
Università degli Studi di Padova

DIPARTIMENTO DI SCIENZE CHIMICHE

Corso di Dottorato di Ricerca in Scienze Molecolari

Curriculum: Scienze Chimiche

CICLO XXXVI

Tesi di Dottorato

Theoretical and Computational Insights into Non-Linear
Response in Action-2D Electronic Spectroscopy

Coordinatore:

Ch.mo Prof. Stefano Corni

Supervisore:

Ch.ma Prof.ssa Barbara Fresch

Dottorando:

Matteo Bruschi





i

Abstract - English

Two-Dimensional Electronic Spectroscopy (2DES) is a powerful tool for investigating the

properties of complex molecular aggregates and nanostructures. By probing the system

with a sequence of ultrafast laser pulses, spectral and temporal information are dissected

along multiple dimensions, allowing to track energy and charge transfer pathways within

multichromophoric systems. Because of the wealth of information contained in the spec-

tra, the origin of certain spectral features can be ambiguous. Therefore, the development

of theoretical models and numerical simulations is essential to support their correct inter-

pretation.

Recently, a novel implementation of the technique has been realized, known as Action-

2DES (A-2DES), calling for theoretical and numerical efforts to establish the correlation

between spectral features and the dynamical processes occurring at the molecular scale.

While probing the coherent dynamics induced by the interaction with four collinear laser

pulses, the technique relies on the measurement of an incoherent signal proportional to

the excited-state population, e.g., fluorescence or photocurrent, allowing the investigation

of functional dynamics of systems in operando conditions.

In this Thesis, we delve into the theory of A-2DES and its numerical simulation to clarify

essential aspects of the incoherent signal detected with this technique. To this end, we

employed a combination of perturbative and non-perturbative approaches to describe the

light-matter interaction. While the former provides the conceptual basis for the analysis

of the response in terms of several dynamical pathways, the latter allows the complete

simulation of the entire spectroscopic experiment.

In A-2DES, the signal is detected over a timescale during which the excited-state pop-

ulation may undergo several processes. We investigated the effects of such population

dynamics on the spectra by characterizing the spectroscopic response of a model of quan-

tum dot featuring the interplay between exciton and biexciton contributions to the signal.

The involvement of the double-excited manifold in the signal represents a crucial factor

shaping the signal in A-2DES. Thus, we analyzed the case in which the double-excited
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manifold consists of excited states localized on different weakly interacting chromophores.

This setting allows to discuss the origin of cross-peaks and incoherent mixing in the signal,

first considering the case of a simple molecular dimer and then in a larger molecular

assembly. The analysis shows that mixing effects are intrinsic in the A-2DES, and they

must be carefully addressed in the design of the sample and the choice of the detection

scheme.

Our investigation further proceeded by focusing on the dependence of the spectral fea-

tures on varying the excitonic coupling strength, showing how cross-peaks can either re-

flect the presence of exciton-exciton annihilation or excitonic delocalization between chro-

mophores, depending on the coupling regime.

Finally, we shifted the focus toward a related yet distinct subject, wondering whether

emerging quantum computing technologies could contribute to the efficient simulation of

2DES spectra. Accordingly, we designed a quantum algorithm for simulating the non-linear

response of multichromophoric systems and provided a proof-of-concept computation con-

sidering an excitonic dimer model.
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Abstract - Italiano

La spettroscopia elettronica bidimensionale (2DES) è un potente strumento per studiare

le proprietà di aggregati molecolari e nanostrutture complesse. Mediante l’interazione

con una sequenza di impulsi laser ultraveloci, le informazioni spettrali e temporali del

sistema vengono separate lungo diverse dimensioni, consentendo di seguire i percorsi di

trasferimento di energia e carica all’interno di sistemi multicromoforici. A causa della

quantità di informazioni contenute negli spettri, l’origine di alcune caratteristiche spettrali

può risultare ambigua. Pertanto, lo sviluppo di modelli teorici e di simulazioni numeriche

è essenziale per supportare la loro corretta interpretazione.

Recentemente è stata realizzata una nuova implementazione della tecnica, nota come

Action-2DES (A-2DES). Lo sviluppo di modelli teorici e numerici specifici sono neces-

sari per stabilire la correlazione tra le caratteristiche spettrali e i processi dinamici che

avvengono su scala molecolare. Mentre la dinamica coerente è indotta dall’interazione

con quattro impulsi laser collineari, la tecnica si basa sulla misura di un segnale incoerente

proporzionale alla popolazione di stato eccitato, ad esempio fluorescenza o fotocorrente,

consentendo di indagare la dinamica funzionale dei sistemi in condizioni operative.

In questa Tesi, abbiamo approfondito la teoria dell’A-2DES e la sua simulazione numer-

ica per chiarire gli aspetti fondamentali del segnale incoerente rivelato con questa tecnica.

A tal fine, abbiamo utilizzato la combinazione di un approccio perturbativo e non perturba-

tivo per descrivere l’interazione luce-materia. Mentre il primo fornisce le basi concettuali

per l’analisi della risposta in termini di diversi percorsi dinamici, il secondo permette la

simulazione completa dell’intero esperimento spettroscopico.

In A-2DES, il segnale è rivelato su una scala temporale durante la quale la popolazione

di stato eccitato può andare incontro a diversi processi. Abbiamo analizzato gli effetti di

tali dinamiche di popolazione sugli spettri, caratterizzando la risposta spettroscopica in un

modello di quantum dot che prevede la presenza di un contributo eccitonico e bieccitonico

al segnale.

Il coinvolgimento del manifold di doppia eccitazione è risultato essere un fattore cru-



ciale nell’influenzare il segnale in A-2DES. Dunque, abbiamo analizzato il caso in cui il

manifold di doppia eccitazione sia formato da stati eccitati localizzati su diversi cromofori

debolmente interagenti. Questa descrizione consente di discutere l’origine dei cross-peaks

e dell’incoherent mixing nel segnale, dapprima considerando il caso di un semplice dimero

molecolare e successivamente di un aggregato molecolare. L’analisi evidenzia che gli effetti

di incoherent mixing sono intrinseci in A-2DES e devono essere valutati con attenzione

durante la scelta del campione e dello schema di misura.

La nostra indagine è proseguita concentrandosi sulla dipendenza delle caratteristiche

spettrali al variare della forza dell’accoppiamento eccitonico, mostrando come i cross-peaks

possano riflettere la presenza di annichilazione eccitone-eccitone o di delocalizzazione ec-

citonica tra cromofori, a seconda del regime di accoppiamento.

Infine, abbiamo spostato l’attenzione su un argomento correlato ma distinto, chieden-

doci se le emergenti tecnologie di calcolo quantistico possano contribuire alla simulazione

efficiente di spettri 2DES. Di conseguenza, abbiamo progettato un algoritmo quantistico

per simulare la risposta non lineare di sistemi multicromofori e ne abbiamo fornito una

dimostrazione pratica considerando il modello di un dimero eccitonico.
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1| Introduction
Light-matter interaction underlies the functioning of many natural and artificial systems.

The most prominent example is represented by the photosynthetic process of plants

and bacteria. In the initial step of photosynthesis, known as light-harvesting, energy from

the sunlight is captured by specific pigments, e.g., (bacterio)chlorophylls and carotenoids,

within the antenna complex [1, 2]. Then, the energy, stored as an electronic excitation,

migrates from one molecule to the other eventually reaching the reaction center where

charge separation takes place. Subsequently, the electrons generated enter into an intricate

sequence of charge transfer reactions, ultimately resulting in the production of chemical

compounds vital for the sustenance of the cell.

Recently, great efforts have been devoted to designing efficient solar cells for the produc-

tion of clean and sustainable energy [3]. By exploiting the photovoltaic effect, solar cells

convert solar energy into an electric current. Depending on the semiconductor, different

types of solar cells have been developed, e.g., silicon-based, organic, quantum dots and

perovskite, with the aim of producing more affordable and efficient materials. Solar cells

are composed of an active layer, which is a blend of electron-donor and electron-acceptor

materials, sandwiched between two electrodes. The light absorbed in the active layer pro-

duces an exciton that travels towards the donor-acceptor interface, called heterojunction.

Charge separation occurs at the heterojunction, generating free charges that move toward

the electrodes, producing an electric current.

1.1. Probing Exciton Dynamics in the Condensed Phase

From the physical chemistry perspective, spectroscopy exploits the light-matter inter-

action to probe the properties of molecular systems and materials. The simplest kind of

spectroscopic experiment is represented by linear techniques, e.g., absorption or emission

spectroscopy, which are commonly performed in the frequency domain. In a linear spec-

trum, the position of the peaks represents the transition frequency of the system, while

their amplitude is proportional to the transition dipole moment. Furthermore, the lineshape
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Fig. 1.1: Schematic representation of a) pump-probe spectroscopy and b) Coherent-2D Electronic
Spectroscopy (C-2DES) experiments. The signal is represented by a coherent electric field (red
arrow) which is collected by the detector.

of the peaks reflects the presence of inhomogeneity within the sample and the interaction

with the surroundings, such as solvent molecules, protein scaffold or polymer matrix.

While linear techniques provide valuable information, they offer a rather static picture of

the system, in which the temporal dimension is not explicitly involved. In contrast, time-

resolved techniques allow to tracking a plethora of molecular processes occurring in the time

domain, such as vibrations, charge and energy transfer [4]. However, in order to investigate

these processes, ranging from nanoseconds to femtoseconds regime, it is necessary to

achieve adequate time resolution. Consequently, the experimental characterization of these

phenomena has progressed together with technological advancements. With the advent

of lasers, it finally became possible to investigate chemical phenomena occurring on such

timescales through the use of ultrafast pulses and the development of a toolbox of non-

linear optical spectroscopies.

The most common time-resolved technique is pump-probe spectroscopy (Fig. 1.1a)

[5]. In a pump-probe experiment, the sample interacts with two distinct laser pulses,

respectively called the "pump" and the "probe", which are both temporally and spatially

separated. First, the pump pulse excites the sample to an electronic excited state. After a

certain delay time tdelay, the probe pulse measures the transient change in the absorption
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induced by the previous interaction with the pump. The signal is given as a function of

the probe frequency ωprobe and the delay time between the pulses tdelay.

However, this technique suffers from specific limitations. The first issue is related to the

lack of simultaneous time and frequency resolution, due to the time-frequency uncertainty

relation. On the one hand, short pulses offer greater temporal resolution but preclude

selective excitation. On the other hand, longer pulses allow selective excitation but may

obscure the system dynamics. Therefore, it is often necessary to reach a compromise

between temporal and spectral resolution. The second problem is related to the fact that

the technique is not background-free. Indeed, the signal is acquired simultaneously with

the probe pulse by the detector. Therefore, it is necessary to isolate the signal, often

resulting in a low signal-to-noise ratio.

1.2. Two-Dimensional Electronic Spectroscopy

Both of these limitations can be circumvented using Two-Dimensional Electronic Spec-

troscopy (2DES) [6]. 2DES represents the most advanced spectroscopic technique for

investigating the non-linear optical response of molecular systems and nanostructures [7–

9].

In its conventional implementation, Coherent-2DES (C-2DES) is performed in a fully

non-collinear geometry (Fig. 1.1b), where three pulses interact with the sample starting

from different vertices of a square. The pulses are temporally separated by delay times

t1, t2 and t3. The signal, represented by a coherent electric field, is emitted in a specific

spatial direction according to the phase-matching condition, thus allowing background-free

detection. By scanning the delay times between the pulses, the signal is measured as a

function of t1, t2 and t3. Note that, in this case, the time resolution is not limited by the

pulse duration, but is determined by the delay time scan.

By taking the Fourier transform along delay times t1 and t3, the signal is typically

visualized as a 2D spectrum for each value of the waiting time t2 (Fig. 1.2). The 2D

spectrum can be interpreted as a correlation map between the excitation frequency ω1
and the emission frequency ω3, where each spectral feature is identified by coordinates

(ω1, ω3). In general, it is possible to distinguish between diagonal peaks, where ω1 = ω3,

and cross-peaks, where ω1 ̸= ω3.

Diagonal peaks provide information about the energy level structure of the system under

investigation. The lineshape of these peaks gives insights into the kind of interactions
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Fig. 1.2: Schematic representation of the 2D spectrum at different waiting times t2. a) At early
waiting times t2 = 0, the peaks show inhomogeneous and homogeneous broadening respectively on
the diagonal and anti-diagonal. b) As t2 increases, the peaks become more rounded due to spectral
diffusion. Furthermore, we can notice the drift of peaks towards lower emission frequency due to
Stokes shift and the emergence of cross-peaks due to energy transfer between different states.

between the system and the environment. In particular, one of the most significant ad-

vantages of 2DES is its ability to differentiate between inhomogeneous and homogeneous

broadening, which respectively appear along the diagonal and the anti-diagonal of the

spectrum at t2 = 0 (Fig. 1.2a). Inhomogeneous broadening is attributed to the presence

of static disorder within the sample, wherein each system exhibits a different transition

frequency due to its surroundings. In contrast, homogeneous broadening results from the

occurrence of relaxation and dephasing processes for each system.

As t2 increases, the peaks become progressively rounded due to the phenomenon of

spectral diffusion, where environmental fluctuations cause the loss of correlation between

the excitation and the emission frequency (Fig. 1.2b). Other properties of the lineshapes

can be linked to the details of the system-environment interaction [10]. Furthermore,

Stokes shift due to vibrational relaxation and solvent reorganization results in a drift of

the peak towards lower emission frequency during the waiting time t2.

Instead, cross-peaks reveal information about interaction and correlation between dif-

ferent states, allowing to characterize energy migration pathways. As t2 increases, cross-

peaks can appear due to relaxation between different states or energy transfer between

molecules (Fig. 1.2b). In contrast, the presence of cross-peaks at t2 = 0 represents a

witness of excitonic delocalization, i.e., the eigenstates are given by the superposition of
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localized excitations on different chromophores.

With its simultaneous time and frequency resolution, 2DES has revolutionized our un-

derstanding of excited-state dynamics, revealing insights that were previously inaccessible

through linear spectroscopy. Given the wealth of information contained in the spectrum,

the interpretation of spectral features requires the use of theoretical models and numer-

ical simulations [11]. Optical spectroscopy is commonly interpreted in the framework of

non-linear response theory [12, 13]. The contributions to the signal can be described in

terms of different pathways followed by the system, distinguished in Ground-State Bleach-

ing (GSB), Stimulated Emission (SE) and Excited-State Absorption (ESA). While GSB

provides insights into the ground-state dynamics, both SE and ESA contain valuable in-

formation about processes occurring in the excited state.

1.3. A Short Tale of Long-Lived Quantum Coherences

C-2DES found immediate application in the investigation of biological systems [14–16].

However, the profound synergy between the interpretation of 2DES experiments and the

understanding of exciton dynamics in terms of different theoretical models became clear

from the discussion of the early results.

At the turn of the century, two conceptual frameworks were used to discuss energy trans-

fer processes: an incoherent hopping mechanism between chromophores, as described by

Förster theory [17], and the environment-mediated transition between delocalized exci-

tations [18], as described by Redfield theory [19]. These theoretical settings find their

justification in two different limiting cases: Förster theory assumes localized excitations

as a good representation and treats the intermolecular coupling perturbatively. On the

other hand, the Redfield master equation is formulated starting from possibly delocal-

ized eigenstates, while the coupling with the environment acts as a perturbation inducing

energy transfer. In its secular form, Redfield theory predicts a fast decoherence, in the

femtoseconds timescale, for the different electronic states.

However, the observation of long-lived beatings along t2 in C-2DES of the Fenna-

Matthew-Olson (FMO) complex [20] suggested that electronic coherences may help to

enhance the efficiency of the photosynthetic process. This finding contributed to the rise

of quantum biology [21], triggering a vibrant discussion at the intersection of chemistry,

physics, and biology about the possible role of quantum effects at the biological scale [22,

23]. Nevertheless, despite the initial excitement, there was no consensus about whether
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such fragile quantum behavior could persist in a warm, wet and disordered environment as

the biological one [24]. Subsequently, an impressive mole of theoretical work was devoted

to testing different dynamical models in the simulation of spectra [25–27].

Later studies highlighted how those beatings could also be attributed to vibrational

coherences, characterized by longer dephasing time [28, 29]. Moreover, the coherent

excitation conditions of ultrafast spectroscopy experiments, under which such beatings

were measured, drastically differ from those of the incoherent natural illumination typical of

light-harvesting [30]. Recently, it was concluded that these beatings should be attributed

to vibrational and vibronic coherences rather than electronic ones [31]. Furthermore,

biological systems do not attempt to avoid decoherence and dissipation, instead, they

harness them to efficiently direct energy transfer to the reaction center.

Although it is now clear that photosynthetic systems do not rely on electronic coher-

ences to enhance the efficiency of the light-harvesting process, the insights gained from

this exploration offer promising avenues for the design and investigation of novel artificial

systems [22], in particular molecular aggregates [32–34], conjugated polymers [35, 36],

quantum dots [37–40], perovskites [41–43] and polaritonic materials [44, 45]. On the

other hand, the theoretical efforts to support the interpretation of the results led to im-

proved theories for open quantum system dynamics such as the Hierarchical Equations of

Motion (HEOM) [46, 47] and efficient numerical schemes to tackle the non-linear response

of complex excitonic systems [48–50].

1.4. Action Detection Poses New Questions

In these two decades of 2DES, the technique has not remained unchanged but instead

has undergone several advances. In particular, 2DES has been extended to different spec-

tral regions such as terahertz [51], UV [52] and X-ray. Furthermore, the use of pulses of

different colors, as demonstrated in 2D electronic-vibrational spectroscopy [53], has en-

abled the investigation of correlations between nuclear and electronic degrees of freedom.

In the same way, polarization-dependent pulse sequences allowed for the selective reduction

of diagonal peaks in the spectrum while enhancing cross-peak contributions [54].

One of the most significant advancements in the field is represented by Action-2D Elec-

tronic Spectroscopy (A-2DES) [55, 56]. In A-2DES, the sample interacts with a sequence

of four collinear laser pulses (Fig. 1.3). As a result, an incoherent signal is emitted during

the detection time td , which is proportional to the excited-state population. Depending
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Fig. 1.3: Schematic representation of Action-2D Electronic Spectroscopy (A-2DES) experiment
with fluorescence or photocurrent detection.

on the sample, the nature of the incoherent signal can be different, e.g., fluorescence

[57], photocurrent [58, 59], photoions [60] and photoelectrons [61]. Since the pulses are

collinear, it is not possible to differentiate the signal based on the phase-matching con-

dition. Instead, the different components can be isolated by controlling the phase of the

laser pulses, either using phase-cycling [62, 63] or phase-modulation [64] schemes.

The technique has several advantages compared to its coherent counterpart. In partic-

ular, the combination with single-molecule [65] and microscopy [66] techniques allows to

achieve spatial resolution beyond the diffraction limit. Furthermore, its ability to measure

functional signals makes A-2DES suitable for investigating systems in operando condi-

tions [67]. In addition, the capability to detect different observables may highlight distinct

mechanisms contributing to the signal, as demonstrated for fluorescence and photocur-

rent detection in quantum dots [59] and perovskite [68] solar cells, allowing for a more

comprehensive characterization of the system under investigation. Moreover, the lack

of non-resonant solvent contribution, which instead may affect the optical response in

C-2DES during the pulse overlap [69], offers a cleaner access to the early waiting-time

dynamics [70].

However, while A-2DES and C-2DES share multiple similarities, the spectral features

obtained from the two techniques exhibit significant differences, as recently demonstrated

in comparative studies [70, 71]. A first difference arises from the additional light-matter

interaction in A-2DES, which leads to two kinds of ESA pathways: one resulting in a single

excited-state population (ESAI) and the other in a double excited-state population (ESAII)

[57, 72]. Having opposite signs, the two pathways can destructively interfere leading to the

mutual cancellation of the associated spectral features. The second difference is related
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to the process of signal generation. In C-2DES the coherent signal is emitted on a short

timescale, in the range of hundreds of femtoseconds, limited by the dephasing of the

optical coherence. In contrast, the incoherent signal in A-2DES results from population

relaxation, which typically occurs on a much longer timescale in the nanoseconds regime.

During this period, the double-excited state population can undergo several non-radiative

relaxation channels, e.g., exciton-exciton annihilation, Auger recombination. As a result,

the ESAII contribution can be reduced, eventually leading to an ESA-free spectrum [73].

The origin of the spectral features in A-2DES, compared to the more established C-

2DES, is a matter of active research. Recent A-2DES experiments on the LH2 complex

revealed the presence of prominent cross-peaks at early waiting times [66, 74]. Conse-

quently, several theoretical studies have been conducted to unravel the origin of these

cross-peaks. In the analysis of a molecular dimer, Maly and Mančal highlighted that the

emergence of cross-peaks at early waiting times represents a witness of exciton-exciton

annihilation within the system, while provides limited insights into the presence of excitonic

delocalization between chromophores [75]. Extending the analysis to multichromophoric

systems, Kunsel et al. demonstrated that cross-peaks in the A-2DES spectra of LH2

complex actually reflect the presence of exciton-exciton annihilation between the B800

and B850 rings, exposing clean GSB signal between them [76]. In contrast, Schröter et al.

proposed that cross-peaks may reveal the initial delocalization between chromophores be-

fore incoherent Förster mechanism sets in [77]. In an attempt to clarify the interpretation

of cross-peaks in A-2DES, Kühn et al. concluded that cross-peaks can provide information

on both exciton-exciton annihilation and excitonic delocalization, depending on the degree

of interaction [73].

Moreover, it has been found that the phenomenon of incoherent mixing can affect the

A-2DES signal. In this case, due to non-linear population dynamics [78], e.g., exciton-

exciton annihilation and Auger recombination, or to non-linearity in the detection [79],

linear responses can mix and enter in the signal, potentially hiding non-linear information.

Recently, efforts have been devoted to distinguishing the incoherent mixing contribution

from the non-linear response [80].

1.5. Scope and Outline of the Thesis

The ongoing debate on the origin of certain spectral features appearing in A-2DES

calls for the development of novel theoretical and numerical approaches to avoid potential

pitfalls in the interpretation of the signal. The scope of this Thesis is to contribute to this



1| Introduction 9

effort. Specifically, we explore different simulation methods and apply them to analyze

specific aspects of the action signal (Fig. 1.4).

In Chapter 2, we present the state-of-the-art for the simulation of the optical response.

We introduce the two main methods for modeling 2DES spectroscopy, namely the pertur-

bative and the non-perturbative approach to light-matter interaction.

The rest of the Thesis is intended as a collection of papers, some of which have already

been published, while others are in preparation. The notation may slightly vary from

one chapter to the other for the sake of convenience. However, the notation is always

introduced self-consistently within each chapter.

In Chapter 3, we present the numerical simulation of the optical response of a quantum

dot system as a case study to unravel the interplay between the exciton and biexciton

contributions to the spectrum. We analyze how the relative weights of the exciton and

biexciton signals determine the lineshape of the peaks, how they depend on the physical

nature of the detected signal, i.e., fluorescence or photocurrent, and the relaxation dynam-

ics during the detection time. Furthermore, we consider how the choice of the detection

mode and the use of time-gating may aid the evaluation of relevant parameters, such as

the biexciton binding energy and the timescales of the biexciton relaxation.

In Chapter 4, we discuss the relation between the non-linear response and the incoher-

ent mixing contribution by analyzing the action signal in terms of one- and two-particle

observables. Considering a weakly interacting molecular dimer, we show how cross-peaks

at early waiting times, reflecting exciton-exciton annihilation, can be equivalently inter-

preted as arising from incoherent mixing. This equivalence, on the one hand, highlights

the information content of spectral features related to incoherent mixing and, on the other

hand, provides an efficient numerical scheme to simulate the action response of weakly

interacting systems.

In Chapter 5, we extend these results to a molecular assembly composed of N chro-

mophores, in the case where the output intensity is not proportional to the number of

excitations generated. Accordingly, we identify different sources of non-linearities involv-

ing the two-exciton manifold, pointing out that the presence of incoherent mixing does not

necessarily require dynamical interactions. We show how, in such situations, the ground-

state bleaching contribution can dominate the non-linear signal and partially or completely

hide the stimulated emission component, depending on the number of molecules involved.

In Chapter 6, we examine how excitonic coupling modifies the picture of the action
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response of weakly interacting units analyzed in the previous Chapters. We discuss the

case of a molecular dimer in different coupling regimes to investigate how exciton-exciton

annihilation and excitonic delocalization are reflected in the spectral features. We analyze

the change in amplitude of the spectral features as a function of the coupling strength and

discuss the nature of the cross-peaks in different coupling regimes. Here, we also consider

the waiting-time dynamics of the spectral features. However, further work is needed in

this direction.

In Chapter 7, we deviate from the main subject of this study and wonder whether

coherence at work in a quantum computer offers an effective way to simulate non-linear

spectroscopy. We present a quantum algorithm for computing the optical response of

molecular systems, by combining quantum dynamical simulation and non-linear response

theory. The protocol is tested on a near-term quantum device providing digital quantum

simulation of the linear and non-linear response of monomer and dimer molecular systems.

The results are encouraging even though further technological developments are needed

to reach the quantum advantage in the efficient simulation of the dynamics governed by

the molecular Hamiltonian.

Finally, we provide the concluding remarks and trace the directions of future research

arising from this work.
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Fig. 1.4: Graphical outline of the Thesis.
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In this Chapter, we provide the theoretical foundations for the interpretation and simulation

of Two-Dimensional Electronic Spectroscopy (2DES). In particular, we present the two

main approaches for describing light-matter interaction, i.e., the perturbative and the non-

perturbative approaches. In the following Chapters, both descriptions are used to tackle

specific issues in the interpretation of 2D spectra.

In the perturbative approach, the light-matter interaction is assumed to be weak com-

pared to the energy scale of the system Hamiltonian. According to the non-linear response

theory, the state of the system and its optical response can be expanded at the different

orders in the light-matter interaction. As a result, the spectroscopic observable are pro-

portional to the system response function which can be conveniently represented in terms

of (double-sided) Feynman Diagrams (FDs). On the other hand, the non-perturbative ap-

proach relies on extracting the spectroscopic observable from the dynamics of the system

driven by the external electromagnetic field. In this way, the total optical response of the

system is obtained, from which the response at the different orders of the light-matter

interaction has to be extracted.

The kind of observables that are experimentally detected depends on the specific spec-

troscopic technique. In the following, we will discuss the two different versions of 2DES:

the coherent-detected technique (C-2DES) and the action-detected technique (A-2DES).

In the former, the measured signal is represented by the coherent electric field emitted

by the macroscopic polarization induced in the sample, while in the latter, the incoherent

signal, e.g., fluorescence or photocurrent, is proportional to the excited-state population.

2.1. Light-Matter Interaction

We will confine our discussion to the semi-classical description of the light-matter in-

teraction. In this framework, the system is treated according to the laws of quantum
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mechanics, whereas light is regarded as a classical electromagnetic field. The total Hamil-

tonian is given by:

Ĥ(t) = Ĥ0 + Ĥ
′(t) (2.1)

where Ĥ0 is the system Hamiltonian and Ĥ′(t) is the light-matter interaction Hamiltonian.

By diagonalizing the system Hamiltonian, Ĥ0 |k⟩ = ϵk |k⟩, the eigenstates of the system

|k⟩ are obtained, along with the corresponding eigenvalues ϵk , representing their energies.

Instead, the light-matter interaction promotes transitions between the different eigen-

states. In the dipole approximation, the interaction Hamiltonian can be written as:

Ĥ′(t) = −µ̂ · E(t) (2.2)

where µ̂ is the dipole moment operator of the system and E(t) is the external electric

field. To avoid cumbersome vectorial notation, we assume that the electric field is linearly

polarized E(t) = E(t)e, with polarization unit vector e. Therefore, the interaction Hamil-

tonian can be rewritten as Ĥ′(t) = −µ̂E(t), where µ̂ = µ̂ ·e is the projection of the dipole

moment onto the electric-field polarization.

2.2. State Vector and Pure States

An isolated system described by the wavefunction |ψ(t)⟩ is considered to be in a pure

state. Its temporal evolution is governed by the Schrödinger equation:

d

dt
|ψ(t)⟩ = − i

ℏ
Ĥ(t) |ψ(t)⟩ (2.3)

under the effect of the total Hamiltonian Ĥ(t) (Eq. 2.1). In general, the solution of this

equation takes the form:

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ (2.4)

where |ψ(t0)⟩ is the initial condition and U(t, t0) is the time-evolution operator. Never-

theless, this solution represents only a formal expression with limited practical utility.

However, in the absence of light-matter interaction, the evolution of the system can be

expressed as:

|ψ(t)⟩ = U0(t, t0) |ψ(t0)⟩ (2.5)
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where the time-evolution operator:

U0(t, t0) = exp

{
− i
ℏ
Ĥ0(t − t0)

}
. (2.6)

is only determined by the system Hamiltonian Ĥ0. In the eigenstate basis, the time evolu-

tion of the system takes a simple analytical form given by the linear combination:

|ψ(t)⟩ =
∑

k

ck(t) |k⟩

=
∑

k

ck(t0)e
− iℏ ϵk(t−t0) |k⟩

(2.7)

where ck(t) = ⟨k |ψ(t)⟩ is the complex probability amplitude. Since the state vector

contains all the relevant information about the isolated system under investigation, it is

possible to calculate the expectation value of an observable Ô as:

O(t) = ⟨ψ(t)|Ô|ψ(t)⟩ . (2.8)

2.3. Density Matrix and Mixed States

A system is said to be in a mixed state when there is incomplete knowledge of its state.

In this case, the system is described in terms of the statistical density matrix:

ρ(t) =
∑

n

pn |ψn(t)⟩⟨ψn(t)| (2.9)

where pn is the probability of occurrence of a given pure state |ψn(t)⟩. Similarly to the

Schrödinger equation for the wavefunction (Eq. 2.3), the time evolution of the density

matrix is ruled by the Liouville-von Neumann equation:

d

dt
ρ(t) = − i

ℏ
[
Ĥ(t), ρ(t)

]
(2.10)

where [·, ·] is the commutator.

In the absence of light-matter interaction, the evolution of the density matrix is given

by:

ρ(t) = U0(t, t0)ρ(t0)U
†
0(t, t0) (2.11)
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with ρ(t0) as initial condition. In the eigenstates basis, this can be written as:

ρ(t) =
∑

k,l

ρkl(t) |k⟩⟨l |

=
∑

k,l

ρkl(t0)e
− iℏ (ϵk−ϵl )(t−t0) |k⟩⟨l |

(2.12)

whose diagonal elements ρkk(t) = |ck(t)|2 are referred to as populations, which represent

the probability of the system to be found in a certain state, while off-diagonal elements

ρkl(t) = ck(t)c
∗
l (t) are called coherences, which reflect a coherent superposition between

different energy states.

In this case, the density matrix completely characterized the state of the statistical

ensemble and the expectation value of an observable Ô can be evaluated by taking the

trace:

O(t) = Tr{Ôρ(t)}. (2.13)

2.4. Perturbative Approach

Optical spectroscopy is typically rationalized using a perturbative approach [1, 2], where

the light-matter interaction is regarded as weak perturbation to the system Hamiltonian.

This approach not only provides the theoretical framework for the interpretation of the

spectra but also represents a convenient protocol for the simulation of the optical response.

The perturbative approach finds its roots in the response theory [3]. The state of the

system is expanded into the different orders of the light-matter interaction, allowing the

extraction of the optical response at a specific order. Consequently, the spectroscopic

signal can be expressed in terms of a field-dependent part and a system response function,

which is defined solely on the basis of the unperturbed properties of the system, as the

dipole moment operator and the system Hamiltonian.

2.4.1. Time-Dependent Perturbation Theory

In order to develop a perturbative expansion in the light-matter interaction for the density

matrix, we first introduce the interaction picture. In this representation, denoted hereafter

by the subscript I, the density matrix and the operators are transformed under the time-
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evolution operator corresponding to the unperturbed system Hamiltonian Ĥ0 (Eq. 2.6):

ÔI(t) = U†0(t, t0)Ô(t)U0(t, t0)
ρI(t) = U

†
0(t, t0)ρ(t)U0(t, t0).

(2.14)

(2.15)

In the interaction picture, the Liouville-von Neumann equation (Eq. 2.10) takes the form:

d

dt
ρI(t) = −

i

ℏ
[Ĥ′I(t), ρI(t)] (2.16)

which can be solved iteratively to obtain the following perturbative expansion for the density

matrix:

ρI(t) =

∞∑

n

ρ
(n)
I (t). (2.17)

The density matrix at the n-th order in the light-matter interaction is given by:

ρ
(n)
I (t) =

(
− i

ℏ

)n ∫ t

t0

dτn

∫ τn
t0

dτn−1· · ·
∫ τ2
t0

dτ1×

[Ĥ′I(τn), [Ĥ
′
I(τn−1), . . . [Ĥ

′
I(τ1), ρI(t0)] . . . ]]

(2.18)

where the initial state of the system, described by the density matrix ρI(t0), is perturbed by

a sequence of interactions Ĥ′I(τn) acting at time τn. By expressing the interaction Hamil-

tonian in the dipole approximation (Eq. 2.2) and returning to the Schrödinger picture, we

obtain:

ρ(n)(t) =

(
i

ℏ

)n ∫ t

t0

dτn

∫ τn
t0

dτn−1· · ·
∫ τ2
t0

dτ1E(τn)E(τn−1) . . . E(τ1)×

U(t, t0)[µ̂I(τn), [µ̂I(τn−1), . . . [µ̂I(τ1), ρ(t0)] . . . ]]U
†
0(t, t0).

(2.19)

At this point, the treatment is still exact since no approximations have been made. In the

following, we assume that ρ(t0) represents the equilibrium density matrix. Since it does

not evolve in time under the system Hamiltonian, we can set the initial time to t0 → −∞.

Moreover, it is convenient to introduce a new set of variables:

τ1 = 0

t1 = τ2 − τ1
· · ·

tn−1 = τn − τn−1
tn = t − τn

(2.20)
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Fig. 2.1: Schematic representation of the time-ordering of the light-matter interactions, where τn
is the absolute time at which the interaction occurs, while tn is the delay times between interactions.

which represents the delay times between light-matter interactions, as depicted in Fig.

2.1.

2.4.2. Spectroscopic Observables and Response Functions

Following non-linear response theory, we now proceed to establish the connection be-

tween the system response and the spectroscopic observables that are experimentally de-

tected for both the cases of coherent detection and action detection.

In coherent detection, the spectroscopic observable is represented by the macroscopic

polarization induced in the sample by the light-matter interaction. The polarization is

determined as the expectation value of the dipole moment operator:

P (t) = Tr{µ̂ρ(t)} (2.21)

which, acting as a source of the electric field, emits a coherent signal ES(t) ∝ iP (t). By

employing the perturbative expansion for the density matrix (Eq. 2.17), the n-th order

polarization is obtained:

P (n)(t) = Tr{µ̂ρ(n)(t)}. (2.22)

By substituting Eq. 2.19, the n-th order polarization can be expressed as the convolution

of a field-dependent part and the system response function:

P (n)(t) =

∫ ∞

0

dtn

∫ ∞

0

dtn−1· · ·
∫ ∞

0

dt1 R
(n)
C (tn, tn−1, . . . , t1)×

E(t − tn)E(t − tn − tn−1) . . . E(t − tn − tn−1 · · · − t1).
(2.23)

The n-th order (coherent) response function is now defined as the linear combination of
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(n + 1)-Time Correlation Functions (TCFs) of the dipole moment operator:

R(n)C (tn, tn−1, . . . , t1) =
(
i
ℏ

)n
Tr{µ̂(tn + tn−1 · · ·+ t1)[µ̂(tn−1 · · ·+ t1), . . . [µ̂(0), ρ(−∞)]]}.

(2.24)

Since for an isotropic medium, the even orders of the polarization typically vanish due

to symmetry, the lowest-order non-linearity is represented by the third order in the light-

matter interaction, corresponding to the linear combination of four-TCF of the dipole

moment operator.

Instead, in action detection, the measured incoherent signal, e.g., fluorescence or pho-

tocurrent, is proportional to the excited-state population:

S(t) = Tr{Ŝρ(t)} (2.25)

where the operator Ŝ =
∑
k Φk |k⟩⟨k | acts as a projector onto the eigenstates of the

system weighted by the quantum yield Φk [4]. The incoherent signal at the n-th order in

the light-matter interaction is given by:

S(n)(t) = Tr{Ŝρ(n)(t)} (2.26)

which can be expressed as:

S(n)(t) =

∫ ∞

0

dtn

∫ ∞

0

dtn−1· · ·
∫ ∞

0

dt1 R
(n)
IC (tn, tn−1, . . . , t1)×

E(t − tn)E(t − tn − tn−1) . . . E(t − tn − tn−1 · · · − t1)
(2.27)

where the n-th order (incoherent) response function is given by the linear combination of

n-TCF of the dipole moment operator:

R(n)IC (tn, tn−1, . . . , t1) =
(
i
ℏ

)n
Tr{Ŝ[µ̂(tn + tn−1 · · ·+ t1)[µ̂(tn−1 · · ·+ t1), . . . [µ̂(0), ρ(−∞)]]]}.

(2.28)

Since only even orders can generate an excited-state population, the lowest order non-

linearity is now represented by the fourth order in the light-matter interaction, correspond-

ing again to the four-TCF of the dipole moment operator.

Notice that the difference between the coherent and incoherent response functions lies in

the role of the last dipole moment operator. Indeed, while in the former case, it represents

the emission of the coherent signal, in the latter case, it represents an actual light-matter
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interaction. This fact underlies the difference between coherent and incoherent detection.

Although there seems to be an apparent discrepancy in the order of the response between

coherent and incoherent signals, they fundamentally probe the same kind of optical pro-

cesses. Indeed, as recently demonstrated, it is possible to establish a connection between

the n-th order response function in the coherent signal and the (n + 1)-th order response

function in the incoherent signal, in terms of the same generalized response function [5].

2.4.3. From Response Function to Feynman Diagrams

The response functions (Eqs. 2.24 and 2.28) contain all the relevant information about

the system at a given order of the light-matter interaction.

By expanding the commutators, each dipole moment operator can act either on the

bra or ket side of the density matrix. Therefore, the response function gives rise to

2n terms, which represents the possible pathway followed by the system upon the light-

matter interaction. In non-linear optical spectroscopy, the electric field is typically given

by a sequence of M pulses:

E(t) =

M∑

m

[
E+m(t) + E

−
m(t)

]
(2.29)

where E+m(t) and E−m(t) are respectively the rotating and counter-rotating components of

the electric field, defined as:

E±m(t) = Em(t − τm)e±i(km·r−ωmt+φm) (2.30)

with envelope Em(t), central time τm, wavevector km, frequency ωm and phase φm. As

a result, the evaluation of the spectroscopic observable (Eqs. 2.23 and 2.27) results

particularly challenging since 2n × (2M)M terms have to be calculated.

However, the number of terms contributing to the signal can be significantly reduced by

taking a series of approximations:

• time-ordering: when the pulse duration is shorter than the delay time, the pulse

overlap can be neglected, allowing to assign each interaction to a specific pulse.

• Rotating-Wave Approximation (RWA): when the pulse duration is longer than the

optical period and the resonance condition is satisfied, highly oscillating terms can

be discarded as they would give a negligible contribution upon integration. There-
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Fig. 2.2: Feynman diagrams for the rephasing signal in C-2DES and A-2DES.

fore, either the rotating E+m(t) or counter-rotating E−m(t) components of the field

contributes to each interaction.

• phase discrimination: the terms of the response function are selected based on their

wavevector according to the phase-matching condition kS =
∑
m ℓ
S
mkm, or based on

their phase using phase-cycling or phase-modulation condition φS =
∑
m ℓ
S
mφm, where

ℓSm are integers.

• impulsive limit: when the pulse is short compared to the relevant system timescales

but longer than the optical period, the pulse envelope can be approximated by a delta

function, E(t) = δ(t). In this limit, the convolution results straightforward and the

spectroscopic response corresponds to the response function.

2.4.4. Feynman Diagrams

The different terms of the optical response can be conveniently represented using Feyn-

man Diagrams (FDs) which identify the pathways followed by the system upon light-matter

interaction. In the following, we report the rules for the interpretation of these diagrams

[1, 2]:

• time runs from the bottom to the top.
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• the two vertical lines represent the state of the system, corresponding respectively

to the ket and bra side of the density matrix.

• each black arrow represents the interaction with the electric field, contributing with

E+m(t) when pointing to the right, or with E−m(t) when pointing to the left, and leading

to excitation when pointing towards the diagram or de-excitation when pointing

outwards.

• the red arrow represents the emission of the coherent signal with wavevector kS =∑
m ℓ
S
mkm, while the green arrow represents the emission of the incoherent signal

with phase φS =
∑
m ℓ
S
mφm, where ℓSm are integers.

• The overall sign of the contribution is given by (−1)nB , where nB is the number of

interactions on the bra side of the diagram.

With phase discrimination, it is not only feasible to separate the different contributions

at various orders of the light-matter interaction, but also to selectively isolate a subset

of pathways that contribute to that order. In particular, the different pathways can be

discriminated based on the wavevector of the signal kS according to the phase-matching

condition, or based on their phase φS using phase-cycling or phase-modulation. At third

order in the polarization or fourth order in the populations, pathways can be distinguished

into Rephasing (R), Non-Rephasing (NR) and Double-Quantum Coherence (DQC) signals:

kR = −k1 + k2 + k3
kNR = +k1 − k2 + k3
kDQC = +k1 + k2 − k3

φR = −φ1 + φ2 + φ3 − φ4
φNR = +φ1 − φ2 + φ3 − φ4
φDQC = +φ1 + φ2 − φ3 − φ4.

(2.31)

In Fig. 2.2, we depict the different Feynman diagrams contributing to the rephasing signal

for a three-level system, composed of a ground state |g⟩, a first excited state |e⟩ and

second excited state |f ⟩. The different contributions can be distinguished into Ground-

State Bleaching (GSB), Stimulated Emission (SE) and Excited-State Absorption (ESA)

pathways.

In the following, we illustrate the interpretation of the Feynman diagram for the SE

pathway, but similar considerations can be made for the other pathways. Initially, the

system is in the ground state. After the first interaction, the system is found in an optical

coherence between the ground and the excited state which oscillates during the delay time

t1. Then, the interaction with a second pulse generates either a ground or an excited

state population which evolves during the delay time t2. The third interaction brings the
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system back in a coherence that oscillates along t3. In the case of C-2DES, the signal is

emitted during t3, while for A-2DES, an additional interaction generates an excited-state

population which produces the incoherent signal emitted during the detection-time td .

Between the two sets of Feynman diagrams, we can find both similarities and differences.

Firstly, we notice that each Feynman diagram in C-2DES has at least one counterpart in A-

2DES. This is because both techniques are probing the same generalized response function

[5]. However, while there is a one-to-one correspondence for GSB and SE pathways, in the

case of ESA there are two possible alternatives for A-2DES: one ending in the first-excited

state and the other in the second-excited state population. Furthermore, the difference in

the order of the light-matter interaction leads to an opposite sign of the pathways between

the two detection schemes. Specifically, in C-2DES, GSB and SE exhibit positive signs,

whereas ESA is negative. Conversely, in A-2DES, GSB, SE, and ESAI are negative, while

ESAII is positive. In the following Chapters, we will examine several examples where this

different decomposition of the non-linear signal causes important changes in the spectra

obtained with the two detection schemes.

2.5. Non-Perturbative Approach

Non-perturbative approaches to the light-matter interaction are based on the extraction

of spectroscopic observables from the dynamics of the system driven by an external electric

field [6, 7]. Avoiding the calculation of the response function, the state of the system is

obtained by numerically integrating an Equation-of-Motion (EoM). As a result, the total

spectroscopic observable is obtained from which the different components of the optical

response have to be isolated using different methods, i.e., phase-matching [8], phase-

cycling [9], or phase-modulation [10].

This approach allows to go beyond the limits imposed by the perturbative treatment. In

particular, the method is suitable for treating the case of strong light-matter interaction.

Furthermore, by circumventing the approximations commonly employed in the non-linear

response theory, it is possible to account for finite-bandwidth and pulse-overlap effects. In

the case of A-2DES, it also provides a natural framework for investigating the relaxation

dynamics during the detection time leading to the emission of the signal.
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Fig. 2.3: Schematic representation of an open quantum system in interaction with the environment.

2.5.1. Reduced Density Matrix and Quantum Master Equation

Up to this point, we considered the density matrix in its statistical sense, as representing

the mixed state of an ensemble of isolated systems. However, realistic systems are not

isolated but, instead, are embedded in an environment, e.g., solvent, protein scaffold or

polymer matrix, with which they interact. In this context, the system can be described

within the theory of open quantum systems (Fig. 2.3) [11]. The interaction with the

environment, which is commonly modeled as a thermal bath, induces relaxation and deco-

herence processes in the system dynamics. The total Hamiltonian is given by:

Ĥ(t) = ĤS(t)⊗ 1E + 1S ⊗ ĤE + ĤSE (2.32)

where ĤS(t) is the system Hamiltonian which includes the light-matter interaction, ĤE
is the environment Hamiltonian, ĤSE is the system-environment interaction Hamiltonian,

while 1S and 1E are the identity operators over the system and environment degrees of

freedom, respectively.

The system-plus-environment state is described by the density matrix ρSE(t), whose

time evolution is described by the Liouville-von Neumann equation (Eq. 2.10):

d

dt
ρSE(t) = −

i

ℏ
[
Ĥ(t), ρSE(t)

]
. (2.33)

Since we are typically only interested in the state of the system, we can perform a partial
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trace over the environment degrees of freedom:

ρS(t) = TrE {ρSE(t)} (2.34)

resulting in the reduced density matrix ρS(t), which describes the state of the system

independently of the environment.

The advantage of working with the reduced density matrix lies in the fact that, instead

of dealing with the dynamics of the system-plus-environment, it is possible to formulate

an effective Equation-of-Motion (EoM) for the dynamics of the system alone. Several

numerically exact methods allow for a non-perturbative and non-Markovian treatment of

the system-environment coupling, which include Hierarchical Equations of Motion (HEOM)

[12], Time Evolving Density operator with Orthogonal Polynomials Algorithm (TEDOPA)

[13], and Quasi-Adiabatic Path Integrals (QUAPI) [14] methods. However, despite their

generality, these methods are computationally expensive and rapidly become impractical

as the number of degrees of freedom increases.

For this reason, one usually resorts to approximate methods based on Quantum Master

Equation (QME) [11, 15]. In the Markovian limit, QMEs take the form:

d

dt
ρS(t) = −

i

ℏ
[
ĤS(t), ρS(t)

]
+D [ρS(t)] (2.35)

where D[·] is the dissipator superoperator, which accounts for the relaxation and deco-

herence processes induced on the system due to the interaction with the environment.

Different approaches have been used to derive a QME. Following an axiomatic approach,

the Lindblad QME ensures the positivity and trace preservation of the reduced density

matrix [11, 16–18]. Alternatively, following a microscopic derivation, the Redfield QME is

obtained by using a second-order perturbative expansion in the system-environment cou-

pling [11, 15, 19]. However, it is known that this equation does not guarantee the positivity

of the reduced density matrix, potentially leading to unphysical results. To solve this prob-

lem, the secular approximation is commonly invoked, which concerns the decoupling of

coherence and population dynamics.
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2.5.2. Pulse Sequence

In A-2DES, the system interacts with a train of four collinear laser pulses:

E(t) =

4∑

i=1

Ei(t) (2.36)

with the i-th pulse described by the convolution of a Gaussian envelope and an oscillating

function:

Ei(t) = E
0
i exp

{
− (t − Ti)

2

2σ2i

}
cos[ωi(t − Ti) + φi ] (2.37)

where E0i is the electric-field amplitude, σi is the pulse duration, ωi is the carrier-frequency

and φi is the phase of the pulse. The first pulse is centered at time t0 = τ1, while the

following pulses are separated from the previous one by delay times t1 = τ2−τ1, t2 = τ3−τ2
and t3 = τ4 − τ3, respectively. For convenience, we make use of a cumulative delay time:

Ti =
∑i−1
j=0 tj .

In literature, other schemes based on a different number of pulses in the sequence have

been proposed for A-2DES, e.g., two-pulse [20, 21] and three-pulse [22, 23] sequences.

2.5.3. Populations and Incoherent Signal

By solving the Equation-of-Motion, the evolution of the reduced density matrix of the

system under the interaction with the pulses is obtained, from which spectroscopic ob-

servables can be extracted.

After the interaction with the pulse train, the system emits an incoherent signal along the

detection-time td , which is proportional to the excited-state population. The time-resolved

signal is defined by the operator:

Ŝ =
∑

k

ΓkP̂k (2.38)

where P̂k = |k⟩⟨k | is the projector onto the k-th state and Γk is the rate of the incoherent

process contributing to the signal, e.g., the emission of a photon in fluorescence detection

or the charge-separation in photocurrent detection. The time-resolved incoherent signal

is given by the expectation value:

S(td) = Tr
{
ŜρS(td)

}
. (2.39)

In an experiment, it is often not possible to directly measure the time-resolved signal S(td)
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as a function of the detection-time td . Instead, the experimentally accessible observable

is typically represented by the time-integrated signal:

S =
∫ ∞

0

dt ′d S(t ′d). (2.40)

By integrating the signal within a finite time window:

S(td) =
∫ td
0

dt ′d S(t ′d) (2.41)

time-gating of the signal can be performed, as recently suggested [24–26]. This could help

limit processes involving populations during the detection time, such as exciton-exciton

annihilation.

2.5.4. Phase Discrimination

Since pulses are collinear in A-2DES, the signal contains all the contributions to the

optical response from various orders in the light-matter interaction. To isolate specific

components of the signal, the phase of the pulses has to be manipulated from one train to

another, either using phase-cycling [27, 28] or phase-modulation [29] schemes. As a con-

sequence, the detected incoherent signal depends on the phase of the pulses. Therefore,

the various components of the optical response can be separated by taking linear combi-

nations of the phase-dependent signal, as commonly done by taking the Fourier transform

of the signal.

In the following, we explain the details of the phase-cycling and phase-modulation

schemes and compare them from the experimental and theoretical points of view.

Phase-Cycling

The phase-cycling method was first introduced into the domain of optical spectroscopy by

Tian et al. [27], as an adaptation from NMR spectroscopy [30–32]. A detailed description

of the method is presented in ref. [28].

From one train to another, the relative phase between two pulses φi j = φi − φj is varied

independently from the others by a constant phase interval ∆φi j :

∆φ21 =
2π

L
∆φ31 =

2π

M
∆φ41 =

2π

N
(2.42)
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where L, M, and N are the numbers of sampled points for the phase of each pulse.

Therefore, the relative phases can be expressed as integer multipliers of the phase intervals:

φ21 = l · ∆φ21 φ31 = m · ∆φ31 φ41 = n · ∆φ41 (2.43)

where the indices l , m, and n take values from 0 to L− 1, M − 1, and N − 1, respectively.

For a given set of delay times, the experiment is repeated 1× L×M ×N-fold, by cycling

over all the possible phase combinations.

As a result, each component of the optical response is tagged by a total phase given by

the linear combination of the phases of each pulse φS = αφ1+βφ2+γφ3+δφ4, where the

coefficients α, β, γ, and δ represent the number of interactions with each pulse. As the

signal emission originates from a population state, these coefficients are not independent

and thus the following condition must be fulfilled:

α+ β + γ + δ = 0. (2.44)

By expressing the coefficient α as a function of the others, α = −β − γ − δ, the total

phase can be written as φS = βφ21 + γφ31 + δφ41.

A specific component of the optical response is obtained by taking the Fourier series of

the signal with respect to the phases of the pulses:

S(β, γ, δ) = 1

LMN

L−1∑

l=0

M−1∑

m=0

N−1∑

n=0

S(l , m, n)e−iβl∆φ21e−iγm∆φ31e−iδn∆φ41. (2.45)

In order to isolate rephasing (β = +1, γ = +1, δ = −1), non-rephasing (β = −1, γ = +1,
δ = −1) and double-quantum coherence (β = +1, γ = −1, δ = −1) signals, a 27-fold

phase-cycling is required, with L = M = N = 3 [33]. However, different phase-cycling

schemes have been proposed to isolate other components of the optical response [22, 23,

28].

Phase-Modulation

The phase-modulation scheme was initially proposed by Tekavec et al. [29]. In this

approach, which represents a sort of continuous phase-cycling, the phase of each pulse φi
is modulated from a train to the following at a specific phase-modulation frequency Ωi as:

φi = 2πΩimT (2.46)
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where m is the repetition index of the train and T is the inter-train delay time.

Typically, the inter-train delay T is imposed by the experimental setup since is related

to the reciprocal of the laser repetition frequency, Ωrep = T−1. Therefore, the phase-

modulation frequencies Ωi are chosen to be integer divisors of the laser repetition rate

Ωrep:

ki =
Ωi
Ωrep

. (2.47)

For a given set of delay times, the index m is varied from 0 to the lcm(k1, k2, k3, k4) - 1.

To isolate the various components of the optical response, we take the Fourier transform

with respect to the experimental time mT :

S(ΩS) =
∑

mT

S(mT )e−i2πΩSmT (2.48)

where S(ΩS) is the component of the signal modulated at the linear combination of phase-

modulation frequencies ΩS =
∑
i ℓi Ωi , where ℓi = 0,±1,±2, etc. represents the number

of interactions with each pulse. As in phase-cycling, these coefficients are not independent

and, in order to obtain a population at the end of the four pulses, the following relation

must be fulfilled: ∑

i

ℓi = 0. (2.49)

In this case, rephasing is modulated at ΩR = −Ω1 + Ω2 + Ω3 − Ω4, non-rephasing is

modulated at ΩNR = +Ω1 − Ω2 + Ω3 − Ω4 and double-quantum coherence is modulated

at ΩDQC = +Ω1 +Ω2 −Ω3 −Ω4.

Comparison between Phase-Cycling and Phase-Modulation

Both phase-cycling and phase-modulation schemes exploit the control of the phase of

the pulses to extract specific components of the optical response of the system. While

in phase-cycling, the phase of each pulse is varied independently of the others, in phase-

modulation, the phases of the pulses are varied simultaneously.

Despite theoretical studies have confirmed how both methods give identical results when

properly executed [34], each of them possesses its own advantages and disadvantages.

Phase-cycling is more convenient when only specific components of the optical response

are of interest. In this case, it is possible to choose a scheme optimized to selectively

isolate such components, thus reducing the number of required phase combinations [28].

This fact is particularly useful in numerical simulations, where the number of repetitions
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may affect the computational cost. However, if other components need to be extracted,

it is necessary to change phase-cycling scheme.

In contrast, phase-modulation allows to extract simultaneously all the contributions to

the optical response. Its continuous nature offers a greater advantage from the exper-

imental standpoint, as it allows faster data acquisition. However, due to the absence

of optimized protocols, a higher number of repetitions is generally required compared to

phase-cycling, thus resulting less convenient for numerical simulations. Furthermore, it is

more common for unwanted contributions to leak into the components of interest.

Ultimately, the choice between the two phase-discrimination schemes depends on the

desired level of accuracy and efficiency for extracting the components.

2.6. 2D Spectra

In 2DES, the signal S(t1, t2, t3) is measured as a function of the delay times t1, t2 and

t3. To obtain the 2D spectrum, the signal is Fourier transformed along suitable delay

times. Typically, the Fourier transform is taken with respect to t1 and t3. In the case of

rephasing signal, it is obtained by:

SR(ω1, t2, ω3) =
∫ +∞

0

dt1

∫ +∞

0

dt3 e
−iω1t1e+iω3t3 SR(t1, t2, t3) (2.50)

while the non-rephasing signal is obtained by:

SNR(ω1, t2, ω3) =
∫ +∞

0

dt1

∫ +∞

0

dt3 e
+iω1t1e+iω3t3 SNR(t1, t2, t3) (2.51)

which allows to visualize the signal as a 2D spectrum as a function of frequency ω1 and

ω3, for each value of the waiting time t2. Notice that, since rephasing and non-rephasing

have opposite evolving coherences along t1, the sign of the Fourier transform is different

in the two cases.

Since the 2D spectrum is complex, it includes both real and imaginary parts. Typically,

the real part is considered in the analysis of the response. However, we point out how

the real part contains both absorptive and dispersive components. Since this fact may

complicate the interpretation of the spectra, the absorptive signal is obtained by summing

the rephasing and non-rephasing signals:

SAbs(ω3, T2, ω1) = SR(ω3, T2, ω1) + SNR(ω3, T2, ω1) (2.52)
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which removes the phase twist in the rephasing and non-rephasing spectra due to the

dispersion component [2].
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3.1. Introduction

Two-Dimensional Electronic Spectroscopy (2DES) probes the dynamics of excited states

by triggering a multitude of excitation pathways through a sequence of ultrafast laser

pulses. The pivotal technique is represented by Coherent-2DES (C-2DES) based on the

measurement of a coherent signal, proportional to the macroscopic polarization, resolved

along specific phase-matching directions, upon the interaction with three non-collinear

laser pulses. Following its success in the study of exciton dynamics in molecular aggregates

and nanostructures, modifications of the original setup have been recently developed [1].

Among the others, Action-2DES (A-2DES) has received increasing attention in the last

decade [2]. This technique relies on the detection of an incoherent signal, proportional to

the fourth-order excited-state populations, generated by the interaction with four collinear

laser pulses. The components of the optical response are resolved by manipulating the

phases of the laser pulses, using phase-cycling [3] or phase-modulation [4] schemes.

Depending on the nature of the measured signal, A-2DES allows to probe excited-state

populations through the use of different detection-modes, i.e., fluorescence [4, 5], pho-

tocurrent [6, 7], photoions [8] or photoelectron [9]. These action signals offer a unique

perspective to observe the connection between the ultrafast dynamics of the system and

measurable properties, such as photoluminescence and photocurrent generation, open-

ing up to the study of devices in operando conditions [10]. Moreover, A-2DES can be

combined with single-molecule and microscopy techniques to achieve a spatial resolution

beyond the diffraction-limit [11–13], thus circumventing the inhomogeneities which intrin-

sically contributes to spectral broadening, especially in the case of nanostructures [14].

A-2DES experiments have been performed on a variety of systems, such as atomic vapors

[4, 15, 16], molecular dimers [5, 17], dyads [18] and aggregates [19], photosynthetic sys-

Adapted from Bruschi, M.; Gallina, F.; Fresch, B. Phys. Chem. Chem. Phys. 2022, 24, 27645-27659.
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tems [12, 20], metal-molecule interfaces [21], organic [22, 23] and perovskite [24] solar

cells, PbS [7] and CdSe [25] quantum dots.

Because of the high informative content of these spectra, together with the plethora of

dynamical processes influencing the response, theoretical simulations of model systems are

crucial to disentangle and decipher spectral features [26]. Previous theoretical works have

analyzed the response of A-2DES by pointing out the necessity of carefully reconsidering

the origin of the spectral features compared to its coherent analog, in order to avoid po-

tential pitfalls in their interpretation [27–34]. An important example was given by Malý and

Mančal in ref. [30] by considering the role of cross-peaks in the optical response of a molec-

ular heterodimer: while cross-peaks at zero waiting-time are a good witness of excitonic

delocalization in C-2DES spectrum, the same spectral features in fluorescence-detected

A-2DES may be present even in the case of weak-coupling between chromophores, due

to exciton-exciton annihilation active during the detection-time. The same annihilation

process may cause the absence of spectral features typically due to Excited-State Absorp-

tion, i.e., the A-2DES spectrum results ESA-free [34]. Kunsel et al. [32] extended the

analysis to multichromophoric systems such as LH2, shedding light on the interpretation

of fluorescence-detected A-2DES experiments of these systems [12, 20].

While in molecular systems the presence of multiple excitations is extremely unstable,

in nanostructures such as colloidal Quantum Dots (QDs), they may play a crucial role in

determining the action response. A pioneering demonstration was provided by Karki et al.

who measured both photocurrent and fluorescence signals from samples of PbS QDs [7].

More recently, multiple-quantum 2DES experiments by Mueller et al. have characterized

the multiexciton photophysics in alloyed core-shell QDs using fluorescence detection [25].

In this work, we theoretically investigate the details of the non-linear action response

of a minimal model of semiconducting QDs. A theoretical analysis of the photocurrent

response of an analogous system has been recently presented by Chen et al. pointing out

the effects of the sample-electrode coupling in the photocurrent response [35]. Here, we

will focus on the interplay between the exciton and the biexciton contributions in shaping

the total A-2DES spectra collected through different detection-modes, i.e., fluorescence

and photocurrent detection. Such an interplay is a relevant case study for both concep-

tual and practical reasons. A first consideration refers to the already mentioned issue

of understanding the differences between the C-2DES and A-2DES response. At the

level of perturbation theory, the interaction with the fourth pulse generates an additional

Excited-State Absorption (ESA) pathway which does not enter in the response of a C-
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2DES experiment [27]. Therefore, while the biexciton would appear as a simple negative

contribution in a C-2DES spectrum [36, 37], its effect in A-2DES should be analyzed.

The point is tightly connected to the study of the effects of exciton-exciton annihilation

in interacting molecules which have been debated in previous works [30, 31, 34] but with

important distinct features. Differently from small organic chromophores, multiexciton

states are quite commonly generated in QDs upon photoexcitation, independently of pos-

sible interdot coupling. In a QD, biexcitons are relatively stable [38] and can contribute

actively to the measured signal [39, 40], especially in photocurrent detection, when fast

interfacial charge-separation can effectively compete with exciton-exciton recombination

[7, 41, 42]. We will discuss thoroughly how these processes determine the contributions

of several optical pathways to the final spectrum. In essence, the biexciton recombination

dynamics plays an analogous role to the exciton-exciton annihilation process in molecular

aggregates, but it only depends on the internal system dynamics rather than on intermolec-

ular coupling. As the generation of biexcitons naturally depends also on laser intensity,

numerical simulation protocols going beyond the perturbative response function are better

suited for the study of their spectral features.

Our simulation protocol, described in Sec. 3.2, is based on a non-perturbative approach

to the light-matter interaction and it directly implements the phase-modulation scheme in

close analogy with the experimental procedure [43]. Besides the advantage of accounting

for finite-bandwidth and pulse-overlap effects [44], it allows a flexible description of dif-

ferent relaxation pathways through the modeling of the dissipator of a Quantum Master

Equation (QME) in the Lindblad form. This setting will allow us to naturally include the

slow incoherent processes involved in the action detection scheme in the simulation of the

spectra. In Sec. 3.3.1, we will connect the fully dynamical picture given by the solution of

the QME with the analysis of the spectra based on the contribution of different Feynman

pathways from non-linear response theory [45, 46]. Building this connection will allow

us to point out and discuss the effects of the detection-time dynamics on the 2D spec-

trum obtained with different action signals. In Sec. 3.3.2, we will do so by isolating the

effects of changing the detection-mode and implementing time-gating of the collected sig-

nal. Time-gating of the fluorescence emission has been proposed as a useful technique to

monitor the dynamics during the exciton-exciton annihilation process [30, 32]. Indeed, the

timescale of the signal detection is definitely slower than the ultrafast timescale probed

during photoexcitation and time-gating can be used to change the weights of different

contributions to the total spectrum according to their dynamics. In Sec. 3.3.3, we show

how controlling such weights is also the key to facilitating the reading of meaningful in-
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Fig. 3.1: Level structure of the excitonic states of a QD system composed of a ground state |0⟩,
an exciton state |1⟩ and a biexciton state |2⟩, each with corresponding energy ϵk . The biexciton
binding energy is given by the difference between twice the energy of the exciton and the energy
of the biexciton, ∆ = 2ϵ1 − ϵ2. Different states are coupled through the transition dipole moment
µkk ′ and incoherent relaxation occurs through a cascade mechanism with rates γkk ′ .

formation from the analysis of the spectrum. For example, different optimal gating-time

can be devised to estimate the biexciton binding energy, depending on the ratio of the

exciton and the biexciton quantum yields. Furthermore, time-gating can be used to track

the evolution of the relative amplitudes of spectral features providing information on the

relaxation dynamics.

3.2. Theory and Simulations

3.2.1. Model System

The electronic structure of nanocrystals can be described at different levels of theory.

Here, we use the simplest picture explaining the absorption bands of small colloidal CdSe

QDs in the strong-confinement regime [47].

Upon photoexcitation, an electron (e) is promoted to the conduction-band and the

corresponding hole (h) is created in the valence-band. The spherical symmetry of the

confining potential leads to a hydrogen-like structure for the envelope function of the

charge-carriers, labeled by a principal quantum number and the corresponding angular

momentum (e.g., 1S, 2S, 1P , etc.). Due to the spin-orbit coupling, the valence-band
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which originates from the p orbitals of Selenium atoms is further split according to the

total angular momentum, with the state 1S3/2 being the lowest in energy. By explicitly

considering the significant Coulomb interaction between hole and electron, we switch from

the electron-hole basis to the excitonic basis, which is optically probed [48]. In small CdSe

QD, the two lowest energy excitons, conventionally named 1S and 2S, roughly correspond

to the transitions 1S3/2(h) → 1S(e) and 2S3/2(h) → 1S(e) in the hole-electron picture.

A more detailed description of the quantum mechanical interactions within the nanocrystal

would reveal additional splitting of the bands, the so-called fine-structure of the excitons

[38, 49], however the coarse structure of the energy levels will suffice for the scope of this

study.

Recently, Collini et al. presented a series of C-2DES spectra of samples of small CdSe

QDs both in solution and in solid-state aggregates [50]. We will refer to nanocrystals of

the diameter of 2.8 nm and we will assume that the spectral bandwidth of the laser only

covers the lowest energy exciton (1S) at around 2.34 eV, while the 2S manifold, lying

more than 0.25 eV higher in energy, is excluded. The biexciton is generated from the

band-edge exciton by the subsequent excitation of a second electron-hole pair. Since no

other states are involved in the dynamics, this is the ideal setting to focus on the interplay

between the exciton and the biexciton contributions to the A-2DES spectra.

The energy structure of the QD nanocrystal is thus treated as a three-level system

composed of the ground state |0⟩, the band-edge exciton manifold |1⟩ and the biexciton

manifold |2⟩ (Fig. 3.1). The corresponding Hamiltonian reads

Ĥ0 =

K=2∑

k=0

ϵk |k⟩⟨k | (3.1)

where ϵk is the energy of each state. Due to the Coulomb and exchange interactions

between the multiple holes and electrons, the biexciton energy is typically offset from twice

the exciton energy and their difference defines the biexciton binding energy, ∆ = 2ϵ1− ϵ2.
This parameter quantifies the exciton-exciton correlation enhanced by the confinement

effect of the nanostructure and it is typically in the range of some tens of meV in small

CdSe QDs. If not otherwise stated, the energies of the various states are ϵ0 = 0.00 eV,

ϵ1 = 2.34 eV and ϵ2 = 4.66 eV, corresponding to ∆ = 20 meV.

When the nanostructure interacts with the laser pulses, transitions between the different
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Fig. 3.2: Schematic representation of the working principle of A-2DES: a) the sample, interacting
with a sequence of four phase-modulated laser pulses, emits an incoherent signal which is b)
collected after each train and stored as a function of the phase-modulation index and the intertrain
delay-time mT . By taking the Fourier transform along this axis, c) the Phase-Modulation Spectrum
(PMS) is obtained which contains the various contributions to the optical response (i.e., second-
order, fourth-order, etc. in the light-matter interaction) as a function of the phase-modulation
frequency fS. By following the evolution of the various components in the PMS as a function of
the delay-times, d) a set of temporal data is collected and, by taking the Fourier transform along
suitable axes, e) the corresponding 2D spectrum is obtained.

manifolds are induced according to the transition dipole moment operator:

µ̂ =
∑

k ̸=k ′
µkk ′ |k⟩⟨k ′| . (3.2)

Since the transition dipole moment connecting two neighboring manifolds usually have

similar magnitude [25], the light-matter coupling strength is assumed to be the same for

the transition from the ground to the exciton state and from the exciton state to the

biexciton manifold, µkk ′E0i = 8 meV, where E0i is the amplitude of the electric field. The

direct transition from the ground state to the biexciton state, although in principle allowed,

is not within the considered spectral bandwidth of the laser.

3.2.2. Action-2D Electronic Spectroscopy

In the following, we introduce the working principles of A-2DES using a phase-modulation

scheme. Fig. 3.2 outlines the main steps to obtain the 2D spectra starting from the
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Symbols Meaning Values
µkk ′E

0
i light-matter coupling strength 8 meV

σi pulse duration 5 fs
ℏωi carrier-energy 2.34 eV
T0 center of the 1st pulse 50 fs
M total phase-modulation index 179

f1 modulation frequency 1st pulse 0 Hz
f2 modulation frequency 2nd pulse 250 Hz
f3 modulation frequency 3rd pulse 600 Hz
f4 modulation frequency 4th pulse 1000 Hz
T intertrain delay-time 1/3000 s

Tab. 3.1: Parameters used in the simulation of the 2D spectra.

quantum dynamics triggered by the train of laser pulses. All these steps are implemented

in the numerical simulation protocol in close analogy to the experimental procedure.

Overall, the sample interacts with M + 1 trains of four laser pulses, separated by an

intertrain delay-time T . In the phase-modulation protocol, the phase of each pulse, which

can assume a finite set of values between 0 and 2π, is varied at a given modulation

frequency. The m-th train, made of four collinear laser pulses (Fig. 3.2a), is written as:

Em(t) =

4∑

i=1

Emi (t)

= Em1 (t) + E
m
2 (t) + E

m
3 (t) + E

m
4 (t).

(3.3)

Each pulse is described by the convolution of a Gaussian envelope and an oscillating func-

tion:

Emi (t) = E
0
i exp

{
− (t − Ti)

2

2σ2i

}
× cos[ωi(t − Ti) + φmi ] (3.4)

where E0i is the electric-field amplitude, σi is the pulse duration, ωi is the carrier-frequency

and φmi is the phase of the pulse in the m-th train. The first pulse of each train is centered

at time T0, while the following pulses are separated from each other with a well-defined

delay-time: T1 = t1 − T0, T2 = t2 − t1 and T3 = t3 − t2. For convenience, in Eq. 3.4 we

make use of a cumulative delay-time: Ti =
∑i−1
j=0 Tj .

According to the non-linear response theory, the interaction with the former three pulses

prepares the system into a coherent superposition of excited states, which is then converted

into an observable fourth-order population by the interaction with the last pulse [27]. The

incoherent signal, emitted during the detection-time Td , is thus proportional to the excited-

state populations. Let us define P̂k = |k⟩⟨k | as the projection operator onto the k-th state

and the coefficients γ(r)k as the rate of the relaxation event contributing to the signal, i.e.,
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spontaneous emission for fluorescence and charge-separation for photocurrent detection.

Typically, the timescale of the emitted signal is several orders of magnitude longer than the

femtosecond timescale probed during photoexcitation. After the fourth pulse, the signal

is obtained as the expectation value of the operator Ŝ =∑k γ
(r)
k P̂k taken over the density

matrix of the system, which leads to the explicit form of the time-resolved signal:

S(Td) = Tr
{
Ŝρ(Td)

}

=
∑

k

γ
(r)
k Pk(Td)

(3.5)

where Pk(Td) = ⟨k |ρ(Td)|k⟩ represents the population of the k-th state. Experimentally,

the measured signal is typically integrated from the end of the fourth pulse along the

detection-time Td :

S̄(Td) =

∫ T4+Td
T4

dT ′d S(T
′
d)

=
∑

k

γ
(r)
k P̄k(Td)

(3.6)

where P̄k(Td) =
∫ T4+Td
T4 dT ′dPk(Td) is the time-integrated population of the k-th state.

Compared to C-2DES, the detection-time Td represents an additional dynamical variable

in A-2DES. Furthermore, we emphasize that the incoherent signal depends parametrically,

through the system density matrix, also on the phase-modulation index m and the set of

delay-times as Sm(T1, T2, T3, Td).

To disentangle the different contributions to the optical response, a phase-modulation

scheme is employed [4]. In practice, the phase of each pulse φmi = 2πmfiT is linearly

modulated from a train to the following by varying the phase-modulation index m ∈ [0,M],
where fi is the phase-modulation frequency of the i-th pulse and T is the intertrain delay-

time, namely the time between the first pulse of two consecutive trains. For each set

of delay-times and phase relations, the intensity of the signal obtained after excitation

is stored as a function of the phase-modulation index and the intertrain delay-time mT

(Fig. 3.2b). By taking the Fourier transform along this variable, the Phase-Modulation

Spectrum (PMS) is retrieved Sfs (Fig. 3.2c), which contains the various contributions to

the optical response of the system. Each peak in the PMS is labeled by a certain modulation

frequency fS given by the linear combinations of the modulation frequency of each pulse fi :

fS =
∑4
i=1 ℓ

i
Sfi , where ℓiS = 0,±1,±2,, etc. The decomposition of the optical response in

the PMS reflects the spatial decomposition of the polarization along the phase-matching

directions in the non-collinear setup of C-2DES [45]. Each component in the PMS can
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be regarded as the signal related to a set of excitation pathways induced by a specific

sequence of interactions with the laser pulses. Despite the cost of performing several

phase realizations of the experiment, the phase-modulation protocol has the advantage

of simultaneously obtaining the second-order response, i.e., linear absorption spectra, the

fourth-order response, i.e., Rephasing, Non-Rephasing and Two-Quantum signals, and

even higher-order response in the light-matter coupling.

Both in the experiment and numerical simulation, the choice of the modulation fre-

quencies is of key importance to isolate the components of interest. Also notice, that

higher-order contributions can always enter at the same modulation frequency as lower-

order contributions, therefore the strength of the excitation needs to be taken into account

when interpreting the obtained spectra. From the numerical point of view, a suitable choice

of modulation frequencies should also aim at minimizing the length of the phase-modulation

sequence M in order to reduce the computational cost of running the dynamical evolution

for each phase realization. By following these principles, we have selected the modulation

frequencies reported in Tab. 3.1, together with the values of other specific parameters

used for the simulations. The numerical values are compatible with the experimental setup

of refs. [23, 50].

At this point, by following the evolution of the components of the PMS as a function

of the delay-times T1, T2 and T3, we obtain the time-dependent signal (Fig. 3.2d) and,

by taking the Fourier transform along suitable delay-times, the corresponding spectra are

recovered (Fig. 3.2e). In general, the frequency axes chosen to display the 2D spectrum

depend on the specific signal considered. In the case of the Rephasing spectrum, the

signal extracted from the PMS is Fourier transformed along the delay-times T1 and T3 to

obtain a 2D spectrum as a function of the frequencies ω1 and ω3 for each value of T2. In

Sec. 3.3.1, we will consider two classes of 2D spectra characterized by the order of the

coherences that are detected. The more common Rephasing and Non-Rephasing signals

are characterized by coherences between states that are separated by a single excitation,

i.e., ground-exciton coherence or exciton-biexciton coherence. The second class is rep-

resented by Two-Quantum signals [51], i.e., Two-Quantum-One-Quantum (2Q1Q) and

One-Quantum-Two-Quantum (1Q2Q), which directly investigate also coherences between

states separated by two excitations, i.e., ground-biexciton coherence. Their respective po-

sitions in the PMS are: Rephasing at fS = −f1 + f2 + f3 − f4 = 150 Hz, Non-Rephasing

at fS = f1 − f2 + f3 − f4 = 650 Hz, 2Q1Q at fS = 2f1 − f2 − f3 = 850 Hz and 1Q2Q at

fS = −f1 − f2 + 2f3 = 950 Hz.
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Fig. 3.3: Population dynamics of the excitonic states of a QD system interacting with a train of
four laser pulses. The full lines are the average population of each state, while the shaded areas
represent their standard deviations with respect to the specific phase realization of the pulses. The
employed delay-times are: T0 = 15 fs, T1 = 23 fs, T2 = 23 fs, T3 = 23 fs.

For the simulations, the delay-times have been scanned in steps of 10 fs from 0 to 300 fs,

working in the rotating-frame at a frequency of ωRF = 3.56 [rad]/fs (doubled in the case of

Two-Quantum signals). In order to smooth the spectra, each signal has been zero-padded

in the time-domain. In the following, only the real part of each spectrum is shown and the

amplitude is normalized relative to its absolute maximum/minimum. For the Rephasing

and Non-Rephasing signals, T1 and T3 are scanned while setting T2 = 0 fs. For 2Q1Q

and 1Q2Q signals, T1 and T2 are scanned while setting T3 = 0 fs. Notice that the Two-

Quantum signals correspond to the set of pathways where the system interacts twice with

the first pulse (2Q1Q) or with the third pulse (1Q2Q) while there is no interaction with

the fourth pulse.

3.2.3. Quantum Dynamics

By avoiding the evaluation of the response function, non-perturbative approaches to the

simulation of 2DES spectra rely on the explicit dynamics of the density matrix under the

effect of the electric field, at the cost of introducing an effective strategy to extract the

pertinent component of the optical response [52, 53].

In this context, the phase-modulation scheme is implemented to resolve the various com-

ponents of the overall signal [43]. Making use of the theory of open quantum system, the

evolution of the density matrix during the experiment is obtained by solving the Quantum
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Master Equation in the Lindblad form [54, 55], assuming ℏ = 1 in the following:

d

dt
ρ(t) =− i [Ĥ0, ρ(t)] + i [µ̂E(t), ρ(t)]+

+
∑

k,k ′

γkk ′
[
L̂kk ′ρ(t)L

†
kk ′ −

1

2
{L†kk ′L̂kk ′, ρ(t)}

] (3.7)

where [·, ·] represents the commutator and {·, ·} is the anti-commutator. The density ma-

trix ρ(t) =
∑
k,k ′ ρkk ′(t) |k⟩⟨k ′| describes the state of the system, whose diagonal elements

represent the populations of each excitonic state while the off-diagonal elements represent

the coherences between them. In the QME, the first term accounts for the coherent

evolution due to the system Hamiltonian (Eq. 3.1), the second term accounts for the

light-matter interaction in the dipole-approximation (Eqs. 3.2 and 3.3) and the last term

accounts for the effects of the coupling with the environment, inducing decoherence and

relaxation processes in the dynamics. An incoherent transition between states k ′ and k

is described by the Lindblad operator L̂kk ′ = |k⟩⟨k ′| with an associated characteristic rate

γkk ′. Therefore, we define the relaxation mechanism as a cascade process from the biexci-

ton to the exciton state, with L̂12 = |1⟩⟨2|, and then from the exciton to the ground state,

with L̂01 = |0⟩⟨1| (Fig. 3.1). The rates include all the decay channels, which may or may

not contribute to the recorded signal, e.g., the transition from the biexciton to the exciton

manifold can happen through radiative emission or fast Auger recombination. In addition,

we introduce pure dephasing contributions through the Lindblad operators L̂00 = |0⟩⟨0|,
L̂11 = |1⟩⟨1| and L̂22 = |2⟩⟨2|. Except otherwise stated, the characteristic relaxation times

used in this work are γ−101 = 10 ns and γ−112 = 100 ps, while the decoherence time is

γ−1kk = 100 fs. These parameters have been chosen in agreement with recent studies on

similar systems [25].

In Fig. 3.3, we report the evolution of the diagonal elements of the density matrix in-

duced by a train of pulses applied at regular delay-times. During each pulse, populations

are coherently transferred between different states. The shaded area represents the vari-

ability of the population with respect to the specific phase realization of the pulses which

is highly dependent on the decoherence time. Indeed, when the delay-times Ti exceeds

the decoherence time γ−1kk , no modulation of the final populations is observed. While

decoherence primarily influences the system dynamics during photoexcitation, the relax-

ation mechanisms act on a slower timescale and become relevant especially during the

detection-time Td .

Notice that according to Eq. 3.7, in the absence of the external electric field, the
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evolution of populations is decoupled from coherences. This means that, after the end of

the fourth pulse, the dynamics of populations can be described in terms of a simple kinetic

equation:
d

dt
P⃗ (t) = −KP⃗ (t) (3.8)

where the probability vector P⃗ (t) =
∑
k Pk(t) |k⟩ contains the occupation probability

of each state and the kinetic matrix is defined by the rates of the relaxation processes

connecting different diagonal elements of the density matrix, that is:

Kkk ′ = −(1− δkk ′)γkk ′ + δkk ′
∑

l ̸=k
γlk . (3.9)

The kinetic equation can be solved analytically or numerically and the general solution can

be written as the linear combination of decay modes:

P⃗ (t) = e−Kt P⃗ (0)

= V e−ΛΛΛtV −1P⃗ (0)
(3.10)

where ΛΛΛ and V are respectively the eigenvalues and the eigenvectors matrices obtained by

solving KV = V ΛΛΛ. The solution of the kinetic equation allows us to record the signal over

a detection-time Td spanning several orders of magnitude, as shown in Fig. 3.3.

In the simulations, the Lindblad QME (Eq. 3.7) has been numerically integrated using

the (4th order) Runge-Kutta method with a time-step of 0.1 fs from 0 fs until 100 fs after

the center of the fourth pulse. Then, the kinetic scheme for the populations is solved by

diagonalizing K and evolving using a time-step of 100 fs.

3.3. Results and Discussion

3.3.1. Exciton and Biexciton Contributions to the A-2DES Spectra

By applying the numerical procedure described in the previous section, we simulate the

2D spectra originating from the exciton and the biexciton states on the basis of the

fourth-order population generated by the last pulse, ideally before any quantitative relax-

ation process occurs during Td . Although the non-perturbative solution of the system

dynamics is a powerful method for the calculation of non-linear signals, the perturbative

approach remains the key tool for the interpretation of the optical response in terms of

different dynamical pathways. Accordingly, we will examine the exciton and biexciton con-
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Fig. 3.4: a) Exciton contribution, b) biexciton contribution and the corresponding c) Feynman
diagrams for the Rephasing signal. In the same order: d-f) for Non-Rephasing signal, g-i) for
2Q1Q signal and j-l) for 1Q2Q signal. Each spectrum is normalized with respect to its absolute
maximum/minimum. The signal has been integrated up to a detection-time Td = 1 ps.
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tributions by using perturbative terminology [45, 46] to analyze how they combine in the

total spectrum.

We start by discussing the exciton and the biexciton contributions for the Rephasing

(Fig. 3.4a,b) and Non-Rephasing (Fig. 3.4d,e) signals along with the corresponding

Feynman diagrams (Fig. 3.4c,f). Each Feynman diagram represents a dynamical pathway,

specified by the sequence of coherence or population states of the system, induced by

the interaction with the laser pulses. In the Rephasing and Non-Rephasing signals, the

system interacts once with each pulse, as represented by the four black arrows in the

Feynman diagrams. The incoherent signal, depicted as two green arrows, is due to the

relaxation of the population generated by the fourth interaction. The sign by which a

certain pathway contributes to the spectrum is given by the factor (−1)n, where n is

the number of interactions on the bra side in the corresponding diagram. Depending

on the sequence of interactions involved in a Feynman pathway, its contribution can be

distinguished into Ground-State Bleaching (GSB), Stimulated Emission (SE) and Excited-

State Absorption (ESA). The interaction with the first pulse prepares the system in a

ground-exciton coherence oscillating during the delay-time T1. Then, the interaction with a

second pulse generates a population that can be either in the ground or in the exciton state.

The ground state population is associated with the GSB pathway upon the subsequent

interaction with the last two pulses, while the exciton population follows the SE pathway,

if the system emits upon interaction with the third pulse, or alternatively an ESA pathway,

if it absorbs a photon from the third pulse. Whereas both GSB and SE pathways end

in the exciton manifold, due to the interaction with the fourth pulse, two types of ESA

pathways are possible in A-2DES: the ESAI, leading to a final population in the exciton

manifold, and the ESAII, ending in the biexciton manifold.

It should be stressed that it is not possible to isolate the signal corresponding to a specific

pathway (GSB, SE or ESA) from the full dynamical evolution of the density matrix since

they represent just terms of a perturbative expansion [30]. However, in principle, we can

resolve the exciton and the biexciton contributions on the basis of the final population

state from which the incoherent signal originates. Therefore, the exciton contribution

results from the GSB, SE and ESAI pathways, while the biexciton contribution results

from the ESAII pathway. Accordingly, the Rephasing spectrum of the exciton manifold

(Fig. 3.4a) shows a prominent negative peak along the diagonal at coordinates (ω10, ω10),

corresponding to the GSB and SE pathways, and a less intense off-diagonal contribution

from the ESAI centered at (ω10, ω21) which introduces an asymmetry in the peak leading to

a lineshape elongated below the diagonal. On the other hand, the spectrum associated with
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the biexciton contribution (Fig. 3.4b) exhibits a positive off-diagonal peak at coordinates

(ω10, ω21) related to the ESAII pathway.

The opposite sign of the spectral contributions of the exciton and the biexciton is con-

served also along other phase-modulation components. For example, within the same set of

dynamical simulations, we can investigate less common contributions of the response, such

as the Two-Quantum-One-Quantum (2Q1Q) and One-Quantum-Two-Quantum (1Q2Q)

signals. The measurement of these components in an action-detected setting has been

recently realized by Mueller et al. [51, 56] and applied to the study of QD nanocrystals

[25]. In this case, a two-quantum (2Q) coherence, i.e., coherence between states that are

two excitations apart, is correlated with a one-quantum (1Q) coherence, i.e., coherence

between states that are one excitation apart. In the following, we discuss the exciton and

biexciton contributions in the 2Q1Q (Fig. 3.4g,h) and 1Q2Q (Fig. 3.4j,k) spectra along

with the corresponding Feynman diagrams (Fig. 3.4i,l). The two signals are both char-

acterized by only two Feynman diagrams, differing in the temporal sequence of the one-

and two-quantum coherences. In 2Q1Q, the interaction of the system with the first pulse

causes the absorption of two photons, generating a 2Q coherence between the ground

and the biexciton states which evolves along T1. The subsequent interaction converts the

state into a 1Q coherence: if the 1Q coherence which is established is a ground-exciton

coherence, the signal is eventually emitted from the exciton manifold (2Q1QI), while in

the case of an exciton-biexciton coherence, the signal is emitted from the biexciton state

(2Q1QII). Similarly, for the 1Q2Q experiment, one pathway leads to the exciton population

(1Q2QI), while the other leads to the biexciton population (1Q2QII) after the fourth pulse.

The corresponding spectra are obtained by taking the Fourier transform of the delay-times

T1 and T2, directly correlating the two coherences. In the 2Q1Q spectrum, the exciton

and the biexciton contributions are centered respectively at two different spectral positions

(ω20, ω10) and (ω20, ω21), while in the case of 1Q2Q spectrum, they are found at the same

coordinates (ω10, ω20).

Because the contribution of the biexciton is always of opposite sign than the exciton

one, cancellation between different pathways may take place and the resulting spectral

lineshape will crucially depend on their relative weights. Let us focus on the Rephasing

spectra, where the ESAI and ESAII pathways contribute in the same spectral location with

opposite signs. To analyze the total spectrum, the contribution of different manifolds can

be weighted by a phenomenological relative yield coefficient Γ, which quantifies the mean

number of emitted photons in fluorescence detection, or charge-carriers in photocurrent

detection, generated from the biexciton state, relative to the average number generated
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Fig. 3.5: Rephasing spectra calculated as a weighted sum of the exciton and biexciton contributions
(Eq. 3.11) after the end of the fourth pulse for a phenomenological yield coefficient a) Γ = 0, b)
Γ = 1, c) Γ = 2 and d) Γ = 3. Each spectrum is normalized to its absolute maximum/minimum.
The panels on the top and the right of each spectrum report the total signal (purple solid line),
the isolated exciton contribution (blue dashed line) and the isolated biexciton contribution (red
dashed line) averaged along ω3 and ω1 axes respectively. The signal has been integrated up to a
detection-time Td = 1 ps.
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from the exciton [7, 27, 30]. The overall spectrum is then expressed in terms of exciton

and biexciton contributions as follows

S = SX + Γ · SBX
= −GSB − SE − (1− Γ)ESA

(3.11)

where the decomposition in terms of Feynman pathways, given in the second equality,

underlies the common assumption that the two ESA pathways are similar except for their

relative sign. In some conditions, the relative yield coefficient Γ can be inferred from

the photophysics of the system under consideration: for example, Γ = 2 if the biexciton

contributes with two photons, or charges, and the exciton with one. This is the situation

commonly expected when considering independent emitters [30, 34]. In this case, S =

−GSB− SE +ESA and the corresponding spectrum is shown in Fig. 3.5c. Interestingly,

this is the combination of pathways corresponding to the signal obtained by C-2DES, with

the spectrum featuring a diagonal peak (GSB+SE) whose amplitude is partially bleached by

the negative contribution of the ESA pathway in the off-diagonal position. Another notable

case discussed in the literature of molecular aggregates [30, 32] is the biexciton state having

the same yield as the exciton because of complete exciton-exciton annihilation processes.

In this case, Γ = 1 and the A-2DES spectrum is ESA-free, S = −GSB−SE. In this case,

the spectrum features a symmetrical diagonal peak originating from the GSB and the SE

pathways (Fig. 3.5b). In another case, the annihilation process can involve both excitons,

so that Γ becomes negligible and the spectrum reduces to the contribution of the exciton

with an asymmetric peak elongated below diagonal (Fig. 3.5a). Finally, the biexciton may

have a significantly higher yield than the exciton, as reported in photocurrent detection

[7]. In this case, Γ is expected to be higher than 2 and the spectrum is characterized by a

dispersive lineshape profile (Fig. 3.5d).

3.3.2. Effects of Different Detection-Modes and Time-Gating

The special cases discussed in the previous section require strong assumptions on the

relaxation dynamics of the excited manifolds of the system under consideration. While

for molecular aggregates probed using fluorescence, it is generally safe to assume a quan-

titative relaxation from the double-excited state to the single-excited state before signal

detection [17, 32], the biexcitons of QDs are characterized by a broader phenomenology

which should be taken into account to correctly interpret the interplay between exciton

and biexciton contributions in the total spectrum. In this section, we will answer the fol-

lowing questions: how can we determine the relative yield coefficient Γ from the relaxation
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rates governing the system dynamics (Eq. 3.7)? Are there "experimental knobs" that can

be used to control the relative weights of exciton and biexciton contributions in the final

spectrum?

We start by further specifying the total relaxation rates between two manifolds, γkk ′ in

Eq. 3.7, in terms of a radiative (r) and a non-radiative (nr) contributions:

γkk ′ = γ
(r)
kk ′ + γ

(nr)
kk ′ , (3.12)

where k ̸= k ′. Although this nomenclature explicitly refers to fluorescence detection,

where the radiative contribution is associated with spontaneous emission, we will use it

with a more general meaning where "radiative" indicates processes that contribute to the

detected signal (Eq. 3.5) while "non-radiative" groups all the other relaxation channels,

e.g., exciton trapping and Auger recombination. Therefore, we introduce the General-

ized Quantum Yield (GQY) which is state-specific and explicitly depends on the chosen

detection-mode. This can be expressed in terms of the microscopic rate constants. For

the exciton, the GQY is:

Φ1 =
γ
(r)
01

γ
(r)
01 + γ

(nr)
01

=
γ
(r)
01

γ01
(3.13)

while for the biexciton is:

Φ2 =
γ
(r)
12

γ
(r)
12 + γ

(nr)
12

=
γ
(r)
12

γ12
. (3.14)

By definition, the GQY is bounded: if the radiative contribution exceeds the non-radiative

one γ(r)k ≫ γ
(nr)
k , the GQY is Φk −→ 1, otherwise for γ(r)k ≪ γ

(nr)
k , the GQY is Φk −→ 0.

Then, the signal in Eq. 3.5 can be written in terms of the total relaxation rate, the GQY

and the population of each state:

S(Td) = γ
(r)
01 P1(Td) + γ

(r)
12 P2(Td)

= γ01Φ1P1(Td) + γ12Φ2P2(Td)
(3.15)

and the interplay between the exciton and the biexciton contributions is regulated by the

ratio between the two terms.

To proceed in our analysis, we assume that the ratio between the total relaxation rates

γ12/γ01 is a constant that characterizes the system, while the GQY and the populations can

be influenced, to some extent, by changing the settings of the spectroscopic experiment.

Specifically, the ratio of the GQY Φ2/Φ1 strongly depends on the adopted detection-

mode, while the ratio of the populations P2(Td)/P1(Td) depends on the detection-time.
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Fig. 3.6: Rephasing spectra for different values of GQY ratio (Φ2/Φ1 = 0.0, 0.1, 1.0, 2.0) on
the columns and different detection-times (Td = 103 fs, 105 fs, 106 fs, 107 fs) on the rows. Each
spectrum is normalized with respect to its absolute maximum/minimum.

Fluorescence detection is typically associated with a low GQY ratio because higher excited

states mainly relax non-radiatively to the first excited state from which radiative emission

occurs. However, while in molecular systems this ratio is commonly negligible, nanocrystals

may exhibit a wider photophysical phenomenology with the GQY of the biexciton varying

significantly in every single nanostructure and even approaching unity, when Auger decay

channels are suppressed by thick shells [39, 57–59]. When the sample can be detected

through photocurrent, the radiative contribution from multiexciton manifolds can be even

higher, thus reversing the relative magnitude of the GQY of exciton and biexciton. When

higher excitation frequencies are used, the presence of higher Quantum Yields may also

depend on the presence of Multiple Exciton Generation (MEG) [7].

The last column of Fig. 3.6 shows the spectra obtained from the integrated signal for
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different GQY ratios. When the biexciton does not contribute directly to the detected

signal (Φ2/Φ1 = 0), a quantitative relaxation of the biexciton to the exciton manifold

takes place before emission. In this case, the signal originating from the ESAII pathway is

transferred quantitatively to the exciton manifold during the detection-time and therefore

it cancels exactly the ESAI signal. In other words, we realize the case of Γ = 1 (Fig. 3.5b)

resulting in an ESA-free spectrum. In all the other cases, because the radiative decay of

the biexciton is faster than the decay from the exciton manifold, we are in situations where

Γ > 1 and the active contribution of the biexciton is observed in the off-diagonal position.

Notice that the transfer of the ESAII contribution into the exciton manifold is a relatively

slow dynamical process taking place during the detection-time Td .

The presence of a detection-time Td is another element of novelty of A-2DES compared

to C-2DES and represents an additional experimental parameter influencing the optical

response of the system. Time-gating techniques can be used, in principle, to resolve the

emission by integrating the signal within a finite temporal window during the detection.

This technique has been already experimentally implemented in time-resolved fluorescence,

photoluminescence [60] and microscopy [61]. Although the possibility of combining time-

gating with fluorescence-detected A-2DES has been recently proposed [30, 32], an exper-

imental implementation is still lacking to our knowledge. While in fluorescence detection,

time-gating can be achieved by photon-counting techniques, fast transient photocurrent

measurements have also been reported in QDs assemblies [62].

Through the choice of the detection-time, it is possible to parametrically control the ratio

between the biexciton and exciton populations P2(Td)/P1(Td). Therefore, the dynamics

of the spectral features as a function of Td reflects the relaxation dynamics of the excited

manifolds. The effect of changing the detection-time is reported in Fig. 3.6, where each

row shows the spectra resulting from varying the integration window for each value of the

GQY ratio. When the biexciton does not contribute actively to the signal for Φ2 = 0.0

(Fig. 3.6a-d), the biexciton contribution cannot become explicit and all spectra show a

prominent negative diagonal feature mainly due to the GSB and SE pathways. However, for

Td shorter than the biexciton recombination (Td < γ−112 ), spectra result slightly asymmetric,

characterized by a counter-clockwise peak twist and a broadening below the diagonal.

Indeed, when the signal is collected before Auger relaxation, the ESA cancellation is not

complete and the spectrum reveals the off-diagonal feature at (ω10, ω21), corresponding to

the ESAI pathway. As the detection-time increases (Td > γ−112 ), the symmetry of the peak

is restored because the biexciton converts to exciton and the ESAI pathway is completely

canceled by the ESAII, resulting in the ESA-free spectrum.



3| Simulating Action-2D Electronic Spectroscopy of Quantum Dots 61

When the biexciton contributes radiatively to the signal, the lineshape may change dras-

tically as the Td proceeds. A similar trend is observed for all cases in which Φ2/Φ1 ̸= 0.
In particular, at early Td , the main contribution to the spectra is the positive off-diagonal

peak originating from the biexciton. Even in the case of a relatively small biexciton QY

(Φ2/Φ1 = 0.1), the faster relaxation rate implies that the spectrum is dominated by the

biexciton contribution at early detection-time. As the Td increases, the diagonal contri-

bution from the exciton manifold gains amplitude and because of cancellation effects, the

spectrum results in a dispersive lineshape. Due to the partial cancellation of positive and

negative contributions, the maximum and the minimum do not fall at the same position

as the isolated contributions, shown in Fig. 3.4, but the peaks are respectively red- and

blue-shifted along the frequency axes.

In general, the details of the evolution of the overall spectral lineshape as a function of

the detection-time depend on the kinetics of the populations relaxation (Eq. 3.10). In this

case, we consider an idealized model where the non-radiative relaxation is characterized by

a single rate. However, the kinetic scheme can be easily generalized by introducing other

processes, notably hot-carrier relaxation and trapping due to surface effects, inducing more

complex non-exponential behavior. Notice that a different dynamics during the detection-

time implies a different combination of the exciton and biexciton contributions resulting

in a different lineshape. Nonetheless, the individual contributions are defined prior to any

relaxation dynamics (Sec. 3.3.1) and therefore, as long as the relaxation is slow compared

to the timescale of the pulse train, they do not depend on the details of the relaxation

processes.

We shall emphasize how the effects of the detection-mode and time-gating are in some

sense complementary. Considering different combinations of the two parameters may

produce similar results: isolating the exciton contribution (Fig. 3.6a-d,g,h,l), isolating the

biexciton contribution (Fig. 3.6e,i,j,m-o) or featuring their simultaneous presence (Fig.

3.6f,k,p). The choice of the detection-mode and the use of time-gating may be used in

combination to isolate specific contributions in the 2D spectra. Analogous combinations

of the exciton and the biexciton signal determine the Non-Rephasing, 2Q1Q and 1Q2Q

spectra, reported in the App. 3.A (Figs. 3.A.9, 3.A.10, 3.A.11).

3.3.3. Signatures of Binding Energy and Relaxation Rates

In the previous section, we discussed how the combination of the exciton and the biex-

citon contributions gives rise to a variety of spectral lineshapes according to the specific
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Fig. 3.7: Rephasing spectra for different biexciton binding energies a) ∆ = 10 meV, b) ∆ = 20 meV
and c) ∆ = 40 meV for a GQY ratio Φ2/Φ1 = 0.0 and a detection-time of Td = 1 ps. The white
dotted line highlights the ellipticity of each peak. Rephasing spectra for different decoherence
times d) γ−1kk = 100 fs, e) γ−1kk = 200 fs and f) γ−1kk = 300 fs for a GQY ratio Φ2/Φ1 = 0.1
and a detection-time Td = 100 ps. Each spectrum is normalized with respect to its absolute
maximum/minimum. g) Averaged signal along ω1 axis for the spectra d-f), the corresponding
colors are reported in the inset.

system dynamics and experimental settings, such as the detection-mode and time-gating.

This diversity implies that the information about the system may be encoded in different

spectral features. Now, we will focus on two parameters characterizing our simplified model

of exciton and biexciton manifolds in nanocrystals, namely the biexciton binding energy

and the biexciton relaxation rate, discussing their connection with spectral signatures.

The biexciton binding energy gives a direct measure of the correlation between two

excitons in the QD and is defined by the difference between twice the exciton energy and

the biexciton one, ∆ = 2ϵ1 − ϵ2. Experimentally, it can be measured using pump-probe

spectroscopy, however, two-dimensional techniques offer the possibility to resolve the signal

along two frequency axes and to operate at low excitation power, ideally limiting the number

of overlapping processes in the signal [37, 63–67]. In 2DES experiments, the biexciton

binding energy is obtained from a fitting procedure of the 2D spectra using a parameterized

model. However, its quantification remains challenging and sample inhomogeneities are

detrimental.
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In this context, the possibility of combining A-2DES with single-molecule techniques

to probe individual QD is a promising route to characterize the biexciton manifold. The

biexciton binding energy can be expressed in terms of the transition frequencies probed

in the A-2DES Rephasing spectra as ∆ = ω10 − ω21. Therefore, the spectral position of

the ESA feature is the key to evaluating the binding energy, either by directly considering

its spectral coordinates (ω10, ω21) or by taking the distance of the ESA feature from the

main diagonal peak located at (ω10, ω10) along the ω3 axis. Notice that in the cases

where the biexciton manifold does not contribute directly to the signal (Φ2/Φ1 = 0) and

the amplitude is integrated over the detection-time, the spectrum is ESA-free and the

information on the binding energy is completely lost. The only possibility to observe the

effect of the biexciton is to avoid the cancellation of the ESAI pathway by employing a

short time-gating window, as shown in Fig. 3.7a-c, where the spectra are obtained by

integrating the signal for 1 ps after the end of the fourth pulse. Even in this case, as

long as the binding energy is smaller than the peak broadening, the ESAI contribution

appears as a peak-twist of the main diagonal contribution. As the value of ∆ increases

(Fig. 3.7a-c), the ESAI contribution is centered further apart from the diagonal, resulting

in a more pronounced twist.

The situation changes when the biexciton gives a radiative contribution to the signal,

as shown in Fig. 3.7d-f, where the spectra for a GQY ratio Φ2/Φ1 = 0.1 and a time-

gating window of 100 ps are reported for three different decoherence rates. In this case,

the biexciton binding energy can be evaluated directly as the distance along ω3 between

the negative and the positive spectral features. The projection of the lineshape profile

along ω3 (Fig. 3.7g) shows how such an estimation is robust against the peak-shift of the

exciton and biexciton contributions due to cancellation effects, even when the broadening

is large. Indeed, the peak positions are more susceptible to variations along ω1 axis than

ω3 for different weights of exciton and biexciton contributions. Moreover, since the phase-

modulation protocol provides direct access to other components of the Phase-Modulation

Spectrum, the estimation of the biexciton binding energy can be checked by looking at

other fourth-order signals, i.e., 1Q2Q and 2Q1Q. In these cases, the binding energy can

be written in terms of one- and two-quantum transition frequencies as ∆ = 2ω10 − ω20.
Particularly convenient is the case of 1Q2Q spectra, where all the spectral contributions

are centered at (ω10, ω20) (Fig. 3.4j,k). Therefore, in this situation, the main spectral peak

allows a good estimation of the biexciton binding energy independently of the application

of the time-gating.

Besides varying the contribution of the biexciton, the detection-time can be understood
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Fig. 3.8: Temporal evolution of the amplitude along the detection-time Td for four coordinates
in the spectrum (inset of a): at coordinates (ω10, ω10) GSB and SE from the exciton (blue), at
coordinates (ω10, ω21) ESAI from the exciton and ESAII from the biexciton (red), while coordinates
at (ω21, ω21) (green) and (ω10, ω21) (orange) represent two control positions. a) Time-resolved
signal and b) (normalized) time-integrated signal for GQY ratio Φ2/Φ1 = 0.0. c) Time-resolved
signal and d) (normalized) time-integrated signal for GQY ratio Φ2/Φ1 = 0.1.
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as a further dimension to analyze, by monitoring how the spectral features change as a

function of Td . Indeed, by time-gating the signal, one can in principle follow the incoherent

dynamics connecting different manifolds. Let us pinpoint four different spectral positions

in the Rephasing spectrum to define a square (inset of Fig. 3.8a): the diagonal peak

at (ω10, ω10) (blue square) featuring the GSB and SE from the exciton, the off-diagonal

peak at (ω10, ω21) (red square) featuring the interplay of the two Excited-State Absorption

pathways from the exciton (ESAI) and the biexciton (ESAII), and two control positions,

one above the diagonal at (ω21, ω10) (orange square) and one on the diagonal at (ω21, ω21)

(green square). We report the amplitude of these spectral positions as a function of the

detection-time for two different GQY ratios: Φ2/Φ1 = 0.0 (Fig. 3.8a,b) and Φ2/Φ1 = 0.1

(Fig. 3.8c,d). In Fig. 3.8a,c, we follow the instantaneous evolution according to Eq. 3.5

without any integration step, while in Fig. 3.8b,d, the signal is integrated within a temporal

window of increasing length (Eq. 3.6) and normalized with respect to the amplitude of

the dominant peak. The instantaneous temporal profile of the spectral amplitudes directly

reflects the dynamics of the populations showing two different relaxation timescales: the

biexciton lifetime at Td ≈ 105 fs and the exciton relaxation at Td ≈ 107 fs. In the

case of Φ2/Φ1 = 0.0 (Fig. 3.8a), the amplitudes are negative over the entire Td axis

and the spectrum is always dominated by the diagonal peak (blue line). Because of the

normalization to the main diagonal peak, the integrated signal (Fig. 3.8b) brings to

evidence only the timescale of the biexciton relaxation. The biexciton lifetime controls the

dynamics of the cancellation of the ESA pathways which is reflected by the decrease in

amplitude of the off-diagonal feature below the diagonal (red line) to match the amplitude

of the control position above the diagonal (orange line) at Td ≈ 105 fs. For Φ2/Φ1 = 0.1

(Fig. 3.8c), the instantaneous amplitudes of the peaks change the sign from positive to

negative along Td . At early detection-time, the spectrum is dominated by the biexciton

contribution, related to the positive off-diagonal peak due to ESAII pathway (red line)

while, as the detection-time gets longer, the biexciton relaxes and the main contribution in

the spectra becomes the negative diagonal peak. Such a change of the dominant spectral

contribution is even more evident in the integrated and normalized spectral amplitudes

(Fig. 3.8d) where the inversion of the dominant peak offers a direct estimation of the

biexciton lifetime. The evolution of the spectral features for other signals, i.e., 2Q1Q and

1Q2Q, as a function of the detection-time are reported in the App. 3.A (Figs. 3.A.12,

3.A.13) and can be analyzed along the same line.

The availability of several contributions to the response representing the same relax-

ation dynamics in different spectral positions may be a valuable resource to resolve more
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complicated multiexciton dynamics in realistic systems.

3.4. Conclusions

Multiexciton states of QDs are at the heart of nanocrystal-based technology and A-2DES

is a promising technique to study their properties. In this work, we have simulated and

analyzed the role of the biexciton state in the action response, discussing how it depends on

the detection-mode and the time-gating of the signal. Despite the simplicity of the model

system, i.e., a three-level open quantum system, a variety of spectral lineshapes can be

generated as the result of the interplay between the exciton and the biexciton contributions

to the total spectrum. When the biexciton provides a non-vanishing contribution to the

detected signal, the 2D spectrum at early gating-time is dominated by an off-diagonal

positive feature originating from the biexciton, whose position depends on the binding

energy. As the gating-time increases, a dispersive lineshape results from the interplay of

the exciton and biexciton signals having opposite signs. When the signal is completely

integrated along the detection-time, the generated spectra depend on the ratio between

the quantum yields of the biexciton and the exciton, ranging from a fully diagonal (ESA-

free) to a dispersive lineshape, as determined by the detection-mode.

Amongst the other important applications, excitons in QD materials are candidate sub-

strates for quantum technologies, including quantum computing [68, 69]. In this context,

preparation and manipulation of exciton states can be achieved by optical pulses [70–73]

and the collinear geometry facilitates rapid data acquisition, making A-2DES a valuable

testbed for quantum information processing coupled with photocurrent readout [74]. To

assist developments in this direction, numerical simulation protocols going beyond the per-

turbative response function are needed. In this work, we adopted the non-perturbative

simulation protocol developed in ref. [43] augmented with an explicit description of the

detection-time dynamics. To focus on the internal recombination process, we have as-

sumed non-interacting units in our simulations. Another crucial issue that needs to be

investigated is related to interdot coupling, since charge and exciton migration may com-

pete with the internal dynamics, especially in the solid state [20, 29]. Moreover, strongly

coupled dimers of colloidal QDs have been designed and the possibility of excitonic delocal-

ization over the two units has been discussed, based on both theoretical and experimental

evidence [50, 75–79].



3| Simulating Action-2D Electronic Spectroscopy of Quantum Dots 67

3.A. Additional Figures

Fig. 3.A.9: Non-Rephasing spectra for different values of GQY ratio (Φ2/Φ1 = 0.0, 0.1, 1.0, 2.0)
on the columns and different detection-times (Td = 103 fs, 105 fs, 106 fs, 107 fs) on the rows.
Each spectrum is normalized with respect to its absolute maximum/minimum.
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Fig. 3.A.10: 2Q1Q spectra for different values of GQY ratio (Φ2/Φ1 = 0.0, 0.1, 1.0, 2.0) on
the columns and different detection-times (Td = 103 fs, 105 fs, 106 fs, 107 fs) on the rows. Each
spectrum is normalized with respect to its absolute maximum/minimum.
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Fig. 3.A.11: 1Q2Q spectra for different values of GQY ratio (Φ2/Φ1 = 0.0, 0.1, 1.0, 2.0) on
the columns and different detection-times (Td = 103 fs, 105 fs, 106 fs, 107 fs) on the rows. Each
spectrum is normalized with respect to its absolute maximum/minimum.
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Fig. 3.A.12: Temporal evolution of the amplitude along the detection-time Td for four coordinates
in the 2Q1Q spectrum (inset of a): at coordinates (ω20, ω10) 2Q1QI pathway from the exciton
(orange), at coordinates (ω20, ω21) 2Q1QII pathway from the biexciton (green), while coordinates
at (ω20+∆, ω21) (red) and (ω20+∆, ω10) (blue) represent two control positions. a) Time-resolved
signal and b) (normalized) time-integrated signal for GQY ratio Φ2/Φ1 = 0.0. c) Time-resolved
signal and d) (normalized) time-integrated signal for GQY ratio Φ2/Φ1 = 0.1. The normalization
is taken with respect to the absolute maximum/minimum of each map.
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Fig. 3.A.13: Temporal evolution of the amplitude along the detection-time Td for four coordinates
in the 1Q2Q spectrum (inset of a): at coordinates (ω10, ω20) 1Q2QI from the exciton and 1Q2QII
from the biexciton (red), while coordinates at (ω10−∆, ω20) (green), at (ω10, ω20+∆) (blue) and
at (ω10 − ∆, ω20 + ∆) (orange) represent three control positions. a) Time-resolved signal and b)
(normalized) time-integrated signal for GQY ratio Φ2/Φ1 = 0.0. c) Time-resolved signal and d)
(normalized) time-integrated signal for GQY ratio Φ2/Φ1 = 0.1. The normalization is taken with
respect to the absolute maximum/minimum of each map.
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4.1. Introduction

The non-linear optical response triggered by ultrafast laser pulses is the result of a

multitude of dynamical processes whose spectral signatures depend specifically on the

adopted spectroscopic method. In this context, Two-Dimensional Electronic Spectroscopy

(2DES) is the preferred technique to disentangle exciton dynamics of complex systems in

both frequency and time domains [1]. The most prominent version, known as Coherent-

2DES (C-2DES), relies on the detection of a coherent signal, emitted along a specific

phase-matching direction, upon the interaction with three non-collinear laser pulses [2, 3].

Recently, the technique has been developed to combine the potentialities of 2DES with

action-detection schemes [4, 5]. In Action-2DES (A-2DES), the interaction with a train

of four collinear laser pulses prepares the system into an excited-state population which

generates an incoherent signal during a long temporal window called the detection-time.

Due to the collinearity of the setup, the signal contains contributions from various orders

in the light-matter interaction. To separate these contributions, the phases of the laser

pulses are manipulated through either phase-cycling [6, 7] or phase-modulation [8] schemes.

Depending on the nature of the incoherent signal, different detection schemes have been

implemented based on measuring fluorescence [9–11], photocurrent [12–14], photoions

[15] and photoelectrons [16], paving the way for studying systems in operando conditions

[17, 18]. Furthermore, the combination of A-2DES with microscopy [19] and single-

molecule [20, 21] techniques allows to go beyond the diffraction-limit, thus circumventing

the effects of inhomogeneous disorder.

Although probing the same ultrafast dynamics, action-detected spectra exhibit signifi-

cant differences compared to those obtained through coherent-detection. In fact, it was

Adapted from Bruschi, M.; Bolzonello, L.; Gallina, F.; Fresch, B. J. Phys. Chem. Lett. 2023, 14,
6872–6879.
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early recognized that spectral features in A-2DES are determined not only by the coher-

ent dynamics induced by the light-matter interaction but also by the dynamical processes

taking place during the detection-time [22]. Contrary to C-2DES [23, 24], the presence

of cross peaks at early waiting-times does not represent a univocal signature of excitonic

delocalization in A-2DES [10, 25], having been reported even in the case of weakly inter-

acting systems [11, 19]. By analyzing the different contributions to the response function

for a molecular dimer, Malý and Mančal demonstrated that cross peaks can emerge from

the incomplete cancellation of different pathways as a consequence of exciton-exciton

annihilation during the detection-time [26]. Following the same line, several other con-

tributions highlighted the importance of two-exciton manifold dynamics in determining

spectral features [27–30].

On the other hand, Grégoire et al. brought to the attention the phenomenon of incoher-

ent mixing as an unwanted contribution in A-2DES spectra [31]. Incoherent mixing occurs

from the combination of linear signals due to non-linear population dynamics [31], e.g.,

exciton-exciton annihilation, bimolecular recombination, and Auger recombination, or due

to non-linearities in the detection process [32]. Since incoherent mixing can hide spectral

features of the coherent non-linear response, efforts have been devoted to distinguishing

these two contributions. In a theoretical analysis of the action signal, Kalaee et al. pro-

posed the existence of a precise phase relationship between the “true” non-linear response

and incoherent mixing signals, which can be used to differentiate them [33].

The appearance of cross peaks at early waiting-times and the phenomenon of incoherent

mixing have always been considered independently in the literature about A-2DES. The

aim of this work is to propose a unifying picture of these two aspects by demonstrating

that, beyond sharing a common origin, they actually represent two different views of the

same dynamical process when considering a system composed of weakly interacting units.

After a brief presentation of the A-2DES technique, we discuss in detail the case of a

pair of chromophores, although the analysis can easily be generalized to more complex

interaction networks. To this end, we use one- and two-particle representations [29, 34]

as interpretative tools, where the term “particle" refers to a chromophore in our model.

By employing Feynman Diagrams (FDs), the optical response of the chromophoric pair

is rationalized using both representations, thereby elucidating the pathways followed by

the system during coherent excitation. Since the contribution of the pathways to the

total spectrum also depends on the processes occurring during the detection-time, we for-

mulate the dynamics in terms of kinetic schemes for one- and two-particle populations.
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Interestingly, the resulting signal from one-particle populations evidences the net contri-

bution of incoherent mixing stemming from a set of Feynman diagrams where the two

pairs of pulses interact with different chromophores. Therefore, we demonstrate how the

presence of cross peaks at early waiting-times in A-2DES of weakly interacting systems

can be interpreted either as arising from the imperfect cancellation of Feynman pathways

(two-particle perspective) or from incoherent mixing (one-particle perspective), as a re-

sult of detection-time dynamics. The contribution of the dynamics-induced non-linearities

to the spectrum depends on the specific kinetics of the energy redistribution during the

detection-time. This implies, on the one hand, that the phase of the incoherent mixing

signal is not a priori different from that of the non-linear response and, on the other

hand, that the study of incoherent mixing spectral features is informative of dynamical

processes in weakly interacting systems. Furthermore, the analysis of the action signal

in terms of one-particle observables provides an advantageous computational scheme to

simulate the effects of the detection-time dynamics in the A-2DES spectra of weakly in-

teracting systems, by solving a set of dynamical equations scaling linearly with the number

of chromophores.

4.2. Results and Discussion

In A-2DES, the system interacts with a train of four collinear laser pulses, separated by

delay-times T1, T2 and T3, resulting in the emission of an incoherent signal S(Td) during the

detection-time Td (Fig. 4.1a). Typically, signal emission in A-2DES is not time-resolved

and the experimentally accessible observable is represented by the time-integrated signal

along the detection-time Td :

S =
∫ ∞

0

dTd S(Td). (4.1)

By adopting a phase-modulation scheme [8], the phase of the i-th pulse is linearly modu-

lated, from one train to the following, as Φ(Ωi) = 2πΩimT , where Ωi is the modulation

frequency, m is the repetition index of the train, and T is the inter-train delay-time. As a

consequence, the incoherent signal itself is modulated and it can be decomposed as:

S(mT ) =
∑

ΩS

S(ΩS) e iΦ(ΩS) (4.2)

where S(ΩS) is the component of the signal modulated at the linear combination of fre-

quencies ΩS =
∑
i ℓ
S
i Ωi , where ℓSi = 0,±1,±2, etc. By taking the Fourier transform

along mT , the different components of the optical response can be extracted, i.e., rephas-
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Fig. 4.1: a) Train of four collinear laser pulses, separated by delay-times T1, T2 and T3, whose
phases are modulated at frequencies Ωi , for i = 1, . . . , 4. As a result of the light-matter interaction,
the system emits an incoherent signal S during the detection-time Td . States of a weakly interacting
pair of chromophores in the b) one- and c) two-particle representations, along with the kinetic
scheme for populations: αn is the rate of exciton recombination, while βn and γ12 are the rates of
exciton-exciton annihilation of one and two excitons, respectively.

ing (ΩR = −Ω1 + Ω2 + Ω3 − Ω4), non-rephasing (ΩNR = +Ω1 − Ω2 + Ω3 − Ω4) and

double-quantum coherence (ΩDQC = +Ω1 + Ω2 − Ω3 − Ω4) signals. By scanning the

different delay-times T1, T2 and T3 and taking the Fourier transform along T1 and T3, a

2D spectrum is obtained as a function of ℏω1 and ℏω3 for each value of waiting-time T2.

This procedure can be numerically implemented in close analogy with the experiment. By

employing a non-perturbative treatment of the light-matter interaction, the dynamics of

the system is modeled using the Lindblad quantum master equation [30, 35, 36]. Details

of the computational procedure and the parameters used for the simulations are reported

in the App. 4.A.

Let us consider a pair of chromophores, each treated as a two-level electronic system

with a ground- |gn⟩ and an excited-state |en⟩, where the index n = 1, 2 denotes the n-th

molecule (Fig. 4.1b,c). The chromophoric pair is described by the Hamiltonian:

Ĥ = Ĥ1 ⊗ 1̂2 + 1̂1 ⊗ Ĥ2 + V̂12 (4.3)

where Ĥn = ϵn |en⟩⟨en| and 1̂n = |gn⟩⟨gn| + |en⟩⟨en| are the Hamiltonian and the identity

operator of the n-th chromophore, respectively, while V̂12 is the excitonic coupling between
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them. The excitation energies ϵn of the two chromophores are chosen to match those of

the B800 and B850 rings of the LH2 complex, namely ϵ1 = 1.55 eV and ϵ2 = 1.46 eV

[35]. In the following, the excitonic coupling V̂12 is assumed to be small, such that the two

chromophores are weakly interacting. The assumption of weak interaction implies that

the eigenstates of the chromophoric pair are well approximated by the product of single

chromophore states, whereas the dynamical effects of the interaction are captured at the

level of perturbation theory in the form of incoherent transfer rates related to Exciton

Energy Transfer (EET) and Exciton-Exciton Annihilation (EEA) processes [37–39].

Let us now introduce one- and two-particle representations of the system, as proposed

by Mukamel [34] and Kühn et al. [29]. In the one-particle representation (Fig. 4.1b),

the state of one chromophore is addressed independently of the other as described by

one-particle observables, e.g., one-particle populations Pe1(t) and Pe2(t) representing the

probability that one chromophore is excited. Although the one-particle observables are

well-defined at every time, the presence of interactions between the two chromophores

requires a two-particle representation (Fig. 4.1c) of the system, in which the state of

both chromophores is simultaneously considered in terms of two-particle observables, e.g.,

two-particle populations Pe1g2(t) and Pg1e2(t) representing the joint probabilities of one

chromophore being excited while the other is in the ground-state, and Pe1e2(t) representing

the probability that both chromophores are excited. Indeed, in EET the excitation is

transferred from one chromophore in the first excited-state to the other in the ground-

state. Instead, EEA is a two-step process that is possible only when both chromophores are

simultaneously excited: first, a higher excited-state is generated on one molecule leaving

the other in the ground-state, then, rapid internal conversion to the first excited-state

takes place, resulting in the net loss of one exciton. Alternatively, EEA process may result

in the annihilation of both excitons. As detailed in App. 4.B, by definition, the two

representations are related by Pe1(t) = Pe1g2(t)+Pe1e2(t) and Pe2(t) = Pg1e2(t)+Pe1e2(t).

The time-resolved incoherent signal is proportional to the two-particle populations weighted

by the emission rate of the states:

S(Td) = Γ1Pe1g2(Td) + Γ2Pg1e2(Td) + Γ12Pe1e2(Td). (4.4)

In general, the different nature of the multi-exciton state can be captured by assuming

Γ12 ̸= Γ1 + Γ2 [13]. However, when the constrain Γ12 = Γ1 + Γ2 applies, the signal can be
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Fig. 4.2: Rephasing spectra from two-particle populations a) Pe1g2 , b) Pg1e2 , c) Pe1e2 and one-
particle populations d) Pe1 , e) Pe2 , at detection-time Td = 0 fs. In f) are reported the spectral
positions of diagonal peaks (D1 and D2) and cross peaks (C1 and C2).

expressed equivalently in terms of one-particle populations:

S(Td) = Γ1Pe1(Td) + Γ2Pe2(Td). (4.5)

Due to phase-modulation, excited-state populations result modulated, leading to the de-

composition of the incoherent signal in Eq. 4.2.

Because of the weak interaction between the chromophores, we now assume a net

separation in the timescales of the system dynamics. The first timescale is ruled by the

interaction with the laser pulses, which probes the coherent dynamics of the system in

the range of hundreds of femtoseconds, for short waiting-times T2. On such a timescale,

the occurrence of EET and EEA can be neglected. In contrast, the detection-time Td
defines a slower timescale, in the nanosecond regime, dictated by the relaxation dynamics

at the origin of the incoherent signal. In this case, both EEA and EET processes must be

considered.

Although several components of the optical response are readily available from the non-

perturbative simulation, in the following, we specifically focus on the rephasing signal

S(ΩR) at waiting-time T2 = 0 fs.

Before discussing the role of the dynamical evolution during the detection-time, we
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first consider the contributions to the spectrum resulting from populations at Td = 0 fs,

immediately after the end of the fourth pulse. This is equivalent to assuming signal

emission as the only relaxation pathway active during the detection-time. In Fig. 4.2, we

report the contributions to the signals in Eqs. 4.4 and 4.5 from two- (Fig. 4.2a-c) and

one-particle populations (Fig. 4.2d,e), respectively. As exemplified in Fig. 4.2f, spectral

features for the considered system may appear either as diagonal peaks (D1 and D2) or

as cross peaks (C1 and C2).

The spectra from two-particle populations Pe1g2 and Pg1e2 exhibit a diagonal peak and

two cross peaks of negative sign, whereas Pe1e2 displays two positive cross peaks. In this

context, the cross peaks from two-particle populations represent statistical correlations

between the chromophores induced by light-matter interaction, rather than an actual cou-

pling between them [29, 34]. Indeed, when partitioning the signal in terms of one-particle

populations Pe1 and Pe2, the cross peaks from the two-particle populations cancel out com-

pletely and each spectrum exhibits a negative diagonal peak corresponding to the response

of an independent molecule, as expected for a pair of weakly interacting chromophores at

short waiting-times T2.

The cancellation of cross peaks that is observed when switching from the two- to one-

particle representation relies on the specific phase relation between different excitation

pathways. These pathways can be visualized in terms of Feynman diagrams corresponding

to Ground-State Bleaching (GSB), Stimulated Emission (SE), and Excited-State Absorp-

tion (ESA) contributions [40]. Due to the presence of a fourth pulse, two kinds of ESA

pathways are possible in A-2DES: generating either a one-exciton population (ESAI) or a

two-exciton population (ESAII) [22]. Each FD contributes to the signal with a sign (−1)nB,
where nB is the number of interactions on the bra side. A selection of FDs contributing to

the optical response of the system is shown in Fig. 4.3, while the complete set is given in

the App. 4.C along with the corresponding response functions. Notice that also FDs can

be represented in terms of one- (1P-FD) and two-particle (2P-FD) observables [29, 41],

as reported respectively on the right and left of each panel in Fig. 4.3.

The 2P-FDs can be differentiated depending on their final two-particle population. Pop-

ulations Pe1g2 and Pg1e2 originate from GSB (Fig. 4.3a,b) and SE (Fig. 4.3c,d), which

appears as both diagonal peaks and cross peaks, and from ESAI (Fig. 4.3e), only contribut-

ing to cross peaks. All these pathways are associated with spectral features of negative

sign (Fig. 4.2a,b). On the contrary, Pe1e2 is formed through ESAII pathways (Fig. 4.3f),

contributing with positive cross peaks (Fig. 4.2c).
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Fig. 4.3: Feynman Diagrams (FDs) for the rephasing signal corresponding to a-b) Ground-State
Bleaching (GSB), c-d) Stimulated Emission (SE), e) Excited-State Absorption I (ESAI) and f)
Excited-State Absorption II (ESAII) pathways, along with their corresponding spectral position as
specified in Fig. 4.2f. In each panel, the two- (2P-FD) and one-particle (1P-FD) representations of
FD are depicted respectively on the left and right. At the top of each FD is reported the population,
modulated at frequency ΩS, at the origin of the incoherent signal. FDs can be further distinguished
in a,c) self-population pathways (solid contour), where the same chromophore interacts with all four
pulses, and b,d-f) cross-population pathways (dashed contour), where each chromophore interacts
with a different pair of pulses. Each FD can contribute with either a positive (red panel) or negative
(blue panel) sign to the signal.
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By decomposing each 2P-FD into the product of two 1P-FDs, it is possible to track the

pathway followed by each chromophore individually. From this perspective, the pathways

can be distinguished into two categories: self-population pathways (Fig. 4.3a,c), which

involve the interaction of one chromophore with all four laser pulses, and cross-population

pathways (Fig. 4.3b,d-f), in which each chromophore interacts with a different pair of

pulses. This classification is introduced in analogy to that of self- and cross-polarization

pathways in C-2DES, proposed by Yang and Fleming [41]. For the considered system, self-

population pathways correspond to diagonal peaks (D1 and D2), while cross-population

pathways contribute as cross peaks (C1 and C2). It follows that, at Td = 0 fs, nega-

tive cross-population pathways of GSB, SE, and ESAI exactly cancel the positive cross-

population contributions of ESAII. Therefore, only diagonal peaks associated with GSB

and SE self-population pathways appear in the total spectrum. Indeed, these are the only

pathways available for a single chromophore to generate a population modulated at the

rephasing frequency ΩR in Eq. 4.5.

However, the sum of the different spectral contributions at Td = 0 fs is not what is

experimentally observed, since the situation may change when taking into account the

dynamics during the detection-time Td . Starting from the end of the fourth pulse, we

introduce a simple kinetic model that accounts for the relaxation processes active during

signal emission. In the following, we focus the discussion on the EEA process, while

considerations about the inclusion of the EET are drawn in the App. 4.F. As depicted in

Fig. 4.1c, we consider exciton recombination at rate αn and exciton-exciton annihilation

at rates βn and γ12, corresponding respectively to the loss of one and two excitons in the

process. For simplicity, the rates of these processes are assumed to be time-independent,

resulting in the following kinetic scheme for the two-particle populations:





d

dt
Pe1g2(t) = −α1Pe1g2(t) + (α2 + β2)Pe1e2(t)

d

dt
Pg1e2(t) = −α2Pg1e2(t) + (α1 + β1)Pe1e2(t)

d

dt
Pe1e2(t) = −(α1 + β1 + α2 + β2 + γ12)Pe1e2(t).

(4.6)

As outlined in the App. 4.D.1, by solving the kinetic scheme, the time-integrated signal

can be expressed in terms of two-particle populations at Td = 0 fs as:

S = Γ1Pe1g2 + Γ2Pg1e2 + Γ12Pe1e2
= Φ1Pe1g2(0) + Φ2Pg1e2(0) + (Φ1 · Πe1e2→e1g2 +Φ2 · Πe1e2→g1e2 +Φ12)Pe1e2(0)

(4.7)
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Fig. 4.4: Time-integrated rephasing spectra obtained for a) α−1n = 1 ns, β−1n = 1 µs, γ−112 = 1 µs,
b) α−1n = 1 ns, β−1n = 1 ps, γ−112 = 1 µs and c) α−1n = 1 ns, β−1n = 1 µs, γ−112 = 1 ps. The
emission rates of the states are set to Γn = 1 ns−1 and Γ12 = Γ1 + Γ2.

where Φ1 = Γ1
α1

and Φ2 = Γ2
α2

are the quantum yields of the one-exciton states, Φ12 =
Γ12

α1+β1+α2+β2+γ12
is the quantum yield of the two-exciton state, while Πe1e2→e1g2 =

α2+β2
α1+β1+α2+β2+γ12

and Πe1e2→g1e2 =
α1+β1

α1+β1+α2+β2+γ12
are the probabilities that the two-exciton state converts

to one or the other one-exciton state during the detection-time. In Eq. 4.7, the first and

second terms are responsible for the negative contributions to the spectra (Fig. 4.2a,b),

while the third term is responsible for the positive contributions (Fig. 4.2c). Notice that,

according to their spectrum at Td = 0 fs (Fig. 4.2a-c), all these terms give rise to cross

peaks associated with cross-population pathways (Fig. 4.3b,d-f).

In Fig. 4.4 are shown the time-integrated spectra for various rates αn, βn and γ12,

leading to different cross peak amplitudes. When exciton recombination is faster than EEA

(αn ≫ βn, γ12), cross peaks do not appear and the spectrum only reflects the contribution

of individual chromophores (Fig. 4.4a). Instead, cross peaks start to arise when EEA

competes with exciton recombination, as exemplified by the limiting cases of the net

loss of one exciton (βn ≫ αn, γ12) and two excitons (γ12 ≫ αn, βn) in Fig. 4.4b,c,

respectively. The cross peak amplitude is determined by the balance between positive and

negative contributions from the two-particle populations in Eq. 4.7. An analysis of the

peak amplitudes as a function of the different relaxation rates is reported in the App.

4.F. Therefore, in the two-particle representation, the appearance of cross peaks at early

waiting-times arises from the imperfect cancellation of different pathways, as previously

discussed in terms of the reduced contribution of ESAII due to EEA [26, 28, 29].

We now demonstrate how, for weakly interacting systems, such cross peaks can be

interpreted as incoherent mixing contributions. To this end, we derive a kinetic scheme

for one-particle populations (Fig. 4.1b) by combining the relevant kinetic equations for
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two-particle populations (Eq. 4.6) to obtain:





d

dt
Pe1(t) = −α1Pe1(t)− (β1 + γ12)Pe1e2(t)

d

dt
Pe2(t) = −α2Pe2(t)− (β2 + γ12)Pe1e2(t)

(4.8)

where the two-exciton population Pe1e2(t) explicitly appears. Because at Td = 0 fs, the

total spectrum corresponds to the sum of independent molecular responses, we employ

the solution for Pe1e2(t) of Eq. 4.6 with the initial condition Pe1e2(0) = Pe1(0) × Pe2(0).
As detailed in the App. 4.D.2, under this assumption, the time-integrated signal can be

written in terms of the one-particle populations at Td = 0 fs as follows:

S = Γ1Pe1 + Γ2Pe2
= Φ1Pe1(0) + Φ2Pe2(0)−

(
Φ1 · ΠEEAe1→g1 +Φ2 · ΠEEAe2→g2

)
Pe1(0)× Pe2(0)

(4.9)

where ΠEEAe1→g1 =
β1+γ12

α1+β1+α2+β2+γ12
and ΠEEAe2→g2 =

β2+γ12
α1+β1+α2+β2+γ12

are the probabilities to relax

from the excited- to the ground-state of each molecule through EEA during the detection-

time. In this alternative decomposition of the signal, the first and second terms correspond

to diagonal contributions associated with the response of individual chromophores (Fig.

4.2d,e), while cross peaks are generated by the third term featuring the product of one-

particle populations. Notice the correspondence between the terms in the one-particle

representation of the signal (Eq. 4.9) and the two classes of FDs (Fig. 4.3). The

first and second terms correspond to the one-particle signals S(ΩR), modulated at ΩR =

−Ω1+Ω2+Ω3−Ω4, which originates from self-population pathways (Fig. 4.3a,c). In the

absence of EEA (βn, γ12 = 0), these are the only contributions appearing in the spectra,

consistent with the condition of independent chromophores (Fig. 4.4a). Instead, the

third term is responsible for the contribution of incoherent mixing and corresponds to all

cross-population pathways (Fig. 4.3b,d-f). Only when EEA is active (βn, γ12 ̸= 0), this

term leads to the appearance of negative cross peaks in the total spectrum (Fig. 4.4b,c).

Indeed, cross-population pathways arise from the product of two 1P-FDs, in which each

pair of pulses interacts with different chromophores (Fig. 4.3b,d-f). These one-particle

signals S(Ωi j), originating from two light-matter interactions, corresponds to linear signals

modulated at frequency Ωi j = Ωi − Ωj . As a result, the product of two linear signals

can also be modulated at the same frequency as the rephasing, i.e., S∗(Ω21)× S(Ω43) is

modulated at Ω21 − Ω43 = ΩR. Therefore, in this picture, the emergence of cross peaks

is due to the incoherent mixing of linear signals during the detection-time [31, 32]. In this

respect, the term “incoherent mixing" may be deceptive. Indeed, the mixing signal inherits
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and preserves the phase combination of the fourth-order interaction sequence, and for this

reason, it is extracted together with the non-linear response.

To summarize, we have demonstrated that in the weak interaction limit, cross peaks

at early waiting-times and the phenomenon of incoherent mixing correspond to alterna-

tive pictures, i.e., two- and one-particle representations, of the same underlying physical

dynamics.

The analysis presented above highlights several points deserving explicit discussion. First,

we notice that cross-population pathways are generated by all the processes, i.e., GSB,

SE, and ESA-type pathways, and therefore they can contribute to the spectrum with both

positive and negative signs. This clarifies that the incoherent mixing contribution should

not be identified exclusively with ESAII pathways. Indeed, when annihilation is efficient and

the spectrum is “ESA-free" [29], the GSB contribution can still be determined in part by

incoherent mixing. As a consequence, no precise phase relationship is expected between

the “true" non-linear signal and incoherent mixing contributions, contrary to what has

been theoretically proposed in ref. [33]. In fact, while in the specific model analyzed above

incoherent mixing contributes with negative spectral features, it can also contribute with

positive sign when the system has a second excited state with a high emission rate. This

extension of the model is explicitly considered in the App. 4.G.

Toward an unambiguous definition of incoherent mixing, it is worth to emphasize that

one- and two-particle representations are equivalent only for weakly interacting chro-

mophores. In this context, the interpretation of cross peaks as the non-linear signal of

the composite system or as the incoherent mixing of the response of its subparts is a

matter of representation dictated by the choice of what system is of interest. Whereas

in the one-particle representation, the focus is on the single chromophore and cross peaks

arise from the spurious interaction with another system, the two-particle representation

supports the dimeric nature of the system, even when the interaction is weak, and cross

peaks are part of the non-linear response of the system as a whole. In the literature about

A-2DES, the former view has been traditionally adopted to interpret the response of ex-

tended solid-state systems [31, 42], while the latter has been privileged for analyzing the

response of small molecular aggregates [26–28].

Beyond the weak-coupling regime, energy splitting and dipole redistribution related to

excitonic delocalization on the two chromophores must be considered. In this case, Feyn-

man diagrams contributing to cross peak positions (Fig. 4.3b,d-f) no longer represent the

product of one-particle signals. As a result, they do not generate incoherent mixing but
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rather become expression of the non-linear response of the molecular dimer [26–28].

Therefore, while incoherent mixing of one-particle signals can be always recast as the

net contribution of fourth-order pathways in the two-particle picture, the factorization of

non-linear pathways into the product of one-particle signals does not hold in general. This

leads to the central issue of how to identify cross peaks representing incoherent mixing. We

remark the two conditions necessary to derive the one-particle representation of the signal

(Eq. 4.9), namely weak coupling between chromophores and the timescale separation

between the dynamics during the delay-times and the slower mixing process during the

detection-time. The latter condition points out that time-gating strategies [26, 28, 30]

can be used to reduce the contribution of incoherent mixing to the spectrum. Indeed, as

reported in the App. 4.D, the time-gated signal shows how the term related to incoherent

mixing grows as the integration window increases.

Recognizing the presence of incoherent mixing is especially important because the asso-

ciated spectral features may hide relevant spectral dynamics. Since in the weak coupling

regime, the environments of the two chromophores can be considered as independent,

cross-population pathways do not have rephasing capability [41]. As a result, incoherent

mixing contributions are not diagonally elongated and their lineshape is not expected to

undergo significant changes along the waiting-time T2 [31]. On the one hand, this may

have the detrimental effect of hiding spectral diffusion of nearby non-linear features. On

the other hand, a careful analysis of the cross peak lineshape can clarify whether they

are related to incoherent mixing or excitonic delocalization. Nevertheless, the presence

of incoherent mixing can be informative of the interaction network at play in the system.

Indeed, it has been shown that dynamics-induced non-linearities can be exploited to study

the long-range transport mechanism in photovoltaic devices using a pump-probe setting

[42–44].

A further point deserving attention is the generality of the incoherent mixing mechanism.

Indeed, just as the mixing of linear signals can enter in the fourth-order response, higher-

order contributions may appear in the linear signal, e.g., S(ΩR)×S∗(Ω43) is modulated at

ΩR+Ω43 = Ω21, as recently observed in ref. [32], or the mixing between fourth-order and

linear signals may contribute to sixth-order response [45]. Hence, incoherent mixing of

contributions from different orders is intrinsic to A-2DES and should always be considered

in spectral assignments and simulations.

In this regard, we point out that the one-particle representation of the signal provides a

numerically efficient way to simulate the effect of incoherent mixing in the action response
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of extended systems. In fact, the number of one-particle populations scales linearly, 2N,

with the number of chromophores N, compared to the exponential scaling of the entire

combinatorial space, 2N. Therefore, it is possible to simulate the response of individ-

ual subunits and then combine them using a kinetic scheme for one-particle populations.

Notice that a similar kinetic scheme has been derived assuming the independence of the

excited-state population of each chromophore at every time, Pe1e2(t) = Pe1(t) × Pe2(t),
obtaining proper non-linear population dynamics [46]. In the continuum limit, the product

between populations can be replaced by a quadratic term of the form P (r, t)2, as originally

used to define the concept of incoherent mixing [31]. In light of these considerations,

the analysis can be generalized to supramolecular complexes, e.g., LH2 complex, com-

posed of weakly coupled domains, e.g., B800 and B850 rings, interacting only during the

detection-time. In this case, both the non-linear response of each domain and the incoher-

ent mixing between different domains can contribute to the signal, eventually overlapping

in the spectrum.

4.3. Conclusions

In conclusion, through the use of one- and two-particle representations, we have clari-

fied the nature and the role of incoherent mixing in A-2DES spectra of weakly interacting

systems. Overlooking the experimental feasibility of distinguishing between these observ-

ables, one- and two-particle representations have been employed as interpretative tools to

identify dynamical pathways stemming from different orders in the light-matter interac-

tion. Although giving equivalent results in the limit of weakly interacting systems, the two

representations provide different perspectives for interpreting the emergence of spectral

features. Notably, the one-particle representation makes evident the distinct nature of

self-population and cross-population pathways, thus elucidating the contribution of inco-

herent mixing in action-detected spectra.
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4.A. Simulation Details

In this appendix, we report the parameters used in the non-perturbative simulations:

pulse duration σi = 5 fs, carrier-frequency ℏωi = 1.50 eV, light-matter coupling strength

µnE
0
i = 3 meV, phase-modulation frequencies Ω1 = 0 Hz, Ω2 = 250 Hz, Ω3 = 600 Hz,

Ω4 = 1000 Hz, phase-modulation repetitions M = 60 and inter-train delay-time T =

1/3000 s. The delay-times T1 and T3 are scanned from 0 to 300 fs in steps of 10 fs, while

the waiting-time is kept fixed at T2 = 0 fs. The signal is acquired in the rotating frame

at angular frequency ωRF = 2.28 [rad]/fs. In order to smooth the spectra, the signal is

zero-padded in the time domain.

The environments of the two chromophores are assumed to be independent. During

the coherent excitation induced by the laser pulses, decoherence processes are introduced

using the Lindblad operators:

L̂1 = |g1⟩⟨g1| ⊗ 12 L̂3 = 11 ⊗ |g2⟩⟨g2|
L̂2 = |e1⟩⟨e1| ⊗ 12 L̂4 = 11 ⊗ |e2⟩⟨e2|

(4.A.10)

with rates set all equal γk/h = 1/100 fs−1.

4.B. Population Observables

In this appendix, we formally introduce one- and two-particle populations along with

the relation between them. Population observables can be extracted from the system

density matrix ρ(t) after the end of the fourth pulse, obtained from the non-perturbative

simulation.

Two-particle populations are obtained by taking the expectation values:

Pg1g2(t) = Tr{|g1g2⟩⟨g1g2| ρ(t)}
Pe1g2(t) = Tr{|e1g2⟩⟨e1g2| ρ(t)}
Pg1e2(t) = Tr{|g1e2⟩⟨g1e2| ρ(t)}
Pe1e2(t) = Tr{|e1e2⟩⟨e1e2| ρ(t)}

(4.B.11)

which represent the probabilities that the dimer is found in a certain two-particle state.
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Instead, one-particle populations can be obtained by taking the expectation values:

Pg1(t) = Tr{|g1⟩⟨g1| ⊗ 12 ρ(t)}
Pe1(t) = Tr{|e1⟩⟨e1| ⊗ 12 ρ(t)}
Pg2(t) = Tr{11 ⊗ |g2⟩⟨g2| ρ(t)}
Pe2(t) = Tr{11 ⊗ |e2⟩⟨e2| ρ(t)}.

(4.B.12)

which represent the probabilities that a monomer is found in a certain state independently

of the other.

From Eq. 4.B.12, it follows that one-particle populations are related to two-particle

populations by the sum:
Pg1(t) = Pg1g2(t) + Pg1e2(t)

Pg2(t) = Pg1g2(t) + Pe1g2(t)

Pe1(t) = Pe1g2(t) + Pe1e2(t)

Pe2(t) = Pg1e2(t) + Pe1e2(t)

(4.B.13)

which is equivalent to take the partial trace over the states of the other molecule. Notice

that it is always possible to obtain one-particle populations from two-particle populations.

In contrast, two-particle populations cannot be expressed in terms of one-particle pop-

ulations in general. However, if we make the assumption that, at the time t = t0, the

populations of the two chromophores are uncorrelated, then two-particle populations can

be factorized as:
Pg1g2(t0) = Pg1(t0)× Pg2(t0)
Pe1g2(t0) = Pe1(t0)× Pg2(t0)
Pg1e2(t0) = Pg1(t0)× Pe2(t0)
Pe1e2(t0) = Pe1(t0)× Pe1(t0).

(4.B.14)

In the main text, we consider this specific situation after the interaction with the pulse

train, at detection-time Td = 0 fs. Since the two chromophores do not interact during

the coherent dynamics induced by the laser pulses, the factorization of two-particle pop-

ulations in terms of one-particle populations holds. Analogously, also the density matrix

of the chromophoric pair can be factorized into the density matrices of the individual

chromophores as ρ(0) = ρ1(0)⊗ ρ2(0).
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4.C. Response Theory and Feynman Diagrams

In this appendix, we provide the expressions for the response functions and report the

complete set of Feynman Diagrams for the rephasing signal of A-2DES in the case of

weakly interacting chromophoric pair. In formulating the response functions, we make

several assumptions: the impulse limit, the time-ordering of the pulses, and the Rotating-

Wave Approximation (RWA). Additionally, for simplicity, we assume unitary evolution be-

tween the pulses under the system Hamiltonian.

For the linear signals modulated at frequency Ωi j = Ωi −Ωj , the second-order response

functions are:

J (n)1 (ti j) = +
(
i

ℏ

)2
|µn|2e−iωnti je+iΦ(Ωi j )

J (n)2 (ti j) = −
(
i

ℏ

)2
|µn|2e−iωnti je+iΦ(Ωi j )

(4.C.15)

(4.C.16)

where the superscript index (n) represents the interaction with the n-th chromophore, with

n = 1, 2. In the expression, µn is the transition dipole moment, ωn = ϵn/ℏ is the transition

frequency, Φ(Ωi j) is the phase associated to the pathway as a result of phase-modulation,

and ti j = ti − tj is the delay-time between two pulses centered respectively at ti and tj .

For the rephasing signal modulated at frequency ΩR = −Ω1+Ω2+Ω3−Ω4, the fourth-
order response functions are, for Ground-State Bleaching (GSB):

R(n,n)GSB(t21, t43) = −
(
i

ℏ

)4
|µn|4e+iωnt21e−iωnt43e+iΦ(ΩR)

R(n,m)GSB (t21, t43) = −
(
i

ℏ

)4
|µn|2|µm|2e+iωnt21e−iωmt43e+iΦ(ΩR) =

(
J (n)2 (t21)

)∗
× J (m)1 (t43)

(4.C.17)

(4.C.18)

for Stimulated Emission (SE):

R(n,n)SE (t21, t43) = −
(
i

ℏ

)4
|µn|4e+iωnt21e−iωnt43e+iΦ(ΩR)

R(n,m)SE (t31, t42) = −
(
i

ℏ

)4
|µn|2|µm|2e+iωnt31e−iωmt42e+iΦ(ΩR) =

(
J (n)2 (t31)

)∗
× J (m)1 (t42)

(4.C.19)

(4.C.20)

for Excited-State Absorption I (ESAI):

R(n,m)ESAI(t21, t43) = −
(
i

ℏ

)4
|µn|2|µm|2e+iωnt21e−iωmt43e+iΦ(ΩR) =

(
J (n)1 (t21)

)∗
× J (m)2 (t43)

R(n,m)ESAI(t31, t42) = −
(
i

ℏ

)4
|µn|2|µm|2e+iωnt31e−iωmt42e+iΦ(ΩR) =

(
J (n)1 (t31)

)∗
× J (m)2 (t42)

(4.C.21)

(4.C.22)
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and for Excited-State Absorption II (ESAII):

R(n,m)ESAII(t21, t43) = +

(
i

ℏ

)4
|µn|2|µm|2e+iωnt21e−iωmt43e+iΦ(ΩR) =

(
J (n)2 (t21)

)∗
× J (m)2 (t43)

R(n,m)ESAII(t31, t42) = +

(
i

ℏ

)4
|µn|2|µm|2e+iωnt31e−iωmt42e+iΦ(ΩR) =

(
J (n)2 (t31)

)∗
× J (m)2 (t42).

(4.C.23)

(4.C.24)

Fourth-order response functions can be differentiated into self-population pathways [la-

beled with (n, n)], if the interaction with the pulses only involves the n-th chromophore,

and cross-population pathways [labeled with (n,m)], if the interaction involves both chro-

mophores n and m. Notice that, in the case of cross-population pathways, the fourth-order

response function can be decomposed into the product of second-order response functions

of each chromophore, emphasizing how they originate from the product of linear signals.

Notice that some cross-population pathways associated to SE (Eq. 4.C.20), ESAI (Eq.

4.C.22) and ESAII (Eq. 4.C.24) contributions exhibit a coherence during the waiting-time

T2 = t32 = t3 − t2. For the considered weakly-interacting system, these coherences are

inter-site rather than inter-exciton in nature [47]. In the case of independent environments

of the two chromophores, these coherences are expected to quickly dephase along T2, but

they may still contribute to the signal to some extent, especially at short waiting-time.

In Figs. 4.C.5-4.C.7, we also report the complete set of Feynman diagrams for the

rephasing signal modulated at ΩR = −Ω1+Ω2+Ω3−Ω4 in the one-particle (1P-FD) and

two-particle (2P-FD) representations. The various FDs can be distinguished depending on

the two-particle population from which the signal is emitted, i.e., Pe1g2 (Fig. 4.C.5), Pg1e2
(Fig. 4.C.6), and Pe1e2 (Fig. 4.C.7). In each panel, 2P-FDs are reported on the left, while

the equivalent decomposition in terms of 1P-FDs is reported on the right.
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Fig. 4.C.5: Feynman diagrams for the rephasing signal emitted from Pe1g2 population in the one-
and two-particle representations.
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Fig. 4.C.6: Feynman diagrams for the rephasing signal emitted from Pg1e2 population in the one-
and two-particle representations.
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Fig. 4.C.7: Feynman diagrams for the rephasing signal emitted from Pe1e2 population in the one-
and two-particle representations.
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4.D. Kinetic Scheme for Populations and Incoherent Sig-
nal

In this appendix, we present a kinetic scheme for the one- and two-particle populations

during the detection-time Td . As a result of the kinetic scheme, we obtain the time-

resolved populations along the detection-time Td . These can then be further integrated

to obtain the time-integrated populations which are used to construct the total signal.

The kinetic scheme is defined by the following rates: αn is the exciton recombination

rate, βn and γ12 are the rates of exciton-exciton annihilation leading respectively to the

annihilation of one and two excitons. Then, the incoherent signal is defined by the emission

rates of the states which are Γ1, Γ2 and Γ12.

4.D.1. Two-Particle Populations

The following kinetic scheme for the two-particle populations is assumed:





d

dt
Pe1g2(t) = −α1Pe1g2(t) + (α2 + β2)Pe1e2(t)

d

dt
Pg1e2(t) = −α2Pg1e2(t) + (α1 + β1)Pe1e2(t)

d

dt
Pe1e2(t) = −(α1 + β1 + α2 + β2 + γ12)Pe1e2(t)

(4.D.25)

whose solution gives the time-resolved populations:





Pe1g2(t) = Pe1g2(0)e
−α1t +

α2 + β2
β1 + α2 + β2 + γ12

Pe1e2(0)e
−α1t

(
1− e−(β1+α2+β2+γ12)t

)

Pg1e2(t) = Pg1e2(0)e
−α2t +

α1 + β1
α1 + β1 + β2 + γ12

Pe1e2(0)e
−α2t

(
1− e−(α1+β1+β2+γ12)t

)

Pe1e2(t) = Pe1e2(0)e
−(α1+β1+α2+β2+γ12)t

(4.D.26)

with Pe1g2(0), Pg1e2(0) and Pe1e2(0) as initial conditions. The time-resolved signal along

the detection-time Td is defined on the basis of two-particle populations as:

S(Td) = Γ1Pe1g2(Td) + Γ2Pg1e2(Td) + Γ12Pe1e2(Td). (4.D.27)
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By integrating the time-resolved populations for finite detection-time Td , the time-gated
populations are obtained:





Pe1g2(Td) = Pe1g2(0)
1− e−α1Td

α1
− α2 + β2
β1 + α2 + β2 + γ12

Pe1e2(0)

(
1− e−(α1+β1+α2+β2+γ12)Td
α1 + β1 + α2 + β2 + γ12

− 1− e
−α1Td

α1

)

Pg1e2(Td) = Pg1e2(0)
1− e−α2Td

α2
− α1 + β1
α1 + β1 + β2 + γ12

Pe1e2(0)

(
1− e−(α1+β1+α2+β2+γ12)Td
α1 + β1 + α2 + β2 + γ12

− 1− e
−α2Td

α2

)

Pe1e2(Td) = Pe1e2(0)
1− e−(α1+β1+α2+β2+γ12)Td
α1 + β1 + α2 + β2 + γ12

(4.D.28)

which can be used to calculate the time-gated signal:

S(Td) = Γ1Pe1g2(Td) + Γ2Pg1e2(Td) + Γ12Pe1e2(Td). (4.D.29)

By fully integrating along the detection-time Td , the time-integrated populations are ob-

tained:





Pe1g2 =
1

α1
Pe1g2(0) +

α2 + β2
α1(α1 + β1 + α2 + β2 + γ12)

Pe1e2(0)

Pg1e2 =
1

α2
Pg1e2(0) +

α1 + β1
α2(α1 + β1 + α2 + β2 + γ12)

Pe1e2(0)

Pe1e2 =
1

α1 + β1 + α2 + β2 + γ12
Pe1e2(0)

(4.D.30)

which are used to define the time-integrated signal:

S = Γ1Pe1g2 + Γ2Pg1e2 + Γ12Pe1e2

=
Γ1
α1
Pe1g2(0) +

Γ2
α2
Pg1e2(0) +

Γ1α2(α2 + β2) + Γ2α1(α1 + β1) + Γ12α1α2
α1α2(α1 + β1 + α2 + β2 + γ12)

Pe1e2(0)

= Φ1Pe1g2(0) + Φ2Pg1e2(0) +
(
Φ1 · Πe1e2→e1g2 +Φ2 · Πe1e2→g1e2 +Φ12

)
Pe1e2(0)

(4.D.31)

where Φ1 = Γ1
α1

and Φ2 = Γ2
α2

are the quantum yields of the one-exciton states, Φ12 =
Γ12

α1+β1+α2+β2+γ12
is the quantum yield of the two-exciton state, while Πe1e2→e1g2 =

α2+β2
α1+β1+α2+β2+γ12

and Πe1e2→g1e2 =
α1+β1

α1+β1+α2+β2+γ12
are the probabilities that the two-exciton state converts
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to one or the other one-exciton state during the detection-time Td .

4.D.2. One-Particle Populations

The equivalent kinetic scheme for the one-particle populations is:





d

dt
Pe1(t) = −α1Pe1(t)− (β1 + γ12)Pe1e2(t)

d

dt
Pe2(t) = −α2Pe2(t)− (β2 + γ12)Pe1e2(t)

(4.D.32)

which explicitly depends on the two-exciton population Pe1e2(t). The kinetic scheme can

be solved by using the solution for Pe1e2(t) (Eq. 4.D.26) to obtain:





Pe1(t) = Pe1(0)e
−α1t − β1 + γ12

β1 + α2 + β2 + γ12
Pe1(0)× Pe2(0)e−α1t

(
1− e−(β1+α2+β2+γ12)t

)

Pe2(t) = Pe2(0)e
−α2t − β2 + γ12

α1 + β1 + β2 + γ12
Pe1(0)× Pe2(0)e−α2t

(
1− e−(α1+β1+β2+γ12)t

)

(4.D.33)

where we have assumed the initial factorization of the two-exciton population Pe1e2(0) =

Pe1(0)×Pe2(0) (Eq. 4.B.14). By imposing the condition Γ12 = Γ1+Γ2, the time-resolved

signal along the detection-time Td is defined on the basis of one-particle populations as:

S(Td) = Γ1Pe1(Td) + Γ2Pe2(Td). (4.D.34)

By integrating the time-resolved populations for finite detection-time Td , the time-gated
populations are obtained:


Pe1(Td ) = Pe1(0)

1− e−α1Td
α1

− β1 + γ12

β1 + α2 + β2 + γ12
Pe1(0)× Pe2(0)

(
1− e−α1Td
α1

− 1− e
−(α1+β1+α2+β2+γ12)Td

α1 + β1 + α2 + β2 + γ12

)
Pe2(Td ) = Pe2(0)

1− e−α2Td
α2

− β2 + γ12

α1 + β1 + β2 + γ12
Pe1(0)× Pe2(0)

(
1− e−α2Td
α2

− 1− e
−(α1+β1+α2+β2+γ12)Td

α1 + β1 + α2 + β2 + γ12

)

(4.D.35)

which can be used to calculate the time-gated signal:

S(Td) = Γ1Pe1(Td) + Γ2Pe2(Td). (4.D.36)
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By fully integrating along the detection-time Td , the time-integrated populations are ob-

tained:




Pe1 =
1

α1
Pe1(0)−

β1 + γ12
α1(α1 + β1 + α2 + β2 + γ12)

Pe1(0)× Pe2(0)

Pe2 =
1

α2
Pe2(0)−

β2 + γ12
α2(α1 + β1 + α2 + β2 + γ12)

Pe1(0)× Pe2(0)
(4.D.37)

which are used to calculate the time-integrated signal:

S = Γ1Pe1 + Γ2Pe2

=
Γ1
α1
Pe1(0) +

Γ2
α2
Pe2(0)−

Γ1α2(β1 + γ12) + Γ2α1(β2 + γ12)

α1α2(α1 + β1 + α2 + β2 + γ12)
Pe1(0)× Pe2(0)

= Φ1Pe1(0) + Φ2Pe2(0)−
(
Φ1 · ΠEEAe1→g1 +Φ2 · ΠEEAe2→g2

)
Pe1(0)× Pe2(0)

(4.D.38)

where ΠEEAe1→g1 =
β1+γ12

α1+β1+α2+β2+γ12
and ΠEEAe2→g2 =

β2+γ12
α1+β1+α2+β2+γ12

represent the probabilities

to convert from the excited to the ground-state through EEA process during the detection-

time Td .

4.E. Generalized Kinetic Scheme

In this appendix, we report a generalized kinetic scheme based on the classical master

equation. We consider the system composed by N + 1 states |n⟩, with n = 0, 1, . . . , N.

The state |n = 0⟩ represents the collective ground-state, while the remaining N states

|n ̸= 0⟩ are excited-states. The populations are assumed to follow the classical master

equation:
d

dt
P⃗ (t) = −KP⃗ (t) (4.E.39)

where P⃗ (t) =
∑N
n=0 Pn(t) |n⟩ is the population vector, with Pn(t) population of the n-th

state, and K is the kinetic matrix whose elements are defined as:

Knm = −(1− δnm)kn←m + δnm
∑

l ̸=m
kl←m (4.E.40)

where the first terms is responsible for the gain in population from state |m⟩ to state |n⟩
with rate kn←m, while the second term accounts for the loss in population from state |m⟩
to state |l⟩ with rate kl←m. The formal solution of the classical master equation is:

P⃗ (t) = e−Kt P⃗ (0) (4.E.41)
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with population vector P⃗ (0) as initial condition. By using the spectral decomposition,

the kinetic matrix can be written as K = V ΛΛΛV −1, where ΛΛΛ =
∑N
k=0 λk |k⟩⟨k | is the

eigenvalue matrix and V =
∑
n,k Vnk |n⟩⟨k | is the eigenvector matrix. Each eigenvector

|k⟩ =∑N
n=0 Vnk |n⟩ is associated with a real eigenvalue λk ≥ 0. The solution of the master

equation can thus be rewritten as:

P⃗ (t) = V e−ΛΛΛtV −1P⃗ (0) (4.E.42)

where the matrix exponential is e−ΛΛΛt =
∑N
k=0 e

−λk t |k⟩⟨k |.

We now assume that the kinetic scheme admits one equilibrium state corresponding to

the eigenstate |k = 0⟩ with eigenvalue λ0 = 0. In the context of optical spectroscopy,

|k = 0⟩ coincides with the collective ground-state |n = 0⟩. Therefore, the elements of the

matrix exponential are:
[
e−ΛΛΛt

]
kk
=




1 for λ0 = 0

e−λk t for λk > 0
(4.E.43)

depending on the eigenvalue λk . We now introduce the emission matrix ΓΓΓ =
∑
n Γn |n⟩⟨n|,

where Γn is the emission rate of the n-th state. In the following, we assume that the

collective ground-state do not emit signal Γ0 = 0, while for the other excited-states Γn ≥ 0
in general.

The time-resolved signal vector along the detection-time Td is defined as:

S⃗(Td) = ΓΓΓ · P⃗ (Td) (4.E.44)

with population vector defined in Eq. 4.E.42. The time-integrated population vector is

given by:

P⃗ =

∫ ∞

0

dTd P⃗ (Td) = V

[ ∫ ∞

0

dTd e
−ΛΛΛTd

]
V −1P⃗ (0) (4.E.45)

where the integral of the elements of the matrix exponential is:

∫ ∞

0

dTd

[
e−ΛΛΛTd

]
kk
=

∫ ∞

0

dTd e
−λkTd =




+∞ if λ0 = 0
1
λn

if λk > 0.
(4.E.46)

Therefore, the time-integrated signal vector can be obtained as:

S⃗ = ΓΓΓ · P⃗ (4.E.47)
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Fig. 4.F.8: Alternative kinetic schemes for two-particle populations during the detection-time Td .
Scheme a) includes EET process between one-exciton states at rate δ12. Scheme b) describes
EEA process explicitly, accounting for EET between two-exciton state and localized double-excited
states at rate κn, followed by rapid internal conversion to one-exciton states at rate ξn.

by inserting the time-integrated population vector (Eq. 4.E.45).

4.F. Chromophoric Pair of Two-Level Systems

In this appendix, we report additional results regarding the model of chromophoric pair

of two-level systems.

In Fig. 4.F.9, we report the Incoherent Mixing Factor (coefficient of the population

product in Eq. 4.D.38) and the cross peak amplitude as a function of βn/αn for different

values of γ12.

Furthermore, we investigated the effects on the spectra of Exciton Energy Transfer

(EET) during the detection-time Td . By using the generalized kinetic scheme in App.

4.E, in addition to the EEA, we include the EET process between the two chromophores

with rate δ12, as depicted in Fig. 4.F.8a. In Fig. 4.F.10 are reported the time-integrated

spectra of the individual contributions and the total signal for increasing EET rates δ12.

We observe that, while the presence of the EET process does not affect the total spectra,

it may affect the individual contributions. Specifically, we notice that pathways ending in

Pe1g2 population at Td = 0 fs are transferred to the Pg1e2 population during the detection-

time, resulting in the appearance of the corresponding features in the spectrum.

In Fig. 4.F.11, we report the time-integrated spectra for different quantum yields Φn
of the two chromophores. In addition to the enhancement/depletion of spectral features

associated with either chromophore, we point out how variations in the relative quantum

yields can also affect the amplitude of cross peaks.
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Fig. 4.F.9: Dependence of the Incoherent Mixing Factor in Eq. 4.D.38 and cross peaks amplitude
for different values of EEA rates βn, and γ12. Exciton recombination rates αn = 1 ns−1, emission
rates Γn = 1 ns−1 and Γ12 = Γ1 + Γ2 are kept constant.

Fig. 4.F.10: Time-integrated rephasing spectra obtained using Eq. 4.E.45 for different EET rates:
a) δ−112 = 100 ns, b) δ−112 = 1 ns, c) δ−112 = 10 ps. Exciton recombination rates α−1n = 10 ns, EEA
annihilation rates β−1n = 1 ps and γ−112 = 1 µs, and emission rates Γn = 1 ns−1 and Γ12 = Γ1 + Γ2
are kept constant.
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Fig. 4.F.11: Time-integrated rephasing spectra for different emission rates: a) Γ−11 = 0.8 ns and
Γ−12 = 1.0 ns, b) Γ−11 = 1.0 ns and Γ−12 = 1.0 ns, c) Γ−11 = 1.0 ns and Γ−12 = 0.8 ns, assuming
Γ12 = Γ1 + Γ2. Exciton recombination rates α−1n = 1 ns, EEA rates β−1n = 1 ps and γ−112 = 1 µs
are kept constant.



4| Unifying Non-Linear Response and Incoherent Mixing in A-2DES 107

4.G. Chromophoric Pair of Three-Level Systems

In this appendix, we extend the model of chromophoric pair by treating each chromophore

as a three-level system (Fig. 4.F.8b), i.e., composed by a ground state |gn⟩, a one-exciton

state |en⟩ and a two-exciton state |fn⟩. The energy of two-exciton states is assumed to be

twice the energy of one-exciton states, with ϵf1 = 3.10 eV and ϵf2 = 2.92 eV, respectively.

In Fig. 4.G.12, we report the additional Feynman diagrams for the rephasing signal,

corresponding to ESAI and ESAII self-population pathways. In Fig. 4.G.13, we show the

spectra at Td = 0 fs from two-particle populations corresponding to the states in the one-

exciton manifold (Fig. 4.G.13a,b), two-exciton manifold (Fig. 4.G.13c-e), three-exciton

manifold (Fig. 4.G.13g,h) and four-exciton manifold (Fig. 4.G.13i). Notice how the

spectra from the states in the three- and four-exciton manifolds have smaller amplitudes

compared to the others, as they arise from higher-order contributions in the light-matter

interaction. For simplicity, we neglect those contributions in the definition of the time-

integrated signal:

S = Γe1Pe1g2 + Γe2Pg1e2 + (Γe1 + Γe2)Pe1e1 + Γf1Pf1g2 + Γf2Pg1f2. (4.G.48)

where the time-integrated populations are weighted by the emission rate of the states.

By using the generalized kinetic scheme reported in App. 4.E, we report the time-

integrated spectra for different emission rates of the two-exciton states Γfn compared to

the one-exciton states Γen in Fig. 4.G.14. We notice that, as Γfn > Γen , positive spectral

features start to arise in the spectrum: diagonal-peaks result from ESAII self-population

pathways (Fig. 4.G.12), appearing in Fig. 4.G.13d,e, while cross peaks are related to

ESAII cross-population pathways (Fig. 4.C.7), appearing in Fig. 4.G.13c, which can be

regarded as incoherent mixing contributions. We point out that fast radiative processes

from higher excited-states are not usually present in molecular systems but these processes

may take place in nanostructures, especially in photocurrent detection [13].
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Fig. 4.G.12: (left) Feynman diagrams for the rephasing signal modulated at ΩR emitted from
the two-particle population Pe1e2 and (right) the equivalent Feynman diagrams for the one-particle
populations.
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Fig. 4.G.13: Rephasing spectra from two-particle populations in the one-exciton manifold a) Pe1g2 ,
b) Pg1e2 , and two-exciton manifold c) Pe1e2 , d) Pf1g2 , e) Pg1f2 , at detection-time Td = 0 fs. In f)
are reported the spectral positions of diagonal peaks (D1 and D2) and cross peaks (C1 and C2).
We also report the two-particle populations for the three-exciton manifold g) Pf1e2 , h) Pe1f2 and
for the four-exciton manifold i) Pf1f2 .



110 4| Unifying Non-Linear Response and Incoherent Mixing in A-2DES

Fig. 4.G.14: Time-integrated rephasing spectra for different Γfn/Γen ratios: a) 0.0, b) 1.0, c) 1.25,
d) 1.5, e) 2.0, f) 3.0. The emission rate of the single-excited state Γen = 1 ns−1 is kept fixed.
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5| Multiple Pathways to
Non-Linearity in A-2DES

5.1. Introduction

Action-2D Electronic Spectroscopy (A-2DES) has been attracting significant attention

due to its advantages compared to conventional Coherent-2D Electronic Spectroscopy

(C-2DES). Both techniques are employed to investigate the dynamics of complex multi-

chromophoric systems. In C-2DES, the observable is a coherent electric field originating

from the macroscopic polarization of the sample induced by a sequence of laser pulses

[1, 2]. Conversely, in A-2DES, the observable is an incoherent signal proportional to the

excited-state population generated by the light-matter interaction [3, 4]. The nature of

this incoherent observable connects 2DES to almost any kind of signal, i.e., fluorescence

[5], photocurrent [6–8], photoions [9], and photoelectrons [10, 11], allowing for the study

of a wide range of systems under operando conditions [12]. Furthermore, A-2DES can be

combined with microscopy techniques [13] or even single-molecule detection [14].

However, the difference between the information obtained from the two techniques is

a matter of debate. Indeed, the third-order polarization detected in C-2DES cannot be

simply reconstructed from the fourth-order population generated in A-2DES. Indeed, while

in C-2DES, the signal is emitted over an ultrafast timescale (ps) limited by the dephasing of

the optical coherence, in A-2DES, the incoherent signal is collected over a longer timescale

(>ns) during which the excited-state population may undergo several processes during the

detection.

Among these processes, we recognize the internal conversion from excited states with

higher energy to those with lower energy, from which fluorescence occurs according to

Kasha’s rule [15]. Another example is represented by Exciton-Exciton Annihilation (EEA)

in multichromophoric systems [5, 13, 16] and Auger recombination in nanostructures [7,

Adapted from Bolzonello, L.; Bruschi, M.; Fresch, B., van Hulst, N.F. manuscript under revision.
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17, 18], both resulting in the net loss of an exciton. These processes underlie the emer-

gence of cross-peaks in the spectrum at early waiting times [19–21]. Furthermore, it has

been reported how the phenomenon of incoherent mixing can affect A-2DES spectra [22].

In this case, due to non-linear population dynamics [22], e.g., exciton-exciton annihilation,

Auger recombination, or to non-linearities in the detection process [23], linear responses

can mix during the detection entering the signal and potentially masking the non-linear

response of the system [22, 24, 25].

The equivalence between the origin of cross-peaks at early waiting times and the phe-

nomenon of incoherent mixing was recently demonstrated for a weakly interacting molec-

ular dimer in the presence of EEA [25]. However, it is not yet clear how incoherent mixing

affects the response in the case of multichromophoric systems and whether other mech-

anisms beyond EEA may lead to the same spectral features. This work clarifies these

aspects. Specifically, we will show that, in the case of molecular assemblies, i) cross-peaks

related to incoherent mixing translates into the dominance of the ground-state bleaching

over the stimulated emission contribution of the signal and ii) the effect does not neces-

sarily require direct interaction between excitons, e.g., EEA or Auger recombination, but

it can result from other indirect interactions. To give a concrete example, natural pho-

tosynthetic proteins, such as Photosystem I and II or Light Harvesting complex 1 (LH1),

contain a high number of chromophores but only one reaction center [26]. If two excita-

tions are generated, they can directly interact leading to EEA. However, if one excitation

reaches the reaction center, it influences the fate of the second excitation in a very indirect

way. Indeed, as long as the charge separation step is slower than the exciton lifetime, the

second excitation will eventually relax to the ground state because of the impossibility of

reaching the reaction center. These additional non-linearities are characteristic of action

detection schemes implying a mismatch between action- and coherent-detected spectra.

The light-matter interaction is commonly described in the framework of response theory

[27]. The non-linear signal is given by higher-order terms in the response that allow a

comprehensive explanation of the quantum dynamics of the system. At the same time,

these theoretical tools could drive the spectroscopist far from a more practical and exper-

imental approach. For this reason, here we examine the contributions to the signal using

two approaches. The first approach involves the probabilistic description of light-matter

interaction considering an assembly of N molecules. This approach aims to identify the

sources of non-linearity in cases where the number of readable outputs differs from the

number of molecules excited. In other words, we are referring to those systems where more

than one exciton can be excited, such as multichromophoric systems as well as quantum
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dots, but a smaller number of excitons can be detected, because of exciton-exciton annihi-

lation, Auger recombination, internal conversion or limited charge separation. The second

approach translates these findings into the framework of response theory. The non-linear

signal is given by several contributions related to the different pathways followed by the

system upon light-matter interaction. For the third-order polarization, these contribu-

tions are Ground-State Bleaching (GSB), Stimulated Emission (SE), and Excited-State

Absorption (ESA), commonly used to describe the signal in pump-probe spectroscopy and

2DES. As anticipated, in the context of action-detected techniques, the readout involves

the detection of the fourth-order population, i.e., the number of excitons after the pulse

train. If populations decay through different processes other than the emission, the signal

could suffer from non-linearities beyond the optical one. To include these, it is useful

to distinguish between the non-linear terms involving a single molecule and the ones in-

volving different molecules in the same assembly. Throughout our discussion, we assume

excitations with a local character and therefore weak coupling between distinct absorbing

units.

5.2. Results and Discussion

Let us start by considering an assembly of N identical molecules, each described by a

ground state |g⟩ and an excited state |e⟩ (Fig. 5.1a). In the multi-particle basis, the

state of the assembly is given by accounting for the state of each molecule simultaneously

[21, 25, 28]. The states can be distinguished into different manifolds which differ by the

number of excited molecules (Fig. 5.1b). The number of states in each manifold |k⟩ scales
as the binomial coefficient: (

N

k

)
=

N!

k!(N − k)! (5.1)

where k is the number of excitons. In the following, each assembly is assumed to contribute

to the signal with a single output, i.e., one photon emission or one charge separation.

We stress that this simple assumption mimics indistinctly very different scenarios: the

presence of non-linear population dynamics, e.g., EEA or Auger recombination, non-linear

signal generation, e.g., charge separation in photosynthetic systems, or non-linearities in

the detection, e.g., single-photon detector.

Initially, all the molecules are in their ground state. Then, they interact subsequently

with two identical laser pulses, referred to as pump and probe in analogy with spectroscopy.

At each pulse, a molecule can undergo an electronic transition with probability p = Iσ,

where I is the photon fluence and σ is its cross-section, or remain in the same state
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Fig. 5.1: In action spectroscopy, the detected signal is proportional to the excited-state population.
a) In an ensemble of identical molecules, represented as two-level systems, the signal is proportional
to the number of excited molecules. The molecules can be independent (blue-circled) or grouped
in assemblies of N molecules (orange-circled) emitting a single output. The state of the assembly
can be represented using a single-particle or a multi-particle description. b) From the multi-particle
perspective, the states can be distinguished into different manifolds |k⟩, depending on the number
of excitons k . The number of states in each manifold is determined by the binomial coefficient(
N
k

)
.
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Fig. 5.2: Simulation of action-detected pump-probe experiment for a molecular assembly. a) An
assembly interacts with two pulses, namely pump and probe. For each pulse, a molecule can either
undergo a transition with probability p or remain in the same state with probability 1 − p. b)
The non-linear signal is given by the difference between the pump-probe signal SPuP r and that
of independent pump and probe SPu and SP r . The depiction of an assembly shows how part of
the non-linear signal originates from the excitation of distinct molecules by different pulses, which
happens if the two excitations undergo annihilation or share the same reaction center for charge
separation. c) A schematic representation illustrating the pump-probe experiment. The interaction
with the pump excites molecules in the assembly with a certain probability. By finding the assembly
in a different population state, the interaction with the probe does not double the probability of
molecules being in the excited state, giving rise to the non-linear signal. d) Signal from the pump-
probe (solid line), signal from two independent pulses (dashed line) and non-linear signal (infill area)
as a function of the transition probability p for an assembly with N = 1 (blue) and N = 3 (orange).
e) Decomposition of the non-linear signal in GSB and SE contributions for N = 1 and N = 3. f)
The ratio between SE and GSB contributions follows 1/N for p → 0, while it decreases for higher
values.

with probability 1 − p (Fig. 5.2a). In a realistic assembly, molecules can have different

orientations, thus p would be different for each molecule. For the sake of simplicity, we

keep p equal for all molecules, however the main conclusions hold in the more general case.

After the pump pulse, the probability of having a certain number of molecules in the

excited state PN,k follows the binomial distribution:

PN,k =

(
N

k

)
pk(1− p)N−k . (5.2)

We define the probability of detecting a signal after the pump pulse as the probability of



120 5| Multiple Pathways to Non-Linearity in A-2DES

having at least one molecule excited in the assembly:

SNPu = 1− PN,0 = 1− (1− p)N (5.3)

where (1−p)N represents the probability that none of the N molecules get excited. Notice

that for N = 1, the signal simply reduces to S1Pu = p = Iσ, that is the probability of exciting

an independent molecule. Within the same detection setting, the signal after the pump-

probe sequence is again proportional to the probability of having at least one excitation in

the system. This can be evaluated from the probability of the complementary event, that

is every molecule is in the ground state. This is true if each molecule undergoes either no

transition (1− p)2 or two transitions p2 :

SNPuP r = 1−
[
(1− p)2 + p2

]N
. (5.4)

The non-linear signal is obtained by subtracting the pump-probe signal from that of the

independent pump and probe pulses (Fig. 5.2c):

SNNL = 2S
N
Pu − SNPuP r

= 2
[
1− (1− p)N

]
−
{
1−

[
(1− p)2 + p2

]N}
.

(5.5)

From the spectroscopic point of view, the non-linear signal can be extracted by modulating

the amplitude of the pulses using a chopper (Fig. 5.2b), as done in two-pulse action-

detected experiments [29–32].

In Fig. 5.2d, we report the non-linear signal for two assemblies with different numbers

of molecules, N = 1 and N = 3. We notice that, for N = 1, the non-linearity comes only

from the double interaction with the pulses as S1p is linear with p, while for N > 1, even

the signal from the single pulse is non-linear, according to Eq. 5.3. Notice that, since a

single output is detected, the non-linear signal saturates at 1 for any value of N. However,

the probability of measuring an output increases steeper as N becomes larger. Therefore,

at this stage, we can already highlight two different sources of non-linearity: the optical

non-linearity due to the interaction with the two laser pulses and the non-linearity in the

signal detection due to the measurement of a single output.

However, before aiming at these classifications, it is convenient to identify two com-

plementary non-linear contributions: the Stimulated Emission (SE) and the Ground-State

Bleaching (GSB). The SE signal is given by the process in which the probe de-excites

a molecule that has been excited by the pump. Since this event is detected only when
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it leads to a change in the signal, if another molecule in the assembly gets excited, the

double transition would result unmeasured. Thus, in our model, SE signal is defined as

the probability that at least one molecule in the assembly undergoes two transitions and

the final output is vanishing:

SNSE =
[
(1− p)2 + p2

]N − (1− p)2N (5.6)

where [(1 − p)2 + p2]N is the probability of vanishing output from the assembly, while

(1− p)2N is the probability that all molecules undergo no transitions.

Instead, the GSB signal is given by the probability that the probe excites at least one

molecule in the assembly, given that the pump has already excited another molecule, as

this would give no additional signal:

SNGSB = [1− (1− p)N]2. (5.7)

In other words, this is the lack of signal because the assembly has been excited by the

pump. The non-linear signal corresponds to the sum of GSB and SE contributions:

SNNL ≡ SNGSB + SNSE. (5.8)

In Fig. 5.2e, we show the decomposition of the non-linear signal into SE and GSB con-

tributions. For N = 1, the two contributions are equal S1SE = S1GSB as expected for

independent molecules, while for N > 1, SNGSB becomes larger than SNSE. As shown in Fig.

5.2f, their ratio is:
SNSE
SNGSB

≤ 1
N

(5.9)

where the equality holds in the limit of small transition probabilities, p → 0.

The probabilistic approach can be connected to the perturbative framework of non-

linear response theory, thus enabling the analysis of action-detected 2D experiments. In

four-pulse A-2DES, the components of the fourth-order signal are typically selected using

phase-cycling [33, 34] or phase-modulation [35] schemes. The pulses are separated by delay

times t1, t2 and t3, while the emission of the incoherent signal occurs during t4. At each

light-matter interaction, the state of the system changes from population to coherence

and vice versa. Therefore, each second-order interaction, which occurs with probability p

in the pump-probe picture discussed above, is replaced by two first-order interactions in

the four-pulse setting (Fig. 5.3a).
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Fig. 5.3: a) Feynman diagrams for Ground-State Bleaching (GSB), Stimulated Emission (SE),
Excited-State Absorption I (ESAI) and Excited-State Absorption II (ESAII) of the rephasing signal
in A-2DES. The diagrams are distinguished into self-population pathways “s", if the four pulses
interact with the same chromophore, and cross-population pathways “c", if each pair of pulses
interacts with different chromophores. b) Table reporting the number of contributions to the
signal for each kind of pathway, in the case of different values of the coefficient α. For α = 0,
there is mutual cancellation between cross-population pathways, while for α = 1, only ESA-type
pathways mutually cancel.
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Without loss of generality, we limit our analysis to the case where only one- and two-

exciton manifolds, denoted as |1⟩ and |2⟩ in Fig. 5.1b, are populated with a non-negligible

probability at the end of the pulse train. As shown in Fig. 5.1b, these manifolds consist of

all the states in which one or two molecules are excited. We define Peng as the probability

that the system is in the collective state |g1 . . . en . . . gN⟩ in the one-exciton manifold and

Penem as the probability of being in the state |g1 . . . en . . . em . . . gN⟩ in the two-exciton

manifold.

In experiments, the incoherent signal is typically integrated along the detection time t4.

The time-integrated signal results proportional to the population of one- and two-exciton

manifolds at t4 = 0, which in turn depend on the delay times t1, t2 and t3 and the phases

of the pulses. By selecting a certain phase combination, e.g. rephasing, non-rephasing or

double-quantum coherence, and assuming that all chromophores have identical quantum

yield Φ, the time-integrated signal can be written as

S = Φ
∑

n=1

Peng(0) + (2− α)Φ
∑

n=1

∑

m>n

Penem(0) (5.10)

where the parameter α quantifies the deviation of the contribution of the two-exciton

manifold from twice that of the one-exciton manifold. In the App. 5.A, we derive Eq.

5.10 from a kinetic model for the populations during the detection time, including exciton

recombination, EEA and different signal generation rates of the one- and two-exciton

manifolds.

The different pathways that generate populations on the one- and two-exciton manifold

upon light-matter interaction can be visualized in terms of Feynman Diagrams (FDs). In

Fig. 5.3a, we report FDs for the rephasing signal considering the ground state |0⟩, the

one-exciton state |1⟩ and the two-exciton state |2⟩. Notice that pathways that are in a

coherence during the waiting time t2 have been neglected. In the weak coupling limit, this

coherence is established between (localized) site states rather than (delocalized) excitonic

states. Since this coherence dephases at twice the rate of the optical coherence, these

pathways can be neglected when the dephasing time is comparable to the pulse duration.

The pathways are distinguished into Ground-State Bleaching (GSB), Stimulated Emis-

sion (SE), and Excited-State Absorption (ESA) processes. While both GSB and SE path-

ways end in a one-exciton population, the presence of a fourth pulse gives rise to two kinds

of ESA pathways, ending either in a one-exciton (ESAI) or in a two-exciton (ESAII) popu-

lation. Each pathway contributes to the signal with a sign (−1)nB , where nB is the number
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of interactions on the bra side of the FD. Therefore, GSB, SE and ESAI contribute with

negative features to the spectrum, while ESAII comes with positive sign. Depending on

their sign, spectral features associated with different pathways may interfere constructively

or destructively in the spectrum, eventually leading to partial or complete cancellation.

In weakly interacting systems, FDs can be differentiated into self- and cross-population

pathways [25], respectively identified by the superscript “s" and “c" in Fig. 5.3a. In self-

population pathways, the four pulses interact with the same chromophore, while in cross-

population pathways, each pair of pulses interacts with different chromophores. Since

self- and cross-population pathways have the same phase relation, they are extracted

together in the signal. To comprehend their contribution to the final spectrum, we need

to understand how the different pathways combine in the signal. Notice that in the present

model, ESA-type contributions are all cross-population pathways simply because we have

assumed that each molecule is described as a two-level system. While this assumption

simplifies the analysis of the signal, it can be relaxed by including the double excited state

of each molecule.

First, consider the ideal case where the two-exciton state contributes twice as much as

the one-exciton state to the signal, corresponding to α = 0 in Eq. 5.10. This is realized

in the absence of EEA and when the signal generation rate of the two-exciton manifold is

twice that of the one-exciton manifold. Under these conditions, the signal reduces to the

sum of the non-linear response of independent chromophores, that is:

S = Φ
∑

n=1

Pen(0) (5.11)

where the single chromophore population results from the sum over that of the collective

states, Pen = Peng +
∑
m ̸=n Penem . In this case, only the GSB and SE self-population

pathways contribute to the spectrum, meaning that the ESAII cross-population pathways

exactly cancel the GSB and ESAI cross-population pathways. This corresponds to the

situation with N = 1 in Eqs. 5.6 and 5.7, recovering an equal intensity of GSB and SE

contributions to the non-linear signal while other sources of non-linearity are absent.

The situation changes when α > 0. Let us consider the case where the assembly of N

molecules generates the same signal independently of the number of excitations so that

the one- and two-exciton manifold contributes equally, corresponding to α = 1 in Eq.

5.10. In the App. 5.A, we show that this situation can result either because of fast EEA

during t4 or when the two-exciton manifold generates the signal at the same rate as the
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one-exciton manifold, in the absence of EEA. In this case, which identifies the limit of

complete annihilation, the signal can be written as

S = Φ
∑

n=1

Peng(0) + Φ
∑

n=1

∑

m>n

Penem(0)

= Φ
∑

n=1

Pen(0)−Φ
∑

n=1

∑

m>n

Pen(0)× Pem(0).
(5.12)

Notice that the contribution of the two-exciton state to the signal is reduced, result-

ing in the mutual cancellation between the ESAII and ESAI cross-population pathways.

Therefore, in addition to the self-population pathways from GSB and SE, also the GSB

cross-population pathways contribute to the spectrum. This contribution to the signal

corresponds to the non-linearity due to the reduced response of the assembly, resulting

from Eqs. 5.6 and 5.7 for N > 1.

The second equality in Eq. 5.12 shows that, in the case of weak coupling between

different chromophores, the population of the two-exciton manifold at t4 = 0 can be

factorized as Penem(0) = Pen(0) × Pem(0). Therefore, the additional signal boils down to

the product of the linear signals of the individual molecules. This is analogous to the

phenomenon of incoherent mixing [22, 24, 25] as we will further discuss below.

A key point to note is the different scaling in the number of self- and cross-population

pathways: GSB involves N self-population pathways and N · (N − 1) cross-population

pathways, while SE involves N self-population pathways (Fig. 5.3b). This is reflected

in the number of linear and product terms contributing to the signal in Eq. 5.12. As

N increases, the striking consequence in the spectrum is the dominance of GSB cross-

population contributions over the self-population signal, in analogy with the ratio resulting

from the probabilistic analysis in Eq. 5.9. Indeed, the ratio between the number of SE and

GSB pathways is:

SE

GSB
=

SEs

GSBs + GSBc
=

N

N + N(N − 1) =
1

N
(5.13)

resulting that, for large N, the GSB contribution can completely dominate over the SE

contribution, in the limiting case of α = 1. Furthermore, we also notice that the ratio

between the number of self- and cross-population pathways is:

self
cross

=
GSBs + SEs

GSBc
=

2N

N(N − 1) =
2

N − 1 (5.14)

meaning that, for large N, the non-linear signal is dominated by cross-population pathways.
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Fig. 5.4: Total (first column), self-population contribution (second column) and cross-population
contribution (third column) for the rephasing signal of two different assemblies with a) N = 2 and
b) N = 100. On the left, a schematic representation of the energy levels for the two systems.

These ratios are important to assess the information content in the spectra as SE is

the only pathway containing information about the excited-state dynamics along t2 and

self-population pathways are the pathways containing the non-linear response of the chro-

mophores. As N increases, the contribution of cross-population pathways becomes more

significant, reducing the amount of dynamical information. In other words, both self- and

cross-population pathways contribute to the spectra, but only the former actually provides

information about the excited-state dynamics in the system, while the latter simply reduces

to the product of linear responses of the two molecules with no evolution along t2.

We now consider the interplay between self- and cross-population pathways to the A-

2DES spectra at waiting time t2 = 0 fs by varying the number of chromophores N.

Assuming Φ = 1 and α = 1, in Fig. 5.4 we report the rephasing spectra for N = 2 (Fig.

5.4a) and N = 100 (Fig. 5.4b), along with the isolated contributions from self- and cross-

population pathways. For N = 2, we consider two chromophores with different excitation

energies so that the net effect is the appearance of well-defined cross-peaks. The transition

energies of the two molecules are respectively ϵ1 = 1.55 eV and ϵ2 = 1.46 eV. Instead,

the energies of the chromophores for N = 100 are drawn from a Gaussian distribution

with mean µ = 1.5 eV and standard deviation σ = 45 meV. In both cases, we consider a

Voigt lineshape g(t) = Γt + ∆2t2, which accounts for homogeneous (∆ = 20 meV) and

inhomogeneous (Γ = 20 meV) broadenings.
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In the case of N = 2, the spectrum exhibits two diagonal peaks and two cross-peaks,

corresponding to the self- and cross-population contributions, respectively. In this case,

the amount of signal associated with cross-population pathways is smaller than the self-

population one, meaning that the dynamical information brought by the SE contribution

is not hidden. On the contrary, for N = 100, the spectrum is dominated by a single broad

peak mainly due to the contribution of cross-population pathways. By recalling that cross-

population contributions in the weak coupling limit reduce to the product of linear signals

(incoherent mixing), a rather unexpected result of our analysis is that such mixing can

happen even in the absence of direct interaction between excitons. Indeed, the emergence

of the GSB cross-population contribution is related to the reduced signal generated by

the two-exciton manifold, as resulting from Eqs. 5.10 and 5.12. This is reduced because

of dynamical processes, e.g., EEA, but also for other intrinsic mechanisms limiting the

emission to a single output. In this sense, the case of the reaction center generating

charges on a timescale slower than the exciton lifetime is paradigmatic because α = 1

even when two independent excitations are generated. Therefore, the emergence of cross-

peaks does not necessarily reflect the presence of coupling between molecules nor the

annihilation between different excitations.

The spectra in Fig. 5.4 refers to t2 = 0. Since we are looking at the rephasing signal, self-

population pathways are diagonally elongated whereas cross-population pathways result

in inhomogeneously broadened spectra. The different lineshape reflects the fact that

fluctuations on the same molecule are correlated, while those on different molecules are

uncorrelated [36]. A discussion about the lineshape of self- and cross-population pathways

in the presence of homogeneous and inhomogeneous broadening is reported in the App.

5.B. The evolution of the spectral lineshapes for longer t2 is not considered explicitly

here, however, while the lineshape of the self-population pathways reflects the evolution

of the wavepacket during t2, the GSB cross-population pathway only reflects the recovery

of the ground state as much as the overall non-linear signal. Moreover, as t2 increases,

energy transfer between different molecules can take place resulting in cross-peaks carrying

information about the excited-state dynamics. However, since these pathways would have

the same weight as the self-population pathways from which they originate, we also expect

them to be hidden by cross-population pathways when N is large.

In summary, we considered the different sources of non-linearity in the response of a

molecular assembly excited by multiple pulses in the case of action detection. The prob-

abilistic analysis offers a practical interpretation of the signal contributions described by

response theory. For example, cancellation of the ESA pathways in the fourth-order re-
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sponse simply corresponds to the fact that, when only one excitation can be detected, the

number of excitation events does not change the output.

Therefore, we can conclude that when the output is not proportional to the number of

excited molecules, action-detected spectroscopy cannot isolate pathways in which the in-

teraction occurs on the same molecule (self-population pathways) or on different molecules

(cross-population pathways). In the worst-case scenario of complete annihilation, i.e.,

α = 1, the ratio between self- and cross-population pathways is 2/(N − 1), where only

the former bring dynamical information. Moreover, we highlight that the excited-state

dynamics along t2 is exclusively present in the SE contribution. Since the ratio SE/GSB

has 1/N as an upper limit, the SE contribution is likely to be hidden or negligible for large

N.

As a result, we are able to identify the origin of incoherent mixing as due to the fourth-

order terms that correspond to GSB cross-population pathways, where the two coherences

along the t1 and t3 occur on different molecules but result in a single output. In a 2D

spectrum of a weakly interacting assembly, GSBc pathways correspond to the product of

the two linear signals and do not show evolution along t2 beyond the ground-state recovery.

Thus, for large N, A-2DES measurements would likely provide equivalent information to

linear absorption. We can apply this argument to different systems as the key factor is

the ratio between the number of output and excitation sites, which is 1/N in the case of

equal contribution of the one- and two-exciton manifolds in the weak coupling scenario.

We report that excitonic coupling may change the result and play a positive role. Indeed,

while the contribution of the two-exciton manifold can still be suppressed by efficient EEA

or by non-linear signal generation mechanisms, the number of optically active GSB cross-

population contributions may be reduced because of dipole moment redistribution. In this

more general setting, N should be identified with the number of absorbing states rather

than the number of independent chromophores. Moreover, in the case of strong excitonic

coupling, cross-population pathways reflect the presence of delocalization in the system

[16, 37]. An unexpected mitigation of the unfavorable scaling of self-population pathways

comes from disorder. Indeed, the presence of inhomogeneous broadening improves the

visibility of self-population pathways compared to cross-population pathways. This aspect

is linked to the rephasing capability of the non-linear response, as shown explicitly in the

App. 5.B.

When it is known that the signal corresponds to the case of complete annihilation (α =

1), a potential advantage comes from the possibility of estimating N itself. N could be
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an indicator of how many chromophores are connected to the output, such as the number

of chlorophylls linked to the reaction center in a photosynthetic system. The estimation

of N would become feasible if SE and GSB can be measured independently. For example,

it is possible to design an experiment where the pump pulse overlaps only with the lower

energies of the absorption band and the probe with the full band. Close to t2 = 0, the

A-2DES signal would exhibit both SE and GSB components at the pump frequencies,

whereas only the GSB component at higher frequency, where the probe does not overlap

with the pump. Nevertheless, action spectroscopies have strong limits in their use on a

wide range of materials. For this reason, it is then crucial to be aware of the kind of samples

to be studied with action-detected spectroscopies. Grégoire et al. showed that incoherent

mixing can contribute differently depending on the amount of EEA in the sample [22].

Indeed, it has been found that incoherent mixing does not contribute significantly to the

A-2DES spectrum of organic solar cells, while it dominates over the non-linear response in

perovskite samples. Additionally, cross-peak dynamics has been observed in heterojunction

photovoltaic cells [8]. This is possible because a working cell tries to achieve high internal

quantum efficiency, implying that from every exciton a charge is produced, meaning a

detection for every absorption (α = 0 or N = 1).

The results reported in this work highlight the importance of strategies to minimize

the incoherent mixing contributions to A-2DES. Recently, 2D-FLEX has been proposed,

which can selectively measure the SE pathway in fluorescence-detected experiments [38].

Furthermore, the possibility of time-gating the fluorescence signal during the detection

time can help to reduce the extent of incoherent mixing [18–20]. However, a time-gating

approach is far-fetched to be applied in photocurrent detection.

5.3. Conclusions

In this work, we provided a different perspective to the problem of incoherent mixing

in action-detected spectroscopy. Our argument explicitly refers to an assembly of weakly

coupled molecules and it does not explicitly account for the presence of vibrational degrees

of freedom. Future work is needed to understand how strong excitonic coupling may change

the relative weight of the different contributions to the signal and to further elucidate the

dynamics along the waiting time t2. On the other hand, the inclusion of higher excited

states |f ⟩ of each molecule introduces ESA self-population pathways providing additional

spectral features, without affecting the scaling between SE and GSB contributions. A

further step will be to consider higher-order response in the light-matter interaction in
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order to investigate the signal coming from multi-exciton states [39, 40].
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5.A. Populations and Incoherent Signal

In A-2DES, the time-resolved signal emitted during the detection time t is:

S(t) = kS
∑

n

Peng(t) + (2kS + δ)
∑

n

∑

m>n

Penem(t) (5.A.15)

where Peng(t) and Penem(t) are the populations of one- and two-exciton states, kS repre-

sents the signal generation rate, while δ quantifies the difference in the signal generation

rate between the two-exciton states and twice that of the one-exciton states. The popu-

lations are assumed to evolve according to the following kinetic scheme:





d

dt
Peng(t) = −kRPeng(t) + (kR + kA)

∑

m ̸=n
Penem(t)

d

dt
Penem(t) = − (2kR + 2kA + kAA)Penem(t)

(5.A.16)

where kR is the exciton recombination rate, while kA and kAA are the exciton-exciton

annihilation rates resulting in the net loss of one and two excitons, respectively. By solving

the kinetic scheme, the time-resolved populations are obtained:





Peng(t) = Peng(0)e
−kRt +

kR + kA
kR + 2kA + kAA

(
e−kRt − e−(2kR+2kA+kAA)t

)∑

m ̸=n
Penem(0)

Penem(t) = Penem(0)e
−(2kR+2kA+kAA)t

(5.A.17)

where Peng(0) and Penem(0) are the populations at the end of the train of pulses. In

an experiment, the signal is commonly integrated during the detection time. The time-

integrated signal results:

S = kS
∑

n

Peng + (2kS + δ)
∑

n

∑

m>n

Penem (5.A.18)

where the time-integrated populations are:





Peng =
1

kR
Peng(0) +

kR + kA
kR(2kR + 2kA + kAA)

∑

m ̸=n
Penem(0)

Penem =
1

2kR + 2kA + kAA
Penem(0).

(5.A.19)
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Substituting Eq. 5.A.19 in Eq. 5.A.18, we obtain:

S =
kS
kR

∑

n

Peng(0) +
2kS(2kR + kA) + δkR
kR(2kR + 2kA + kAA)

∑

n

∑

m>n

Penem(0)

= Φ
∑

n

Peng(0) + (2− α)Φ
∑

n

∑

m>n

Penem(0)
(5.A.20)

where Φ = kS
kR

is the quantum yield, while α = 2kS(kA+kAA)−δkR
kS(2kR+2kA+kAA)

is a parameter which

quantifies the deviation of the signal from that of independent molecules. Since Pen(0) =

Peng(0) +
∑
m ̸=n Penem(0), the signal can be rewritten as:

S =
kS
kR

∑

n

Pen(0)−
2kS(kA + kAA)− δkR
kR(2kR + 2kA + kAA)

∑

n

∑

m>n

Pen(0)× Pem(0)

= Φ
∑

n

Pen(0)− αΦ
∑

n

∑

m>n

Pen(0)× Pem(0)
(5.A.21)

where we assumed that the initial population of the two-exciton can be factorized as

Penem(0) = Pen(0) × Pem(0). Eq. 5.A.21 is the generalization of Eq. 5.12 where α is

assumed to be 1.

Considering the case where the signal generation rate of the two-exciton manifold is

twice that of the one-exciton manifold (δ = 0), the parameter α = 0 when the exciton

recombination is faster than annihilation kR ≫ kA, kAA, while the parameter α = 1 when

exciton-exciton annihilation is faster than exciton recombination kA ≫ kR, kAA. In contrast,

in the case where the signal generation rate of the one- and two-exciton manifold is equal

(δ = −kS), the parameter α = 1 when exciton recombination rate is equal that of the loss

of two excitons, kR = kAA ≫ kA and δ = −kS.

5.B. Response Function and Lineshape

Considering the rephasing signal, the fourth-order response functions for self-population

pathways are:

RGSBs (t1, t2, t3) = −
(
i

ℏ

)4∑

n

|µn|4e+iωnt1e−iωnt3FS(t1, t2, t3)

RSEs (t1, t2, t3) = −
(
i

ℏ

)4∑

n

|µn|4e+iωnt1e−iωnt3FS(t1, t2, t3)

(5.B.22)

(5.B.23)
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and for cross-population pathways are:

RGSBc (t1, t2, t3) = −
(
i

ℏ

)4∑

n

∑

m ̸=n
|µn|2|µm|2e+iωnt1e−iωmt3FC(t1, t2, t3)

RESAIc (t1, t2, t3) = −
(
i

ℏ

)4∑

n

∑

m ̸=n
|µn|2|µm|2e+iωnt1e−iωmt3FC(t1, t2, t3)

RESAIIc (t1, t2, t3) = +

(
i

ℏ

)4∑

n

∑

m ̸=n
|µn|2|µm|2e+iωnt1e−iωnt3FC(t1, t2, t3)

(5.B.24)

(5.B.25)

(5.B.26)

where ωn and µn are the transition frequency and transition dipole moment of the n-th

molecule, respectively. According to the stochastic theory of lineshape, the dephasing

function for self-population pathways is:

Fs(t1, t2, t3) = e
−g(t1)+g(t2)−g(t3)−g(t1+t2)−g(t2+t3)+g(t1+t2+t3) (5.B.27)

while for cross-population pathways is:

Fc(t1, t2, t3) = e
−g(t1)−g(t3) (5.B.28)

where we assumed that the fluctuations on different molecules are independent [36, 41].

In the following, we consider a Voigt lineshape function [41]:

g(t) = Γt + ∆2t2 (5.B.29)

where Γ and ∆ are the parameter related to homogeneous and inhomogeneous broaden-

ing, respectively. In this scenario, the dephasing functions for self- and cross-population

pathways become:

Fs(t1, t2, t3) = e
−Γ(t1+t3)e−∆

2(t21+t
2
3−2t1t3)

Fc(t1, t2, t3) = e
−Γ(t1+t3)e−∆

2(t21+t
2
3 ).

(5.B.30)

(5.B.31)

Notice the different behaviour of self- and cross-population pathways in the presence of

inhomogeneous disorder. While the former give rise to photon echo for t1 = t3, the latter

result in free-induction decay.

In Fig. 5.B.5, we show the ratio between the maxima of the spectral amplitudes of self-

and cross-population features for different values of inhomogeneous broadening. Notice
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Fig. 5.B.5: Ratio between maxima of spectral amplitudes of self- and cross-population contribu-
tions for different values of inhomogeneous broadening ∆, while homogeneous broadening is kept
constant (Γ = 40 meV). In this case, the transition energies of the molecules are assumed to be
equal.

that only when ∆ = 0 meV, the ratio results:

self
cross

=
2

N − 1 (5.B.32)

corresponding to Eq. 5.14. In the presence of inhomogeneous broadening, the ratio

results higher due to the rephasing capability of self-population pathways compared to

cross-population pathways.
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6| Witnessing Annihilation and
Delocalization in A-2DES

6.1. Introduction

Action-2D Electronic Spectroscopy (A-2DES) is recently gaining considerable attention

for the study of complex excitonic systems [1, 2]. In this technique, the sample interacts

with a sequence of multiple laser pulses, then emitting an incoherent signal proportional

to the excited-state population. Depending on the sample, different kinds of incoherent

signals can be detected, e.g., fluorescence [3–5], photocurrent [6, 7], photoions [8] and

photoelectrons [9]. The variety of signals that can be measured gives technique a function-

oriented role, allowing systems to be studied under working conditions [10]. Furthermore,

when combined with microscopy [11] and single-molecule [12] techniques, high spatial

resolution can be achieved, thus preventing inhomogeneities in the sample. Furthermore,

the technique offers a unique lens to unveil many-particle interactions as encoded in higher-

order signals [13].

However, to take full advantage of the opportunities offered by the technique, it is

essential to correctly interpret the spectral features. From the theoretical perspective,

great efforts have been devoted to establish the nature of the cross-peaks appearing in

the spectrum at early waiting-times [14–19]. In general, cross-peaks emerge due to the

presence of Exciton-Exciton Annihilation (EEA) process occurring during signal detection.

In the language of non-linear response theory, EEA leads to a reduced contribution of the

positive ESAII pathway, resulting in the incomplete cancellation of negative features arising

from GSB, SE and ESAI pathways in cross-peaks position. On the one hand, for weakly

interacting systems, the emergence of cross-peaks can be equivalently interpreted in the

framework of incoherent mixing [17, 19, 20]. In this context, cross-peaks simply reflect

the annihilation process of excitons generated on different molecules, without conveying

non-linear information. Indeed, the amplitude and lineshape are simply determined by the

product of linear responses of independent chromophores [18, 19]. On the other hand,
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for strongly interacting systems, it is no longer appropriate to consider chromophores as

independent entities, since excitonic delocalization induces dipole moment redistribution

and excitonic splitting. In such situation, cross-peaks are an essential part of the non-linear

response of the coupled system [14–16]. Therefore, the current issue with A-2DES is to

assess whether the cross-peaks only reflect the occurrence of exciton-exciton annihilation

within the system or whether they also provide insights about the presence of excitonic

delocalization among chromophores.

Answering this important question first requires to account for the relation between the

EEA process and exciton delocalization. EEA is often described as an incoherent process

arising from the stochastic encounter of two excitons within the system. It is typically

modeled phenomenologically as a bimolecular process involvng the exciton density [21].

Besides this macroscopic description, there has been few attempts to describe the EEA

phenomenon from a microscopic theory [22–25]. Recent evidences has highlighted the

existence of coherent effects in the annihilation process [26–28].

In this work, we investigate the optical response of a molecular dimer in different coupling

regimes by simulating A-2DES spectra. The EEA process in our model results from the

mixing of the local states, as suggested in refs. [29, 30], allowing the characterization of

the interplay between the EEA and exciton delocalization in shaping the A-2DES spectra.

The most relevant result is the characterization of the nature of cross-peaks as a function

of the excitonic coupling strength. For very small excitonic coupling, cross-peaks appear

because of exciton-exciton annihilation which become effective even in the absence of

any relevant delocalization in the one-exciton manifold. In this regime, cross-peaks can

be regarded as incoherent mixing contributions [19]. On the other hand, for increasing

coupling strengths, cross-peaks start to reflect the presence of excitonic delocalization.

We also consider the dynamics of spectral features along the waiting-time, observing

oscillations at frequencies equal to the excitonic splitting between the states of the one-

exciton manifold. Nevertheless, further work is required in this direction to comprehensively

characterize the strong coupling regime.

6.2. Theory and Simulations

6.2.1. Model System

In the following, we consider a molecular dimer where each chromophore is treated as

a three-level electronic system, consisting of a ground state |gn⟩, a first-excited state |en⟩
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Fig. 6.1: Model of a molecular dimer, where each chromophore is described as a three-level
electronic system. Representation of the states in the a) (localized) site basis and b) (delocalized)
excitonic basis.

and a second-excited state |fn⟩, with n = 1, 2. The Hamiltonian of the n-th chromophore

is:

Ĥn = ϵgn |gn⟩⟨gn|+ ϵen |en⟩⟨en|+ ϵfn |fn⟩⟨fn| (6.1)

where ϵgn , ϵen , ϵfn are the energies of the ground, first- and second-excited states, respec-

tively.

Depending on the number of excitons, the states of the molecular dimer can be distin-

guished into different manifolds. In the (localized) site basis (Fig. 6.1a), the manifolds

are: the collective ground state, where both molecules are in their ground state |g1g2⟩, the

one-exciton manifold, where one molecule is the first-excited state and the other is in the

ground state |e1g2⟩ and |g1e2⟩, and the two-exciton manifold, where both molecules are in

their first-excited state |e1e2⟩ or one molecule is in the second-excited state and the other

is in the ground state |f1g2⟩ and |g1f2⟩. In the site basis, the energy of the dimer states

is given by the sum of the energies of the constituent monomer states ϵa1b2 = ϵa1 + ϵb2,

where a, b = g, e, f . Notice that states beyond the two-exciton manifold are neglected in

this description.

Since the interaction between states belonging to different manifolds can be assumed to

be negligible, the Hamiltonian of the molecular dimer results to be block diagonal:

Ĥ = Ĥ(0) + Ĥ(1) + Ĥ(2) (6.2)
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with the ground-state Hamiltonian:

Ĥ(0) = ϵg1g2 |g1g2⟩⟨g1g2| (6.3)

the one-exciton Hamiltonian:

Ĥ(1) =ϵe1g2 |e1g2⟩⟨e1g2|+ ϵg1e2 |g1e2⟩⟨g1e2|+
+ J (|e1g2⟩⟨g1e2|+ h.c.)

(6.4)

and the two-exciton Hamiltonian:

Ĥ(2) =ϵe1e2 |e1e2⟩⟨e1e2|+ ϵf1g2 |f1g2⟩⟨f1g2|+ ϵg1f2 |g1f2⟩⟨g1f2|+
+K (|e1e2⟩⟨f1g2|+ |e1e2⟩⟨g1f2|+ h.c.)

(6.5)

where J and K represent the excitonic coupling between states in the one- and two-exciton

manifold, respectively. In general, they can be assumed to be proportional K = αJ, where

α is a proportionality factor [30].

Due to the structure of the Hamiltonian, each block can be diagonalized independently to

obtain the eigenstates of the system, which represent (delocalized) excitonic states given

by the combination of localized excitations (Fig. 6.1b). For the ground-state manifold,

the eigenstate is directly available:

|G⟩ = |g1g2⟩ (6.6)

while for the one-exciton manifold are:

|Ek⟩ = c1k |e1g2⟩+ c2k |g1e2⟩ (6.7)

with k = 1, 2, and for the two-exciton manifold are:

|Fl⟩ = c1l |e1e2⟩+ c2l |f1g2⟩+ c3l |g1f2⟩ (6.8)

with l = 1, 2, 3.

In the calculations, the energies of the first-excited state of each chromophore are ϵe1 =

1.55 eV and ϵe2 = 1.46 eV, while that of the second-excited state are ϵf1 = 2ϵe1 = 3.10 eV

and ϵf2 = 2ϵe2 = 2.92 eV. For simplicity, the excitonic couplings between localized states

in the one- and two-exciton manifolds are assumed to be equal J = K.
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In Fig. 6.A.7 of App. 6.A, we report the modulus square of the expansion coefficients

in the localized basis for the eigenstates in Eqs. 6.7 and 6.8, by varying the excitonic

coupling. Furthermore, we consider the amount of excitonic delocalization as quantified

by the inverse of the Inverse Participation Ratio IPR(k) =
∑
n |cnk |4.

6.2.2. Light-Matter Interaction

Light-matter interaction induces transitions between states of different manifolds. In

the dipole approximation, the interaction Hamiltonian is:

Ĥ′(t) = −µ̂ · E(t) (6.9)

with dipole moment operator µ̂ and electric field E(t). In the site basis, the dipole moment

operator of the dimer is:

µ̂ =µe1g1(|e1g2⟩⟨g1g2|+ |e1e2⟩⟨g1e2|+ h.c.) + µf1e1(|f1g2⟩⟨e1g2|+ h.c.)+
µe2g2(|g1e2⟩⟨g1g2|+ |e1e2⟩⟨e1g2|+ h.c.) + µf2e2(|g1f2⟩⟨g1g2|+ h.c.)

(6.10)

with transition dipole moment of the monomers is µengn , from the ground to the first-

excited state, and µfnen , from the first- to the second-excited state. In the calculations,

the transition dipole moment of the transitions are assumed to be parallel and equal µengn =

µfnen .

6.2.3. Quantum Dynamics

The system is assumed to evolve according to the Lindblad Quantum Master Equation

(QME) [31, 32]:

d

dt
ρ(t) = − i

ℏ
[Ĥ(t), ρ(t)] +

∑

α

kα
ℏ

(
L̂αρ(t)L̂

†
α −
1

2

{
L̂†αL̂α, ρ(t)

})
(6.11)

where [·, ·] is the commutator and {·, ·} is the anti-commutator. The total Hamiltonian

Ĥ(t) = Ĥ+Ĥ′(t) is given by sum of the system Hamiltonian (Eq. 6.2) and the interaction

Hamiltonian (Eq. 6.9). The Lindblad operators L̂α represent dephasing or relaxation

processes induced by the interaction with the environment, i.e., vibrations and solvent,

with associated rates kα.

Initially, the system is assumed to be in the ground state, described by the density matrix

ρ(t0) = |G⟩⟨G|. In the following, we assume that each chromophore has an independent
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environment. In the site basis, relaxation between states of different manifolds is described

by L̂gnen = |gn⟩⟨en| for the Exciton Recombination (ER) mechanism and L̂enfn = |en⟩⟨fn|
for the Internal Conversion (IC) mechanism (Fig. 6.1a). Furthermore, we introduce site-

dephasing using L̂g1g1 = |gn⟩⟨gn|, L̂enen = |en⟩⟨en| and L̂fnfn = |fn⟩⟨fn|. These operators

represent fluctuations of the site energies and are responsible for the dephasing of co-

herences between different sites. In the excitonic basis, these operators also promote

transitions between states within the same manifold, leading to a quasi-equilibrium state

in the high-temperature limit. Decoherence between different local sites is the non-unitary

evolution channel in the Haken-Strobl QME [33] which had success in modelling exciton

dynamics across different coupling regimes, bridging the transition from coherent to inco-

herent transport within the single exciton manifold [34–36]. Although giving rise to the

high-temperature limit, it is known to be valid for arbitrary excitonic coupling [37].

In the site basis, EEA mechanism can be visualized as a two-step process: first, exciton

transfer occurs from the two-exciton state |e1e2⟩ to second-excited states |f1g2⟩ and |g1f2⟩,
followed by a rapid IC to the one-exciton states |e1g2⟩ and |g1e2⟩, with the net loss of one

exciton (Fig. 6.1a). From the perspective of excitonic states, EEA process arises from

the delocalization within the two-exciton manifold (Eq. 6.8): the two-exciton state |e1e2⟩
mixes with second-excited states |f1g2⟩ and |g1f2⟩, inheriting the rapid IC character (Fig.

6.1b).

Indeed, due to the delocalization, the eigenstates may have a different relaxation rates

compared to localized states [38]. In the excitonic basis, the relaxation rates from one-

exciton states to the ground-state are:

kGEk = kg1e1 |⟨Ek |e1g2⟩|2 + kg2e2 |⟨Ek |g1e2⟩|2 (6.12)

while from the two-exciton states to the one-exciton states are:

kEkFl =kg1e1 |⟨g1e2|Ek⟩|2|⟨Fl |e1e2⟩|2 + kg2e2 |⟨e1g2|Ek⟩|2|⟨Fl |e1e2⟩|2

+ke1f1 |⟨e1g2|Ek⟩|2|⟨Fl |f1g2⟩|2 + ke2f2 |⟨g1e2|Ek⟩|2|⟨Fl |g1f2⟩|2.
(6.13)

In the calculations, unless otherwise stated, we considered the Exciton Recombination

(ER) rate kER/h = kg1e1/h = kg2e2/h = 1/10 ns−1 and the Internal Conversion (IC) rate

kIC/h = ke1f1/h = ke2f2/h = 1/100 fs−1, while for site-dephasing rate kd/h = kgngn/h =

kenen/h = kfnfn/h = 1/100 fs−1.
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6.2.4. Action-2D Electronic Spectroscopy

The optical response of the molecular dimer is probed using A-2DES. In A-2DES, the

system interacts with a train of four collinear laser pulses. The electric field is given by:

E(t) =

4∑

i=1

Ei(t) (6.14)

where each pulse is described as:

Ei(t) = E
0
i exp

{
− (t − Ti)

2

2σ2i

}
cos[ωi(t − Ti) + φi ]. (6.15)

with amplitude E0i , pulse duration σi , frequency ωi and phase φi . The first pulse is centered

at time T0 = t1, while the following pulses are separated from the previous one by delay-

times T1 = t2− t1, T2 = t3− t2, and T3 = t4− t3. For convenience, we use the cumulative

delay-time: Ti =
∑i−1
j=0 Tj . After the interaction, the incoherent signal S(Td) is collected

during the detection-time Td .

In order to isolate the different contributions to the optical response, the phase-cycling

scheme is employed [39]. In phase cycling, the relative phase between the pulses φi j =

φi − φj is varied independently by an interval ∆φi j from a train to another. The specific

contributions to the signal are extracted by taking combinations of the phase-dependent

signal:

S(β, γ, δ) = 1

LMN

L−1∑

l=0

M−1∑

m=0

N−1∑

n=0

S(l , m, n)e−iβl∆φ21e−iγm∆φ31e−iδn∆φ41. (6.16)

where L, M, and N are the number of steps in which the phases are cycled. In the

following, a 27-fold phase-cycling scheme is employed (L = M = N = 3), which allows the

simultaneous isolation of rephasing (β = +1, γ = +1, δ = −1), non-rephasing (β = −1,
γ = +1, δ = −1) and double-quantum coherence (β = +1, γ = −1, δ = −1) signals.

We focus our analysis on the rephasing signal. By taking the Fourier transform along

delay-times T1 and T3, 2D spectra are displayed as a function of ℏω1 and ℏω2 for each

value of the waiting-time T2.

The parameters used for the simulations are: σi = 5 fs, ℏωi = 1.50 eV and µengnE
0
i =

µfnenE
0
i = 8 meV. The delay-times T1 and T3 are scanned from 0 to 300 fs in steps of

10 fs, while the waiting-time T2 is scanned from 0 to 100 fs in steps of 5 fs. The signal

is collected in the rotating-frame at angular frequency ωRF = 2.28 [rad]/fs. Furthermore,
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Fig. 6.2: Total spectra obtained for different excitonic couplings: a) J = +10−4 eV, b) J =
+10−3 eV, c) J = +10−2 eV.

the temporal signal is zero-padded in order to smooth the spectra.

6.2.5. Incoherent Signal

The time-resolved signal along the detection-time Td is given by the sum over the eigen-

state populations extracted from the density matrix after the train of pulses:

S(Td) =k (r)G1E1PE1(Td) + k
(r)
G2E2

PE2(Td) +
(
k
(r)
E1F1
+ k

(r)
E2F1

)
PF1(Td)+(

k
(r)
E1F2
+ k

(r)
E2F2

)
PF2(Td) +

(
k
(r)
E1F3
+ k

(r)
E2F3

)
PF3(Td)

(6.17)

weighted by the radiative relaxation rate. These rates are obtained using Eqs. 6.12

and 6.13 considering the radiative relaxation rates of the monomers k (r)g1e1/h = k
(r)
g2e2/h =

1/10 ns−1 and k (r)e1f1/h = k
(r)
e2f2
/h = 0 fs. However, in an experiment, the signal emission is

not time-resolved and the spectroscopic observable is represented by the time-integrated

signal along the detection-time:

S =
∫ +∞

0

dTd S(Td) (6.18)
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Fig. 6.3: Feynman diagrams for the considered system relative to Ground-State Bleaching (GSB),
Stimulated Emission (SE), Excited-State Absorption I (ESAI) and Excited-State Absorption II
(ESAII) pathways.

which can be expressed in terms of the time-integrated populations:

S =k (r)G1E1PE1 + k
(r)
G2E2

PE2 +
(
k
(r)
E1F1
+ k

(r)
E2F1

)
PF1+(

k
(r)
E1F2
+ k

(r)
E2F2

)
PF2 +

(
k
(r)
E1F3
+ k

(r)
E2F3

)
PF3.

(6.19)

6.3. Results and Discussion

As a starting point, we consider the changes in the spectral features of the rephasing

signal at waiting-time T2 = 0 fs for different values of the excitonic coupling J (Fig. 6.2).

In the case of null (Fig. 6.2a) or negligible excitonic coupling (Fig. 6.2b), only diagonal

peaks appear in the spectra, which are related to the optical response of individual chro-

mophores. As the excitonic coupling increases, two different changes are observed in the

spectra. The first is related to the emergence of cross-peaks (Fig. 6.2c) as a result of the

EEA process. This fact is commonly interpreted in terms of the incomplete cancellation of

spectral features of opposite sign [14–16, 19]. Indeed, the presence of EEA leads to a re-

duction in the positive ESAII contribution, which no longer compensates the contributions

from negative GSB, SE and ESAI pathways in these positions (Fig. 6.3). Instead, the

second is represented by the variation in the relative amplitude of the peaks (Fig. 6.2d)

resulting from the dipole moment redistribution. Indeed, due to excitonic delocalization,

one state in the one-exciton manifold becomes increasingly bright while the other becomes

dark. In addition, the increase in excitonic coupling leads to a progressive shift in peak

position that reflects the splitting between states in the one-exciton manifold.

To gain further insights, we analyze the amplitude of the spectral features over a range of
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Fig. 6.4: Amplitude of diagonal peaks (blue and orange) and cross-peaks (red and green) as a
function of the excitonic coupling J. Right inset: relative positions of the spectral features and the
associated colors. Left inset: enlargement of the region of negligible excitonic coupling (J ≃ 0).

positive and negative excitonic couplings (Fig. 6.4). We notice that the peaks amplitude

exhibits a non-monotonic behaviour as a function of the excitonic coupling, which can

distinguished into three different regions: positive excitonic coupling (J > 0), negative

excitonic coupling (J < 0), and negligible excitonic coupling (J ≃ 0). In the positive and

negative regions, changes in the peak amplitudes can be attributed to the dipole moment

redistribution (Fig. 6.2d). While for positive excitonic coupling (J > 0), the amplitude

of the upper diagonal peak increases and that of the lower diagonal peak decreases, for

negative excitonic coupling (J < 0), the opposite trend occurs. Conversely, the amplitude

of cross-peaks is less affected by the excitonic coupling and their behaviour result mirrored

with respect to J = 0. These findings are in agreement with previous studies of A-2DES

[14, 15], which has shown that the amplitude of the diagonal peaks scales as |µEn |4 while

that of the cross-peaks scales as |µE1 |2|µE2 |2.

On the other hand, in the region of negligible excitonic coupling (J ≃ 0), we observe a

prominent cusp in the amplitude of the spectral features (left inset of Fig. 6.4). For null

excitonic coupling (J = 0), we observe a minimum in the amplitude since, as a result of

the perfect cancellation of pathways with opposite sign, cross-peaks are not present (Fig.

6.2a). As soon as the excitonic coupling J ̸= 0, EEA process start to become effective

and the pathway cancellation is not anymore complete. As a result, the amplitude of

cross-peaks starts to increase (Fig. 6.2b), until their appearance in the spectrum (Fig.



6| Witnessing Annihilation and Delocalization in A-2DES 149

Fig. 6.5: Evolution of the spectral features as a function of the waiting-time T2 site-dephasing
rates a) kd/h = 1/100 fs−1, b) kd/h = 1/150 fs−1 and c) kd/h = 1/200 fs−1 and different
excitonic coupling (solid line) J = 5 · 10−4 eV, (dashed line) J = 1 · 10−3 eV and (dotted line)
J = 1 · 10−2 eV.

6.2c). This particular region has not been considered in previous studies of A-2DES, since

EEA was introduced as an incoherent transfer mechanism without explicitly accounting for

excitonic delocalization within the states in the two-exciton manifold [14, 15].

Furthermore, we notice that the amplitude of the diagonal peaks also increases with

the excitonic coupling in this region. This effect can be ascribed due to the constructive

interference of diagonal peaks with the emerging cross-peaks in the spectrum. We highlight

that within this region, the presence of excitonic coupling is such that it induces the EEA

process but does not give rise to any significant redistribution of the dipole moment.

On the basis of the presented analysis, we propose to distinguish the nature of cross-

peaks in A-2DES. While in the region of negligible excitonic coupling, cross-peaks merely

represent a signature of exciton-exciton annihilation and can be regarded as incoherent

mixing contributions [19], outside this region, they start to reflect the presence of excitonic

delocalization.

Furthermore, we investigated the evolution of the spectral features during the waiting-

time T2 (Fig. 6.5) considering three different values of excitonic coupling J and site-

dephasing rates kd .

According to the analysis of the dynamical pathways contributing to the rephasing signal

of an excitonic dimer, the oscillation of the cross-peak amplitude as a function of t2 reflects

the coherent superposition of the two one-exciton states |E1⟩ and |E2⟩. The amplitude
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Fig. 6.6: Absolute value of the coherence spectrum along ℏω2 for excitonic coupling J = 10−2 eV
and site-dephasing rates kd/h = 1/200 fs−1.

of the peaks in the simulated spectra for different excitonic couplings are reported in Fig.

6.5. As reported in Fig. 6.A.8a of App. 6.A, the coupling range investigated here does not

imply a significant variation of the excitonic splitting, therefore the oscillation frequency as

a function of t2 are about the same in the three cases. Higher oscillation frequency should

be expected for increasing excitonic couplings. However, due to the reduction of the

cross-peaks amplitude caused by the dipole moment redistribution, the strong coupling

regime is not observable in this model. Further investigation with a different relative

configurations of the transition dipole moments are necessary to extend the study to

the strong coupling regime. We also considered changes in the evolution with the site-

dephasing rate. For the case of fast site-dephasing rate, the peaks amplitude exhibits a

rapid decay in the timescale of 10 fs (Fig. 6.5a), which can be ascribed to the coherent

artifact [40]. Since the pulses overlap significantly at early waiting-times, different time-

ordering of light-matter interactions are possible [41]. This leads to an increase in the

number of pathways contributing to the signal, resulting in a larger amplitude of spectral

features in this region. As the waiting-time increases and the pulses no longer overlap, a

decrease in peaks amplitude is observed as these pathways become unavailable.

As site-dephasing rate decreases, both diagonal and cross-peaks exhibit more pronounced

beatings (Fig. 6.5b,c). To analyze these oscillations, we considered the absolute value

of the Fourier transform of the signal along the waiting-time T2 (Fig. 6.6). In this case,
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the temporal trace was fitted with an exponential decay and subtracted to the signal.

We notice that all spectral features exhibit frequency components around 0.1eV, which is

compatible with the energy splitting between states in the one-exciton manifold. As the

analysis suggests, diagonal peaks preset both positive and negative frequency components

because their temporal trace is real. In contrast, cross-peaks predominantly display either

a positive or negative frequency component, since the temporal trace is complex, meaning

that they oscillates with opposite phases.

We highlight that these beatings may not necessarily represent a signature of coher-

ent excitonic behaviour, as the weak excitonic coupling cannot induce sufficient excitonic

delocalization in the considered cases. In this situations, the presence of beatings may

represent inter-site coherences rather than inter-exciton coherences [42].

6.4. Conclusions

In this work, we investigated the effects of the excitonic coupling in the spectral fea-

tures of A-2DES, considering a molecular dimer. We observed that, in the case of weak

coupling, cross-peaks primarily reflect the presence of exciton-exciton annihilation between

chromophores. In this limit, cross-peaks can be rationalized within the incoherent mixing

mechanism involving the linear responses of individual chromophores during the detection-

time. Conversely, for stronger coupling, we noted that spectral features start to reflect

excitonic delocalization between chromophores, as evidenced by the redistribution of the

dipole moment.

In the analysis of the waiting-time dynamics, we identified the presence of oscillations in

the amplitude of the spectral features, which can be attributed to coherences between the

states of the one-exciton manifold. However, we highlight that these are not necessarily

inter-exciton coherences, but can also be inter-site in nature.

Given the considered parameters, we could not detect significant changes in the dephas-

ing time for increasing excitonic coupling. Due to the large redistribution of the dipole

moment in the limit of strong coupling, the amplitude of the spectral features results sup-

pressed, thus precluding the investigation. However, the effect of the redistribution can

be mitigated by considering a perpendicular orientation of the dipole moments of the two

chromophores.
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6.A. Additional Figures

Fig. 6.A.7: Modulus square of the expansion coefficients for a) the eigenstate |E1⟩ in the one-
exciton manifold (Eq. 6.7), b) the eigenstates |F1⟩ and c) |F2⟩ in the two-exciton manifold (Eq.
6.8). d) The inverse of the Inverse Partecipation Ratio (IPR) which quantifies the amount of
excitonic delocalization for the eigenstates |E1⟩, |F1⟩ and |F2⟩.
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Fig. 6.A.8: a) Excitonic splitting and b) effective dephasing rate as a function of the excitonic
coupling.
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7.1. Introduction

Defining how the quantum nature of the molecular scale reflects on mesoscopic proper-

ties, such as energy and charge transport, has been a central issue in the physical chemistry

research of the last two decades [1, 2]. On the other hand, the efforts spent to turn quan-

tum features into useful resources brought to our labs the first generation of quantum

computers. Although in the near future, we should not expect systematic performance im-

provements in using this technology over high-performance classical architectures [3], there

is a need to explore scientifically relevant problems amenable to quantum advantage and to

carry out proof-of-principle calculations in currently available quantum processors. In this

work, we present a quantum algorithm for the simulation of Two-Dimensional Electronic

Spectroscopy (2DES).

2DES has played a pivotal role in the investigation of energy transfer in biological com-

plexes [4–7] and artificial systems [8–11]. non-linear response theory [12] provides the

conceptual framework for the interpretation of the technique and the computational simu-

lation of the spectra [13–18] In this context, the response function is defined on the basis

of the quantum dynamics of the molecular system in the absence of the external field.

Such dynamical simulation can become a hard problem for classical computers due to the

exponential scaling of the Hilbert space with the system size, e.g., including vibrational

degrees of freedom which are coupled to electronic transitions. Here is where Quantum

Computers (QCs) can give an advantage taming the so-called curse of dimensionality.

At the core of QCs lies the quantum processor, typically comprising a register of two-

Adapted from Bruschi, M.; Gallina, F.; Fresch, B. manuscript under revision.
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level quantum systems called qubits. Computation within QCs is achieved by manipulating

their quantum state with unitary operations, called quantum gates, and taking the mea-

surements of one or more qubits. The ordered sequence of all operations is collected in a

structure known as the quantum circuit. Simulating the dynamics of many-body quantum

systems is one of the most anticipated applications of QCs [19] because of the potential to

solve the problem in polynomial time and using polynomial resources. An early demonstra-

tion of quantum speed-up in the simulation of unitary quantum dynamics was proposed by

Lloyd [20]. More recently, several sophisticated protocols have been developed for simulat-

ing the dynamics of molecular systems [21–24]. In this work, we build on the advantage of

quantum simulation of the field-free Hamiltonian dynamics, and we focus on the algorithm

connecting such dynamics to the simulation of spectral features in linear and non-linear

optical techniques. To this aim, we leverage the structure of the response function as a

combination of Time Correlation Functions (TCFs) of the dipole moment operator of the

system. In non-linear optical spectroscopy, the contributions to the signal are commonly

visualized in terms of (double-sided) Feynman Diagrams (FDs), which are graphical rep-

resentations of the pathways followed by the system upon light-matter interactions. The

central idea of this work is to translate FDs into quantum circuits.

A number of recent investigations have focused on the quantum simulation of correlation

and response functions with digital (and analog [25, 26]) QCs, albeit focusing mainly on the

linear response. Among the proposed methods, there are strategies based on the quantum

linear system algorithm [27] or variational approaches [27–30]. However, most proposals

rely on the so-called Hadamard test [31], which, opportunely modified, can return an esti-

mation of a quantum TCFs [32–37]. By designing the quantum algorithms to implement

the FDs, we arrive at a formulation that fits into this framework. In particular, we exploit

an ancilla qubit to control the evolution of the system, recovering the contribution of a

selected pathway by measuring its state. For the sake of completeness, we also mention

the alternative formulation of molecular spectra in terms of excited state calculations to-

gether with the sum-over-state method. Quantum implementations of this approach have

been presented based on well-developed VQE-like hybrid algorithms [38–41]. Although well

suited to reproduce linear response, this method provides a static representation of the

system and therefore cannot be applied to the calculation of time-resolved experiments,

like 2DES, where exciton transfer, spectral diffusion, motional narrowing and peak shifts

are important observables.

The work is organized as follows: we begin by recalling the standard perturbative frame-

work of non-linear optical spectroscopy, from which FDs are defined. Using this framework,



7| Digital Quantum Simulation of Two Dimensional Electronic Spectroscopy 161

we map the dynamical pathways followed by the system during excitation to a quantum

algorithm. To illustrate the procedure, we first consider in detail the simplest case of one

chromophore with a single excited state. By generalizing the algorithm to an arbitrary

number of chromophores, both the number of circuits to be evaluated and the number

of gates per circuit increase polynomially with the size of the system. Then, we present

the simulation of non-linear spectra calculated with real quantum hardware and compare it

with the results obtained with a simulator. In particular, the cases of the 2DES response

of a single chromophore and an excitonic dimer are used as proofs of concept, showing

excellent agreement with the expected result. The software used for the simulations is

freely available as a Python package[42].

7.2. Results and Discussion

We frame our investigation within a semi-classical description of the light-matter inter-

action. The total energy is given by the Hamiltonian

Ĥ(t) = Ĥ0 + V̂ (t) (7.1)

where Ĥ0 is the Hamiltonian of the system (possibly containing nuclear and solvent degrees

of freedom), while the interaction Hamiltonian in the dipole approximation can be defined

as

V̂ (t) = −µ̂ · E(t) (7.2)

with µ̂ the dipole moment operator of the system and E(t) the external electric field. In

time-resolved spectroscopy, the electric field is typically given by the summation over the

M pulses used to probe the system

E(t) =

M∑

m=1

Em(t) (7.3)

where each pulse

Em(t) = E
0
mEm(t − τm)e i(km·r−ωmt)em + h.c. (7.4)

is characterized by amplitude E0m, envelope Em(t), central time τm, wavevector km, fre-

quency ωm, and polarization unit vector em. During the experiment, the electric field

interacts with the sample consisting of many replicas of the system. For simplicity, from

now on, we drop the polarization of the fields so that the vectorial nature of the dipole mo-

ment becomes unimportant. For an isotropic sample, an additional orientational average
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Fig. 7.1: Schematic representation of spectroscopic experiments and the associated (double-
sided) Feynman diagrams. (a) Linear spectroscopy and Absorption (A) pathway and (b) 2D-
electronic spectroscopy and rephasing signal contributions, namely the Ground-State Bleaching
(GSB), Stimulated Emission (SE) and Excited-State Absorption (ESA) pathways.

should be performed [43].

As a result of the light-matter interaction, a macroscopic polarization P (t) is induced

in the sample which acts as a source of electric field, emitting a coherent signal ES(t) ∝
iP (t). The total polarization can be expanded at different orders in the light-matter

interaction P (t) =
∑∞
n=0 P

(n)(t). In the framework of non-linear response theory [12],

the n-th order polarization is expressed as the convolution between the material response

function and the external perturbation,

P (n)(t) =

∫ ∞

0

dtn

∫ ∞

0

dtn−1· · ·
∫ ∞

0

dt1R
(n)(tn, tn−1, . . . , t1)

×E(t − tn)E(t − tn − tn−1) . . . E(t − tn − tn−1 · · · − t1)
(7.5)

where the response function R(n)(tn, tn−1, ..., t1) is a combination of (n + 1)-TCFs of

the dipole moment operator, with tn the delay times between subsequent interactions

with the electric field. The importance of this formulation lies in the separation between

the material properties, namely the natural dynamics due to Ĥ0 and the dipole moment
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operator µ̂, from the external fields. In the following, we focus on the material part of

the response by assuming that electric fields are impulsive, i.e., short compared with any

system timescale. In this limit, obtained formally by assuming a delta-function envelope

for each pulse Em(t−τm) = δ(t−τm), the spectroscopic signals can be calculated directly

from the response function R(n)(tn, tn−1, . . . , t1), where the time variables tn = τn+1 − τn
are the delay times between two subsequent pulses and a specific time-ordering of the

interactions is assumed.

The response function is directly related to the perturbative expansion of the system

density matrix at different orders of the light-matter interaction. At the n-th order, it

includes terms with all possible combinations of interactions on the ket and the bra side

of the system density matrix. By assuming a specific time-ordering of the pulses, each

of these terms identifies a dynamical pathway corresponding to a particular sequence of

excitation and de-excitation processes connecting different elements of the density ma-

trix. However, spectroscopic signals are typically not calculated using the full perturbative

expansion because only specific pathways give non-zero contributions to the measured sig-

nal. These pathways can be visualized using FDs [12, 44]. When the wavevectors of the

applied laser pulses are non-collinear, signals originating from different FDs will be emitted

in distinct phase-matching directions kS =
∑M
m=1±km.

In Fig. 7.1, we report the FDs relative to the Absorption (A) pathway for the linear signal

(Fig. 7.1a) emitted along kS = k1 and the Ground-State Bleaching (GSB), Stimulated

Emission (SE) and Excited-State Absorption (ESA) pathways contributing to the rephasing

component of the third order signal (Fig. 7.1b) measured along kS = −k1 + k2 + k3. In

these diagrams, time runs from the bottom to the top. The state of the system is indicated

by two vertical lines, corresponding to the ket (left side) and bra (right side) components

of the density matrix. Each black arrow corresponds to the interaction with a laser pulse,

contributing with wavevector +km when it points to the right, or −km when it points to the

left. The interaction results in an excitation when the arrow points towards the diagram or

a de-excitation when it points outwards. Between two consecutive interactions, the state

of the system freely evolves under the Hamiltonian Ĥ0. Finally, the red arrow at the top of

the diagram represents the emission of the coherent signal with wavevector kS according

to the phase-matching condition.

The structure of FDs suggests an algorithmic representation of the corresponding dynam-

ical process [45] according to the three blocks shown in Fig. 7.2: the state initialization,

an interaction-evolution loop and the signal emission. Let us now elaborate on the details
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Fig. 7.2: Algorithmic representation of the non-linear optical response. In the beginning, the
system state is initialized (grey block) and then updated to various orders of the light-matter
interaction through the interaction-evolution loop (blue block). Finally, the total polarization at
the M-th order is calculated, which is responsible for the signal emission (red block).

of these blocks for the simplest case study of a chromophore with a ground |g⟩ and an

excited |e⟩ electronic state. The system Hamiltonian

Ĥ0 = −
ϵ

2
σ̂z (7.6)

and the dipole moment operator

µ̂ = µσ̂x (7.7)

can be written in terms of Pauli operators σz = |g⟩⟨g| − |e⟩⟨e| and σ̂x = |e⟩⟨g| + |g⟩⟨e|,
while ϵ is the excitation energy and µ is the transition dipole moment. Typically, at room

temperature, the system is in the electronic ground state prior to any interaction, therefore

the state is initialized in the pure-state density matrix ρ(0)(τ0) = |g⟩⟨g| (grey block in Fig.

7.2).

To implement the interaction-evolution block, we proceed as follows. The interaction

with the m-th pulse, occurring at time τm, is represented by the superoperator Vα(τm),
where the subscript α identifies the pathway followed by the system during the coherent

excitation (e.g., GSB, SE and ESA). According to each pathway, the state is updated at
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the m-th order in the light-matter interaction through the relation

ρ(m)α (τm) = Vα(τm)
[
ρ(m−1)α (τm)

]

= V̂ K
α (τm)ρ

(m−1)
α (τm)

(
V̂ B
α (τm)

)† (7.8)

where the second equality defines the Hilbert space operators acting on the right and the

left of the density matrix. When the pulse acts on the ket component, V̂ K
α (τm) = µE

0
mσ̂
x

and V̂ B
α (τm) = 1̂, while when it acts on the bra component, V̂ K

α (τm) = 1̂ and V̂ B
α (τm) =

µE0mσ̂
x . Subsequently, during the delay time between the pulses tm = τm+1 − τm, the

system undergoes a free Hamiltonian evolution

ρ(m)α (τm + tm) = U(tm)
[
ρ(m)α (τm)

]

= Û(tm)ρ
(m)
α (τm)Û

†(tm)
(7.9)

where the time-evolution operators Û(tm) = exp
(
− i Ĥ0tm

)
and Û†(tm) acts simultaneously

on the ket and bra components, respectively. This interaction-evolution sequence (Eqs.

7.8 and 7.9) is repeated M times according to the target order of the response (blue block

in Fig. 7.2).

Finally, the M-th order polarization is evaluated by summing the contributions of all the

relevant pathways to obtain the signal of interest, that is

P (M)(t) =
∑

α

P (M)α (t) =
∑

α

sαTr
{
µ̂ρ(M)α (t)

}
(7.10)

where sα = iM(−1)mB depends on the number of interactions mB on the bra side of the

FD corresponding to the α pathway.

The procedure of mapping FDs to quantum circuits is illustrated in Fig. 7.3 for the GSB

pathway (Fig. 7.3a). The system is represented by a qubit, referred to as the system qubit,

with the states |0⟩ and |1⟩ corresponding to the ground and excited state of the single

chromophore, respectively. An additional qubit, known as the ancilla qubit, is introduced

to perform the computation without representing any physical degree of freedom. By

convention in quantum computing, the initial state of the quantum register is |0⟩ ⊗ |0⟩a,
where the subscript identifies the ancilla qubit. In this case, the system qubit is already

correctly initialized in the ground state of the chromophore. The first step of the circuit is

to initialize the state of the ancilla into a superposition state. This is done by applying the
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Fig. 7.3: Mapping procedure of a (double-sided) Feynman diagram onto a quantum circuit. (a)
Feynman diagram corresponding to the ground-state bleaching pathway. (b) “Circuital” representa-
tion of the Feynman diagram. The left side corresponds to the |1⟩a state of the ancilla qubit, while
the right side corresponds to the |0⟩a state. (c) Quantum circuit corresponding to the Feynman
diagram. Involved gates are the Hadamard gate H (grey), which creates the initial superposition
state, the single-qubit rotation RZ (yellow), representing the Hamiltonian propagator of a two-level
system, and the two-qubit CNOT gate (blue), representing the light-matter interaction.
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K̂α(1) B̂α(1) K̂α(2) B̂α(2) K̂α(3) B̂α(3)

GSB 1̂ σ̂x 1̂ σ̂x σ̂x 1̂

SE 1̂ σ̂x σ̂x 1̂ 1̂ σ̂x

ESA 1̂ σ̂x σ̂x 1̂ σ̂x 1̂

Tab. 7.1: Operators K̂α(m) and B̂α(m) in Eq. 7.13 for the Ground-State Bleaching (GSB),
Stimulated Emission (SE) and Excited-State Absorption (ESA) pathways of the rephasing signal.

so-called Hadamard gate, a one-qubit operation, which in the computational basis reads

H =
1√
2

[
1 1
1 −1

]
. (7.11)

When the Hadamard gate is applied to the ancilla qubit, it leads to the superposition state

∣∣Ψ(0)
〉
=
1√
2

(
|0⟩ ⊗ |0⟩a + |0⟩ ⊗ |1⟩a

)
. (7.12)

Here, we see the first role of the ancilla. In fact, by interpreting the system state associated

with |0⟩a as corresponding to the bra side and that associated with |1⟩a as the ket side, the

superposition of the ancilla allows us to distinguish the two sides of the FD (Fig. 7.3b).

Following this initialization step, the application of the interaction superoperator Vα(τm)
of Eq. 7.8 is represented by the two-qubit operator

Ĉα(m) = B̂α(m)⊗ |0⟩⟨0|+ K̂α(m)⊗ |1⟩⟨1| . (7.13)

where B̂α(m) = σ̂x and K̂α(m) = 1̂ if the pulse acts on the bra side, or B̂α(m) = 1̂ and

K̂α(m) = σ̂
x if the pulse acts on the ket side. Operator Ĉα corresponds to the so-called

CNOT (controlled-NOT or controlled-X) gate, where the control state of the ancilla qubit

can either be 0 or 1, depending on which side of the FD the pulse interacts with (see Tab.

7.1). Since quantum gates are unitary by definition, the factors µE0m in the superoperator

Vα(τm) (Eq. 7.8) have to be multiplied separately to the result at the end of the quantum

computation.

After light-matter interaction, both branches of the density matrix evolve under the

action of the system Hamiltonian (Eq. 7.9). In our quantum implementation, the operator

for this unitary Hamiltonian propagation is straightforward,

Û(m) = Û(tm)⊗ 1̂ (7.14)
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and, for a two-level system, it corresponds to the application of a rotation gate RZ(θ) =

exp
(
−i θ
2
σ̂z
)

to the system qubit, with θ = −ϵtm.

Overall, the sequential application of the field-interaction and free-evolution operators

to the qubits reflects the update of the system state at the m-th order in the light-matter

interaction ∣∣Ψ(m)
〉
=Û(m)Ĉα(m)

∣∣Ψ(m−1)
〉

=
1√
2

(
Û(tm)B̂α(m)

∣∣∣ψ(m−1)B

〉
⊗ |0⟩a

+ Û(tm)K̂α(m)
∣∣∣ψ(m−1)K

〉
⊗ |1⟩a

)
(7.15)

where
∣∣∣ψ(m−1)B

〉
and

∣∣∣ψ(m−1)K

〉
are the states of the system qubit representing the bra and

ket sides of the density matrix at the (m − 1)-th order, respectively. M iterations of Eq.

7.15 defines the evolution block up to the M-th order.

In order to calculate the polarization, we have to apply a further CNOT gate

ĈS = 1̂⊗ |0⟩⟨0|+ σ̂x ⊗ |1⟩⟨1| (7.16)

representing the dipole moment operator, which leads to the final state

∣∣ΨS
〉
= ĈS

∣∣Ψ(M)
〉

=
1√
2

(∣∣∣ψ(M)B

〉
⊗ |0⟩a + σ̂x

∣∣∣ψ(M)K

〉
⊗ |1⟩a

)
.

(7.17)

Note that also in this case we have to remember a multiplicative factor µ coming from

Eq. 7.10. The quantum circuit that includes the discussed gates is reported in Fig. 7.3c

for the GSB pathway.

Finally, to obtain the M-th order polarization, we exploit once again the ancilla qubit.

In fact, as it follows from Eq. 7.17 and demonstrated in the App. 7.A, by measur-

ing the expectation value of operator Ô = 2 |0⟩⟨1| of the ancilla, we end up with an

estimation of
〈
ψ
(M)
B

∣∣∣ σ̂x
∣∣∣ψ(M)K

〉
, which can be used to calculate the system response func-

tion. However, since operator Ô is non-unitary, in quantum computing its expectation

value can be estimated by decomposing it into unitary contributions, Ô = σ̂x + i σ̂y , with

σ̂y = i (|1⟩⟨0| − |0⟩⟨1|), and measuring their expectation values

⟨σ̂x⟩a =
〈
ΨS
∣∣1̂⊗ σ̂x

∣∣ΨS
〉

⟨σ̂y ⟩a =
〈
ΨS
∣∣1̂⊗ σ̂y

∣∣ΨS
〉 (7.18)
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which are related to the real and imaginary parts, respectively, of the α component of the

response function by

R(M)α = sαµ
M (⟨σ̂x⟩a + i ⟨σ̂y ⟩a) . (7.19)

Hence, the target polarization results as P (M)α = E0ME
0
M−1 . . . E

0
1R
(M)
α . We recall that both

the response function and the polarization depend parametrically on the set of delay times

probing the dynamics of the chromophore.

The generalization of the algorithm to a molecular aggregate composed of N interacting

two-level systems is given in the App. 7.B. In this case, the number of system qubits

is equal to the number of chromophores in the aggregate, yet only one ancilla qubit is

necessary. Differently from the single chromophore case, in order to select the contributing

pathways according to the rotating-wave approximation, the dipole moment operator must

be decomposed as µ̂ = µ̂++µ̂−, where µ̂+ and µ̂− are non-Hermitian operators responsible

for excitation and de-excitation on the ket side of the density matrix, respectively. Since

these operators are non-unitary, they do not correspond to quantum gates and must be

further decomposed into the sum of unitary contributions.

It should be emphasized that no measurement of the system qubit is required as all the

information regarding the response function is retrieved from the ancilla. The importance

of this aspect of the readout procedure is evident when the system consists of multiple

qubits since the number of measurements required by the circuit does not increase with

the size of the system.

We tested the quantum algorithm on the Qiskit qasm_simulator and on the IBM quan-

tum processors ibmq_manila [46]. Figs. 7.4 and 7.5 show the linear and non-linear optical

response of a single chromophore and an excitonic dimer, respectively. Each optical re-

sponse is calculated as the signal ES ∝ iP by running the algorithm for a set of delay

times. For the third-order response, we set delay time t2 = 0. In both the considered

models, the GSB and SE pathways are identical. Thus, only one of them has been ex-

plicitly calculated. To reduce the burden of the time-scanning procedure, we performed

an undersampling of the delay times and subsequently applied a rotating frame to the

computed signals [47, 48]. To avoid artifacts due to the Fast Fourier Transform (FFT),

the temporal responses are multiplied by an exponential window function and zero-padded,

resulting in a Lorentzian lineshape of the peaks in the corresponding spectra. Standard

measurement error mitigation is applied to the results of the quantum processor. Technical

details about the simulations are reported in the App. 7.D.

As shown for the case of the single chromophore, the quantum algorithm provides the
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Fig. 7.4: Optical response of a single chromophore described as a two-level system. (a) Real and
imaginary parts of the temporal linear signal (kS = −k1) obtained with Qiskit qasm_simulator and
ibmq_manila quantum processor and (b) the corresponding absorption spectrum. (c, e) Real part
of the rephasing third order signal (kS = −k1+ k2+ k3) obtained with Qiskit qasm_simulator and
ibmq_manila quantum processor and (d, f) real part of the resulting 2D spectra.
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Fig. 7.5: Optical response of a dimer system. (a) Real and imaginary parts of the linear signal
(kS = −k1) obtained with Qiskit qasm_simulator and ibmq_manila quantum processor and (b)
the corresponding absorption spectra. Real parts of the 2D spectra for the (c, d) GSB (equal to
the SE), (e, f) ESA and (g, h) total rephasing signal (obtained as the sum of GSB, SE and ESA
spectra). Panels (c, e, g) are obtained from Qiskit qasm_simulator, while (d, f, h) result from
ibmq_manila quantum processor.

first (Fig. 7.4a) and third order signals (Fig. 7.4c,e). Then, the linear (Fig. 7.4b) and

2D spectra (Fig. 7.4d,f) are obtained by taking the Fourier transform along suitable delay

times. The results obtained with the QC closely reproduce those of the simulator in both

shape and amplitude. This is not surprising since the quantum processor is in charge of

executing quantum circuits with shallow depth, due to the small size and simple dynamics

of the single chromophore case.

The number of qubits and complexity of the dynamics slightly increase in the case of

an excitonic dimer. Nevertheless, even in this situation, the spectra obtained with the

quantum processor match those of the simulator with encouraging accuracy. However,

compared to the single chromophore case, we should note the appearance of some spurious

features. In the linear spectrum (Fig. 7.5b), alongside the two main peaks, corresponding

to the transition frequencies of the system, we observe the presence of some wiggles.

These spectral features reflect noise in the data related to the temporal signal and are

also affected by the post-processing procedure, like the rotating frame and zero-padding.

In addition, a fictitious peak that used to emerge at zero frequency (see non-mitigated

spectra in Fig. 7.E.7) can be eliminated with a mitigation protocol for the readout error.

Concerning the 2D spectra, (temporal signal reported in Fig. 7.E.8), we computed the GSB

(equivalent to the SE) and ESA contributions (Fig. 7.5c,d,e,f) and then the total rephasing
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spectrum is obtained by summing up these contributions (Fig. 7.5g,h). The quantum

processor correctly reproduces the peak positions and the overall shape of the spectral

contributions. However, in the quantum hardware calculations, the relative amplitudes of

the spectral features do not match exactly those obtained in the simulator, as they may

vary in different runs of the algorithm. Because the total rephasing spectrum results from

the fine balance between the positive (GSB and SE) and the negative (ESA) contributions,

variations in the relative amplitude of the different contributions are reflected in the total

spectrum (Fig. 7.5g,h) showing minimal differences with the simulated one.

In general, we trace the origin of these artifacts and deviations to two factors related

to the scaling analysis of the algorithm whose details are reported in App. 7.C. One is

the increased number of gates per circuit compared to the single chromophore, which is

reflected in a longer circuit execution time. During this time, qubit relaxation dynam-

ics occur, introducing noise in the quantum computation. The circuit complexity of the

implementation mainly depends on the way the Hamiltonian propagator is executed, and

scales as O (nTN
2) when 1-st order Trotterization is applied with nT Trotter steps. The

second factor to consider is the increased number of circuits to be computed, which scales

as O
(
NM+1

)
. In fact, since these circuits are executed in different moments by the quan-

tum processor, the noise level associated with the outcomes can be very different, causing

asymmetries and artifacts in the spectra. In this regard, we report in Fig. 7.E.9 another

independent simulation of the ESA contribution of the dimer. Although reproducing the

same spectral features, the outcome of two independent runs is not exactly the same thus

demonstrating how variability in the noise level of the circuit can influence the calculated

spectra.

7.3. Conclusions

In summary, we have presented and discussed a quantum algorithm for the simulation

of linear and non-linear optical responses of molecular systems based on quantum circuits

calculating the terms of the corresponding response function. The quantum advantage

stems from the efficient simulation of the quantum dynamics of the system evolution dur-

ing the delay times (Eqs. 7.9 and 7.14), while the structure of the algorithm based on the

independent computation of different FDs introduces flexibility in the kind of experiment

to be simulated. The algorithm is naturally suited to include interaction with a complex

environment. For example, it is possible to employ a stochastic propagation of the state

vector exploiting the repetition of the quantum circuit due to sampling, as demonstrated



7| Digital Quantum Simulation of Two Dimensional Electronic Spectroscopy 173

in the context of the simulation of exciton transport with digital QCs [49]. This method

has already proven effective in the simulation of multidimensional optical spectroscopy on

classical computer [50, 51]. Alternatively, other quantum algorithms to simulate open

system dynamics of excitonic system have been proposed [52, 53] including an explicit

representation of the environment through the use of a collision model [49] or by inserting

vibrational degrees of freedom [54] to follow the wavepacket dynamics in the excited state

[23, 55]. For multidimensional spectra, the scanning of delay times represents a demand-

ing computational task both in classical and quantum implementations. To reduce the

computational burden, strategies already implemented in experiments such as compressed

sensing techniques [56–59], may aid in effectively reducing the number of sampled points.

Although the focus of this work is on 2D electronic spectroscopy, the quantum algorithm

can be easily adapted to simulate other coherent techniques in different spectral domains,

from NMR to X-ray spectroscopy, sharing the common ground of response theory [60,

61].
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7.A. Execution of the Quantum Algorithm for a Single
Chromophore

In this appendix, we discuss step-by-step the evolution of the state of the quantum

register during the algorithmic procedure discussed in the main text for the Ground-State

Bleaching (GSB) pathway. At the beginning, the quantum register is initialized in

∣∣Ψ(0)
〉
=
1√
2

(
|0⟩ ⊗ |0⟩a + |0⟩ ⊗ |1⟩a

)
(7.A.20)

by applying a Hadamard gate to the ancilla qubit. Afterwards, the GSB pathway involves

the interaction of the electric field with the bra, represented by the operator

ĈGSB(1) = σ̂
x ⊗ |0⟩⟨0|a + 1̂⊗ |1⟩⟨1|a (7.A.21)

which leads, after Hamiltonian evolution Û(t1), to the following state of the quantum

register
∣∣Ψ(1)

〉
=
1√
2

(
Û(t1)σ̂

x |0⟩ ⊗ |0⟩a + Û(t1) |0⟩ ⊗ |1⟩a
)
. (7.A.22)

This is repeated for a second interaction with the bra

ĈGSB(2) = ĈGSB(1) (7.A.23)

and a third interaction with the ket

ĈGSB(3) = 1̂⊗ |0⟩⟨0|a + σ̂x ⊗ |1⟩⟨1|a (7.A.24)

leading to the state

∣∣Ψ(3)
〉
=
1√
2

(
Û(t3)Û(t2)σ̂

x Û(t1)σ̂
x |0⟩ ⊗ |0⟩a + Û(t3)σ̂x Û(t2)Û(t1) |0⟩ ⊗ |1⟩a

)
.

(7.A.25)

Then, the calculation of the polarization requires the application of the dipole moment

operator on the ket side. This is represented by gate ĈS leading to the state

∣∣ΨS
〉
=
1√
2

(∣∣∣ψ(3)B

〉
⊗ |0⟩a + σ̂x

∣∣∣ψ(3)K

〉
⊗ |1⟩a

)
(7.A.26)
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where ∣∣∣ψ(3)B

〉
= Û(t3)Û(t2)σ̂

x Û(t1)σ̂
x |0⟩

∣∣∣ψ(3)K

〉
= Û(t3)σ̂

x Û(t2)Û(t1) |0⟩
(7.A.27)

are the states of the system qubit representing the bra and ket sides of the density matrix

at the third order, respectively. Finally, our interest is in measuring operator Ô = 2 |0⟩⟨1|
of the ancilla qubit since its expectation value is

2Tr
{
1̂⊗ |0⟩⟨1|

∣∣ΨS
〉〈
ΨS
∣∣} = Tr

{
σ̂x
∣∣∣ψ(3)K

〉〈
ψ
(3)
B

∣∣∣
}

= Tr
{
σ̂x Û(t3)σ̂

x Û(t2)Û(t1) |0⟩⟨0| σ̂x Û†(t1)σ̂x Û†(t2)Û†(t3)
}

= Tr{σ̂x(t3 + t2 + t1)σ̂x(t2 + t1) |0⟩⟨0| σ̂x(0)σ̂x(t1)}
= iR

(3)
GSB(t)/µ

3

(7.A.28)

where we used the identity Û(t)Û†(t) = 1̂ and the interaction picture to go from the second

to the third line. However, since operator Ô is non-unitary, in quantum computing its

expectation value can be estimated by decomposing it into unitary contributions, Ô = σ̂x+

i σ̂y , with σ̂x = |1⟩⟨0|+ |0⟩⟨1| and σ̂y = i (|1⟩⟨0| − |0⟩⟨1|), and measuring their expectation

values
⟨σ̂x⟩a =

〈
ΨS
∣∣1̂⊗ σ̂x

∣∣ΨS
〉

⟨σ̂y ⟩a =
〈
ΨS
∣∣1̂⊗ σ̂y

∣∣ΨS
〉 (7.A.29)

so that the final form of the GSB response function is

R
(3)
GSB = −iµ3 (⟨σ̂x⟩a + i ⟨σ̂y ⟩a) . (7.A.30)

7.B. Generalized Quantum Algorithm for Molecular Ag-
gregates

In this appendix, we generalize the procedure to the case of a molecular aggregate

composed of N interacting chromophores, each with a ground |gi⟩ and an excited |ei⟩
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electronic state. The energy is described by the Frenkel Hamiltonian in the form

Ĥ0 = −
N∑

i=1

ϵi
2
σ̂zi +

N∑

i=1

N∑

j=1
j ̸=i

Ji j σ̂
+
i σ̂
−
j (7.B.31)

where σzi = |gi⟩⟨gi | − |ei⟩⟨ei |, σ+i = |ei⟩⟨gi | and σ−i = |gi⟩⟨ei |. The excitation energy gap of

the i-th molecule is denoted by ϵi , while Ji j is the excitonic coupling between molecule i and

j , which is assumed to be real in the following. Depending on the number of excitations in

the aggregate, we can distinguish different exciton manifolds. In particular, in the following,

we will use |0⟩ ≡ ⊗i |gi⟩ for the collective ground state, |i⟩ ≡ |ei⟩
⊗
j ̸=i |gj⟩ = σ+i |0⟩ for

one-exciton states and |i j⟩ ≡ |ei⟩ |ej⟩
⊗
k ̸=i ,j |gk⟩ = σ+i σ

+
j |0⟩. The total dipole moment

operator of the aggregate is

µ̂ =

N∑

i=1

µi σ̂
x
i (7.B.32)

where µi is the transition dipole moment of the i-th molecule. To pave the way for future

approximations, it is convenient to distinguish the two non-Hermitian contributions to the

dipole moment operator responsible for the excitation and de-excitation of the aggregate.

We have thus

µ̂ = µ̂+ + µ̂− (7.B.33)

with

µ̂± =
N∑

i=1

µi σ̂
±
i . (7.B.34)

Assuming the RWA, either the rotating E+m or counter-rotating E−m component of the

electric field contributes to the signal. In this case, the light-matter interaction Hamiltonian

V̂ (t) can be decomposed as

V̂ (t) = V̂ +(t) + V̂ −(t) (7.B.35)

where

V̂ ±(t) =
N∑

i=1

V ±i (t)σ̂
±
i (7.B.36)

and

V ±i (t) = −
N∑

i=1

µiE
±(t). (7.B.37)
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The RWA introduces some substantial changes in the algorithmic implementation of FDs

suggested in the main text. In particular, in Eq. 7.8 of the main text becomes

ρ(m)α (τm) = V̂
K
α (τm)ρ

(m−1)
α (τm)

(
V̂ B
α (τm)

)†
(7.B.38)

the operators V̂ K
α (τm) and V̂ B

α (τm) are now defined as




V̂ K
α (τm) = V̂

±(τm)

V̂ B
α (τm) = 1̂

(7.B.39)

when the pulse acts as an excitation (+) or de-excitation (-) on the ket component, and




V̂ K
α (τm) = 1̂

V̂ B
α (τm) = V̂

±(τm)
(7.B.40)

when the pulse acts as an excitation (+) or de-excitation (-) on the bra component. We

highlight that the action of V ±(t) promotes a transition to a neighboring exciton manifold.

Similarly, the emission of the final signal is influenced by the RWA too. In particular, the

M-th order polarization is obtained as

P (M)(t) =
∑

α

sαTr
{
µ̂−ρ(M)α (t)

}
(7.B.41)

where sα = iM(−1)mB depends on the number of interactions mB on the bra side of the

FD corresponding to the α pathway.

7.B.1. Decomposition of Non-Unitary Operators

In contrast to the single chromophore case, operators appearing in Eq. 7.B.38 are non-

unitary. Therefore, if we want to calculate the polarization components using a quantum

computer, we have to tackle the problem of assembling the quantum circuit in terms of

(unitary) quantum gates. To solve the issue, we must decompose the dipole moment

operators as the sum of unitary contributions.

Let us take the GSB of a third-order rephasing signal as an example to illustrate the
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procedure. First, we expand the trace in Eq. 7.B.41 by using Eqs. 7.B.34 and 7.B.36

Tr
{
µ̂−ρ(3)GSB(t)

}
=

N∑

i ,j,k,l=1

V −i (τ1)V
+
j (τ2)V

+
k (τ3)µl

Tr
{
σ̂−l Û(τ3)σ̂

+
k Û(τ2 + τ1)ρ

(0)(τ0)σ̂
−
i Û
†(τ1)σ̂

+
j Û
†(τ2 + τ3)

}
.

(7.B.42)

The various TCFs in the summation consider the possible excitation and de-excitation

pathways through the different chromophores in the aggregate. In fact, the first light-

matter interaction excites the i-th chromophore. Subsequently, as a consequence of the

exciton coupling, excitation is redistributed in the network during the free Hamiltonian

evolution, so that the second interaction causes the de-excitation of a chromophore j .

The same reasoning applies to the following interactions. Note that, in this case, up to

four different chromophores can be involved.

Once we have Eq. 7.B.42, the argument inside the trace still contains non-unitary

operators. Thus, we exploit the equivalence

σ̂± =
σ̂x ∓ i σ̂y
2

(7.B.43)

to rewrite the trace as

Tr
{
σ̂−l Û(τ3)σ̂

+
k Û(τ2 + τ1)ρ

(0)(τ0)σ̂
−
i Û
†(τ1)σ̂

+
j Û
†(τ2 + τ3)

}
=

=
∑

o,o ′,o ′′,o ′′′=x,y

1

16
coco ′co ′′co ′′′ Tr

{
σ̂o
′′′
l Û(τ3)σ̂

o ′′
k Û(τ2 + τ1)ρ

(0)(τ0)σ̂
o
i Û
†(τ1)σ̂

o ′
j Û
†(τ2 + τ3)

}

(7.B.44)

where

co =




1 if o = x

i if o = y
co ′ =




1 if o ′ = x

−i if o ′ = y
co ′′ =




1 if o ′′ = x

−i if o ′′ = y
co ′′′ =




1 if o ′′′ = x

i if o ′′′ = y

(7.B.45)

With Eq. 7.B.44, we finally got an expression in which all the operators acting on the

density matrix are unitary operators. Therefore, we are ready for the composition of the

quantum circuit.
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7.B.2. Circuit Construction

In the circuit construction, the N chromophore aggregate is represented by N qubits of

the system quantum register, while an ancilla qubit is used to identify the ket and bra sides

of the FD as for the single chromophore case reported in the main text. The collective

ground state of the aggregate |0⟩ corresponds to the system-qubit state |000⟩ ≡⊗N
i=1 |0⟩i .

At the beginning of the circuit, the ancilla qubit is prepared into a superposition state by

applying a Hadamard gate

∣∣Ψ(0)
〉
=
1√
2

(
|000⟩ ⊗ |0⟩a + |000⟩ ⊗ |1⟩a

)
(7.B.46)

which represents the two branches of the Feynman diagram by interpreting the system

state associated with |0⟩a as corresponding to the bra side, and the other associated with

|1⟩a as the ket side.

The target of the circuits is to calculate the TCFs at the right-hand side of Eq. 7.B.44.

To do so, we make use of controlled gates to represent the light-matter interactions. We

define the operator

Ĉoα(m, i) = B̂
o
α(m, i)⊗ |0⟩⟨0|a + K̂oα(m, i)⊗ |1⟩⟨1|a (7.B.47)

where 


B̂oα(m, i) = σ̂

o
i

K̂oα(m, i) = 1̂
(7.B.48)

if the pulse acts on the bra side, or




B̂oα(m, i) = 1̂

K̂oα(m, i) = σ̂
o
i

(7.B.49)

if the pulse acts on the ket side. The index i denotes the target-qubit representing the

i-th chromophore, while the superscript o can be either x or y depending on the TCF

we are evaluating. The controlled gates correspond to CNOT (CX) and CY quantum gates,

respectively, where the control state is the ancilla state 0 when we refer to Eq. 7.B.48

and 1 when we refer to Eq. 7.B.49.

For example, the first interaction in a GSB pathway is

ĈoGSB(m = 1, i) = σ̂
o
i ⊗ |0⟩⟨0|a + 1̂⊗ |1⟩⟨1|a . (7.B.50)
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After a controlled operation, which represents the light-matter interaction, the free Hamil-

tonian evolution is performed on the system qubits, represented by the unitary operator

Û(m) = Û(tm)⊗ 1̂. (7.B.51)

Differently from the single chromophore case, Û(m) is in general a multi-qubit gate and

it must be decomposed into 1- and 2-qubit gates in order to be executed by a quantum

processor. Various methods can be used for the scope. An effective method is to use

Trotter decomposition [20] to write the operator in terms of simple gates

Û(tm) ≈
(
N∏

i=1

RZi

(
−2ϵi

tm
nT

) N−1∏

i=1

N∏

j=i+1

RXiXj

(
Ji j
tm
nT

)
RYiYj

(
Ji j
tm
nT

))nT
(7.B.52)

where 



RZi (θ) = exp
(
−i θ
2
σ̂zi
)

RXiXj (θ) = exp
(
−i θ
2
σ̂xi ⊗ σ̂xj

)

RYiYj (θ) = exp
(
−i θ
2
σ̂yi ⊗ σ̂yj

)
.

(7.B.53)

We recall that Trotterization is exact in the limit of large nT or small tm. In the case of

a sparse Hamiltonian, i.e., Ji j ̸= 0, Eq. 7.B.52 requires the execution of O(nTN
2) CNOT

gates.

The application of the last dipole operator before the calculation of the trace is repre-

sented by the controlled gate associated with the operator

ĈoS(i) = 1̂⊗ |0⟩⟨0|a + σ̂oi ⊗ |1⟩⟨1|a . (7.B.54)

Finally, the result is obtained as for the single chromophore case, i.e., by measuring the

expectation value of the ancilla operator Ô = 2 |0⟩⟨1|.

7.C. Scaling of the Algorithm

In the previous section, we have given details about the number of CNOT gates required

during the algorithmic execution. In this appendix, we discuss the total number of circuits

required for having an estimation of Tr
{
µ̂−ρ(M)α (t)

}
.

The decomposition of the collective dipole moment operators into single chromophore

operators (Eq. 7.B.42) generates NM+1 terms. Each of these terms is then divided into
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# of circuits # of CNOTs / circuit

O
(
NM+1

)
O (nTN

2)

Tab. 7.C.2: Algorithmic scaling. M is the order of the perturbation, N the number of chromophores
in the aggregate and nT the Trotter number.

2M+1 elements coming from the decomposition of ladder operators σ̂+ and σ̂− into unitary

operators σ̂x and σ̂y (see Eq. 7.B.44). Thus, the total number of TCFs to be evaluated is

(2N)M+1, i.e., polynomial with the number of chromophores and exponential in the order of

the perturbation. However, as discussed in App. 7.A, the computation of the expectation

value of the ancilla operator Ô = 2 |0⟩⟨1| requires the independent measurement of the

expectation values of σ̂x and σ̂y (see Fig. 7.C.6). Therefore, the total number of circuits

is twice the number of TCFs mentioned above, i.e., 2M+2NM+1.

We have noticed that, in some cases, the number of circuits can be slightly reduced.

In fact, when the system energy is constant between two pulses (that is, in the absence

of dissipations) and the initial state is the collective ground state, ρ(0)(τ0) = |0⟩⟨0|, we

can reduce the number of circuits to be evaluated. On the one hand, the first interaction

acting on the ket and the first interaction acting on the bra, which has the effect of

exciting from the ground state to the one-exciton manifold, can be performed with σx

instead of decomposing σ+ and σ− since there is no possibility of promoting transitions

to other manifolds. Moreover, the last operator, correspondent to the calculation of the

polarization, can also be implemented with σx instead of decomposing σ−, as the correct

state is naturally selected by measuring the expectation value of Ô. In this case, the

number of circuits to run reduces to 2MNM+1 when all the field interacts only with one

side of the FD or to 2M−1NM+1 when they interact with both sides. For example, for the

GSB the total number of relevant circuits to be evaluated is thus 4N4 instead of 32N4.

Tab. 7.C.2 provides a concise summary of the scaling of the number of circuits and the

number of CNOT gates per circuit.

7.D. Simulation Details

The single chromophore corresponds to a two-level system with Hamiltonian H = − ϵ
2
σ̂z

and excitation energy ϵ = 1.55 eV.

For the dimer case, the system corresponds to two interacting two-level systems with
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Fig. 7.C.6: Quantum circuits for measuring the expectation value of operators (a) σ̂x and (b) σ̂y

of the ancilla quibit.

Hamiltonian 7.B.31 and excitation energies chosen to match the ones of the B800 (ϵ1 =

1.55 eV) and B850 (ϵ2 = 1.46 eV) rings of the LH2 complex [62]. The excitonic coupling

is set to J12 = −0.01 eV. Since Trotterization is an overshooting technique for simulating

the analyzed dimer system (besides being beyond the possibilities of the used quantum

processor), the unitary Hamiltonian evolution between two pulses is converted in a short

sequence of one- and two-qubit gates by the Qiskit transpiler.

To reduce the number of sampled points, we employed an undersampling of the delay

times and then applied to the signal a rotating frame at frequency ωRF = 1.505 eV [47,

48]. The computed temporal signal is multiplied by an exponential window function with

decay time 140 fs and zero-padded. Measurement error mitigation is applied to the results

of the quantum processor by means of a calibration matrix. In all the calculations we set

the transition dipole moment µi = 1 a.u. and the electric field amplitude E0m = 1 eV.

7.E. Additional Figures

In Fig. 7.E.7, we show the typical emergence of an artifact at zero frequency (rotat-

ing frame not applied) in the absorption spectra of the excitonic dimer collected from

ibmq_manila quantum processor without measurement-error mitigation. The artifact

emerges because of the uneven probability of correctly measuring states 0 and 1. In

Fig. 7.E.8, we show the temporal signals related to the excitonic dimer spectra reported

in the main text. In Fig. 7.E.9, the variability of NISQ devices is evident by comparing

the same 2D spectra for the ESA of the excitonic dimer collected during two different

runs of the quantum algorithm. Data have been collected from the ibm_perth quantum

processor without measurement-error mitigation. The intensity of the peaks and spurious

noisy contributions are visibly different in the two cases.
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Fig. 7.E.7: Absorption spectra of the excitonic dimer collected from ibmq_manila quantum pro-
cessor without measurement error mitigation. An artifact emerges at zero frequency due to the
uneven probability of correctly measuring states 0 and 1.

Fig. 7.E.8: Real parts of the third signal for the (a, b) GSB (equal to the SE), (c, d) ESA and
(e, f) rephasing signal (obtained as the sum of the GSB, SE and ESA contributions). Panels (a,
c, e) are obtained from Qiskit qasm_simulator, while (b, d, f) result from ibm_manila quantum
processor.
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Fig. 7.E.9: Real part of the third order ESA spectra of the excitonic dimer collected during two
independent runs of the quantum algorithm on the ibm_perth quantum processor
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8| Perspectives
The investigation presented in this Thesis has clarified different aspects concerning the

interpretation of the response in A-2DES. At the same time, however, it brought to light

several questions and exposed a number of open problems to be tackled in future research.

A first aspect concerns the interplay between the non-linear response and incoherent

mixing in the spectrum of complex excitonic systems. On the one hand, it is necessary to

understand when incoherent mixing can actually provide information about the interaction

network at play in the system. An example is provided by the investigation of long-

range transport mechanisms in extended systems exploiting the exciton-exciton annihilation

process, as demonstrated in the setting of two-pulse experiments [1, 2]. On the other hand,

it is necessary to find effective strategies to reduce the amount of incoherent mixing to

the spectrum in order to expose the clean non-linear response. Apart from the already

mentioned use of time-gating of the signal during the detection-time, frequency-gating

method has recently been proposed in order to isolate the stimulated emission contribution

[3]. Furthermore, we believe that the use of cross-polarization pulse sequences [4] may aid

in reducing the contribution of cross-peaks related to incoherent mixing.

In recent years, there has been a push towards exploring higher-order contributions of the

non-linear response [5, 6]. This fact has gained relevance after the proposal of different

techniques aimed at isolating multi-particle interactions and their dynamics [7–9]. In this

context, the theoretical analysis of the associated spectral features is still under develop-

ment due to the inherent complexity of these signal, however initial attempts have been

proposed in this direction [10, 11]. In particular, the non-perturbative approach developed

in this thesis is particularly promising for the investigation of higher-order response.

Another aspect that has received limited attention, from both theoretical and experimen-

tal perspectives, is the investigation of the dynamics of the spectral features of A-2DES

during the waiting-time [12, 13]. Particular interest should be directed towards the study

of coherences, whether inter-excitonic or inter-site in nature. Furthermore, the signatures

of vibronic and vibrational features in the spectrum still remain to be explored.
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