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An Adaptive Model Predictive Controller to
Address the Biovariability in Blood Clotting
Response During Therapy With Warfarin
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Abstract—Objective: Effective dosing of anticoagulants
aims to prevent blood clot formation while avoiding hem-
orrhages. This complex task is challenged by several dis-
turbing factors and drug-effect uncertainties, requesting
frequent monitoring and adjustment. Biovariability in drug
absorption and action further complicates titration and
calls for individualized strategies. In this paper, we pro-
pose an adaptive closed-loop control algorithm to assist
in warfarin therapy management. Methods: The controller
was designed and tested in silico using an established
pharmacometrics model of warfarin, which accounts for
inter-subject variability. The control algorithm is an adap-
tive Model Predictive Control (a-MPC) that leverages a sim-
plified patient model, whose parameters are updated with
a Bayesian strategy. Performance was quantitatively eval-
uated in simulations performed on a population of virtual
subjects against an algorithm reproducing medical guide-
lines (MG) and an MPC controller available in the literature
(l-MPC). Results: The proposed a-MPC significantly (p <
0.05) lowers rising time (2.8 vs. 4.4 and 11.2 days) and time
out of range (3.3 vs. 7.2 and 12.9 days) with respect to
both MG and l-MPC, respectively. Adaptivity grants a signif-
icantly (p < 0.05) lower number of subjects reaching unsafe
INR values compared to when this feature is not present
(8.9% vs.15% of subjects presenting an overshoot outside
the target range and 0.08% vs. 0.28% of subjects reaching
dangerous INR values). Conclusion: The a-MPC algorithm
improve warfarin therapy compared to the benchmark ther-
apies. Significance: This in-silico validation proves effec-
tiveness of the a-MPC algorithm for anticoagulant adminis-
tration, paving the way for clinical testing.

Index Terms—Adaptive control, anticoagulant, in-silico
simulation, model-based control, precision medicine.
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I. INTRODUCTION

COAGULATION is the physiological process through
which blood changes from a liquid to a gel state to

prevent the leakage of blood from a damaged vessel. This is
accomplished by the formation of fibrin threads that aggregate
platelets creating the so-called blood clot. Thrombotic disorders
are the pathological formation of blood clots within the vessels
that might obstruct blood flow. The most severe complications
associated with thrombosis include stroke, heart attack, and
serious breathing problems.

Anticoagulants are drugs that act to inhibit specific pathways
associated with the coagulation cascade. To date, warfarin is the
most widespread anticoagulant for the prevention and treatment
of thrombotic disorders. Its mechanism of action consists in
the inhibition of the hepatic synthesis of vitamin K-dependent
coagulation factors preventing the formation of new blood clots.
Despite the great efficacy of this drug, dosing of warfarin proves
to be challenging; in fact, an insufficient amount of anticoagulant
might fail to prevent clot formation, while excessive dosing
might cause bleeding and hemorrhages. Challenges in antico-
agulant dosing include the uncertainty and fluctuation in drug
sensitivity caused by the intrinsic complexity of underlying phar-
macological mechanisms and the presence of several disturbing
factors, such as diet, short-term physical exercise, concomitant
drugs, and comorbidities. This calls for monitoring of the drug
effects, possibly on a daily basis, and for consequent drug dose
adjustment.

In order to monitor the effects of anticoagulant therapy, espe-
cially during its initiation, the International Normalized Ratio
(INR) is frequently monitored. INR is the standardized measure
of the prothrombin time that is the time required for blood to
coagulate in vitro [1]. The typical value of INR for healthy
subjects is 1 (with a range of 0.8-1.3), whereas, in patients on
warfarin medication, the most common target INR is 2.0-3.0 [2].
Home monitoring of INR can be performed by the patient itself
using an INR-meter, placing a drop of blood in a disposable
test strip. The blood is collected through a finger-prick, making
the process less painful than a blood test. Thereafter, based on
the measured INR, the drug dose can be adjusted to provide the
most effective treatment. To date, this adjustment is typically
performed by the attending physician or by the patient follow-
ing standardized medical guidelines. This process introduces a
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manual feedback control loop in the therapy that contributes
to mitigating the impact of fluctuations and disturbing factors.
Nevertheless, manual closed-loop actions are often suboptimal,
prone to errors, and burdensome for the clinician and the patient.

Recently, computer-based closed-loop drug delivery has
emerged as a viable, safe, and effective therapeutic alternative
to manual closed-loop in several medical applications. A no-
table example is blood-glucose control via subcutaneous insulin
infusion in patients with type 1 diabetes [3], [4] and type 2
diabetes [5], including hospitalized patients [6] and pregnant
women [7]. Another noteworthy example is automated closed-
loop drugs delivery for total intravenous anesthesia [8], [9],
where up to three drugs (hypnotic, analgesic, and neuromuscular
blocker) are co-administered. In both the applications mentioned
above, model predictive control (MPC) [10], was one of the
most adopted and successful control techniques [11], [12], [13],
[14], [15]. The list of closed-loop drug delivery applications
based on MPC extends further, including chemotherapy for
cancer treatment [16] and naltrexone automatic administration
to treat fibromyalgia, a chronic pain condition [17]. These re-
cent applications show that the MPC framework is promising
for computer-based drug delivery, mainly due to its ability to
account for constraints on drug dose, leveraging on a (possibly
adaptive) model of the plant.

In this paper, we explored the development of a computer-
based closed-loop warfarin dose delivery algorithm that lever-
ages MPC to assist both clinicians and patients in the man-
agement of thrombotic disorders. A major challenge to effec-
tive dosing of warfarin is the high inter-individual variability
response to the drug [1]. In fact, biovariability in both phar-
macokinetics (PK) and pharmacodynamics (PD) of warfarin
contributes up to a 20-fold difference in the drug dose require-
ments [18]. To cope with this large variability, clinical, de-
mographic, anthropometric, and genetic factors are commonly
employed as predictors of warfarin dose. The most used ones are
age and weight; however, genetic variations are known to play
a key role in warfarin dosing. Indeed, subjects with CYP2C9
and/or VKORC1 variant alleles have shown an increased risk
of over-coagulation, and thus, require lower drug intakes, and
more time to achieve the desired INR target [19], [20]. To date,
physicians follow established medical guidelines to determine
an individualized initial warfarin dose suitable for the patient
and then adapt the therapy based on the subject response, thus,
personalizing the manual feedback strategy [21]. This work
addresses this large biovariability in the absorption and action
of the anticoagulant by proposing an adaptive MPC algorithm
that learns from the measurements, adapts a patient-specific
model, and then uses it to formulate a patient-specific drug
dose adjustment. The MPC-based control strategy is developed,
tested, and compared with state-of-the-art alternatives on a
simulator of the physiology of the patients. The simulator is
based on a nonlinear mixed-effects model of warfarin PK and
PD that the authors validated on data coming from a large
dataset [18]. A key feature of this model is that it accounts for
inter-patient variability thanks to a mixed-effects formulation. In
a mixed-effects model framework, subjects (i.e., patient-specific
model parameters) are assumed to be random realizations of a

population whose distribution is shaped around some parameters
(the so-called fixed effects). Subjects are described using the
deviation of each individual parameter from the population value
(random effects) and possible covariates introduced in the model
to explain the fraction of variability directly related to that
macroscopic feature. Emulating the covariates of the original
population and generating the random effects, we produced a
new set of covariates-parameters, each one describing a possible
in-silico subject. The availability of this in-silico population
is key to realistically test control algorithms, including the
variability among subjects in drug response. The simulation
environment was then enriched with the addition of instrument
error noise, as well as with quantization of doses in input and of
INR measurements in output. Finally, the impact of poor data
on the developed controllers was assessed by testing different
measurement noise scenarios.

In-silico design and testing of control algorithms, already
broadly used in other fields of engineering [22], is emerging as
a powerful and effective tool also in biomedical engineering. In
both the notable examples of closed-loop drug delivery systems
mentioned above, in-silico testing has been widely employed:
accurate simulators of subjects with type 1 diabetes were used
for insulin delivery to control blood glucose [23], [24], while,
an open-source simulator of patients’ physiology is available
and largely employed to test closed-loop control strategies in
computer-assisted drug delivery for anesthesia [25].

A. State of Art

At the state of the art, some of the most used and vali-
dated algorithms that employ pharmacogenetic factors are those
developed by Gage and colleagues [26], and by the Interna-
tional Warfarin Pharmacogenetics Consortium [27], [28]. These
methods were individualized with linear regression approaches;
however, in recent years, more advanced techniques have also
been investigated, including data-driven algorithms based on
multiple linear regression, support vector machines, and arti-
ficial neural networks [21]. Moreover, closed-loop approaches
were proposed, using deadbeat, proportional integral [29], and
proportional integral plus [30] controllers. From these works,
the need for a flexible but still robust technique has emerged
as one of the critical requirements for automated dosing of
warfarin. Avery and colleagues suggested the use of MPC as
an attractive solution to address this problem, both because of
its ability to automatically handle constraints, and because it
allows long-term strategies while keeping the flexibility to react
to unexpected responses [30]. However, to the best of our knowl-
edge, only two works employed this technique for computer-
assisted warfarin administration. Pannocchia and Brambilla [31]
proposed an MPC controller based on a second-order critically
damped system to predict the INR response. Model parame-
ters were preliminarily initialized, and then, estimated when at
least 3-4 samples were available; after these steps, the model
was no longer updated. In a more recent work, Wilson and
colleagues [29] proposed an MPC controller developed using
a linear time-discrete model. The controller was specifically
developed to address the presence of missing data.
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This second more recent algorithm is considered a baseline
comparator for the performance of the adaptive MPC that we
propose. Moreover, the algorithms were compared against a
manual feedback strategy based on the medical guidelines.

One limitation of the literature works is associated with the
validation setup. In fact, both contributions employ the same
linear model used in the MPC to test their control algorithm
rather than using a physiological nonlinear one. Given that
no model-plant mismatch was introduced, the resulting perfor-
mance evaluation is likely to be optimistic. In fact, in a real
scenario, a considerable model mismatch is unavoidable due to
the complexity of the underlying biological processes and the
unavailable model parameters. Such model-mismatch is known
to be a potentially critical aspect for model-based control appli-
cations and should be considered in the evaluation. Moreover,
both papers tested the considered algorithms against only a set
of possible model parameters value, i.e., one virtual patient, not
accounting for intra-patient variability. The validation proposed
in this paper aims at improving the realism of the performance
evaluation by resorting to a validated physiological model and
a population of subjects.

II. METHODS

A. Patient Simulator

1) Pharmacometric Model of Warfarin: A nonlinear mixed
effects model of warfarin PK and PD [18] was employed in this
work to simulate the INR response to an oral administration of
warfarin. The model was developed by Hamberg and colleagues
employing data collected from two studies: an Italian study
(57 subjects) and a larger Swedish study (1,426 subjects). The
former and a subset of the latter were merged to create a dataset of
196 subjects for model building, while the remaining 1,287 sub-
jects were used for its validation. The developed dose-response
model was able to describe the INR time course by taking into
account the PK and PD biovariability that affects treatment
with warfarin, together with three macroscopic features of the
subjects, i.e., age, CYP2C9, and VKORC1 genotypes, to be used
as predictors for model parameters. In fact, warfarin clearance is
known to reduce with age, enzyme CYP2C9 is the main respon-
sible for the metabolism of warfarin, while enzyme VKORC1
is the main target enzyme of warfarin action.

Warfarin is administered to patients in tablets containing a
racemic mixture of R- and S-warfarin enantiomers, with the S-
form being 3 to 5 times more efficacious [1]. The pharmacomet-
ric model is based on the assumption that only S-warfarin (and
not R-warfarin) contributes to the dynamic effect of the drug;
thus, it takes as input half of the administered dose. The disposi-
tion of S-warfarin is described through a PK one-compartment
model with first-order absorption (parameter ka) and first-order
elimination (ke). The amount of S-warfarin in this compartment
is employed to compute the dose ratio, DR(t), which is then
input in a PD model. Here, DR(t) is employed as the only
predictor of drug-exposure, E(t), in an inhibitory Emax model
with parameters EC50 and γ. E(t) expresses the drug-induced
inhibition of the VKORC1 enzyme, which leads to the depletion
of the reduced form of Vitamin K, blocking the two coagulation

pathways. Thereafter, the delay between drug exposure and
INR response is modeled through two transit three-compartment
chains, one with a mean transition time (MTT) of about 29 h,
and the other with an MTT of about 118 h. Finally, the quantities
in the last compartment of each chain determine the INR value.
The compartmental structure of the model and all the formulas
are reported in Fig. 1.

Inter-subject variability is described through the following
stochastic models of the parameters CL, ke, and EC50:⎧⎪⎨

⎪⎩
CL = [1− θAGE,CL(AGE − 71)] · θCY P2C9,CL

ke =
CL
V · exp(ηke

)

EC50 = CL · θV KORC1,EC50
· exp(ηEC50

)

(1)

where CL is the warfarin clearance rate, θAGE,CL is a fixed
coefficient that describes the decrease of warfarin clearance
due to aging, AGE is the age of the subject, θCY P2C9,CL

and θV KORC1,EC50
are two parameters that vary depending

respectively on CY P2C9 and V KORC1 genotypes of the
subject, V represents the distribution volume of the compart-
ment Q1, and ηke

and ηEC50
are two independent Gaussian

random variables with zero mean and standard deviation ωke

and ωEC50
, respectively. Of note, since the random effects ηke

and ηEC50
are normally distributed, then, from (1), the model

parameters ke and EC50 belong to a log-normal distribution,
which is a common assumption for non-negative physiological
parameters. In this model, the age and the two genotypes are
employed to describe a portion of the inter-subject variability in a
deterministic fashion, while the residual parameter variability is
modeled through random effects. Except for CL, ke, and EC50,
whose values depend on the realization of random variables,
all the other model parameters are fixed to the value estimated
in [18]. More information about the employed datasets, model
identification, and model validation are available in [18].

2) Virtual Subject Generation: A virtual subject is a set of
model parameters, that can in turn be seen as a realization of
random effects and covariates sampled from a known distribu-
tion. Random effects were sampled from a zero-mean Gaus-
sian distribution: ηke

∼ N (0, ω2
ke
) and ηEC50

∼ N (0, ω2
EC50

);
while covariates (i.e., AGE, CY P2C9, and V KORC1) were
sampled trying to reproduce as close as possible the distribution
of the original dataset where the model was identified on [18].
Therefore, AGE was drawn from a truncated Gaussian distri-
bution with mean and standard deviation reflecting those of
the original dataset. Truncation was performed by discarding
samples smaller than 18 or greater than 92 years and then
re-sampling a new subject. Conversely, genotypes CY P2C9,
and V KORC1 were obtained with a discrete random sampling
weighted by the same frequencies as those of the original
dataset [18]. The result of the sampling process was a vector
[ηke

, ηEC50
, AGE,CY P2C9, V KORC1] that, in turn, char-

acterizes a specific subject.
3) Simulation of Warfarin Treatments: The different treat-

ment strategies were tested on a population of virtual subjects
created by sampling 10,000 sets of parameters-covariates to be
employed in the pharmacometric model of warfarin described
above. Multiple-day simulations were realized by integrating the
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Fig. 1. Compartmental representation of the warfarin PK/PD model. u(t) represents the milligrams of S-warfarin dose which is administered to the
subject. The PK model is a one-compartment model with first-order absorption and first-order elimination. The amount of drug in this compartment
determines the dose ratio, DR(t), which is input in the PD model. The PD model consists of an inhibitory Emax model to compute the drug exposure
E(t), and two transit three-compartment chains to account for an exposure-response delay. Finally, the quantities in the last two compartments of
the chains are employed to compute the INR(t) value.

differential equations of the model with the MATLAB built-in
solver ode45() [32]. Initial conditions on the first day were set to
Q(0) = [0, 1, 1, 1, 1, 1, 1], thus, INR(0) = INRbase. INR was
sampled at the end of each day and provided to the controller,
which calculated the dose u(t) to be administered (i.e., added to
the initial condition of the first compartmentQ1 for the next day).
Measurement error was added to the samples of INR assuming
a Gaussian white noise with a standard deviation σv = 0.11
as if measures were taken from capillary blood with a portable
INR-meter [33]. In addition, to set up a more realistic simulation
environment, both measures of INR and warfarin inputs were
quantized. In particular, INR(t) was rounded up to multiples
of 0.1 to recreate instrument quantization [34], while u(t) was
round up to multiples of 0.5 mg (i.e., 0.25 mg of S-warfarin)
since, in the US, warfarin is available in 1 mg tablets that can be
divided into two halves [35].

B. MPC Algorithms

Two types of MPC approaches were developed in this study:
a Standard MPC and an Adaptive MPC. The models used by the
two algorithms have the same structure; however, in the Standard
MPC model parameters were fixed to population values, while in
the Adaptive MPC model parameters were adaptively estimated
in real-time on patient data as they became available. This was
performed by an online linear Bayesian estimation using the
previously estimated distributions as prior information.

1) Model Used by the Control Algorithms: As in [29],
both controllers employed the following linear time-discrete
model to predict INR response:{

x(k + 1) = ax(k) + bu(k)

y(k) = x(k)
(2)

Input u(k) is the dose in milligrams of S-warfarin only at the
kth day, whereas model output y(k) is the log(INR(k)). Model
parameters a and bwere determined by averaging the parameters
estimated on data obtained from 10,000 virtual subjects, result-
ing in a = 0.84 and b = 0.05. The estimated distributions of a
and b are reported in Fig. 2. Note that the estimated standard

Fig. 2. Boxplots of the 10,000 estimates of parameters a, Panel (a),
and b, Panel (b). Final values of the two parameters were obtained
by averaging these results, while mean and standard deviation were
employed to construct a prior to be used by the Adaptive MPC.

deviations for a (σa = 0.07) and b (σb = 0.03) are considerably
higher than those introduced in [29] (σa,wilson = σb,wilson =
0.01) to perform the simulations, showing that, in this work,
algorithms were tested in a more challenging environment.

2) Standard MPC: In the Standard MPC, model parameters
a and bwere always fixed to the mean value (i.e.,a=0.84 and b=
0.05). To obtain offset-free reference tracking, an integral action
was included in the controller, by resorting to a full-increment
velocity form [36]. The model (2) was augmented as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
Δx(k + 1)

x(k + 1)

]
=

[
a 0

a 1

][
Δx(k)

x(k)

]
+

[
b

b

]
Δu(k)

y(k) =
[
0 1

] [Δx(k)

x(k)

] (3)

where Δx(k) = x(k)− x(k − 1) and Δu(k) = u(k)− u
(k − 1).
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Fig. 3. Reference INR profile, yr(t) for the controller. The day of
therapy and the INR are reported on the x and y axes, respectively. On
the first day, the profile reaches the target range (2-3). On the second
day, the target value (2.5) is achieved. The image is zoomed on the first
ten days to better appreciate the initial behavior; once the target value
of 2.5 is reached it is maintained for the entire prediction horizon.

At each time instant k, the MPC controller computes the
sequence of Np control input variations Δu(k|k), . . . ,Δu(k +
Np − 1|k) that minimizes a cost functionJ(k), and then, applies
the first element of the sequence, Δu(k|k), in compliance with
the receding horizon principle [10]. The cost function J(k) is
chosen as

J(k) = q

{Np−1∑
i=1

[
y(k + i|k)− yr(k + i)

]2

+ x(k +Np|k)TSx(k +Np|k)
}
+

Np−1∑
i=0

Δu(k + i|k)2

(4)

where the first term of the cost penalizes the deviation of the
predicted output sequence y(k + i|k) from the reference INR
profile yr(k + i), while the last term penalizes large therapy
adjustments Δu(k + i). The hyperparameter q weights these
two components and determines the controller aggressiveness.
The prediction horizon Np was set to 20 days. The term
x(k +Np|k)TSx(k +Np|k) is the terminal cost introduced to
promote stability, withS that is calculated by solving the Riccati
equation associated with the infinite horizon unconstrained op-
timal control problem for the augmented system. The reference
INR profile yr(k) that the controller was designed to follow
is shown in Fig. 3. To optimize the performance during the
transient phase, a gradual transition to the target INR = 2.5 is
used as reference. The reference profile enters the target range
(INR = 2) within one day and on the second day achieves the
desired value (INR = 2.5).

Input doseu(k)was constrained to allow a maximum warfarin
intake of 20 mg (i.e., 10 mg of S-warfarin) per day and avoid

the suggestion of negative doses (apparently not administrable)
resulting in the constraints:

0 mg ≤ u(k) ≤ 20 mg ∀k.
These constraints are then reformulated as constraints on the

optimization variable Δu. The constrained quadratic problem
was implemented in MATLAB and solved using the built-in
function quadprog().

3) Adaptive MPC: The Adaptive MPC is derived from that
previously described and differs from it only for the model used.
The model used here shared the same structure of (2), but model
parameters a and b were updated at every iteration according to
a Bayesian linear regression.

In particular, from (2), the following equation can be written
at the kth day as

Y +(k) =

⎡
⎢⎢⎢⎣
y(2)

y(3)

. . .

y(k)

⎤
⎥⎥⎥⎦ = a

⎡
⎢⎢⎢⎣

y(1)

y(2)

. . .

y(k − 1)

⎤
⎥⎥⎥⎦+ b

⎡
⎢⎢⎢⎣

u(1)

u(2)

. . .

u(k − 1)

⎤
⎥⎥⎥⎦

= aY (k) + bU(k), (5)

then, grouping Y (k) and U(k) in the same matrix G(k), the
previous equation becomes

Y +(k) =

⎡
⎢⎢⎢⎣
y(2)

y(3)

. . .

y(k)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y(1) u(1)

y(2) u(2)

. . . . . .

y(k − 1) u(k − 1)

⎤
⎥⎥⎥⎦
[
a

b

]
= G(k) θ.

(6)

Then, the vector of parameters θ̂(k) =

[
â(k)

b̂(k)

]
can be esti-

mated at each time step using a Bayesian strategy and specifi-
cally by minimizing the cost function

Jp(k) =
1

σ2
v

[G(k)θ̂(k)− Y +(k)]T [G(k)θ̂(k)− Y +(k)]

+ λ[θ̂(k)− μp]
TΣ−1

p [θ̂(k)− μp] (7)

with

μp =

[
0.84

0.05

]
and Σp =

[
0.072 −0.0007

−0.0007 0.032

]
,

and σv the previously introduced measurement noise error vari-
ance. The first addend of Jp(k) accounts for the model fit of
the data, while the second term introduces the available a priori
knowledge of the parameter values in the estimation process
by penalizing the deviation of the estimated parameters from
their typical value. The prior distribution of the parameters θ,
described by their mean and variance, μp and Σp, is estimated
on the population as previously described (see Fig. 2). The
impact of the two terms on the cost Jp(k) is weighted by the
hyperparameter λ, which should be tuned to reflect the reliability
of the prior with respect to the accuracy of the measurements.
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The optimal parameters θ at timek, θ̂(k), that minimizeJp(k),
can be computed in closed-form as

θ̂(k) =[
1

σ2
v

G(k)TG(k)+λΣ−1
p

]−1 [
1

σ2
v

G(k)TY +(k)+λΣ−1
p μp

]
.

(8)

This Bayesian estimator has the important role of permitting
a robust estimation of the two model parameters, preventing
possible large deviations from the typical values caused by
measurement noise. This is particularly important in the initial
phase when only a few INR measurements are available.

The adaptation process starts when at least two INR measures
were available. Before that, the estimates of a and b collapsed
on the prior (no adaptation). Therefore, for the first two days,
θ̂(k) was equal to μp, and the Adaptive MPC behaved like the
Standard MPC. Then, from the third day on, â(k) and b̂(k)
started adapting according to the past INR response of the
subject. Moreover, by rewriting the cost function Jp as

Jp =
1

σ2
v

k∑
i=1

[â(k)yi(k) + b̂(k)ui(k)− y+i (k)]
2

+
λ

σ2
a

[â(k)− μa]
2 +

λ

σ2
b

[b̂(k)− μb]
2 (9)

it is easy to see that the weight of the first term, accounting
for model fit, increases in the cost function as more and more
data come in since more and more addends are included in the
summation. This means that the Bayesian prior becomes less
important with the reduction of the risk of large estimation errors,
caused by large measurement noise corrupting a few data.

4) Hyperparameter Optimization: The proposed MPC ap-
proaches have different hyperparameters that need to be properly
tuned. The Standard MPC approach has a single hyperparameter
that needs to be optimized, namely the controller aggressiveness
q that weights the prediction-reference distance [y(k + i|k)−
yr(k + i)]2 and the variation of the control action Δu(k + i|k)2
in the cost function (4). Instead, the Adaptive MPC approach
has two hyperparameters to be optimized, namely the controller
aggressiveness q, already discussed, and the prior strength λ that
defines the reliability of the priorμp with respect to the measures
Y (k) in the cost function (7) used to estimate the MPC model
parameters a and b.

Hyperparameters were optimized with the aim of reaching
an acceptable INR value (i.e., INR > 2) in the shortest time
window, while avoiding overshooting out of the acceptable and
safe range (i.e., INR < 3). In order to allow for an automatic
and quantitative evaluation of the INR profile obtained using
a certain MPC hyperparameters configuration, a custom cost
function was developed: the Weighted Out Of Target Area
(WOOTA) cost function, defined as follows:

WOOTA = AINR<2 + w AINR>3 (10)

where AINR<2 is the area between the INR profile and the
lower bound of the target range (INR = 2), and AINR>3 is the
area between the upper bound of the target range (INR = 3) and

Fig. 4. Out of target area considered by the WOOTA cost function for
a virtual subject. AINR<2 is depicted in yellow meanwhile AINR>3 is
depicted in red. The total value of the WOOTA cost function is obtained
by the weighted sum of the two highlighted areas.

the INR profile. By minimizing the WOOTA, it is possible to
simultaneously obtain a fast rising time (small area under INR=
2) and limit the overshoot (small area above INR = 3). Finally,
w is a design parameter that weights the two terms in the cost
function (10). It was set to 100 to penalize the overshoot more
than the raising time, favoring a less aggressive tuning of the
MPC.

An example of the areas considered by the WOOTA cost
function for a virtual subject INR profile is shown in Fig. 4.

The optimization step was performed by simulating 5,000
subjects, optimizing the hyperparameters for each one, and
then obtaining the population hyperparameters by averaging
those obtained for each subject. The best hyperparameters were
selected using a random search approach after a grid search
approach was used to set the extreme values of the random dis-
tributions of the hyperparameters [37]. Hyperparameters values
were randomly extracted from log-uniform distributions: 1,000
possible values of q ranging from 102 to 103 were considered
for the Standard MPC, meanwhile, 1,000 possible combinations
of (q, λ), with q ranging from 102 to 103 and λ ranging from
10−3 to 10, were examined for the Adaptive MPC. The best
hyperparameters were selected as those that led to the minimum
value of the WOOTA cost function.

C. Benchmark Therapies

In order to assess the different MPC algorithms developed in
this work, two benchmark therapies were re-implemented and
compared against the proposed control strategies.

The first benchmark therapy was the Medical Guidelines [38].
Usually, clinicians follow standard guidelines to tailor warfarin
therapy for a specific patient. In particular, for treatment ini-
tiation, an age-adjusted protocol is used, which recommends
higher dosages for younger patients. The initial phase of the
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therapy generally lasts four to five days; dosage is tuned based
on both the age of the patient and the morning INR measurement.
Thereafter, a maintenance therapy is established as percentage-
based changes in warfarin intake aiming at maintaining the
INR in the target range. INR measurements are performed less
frequently, usually once a week, when the desired value is
achieved.

The second benchmark therapy was the MPC approach devel-
oped by Wilson and colleagues (Wilson MPC) [29]. Their work
aimed at developing an MPC algorithm for the control of INR
response focusing on not-uniformly sampled data. The Wilson
MPC algorithm was reimplemented in MATLAB by solving
the constrained quadratic problem with the built-in function
quadprog(). The controller parameters reported in the paper were
used without any adjustments.

In this work, Medical Guidelines from [38] and Wilson
MPC from [29] were implemented in MATLAB reproducing as
closely as possible the description available in their respective
publications, and then simulated according to the procedure pre-
viously described in Section II-A3 (i.e., with a daily monitoring
and therapy adjustment) in order to compare the tested strategies
in a fair scenario.

D. Performance Assessment Criteria

Differences in performance between the proposed MPC ap-
proaches and the benchmark therapies were assessed consid-
ering four metrics. The first metric was the rising time which
is the number of days needed for the INR profile to reach the
lower acceptable INR threshold (INR= 2). A small rising time is
preferable since the patient will spend fewer days with a too-low
INR, which is related to increased blood clotting risk. The second
considered metric was the out of range time which is the total
number of days where the measured INR value is out of the target
range (2 ≤ INR ≤ 3). This metric condenses both the effect of
rising time and possible overshoots and undershoots out of the
target range. Two other metrics related to patient safety were
considered: the number of subjects reaching a dangerous INR
value above 4 at any time during the therapy, and the number of
subjects whose first maximum INR value exceeded the therapy
window (i.e., above 3). Avoiding overshoot above the maximum
INR threshold is key since an elevated INR value is associated
with increased bleeding risk and a good INR control approach
should be able to induce the INR profile to reach the target as
soon as possible without any overshoot.

Performance metrics were computed for a population of
10,000 randomly-generated subjects (different than the 5,000
used for hyperparameters optimization) whose INR profiles
were controlled with both the proposed MPC controllers and the
benchmark therapies within a 40-day simulation. A one-tailed
t-test was then used to assess whether the average of the continu-
ous metrics (i.e., rising and out of range times) obtained using the
Adaptive MPC was smaller than the average continuous metrics
obtained using other control techniques without assuming equal
variance [39]. A chi-squared test was used to assess the statistical
significance of differences in dichotomous metrics (i.e., the
number of subjects reaching unsafe INR values).

E. Robustness to Poor Data and Sensor Malfunctioning

In order to test the robustness of the developed control
techniques against poor data and sensor malfunctioning, two
scenarios including abnormally inaccurate measurements were
considered. In the first scenario, a positive offset of 1 INR unit
was added to the measured INR with a probability of 5%, thus
producing a bimodal INR noise with peaks in 0 and 1. In the
second scenario, the faults of the measurement instrument were
modeled as follows: the instrument enters a faulty state with a
probability of 5% and a positive offset of 1 is added to every
measurement. At every new sampling time, the system can
either return to the normal state with a probability of 50% or
remain in the faulty one. This mechanism produces sequences
of consecutive, abnormally inaccurate, measurements of random
duration. The two scenarios were simulated on N = 10,000
subjects for all the dosing strategies and compared against the
previous case of standard Gaussian white noise.

III. RESULTS

A. Adaptive Estimation

Adaptive estimation was implemented via a linear Bayesian
estimator that updates the model parameters according to the
past INR response of the patient. In the various panels of Fig. 5,
the evolution of model parameters is reported by comparing
three different values of λ, the hyperparameter that controls the
adherence to the prior. As it can be noted, a low adherence
(λ = 0.001) led to significant fluctuations in the behavior of
a and b, undermining the model reliability in predicting the INR
response; a strong adherence (λ = 10), instead, could prevent
the adaptation process as the estimator struggled in deviating
from the prior values. This shows the need for accurate tuning
of this hyperparameter in order to grant an effective balance in
the robustness and flexibility of the controller.

B. Hyperparameter Optimization Results

The procedure for hyperparameter optimization (Sec-
tion II-B4) led to the following results: a comparable value of
control aggressiveness qwas selected as optimal for the Standard
MPC (q = 491) and the Adaptive MPC (q = 525), while the
optimal value of the prior confidence λ for the Adaptive MPC
was 2.

C. Comparison Among Different Therapies

Table I shows the results for the performance metrics (rising
time, out of range time, number of subjects reaching an INR
> 4, and number of subjects with first INR maximum > 3)
obtained out of the values computed from INR profiles of
10,000 simulated subjects. The proposed Standard MPC and
Adaptive MPC approaches achieved lower rising times with
respect to Medical Guidelines and Wilson MPC (2.7 and 2.8 vs.
4.4 and 11.2 days, respectively), and the proposed Adaptive
MPC approach achieved the overall lowest out of range time
(3.3 days), as well as the lowest number of subjects reaching
dangerous values of INR > 4 (only 8 subjects over the 10,000
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Fig. 5. Evolution of the estimates of a and b inside the Adaptive MPC applied on 200 virtual subjects during a 40-day simulation using different
values of λ: from the left-hand panels, where the adherence to the prior is low (λ = 0.001), to the right-hand panels, where the adherence to the
prior is high (λ = 10). The values of the prior are marked with a black dashed line.

TABLE I
PERFORMANCE METRICS

simulated) and the second lowest number of subjects with over-
shoot above the target window (886 over 10,000). The proposed
MPC approaches outperformed both the Wilson MPC and the
Medical Guidelines, with the Adaptive MPC being the overall
best-performing control technique according to the considered
performance metrics. According to a one-tailed t-test without
assuming equal variance, rising and out of range times were sta-
tistically significantly (p < 0.05) higher for Medical Guidelines
and Wilson MPC, when compared to Adaptive MPC. According
to a chi-squared test, instead, the number of subjects reaching
dangerous INR values above 4 was statistically significantly
(p < 0.05) higher for Medical Guidelines, Wilson MPC, and
Standard MPC when compared against Adaptive MPC, and
the number of subjects overshooting above the target range
(INR = 3) was statistically significantly higher for Medical

Guidelines and Standard MPC when compared against Adaptive
MPC.

Fig. 6 shows a population boxplot of the paired differences
obtained considering rising time, Panel (a), and out of range time,
Panel (b), for Medical Guidelines, Wilson MPC, and Standard
MPC with respect to the Adaptive MPC. This figure illustrates
that the Adaptive MPC systematically outperforms both Medical
Guidelines and Wilson MPC, which exhibit higher rising and out
of range times in the vast majority of the subjects. The Adaptive
MPC is comparable to the Standard MPC in terms of rising time,
but it led to shorter out of range times in most patients.

Fig. 7 shows the INR evolution over time in the population
and compares the INR achieved using the Adaptive MPC with
respect to the comparators: the Medical Guidelines and the Wil-
son MPC. Median INR profiles in the population are highlighted
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Fig. 6. Boxplots of performance difference of Medical guidelines (MG),
Wilson MPC (WM), and Standard MPC (SM) with respect to Adaptive
MPC. Rising time is shown in Panel (a), out of range time in Panel (b).
The red area indicates worse performance than Adaptive MPC and the
green area better results.

Fig. 7. Comparison of 90% prediction intervals of the simulated INR
responses generated with the Adaptive MPC (green shaded area), the
Wilson MPC (blue shaded area) and the Medical Guidelines (red shaded
area). Simulations were performed on N = 10,000 virtual subjects.
Medians are marked with a bold solid line.

with a bold line with different colors for each treatment. The
shaded area is delimited by the 5-th and 95-th percentile of
the INR in the population. This representation shows that the
Adaptive MPC proposed in this study produced a superior INR
profile: the first to enter the target range and leading to the
smallest and shortest overshoot. Medical Guidelines reached the
target INR soon, but at the cost of a considerable overshoot while
Wilson MPC led to a lower but prolonged overshoot at the cost
of later entrance in the INR target.

Fig. 8, compares the INR time evolution achieved by the
Adaptive MPC with the Standard MPC. The Adaptive MPC
performed better than the Standard MPC despite having a similar
control aggressiveness q. The difference in the results was thus
entirely imputable to the adaptation. In the Adaptive MPC, the
parameters of the MPC model, a and b, were estimated from

Fig. 8. Comparison of 90% prediction intervals of the simulated INR
responses generated with the Adaptive MPC (green shaded area) and
the Standard MPC (blue shaded area). Simulations were performed on
N = 10,000 virtual subjects. Medians are marked with a bold solid line.

past noisy data points at each step of the simulation by iterating
a Bayesian estimation procedure. This was key in the first days of
simulation to avoid any overshoot while reaching the acceptable
INR target as fast as possible.

D. Robustness to Poor Data and Sensor Malfunctioning

In Table II, the results of the robustness analysis are reported.
The considered performance metrics (i.e., rising time, out of
range time, number of subjects with INR > 4, and number
of subjects with first max INR > 3) were obtained over a
population of 10,000 simulated subjects for each of the four
dosing strategies. Results in the considered poor data scenarios
are consistent with the ones previously presented: the proposed
MPC approaches outperform the benchmark therapies, reaching
overall preferable performances. The adaptive MPC achieves the
best performance and, even in presence of poor data, ensures the
smallest number of subjects spending time in the unsafe INR
ranges.

No divergent or unstable behavior was observed in none of
the numerous simulated scenarios. Importantly, this holds true
also for the adaptive strategy, in spite of its higher complexity.

IV. DISCUSSION

In this study, we investigated computer-assisted warfarin dos-
ing for feedback regulation of blood coagulation. INR mea-
surements are provided to two newly developed model-based
control algorithms to suggest dose adjustments. Two different
MPC approaches have been developed: a Standard MPC and an
Adaptive MPC.

The first approach is an MPC implementation inspired by [29]
with an optimized control aggressiveness. The second is an
evolution of the former, in which the model parameters are
adapted online based on the observed patient response. The
adaptive updated model was then used by the MPC algorithm
to address the high biovariability present in the INR response
after oral warfarin administration. One of the strengths of this
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TABLE II
PERFORMANCE METRICS IN THE POOR DATA SCENARIOS

work was the use of a realistic simulation environment for both
tuning and validating the proposed control strategies: a nonlinear
mixed-effects model of warfarin identified and validated on a
large dataset was adopted to simulate the virtual subjects as
realistically as possible. The developed simulation environment
allowed the optimization of the controller hyperparameters,
which was critical to meet satisfactory control performance.
Moreover, the simulated population was then used to compare
different closed-loop treatments.

The proposed MPC approaches were benchmarked against
two control techniques proposed in the literature, namely the
Medical Guidelines and the Wilson MPC. The Medical Guide-
lines approach was based on a MATLAB implementation of a set
of rules defined in [38] that are currently used by physicians to
plan patient-specific warfarin therapies. Results for the Medical
Guidelines showed that, on average, the INR profile reached the
target range in 4.4 days. However, most simulated subjects had
a significant overshoot above the maximum accepted value.

The Wilson MPC, recently proposed by Wilson and col-
leagues [29], was implemented in MATLAB. In the population
under study, this approach showed a non-negligible delay (11.2
days) in reaching the INR target range, and several simulated
subjects had a long-lasting overshoot. This sub-optimal perfor-
mance was mostly due to a conservative tuning of the controller
that allowed the overshoot to be reduced at the cost of entering
the therapeutic window later in time.

The Standard MPC approach mainly differs from the Wilson
MPC for an optimized tuning of the control aggressiveness and
a customized INR reference profile (see Section II-B2) instead
of a constant value. The introduction of these changes proved
to improve the controller performance in terms of rising time
at the cost of a slightly increased overshoot. If compared to the
Medical Guidelines approach, however, a reduction in out of
range time is guaranteed.

The Adaptive MPC approach was developed to address the
high biovariability, providing a personalized treatment tailored
to each patient. Adaptation of the MPC model parameters proved
to be robust despite the noisy INR measurements even when only
a few data points were available. This was achieved thanks to
a Bayesian estimation procedure, that introduced a population
prior to the model parameters and allowed deviation from this
prior as more measurements were collected. This feature was
tested also in two challenging scenarios that involved the addi-
tion of an offset of 1 to the INR, whose values usually lie between

1 and 4. The use of a patient-tailored model in the MPC led to a
more efficient control that was able to maintain the good rising
time achieved by the Standard MPC while almost completely
avoiding overshooting, in its turn, leading to a safer therapy able
to avoid the reaching of dangerous INR values for almost all sim-
ulated subjects (more than 99.9%). In addition, the adaptation
process can be considered completed after the fifth day in most
of the subjects. The fact that adaptation does not improve the
rising phase is therefore expected, in fact, the rising phase lasted
on average only 3 days, less than the time needed to adapt to
the patient. In all the tested simulations, including the poor data
scenarios, no unstable behavior was observed in the proposed
controllers. Adaptivity helped in maintaining the INR within the
therapy window and was not observed to produce instability,
despite its higher complexity, even during the robustness test.
Finally, it is worth stressing that neither the Standard nor the
Adaptive MPC required access to genotype information on the
subject. Such information was instead required in the Medical
Guidelines. Collecting genotype information is time-consuming
and costly and thus this information might not be available for
all patients.

IV. Limitations and Future Works

This work reports an in-silico analysis based on a validated
non-linear model. Since all models are approximate descriptions
of reality, in-silico results need to be confirmed by conclusive
clinical investigations. Nevertheless, careful in-silico testing
can drastically accelerate the control algorithm development
pipeline and prevent expensive or dangerous clinical or preclin-
ical tests of suboptimal algorithms. In view of this, the findings
of this manuscript can be considered as a first validation step
useful to guide the development of new treatments.

Known limitations of the proposed simulated framework
include that it does not account for patient variability over
time nor it describes the interactions between warfarin and
the lifestyle of the patient. For instance, previous studies have
shown that certain foods, such as grapefruit, cranberry, and
vitamin K-containing vegetables, as well as lifestyle habits such
as alcohol and tobacco use may lead to food-drug interactions
and influence the effectiveness of warfarin [40], [41]. Even if
it should be noticed that patients under warfarin are educated
to take the drug between meals and avoid certain foods, future
improvements to the simulation environment could include these
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aspects, as well as the implementation of a sparse and more re-
alistic INR sampling procedure. It should also be acknowledged
that the implementation of Medical Guidelines is only partially
representative of the actual actions of physicians, who may
prefer to manage therapy according to their own professional
experience rather than strictly following guidelines. Therefore,
the superiority of automatic therapies can be proven only with
real clinical trials.

The proposed controller could also be modified to address
some of the above-mentioned challenges. A moving window or
a forgetting factor in the adaptation process could be used to
effectively address the intra-individual variability. Moreover, if
the patient is willing to announce the ingestion of food with
a known interaction with warfarin, the MPC could provide a
natural framework to adjust the drug dosage in response to this
event, by accounting for the announcement in the prediction
and producing a feed-forward compensative action. Neverthe-
less, this requires the availability of a model for that specific
interaction, either based on physiology or data-driven.

Currently, physicians may be hesitant to let patients adjust
their drug dosage on a daily basis without supervision, since this
is a complex task and errors could be dangerous. A thoroughly
validated decision support system could be of great help in this
regard. The automated computation of dose adjustment would
leave only the residual risk associated with non-compliance. To
minimize this risk, following [42], future work will investigate
the inclusion in an MPC framework of quantized suggestion and
the reduction in the number of therapy changes.

V. CONCLUSION

In conclusion, two blood coagulation control techniques
based on the MPC approach were developed and benchmarked
against two other methods proposed in the literature. All the
analysis was performed in a simulation environment built from
a nonlinear mixed effects model of warfarin PK and PD. The
Standard MPC reached good control performances thanks to
an optimized tuning of the controller aggressiveness. The more
advanced Adaptive MPC produced the most effective control,
leading to an INR profile with a fast rising time and a minimal
overshoot above the maximum safe range. Both proposed control
techniques outperformed the Medical Guidelines and the Wilson
MPC approaches according to all the considered metrics and a
visual inspection of INR profiles of the virtual subjects. This
work showed the potential of an adaptive MPC strategy to
address biovariability. Future developments include the testing
of the proposed strategy on real patients within a randomized
controlled trial, to confirm the in-silico findings.
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