Storage.

There may be a considerable variation between Figures 13 and 17, which compare
the current flows between the ideal and more realistic scenarios. There are many dark
blue rectangles in the real arrangement that represent automobiles with Is = 0. The
algorithm perceives them to be fully charged connected vehicles. However, they could be
disconnected in order to begin their mission. In an ideal world, when an EB is released
from the CS, it is replaced by another released one. The incoming and outgoing EBs are
disconnected in the real arrangement. This allows us to consider that the algorithm does
not require m vehicles to be connected, which is less expensive and more practical. The
same idea can be seen in Figure 18 by the rectangles with red color, which represents the
three fully charged vehicles that are virtually connected but do not need to be physically
connected because they are ineffective in terms of energy. The algorithm counts them as
linked until they can be connected, which is why they can be disconnected, in this case
since the completely charged state is decoupled by the connection one.
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Figure 17. Real current with PV and storage.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hours [h]

10

20

30

40

50

60

70

V
e

h
ic

le
s

SOC in time

25

30

35

40

45

50

55

60

65

70

75

80

S
o

C
 [

%
]

Figure 18. Real SoC% with PV and storage.

In addition to the introduction of the “realistic” size of the EBs fleet Freal , the data used
initially are anticipated by the DN in the DAEM, so they may not be completely reliable.
As a result, to appreciate the final demand at the main transformer, it was important to
analyze how the DN responds when the CS absorbs the computed power, but with the true
demand of the after-effect. This situation is examined in Figure 19, where the dashed lines
represent the predicted scenario and the continuous ones represent the actual shape. The
error computed with Equation (24) shows that, even if the process was investigated in the
most favourable case (PV+Storage), the information on which the whole algorithm is based
comes from an aleatory source, and hence the quality of the load levelling is related to the
demand accuracy in the DAEM. The error produced in this case is 1.3744.

3.4. Power-Flow

As the study provided herein is predicated on the consideration of the demand at
the primary transformer, the effects on the nodes and lines cannot be determined using
the algorithm’s results alone. In other words, a study of the impacts created by the CS
demand is required to gain an appreciation of the situation and determine whether it
is viable to connect this load to the DN without introducing significant compromises in
terms of over/under-voltage and system losses. As a result, a NEPLANTM study on an
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11-Node feeder inspired and adapted from a CIGRE benchmark of a typical European
radial DN [44], as in Figure 20 with different sorts of loads in Table 9, such as commercial
and residential were developed in order to have variation in active and reactive absorbed
power. The lines characteristics in Table 10 and the transformers in Table 11. The non
labeled arrows represent the commercial and residential loads, the labeled ones represents
the PV generation and the black arrow is the CS.
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Figure 19. Comparison between forecasted and real demand.

Figure 20. Eleven-Node Feeder.
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Table 9. PV and loads data.

Node Sn Res. cosϕR Sn Comm. cosϕC Sn PV cosϕPV

[MVA] [MVA] [MVA]

1 9 0.98 3 0.98
2 1.5 0.85
3 4 0.97 1 0.85
4 8 0.98 2 0.98
5 0.98 0.97 1.225 0.85
6 1.552 0.97 1.150 0.85 4 1
7 2.067 0.97 4 1
8 2.067 0.97
9 0.5 0.85 4 1
10 1.687 0.97 1.460 0.85
11 1.172 0.97 4 1

Table 10. Data lines.

Line L r x C In

[km] [Ω/km] [Ω/km] [µF/km] [A]

1–2 5 0.55 0.37 0.015 210
3–9 2 0.35 0.28 0.15 250
2–3 3 0.55 0.37 0.015 210
4–5 7.5 0.35 0.28 0.15 250
6–7 1.5 0.35 0.28 0.15 250
5–6 1.2 0.35 0.28 0.15 250
8–9 1.7 0.35 0.28 0.15 250

10–11 0.6 0.35 0.28 0.15 250
8–10 0.8 0.35 0.28 0.15 250
5–8 1.3 0.35 0.28 0.15 250

Table 11. Data transformers.

Nodes Primary Secondary vcc pcc Sn m

[kV] [kV] [kV] [%] [MW]

0–1 132 20 12 0.1 25 1
0–4 132 20 12 0.1 25 1

The active power of each load and PV is adjusted, with the coefficients explained in
Table 12, in accordance with Figure 21 to achieve the same demand as shown in Figures 11
and 12.

Table 12. Load coefficients legend.

Kc Blue Commercial
Kr Orange Residential

Kpv Yellow PV
kcs Purple CS

In this case study, the CS was connected to each node of the Feeder in Figure 20 to
determine which node is the most reasonable in this circumstance. Sensitivity was assessed
using the worst voltage drop or over voltage, as well as the peak of the line reactive and
active losses. As seen in Table 13, where each connection is summarized with the relative
effects on the worst node and losses, the best nodes are those at the secondary of the
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two primary transformers. In this example, the PV production is not as incisive (the self-
consumption is modelled as a reduction in commercial/residential loads), and a compete
line change is not a practical degree of freedom; but, if the PV output is enhanced, the CS’s
connection can be moved to further nodes. The key factor influencing the predicted active
power is line losses. The reactive power absorbed by the loads and lines, on the other hand,
is not adjustable with the suggested method, implying that the form and magnitude are
uncontrollable. The scenario in this case is the one with PV and storage, with the CS and
EBs characterized 70 m charging slots with a Fleet Freal of 350 EBs, thus close to the Volvo
data and the fleet size of a typical Dublin EB. The automated voltage of the primary feeder and
the tap-changers on the primary transformers were activated in the power-flow simulation.
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Figure 21. Load coefficients.

Table 13. Summary of the performances by changing CS’s node.

CS Position N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

Worst Node N1 N3 / N1 N1 N1 N1 N1 N1 N1 N1
Voltage % 103% 94.46% / 103% 107% 107% 107.50% 109% 109% 109% 109.50%

Max Qloss [Mvar] 1.7 1.9 / 1.7 2.4 2.5 2.6 2.5 2.5 2.5 2.5
Max Ploss [MW] 0.6 0.8 / 0.6 1.4 1.5 1.7 1.5 1.7 1.6 1.7

Each DN’s node has a minimum drop voltage of 95% and a maximum over voltage of
105% of the rated voltage (Figure 22, where are depicted the voltage of the most sensible nodes).

Figure 22. Voltage profile at sensible nodes.
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Power losses on the line are uncontrollable and amount to about 6% of total absorbed
power (Figure 23).

Figure 23. Power line losses.

Since the commercial loads in Table 9 have a low cos ϕ, the reactive power absorbed
by the loads is not trivial, especially given that CS employs DAEM as a reference, which
does not account for reactive power (Figure 24).

Figure 24. Active and reactive power at feeder node

In general, the effect of load levelling on active power is satisfactory. However, it
deviates from the algorithm’s prediction by the amount of active line losses. The largest
severe impact is from unmanaged reactive power (losses and loads), although the DSO
actually imposes a limit on the cos ϕ = 0.95 (which will increase in future). Furthermore,
in the context of RDG, the inverters must be set to cos ϕ = 1 until the distributed reactive
power controls are available.

4. Discussion

The first aspect that has a considerable impact on the charging pattern of the EBs is the
demand shape. Table 5 considers a case study with approximately 1/3 of the production
supplied by renewable RDG (PVs) during daylight hours, as well as self-consumption.
When only PV production is considered, the net demand has the shape of a standard “duck
curve”. The self-consumption eventually reduces demand during low-demand periods.
Even if self-consumption storage reduces the peak of PV production marginally, the end
result is a net-demand that is noticeably non-uniform. This non-uniformity causes power
cost imbalances, DN instability, and high start-up costs for turning on/off heat generators,
and it may also damage the electrical system at the Transmission Network (TN) level [4].
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As demand refers to the primary transformer that connects the DN to the TN, an increase
in DN demand has mutually beneficial impacts at both levels. If it is expected to provide a
full load levelling function, as shown in Table 5, the correlations mentioned in Equation (16)
become more significant. When the disparity between net-demand and desired demand
grows, the CS response must become more acute. The smart current Is will increase during
lower peak-hours and decrease during higher peak-hours.

During peak hours, it is vital to avoid using more power than the CS can handle
because the reduction in absorbed energy by the CS may not be sufficient to meet the
requirements (Equation (12)). As indicated by Equation (23),the load levelling process will
not obtain the target power Pobjective[i] in those time frames. The CS will no longer absorb
current, therefore its power Ps(cs)[i] in those time spans will be zero (Equation (23)); the
result will be not charging the EBs during this time, which may be considered unsatisfactory
if this occurs on a regular basis.

The goal of making the new demand equal to the expected load (Equation (26)) may
be readily fulfilled in a reverse power-flow scenario, but such a facility will allow the EBs
to discharge, which is outside the scope of the presented work. If the goal is to completely
achieve load levelling, a CS with more charging locations m is required. Alternatively,
focus on the demand side by increasing PV production (if the peak is during the day) or
self-consumption (if the peak is during the night).{

Ps(cs)[i] = 0
Pnewload[i] = Pload[i]− (Pr(cs)[i]− Ps(cs)[i])

(25)

Pnewload[i] = Pobjective[i]. (26)

When there are significantly lower peak-hours, the CS will begin to absorb more smart
current Is in order to meet the Pobjective[i]. In the suggested approach, Equation (26) is
always attained, although there may be some constraints that must be considered. When
the Pnewload[i]� Pobjective[i] is reached, the algorithm will iterate by adding 0.1 A to Is until
it reaches the condition specified in Equation (15). If the difference in Equation (15) is too
large, the method will take a long time to converge. If the convergence time is met, the final
magnitude of Is may be insurmountable for the converters or securely supported by the
batteries. A feasible approach would be to set a maximum (Is). As in Equation (25), this
will result in a limit on the CS to satisfy the load levelling service. If the goal is as specified
in Equation (26), and no constraints are imposed on Is, it should be essential to increase
the Freal . This will distribute the requested power among more vehicles by lowering the
magnitude of Is to an acceptable level.

When the ultimate outcome, as shown in Figure 16, is examined, it is clear that the
difference between the power absorbed by the CS (by imposing the rated current Ir to
each EB) and the charging power facilitated by smart current Is has an impact. As a result,
it is not the magnitude of the power with EBs charged with the rated current Pr(cs) and
the power with smart current Ps(cs) that influences final demand, but their difference
Equation (25).

The OppCharger [41] could enable a fast and automatic exchange that is initiated
when the EB is parked, allowing an electrical connection to be made in a reasonably short
period if the mission is properly timed and there are no downsides. The switching timetable
generated from Equation (20) only tells the time when the new EB must begin charging,
not their mechanical connecting time. As a result, the EBs"in-coming’ planning might
be defined as anticipating the mechanical connection time to have some margin before
an electrical connection. When vehicles reach the SoC = 80% Equation (17) and are still
not connected out, the algorithm allows them to be viewed as being connected with an
Is = 0 state. As a result, they could be considered "virtually" connected, but they could also
predict the disconnection and begin their mission.

Finally, the algorithm simultaneously accomplishes load levelling and smart charging
of the EB without significant sacrifices. When contrasted with the Pload plot, the power
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absorbed from the CS will naturally take on a mirrored shape. This indicates that the
CS will absorb less power during higher peaks when the electricity price is higher, and
vice versa. This will not ensure that EB charging is prioritized economically. However,
when considering the behavior of Pr(cs), which only charges the EBs with rated current,
the proposed smart charging will produce more economical outcomes. Because public
services, such as EB transportation, are characterized by incentives and rewards [45], there
is potential for a reward system based on the daily quality of the load levelling/peak
shaving sought.

The method might be employed in two ways: the first is for the construction of a CS to
meet DN’s requirements; in this case, the parameters of the CS and EB must be set by trial
and error to discover the condition that best approached the aim. The second modality takes
the EB and CS parameters as input to test the effects of an existing system on various DN
scenarios. In the study, both methodologies are illustrated in Sections 3.2.1–3.2.3 the test of
different scenarios and, in Section 3.3, the test of different CS and EBs parameters to verify
which offers the best performances. In particular, it was discovered that the requirements
for the CS and EB converge to market-available and regulated ones. This confirms the main
goal of the paper, which is to determine the feasibility of present technology.

Finally, by mounting the CS on different DN nodes and computing the power-flow,
it was feasible to see that the ideal position is determined by the lines’ capabilities and
the PV’s penetration. In particular, if RDG is sparse, the most practical connection point
is the one closest to the secondary of the main transformer as seen in Table 13. However,
with greater PV, the node could be moved further. Even if the grid-side inverter does not
inject reactive power since it operates at cos ϕ = 1, the reactive power from the loads and
lines is uncontrollable unless there is real-time control measurement, which is beyond
the scope of this study. However, because the CS currently performs two functions (load
leveling of the active power and managing the EBs connection schedule), it may be possible
to implement additional dedicated systems such as a synchronous condenser, condenser,
static Var compensator, BESS, or batteries disposed solely for fine-tuning active and reactive
power [46–48]. Assuming that the inverter on the grid side is capable of decoupling active
and reactive power regulation, reactive power management could be conducted separately
by employing alternative control techniques in accordance with Grid Codes or Aggregator
requirements. This form of control has some limitations in terms of the inverter’s power
capabilities [49]—the collapse of the DC voltage side when an excessive capacitive-reactive
power is absorbed, [50] or stability [51]. Therefore, the study assumes a working state of
PF = 1 in order to simplify management.

The final data outputs Equations (17) and (20) are matrices and a vector that reflect the
current values that must be imposed on each EB j as well as the number of vehicles that must
be connected at time step i. They might be used directly to arrange and interpret the EBs
schedule if they were represented as timetables. Meanwhile, the data from Equations (21)
and (22) return the quality of the load leveling/peak shaving services as well as the amount
of power that the CS will absorb.

The proposed algorithm employs the demand forecast as the primary source of data;
thus, if the forecast is inaccurate, the inaccuracy caused propagates to the algorithm’s
outputs, as shown in Figure 19. One of the primary causes of uncertainty is the influence of
the DRG [52] which may differ from the predicted condition. In such a case, the algorithm
will be unable to fully achieve load-levelling because it operates in a “open-loop” form,
with no ability to enable ex post modifications. In addition to RDG, there could be other
uncertainty factors, such as the inability or delay of the EBs connection owing to charger
failures, vehicle congestion, human errors, etc [53]. However, even a holistic strategy, such
as the one suggested in this paper, can produce discrete results because it provides an easy
and implementable CS control method.

The transitional context imposes a trade-off between the pursuit of ideal methods that
rely on unavailable technology and the use of less performant means to execute services
(such as EBs charging) that must be managed in some way so as not to disrupt the DN
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service. The proposed algorithm also allows for an adaptable structure by merely acting on
the software side, allowing for the future introduction of alternative working modalities
such as bidirectional smart charging and active/reactive power control in real time

From the perspective of DN management, there is also the chance that additional
parties will participate in the ancillary service, managed directly by the DSO or an aggre-
gator figure [54]. In a transitory context, it is not possible to coordinate all of the players
connected to the same DNs at the same time (lack of smart metering, fast communication
infrastructure, etc). However, in a situation where the structures cannot communicate and
coordinate in real-time, this multi-player arrangement is even more critical and requires
enhanced focus and action. As the suggested method takes a target power as input, the
load-levelling share of the CS can be assigned in advance. A possible segmented strategy
would involve only the allocation of the power quota (e.g., 10 MW to compensate at 4 a.m.)
by the DSO or an Aggregator. The power that must be levelled, as determined by the
management figure, might be partitioned (for example, 6 MW to CS1 and 4 MW to CS2)
and thus provided to the relative participants. As a result, the proposed technique could be
used in a DN with multiple participants by using a coordinator that manages the power-
quota of different players. The coarse regulation using EBs might also be intended as the
structure of the new load, where devices with lower capacity and higher uncertainty could
gradually be introduced as fine regulation (EVs, private PV production, etc.) to achieve
better load levelling.

In summary, the proposed algorithm does not necessitate a complicated communi-
cation infrastructure because it depends on DAEM data and technologies that are readily
available in a municipality. However, it is not intended to be a stand-alone solution, but
rather a transitional technology that may be incrementally improved until the system is
ready to host the complete V2G service. Furthermore, depending on the DC/DC converter
used, the CS may be reused for reverse power flow. Furthermore, it may be feasible to
change the assignment of the real fleet, not only in a non-uniform distribution, but also in
accordance with actual practical capability. Regarding the overall results, the suggested
algorithm manages CS and EBs in an appropriate manner for a coarse regulation of the
active power for a suitable management of the EB’s schedule.

Future advances could include designing the algorithm, CS, and EB mutual effects so
that they can be easily upgraded to real-time control systems that can account for many
charging stations in the same DN and reactive power regulation. Or, at the very least, to
ensure a smooth transition to more sophisticated systems, when Smart Grids will be able to
properly handle the communication/control of the DN’s components without changing
the entire infrastructure, but only the control approach.

5. Conclusions

In conclusion, the algorithm simultaneously accomplishes load levelling and smart
charging of the EB without significant sacrifices. It might be used to design the charging
station as a function of the DN’s total demand shape, or to test the effects of several DN
scenarios on a given charging station. The output findings might be used immediately to
build and read the EB’s timetable, producing instruction ready for use by the CS’s operators.
Because the connecting node for the CS cannot be changed due to network restrictions,
the position that created the less acute effects (line losses and node voltage drop) can be
relocated away from the primary node in proportion to the installed power of the PV.
However, even though real-time sophisticated communication and control systems are not
used, the compatibility of a high-capacity CS is consistent with the eventual penetration of
RDG in the DN. The limits originate from the unreliability of DAEM data and the inability to
manage reactive power, which might be delegated to other specified systems. In summary,
the proposed algorithm does not necessitate a complex communication infrastructure, and
it is not intended to be a stand-alone solution, but rather a transitional technology that can
be incrementally modified until the system is ready to host the V2G service entirely. Future
work may concentrate on the algorithm’s scalability for future technological settings or
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on enhancing the design to appropriately house them, as well as to control additional CS
or electrical users connected to the same DN in order to correctly assign the load-leveling
effort, based on the available EBs.
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Abbreviations
The following abbreviations are used in this manuscript:

CS Charging Station
Pr(CS) CS Power vector with Ir

Ps(CS) CS Power vector with Is

DAEM Day Ahead Energy Market
Cnnreal EB’s real connection schedule vector
Cnn EB’s connection schedule vector
EB Electric Bus
EV Electric Vehicle
∆ECS Element of Eload vector
Eload Energy difference vector
E[Wh] Energy in [Wh]
Ej(r) Energy of EB j charged with Ir

Ej(s) Energy of EB j charged with Is

Pnewload Final New DN’s demand after smart-charging
Pload Initial Demand power vector
Is Is Matrix
m Number of EBs in the CS
z Number of fully charged EBs
z′ Number of connected EBs in the real case
Pobjective Objective Demand power vector
PV Photovoltaic
Cr Rated Capacity
Ir Rated current
Vr Rated Voltage
RDG Renewable Distributed Generation
Fideal Size of the ideal EB’s fleet
Freal Size of the real EB’s fleet
SC Smart Charging
Ie Smart current for almost-charged vehicles
Is Smart current
SoC SoC Matrix
SoC State-of-Charge
i Time-step index
∆t Time-step
j Vehicle index
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