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We prove a Künneth-type equivalence of derived categories of lisse and constructible Weil sheaves on
schemes in characteristic p > 0 for various coefficients, including finite discrete rings, algebraic field
extensions E ⊃Qℓ, ℓ ̸= p, and their rings of integers OE . We also consider a variant for ind-constructible
sheaves which applies to the cohomology of moduli stacks of shtukas over global function fields.
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1. Introduction

The classical Künneth formula expresses the (co-)homology of a product of two spaces X1 and X2 in
terms of the tensor product of the (co-)homology of the individual factors. For two topological spaces,
for example, one has under suitable finiteness hypothesis an isomorphism⊕

i+ j=n

Hi (X1, Q)⊗Q H j (X2, Q)∼= Hn(X1× X2, Q) (1-1)

on singular cohomology with rational coefficients. Such cohomology groups are naturally morphism
groups in the derived categories of sheaves on these spaces. So one may ask whether the Künneth formula
can be extended to a categorical level, that is, whether it is possible to relate the derived categories of
sheaves on X1 and X2 to those on their product X1× X2. Statements in this direction are referred to as
categorical Künneth formulas and are known in different contexts: for example, for the respective derived
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categories of topological sheaves, for D-modules on varieties in characteristic 0 and for quasicoherent
sheaves; see [Gaitsgory et al. 2022, Section A.2].

In addition to (1-1) above, categorical Künneth formulas require decomposing a sheaf on X1× X2

into exterior products M1 ⊠ M2, with M1, M2 being sheaves on X1, X2, respectively. For varieties in
characteristic p > 0, an analogous decomposition for constructible (pro-)étale sheaves fails in general,
and so does a categorical Künneth formula in this context; see Example 1.4 below. The main result of the
manuscript at hand (see Theorem 1.3) shows how to rectify the failure by adding equivariance data under
partial Frobenius morphisms, that is, one arrives at a categorical Künneth formula for constructible Weil
sheaves. Our work relies on the analogous result [Drinfeld 1980, Theorem 2.1] for étale fundamental
groups known as Drinfeld’s lemma; see Section 5C for details and references.

1A. Definitions and results. Weil sheaves are defined in [Deligne 1980, Definition 1.1.10]. We start by
explaining a site-theoretic approach which slightly differs from [Geisser 2004; Lichtenbaum 2005].

Let X be a scheme over a finite field Fq , where q is a p-power. Fix an algebraic closure F/Fq , and
denote by XF the base change. The partial (q-)Frobenius φX := FrobX × idF defines an endomorphism
of XF.

Definition 1.1. The Weil-proétale site XWeil
proét is the following site: Objects are pairs (U, ϕ) consisting

of U ∈ (XF)proét, the proétale site of XF [Bhatt and Scholze 2015], equipped with an endomorphism
ϕ : U →U of F-schemes covering φX . Morphisms are given by equivariant maps. A family {(Ui , ϕi )→

(U, ϕ)} of morphisms is a cover if the family {Ui →U } is a cover in (XF)proét.

The Weil-proétale site sits in the sequence of sites

(XF)proét→ XWeil
proét→ Xproét (1-2)

given by the functors U←[ (U, ϕ) and (UF, φU )← [ U in the opposite direction. The maps (1-2) commute
over ∗proét, the proétale site of the point. Thus, for any condensed ring 3 viewed as a sheaf of rings on
∗proét, we get pullback functors on derived categories of proétale 3-sheaves

D(X, 3)→ D(XWeil, 3)→ D(XF, 3).

In analogy with the definition of lisse and constructible sheaves (as recalled in Definition 3.1), we
introduce the categories of lisse and constructible Weil sheaves Dlis(XWeil, 3)⊂ Dcons(XWeil, 3) as the
full subcategories of D(XWeil, 3) that are dualizable, resp. that are Zariski locally on X dualizable along
a constructible stratification. These categories are equivalent to the corresponding categories of sheaves
on the prestack XF/φX , that is, equivalent to the homotopy fixed points of the induced φ∗X -action.

Proposition 1.2 (Propositions 4.4 and 4.11). The pullback of sheaves along (XF)proét→ XWeil
proét induces

an equivalence of 3∗-linear symmetric monoidal stable∞-categories

D•(XWeil, 3)
∼=−→ D•(XF, 3)φ

∗

X=id,

for • ∈ {∅, lis, cons}.
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Thus, objects in D•(XWeil, 3) are pairs (M, α) with M ∈D•(XF, 3) and α : M ∼= φ∗X M . On the abelian
level, we recover the classical approach [Deligne 1980, Definition 1.1.10]. If 3 is a finite discrete ring, then
every Weil descent datum on constructible 3-sheaves is effective so that Dcons(XWeil, 3)∼= Dcons(X, 3);
see Proposition 4.16. However, the categories are not equivalent if 3= Z, Zℓ, Qℓ, say. This relates to the
difference between continuous representations of Galois groups such as Ẑ versus Weil groups such as Z.

For several Fq-schemes X1, . . . , Xn , a similar process is carried out for their product X := X1×Fq

· · ·×Fq Xn equipped with the partial Frobenii φX i : XF→ XF, see Section 4B. Generalizing Proposition 1.2,
there is an equivalence of 3∗-linear symmetric monoidal stable∞-categories

D•(XWeil
1 × · · ·× XWeil

n , 3)
∼=−→ D•(XF, 3)

φ∗X1
=id,...,φ∗Xn=id (1-3)

for • ∈ {∅, lis, cons}. The category on the left is defined using the Weil-proétale site (XWeil
1 × · · · ×

XWeil
n )proét consisting of objects (U, ϕ1, . . . , ϕn) with U ∈ (XF)proét and pairwise commuting endomor-

phisms ϕi : U →U covering the partial Frobenii φX i : XF→ XF for all i = 1, . . . , n. The category on
the right is the category of simultaneous homotopy fixed points; see Section 2B. For constructible Weil
sheaves, (1-3) relies on decompositions of partial Frobenius invariant cycles in XF; see Proposition 4.8.

The following result is referred to as the categorical Künneth formula for constructible Weil sheaves
(or, derived Drinfeld’s lemma).

Theorem 1.3 (Theorem 5.2, Remark 5.3). Let Fq be a finite field of characteristic p > 0. Let X1, . . . , Xn

be finite type Fq -schemes. Let 3 be either a finite discrete ring of prime-to-p torsion, or an algebraic field
extension E ⊃Qℓ, ℓ ̸= p, or its ring of integers OE .

Then the external tensor product of sheaves (M1, . . . , Mn) 7→ M1 ⊠ · · ·⊠ Mn induces an equivalence

Dcons(XWeil
1 , 3)⊗Perf3∗ · · · ⊗Perf3∗ Dcons(XWeil

n , 3)
∼=−→ Dcons(XWeil

1 × · · ·× XWeil
n , 3), (1-4)

and likewise for the categories of lisse Weil sheaves if , in the case 3 = E , one assumes the schemes
X1, . . . , Xn to be geometrically unibranch (for example, normal).

This statement can also be recast as the symmetric monoidality of the functor sending a Weil prestack
XWeil, which is defined on R-points by XWeil(R) := colim(X (R)

id
φX
⇒ X (R)), to its∞-category of con-

structible sheaves (Theorem 5.6).
The tensor product of∞-categories (see Section 2) is formed using the natural 3∗-linear structures on

the categories. We have an analogous equivalence for the categories of lisse Weil sheaves with coefficients
3 in finite discrete p-torsion rings like Z/pm , m ≥ 1, see Theorem 5.2. As the following example shows,
the use of Weil sheaves is necessary for the essential surjectivity to hold. This behavior is mentioned in
the first arXiv version of [Gaitsgory et al. 2022, (0.8)] which is one of the main motivations for our work.

Example 1.4 (compare [SGA 1 2003, Exposé X, Section 1, Remarques 1.10]). Let X1,F = X2,F = A1
F be

the affine line so that XF = A2
F with coordinates denoted by x1 and x2. Then

U := {t p
− t = x1 · x2} −→ A2

F
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defines a finite étale cover with Galois group Z/p. Let M ∈Dlis(A
2
F, 3) be the sheaf in degree 0 associated

with some nontrivial character Z/p→3×
∗

. For λ, µ∈ F not differing by a scalar in F×p , the fibers U |{x1=λ},
U |{x1=µ} are not isomorphic over A1

F by Artin–Schreier theory. Hence, M ̸≃ φ∗X i
M and one can show that

M ̸≃ M1 ⊠ M2 for any Mi ∈ D(A1
F, 3).

If 3 as above is p-torsion free, then the full faithfulness of (1-4) is a direct consequence of the Künneth
formula for X i,F, i = 1, . . . , n. For 3 = Z/pm , we use Artin–Schreier theory instead. It would be
interesting to see whether the lisse p-torsion case can be extended to constructible sheaves. In both
cases, the essential surjectivity relies on a variant of Drinfeld’s lemma for Weil group representations, see
Theorem 5.9, together with a characterization of partial-Frobenius stable algebraic cycles (Proposition 4.8)
as well as a decomposition argument for representations of a product of abstract groups (Proposition 5.12).

With a view towards [Lafforgue 2018], we consider Weil sheaves whose underlying sheaf is ind-
constructible, but where the action of the partial Frobenii do not necessarily preserve the constructible
pieces. For finite type Fq-schemes X1, . . . , Xn and 3 as in Theorem 1.3, we consider the category of
simultaneous homotopy fixed points

D•(XWeil
1 × · · ·× XWeil

n , 3)
def
= D•(XF, 3)

φ∗X1
=id,...,φ∗Xn=id

for • ∈ {indlis, indcons}. Then the external tensor product induces a fully faithful functor

D•(XWeil
1 , 3)⊗Mod3∗

· · · ⊗Mod3∗
D•(XWeil

n , 3)−→ D•(XWeil
1 × · · ·× XWeil

n , 3). (1-5)

Unlike the case of lisse or constructible sheaves, the functor is not essentially surjective as one can add
freely actions by the partial Frobenii, see Remark 6.6. However, we can identify a large class of objects in
the essential image of (1-5). When combined with the smoothness results of Xue [2020c, Theorem 4.2.3],
we obtain, for example, that the compactly supported cohomology of moduli stacks of shtukas over global
function fields lies in the essential image of (1-5); see Section 6B for details.

Remark 1.5. Another motivation for this work is our (Richarz and Scholbach’s) ongoing project aiming
for a motivic refinement of [Lafforgue 2018]. In this project, we will need a motivic variant of Drinfeld’s
lemma. Since triangulated categories of motives such as DM(X, Q) carry t-structures only conditionally,
we need a Drinfeld lemma to be a statement about triangulated categories. In conjunction with the
conjecture relating Weil-étale motivic cohomology to Weil-étale cohomology [Kahn 2003; Geisser 2004;
Lichtenbaum 2005], our results suggest to look for a Drinfeld lemma for constructible Weil motives.

2. Recollections on ∞-categories

Throughout this section, 3 denotes a unital, commutative ring. We briefly collect some notation pertaining
to∞-categories from [Lurie 2017; 2009]. As in [Lurie 2009, Section 5.5.3], PrL denotes the∞-category
of presentable ∞-categories with colimit-preserving functors. It contains the subcategory PrSt

⊂ PrL

consisting of stable∞-categories.
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2A. Monoidal aspects. The category PrL carries the Lurie tensor product [Lurie 2017, Section 4.8.1].
This tensor product induces one on the full subcategory PrSt

⊂ PrL consisting of stable ∞-categories
[loc. cit., Proposition 4.8.2.18]. For our commutative ring 3, the∞-category Mod3 of chain complexes
of 3-modules, up to quasiisomorphism, is a commutative monoid in PrSt with respect to this tensor
product. This structure includes, in particular, the existence of a functor

Mod3×Mod3→Mod3

which, after passing to the homotopy categories is the classical derived tensor product on the unbounded
derived category of 3-modules.

We define PrSt
3 to be the category of modules, in PrSt, over Mod3. Noting that modules over Mod3

are in particular modules over Sp, the∞-category of spectra, PrSt
3 can be described as the∞-category

consisting of stable presentable∞-categories together with a 3-linear structure, such that functors are
continuous and 3-linear. Therefore PrSt

3 carries a symmetric monoidal structure, whose unit is Mod3. We
will also denote by PrSt

ω the category of compactly generated presentable with functors that send compact
objects to compact objects (equivalently, those whose right adjoint is continuous).

In order to express monoidal properties of∞-categories consisting, say, of bounded complexes, recall
from [Lurie 2017, Corollary 4.8.1.4 joint with Lemma 5.3.2.11] or [Ben-Zvi et al. 2010, Proposition 4.4]
the symmetric monoidal structure on the ∞-category CatEx

∞
(Idem) of idempotent complete stable ∞-

categories and exact functors: it is characterized by

D1⊗ D2
def
= (Ind(D1)⊗ Ind(D2))

ω, (2-1)

that is, the compact objects in the Lurie tensor product of the Ind-completions. With respect to these
monoidal structures, the Ind-completion functor (taking values in compactly generated presentable
∞-categories with the Lurie tensor product) and the functor forgetting the compact generatedness

CatEx
∞

(Idem)
∼=

Ind−→ PrSt
ω −→ PrSt (2-2)

are both symmetric monoidal [Lurie 2017, Lemmas 5.3.2.9, 5.3.2.11].
The subcategory of compact objects in Mod3 is given by perfect complexes of 3-modules [loc. cit.,

Proposition 7.2.4.2.]. It is denoted Perf3. Under the equivalence in (2-2), the category Perf3∈CatEx
∞

(Idem)

corresponds to Mod3. Moreover, Perf3 is a commutative monoid in CatEx
∞

(Idem), so that we can consider
its category of modules, denoted as CatEx

∞,3(Idem). This category inherits a symmetric monoidal structure
denoted by D1⊗Perf3 D2.

Any stable∞-category D is canonically enriched over the category of spectra Sp. We write HomD( · , · )

for the mapping spectrum. Any category in PrSt
3 is canonically enriched over Mod3, so that we refer to

HomD( · , · ) ∈Mod3 as the mapping complex. For example, for M, N ∈Mod3, then HomMod3
(M, N )

is commonly also denoted by RHom(M, N ). Its n-th cohomology is the Hom-group Hom(M, N [n]) in
the classical derived category.
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2B. Fixed points of ∞-categories. A basic structure in Drinfeld’s lemma is the equivariance datum
for the partial Frobenii. In this section, we assemble some abstract results where such∞-categorical
constructions are carried out.

Definition 2.1. Let φ : D→ D be an endofunctor in CatEx
∞

(Idem). The category of φ-fixed points is

Dφ=id def
= Fix(D, φ)

def
= lim(D

idD

φ
⇒ D).

Recall that for a symmetric monoidal∞-category D, a commutative monoid object 3 ∈ CAlg(D), the
forgetful functors CAlg(D)→ D and Mod3(D)→ D preserve limits [Lurie 2017, Corollaries 3.2.2.5
and 4.2.3.3]. In particular, if D is in addition 3-linear, that is, an object in CatEx

∞,3(Idem), and φ is also
3-linear, then Fix(D, φ) admits a natural 3-linear structure as well.

Because of these facts, we will usually not specify where the limit above is formed. Note that all
functors

CatEx
∞

(Idem)
∼=

Ind−→ PrSt
ω

(∗)
−→ PrSt

−→ PrL
−→ Ĉat∞ (2-3)

except for the forgetful functor marked (∗) preserve limits; see [Lurie 2017, Corollary 4.2.3.3; 2009,
Proposition 5.5.3.13] for the rightmost two functors. To give a concrete example of that failure in our
situation, note that Fix(D, idD) = Fun(BZ, D), that is, objects are pairs (M, α) consisting of some
M ∈ D and some automorphism α : M ∼= M . Now consider D = Vectfd3, the (abelian) category of
finite-dimensional vector spaces over a field 3. The natural functor

Ind
(
lim(Vectfd3 ⇒ Vectfd3)

)
→ lim

(
Ind(Vectfd3) ⇒ Ind(Vectfd3)

)
= lim

(
Vect3 ⇒ Vect3

)
is fully faithful, but not essentially surjective: given an automorphism α of an infinite-dimensional vector
space M , there need not be a filtration M =

⋃
Mi by finite-dimensional subspaces Mi that is compatible

with α.
Fixed point categories inherit t-structures as follows:

Lemma 2.2. Let φ : D→ D be a functor in CatEx
∞

(Idem). Suppose D carries a t-structure such that φ is
t-exact. Then Fix(D, φ) carries a unique t-structure such that the evaluation functor is t-exact. There is a
natural equivalence

Fix(D♥, φ)
∼=−→ Fix(D, φ)♥.

Proof. Let us abbreviate D̃ := Fix(D, φ). For • being either “≤ 0” or “≥ 0”, we put D̃• := Fix(D•, φ),
which is a (nonstable)∞-category. This is clearly the only choice for a t-structure making ev a t-exact
functor. It satisfies the claim about the hearts of the t-structure by definition.

We need to show that it is a t-structure. Being a limit of full subcategories, the categories D̃• are full
subcategories of D̃. Since φ, being t-exact, commutes with τ

≤0
D and τ

≥0
D , these two functors also yield

truncation functors for D̃. For M ∈ D̃≤0, N ∈ D̃≥1 (we use cohomological conventions), we have

HomD̃(M, N )= lim(HomD(M, N ) ⇒ HomD(M, N )),
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where on the right hand side M , N denote the underlying objects in D. Since M ∈ D≤0, N ∈ D≥1, we
have Hi HomD(M, N )= 0 for i =−1, 0. Thus, H0 HomD̃(M, N )= 0 as well. □

Definition 2.1 can be generalized as follows: Let ϕ : BZn
→ CatEx

∞
(Idem) be a diagram. For example,

for n = 1, this amounts to giving D = ϕ(∗) ∈ CatEx
∞

(Idem) and an equivalence φ = ϕ(1) : D→ D. For
n= 2, such a datum corresponds to giving D, equivalences φ1, φ2 : D ∼=−→ D together with an equivalence
φ1 ◦φ2

∼=−→ φ2 ◦φ1. So we define the∞-category of simultaneous fixed points as

Fix(D, φ1, . . . , φn)
def
= lim ϕ ∈ CatEx

∞
(Idem).

Remark 2.3. The statement of Lemma 2.2 carries over verbatim assuming that D has a t-structure and
all φi are t-exact, noting that BZn

= (S1)n is a finite simplicial set.

Lemma 2.4. Let ϕ : BZn
→ CatEx

∞
(Idem) be a diagram. Denote D = ϕ(∗) and φi = ϕ(ei ) for the i-th

standard vector ei ∈ Zn . The functor

Fix(D, φ1, . . . , φn)→ Fix(Ind(D), φ1, . . . , φn)

induced from the inclusion D ⊂ Ind(D) is fully faithful and takes values in compact objects. In particular,
it yields a fully faithful functor

Ind(Fix(D, φ1, . . . , φn))→ Fix(Ind(D), φ1, . . . , φn).

Proof. Let M ∈ Fix(D, φ1, . . . , φn) and denote its underlying object in D by the same symbol. For every
N ∈ Fix(Ind(D), φ1, . . . , ), we have a limit diagram of mapping complexes

HomFix(Ind(D))(M, N )∼= Fix(HomInd(D)(M, N ), φ1, . . . , φn).

Since filtered colimits commute with finite limits in the∞-category of anima (a.k.a. spaces) [Lurie 2009,
Proposition 5.3.3.3.], we see that M is compact in Fix(Ind(D)) because M is so in Ind(D). □

Lemma 2.5. Let ϕi : BZ→ CatEx
∞,3(Idem), i = 1, . . . , n be given. Denote Di = ϕi (∗), φi = ϕi (1) and

D̃i = Ind(Di ). Then there is a canonical equivalence

Fix(D̃1, φ1)⊗Mod3
· · · ⊗Mod3

Fix(D̃n, φn)
∼=−→ Fix(D̃1⊗Mod3

· · · ⊗Mod3
D̃n, φ1, . . . , φn).

Proof. The categories Fix(D̃i , φi ) are compactly generated: the forgetful functor U : Fix(D̃i , φi )→ D̃i =

Ind(Di ) preserves colimits, so its left adjoint L preserves compact objects. Moreover, U is conservative,
so that the objects L(di ), for di ∈ Di , form a family of compact generators. Then, we use that any
compactly generated category in PrSt

3 is dualizable [Lurie 2018, Remark D.7.7.6(1)] so that tensoring
with it preserves limits. □
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3. Lisse and constructible sheaves

In order to state and prove the categorical Künneth formula for Weil sheaves, we use the framework for
lisse and constructible sheaves provided by [Hemo et al. 2023]. For the convenience of the reader, we
collect here some basics of the formalism.

Throughout, 3 denotes a condensed ring, for example any T1-topological ring such as discrete rings,
algebraic extensions E/Qℓ or their ring of integers OE . In the synopsis below, we refer to the latter
choices of 3 as the standard coefficient rings. We write 3∗ for the underlying ring. Let D(X, 3) be the
derived category of sheaves of 3-modules on the proétale site Xproét.

Definition 3.1 [Hemo et al. 2023, Definitions 3.3 and 8.1]. For every scheme X and every condensed
ring 3, there are the full subcategories

Dlis(X, 3)⊂ Dcons(X, 3)⊂ D(X, 3). (3-1)

By definition, the left hand category of lisse sheaves consists of the dualizable objects in the right-most
category. An object (henceforth referred to as a sheaf) M in the right hand category is constructible, if
on any affine U ⊂ X there is a finite stratification into constructible locally closed subschemes Ui ⊂U
such that M |Ui is lisse, that is, dualizable. Finally, an ind-lisse (respectively, ind-constructible) sheaf is a
filtered colimit, in the category D(X, 3), of lisse (respectively, constructible) sheaves. The corresponding
full subcategories of D(X, 3) are denoted by

Dindlis(X, 3)⊂ Dindcons(X, 3)⊂ D(X, 3).

For the standard coefficient rings 3 above and quasicompact quasiseparated (qcqs) schemes X , that
definition of lisse and constructible sheaves agrees with the classical ones; see [Hemo et al. 2023] for details.

The categories enjoy the following properties:

Synopsis 3.2. (i) Via the natural functor Mod3∗→ D(X, 3), M 7→ M ⊗3∗ 3X ; see around [Hemo et al.
2023, (3.1)], the category D(X, 3) is an object in PrSt

3∗
. The functor restricts to a functor Perf3∗ →

Dlis(X, 3), and the categories Dlis(X, 3)⊂ Dcons(X, 3) are objects in CatEx
∞,3(Idem). In particular, all

categories listed in (3-1) are stable idempotent complete 3∗-linear∞-categories.

(ii) The extension-by-zero functor along any constructible locally closed immersion and quasicompact
étale morphisms preserves constructibility; see [loc. cit., Lemma 3.4, Corollary 4.6].

(iii) The functors X 7→ Dcons(X, 3) and X 7→ Dlis(X, 3) satisfy proétale hyperdescent [loc. cit., Corol-
lary 4.7]. (According to [Hansen and Scholze 2023, Theorem 2.2], it also satisfies v-descent, but we
will not need this in this paper.) The functor X 7→ Dindcons(X, 3), resp. X 7→ Dindlis(X, 3) satisfies
hyperdescent for quasicompact étale, resp. finite étale covers; see [Hemo et al. 2023, Corollary 8.7].

(iv) If 3= colim 3i is a filtered colimit of condensed rings and X is qcqs, then the natural functors

colim Dlis(X, 3i )
∼=−→ Dlis(X, 3), colim Dcons(X, 3i )

∼=−→ Dcons(X, 3)

are equivalences [loc. cit., Proposition 5.2].
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(v) If X is qcqs, then any constructible sheaf is bounded with respect to the t-structure on D(X, 3)

[loc. cit., Corollary 4.11].

(vi) For X locally Noetherian (and much more generally), the t-structure on D(X, 3) restricts to one on
Dlis(X, 3) and Dcons(X, 3) provided that 3 is t-admissible in the sense of [loc. cit., Definition 6.1]. Here,
t-admissibility is a combination of an algebraic and a topological condition: first, 3∗ needs to be regular
coherent (for example, any regular Noetherian ring of finite Krull dimension, but Z/ℓ2 is excluded). The
topological condition on the condensed structure of 3 is satisfied for all the standard coefficient rings
listed above; see [loc. cit., Theorem 6.2].

(vii) For X locally Noetherian (and again more generally), a sheaf is lisse if and only if it is proétale
locally the constant sheaf associated to a perfect complex of 3∗-modules; see [loc. cit., Theorem 4.13].

(viii) Let X be a qcqs scheme. If the 3-cohomological dimension is uniformly bounded for all proétale
affines U = limi Ui over X , then Ind(Dcons(X, 3))= Dindcons(X, 3) and likewise for ind-lisse sheaves.
If X is of finite type over Fq or a separably closed field, this condition holds for any of the above standard
rings. For discrete p-torsion rings, algebraic extensions E/Qp and their ring of integers OE , this holds
for arbitrary qcqs schemes in characteristic p; see [loc. cit., Lemma 8.6, Proposition 8.2].

For schemes X1, . . . , Xn over a fixed base scheme S (for example, the spectrum of a field) and a
condensed ring 3, we denote the external product in the usual way

⊠ : D(X1, 3)× · · ·×D(Xn, 3)→ D(X1×S · · · ×S Xn, 3),

(M1, . . . , Mn) 7→ M1 ⊠ · · ·⊠ Mn := p∗1(M1)⊗3X · · · ⊗3X p∗n(Mn).

Here pi : X := X1×S · · · ×S Xn→ X i are the projections. This functor induces the functor

⊠ : D(X1, 3)⊗Mod3∗
· · · ⊗Mod3∗

D(Xn, 3)→ D(X1×S · · · ×S Xn, 3), (3-2)

in PrSt
3∗

. Here we regard D(X i , 3) as objects in PrSt
3∗

, like in (i) in the synopsis above. The external tensor
product of constructible sheaves is again constructible, and hence induces a functor

⊠ : Dcons(X1, 3)⊗Perf3∗ · · · ⊗Perf3∗ Dcons(Xn, 3)→ Dcons(X1×S · · · ×S Xn, 3), (3-3)

in CatEx
∞,3∗

(Idem) and likewise for the categories of ind-constructible, resp. (ind-)lisse sheaves.

4. Weil sheaves

In this section, we introduce the categories

Dlis(XWeil, 3)⊂ Dcons(XWeil, 3)⊂ D(XWeil, 3)

consisting of lisse, resp. constructible, resp. all Weil sheaves. These are the categories featuring in the
categorical Künneth formula (Theorem 1.3).

Throughout this section, X is a scheme over a finite field Fq of characteristic p > 0. Unless the
contrary is mentioned, we impose no conditions on X . Moreover, 3 is a condensed ring. We fix an
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algebraic closure F of Fq , and denote by XF := X ×Fq Spec F the base change. Denote by φX (resp. φF)
the endomorphism of XF that is the q-Frobenius on X (resp. Spec F) and the identity on the other factor.

Let

Dlis(XF, 3)⊂ Dcons(XF, 3)⊂ D(XF, 3)

be the categories of lisse, resp. constructible, resp. all proétale sheaves of 3-modules on XF (Definition 3.1).
These categories are objects in CatEx

∞,3∗
(Idem), that is, 3∗-linear stable idempotent complete symmetric

monoidal∞-categories where 3∗ = 0(∗, 3) is the underlying ring.

4A. The Weil-proétale site. The Weil-étale topology for schemes over finite field is introduced in
[Lichtenbaum 2005]; see also [Geisser 2004]. Our approach for the proétale topology is slightly different:

Definition 4.1. The Weil-proétale site of X , denoted by XWeil
proét, is the following site: Objects in XWeil

proét are
pairs (U, ϕ) consisting of U ∈ (XF)proét equipped with an endomorphism ϕ : U →U of F-schemes such
that the map U → XF intertwines ϕ and φX . Morphisms in XWeil

proét are given by equivariant maps, and a
family {(Ui , ϕi )→ (U, ϕ)} of morphisms is a cover if the family {Ui →U } is a cover in (XF)proét.

Note that XWeil
proét admits small limits formed componentwise as lim(Ui , ϕi ) = (lim Ui , lim ϕi ). In

particular, there are limit-preserving maps of sites

(XF)proét→ XWeil
proét→ Xproét (4-1)

given by the functors (in the opposite direction) U ←[ (U, ϕ) and (UF, φU ) ←[ U . We denote by
D(XWeil, 3) the unbounded derived category of sheaves of 3X -modules on XWeil

proét. The maps of sites
(4-1) induce functors

D(X, 3)→ D(XWeil, 3)→ D(XF, 3), (4-2)

whose composition is the usual pullback functor along XF→ X .

Remark 4.2. The functor D(X, 3)→ D(XWeil, 3) is not an equivalence in general. This relates to the
difference between continuous representations Galois versus Weil groups. See, however, Proposition 4.16
for filtered colimits of finite discrete rings 3.

We have the following basic functoriality: Let j : U → X be a weakly étale morphism and consider
the corresponding object (UF, φU ) of XWeil

proét. Then the slice site (XWeil
proét)/(UF,φU ) is equivalent to U Weil

proét.
This gives a functor (Xproét)

op
→ PrSt

3, U 7→ D(U Weil, 3) which is a hypercomplete sheaf of 3∗-linear
presentable stable categories.

Also, we obtain an adjunction

j! : D(U Weil, 3) ⇄ D(XWeil, 3) : j∗

that is compatible with the (( jF)!, ( jF)∗)-adunction under (4-2). The category D(XWeil, 3) is equivalent
to the category of φX -equivariant sheaves on XF, as we will now explain.
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For each i ≥ 0, consider the object (X i , 8i ) ∈ XWeil
proét with X i = Zi+1

× XF the countably disjoint
union of XF, the map X i → XF given by projection and the endomorphism 8i : X i → X i given by
(n, x) 7→ (n− (1, . . . , 1), φX (x)) on sections. The inclusion Zi

→ Zi+1, n 7→ (0, n) induces a map of
schemes X i−1→ X i where X−1 := XF. By pullback, we get a limit-preserving map of sites

(X i−1)proét→ (XWeil
proét)/(X i ,8i ). (4-3)

Lemma 4.3. For each i ≥ 0, the map (4-3) induces an equivalence on the associated 1-topoi.

Proof. As universal homeomorphisms induce equivalences on proétale 1-topoi [Bhatt and Scholze 2015,
Lemma 5.4.2], we may assume that X is perfect. In this case, the sites (4-3) are equivalent because φX

is an isomorphism. Explicitly, an inverse is given by sending an object U ∈ (X i−1)proét to the object
V =

⊔
n∈Zi+1 Vn , Vn→ {n}× XF defined by

Vn =U(n2−n1,...,ni+1−n1)×XF,φ
n1
X

XF,

and with endomorphism ϕ : V → V defined by the maps Vn = Vn−(1,...,1)×XF,φX XF→ Vn−(1,...,1). □

Weil sheaves admit the following presentation as the φ∗X -fixed points of D(XF, 3), see Definition 2.1.

Proposition 4.4. The last functor in (4-2) induces an equivalence

D(XWeil, 3)∼= lim(D(XF, 3)
id
φ∗X
⇒ D(XF, 3)). (4-4)

Remark 4.5. Objects in (4-4) are pairs (M, α) where M ∈D(XF, 3) and α is an isomorphism M ∼=φ∗X M .
Note that the composition φX ◦φF is the absolute q-Frobenius of XF. In particular, it induces the identity
on proétale topoi; see [Bhatt and Scholze 2015, Lemma 5.4.2]. Therefore, replacing φ∗X by φ∗F in (4-4)
yields an equivalent category.

Proof of Proposition 4.4. The structural morphism (X0, 80)→ (XF, φX ) is a cover in XWeil
proét. Its Čech

nerve has objects (X i , 8i ) ∈ XWeil
proét, i ≥ 0 as above. By descent, there is an equivalence

D(XWeil, 3)
∼=−→ Tot(D((XWeil

proét)/(X•,8•), 3)). (4-5)

Under Lemma 4.3, the cosimplicial 1-topos associated with (XWeil
proét)/(X•,8•) is equivalent to the cosimplicial

1-topos associated with the action of φ∗X on (XF)proét. The equivalence (4-5) then becomes

D(XWeil, 3)
∼=−→ lim

BZ
D(XF, 3),

for the diagram BZ→ PrSt
3 corresponding to the endomorphism φ∗X of D(XF, 3). That is, D(XWeil, 3)

is equivalent to the homotopy fixed points of D(XF, 3) with respect to the action of φ∗X , which is our
claim. □
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4B. Weil sheaves on products. The discussion of the previous section generalizes to products of schemes
as follows. Let X1, . . . , Xn be schemes over Fq , and denote by X := X1×Fq · · ·×Fq Xn their product. For
every 1≤ i ≤ n, we have a morphism φX i : X i,F→ X i,F as in the previous section. We use the notation
φX i to also denote the corresponding map on XF = X1,F×F · · · ×F Xn,F which is φX i on the i-th factor
and the identity on the other factors.

We define the site (XWeil
1 ×· · ·×XWeil

n )proét whose underlying category consists of tuples (U, ϕ1, . . . , ϕn)

with U ∈ (XF)proét and pairwise commuting endomorphisms ϕi : U→U such that the following diagram
commutes

U
ϕi
//

��

U

��

XF

φXi
// XF,

for all 1≤ i ≤ n. As before, we denote by D(XWeil
1 × · · ·× XWeil

n , 3) the corresponding derived category
of 3-sheaves.

Using a similar reasoning as in the previous section, we can identify this category of sheaves with the
homotopy fixed points

D(XWeil
1 × · · ·× XWeil

n , 3)
∼=−→ Fix(D(XF, 3), φ∗X1

, . . . , φ∗Xn
) (4-6)

of the commuting family of the functors φ∗X i
, see Remark 2.3. Explicitly, for n = 2, this is the homotopy

limit of the diagram:

D(XF, 3)

φ∗X1
//

id
//

id
��

φ∗X2
��

D(XF, 3)

id
��

φ∗X2
��

D(XF, 3)

φ∗X1
//

id
// D(XF, 3)

Roughly speaking, objects in the category D(XWeil
1 ×· · ·×XWeil

n , 3) are given by tuples (M, α1, . . . , αn)

with M ∈D(XF, 3) and with pairwise commuting equivalences αi : M ∼= φ∗X i
M . That is, equipped with a

collection of equivalences φ∗X j
(αi ) ◦α j ≃ φ∗X i

(α j ) ◦αi for all i, j satisfying higher coherence conditions.

4C. Partial-Frobenius stability. For schemes X1, . . . , Xn over Fq , we denote by X := X1×Fq · · ·×Fq Xn

their product together with the partial Frobenii FrobX i : X→ X , 1≤ i ≤ n. To give a reasonable definition
of lisse and constructible Weil sheaves, we need to understand the relation between partial-Frobenius
invariant constructible subsets in X and constructible subsets in the single factors X i .

Definition 4.6. A subset Z ⊂ X is called partial-Frobenius invariant if FrobX i (Z)= Z for all 1≤ i ≤ n.

The composition FrobX1 ◦ · · · ◦FrobXn is the absolute q-Frobenius on X and thus induces the identity
on the topological space underlying X . Therefore, in order to check that Z ⊂ X is partial-Frobenius
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invariant, it suffices that, for any fixed i , the subset Z is FrobX j -invariant for all j ̸= i . This remark,
which also applies to XF = X1×Fq · · · ×Fq Xn ×Fq Spec F, will be used below without further comment.

We first investigate the case of two factors with one being a separably closed field. This eventually
rests on Drinfeld’s descent result [1987, Proposition 1.1] for coherent sheaves.

Lemma 4.7. Let X be a qcqs Fq -scheme, and let k/Fq be a separably closed field. Denote by p : Xk→ X
the projection. Then Z 7→ p−1(Z) induces a bijection

{constructible subsets in X} ↔ {partial-Frobenius invariant, constructible subsets in Xk}.

Proof. The injectivity is clear because p is surjective. It remains to check the surjectivity. Without
loss of generality we may assume that k is algebraically closed, and replace FrobX by Frobk which is
an automorphism. Given that Z 7→ p−1(Z) is compatible with passing to complements, unions and
localizations on X , we are reduced to proving the bijection for constructible closed subsets Z and for X
affine over Fq . By Noetherian approximation (Lemma 4.9), we reduce further to the case where X is of
finite type over Fq and still affine. Now we choose a locally closed embedding X→ Pn

Fq
into projective

space. A closed subset Z ′⊂ Xk is φk-invariant if and only if its closure inside Pn
k is so. Hence, it is enough

to consider the case where X = Pn
Fq

is the projective space. Let Z ′ be a closed Frobk-invariant subset
of Xk . When viewed as a reduced subscheme, the isomorphism φk restricts to an isomorphism of Z ′. In
particular, OZ ′ is a coherent OXk -module equipped with an isomorphism OZ ′ ∼= φ∗kOZ ′ . Hence, Drinfeld’s
descent result [1987, Proposition 1.1] (see also [Kedlaya 2019, Section 4.2] for a recent exposition) yields
Z ′ = Zk for a unique closed subscheme Z ⊂ X . □

The following proposition generalizes the results [Lau 2004, Lemma 9.2.1] and [Lafforgue 2018,
Lemme 8.12] in the case of curves.

Proposition 4.8. Let X1, . . . , Xn be qcqs Fq-schemes, and denote X = X1 ×Fq · · · ×Fq Xn . Then any
partial-Frobenius invariant constructible closed subset Z ⊂ X is a finite set-theoretic union of subsets of
the form Z1×Fq · · · ×Fq Zn , for appropriate constructible closed subschemes Zi ⊂ X i .

In particular, any partial-Frobenius invariant constructible open subscheme U ⊂ X is a finite union
of constructible open subschemes of the form U1 ×Fq · · · ×Fq Un , for appropriate constructible open
subschemes Ui ⊂ X i .

Proof. By induction, we may assume n = 2. By Noetherian approximation (Lemma 4.9), we reduce to the
case where both X1, X2 are of finite type over Fq . In the following, all products are formed over Fq , and
locally closed subschemes are equipped with their reduced subscheme structure. Let Z ⊂ X1× X2 be a
partial-Frobenius invariant closed subscheme. The complement U = X1× X2 \ Z is also partial-Frobenius
invariant.

In the proof, we can replace X1 (and likewise X2) by a stratification in the following sense: Suppose
X1 = A′ ⊔ A′′ is a set-theoretic stratification into a closed subset A′ with open complement A′′. Once we
know Z ∩ A′× X2 =

⋃
j Z ′1 j × Z ′2 j and Z ∩ A′′× X2 =

⋃
j Z ′′1 j × Z ′′2 j for appropriate closed subschemes
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Z ′1 j ⊂ A′, Z ′′1 j ⊂ A′′ and Z ′2 j , Z ′′2 j ⊂ X2, we have the set-theoretic equality

Z =
⋃

j

Z ′1i × Z ′2 j ∪
⋃

j

Z ′′1 j × Z ′′2 j ,

where Z ′′1 j ⊂ X1 denotes the scheme-theoretic closure. Here we note that taking scheme-theoretic closures
commutes with products because the projections X1× X2→ X i are flat, and that the topological space
underlying the scheme-theoretic closure agrees with the topological closure because all schemes involved
are of finite type.

The proof is now by Noetherian induction on X2, the case X2 =∅ being clear (or, if the reader prefers
the case where X2 is zero dimensional reduces to Lemma 4.7). In the induction step, we may assume,
using the above stratification argument, that both X i are irreducible with generic point ηi . We let ηi be
a geometric generic point over ηi , and denote by pi : X1× X2→ X i the two projections. Both pi are
faithfully flat of finite type and in particular open, so that pi (U ) is open in X i . We have a set-theoretic
equality

Z = ((X1 \ p1(U ))× X2)∪ (X1× (X2 \ p2(U )))∪ (Z ∩ p1(U )× p2(U )).

Once we know Z ∩ p1(U )× p2(U )=
⋃

j Z1 j × Z2 j for appropriate closed Zi j ⊂ pi (U ), we are done.
We can therefore replace X i by pi (U ) and assume that both pi : U → X i are surjective.

The base change U ×X2 η2 is a φη2-invariant subset of X1 × η2. By Lemma 4.7, it is thus of the
form U1× η2 for some open subset U1 ⊂ X1. There is an inclusion (of open subschemes of X1× η2):
U ×X2 η2 ⊂U1× η2. It becomes a set-theoretic equality, and therefore an isomorphism of schemes, after
base change along η2→ η2. By faithfully flat descent, this implies that the two mentioned subsets of
X1× η2 agree. We claim U1 = X1. Since the projection U → X2 is surjective, in particular its image
contains η2, so that U1 is a nonempty subset, and therefore open dense in the irreducible scheme X1.
Let x1 ∈ X1 be a point. Since the projection U → X1 is surjective, U ∩ ({x1}× X2) is a nonempty open
subscheme of {x1}× X2. So it contains a point lying over (x1, η2). We conclude X1× η2 ⊂U .

We claim that there is a nonempty open subset A2 ⊂ X2 such that

X1× A2 ⊂U or, equivalently, X1× (X2 \ A2)⊃ X1× X2 \U.

The underlying topological space of V = X1× X2 \U is Noetherian and thus has finitely many irreducible
components V j . The closure of the projection p2(V j )⊂ X2 does not contain η2, since X1×η2⊂U . Thus,
A2 :=

⋂
j X1 \ p2(V j ) satisfies our requirements.

Now we continue by Noetherian induction applied to the stratification X2 = A2 ⊔ (X2 \ A2): We have
Z ∩ X1 × A2 = ∅, so that we may replace X2 by the proper closed subscheme X2 \ A2. Hence, the
proposition follows by Noetherian induction. □

The following lemma on Noetherian approximation of partial Frobenius invariant subsets is needed for
the reduction to finite type schemes:
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Lemma 4.9. Let X1, . . . , Xn be qcqs Fq -schemes, and denote X = X1×Fq · · ·×Fq Xn . Let X i = lim j X i j

be a cofiltered limit of finite type Fq-schemes with affine transition maps, and write X = lim j X j ,
X j := X1 j ×Fq · · · ×Fq Xnj ; see [Stacks 2017, Tag 01ZA] for the existence of such presentations. Let
Z ⊂ X be a constructible closed subset. Then the intersection

Z ′ =
n⋂

i=1

⋂
m∈Z

Frobm
X i

(Z)

is partial Frobenius invariant, constructible closed and there exists an index j and a partial Frobenius
invariant closed subset Z ′j ⊂ X j such that Z ′ = Z ′j ×X j X as sets.

We note that each FrobX i induces a homeomorphism on the underlying topological space of X so that
Z ′ is well-defined. This lemma applies, in particular, to partial Frobenius invariant constructible closed
subsets Z ⊂ X in which case we have Z = Z ′.

Proof. As Z is constructible, there exists an index j and a constructible closed subscheme Z j ⊂ X j such
that Z = Z j ×X j X as sets. We put Z ′j =

⋂n
i=1

⋂
m∈Z Frobm

X i j
(Z j ). As X j is of finite type over Fq , the

subset Z ′j is still constructible closed. As partial Frobenii induce bijections on the underlying topological
spaces, one checks that Frobm

X i j
(Z j )×X j X = Frobm

X i
(Z) as sets for all m ∈ Z. Thus, Z ′ = Z ′j ×X j X

which, also, is constructible closed because X→ X j is affine. □

4D. Lisse and constructible Weil sheaves. In this subsection, we define the subcategories of lisse and
constructible Weil sheaves and establish a presentation similar to (4-4). Let X1, . . . , Xn be schemes
over Fq , and denote X := X1×Fq · · · ×Fq Xn . Let 3 be a condensed ring.

Definition 4.10. Let M ∈ D(XWeil
1 × · · ·× XWeil

n , 3):

(1) The Weil sheaf M is called lisse if it is dualizable. (Here dualizability refers to the symmetric
monoidal structure on D(XWeil

1 × · · ·× XWeil
n , 3), given by the derived tensor product of 3-sheaves

on the Weil-proétale topos.)

(2) The Weil sheaf M is called constructible if for any open affine Ui ⊂ X i there exists a finite subdivision
into constructible locally closed subschemes Ui j ⊆Ui such that each restriction M |U Weil

1 j ×···×U Weil
nj
∈

D(U Weil
1 j × · · ·×U Weil

nj , 3) is lisse.

The full subcategories of D(XWeil
1 ×· · ·×XWeil

n , 3) consisting of lisse, resp. constructible Weil sheaves
are denoted by

Dlis(XWeil
1 × · · ·× XWeil

n , 3)⊂ Dcons(XWeil
1 × · · ·× XWeil

n , 3).

Both categories are idempotent complete stable 0(X, 3)-linear symmetric monoidal∞-categories.
From the presentation (4-6), we get that a Weil sheaf M is lisse if and only if the underlying object

MF ∈ D(XF, 3) is lisse. So (4-6) restricts to an equivalence

Dlis(XWeil
1 × · · ·× XWeil

n , 3)∼= Fix(Dlis(XF, 3), φ∗X1
, . . . , φ∗Xn

). (4-7)

The same is true for constructible Weil sheaves by the following proposition:

http://stacks.math.columbia.edu/tag/\/\hbox {\upshape 0\global \@savsf =\spacefactor \aftergroup \spacefactor =\@savsf }\/\hbox {\upshape 1\global \@savsf =\spacefactor \aftergroup \spacefactor =\@savsf }ZA
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Proposition 4.11. A Weil sheaf M ∈D(XWeil
1 ×· · ·×XWeil

n , 3) is constructible if and only if the underlying
sheaf MF ∈ D(XF, 3) is constructible. Consequently, (4-6) restricts to an equivalence

Dcons(XWeil
1 × · · ·× XWeil

n , 3)∼= Fix(Dcons(XF, 3), φ∗X1
, . . . , φ∗Xn

). (4-8)

Proof. Clearly, if M is constructible, so is MF by Definition 4.10. Let M ∈D(XWeil
1 ×· · ·×XWeil

n , 3) such
that MF is constructible. We may assume that all X i are affine. We claim that there is a finite subdivision
XF =

⊔
Xα into constructible locally closed subsets such that MF|Xα

is lisse and such that each Xα is
partial Frobenius invariant.

Assuming the claim we finish the argument as follows. By Proposition 4.8, any open stratum U =
X j0 ⊂ XF is a finite union of subsets of the form U1,F×F · · · ×F Un,F and the restriction of M to each
of them is lisse. In particular, the complement XF\U is defined over Fq and arises as a finite union of
schemes of the form X ′ = X ′1×Fq · · · ×Fq X ′n for suitable qcqs schemes X ′i over Fq . Intersecting each X ′F
with the remaining strata

⊔
j ̸= j0 X j , we conclude by induction on the number of strata.

It remains to prove the claim. We start with any finite subdivision XF=
⊔

X ′j into constructible locally
closed subsets such that MF|X ′j is lisse. Pick an open stratum X ′j0 , and set

X j0 =

n⋃
i=1

⋃
m∈Z

φm
X i

(X ′j0). (4-9)

This is a constructible open subset of XF by Lemma 4.9 applied to its closed complement. Furthermore,
MF|X j0

is lisse by its partial Frobenius equivariance, noting that φ∗X i
induces equivalences on proétale

topoi to treat the negative powers in (4-9). As before, XF\X j0 is defined over Fq . So replacing X ′j , j ̸= j0
by X ′j ∩ (XF\X j0), the claim follows by induction on the number of strata. □

In the case of a single factor X = X1, the preceding discussion implies

D•(XWeil, 3)∼= lim(D•(XF, 3)
id
φ∗X
⇒ D•(XF, 3)), (4-10)

for • ∈ {∅, lis, cons}.

4E. Relation with the Weil groupoid. In this subsection, we relate lisse Weil sheaves with representations
of the Weil groupoid. Throughout, we work with étale fundamental groups as opposed to their proétale
variants in order to have Drinfeld’s lemma available; see Section 5C. The two concepts differ in general,
but agree for geometrically unibranch (for example, normal) Noetherian schemes; see [Bhatt and Scholze
2015, Lemma 7.4.10].

For a Noetherian scheme X , let π1(X) be the étale fundamental groupoid of X as defined in [SGA 1
2003, Exposé V, Sections 7 and 9]. Its objects are geometric points of X , and its morphisms are
isomorphisms of fiber functors on the finite étale site of X . This is an essentially small category. The
automorphism group in π1(X) at a geometric point x→ X is profinite. It is denoted π1(X, x) and called
the étale fundamental group of (X, x). If X is connected, then the natural map Bπ1(X, x)→ π1(X) is
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an equivalence for any x→ X . If X is the disjoint sum of schemes X i , i ∈ I , then π1(X) is the disjoint
sum of the π1(X i ), i ∈ I . In this case, if x→ X factors through X i , then π1(X, x)= π1(X i , x).

Definition 4.12. Let X1, . . . , Xn be Noetherian schemes over Fq , and write X = X1×Fq · · · ×Fq Xn . The
Frobenius-Weil groupoid is the stacky quotient

FWeil(X)= π1(XF)/⟨φ
Z
X1

, . . . , φZ
Xn
⟩, (4-11)

where we use that the partial Frobenii φX i induce automorphisms on the finite étale site of XF.

For n = 1, we denote FWeil(X) =Weil(X). Even if X is connected, its base change XF might be
disconnected in which case the action of φX permutes some connected components. Therefore, fixing
a geometric point of XF is inconvenient, and the reason for us to work with fundamental groupoids as
opposed to fundamental groups. The automorphism groups in Weil(X) carry the structure of locally
profinite groups: indeed, if X is connected, then Weil(X) is, for any choice of a geometric point x→ XF,
equivalent to the classifying space of the Weil group Weil(X, x) from [Deligne 1980, Définition 1.1.10].
Recall that this group sits in an exact sequence of topological groups

1→ π1(XF, x)→Weil(X, x)→Weil(F/Fq)≃ Z, (4-12)

where π1(XF, x) carries its profinite topology and Z the discrete topology. The topology on the morphism
groups in Weil(X) obtained in this way is independent from the choice of x → XF. The image of
Weil(X, x)→ Z is the subgroup mZ where m is the degree of the largest finite subfield in 0(X,OX ). In
particular, we have m = 1 if XF is connected. Let us add that if x→ XF is fixed under φX , then the action
of φX on π1(XF, x) corresponds by virtue of the formula φ∗X = (φ∗F)−1 to the action of the geometric
Frobenius, that is, the inverse of the q-Frobenius in Weil(F/Fq).

Likewise, for every n ≥ 1, the stabilizers of the Frobenius–Weil groupoid are related to the partial
Frobenius–Weil groups introduced in [Drinfeld 1987, Proposition 6.1] and [Lafforgue 2018, Remar-
que 8.18]. In particular, there is an exact sequence

1→ π1(XF, x)→ FWeil(X, x)→ Zn,

for each geometric point x→ XF. This gives FWeil(X) the structure of a locally profinite groupoid.
Let 3 be either of the following coherent topological rings: a coherent discrete ring, an algebraic field

extension E ⊃Qℓ for some prime ℓ, or its ring of integers OE ⊃ Zℓ. For a topological groupoid W , we
will denote by Rep3(W ) the category of continuous representations of W with values in finitely presented
3-modules and by Repfp

3(W ) ⊂ Rep3(W ) its full subcategory of representations on finite projective
3-modules. Here finitely presented 3-modules M carry the quotient topology induced from the choice
of any surjection 3n

→ M , n ≥ 0 and the product topology on 3n .

Lemma 4.13. In the situation above, the category Rep3(W ) is 3∗-linear and abelian. In particular, its
full subcategory Repfp

3(W ) is 3∗-linear and additive.
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Proof. Let Wdisc be the discrete groupoid underlying W , and denote by Rep3(Wdisc) the category
of Wdisc-representations on finitely presented 3-modules. Evidently, this category is 3∗-linear. It is
abelian since 3 is coherent (Synopsis 3.2(vi)); see also [Hemo et al. 2023, Lemma 6.5]. We claim that
Rep3(W ) ⊂ Rep3(Wdisc) is a 3∗-linear full abelian subcategory. If 3 is discrete (and coherent), then
every finitely presented 3-module carries the discrete topology and the claim is immediate; see also
[Stacks 2017, Tag 0A2H]. For 3= E,OE , one checks that every map of finitely presented 3-modules is
continuous, every surjective map is a topological quotient and every injective map is a closed embedding.
For the latter, we use that every finitely presented 3-module can be written as a countable filtered colimit
of compact Hausdorff spaces along injections, and that every injection of compact Hausdorff spaces is a
closed embedding. This implies the claim. □

We apply this for W being either of the locally profinite groupoids π1(X), π1(XF) or FWeil(X). Note
that restricting representations along π1(XF)→ FWeil(X) induces an equivalence of 3∗-linear abelian
categories

Rep3(FWeil(X))∼= Fix(Rep3(π1(XF)), φX1, . . . , φXn ), (4-13)

and similarly for the 3∗-linear additive category Repfp
3(FWeil(X)).

Definition 4.14. For an integer n ≥ 0, we write D{−n,n}
lis (X, 3) for the full subcategory of Dlis(X, 3) of

objects M such that M and its dual M∨ lie in degrees [−n, n] with respect to the t-structure on D(X, 3).

Lemma 4.15. In the situation above, there is a natural functor

Rep3(FWeil(X))→ D(XWeil
1 × · · ·× XWeil

n , 3)♥, (4-14)

that is fully faithful. Moreover, the following properties hold if 3 is either finite discrete or 3=OE for
E ⊃Qℓ finite:

(1) An object M lies in the essential image of (4-14) if and only if its underlying sheaf MF is locally on
(XF)proét isomorphic to N ⊗3∗ 3XF

for some finitely presented 3∗-module N.

(2) The functor (4-14) restricts to an equivalence of 3∗-linear additive categories

Repfp
3(FWeil(X))

∼=−→ D{0,0}
lis (XWeil

1 × · · ·× XWeil
n , 3).

(3) If 3∗ is regular (so that 3 is t-admissible, see Synopsis 3.2(vi)), then (4-14) restricts to an equivalence
of 3∗-linear abelian categories

Rep3(FWeil(X))
∼=−→ Dlis(XWeil

1 × · · ·× XWeil
n , 3)♥.

If all X i , i = 1, . . . , n are geometrically unibranch, then (1), (2) and (3) hold for general coherent
topological rings 3 as above.

Proof. There is a canonical equivalence of topological groupoids π1(XF)∼=
̂

π
proét
1 (XF) with the profinite

completion of the proétale fundamental groupoid; see [Bhatt and Scholze 2015, Lemma 7.4.3]. It follows

http://stacks.math.columbia.edu/tag/0A2H
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from [loc. cit., Lemmas 7.4.5, 7.4.7] that restricting representations along π
proét
1 (XF)→ π1(XF) induces

full embeddings

Rep3(π1(XF)) ↪→ Rep3(π
proét
1 (XF)) ↪→ D(XF, 3)♥, (4-15)

that are compatible with the action of φX i for all i = 1, . . . , n. So we obtain the fully faithful functor
(4-14) by passing to fixed points, see (4-13), (4-7) and Lemma 2.2 (see also Remark 2.3).

Part (1) describes the essential image of Rep3(π
proét
1 (XF)) ↪→ D(XF, 3)♥. So if 3 is finite discrete

or profinite, then the first functor in (4-15) is an equivalence, and we are done. Part (2) is immediate
from (1), noting that an object in the essential image of (4-15) is lisse if and only if its underlying module
is finite projective. Likewise, part (3) is immediate from (1), using Synopsis 3.2(vii). Here we need to
exclude rings like 3= Z/ℓ2 in order to have a t-structure on lisse sheaves.

Finally, if all X i are geometrically unibranch, so is XF which follows from the characterization [Stacks
2017, Tag 0BQ4]. In this case, we get π1(XF)∼= π

proét
1 (XF) by [Bhatt and Scholze 2015, Lemma 7.4.10].

This finishes the proof. □

4F. Weil-étale versus étale sheaves. We end this section with the following description of Weil sheaves
with (ind-)finite coefficients. Note that such a simplification in terms of ordinary sheaves is not possible
for 3= Z, Zℓ, Qℓ, say.

Proposition 4.16. Let X be a qcqs Fq -scheme. Let 3 be a finite discrete ring or a filtered colimit of such
rings. Then the natural functors

Dlis(X, 3)→ Dlis(XWeil, 3), Dcons(X, 3)→ Dcons(XWeil, 3),

are equivalences.

Proof. Throughout, we repeatedly use that filtered colimits commute with finite limits in Cat∞. Using
compatibility of Dcons with filtered colimits in 3 (Synopsis 3.2(iv)), we may assume that 3 is finite discrete.
By the comparison result with the classical bounded derived category of constructible sheaves [Hemo
et al. 2023, Proposition 7.1], we can identify the categories D•(X, 3), resp. D•(XF, 3) for • ∈ {lis, cons}
with full subcategories of the derived category of étale 3-sheaves D(Xét, 3), resp. D(XF,ét, 3). Write
X = lim X i as a cofiltered limit of finite type Fq-schemes X i with affine transition maps [Stacks 2017,
Tag 01ZA]. Using the continuity of étale sites [Stacks 2017, Tag 03Q4], there are natural equivalences

colim D•(X i , 3)
∼=−→ D•(X, 3), colim D•(XWeil

i , 3)
∼=−→ D•(XWeil, 3) (4-16)

for • ∈ {lis, cons}. Hence, we can assume that X is of finite type over Fq .
To show full faithfulness, we claim more generally that the natural map

D(Xét, 3)→ lim(D(XF,ét, 3)
id
φ∗X
⇒ D(XF,ét, 3))=: D(XWeil

ét , 3)

http://stacks.math.columbia.edu/tag/0BQ4
http://stacks.math.columbia.edu/tag/01ZA
http://stacks.math.columbia.edu/tag/03Q4


518 Tamir Hemo, Timo Richarz and Jakob Scholbach

is fully faithful. As 3 is torsion, this is immediate from [Geisser 2004, Corollary 5.2] applied to the inner
homomorphisms between sheaves. Let us add that this induces fully faithful functors

D+(Xét, 3)→ D+(XWeil
ét , 3)→ D(XWeil, 3) (4-17)

on bounded below objects; see [Bhatt and Scholze 2015, Proposition 5.2.6(1)].
It remains to prove essential surjectivity. Using a stratification as in Definition 4.10, it is enough to

consider the lisse case. Pick M ∈Dlis(XWeil, 3). It is enough to show that M lies is in the essential image
of (4-17), noting that the functor detects dualizability. As M is bounded, this will follow from showing
that for every j ∈ Z, the cohomology sheaf H j (M) ∈ D(XWeil, 3)♥ is in the essential image of (4-17).

Fix j ∈ Z. As M is lisse, the underlying sheaf H j (M)F ∈ D(XF, 3)♥ is proétale-locally constant
(Synopsis 3.2(vii)) and valued in finitely presented 3-modules. By Lemma 4.15(1), it comes from a
representation of Weil(X). Restriction of representations along Weil(X)→ π1(X) fits into a commutative
diagram:

Rep3(π1(X))

��

∼=
// Rep3(Weil(X))

��

D(Xét, 3)♥ // D(XWeil, 3)♥

where the upper horizontal arrow is an equivalence since 3 is finite. In particular, the object H j (M) is in
the essential image of the fully faithful functor (4-17). □

5. The categorical Künneth formula

We continue with the notation of Section 4. In particular, Fq denotes a finite field of characteristic p > 0.
Recall from Section 2 the tensor product of 3∗-linear idempotent complete stable∞-categories. The
external tensor product of sheaves (M1, . . . , Mn) 7→ M1 ⊠ · · ·⊠ Mn as in (3-2) induces a functor

D•(XWeil
1 , 3)⊗Perf3∗ · · · ⊗Perf3∗ D•(XWeil

n , 3)→ D•(XWeil
1 × · · ·× XWeil

n , 3), (5-1)

for • ∈ {lis, cons}. Throughout, we consider the following situation. In Remark 5.3 we explain the
compatibility of (5-1) with certain (co-)limits in the schemes X i and coefficients 3, which allows to relax
these assumptions on X and 3 somewhat.

Situation 5.1. The schemes X1, . . . , Xn are of finite type over Fq , and 3 is the condensed ring associated
with one of the following topological rings:

(a) A finite discrete ring of prime-to-p-torsion.

(b) The ring of integers OE of an algebraic field extension E ⊃Qℓ for ℓ ̸= p (for example Zℓ).

(c) An algebraic field extension E ⊃Qℓ for ℓ ̸= p (for example Qℓ).

(d) A finite discrete p-torsion ring that is flat over Z/pm for some m ≥ 1.
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Theorem 5.2. In Situation 5.1, the functor (5-1) is an equivalence in each of the following cases:

(1) •= cons and 3 is as in (a), (b) or (c).

(2) •= lis and 3 is as in (a), (b), (d) or as in (c) if all X i , i = 1, . . . , n are geometrically unibranch (for
example, normal).

In the p-torsion free cases (a), (b) and (c), the full faithfulness is a direct consequence of the Künneth
formula applied to the X i,F. In the p-torsion case (d), we use Artin–Schreier theory instead. It would be
interesting to see whether this part can be extended to constructible sheaves using the mod-p-Riemann–
Hilbert correspondence as in, say, [Bhatt and Lurie 2019]. In all cases, the essential surjectivity relies on
a variant of Drinfeld’s lemma for Weil group representations.

Before turning to the proof of Theorem 5.2, we record the following compatibility of the functor (5-1)
with (co-)limits. This can be used to reduce the case of an (infinite) algebraic extension E ⊃Qℓ in cases
(b) and (c) above to the case where E ⊃Qℓ is finite. In the sequel we will therefore assume E is finite in
these cases. Remark 5.3 can further be used to extend Theorem 5.2 to qcqs Fq-schemes X i and finite
discrete rings like Z/m for any integer m ≥ 1 in cases (a) and (d).

Remark 5.3 (compatibility of (5-1) with certain (co-)limits). Throughout, we repeatedly use that fil-
tered colimits commute with finite limits in CatEx

∞,3∗
(Idem): the forgetful functors CatEx

∞,3∗
(Idem)→

CatEx
∞

(Idem)→ Cat∞ create these (co)limits [Lurie 2017, Theorem 1.1.4.4; 2009, Corollary 4.4.5.21],
and the statement holds in any compactly generated∞-category, such as Cat∞ [Bhatt and Mathew 2021,
Example 3.6(3)]. We will also throughout use that in all the stable∞-categories encountered below the
tensor product preserves colimits and in particular finite limits:

(1) Filtered colimits in 3. First off, extension of scalars along any map of condensed rings 3→ 3′

induces a commutative diagram in CatEx
∞,3∗

(Idem):

D•(XWeil
1 , 3)⊗Perf3∗ · · · ⊗Perf3∗ D•(XWeil

n , 3) //

��

D•(XWeil
1 · · · × XWeil

n , 3)

��

D•(XWeil
1 , 3′)⊗Perf3′∗

· · · ⊗Perf3′∗
D•(XWeil

n , 3′) // D•(XWeil
1 · · · × XWeil

n , 3′)

It follows from the compatibility of Dcons with filtered colimits in 3 (Synopsis 3.2(iv)) that both sides of
(5-1) are compatible with filtered colimits in 3.

(2) Finite products in 3. Let 3=
∏

3i be a finite product of condensed rings. For any scheme X , the
natural map D•(X, 3)→

∏
D•(X, 3i ) is an equivalence for • ∈ {∅, lis, cons}, and likewise for Weil

sheaves if X is defined over Fq . As 3∗ =
∏

3i,∗, we see that (5-1) is compatible finite products in the
coefficients.

(3) Limits in X i for discrete 3. Assume that 3 is finite discrete; see Situation 5.1(a), (d). Let X1, . . . , Xn

be qcqs Fq -schemes. Write each X i as a cofiltered limit X i = lim X i j of finite type Fq -schemes X i j with
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affine transition maps [Stacks 2017, Tag 01ZA]. As 3 is finite discrete, we can use the continuity of étale
sites as in (4-16) to show that the natural map

colim j D•(XWeil
1 j × · · ·× XWeil

nj , 3)
∼=−→ D•(XWeil

1 · · · × XWeil
n , 3),

is an equivalence for • ∈ {lis, cons}. Thus, (5-1) is compatible with cofiltered limits of finite type
Fq -schemes with affine transition maps.

5A. A formulation in terms of prestacks. Before turning to the proof, we point out a formulation of
the results of the previous subsection in terms of symmetric monoidality of a certain sheaf theory. This
formulation makes the connection with constructions in the geometric approaches to the Langlands
program [Gaitsgory et al. 2022; Zhu 2021; Lafforgue and Zhu 2019] more manifest. Readers not familiar
with prestacks and formulations of sheaf theories on them can safely skip this section. The categories of
constructible, resp. lisse 3-sheaves assemble into a lax symmetric monoidal functor

D•,3 : (SchF)
op
→ CatEx

∞,3(Idem) (•= lis or cons). (5-2)

Namely, as a functor it sends a scheme X to the category of constructible, resp. lisse 3-sheaves on X , and
a morphism f : X→ Y to the functor f ∗ : D•(Y, 3)→ D•(X, 3). These are objects, resp. maps in the
∞-category CatEx

∞,3(Idem) :=ModPerf3(CatEx
∞

(Idem)), see Section 2A for notation. The lax monoidal
structure is given by the external tensor product of sheaves

⊠ : D•(Xproét, 3)⊗Perf3 D•(Yproét, 3)→ D•((X ×F Y )proét, 3).

That is, we consider the category of schemes as symmetric monoidal with respect to the fiber product
over F, and the external tensor product is natural on X and Y in the appropriate sense; see [Gaitsgory and
Lurie 2019, Section 3.1; Gaitsgory and Rozenblyum 2017, Section III.2] for details and precise statements.
This functor ⊠ often fails to be an equivalence, so D•,3 is not symmetric monoidal. The assertion of
Theorem 5.2 is that this issue is resolved by replacing sheaves with Weil sheaves. In order to formulate
Theorem 5.2 as the monoidality of a certain functor, we need to replace the category of schemes by a
category of objects that model Weil sheaves. We will represent these by taking the appropriate formal
quotient by the partial Frobenius automorphism. Such formal quotients can be taken in the category of
prestacks.

We denote by PreStkF the category of (accessible) functors from the category CAlgF of commutative
algebras over F to the∞-category Ani of Anima. The functor of taking points embeds the category of
schemes fully faithfully into PreStkF. We denote by

D•,3 : (PreStkF)
op
→ CatEx

∞,3(Idem) (5-3)

the functor obtained by right Kan extension [Lurie 2009, Section 4.3.2] along the inclusion (Schfp
F )op
⊂

(PreStkF)
op. Concretely, [Lurie 2018, Propositions 6.2.1.9 and 6.2.3.1], given a prestack Y which can be

http://stacks.math.columbia.edu/tag/01ZA
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written as a colimit of schemes Yα over some indexing category A we have a canonical equivalence

D•(Y, 3)∼= lim
α

D•(Yα, 3). (5-4)

This limit is formed in CatEx
∞,3(Idem); recall from around (2-3) that the Ind-completion functor to

CatEx
∞,3(Idem)→ PrSt

3 does not preserve (even finite) limits.
With this general sheaf theory in place, we can restrict our attention to the class of prestacks that is

relevant to the derived Drinfeld lemma.

Definition 5.4. Let X be a scheme over Fq . The Weil prestack is defined as

XWeil
:= colim(X ×Fq F

id
φX
⇒ X ×Fq F) ∈ PreStkF,

i.e., it is the prestack sending R ∈ CAlgF to the colimit

XWeil(R)= colim(X (R)
id
φX
⇒ X (R)). (5-5)

We denote by Schfp
Weil the smallest full monoidal subcategory of PreStkF containing the Weil prestacks

of finite type schemes X/Fq . Equivalently, this is the full subcategory consisting of finite products of the
form XWeil

1 × · · ·× XWeil
n .

Lemma 5.5. Let X1, . . . , Xn be schemes over Fq . There is a canonical equivalence

D•(XWeil
1 ×F · · · ×F XWeil

n )
∼=−→ Fix(D•(XF, 3), φ∗X1

, . . . , φ∗Xn
). (5-6)

Proof. Let 8 : BZn
→ PreStkF be the functor corresponding to the commuting automorphisms φX i . Then

the claim follows immediately from the identification of XWeil
1 ×F · · · ×F XWeil

n with the colimit of 8 (as
an object in PreStkF). □

Theorem 5.6. Suppose • and 3 are as in Theorem 5.2. Then the restriction of D•,3 to Weil prestacks, i.e.,
the following composite

D•,3 : (Schfp
Weil)

op
⊂ PreStkF→ CatEx

∞,3(Idem), (5-7)

is symmetric monoidal.

Proof. As was noted above, the functor in (5-2) is lax symmetric monoidal. By [Torii 2023, Proposition 2.7],
the Kan extension in (5-3) is still lax symmetric monoidal. To check its restriction to the (symmetric
monoidal) subcategory Schfp

Weil is symmetric monoidal it suffices to show that the lax monoidal maps are
in fact isomorphisms. This is precisely the content of Theorem 5.2. □

5B. Full faithfulness. In this section, we prove that the functor (5-1) is fully faithful under the conditions
of Theorem 5.2. We first consider the p-torsion free cases:

Proposition 5.7. Let X1, . . . , Xn and 3 be as in Situation 5.1(a), (b) or (c). Then the functor (5-1) is
fully faithful for • ∈ {lis, cons}.
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Proof. For constructible sheaves on X i,F (as opposed to XWeil
i ), this interpretation of the Künneth formula

appears already in [Gaitsgory et al. 2022, Section A.2]. Throughout, we drop 3 from the notation. It is
enough to verify that for all Mi , Ni ∈ Dcons(XWeil

i ) the natural map

n⊗
i=1

HomD(XWeil
i )(Mi , Ni )→ HomD(XWeil

1 ×···×XWeil
n )(M1 ⊠ · · ·⊠ Mn, N1 ⊠ · · ·⊠ Nn) (5-8)

is an equivalence. As (5-8) is functorial in the objects and compatible with shifts, it suffices, by
Definition 4.10, to consider the case where Mi , i = 1, . . . , n is the extension by zero of a lisse Weil
3-sheaf on some locally closed subscheme Zi ⊂ X i . Using the adjunction

(ιi )! : Dcons(ZWeil
i ) ⇄ Dcons(XWeil

i ) : (ιi )
!,

and the dualizability of lisse sheaves, we reduce to the case Mi = 3X i , i = 1, . . . , n. That is, (5-8)
becomes a map of cohomology complexes. By Proposition 4.4, we have

R0(XWeil
i , Ni )= Fib(R0(X i,F, Ni )

φ∗Xi
−id

−−−−→ R0(X i,F, Ni )). (5-9)

A similar computation holds for the mapping complexes in D(XWeil
1 × · · ·× XWeil

n ); see (4-6). Such finite
limits commute with the tensor product in Mod3. Thus, (5-9) reduces to the Künneth formula

R0(X1,F, N1)⊗ · · ·⊗R0(Xn,F, Nn)
∼=−→ R0(X1,F×F · · · ×F Xn,F, N1 ⊠ · · ·⊠ Nn),

where we use that the X i are of finite type and the coprimality assumptions on 3; see [Stacks 2017,
Tag 0F1P]. □

Next, we consider the p-torsion case.

Proposition 5.8. Let X1, . . . , Xn and 3 be as in Situation 5.1(d). Then the functor (5-1) is fully faithful
for •= lis.

Proof. As in the proof of Proposition 5.7, we need to show that the map
n⊗

i=1

R0(XWeil
i , Ni )→ R0(XWeil

1 × · · ·× XWeil
n , N1 ⊠ · · ·⊠ Nn) (5-10)

is an equivalence for any Ni ∈ Dlis(XWeil
i ). Using Zariski descent for both sides, we may assume that

each X i is affine. As 3 is finite discrete (see also the discussion around (4-16)), the invariance of the
étale site under perfection reduces us to the case where each X i is perfect. The proof now proceeds by
several reduction steps: (1) Reduce to Ni =3X i . (2) Reduce to 3= Z/p. (3) Reduce to q = p being a
prime. (4) The last step is then an easy computation.

Step 1 (we may assume Ni =3X i ). In order to show (5-10) is a quasiisomorphism, it suffices to show
this after applying τ≤r for arbitrary r . The complexes Ni are bounded (Synopsis 3.2(v)). By shifting
them appropriately, we may assume r = 0. Note that R0(XWeil

i , Ni )∼= R0(X i , Ni ); see Proposition 4.16.
By right exactness of the tensor product, we have τ≤0

(⊗
i R0(X i , Ni )

)
=

⊗
i τ≤0R0(X i , Ni ). By the

http://stacks.math.columbia.edu/tag/0F1P
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comparison with the classical notion of constructible sheaves (for discrete coefficients, see [Hemo et al.
2023, Proposition 7.1] and the discussion preceding it), there is an étale covering Ui → X i such that
Ni |Ui is perfect-constant. Let Ui,• be the Čech nerve of this covering. By étale descent, we have

R0(X i , Ni )= lim
[ j]∈1

R0(Ui, j , Ni ).

For each r ∈ Z, there is some jr such that

τ≤r lim
[ j]∈1

R0(Ui, j , Ni )= lim
[ j]∈1, j≤ jr

τ≤r R0(Ui, j , Ni ).

This can be seen from the spectral sequence (note that it is concentrated in degrees j ≥ 0 and degrees
j ′ ≥ r for some r , since the complexes Ni are bounded from below)

H j ′(Ui, j , Ni )⇒ H j ′+ j lim
j∈1

R0(Ui, j , Ni )= H j ′+ j (X i , Ni ).

As the tensor product in (5-10) commutes with finite limits, we may thus assume that each Ni is perfect-
constant. Another dévissage reduces us to the case Ni =3X i , the constant sheaf itself.

Step 2 (we may assume 3= Z/p). By assumption, 3 is flat over Z/pm for some m ≥ 1. We immediately
reduce to 3= Z/pm . For any perfect affine scheme X = Spec R in characteristic p > 0, we claim that
R0(X, Z/pm)⊗Z/pm Z/pr ∼=R0(X, Z/pr ). Assuming the claim, we finish the reduction step by tensoring
(5-10) with the short exact sequence of Z/pm-modules 0→ Z/pm−1

→ Z/pm
→ Z/p→ 0, using that

finite limits commutes with tensor products. It remains to prove the claim. The Artin–Schreier–Witt exact
sequence of sheaves on Xét yields

R0(X, Z/pm)= [Wm(R)
F−id
−−→Wm(R)].

Now we use that Wm(R)⊗Z/pm Z/pr ∼=−→ Wr (R) compatibly with F , which holds since R is perfect.
This shows the claim, and we have accomplished Step 2.

Step 3 (we may assume q is prime). Recall that q = pr is a prime power. In order to reduce to the case
r = 1, let X ′i := X i , but now regarded as a scheme over Fp. We have X ′i,F =

⊔r
i=1 X i,F. The Galois group

Gal(Fq/Fp) is generated by the p-Frobenius, which acts by permuting the components in this disjoint
union. Thus, we have D((X ′i )

Weil)= D(XWeil
i ). The same reasoning also applies to several factors XWeil

i ,
so we may assume our ground field to be Fp.

Step 4. Set R :=
⊗

i,Fp
Ri , RF := R⊗Fp F. We write φi for the p-Frobenius on Ri and also for any map

on a tensor product involving Ri , by taking the identity on the remaining tensor factors. By Artin–Schreier
theory, we have

R0(XWeil
i , Z/p)

∗
= R0(X i , Z/p)= [Ri

φi−id
−−→ Ri ],

R0(X1,F×F · · · ×F Xn,F, Z/p)= [RF
φ−id
−−→ RF],

where the equality ∗ follows from Proposition 4.16 and φ is the absolute p-Frobenius of RF. Thus, the
right hand side in (5-10) is the homotopy orbits of the action of Zn+1 on RF, whose basis vectors act
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as φ1, . . . , φn and φ. Note that φ is the composite φF ◦ φ1 ◦ · · · ◦ φn , where φF is the Frobenius on F.
Thus, the previously mentioned Zn+1-action on RF is equivalent to the one where the basis vectors act as
φ1, . . . , φn and φF. We conclude our claim by using that [RF

id−φF
−−−→ RF] is quasiisomorphic to R[0]. □

5C. Drinfeld’s lemma. The essential surjectivity in Theorem 5.2 is based on the following variant of
Drinfeld’s lemma [1980, Theorem 2.1]; see also [Lafforgue 1997, IV.2, Theorem 4; 2018, Lemme 8.11;
Lau 2004, Theorem 8.1.4; Kedlaya 2019, Theorem 4.2.12; Heinloth 2018, Lemma 6.3; Scholze and
Weinstein 2020, Theorem 16.2.4] for expositions. Its formulation is close to [Lau 2004, Theorem 8.1.4],
and in this form is a slight extension of [Lafforgue 2018, Lemme 8.2] for Zℓ-coefficients and [Xue
2020b, Lemma 3.3.2] for Qℓ-coefficients. We will drop the coefficient ring 3 from the notation whenever
convenient.

Let X1, . . . , Xn be Noetherian schemes over Fq , and denote X = X1 ×Fq · · · ×Fq Xn . Recall the
Frobenius–Weil groupoid FWeil(X), see Definition 4.12. The projections XF → X i,F onto the single
factors induce a continuous map of locally profinite groupoids

µ : FWeil(X)→Weil(X1)× · · ·×Weil(Xn). (5-11)

Theorem 5.9 (version of Drinfelds’s lemma). Let 3 be as in Situation 5.1. Restriction along the map
(5-11) induces an equivalence

Rep3(Weil(X1)× · · ·×Weil(Xn))
∼=−→ Rep3(FWeil(X)), (5-12)

between the abelian categories of continuous representations on finitely presented 3-modules.

Proof. For all objects x ∈ FWeil(X), that is, all geometric points x→ XF, passing to the automorphism
groups induces a commutative diagram of locally profinite groups:

1 // π1(XF, x) //

��

FWeil(X, x) //

µx

��

Zn

1 //
∏n

i=1 π1(X i,F, x) //
∏n

i=1 Weil(X i , x) // Zn

The left vertical arrow is surjective [Stacks 2017, Tags 0BN6, 0385]. Thus µx is surjective as well
and hence (5-12) is fully faithful. For essential surjectivity, it remains to show that any continuous
representation FWeil(X, x)→ GL(M) on a finitely presented 3-module M factors through µx . The key
input is Drinfeld’s lemma: it implies that µx induces an isomorphism on profinite completions. Therefore,
it is enough to apply Lemma 5.10 below with H := FWeil(X, x)→Weil(X1)× · · · ×Weil(Xn) =: G
and K := π1(XF, x). This completes the proof of (5-12). □

The following lemma formalizes a few arguments from [Xue 2020b, Section 3.2.3], and we reproduce
the proof for the convenience of the reader.

http://stacks.math.columbia.edu/tag/0BN6
http://stacks.math.columbia.edu/tag/0385
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Lemma 5.10 (Drinfeld, Xue). Let 3 be as in Situation 5.1. Let µ : H → G be a continuous surjection of
locally profinite groups that induces an isomorphism on profinite completions. Assume that there exists a
compact open normal subgroup K ⊂ H containing ker µ such that H/K is finitely generated and injects
into its profinite completion. Then µ induces an equivalence

Rep3(G)∼= Rep3(H)

between their categories of continuous representations on finitely presented 3-modules.

Proof. The case where 3 is finite discrete is obvious, and hence so is the case 3=OE for some finite
field extension E ⊃Qℓ. The case 3= E is reduced to 3=Qℓ. As µ is surjective, it remains to show
that every continuous representation ρ : H → GL(M) on a finite-dimensional Qℓ-vector space factors
through G, that is, ker µ⊂ ker ρ. One shows the following properties:

(1) The group ker µ is the intersection over all open subgroups in K which are normal in H .

(2) The group ker ρ∩K is a closed normal subgroup in H such that K/ ker ρ∩K ∼=ρ(K ) is topologically
finitely generated.

These properties imply ker µ ⊂ ker ρ ∩ K as follows: For a finite group L , let UL := ∩ ker(K → L)

where the intersection is over all continuous morphisms K → L that are trivial on ker ρ ∩ K . Because of
the topologically finitely generatedness in (2), this is a finite intersection so that UL is open in K . Also, it
is normal in H , and hence ker µ⊂UL by (1). On the other hand, it is evident that ker ρ ∩ K =

⋂
L UL

because K is profinite.
For the proof of (1) observe that ker µ agrees with the kernel of H→ H∧ ∼= G∧ by our assumption on

the profinite completions. Using ker µ⊂ K and the injection H/K → (H/K )∧ implies (1).
For (2) it is evident that ker ρ ∩ K is a closed normal subgroup in H . Since K is compact, its image

ρ(K ) is a closed subgroup of the ℓ-adic Lie group GL(M), hence an ℓ-adic Lie group itself. The final
assertion follows from [Serre 1966, Théorème 2]. □

For the overall goal of proving essential surjectivity in Theorem 5.2, we need to investigate how
representations of product groups factorize into external tensor products of representations. In view of
Lemma 4.13 and its proof, it is enough to consider representations of abstract groups, disregarding the
topology. This is done in the next section.

5D. Factorizing representations. In this subsection, let 3 be a Dedekind domain [Stacks 2017, Tag 034X].
Thus, any submodule N of a finite projective 3-module M is again finite projective.

Given any group W , we write Repfp
3(W ) for the category of W -representations on finite projective

3-modules. As in [Curtis and Reiner 1962, Sections 73.8 and 75], we say that such a W -representation
M is fp-simple if any subrepresentation 0 ̸= N ⊂ M has maximal rank. By induction on the rank, every
nonzero representation in Repfp

3(W ) admits a nonzero fp-simple subrepresentation. The proof of the
following lemma is left to the reader. It parallels [loc. cit., Theorem 75.6].

http://stacks.math.columbia.edu/tag/034X
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Lemma 5.11. A representation M ∈ Repfp
3(W ) is fp-simple if and only if M ⊗3 Frac(3) is fp-simple

(hence, simple).

The following proposition will serve in the proof of Theorem 5.2 using Theorem 5.9, where we will
need to decompose representations of a product of Weil groups into decompositions of the individual
Weil groups.

Proposition 5.12. Let W =W1×W2 be a product of two groups. Let M ∈ Repfp
3(W ) be fp-simple. Fix a

W1-subrepresentation M1 ⊂ M that is fp-simple. Consider the W2-representation M2 := HomW1(M1, M)

and the associated evaluation map

ev : M1 ⊠ M2→ M.

(1) If 3 is an algebraically closed field, then ev is an isomorphism and M2 is simple.

(2) If 3 is a perfect field, then ev is a split surjection and M2 is semisimple.

(3) If 3 is a Dedekind domain of Krull dimension 1 with perfect fraction field, then there is a short exact
sequence

0→ M ⊕ ker ev→ M1 ⊠ M2→ T → 0, (5-13)

where T is 3-torsion.

Proof. Note that ev is a map in Repfp
3(W ). Its image has maximal rank by the fp-simplicity of M . Thus,

if 3 is a field, then it is surjective.
In case (1), we claim that ev is an isomorphism. The following argument was explained to us by

Jean-François Dat: For injectivity, observe that M1 ⊠ M2 = M⊕ dim M2
1 as W1-representations. Hence, if

the kernel of ev is nontrivial, then it contains M1 as an irreducible constituent. Therefore, it suffices to
prove that HomW1(M1, ev) is injective. Since 3 is algebraically closed, we have EndW1(M1) = 3 by
Schur’s lemma. Hence, the composition

M2 = HomW1(EndW1(M1), M2)∼= HomW1(M1, M1 ⊠ M2)→ HomW1(M1, M)= M2

is the identity. This shows that HomW1(M1, ev) is an isomorphism.
In case (2), we claim that M1 ⊠ M2 is semisimple, and hence that M appears as a direct summand.

Using [Bourbaki 2012, Section 13.4 Corollaire] applied to the group algebras it is enough to show
that M1 and M2 are absolutely semisimple. Since 3 is perfect, any finite-dimensional representation is
semisimple if and only if it is absolutely semisimple; see [loc. cit., Section 13.1]. Hence, it remains to
check that M2,3 = M2⊗3 3 is semisimple where 3/3 is an algebraic closure. The module M2,3 =

HomW1(M1,3, M3) splits as a direct sum according to the simple constituents M1 ⊂ M1,3 and M ⊂ M3.
Finally, each M2 =HomW1(M1, M) is either simple or vanishes: If there exists a nonzero W1-equivariant
map M1→ M , then it must be injective by the simplicity of M1. As 3 is algebraically closed, the proof
of (1) shows that M ∼= M1 ⊠ M2 so that M2 must be simple because M is so. This shows that M2 is
absolutely semisimple as well.
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In case (3), abbreviate 3′ := Frac 3, M ′ :=M⊗3 3′ and so on. We will repeatedly use that (−)⊗3 3′

preserves and detects fp-simplicity of representations, see Lemma 5.11. By (2), the evaluation map
ev′ := ev⊗3′ admits a 3′-linear section ĩ : M ′→ (M1 ⊠ M2)

′. As M ′ is finitely presented, there is
some 0 ̸= λ ∈ 3 such that λĩ arises by scalar extension of a map i : M → M1 ⊠ M2. By construction,
the map i ⊕ incl : M ⊕ ker(ev)→ M1 ⊠ M2 is an isomorphism after tensoring with 3′. So its cokernel
is 3-torsion, and it is injective as both modules at the left are projective (hence 3-torsion free). This
finishes the proof of the proposition. □

5E. Essential surjectivity. In this section, we prove the essential surjectivity asserted in Theorem 5.2.
Throughout, we freely use the full faithfulness proven in Propositions 5.7 and 5.8.

Recall that X1, . . . , Xn are finite type Fq -schemes, and write X := X1×Fq · · · ×Fq Xn . Let 3 be either
a finite discrete ring, a finite field extension E ⊃Qℓ for ℓ ̸= p or its ring of integers OE . Note that this
covers all cases from Situation 5.1.

First, we show that it suffices to prove containment in the essential image étale locally.

Lemma 5.13. Let Ui → X i be quasicompact étale surjections for i = 1, . . . , n. Then the following
properties hold:

(1) An object M ∈ D(XWeil
1 × · · ·× XWeil

n , 3) belongs to the full subcategory

Dcons(XWeil
1 , 3)⊗Perf3∗ · · · ⊗Perf3∗ Dcons(XWeil

n , 3)

if and only if its restriction M |U Weil
1 ×···×U Weil

n
belongs to the full subcategory

Dcons(U Weil
1 , 3)⊗Perf3∗ · · · ⊗Perf3∗ Dcons(U Weil

n , 3)⊂ D(U Weil
1 × · · ·×U Weil

n , 3).

(2) Assume that all Ui → X i are finite étale. Then (1) holds for the categories of lisse sheaves.

Proof. The only if direction in part (1) is clear. Conversely, assume that M |U Weil
1 ×···×U Weil

n
lies in the

essential image of the external tensor product. By étale descent, we have an equivalence

D(XWeil
1 × · · ·× XWeil

n , 3)
∼=−→ Tot(D(U Weil

1,• × · · ·×U Weil
n,• , 3)).

In particular, we get an equivalence |( j•)! ◦ j∗
•

M | ∼−→ M where j• := j1,•×· · ·× jn,• with ji,• : Ui,•→ X i

for i = 1, . . . , n. For each m ≥ 0, the object j∗m M lies in

Dcons(U Weil
1,m , 3)⊗Perf3∗ · · · ⊗Perf3∗ Dcons(U Weil

n,m , 3).

It follows from Synopsis 3.2(ii) that these subcategories are preserved under ( jm)!. So we see

( jm)! j∗m(M) ∈ Dcons(XWeil
1 , 3)⊗Perf3∗ · · · ⊗Perf3∗ Dcons(XWeil

n , 3)

for all m ≥ 0. For every m ≥ 0, let Mm denote the realization of the m-th skeleton of the simplicial object
( j•)! ◦ j∗

•
M so that we have a natural equivalence colim Mm

∼=−→ M in D(XWeil
1 × · · · × XWeil

n , 3). We
claim that M is a retract of some Mm , and hence lies in Dcons(XWeil

1 , 3)⊗Perf3∗ · · ·⊗Perf3∗ Dcons(XWeil
n , 3)

by idempotent completeness. To prove the claim, note that the sheaf MF ∈ Dcons(XF, 3) underlying M is
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compact in the category of ind-constructible sheaves Dindcons(XF, 3), see Synopsis 3.2(viii). As taking
partial Frobenius fixed points is a finite limit, so commutes with filtered colimits, we see that the natural
map of mapping complexes

colim HomD(XWeil
1 ×···×XWeil

n ,3)(M, Mm)
∼=−→ HomD(XWeil

1 ×···×XWeil
n ,3)(M, colim Mm)

is an equivalence. In particular, the inverse equivalence M ∼=−→ colim Mm factors through some Mm ,
presenting M as a retract of Mm . This proves the claim, and hence (1).

For (2), note that if Ui → X i are finite étale, then the functors ( jm)! preserve the lisse categories; see
Synopsis 3.2(ii). In particular, for every m ≥ 0 the object ( jm)! j∗m(M) is lisse and so is Mm . We conclude
using compactness as before. □

Using Lemma 2.4 and Synopsis 3.2(viii), the fully faithful functor (5-1) uniquely extends to a fully
faithful functor

Ind(D•(XWeil
1 , 3))⊗Mod3∗

· · · ⊗Mod3∗
Ind(D•(XWeil

n , 3))→ D(XWeil
1 × · · ·× XWeil

n , 3) (5-14)

for • ∈ {lis, cons}. We use this in the following variant of Lemma 5.13.

Lemma 5.14. The statements (1) and (2) of Lemma 5.13 hold for the functor (5-14) with • ∈ {lis, cons}.
Namely, to check that an object lies in the essential image of (5-14), one can pass to a quasicompact étale
cover if •= cons, and to a finite étale cover if •= lis.

Proof. This is immediate from the proof of Lemma 5.13: Arguing as above and using étale descent for
ind-constructible, resp. ind-lisse sheaves (Synopsis 3.2(iii)), we see that M ∼= colim Mm with

Mm ∈ Ind(D•(XWeil
1 , 3))⊗Mod3∗

· · · ⊗Mod3∗
Ind(D•(XWeil

n , 3))

for all m ≥ 0 and •= cons, resp. •= lis. As the essential image of (5-14) is closed under colimits, M lies
in the corresponding subcategory as well. □

Now we have enough tools to prove the categorical Künneth formula alias derived Drinfeld’s lemma:

Proof of Theorem 5.2. In view of Propositions 5.7 and 5.8, it remains to show the essential surjectivity of
the external tensor product functor on Weil sheaves (5-1) under the assumptions in Theorem 5.2. Part (1),
the case of constructible sheaves, is reduced to part (2), the case of lisse sheaves, by taking a stratification
as in Definition 4.10(2) and using the full faithfulness already proven. Here we note that by refining the
stratification witnessing the constructibility if necessary, we can even assume all strata to be smooth, so
in particular geometrically unibranch. Hence, it remains to prove part (2), that is, the essential surjectivity
of the fully faithful functor

⊠ : Dlis(XWeil
1 , 3)⊗Perf3∗ · · · ⊗Perf3∗ Dlis(XWeil

n , 3)→ Dlis(XWeil
1 × · · ·× XWeil

n , 3), (5-15)

when either 3 is finite discrete as in cases (a), (d) in Theorem 5.2(2), or 3=OE for a finite field extension
E ⊃ Qℓ, ℓ ̸= p as in case (b), or 3 = E and the X i are geometrically unibranch as in the remaining
case (c). In fact, the latter two cases are easier to handle due to the presence of natural t-structures on the
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categories of lisse sheaves (Synopsis 3.2(vi)). So we will distinguish two cases below: (1) 3=OE , or
3= E and all X i geometrically unibranch. (2) 3 is finite discrete.

Now pick M ∈ Dlis(XWeil
1 × · · · × XWeil

n , 3). By Synopsis 3.2(v), M is bounded in the standard
t-structure on D(XWeil

1 × · · · × XWeil
n , 3). So M is a successive extension of its cohomology sheaves

H j (M), j ∈ Z. As M is lisse, Lemma 4.15(1) shows in both cases (1) and (2) that each H j (M) comes
from a continuous representation on a finitely presented 3-module in

Rep3(FWeil(X))∼= Rep3(W ), (5-16)

where we denote W :=W1×· · ·×Wn with Wi :=Weil(X i ) and the equivalence follows from Theorem 5.9.
Throughout, we repeatedly use that the functor (5-15) is fully faithful, commutes with finite (co-)limits

and shifts, and that its essential image is closed under retracts (as the source category is idempotent
complete, by definition) and contains all perfect-constant sheaves.

Case 1 (assume 3=OE , or 3= E and all X i geometrically unibranch). In this case, we have a t-structure
on lisse Weil sheaves so that each H j (M) belongs to Dlis(XWeil

1 × · · ·× XWeil
n , 3)♥. By induction on the

length of M , using the full faithfulness of (5-15), we reduce to the case where M is abelian, that is, a
continuous W -representation on a finitely presented 3-module. The external tensor product induces a
commutative diagram:

Rep3(W1)× · · ·×Rep3(Wn)
⊠

//

∼=

��

Rep3(W )

∼=

��

Dlis(XWeil
1 , 3)♥× · · ·×Dlis(XWeil

n , 3)♥
⊠
// Dlis(XWeil

1 × · · ·× XWeil
n , 3)♥

where the vertical equivalences are given by Lemma 4.15. Note that M splits into a direct sum Mtor⊕Mfp

where the finitely presented 3-module underlying Mtor is 3-torsion and Mfp is projective. So we can
treat either case separately. Using that the essential image of (5-15) is closed under extensions (by full
faithfulness) and retracts, the finite projective case is reduced to the fp-simple case and, by Proposition 5.12,
to the finite torsion case. Note that the Wi -representations constructed in, say (5-13), are obtained from
Mfp by taking subquotients and tensor products, so are automatically continuous. Next, as the 3-module
underlying Mtor is finite torsion, the 3-sheaf Mtor is perfect-constant along some finite étale cover. So we
conclude by Lemma 5.13(2).

Case 2 (assume 3 is finite discrete as above). In a nutshell, the argument is similar to the last step in
Case 1, but a little more involved due to the absence of natural t-structures on the categories of lisse
sheaves in general, see Synopsis 3.2(vi) and [Hemo et al. 2023, Remark 6.9]. More precisely, in the
special case, where 3 is a finite field, the argument of case 1) applies, but not so if 3= Z/ℓ2, say. So,



530 Tamir Hemo, Timo Richarz and Jakob Scholbach

instead, we extend (5-15) by passing to Ind-completions to a commutative diagram:

Dlis(XWeil
1 , 3)⊗Perf3∗ · · · ⊗Perf3∗ Dlis(XWeil

n , 3)
⊠

//

��

Dlis(XWeil
1 × · · ·× XWeil

n , 3)

��

Ind(Dlis(XWeil
1 , 3))⊗Mod3∗

· · · ⊗Mod3∗
Ind(Dlis(XWeil

n , 3))
Ind(⊠)

// Ind(Dlis(XWeil
1 × · · ·× XWeil

n , 3))

of full subcategories of D(XWeil
1 × · · · × XWeil

n , 3), see the discussion around (5-14). Note that the
fully faithful embedding (5-14) factors through Ind(⊠). Both vertical arrows are the inclusion of the
subcategories of compact objects by idempotent completeness of the involved categories and (2-1). Thus,
if M lies in the essential image of Ind(⊠), then it is a retract of a finite colimit of objects in the essential
image of ⊠, so lies itself in this essential image. As M is a successive extension of its cohomology
sheaves H j (M), it suffices to show

H j (M) ∈ Ind(Dlis(XWeil
1 , 3))⊗Mod3∗

· · · ⊗Mod3∗
Ind(Dlis(XWeil

n , 3)),

for all j ∈ Z. So fix j and denote N := H j (M) viewed as a continuous W -representation on a finitely
presented 3-module. As 3 is finite, N comes from a continuous representation of π1(X1)×· · ·×π1(Xn)

on which some open subgroup acts trivially. Hence, there exist finite étale surjections Ui → X i such that
the subgroup π1(U1)× · · · ×π1(Un) acts trivially on N . In particular, N |U Weil

1 ×···×U Weil
n

is constant, and
hence lies in the essential image of the functor

ModR ∼= Ind(PerfR)→ Ind(Dlis(U Weil
1 × · · ·×U Weil

n , 3)),

where R :=0(π0(U1)×· · ·×π0(Un), 3). As the sets π0(Ui ) are finite discrete, each Ri :=0(π0(Ui ), 3)

is a finite free 3∗-algebra, and we have R ∼= R1⊗3∗ · · ·⊗3∗ Rn . Thus, the external tensor product induces
a commutative diagram:

ModR1 ⊗Mod3∗
· · · ⊗Mod3∗

ModRn

∼=
//

��

ModR

��

Ind(Dlis(U Weil
1 , 3))⊗Mod3∗

· · · ⊗Mod3∗
Ind(Dlis(U Weil

n , 3))
Ind(⊠)

// Ind(Dlis(U Weil
1 × · · ·×U Weil

n , 3))

where the upper horizontal arrow is an equivalence. So N |U Weil
1 ×···×U Weil

n
lies in the essential image of

Ind(⊠), and we conclude by Lemma 5.14 applied to the finite étale covers Ui → X i and •= lis. □

6. Ind-constructible Weil sheaves

In this section, we introduce the full subcategories

Dindlis(XWeil, 3)⊂ Dindcons(XWeil, 3)

of D(XWeil, 3) consisting of ind-objects of lisse, resp. constructible sheaves equipped with partial
Frobenius action. That is, the partial Frobenius only preserves the ind-system of objects, but not
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necessarily each member. We will define analogous categories for a product of schemes. Similarly to the
lisse, resp. constructible case, there is a fully faithful functor

Dindcons(XWeil
1 , 3)⊗Mod3∗

· · · ⊗Mod3∗
Dindcons(XWeil

n , 3)→ Dindcons(XWeil
1 × · · ·× XWeil

n , 3),

which, however, will not be an equivalence in general; see Remark 6.6. Nevertheless, we can identify a
class of objects that lie in the essential image and that include many cases of interest such as the shtuka
cohomology studied in [Lafforgue 2018; Lafforgue and Zhu 2019; Xue 2020b; 2020c].

6A. Ind-constructible Weil sheaves. Let Fq be a finite field of characteristic p > 0, and fix an algebraic
closure F. Let X1, . . . , Xn be schemes of finite type over Fq . Let 3 be a condensed ring associated with
the one of the following topological rings: a discrete coherent torsion ring (for example, a discrete finite
ring), an algebraic field extension E ⊃Qℓ, or its ring of integers OE . We write X := X1×Fq · · · ×Fq Xn ,
and denote by X i,F := X i ×Fq Spec F and XF := X ×Fq Spec F the base change. Recall that under these
assumptions, by Synopsis 3.2(viii), we have a fully faithful embedding

Ind(Dcons(XF, 3))
∼=−→ Dindcons(XF, 3)⊂ D(XF, 3), (6-1)

and likewise for (ind-)lisse sheaves.

Definition 6.1. An object M ∈ D(XWeil
1 × · · · × XWeil

n , 3) is called ind-lisse, resp. ind-constructible if
the underlying sheaf MF ∈ D(XF, 3) is ind-lisse, resp. ind-constructible in the sense of Definition 3.1.

We denote by

Dindlis(XWeil
1 × · · ·× XWeil

n , 3)⊂ Dindcons(XWeil
1 × · · ·× XWeil

n , 3)

the resulting full subcategories of D(XWeil
1 ×· · ·×XWeil

n , 3) consisting of ind-lisse, resp. ind-constructible
objects. Both categories are naturally commutative algebra objects in PrSt

3∗
(see the notation from

Section 2), that is, presentable stable 3∗-linear symmetric monoidal∞-categories where 3∗ := 0(∗, 3)

is the ring underlying 3. It is immediate from Definition 6.1 that the equivalence (4-6) restricts to an
equivalence

D•(XWeil
1 × · · ·× XWeil

n , 3)∼= Fix(D•(XF, 3), φ∗X1
, . . . , φ∗Xn

)

for • ∈ {indlis, indcons}.

Remark 6.2. Note that we have a fully faithful embedding of Dcons(XWeil) into Dindcons(XWeil) whose
image consists of compact objects. However, the latter category is not generated by this image. Indeed,
even in the case of a point, the ind-cons category consists of 3-modules with an action of an automorphism.
This automorphism does not have to fix any finitely generated submodule, which would be the case for
any objects generated by the image of the constructible Weil complexes.

Our goal in this section is to obtain a categorical Künneth formula for the categories of ind-lisse, resp.
ind-constructible Weil sheaves. In order to state the result, we need the following terminology. Under our
assumptions on 3, each cohomology sheaf H j (M), j ∈ Z for M ∈ Dlis(XF, 3) is naturally a continuous
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representation of the proétale fundamental groupoid π
proét
1 (XF) on a finitely presented 3-module; see

Lemma 4.15. Further, the projections XF→ X i,F induce a full surjective map of topological groupoids

π
proét
1 (XF)→ π

proét
1 (X1,F)× · · ·×π

proét
1 (Xn,F). (6-2)

Definition 6.3. Let M ∈ D(XF, 3):

(1) The sheaf M is called split lisse if it is lisse and the action of π
proét
1 (XF) on H j (M) factors through

(6-2) for all j ∈ Z.

(2) The sheaf M is called split constructible if it is constructible and there exists a finite subdivision into
locally closed subschemes X i,α ⊆ X i such that for each Xα =

∏
i X i,α ⊆ X , each restriction M |Xα

is
split lisse.

Definition 6.4. An object M ∈ D(XWeil
1 × · · · × XWeil

n , 3) is called ind-(split lisse), resp. ind-(split
constructible) if the underlying object MF ∈ D(XF, 3) is a colimit of split lisse, resp. split constructible
objects.

As the category D•(XF, 3), •∈ {indlis, indcons} is cocomplete, every ind-(split lisse) object is ind-lisse,
and likewise, every ind-(split constructible) object is ind-constructible.

Theorem 6.5. Assume that 3 is either a finite discrete ring of prime-to-p torsion, an algebraic field
extension E ⊃Qℓ for ℓ ̸= p, or its ring of integers OE . Then the functor induced by the external tensor
product

D•(XWeil
1 , 3)⊗Mod3∗

. . .⊗Mod3∗
D•(XWeil

n , 3)→ D•(XWeil
1 × · · ·× XWeil

n , 3) (6-3)

is fully faithful for • ∈ {indlis, indcons}. For •= indlis, resp. •= indcons the essential image contains the
ind-(split lisse), resp. ind-(split constructible) objects.

Proof. For full faithfulness, it is enough to consider the case •= indcons. Using Lemma 2.5, it remains to
show that the functor⊗

i

Dindcons(X i,F, )∼= Ind
(⊗

i

Dcons(X i,F, 3)

)
→ D•(XF, 3). (6-4)

is fully faithful. In view of (6-1), this is immediate from the Künneth formula for constructible 3-sheaves
as explained in Section 5B.

To identify objects in the essential image, we note that the fully faithful functors (6-3) and (6-4) induce
a Cartesian diagram (see Lemma 2.5):⊗

i D•(XWeil
i , ) //

��

D•(XWeil
1 × · · ·× XWeil

n , 3)

��⊗
i D•(X i,F, 3) // D•(XF, 3)

(6-5)

for • ∈ {indlis, indcons}. Thus, it is enough to show that the object MF underlying an ind-split object M
lies in the image of the lower horizontal arrow. Since this essential image is closed under colimits, it
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remains to show it contains the split lisse objects for •= indlis, resp. the split constructible objects for
•= indcons.

By the full faithfulness of (6-4), the split constructible case reduces to the split lisse case, see also
the proof of Theorem 5.2 in Section 5E. So assume •= indlis and let MF ∈ D(XF, 3) be split lisse. As
each cohomology sheaf H j (MF), j ∈ Z is at least ind-lisse (see also [Hemo et al. 2023, Remark 8.4]),
an induction on the cohomological length of MF reduces us to show that H j (MF) lies in the essential
image. By definition, being split lisse implies that the action of π

proét
1 (XF) on H j (MF) factors through

π
proét
1 (X1,F)× · · · × π

proét
1 (Xn,F). Then the arguments of Section 5E show that H j (MF) lies is in the

essential image of the lower horizontal arrow in (6-5). We leave the details to the reader. □

Remark 6.6. The functor (6-3) is not essentially surjective in general. To see this, note that the functor
Dindcons(XWeil, 3)→ Dindcons(XF, 3) admits a left adjoint F that adds a free partial Frobenius action.
Explicitly, for an object M ∈ Dindcons(XF, 3) the object F(M) has underlying sheaf F(M)F given by a
countable direct sum of copies of M . If M was not originally in the image of the external tensor product
(for example, M as in Example 1.4), then F(M) will not be either. This is, however, the only obstacle for
essential surjectivity: as noted in the proof of Theorem 6.5, the diagram (6-5) is Cartesian.

6B. Cohomology of shtuka spaces. Finally, let us mention a key application of Theorem 6.5. Let X
be a smooth projective geometrically connected curve over Fq . Let N ⊂ X be a finite subscheme, and
denote its complement by Y = X\N . Let E ⊃ Qℓ, ℓ ̸= p be an algebraic field extension containing a
fixed square root of q . Let OE be its ring of integers and denote by kE the residue field. Let 3 be any of
the topological rings E,OE , kE . Let G be a split (for simplicity) reductive group over Fq . We denote by
Ĝ the Langlands dual group of G considered as a split reductive group over 3.

In the seminal works [Drinfeld 1980; Lafforgue 2002] (G = GLn) and [Lafforgue 2018; Lafforgue
and Zhu 2019] (general reductive G) on the Langlands correspondence over global function fields, the
construction of the Weil(Y )-action on automorphic forms of level N is realized using the cohomology
sheaves of moduli stacks of shtukas, defined in [Varshavsky 2004] and [Lafforgue 2018, Section 2]. As
explained in [Lafforgue and Zhu 2019; Gaitsgory et al. 2022; Zhu 2021], the output of the geometric
construction of Lafforgue can be encoded as a natural transformation

HN ,I : Repfp
3(Ĝ I )→ Repcts

3 (Weil(Y )I ), I ∈ FinSet (6-6)

of functors FinSet→ Cat from the category of finite sets to the category of 1-categories. Here the functor
Repfp

3(Ĝ•) assigns to a finite set I the category of algebraic representations of Ĝ I on finite free 3-modules,
and Repcts

3 (Weil(Y )•) the category of continuous representations of Weil(Y )I in 3-modules. In both
cases, the transition maps are given by restriction of representations.

Let us recall some elements of its construction. For a finite set I , [Varshavsky 2004] and [Lafforgue
2018, Section 2] define the ind-algebraic stack ChtN ,I classifying I -legged G-shtukas on X with full
level-N structure. The morphism sending a G-shtuka to its legs

pN ,I : ChtN ,I → Y I , (6-7)
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is locally of finite presentation. For every W ∈ Repfp
3(Ĝ I ), there is the normalized Satake sheaf FN ,I,W

on ChtN ,I ; see [Lafforgue 2018, Définition 2.14]. Base changing to F and taking compactly supported
cohomology, we obtain the object

HN ,I (W )
def
= (pN ,I,F)!(FN ,I,W,F) ∈ Dindcons(Y I

F , 3);

see [Lafforgue 2018, Définition 4.7] and [Xue 2020a, Definition 2.5.1]. Under the normalization of the
Satake sheaves, the degree 0 cohomology sheaf

HN ,I (W )
def
= H0(HI (W )) ∈ Dindcons(Y I

F , 3)♥

corresponds to the middle degree compactly supported intersection cohomology of ChtN ,I . Using the
symmetries of the moduli stacks of shtukas, the sheaf HN ,I (W ) is endowed with a partial Frobenius
equivariant structure [Lafforgue 2002, Section 6]. So we obtain objects

HN ,I (W ) ∈ Dindcons((Y Weil)I , 3)♥. (6-8)

Next, using the finiteness [Xue 2020b] and smoothness [Xue 2020c, Theorem 4.2.3] results, the classical
Drinfeld’s lemma (Theorem 5.9) applies to give objects HN ,I (W ) ∈ Repcts

3 (Weil(Y )I ). The construction
of the natural transformation (6-6) encodes the functoriality and fusion satisfied by the objects {HN ,I (W )}

for varying I and W .
However, in order to analyze construction (6-6) further, it is desirable to upgrade the natural transfor-

mation of functors (6-6) to the derived level. Namely, to have construction for the complexes {HI (W )}I,W

and not just for their cohomology sheaves; compare with [Zhu 2021]. Such an upgrade is possible using
the derived version of Drinfeld’s lemma, as given in the following proposition.

Proposition 6.7. For 3 ∈ {E,OE , kE } and any W ∈ Rep3(Ĝ I ), the shtuka cohomology (6-8) lies in the
essential image of the fully faithful functor

Dindlis(Y Weil, 3)⊗I
→ Dindcons((Y Weil)I , 3). (6-9)

Proof. By [Xue 2020c, Theorem 4.2.3], the ind-constructible sheaf HN ,I (W ) is ind-lisse. By [Xue
2020b, Proposition 3.2.15], the action of FWeil(Y I ) on HN ,I (W ) factors through the product Weil(Y )I .
In particular, the action of π1(X I

F) on HN ,I (W ) factors through the product π1(XF)
I . So it is ind-(split

lisse) in the sense of Definition 6.4, and we are done by Theorem 6.5. □

Remark 6.8. One can upgrade the above construction in a homotopy coherent way to show that the whole
complex HN ,I (W ) lies in Dindcons((Y Weil)I , 3). If N ̸=∅ so that HN ,I (W ) is known to be bounded, then
Proposition 6.7 implies that HN ,I (W ) lies in the essential image of (6-9).
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