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Università degli Studi di Napoli Federico II

Joint Research Doctorate in Fusion Science and Engineering
XXXVI Cycle

Model-free and data-driven
approaches to the Vertical

Stabilization problem in tokamak
plasmas

Candidate: Sara Dubbioso

Supervisor: Prof. Gianmaria De Tommasi
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Abstract
Nuclear fusion has long been considered the holy grail of energy produc-
tion, offering the potential to provide abundant and safe power for the
future. The achievement of controlled nuclear fusion has proven to be a
significant scientific and engineering challenge, and in this framework, the
tokamak technology appears to be the most promising approach. This
type of reactor is used for magnetic-confinement thermonuclear fusion,
where hydrogen fuel, in the form of plasma, is confined using a superpo-
sition of external and self-generated magnetic fields.

One of the major issues with tokamaks is the need to stabilize the
plasma column vertically. This is essential to maintain the plasma stable
and sustain the conditions for fusion. Although elongated plasmas can
enhance the plasma performance, they require a magnetic field to shape
the plasma column, which leads to an unstable equilibrium. Therefore, it
is necessary to have feedback control of the plasma’s vertical position.

This doctoral dissertation examines the development of vertical sta-
bilization of the tokamak plasma to advance magnetic confinement in
nuclear fusion research. It investigates the potential of developing mag-
netic controllers by combining traditional control engineering techniques
with Artificial Intelligence. This thesis provides a basis for using model-
free and data-driven approaches as an alternative to the commonly used
model-based vertical stabilization controllers.

Model-based controllers have shown significant promise in the vertical
stabilization of the tokamak plasma; however, their effectiveness can be
limited by the complexity and uncertainty of plasma dynamics, potential
model mismatch, and computational requirements. The work in this thesis
addresses these limitations by developing control strategies that guarantee
the required level of performance without relying on the knowledge of a
plant model to improve the robustness of the overall plasma magnetic
control system. To this aim, two model-free and data-driven approaches
have been developed for vertical stabilization: the first one relies on the
Extremum Seeking algorithm to achieve stabilization, while the second
one is based on Reinforcement Learning. Most of the proposed controllers
have been tested in simulation by considering the ITER plasma as a case
study.
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Specifically, a model-free Extremum Seeking algorithm for stabiliza-
tion has been studied and deployed in the Vertical Stabilization system.
To assess the robustness of the proposed approach, linear and nonlin-
ear simulations were performed considering ITER and TCV tokamaks.
In addition, automata for the adaptation of the real-time control gain
adaptation and neural networks were included in the Extremum Seeking-
based controller to enhance the robustness and generalization property of
the ITER Vertical Stabilization even in the presence of significant model
uncertainties. Indeed, the Extremum Seeking algorithm calls for a Kalman
filter to compute the required Lyapunov function, making the correspond-
ing approach only quasi-model-independent. To resolve this issue, neural
networks have been trained to estimate the plasma unstable dynamic and
replace the Kalman filter in the control scheme. With the use of neural
networks, the controller becomes completely model-free and the opera-
tive space of the Vertical Stabilization system is also enlarged by making
it possible to stabilize plasma equilibria that were not stabilized by the
set-up based on a single Kalman filter.

Finally, Reinforcement Learning algorithms were considered to deploy
an intelligent agent as a Vertical Stabilization system for the magnetic con-
finement of tokamak plasmas. A tabular Q-learning algorithm was first
developed for the Vertical Stabilization of the EAST tokamaks. It was fol-
lowed by a Deep Deterministic Policy Gradient algorithm, which exploits
an actor-critic setup based on deep neural networks to approximate the
optimal behavior of the agent. The latter was implemented considering
the entire magnetic control system of ITER as an environment.

Keywords: nuclear fusion, tokamaks, magnetic confinement,
Vertical Stabilization, model-free, data-driven, Extremum Seek-
ing, Neural Network, Reinforcement Learning, Q-learning, DDPG
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Abstract (Italiano)
La fusione nucleare è da tempo considerata il futuro della produzione en-
ergetica in quanto offrirebbe il potenziale per una produzione abbondante
e sicura di energia. Il raggiungimento della fusione nucleare in maniera
controllata si sta però dimostrando una sfida scientifica e ingegneristica
significativa. In questo contesto, la tecnolgia dei tokamak sembra essere
l’approccio più promettente. Questo tipo di reattore è infatti utilizzato
per realizzare la fusione termonucleare a confinamento magnetico, dove
l’idrogeno, usato come combustibile, viene trasformato in plasma e confi-
nato utilizzando una sovrapposizione di campi magnetici, generati sia da
fornti esterne e che autogenerati dal plasma stesso.

Uno dei problemi principali nei i tokamak è la necessità di stabilizzare
verticalmente la colonna di plasma. Questa stabilizzazione verticale è es-
senziale infatti per mantenere il plasma stabile e sostenere le condizioni per
la fusione. I plasmi che presentano una forma allungata possono miglio-
rare le prestazioni ma richiedono che il plasma sia modellato con un campo
magnetico che lo porta anche in un equilibrio instabile. Pertanto, risulta
necessario un controllo in retroazione della posizione verticale del plasma.

In questa tesi di dottorato vengono studiate techine di stabilizzazione
verticale del plasma nei tokamak per far progredire il confinamento mag-
netico nel campo della fusione nucleare. In particolare, si indaga la pos-
sibilità di implementare dei controllori magnetici combinando tecniche di
controllo tradizionali con l’intelligenza artificiale. Questa tesi rappresenta
un inizio per l’utilizzo di approcci model-free e data-driven come alterna-
tiva ai controllori comunemente utilizzati per la stabilizzazione verticale.

I controllori model-based hanno mostrato notevoli promesse nel campo
della stabilizzazione verticale del plasma; tuttavia, la loro efficacia può es-
sere limitata dalla complessità e dall’incertezza relativa alla dinamica del
plasma, potenziali errori nel modello utilizzato come riferimento e dai req-
uisiti computazionali di solito richiesti per ottenere i modelli necessari in
real time. Il lavoro in questa tesi affronta queste limitazioni sviluppando
strategie di controllo che garantiscono il livello di prestazioni richiesto
senza però fare affidamento sulla conoscenza di un modello dell’impianto.
In questo modo è possibilie migliorare complessivamente la robustezza del
sistema di controllo magnetico del plasma. Per questo scopo, sono stati
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sviluppati due approcchi model-free e data-driven per la stabilizzazione
verticale. Il primo si basa sull’algoritmo noto come Extremum Seeking
per ottenere la stabilizzazione, mentre il secondo è un’applicazione del
Reinforcement Learning. La maggior parte dei controllori proposti in
questa tesi sono stati testati in simulazione considerando il plasma di ITER
come un caso studio. Nello specifico, l’algoritmo di Extremum Seeking è
stato studiato e implementato per la stabilizzazione verticale. Per valu-
tarne la robustezza sono state eseguite simulazioni lineari e non lineari
considerando i tokamak ITER e TCV. Inoltre, una logica ad eventi per
adattare in real-time il guadagno di controllo e una rete neurale sono stati
inclusi nello schema di controllo. Quest’uiltima permette di migliorare la
robustezza e le proprietà di generalizzazione del sistema di stabilizzazione
verticale ad ITER anche in presenza di incertezze significative sul modello
del plasma considerato. Infatti, l’algoritmo di Extremum Seeking richiede
l’utilizzo di un filtro Kalman per calcolare la funzione Lyapunov nella
legge di controllo. Questo rende il sistema di controllo solo quasi model-
indipendent. Per risolvere questo problema, delle reti neurali sono state
addestrate per stimare la dinamica instabile del plasma e sostituire il fil-
tro di Kalman nello schema di controllo. Con l’uso delle reti neurali, il
controllore diventa quindi completamente model-free e lo spazio operativo
del sistema di stabilizzazione verticale viene ampliato rendendo possibile
stabilizzare equilibri non stabilizzabili con il set-up basato su un singolo
filtro Kalman.

Infine, due algoritmi di Reinforcement Learning sono stati considerati
per ottenere un agente intelligente che si comporti come un sistema di sta-
bilizzazione verticale. L’algoritmo di Q-learning, nella sua forma tabellare,
è stato sviluppato per la stabilizzazione verticale per il tokamak EAST.
Successivamente invece è stato sviluppato l’algoritmo Deep Determinis-
tic Policy Gradient, che sfrutta la configurazione attore-critico con reti
neurali del Reinforcement Learining per approssimare il comportamento
dell’agente. Quest’ultimo algoritmo è stato implementato considerando
l’intero sistema di controllo magnetico di ITER come environment.

Parole chiave: fusione nucleare, tokamaks, confinamento mag-
netico, Stabilizazzione Verticale, model-free, data-driven, Ex-
tremum Seeking, reti neurali, Reinforcement Learning, Q-learining,
DDPG
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1
Introduction

Nuclear fusion has long been seen as a promising sustainable source
of energy [7, 8], offering the potential for clean and limitless power

without the harmful emissions associated with traditional fossil fuels. It is
the same process that powers the Sun and other stars, and unlike nuclear
fission, which produces radioactive waste, it yields only helium as a by-
product.

Nuclear fusion involves the combination of atomic nuclei to form heav-
ier elements, and this process can be controlled to extract energy. The
most promising reaction to achieve controlled nuclear fusion is between
two hydrogen isotopes, deuterium (D) and tritium (T). When the deu-
terium and tritium nuclei combine, they form a helium nucleus (He) and
release a large amount of energy, according to the following reaction:

D + T → He + n + E

where n represents an high-energy neutron, and E is the energy re-
leased. The amount of energy released during fusion reactions depends on
the mass difference between the hydrogen isotope masses at the beginning
of the reaction and the total mass at the end. Since the final mass is less
than before, according to Einstein’s famous equation, E = mc2, this mass
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1.1. WHAT IS A TOKAMAK?

difference is converted into energy that can be used to generate electricity.
The achievement of controlled fusion reactions for power generation is

a significant scientific and engineering challenge. This is due to the ex-
tremely high temperatures and pressures required to overcome the electro-
static repulsion between the atomic nuclei and initiate the fusion process.
Scientists are actively researching and developing various fusion technolo-
gies to create conditions that can sustain controlled fusion reactions and
extract usable energy from them. Among these various technologies, from
the 50s-60s of the last century, tokamak [9] stands out as the most promis-
ing. A tokamak is a toroidal device (doughnut-shaped) in which a fully
ionized gas of hydrogen ions, the plasma, is heated to extremely high tem-
peratures and confined using magnetic fields.

The tokamak has been adopted as the most promising configuration
of magnetic fusion devices and several machines are operating around
the world; the Joint European Torus (JET) [10] in the United King-
dom, which was recently exceeded in size by the joint European-Japan
project Japenese Torus-60 Super Advanced (JT-60SA) [11, 12], now the
largest and most powerful superconductive tokamak in operation [11].
Furthermore, the Doublet III-D (DIII-D) tokamak [13] in the United
State, Experimental Advanced Superconducting Tokamak (EAST) [14] in
China and Tokamak à Configuration Variable (TCV) in Switzerland [15].
These devices are used to study plasma behavior and test new technologies
for obtaining fusion power.

The largest and most ambitious tokamak project is the ITER toka-
mak [1], currently under construction in France. ITER is a collaboration
between 35 countries and aims to demonstrate the feasibility of fusion
power on a commercial scale. Once completed, it will be the largest toka-
mak ever built and a major milestone in the pursuit of sustainable and
clean energy.

1.1 What is a tokamak?

The tokamak is an experimental device created to capture the energy of
fusion. It was first developed by Soviet scientists in the late 1960s, and its
name is derived from a Russian acronym meaning ”toroidal chamber with
magnetic coils”. Indeed, the core of a tokamak is its doughnut-shaped
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CHAPTER 1. INTRODUCTION

vacuum chamber, in which, due to extreme heat and pressure, the gaseous
hydrogen fuel is transformed into a plasma, a hot and electrically charged
gas. These plasmas are the medium in which light elements can fuse
and generate energy. To overcome the natural electromagnetic repulsion
between positively charged atomic nuclei and enable fusion reactions to
take place, the plasma is heated to extremely high temperatures in the
range of tens of millions of degrees Celsius. Moreover, the vacuum chamber
is encompassed by a set of coils that create a powerful magnetic field. This
magnetic field is used to contain the plasma and prevent it from making
contact with the walls of the chamber, which would lead to it cooling
down and losing energy. Finally, the energy generated in the tokamak is
absorbed as heat on the walls of the vessel. This heat is then utilized to
create steam and subsequently electricity through turbines and generators,
just as in traditional power plants.

The main difficulty in running a tokamak is sustaining the plasma’s
stability and containment while managing the energy it produces. This
requires precise regulation of the magnetic fields and careful handling of
the heat and particle flows inside the plasma.

1.1.1 The ITER tokamak

ITER, which is Latin for “The Way”, is one of the most ambitious energy
projects in the world today. It is set to be the largest tokamak ever built,
with twice the size of the current largest machine and a plasma chamber
volume that is ten times larger. The primary goal of ITER is to prove
the feasibility of fusion as a large-scale and carbon-free source of energy,
paving the way for future fusion power plants.

At ITER, it will be investigate and demonstrate the capability of burn-
ing plasmas, a condition in which the energy produced by the fusion reac-
tions is sufficient to maintain plasma temperature and fusion conditions
without the need for external heating. Additionally, the potential for the
production of fusion energy in a tokamak is determined by the number
of fusion reactions taking place at its core: the larger the vessel and the
volume of the plasma, the more fusion reactions can occur and more en-
ergy can be generated. ITER is designed to produce a ten-fold return on
the power, or specifically, 500 MW of fusion power from 50 MW of input
heating power.
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Figure 1.1: A 3D model of ITER, with the magnet system in blue which is
composed of the toroidal and poloidal fields systems, the central solenoid,
the correction coils, the magnet feeders, and the in-vessel coils. Moreover,
the divertor is highlighted in red, the breeding blanket in orange, the
vacuum vessel in yellow, and the cryostat in grey [1].

It is important to keep in mind that ITER is still an experimental
device and, as such, it will not be able to convert the net heating power
it produces into electricity. However, it will demonstrate the safety fea-
tures of a fusion device and pave the way for machines to do so. Indeed,
the ITER successor, Demonstration Power Plant (DEMO), which is an ob-
jective of the EUROfusion Fusion Technology Programme, will allow the
transition of tokamaks to the world of industry-driven technology [16].

A 3D representation of the ITER design is shown in Figure 1.1, which
includes a section of the toroidal vacuum chamber and the main compo-
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Plasma volume 840 m3

Major radius, R0 6.2 m

Minor radius, Ra 2.0 m

Toroidal field at R0 5.3 T

Plasma current, Ip 15 MA

Triangularity, κ [0.33, 0.48]
Elongation, δ [1.7, 1.85]

Average electron density, ne 10.1 × 1019 m−3

Average electron temperature, Te 8.8 keV

Average ion temperature, Ti 8.0 keV

NBI power 33 MW

RF power 40 MW

Fusion power 400 MW

Fusion gain, Q 10
Non inductive current 28 %

Burn time 400 sec

Blanket thermal load 736 MW

Divertor heat load 20 MW/m2

Power supply [100, 620] MW

Table 1.1: ITER technical data specifications and main parameters [5].

nents of the tokamak [5]. Specifically, the vacuum vessel is highlighted
in yellow, the breeding blanket in orange, the divertor in red, the magnet
system in blue, and the cryostat in gray.

However, they are only a portion of the entire ITER facility, where
a variety of auxiliary systems are being designed to ensure the safe and
effective operation of the tokamak. One of these is the heating and cur-
rent drive system, which supplies the extra energy needed to heat the
plasma. This system incorporates technologies such as radio frequency
heating, neutral beam injection, and electron cyclotron heating. In ad-
dition, other essential components are the plasma control system, which
utilizes complex controllers to adjust the magnetic fields and other pa-
rameters to ensure stability and optimize performance, and the diagnostic
system, which is equipped with advanced tools to monitor plasma behav-
iors and measure plasma properties. In reality, ITER will also be a test
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Figure 1.2: Timeline for the ITER operational campaigns (ITER Research
Plan [2]).

for the accessibility and integration of all technologies essential for fusion
reactors.

The ITER operational campaigns are specified in the ITER Research
Plan [2]. This document defines the current plan for the exploitation of
the available experimental capability to meet the ITER goal of nuclear
operation in the late 2035. Specifically, it follows the intent to commission
certain control capabilities, establish specific plasma scenarios, address un-
certainties in the physics of plasmas at the ITER scale and in the burning
plasma regime, and finally perform detailed scientific studies of burning
plasmas while optimizing fusion performance.

The main stages of the operational schedule, illustrated in the timeline
of Figure 1.2, are:

• First Plasma (FP): achievement of the first plasma breakdown in
hydrogen or helium with at least 100 kA of plasma current and for
at least 100 ms.

• Pre-Fusion Power Operation (PFPO): operations in hydro-
gen and helium and with diverted plasmas. These scenarios are
supported by a program of plasma control, diagnostics, additional
heating, and current drive commissioning. The development of the
H-mode operations is also expected.

• Fusion Power Operation (FPO): operations in deuterium and
deuterium-tritium plasmas to demonstrate the production of a fusion
power of several hundred MW for several tens of seconds at aQ value
in the range of 5− 10.

6



CHAPTER 1. INTRODUCTION

Figure 1.3: A 3D representation of TCV, showing the vacuum vessel in
cyan and the carbon tiles inside the vessel in light gray, the toroidal field
coils in green, the poloidal field and Ohmic coils in orange [3].

The technical data specifications and machine parameters are reported
in Table 1.1.

1.1.2 The TCV tokamak

The TCV tokamak at the Swiss Plasma Center of the École Polytech-
nique Fédérale de Lausanne in Switzerland is a medium-sized device that
is renowned for its high flexibility in creating a variety of poloidal mag-
netic configurations and its access to cutting-edge plasma diagnostics.
It is equipped with sixteen Poloidal Field (PF) copper-made coils, also
known as shaping coils (highlighted in orange in Figure 1.3), which can be
powered independently, allowing the formation of a wide range of plasma
shapes, including positive and negative triangularity, and even doublets.
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Figure 1.4: A series of plasma shapes realised in TCV [4].

In Figure 1.4 a series of plasma shapes obtained during TCV operations is
reported. This highly versatile feature combined with a modern diagnostic
system makes TCV an ideal device for investigating the physics of mag-
netically confined plasmas and assessing sophisticated real-time magnetic
control systems.

Figure 1.3 shows a 3D representation of the TCV machine. The vac-
uum vessel is highlighted in cyan, the carbon tiles inside the vessel in gray,
the toroidal field coils in green, and the poloidal field and Ohmic coils in
orange [3]. The technical data specifications and machine parameters are
provided in Table 1.2.

1.1.3 The EAST tokamak

The EAST machine is the first superconducting tokamak in the world [17].
Its superconducting magnet system and noncircular cross section are ad-
vantageous for the investigation of advanced steady-state plasma operation
modes. The purpose of EAST is to achieve plasma pulses of up to 1000 sec.
In addition, in recent years, plasma-facing components, plasma heating,
diagnostics, and other systems have been upgraded, making EAST a sig-
nificant test bench for studying long-pulse steady-state operations and
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Major radius, R0 0.89 m

Minor radius, Ra 0.25 m

Toroidal field at R0 1.54 T

Plasma current, Ip 1 MA

Triangularity δ [−0.6, +0.9]
Elongation κ [0.9, 2.8]

Core electron density, ne [1, 20] × 1019 m−3

Core electron temperature, Te ≤ 1 keV (ohmic)
≤ 15 keV (ECH)

Core ion temperature, Ti ≤ 1 keV

NBI power 2.3 MW

RF power 4.5 MW

Burn time 3 sec

Table 1.2: TCV technical data specifications and main parameters [4].

Major radius, R0 1.85 m

Minor radius, Ra 0.45 m

Toroidal field at R0 3.5 T

Plasma current, Ip 1 MA

Triangularity δ [0.6, 0.8]
Elongation κ [1.6, 2]
LHCD power 3 MW

ICRH power 4 MW

Burn time [1, 1000] sec

Table 1.3: EAST technical data specifications and main parameters [6].

conducting ITER-like advanced plasma science and technology research.
The technical data specifications and machine parameters are reported

in Table 1.3.

1.2 Plasma magnetic control

The plasma magnetic control in a tokamak is a sophisticated system de-
signed to monitor and optimize the magnetic field in real-time. It is the
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key to crate and precisely control the plasma inside the vacuum chamber,
preventing it from coming into contact with the device walls.

Through magnetic confinement, the behavior of charged particles mov-
ing in a magnetic field is exploited: charged particles experience a force
perpendicular to their motion, which causes them to spiral along the mag-
netic field lines, rather than moving in straight lines. In a tokamak, the
magnetic field is carefully designed to create a helical path for the charged
particles which confines the plasma within the chamber’s central region.
It is created by a combination of external magnets and a current flow-
ing through the plasma itself. In particular, a toroidal field component is
produced by a set of superconductive coils wrapped around the vacuum
vessel (see the blue coils in Figure 1.5), while a poloidal one is gener-
ated by the presence of a plasma current induced in the ionized gas, and
by a set of toroidally continuous coils (in gray in Figure 1.5), called PF
coils. These two field components create a complex magnetic topology
that is optimized for plasma confinement and must be precisely controlled
to maintain stability, avoid plasma-wall interactions [18] and prevent dis-
ruptions [19, 20]1.

Feedback control of the poloidal magnetic field is one of the funda-
mental problems that need to be tackled to operate a tokamak. It is
called magnetic control problem and includes the control of the current
induced into the plasma, as well as the shape and position of the plasma
by regulating the currents flowing in the PF coils [21].

In particular, the currents applied to the PF circuits are exploited to
confine the hot plasma through the pulse phases, which define the so-called
plasma scenario. Indeed, at the start of the discharge, the PF currents
are used to generate the magnetic field that is necessary to achieve the
conditions for plasma formation inside the vacuum chamber, the so-called
breakdown and burn-through phases [22]. Immediately after the plasma is
formed, the magnetic field generated by the PF coils needs to be controlled
to induce a current in the plasma itself, increase it during the ramp-up
phase, keeping it almost constant during the flat top, and then ramp it

1Plasma disruption in tokamaks refers to the sudden loss of plasma confinement
and stability, leading to a rapid release of energy and potentially damaging effects on
the tokamak. This can be caused by a variety of factors, including instabilities in the
plasma or disruptions in the magnetic fields that control it.
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Figure 1.5: Simplified scheme of a tokamak fusion device.

down during the final phase of the discharge. Figure 1.7 illustrates and
explains the different phases of a plasma pulse, based on the time behavior
of the plasma current envisaged for the ITER tokamak. In addition to
controlling the plasma current, the PF coils are used to adjust the shape
and position of the plasma to maximize its performance and meet the
desired experimental objectives.

Furthermore, to increase the energy confinement time, which is a vital
criterion for obtaining fusion reactions, modern devices tailor vertically
elongated plasma shapes [23] (as an example, see the elongated cross-
section of the ITER plasma reported in Figure 1.6). The downside is that
with this diverted shapes the plasma turns out to be vertically unstable.
Active control of currents in some of the PF coils is mandatory to generate
the radial field required to vertically stabilize the plasma column. In
particular, an active feedback system, called Vertical Stabilization (VS),
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Figure 1.6: A poloidal cross-section of an elongated ITER tokamak
plasma. The red line outlines the boundary of the elongated plasma.
The green coils represent the superconductive PF circuits, while the blue
coils are part of the VS3 circuit, which is the actuator for the ITER VS
system.

became essential to run the machine. In Figure 1.6 the copper-made coils
positioned inside the tokamak vessel usually dedicated to the VS, which
at ITER form the so-named V S3 circuit, are highlighted.
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Figure 1.7: The ITER tokamak’s plasma discharge is composed of several
phases. The first is the breakdown and burn-through, when the hydrogen
gas is heated to the point of ionization, forming a plasma. This is followed
by the ramp-up phase, where more energy is added to the plasma, in-
creasing the plasma current. During the flat-top, the plasma has reached
a steady state and can be sustained for a longer period. Finally, the
ramp-down phase begins, where the plasma loses energy and returns to
its original state as a gas until the plasma termination.

1.2.1 Backgrounds

In general, the plasma in a tokamak is a complex, strongly nonlinear sys-
tem; its equilibrium state must satisfy the Grad-Shafranov equation [24],
which relates the pressure and current density in the plasma to the mag-
netic field. From the magnetic control point of view, a plasma equilibrium
can be specified in terms of nominal values of the plasma current Ipeq , of
the currents in the PF circuits IP Feq , and of both the poloidal beta βpeq

and the plasma internal inductance lieq
2. Indeed, although the behavior of

the overall plant is non-linear, around a given equilibrium, the behavior of
the plasma and the currents in the surrounding coils can be conveniently

2For a given equilibrium, the two parameters βp and li provide a synthetic measure
of the plasma internal distributions of pressure and poloidal current.
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described by the linear model [25]

ẋ(t) = Ax(t) + Bu(t) + Eẇ(t) (1.1a)
y(t) = Cx(t) + Fw(t) , (1.1b)

where:

• the state vector x =
(
δIT

P F δIe δIp

)T
holds the variations of

the PF currents, of the currents in the passive conductive structures,
and of the plasma current.

• the input vector u consists of the voltage variations applied to the PF
control circuits;

• w =
(
δβp δli

)T
is the vector of the variations of βp and li, that,

in terms of magnetic control, can be regarded as exogenous distur-
bances.

In almost all present-day tokamaks the PF circuits can be further
partitioned into two parts: IP F =

(
IT

SC IV S

)T
. The first part, ISC , is the

vector of currents in the ex-vessel superconductive circuits used for plasma
current and shape control, while IV S is the current in the in-vessel copper-
made circuit dedicated to vertical stabilization. The same partition holds
for the input voltages u =

(
uSC uV S

)T
. As an example, for the ITER

tokamak ISC are the currents in the 11 superconductive PF circuits (the
green-labeled coils in Figure 1.6) used as actuators by the Multiple Inputs
Multiple Outputs (MIMO) plasma current and shape controller, while IV S

is the current in the in-vessel circuit, called V S3 (see coils labeled in blue
also in Figure 1.6). Moreover, to accurately model the behavior of the
eddy currents Ie, the passive structure of the ITER tokamak is discretized
into 110 circuits. Therefore, the order of the model (1.1), in the case
of ITER, is about 120.

The simplified block diagram of a possible plasma magnetic control
architecture is reported in Figure 1.8. This architecture, in addition to
being widely adopted in many operating tokamaks, such as JET [26]
and EAST [27], is also the one currently considered for ITER [28, 29].
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Figure 1.8: Block diagram of a typical ITER-like architecture for plasma
magnetic control in tokamaks.

The main components of the plasma MCS shown in Figure 1.8 are3:

• The Poloidal Field Current (PFC) Decoupling Controller,
this block acts as the inner control loop of a nested architecture that
also includes the plasma current and shape controllers. By generat-
ing the required voltages to be applied to the superconductive coils,
this block tracks the PF current references, which are a sum of the
scenario (i.e., the nominal) currents and the corrections requested
by the outer loops to track the desired plasma shape and current;

• The Plasma Current Controller, which tracks the plasma cur-
rent reference by sending the correspondent requests to the PFC
Decoupling Controller;

• The Plasma Shape Controller, which controls the shape of the
3For more details on the control algorithms implemented by the various blocks shown

in Figure 1.8, the interested reader can refer to [21] or [30].
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1.2. PLASMA MAGNETIC CONTROL

last closed flux surface within the vacuum chamber by tracking a set
of plasma shape descriptors; this block also generates requests for
the PFC Decoupling Controller.

• The Vertical Stabilization (VS) system, which is in charge of
vertically stabilizing the plasma column.

1.2.2 The Vertical Stabilization problem

The inclusion of a VS system in any MCS is mandatory since the shapes
commonly pursued in modern tokamaks are characterized by large elonga-
tion. In fact, the performance of controlled fusion devices can be measured
by the triple product niτTi, where ni is the density of the ion, τ is the
energy confinement time and Ti is the temperature of the ion. At the end
of the last century, there was a four-fold increase in the maximum value
of the triple product. This improvement was mainly due to the transition
from a circular to a noncircular plasma cross section. Scientists discovered
that plasma with an elongation κ4 up to 2.5 comes with higher values of
the plasma current Ip and nominal βp

5, therefore increasing the maximum
achievable efficiency [31].

However, because of the configuration of the magnetic field used to
produce the elongated shapes, these plasmas are vertically unstable. In-
deed, taking into account the cartoon picture reported in Figure 1.9 with
a plasma filamentary model, the elongated shape can be obtained using
the magnetic field generated by the currents −→I 1 and −→I 2 flowing in the
PF coils. These two currents, flowing in the same direction as the plasma
current, are able to stretch the plasma by generating the forces −→F 1p and
−→
F 2p in the direction specified in figure. With the plasma in equilibrium
position, the two forces balance each other. However, since the magnetic
field is proportional to the distance between the plasma and the coil, given
a small vertical displacement δZ , the plasma is attracted towards one of
the coils as the corresponding field becomes stronger. In Figure 1.9 the

4The plasma elongation κ is defined as the ratio between the vertical and horizontal
axis of the plasma cross-section. The value of the plasma current scales as Ip ∼ (κ2+1)/κ

5The value of βp represents the ratio of the kinetic plasma pressure energy density
to the magnetic field energy density. It is a measure of the effectiveness with which the
magnetic field confines the plasma.
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Figure 1.9: Illustration of plasma vertical instability

case of vertical displacement in the upper direction and the consequent
distortion of the force balance are shown. Without active control, even
slight vertical movements of the plasma column can lead to a loss of con-
finement and energy.

It follows that the VS block in Figure 1.8 is an essential component of
the MCS to run tokamak discharges with elongated plasmas. Note that
the vertical plasma mode is stabilized due to a combination of passive
elements and active feedback coils. Indeed, the eddy currents flowing
in the surrounding passive structures produce a stabilizing action that
can counteract the vertical drift of the plasma, bringing the instability
characteristic time to a scale that can then be controlled by an active
stabilization circuit. Virtually all present-day tokamaks are built with
a set of dedicated PF coils used mainly to produce a radial magnetic
field that can again balance the forces in Figure 1.9 and stop the plasma
column. Specifically, this field is generated by a current flowing in the
opposite direction to the plasma current. For the ITER tokamak, the VS
dedicated circuit is the copper made V S3 one (see Figure 1.6).

Nowadays, the VS control problem is usually solved using model-based
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1.2. PLASMA MAGNETIC CONTROL

control techniques. These techniques rely on control-oriented models that
describe the response of the plasma and currents in the surrounding con-
ductive structures for a considered magnetic configuration. Indeed, the
vertical instability of the plasma is revealed in the presence of a real
and positive eigenvalue in the dynamic matrix of the linearized plasma
response model (well-known as plasma equilibrium). In the nuclear fu-
sion community, this unstable eigenvalue is an estimation of the so-called
growth rate γ of the instability, and the associated eigenvector describes
the behavior of the plasma and the currents in the conductive structures
along the unstable direction.

As matter of fact, the performance of any existing VS system strongly
depends on the growth rate, which varies both based on the specific plasma
configurations and also throughout a single plasma discharge. Specifically,
it increases rapidly with elongation [32]. To achieve the required robust-
ness, it is very common to resort to adaptive control strategies that take
into account the features of the considered plasma scenario and of the
specific experimental device. For example, in [27] a model-based ITER-
like VS has been tested on the EAST tokamak; another option can be to
adapt the VS parameters according to an empirical relationship between γ
and some measurements [26], or tuning the VS parameters considering an
envelope of possible plasma models [33] and exploiting multi-objective op-
timization [34]. More examples are [26] for the VS system at JET, [35] for
the DIII-D system, [36] for ITER, and [37] for DEMO. Similar consider-
ations hold when non-linear control approaches are considered, as in the
case of JET [38] and TCV [39].

However, such model-based controllers have certain drawbacks, due
to the complexity and uncertainty of plasma dynamics. Plasma behavior
is highly nonlinear and can be affected by a wide range of factors, such
as instabilities, turbulence, and disruptions. This makes it difficult to
obtain an accurate and reliable model for the plasma dynamics, leading
to potential inaccuracies in the controller’s performance.

Additionally, the plasma’s dynamic nature can cause a discrepancy
between the model’s predictions and the plasma’s actual behavior. This
can lead to inadequate control performance and can even destabilize the
plasma, resulting in disruptions and energy loss. Therefore, algorithms
with few control parameters are usually preferred [26, 40], as they allow one

18



CHAPTER 1. INTRODUCTION

to use effective adaptive algorithms and guarantee robustness in various
scenarios.

Furthermore, the complexity of tokamak systems with high-dimensional
plasma dynamics can make the computational requirements for reliable
control-oriented models and for the estimation of the relevant plasma
parameters not feasible when compared to the time scale in which the
controllers have to act. This can be a hindrance to the practical imple-
mentation of model-based controllers in real-world tokamak experiments
and commercial fusion reactors.

Overall, model-based controllers have demonstrated potential in verti-
cally stabilizing tokamak plasma, even if they require access to an accurate
plant model to analytically implement the controller. However, the com-
plexity and unpredictability of plasma dynamics, the possibility of model
mismatch, and the computational demands for real-time models can re-
strict their effectiveness. Addressing these limitations will be essential
to further the development of practical and scalable control systems for
nuclear fusion reactors.

An alternative option to achieve the required level of robustness with-
out requiring knowledge of a plasma model is represented by model-free
and data-driven approaches. Indeed, with model-free approaches, it is
possible to rely on the controller agnosticism with respect to the plant
model to increase robustness, while the data-driven ones learn the desired
plant behavior via extensive simulation campaigns and/or access large
experimental data sets.

1.3 Contribution

This thesis contributes to the research on the VS problem in tokamak
plasmas by developing control strategies that can guarantee the desired
level of performance without needing to know the details of the plant model
and aiming at improving the robustness of the overall plasma magnetic
control system. In particular, it explores the possibility of resorting to
model-free and data-driven approaches, such as:

• The design of model-free VS system based on the Extremum Seek-
ing (ES) algorithm. Specifically, different versions of a ES-based VS
system have been designed to provide the control voltage for the VS
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circuit able to vertically stabilize the plasma column. Starting from
the crude ES control law, several features have been added to the
control scheme, such as a switching power supply for the VS circuit
and an automaton for an event-driven control gain adaptation logic,
with the aim of increasing the robustness and generalization prop-
erties of the VS system. Most of the approaches have been tested in
simulation considering the ITER plasma MCS as case study. Both
linear and non-linear simulations have been performed to assess the
effectiveness of the proposed control architecture and validate its
capability to counteract the relevant disturbances that can occur
during ITER operations. Moreover, the ES controller has been also
enhanced with Neural Network (NN)s to improve its robustness even
in the presence of significant model uncertainties. Specifically, the
possibility of using either a Linear Regressor (LR), a Multilayer Per-
ceptron (MLP), an Extreme Learning Machine (ELM), or a Long
Short Term Memory (LSTM) network have been considered.
The ES-based algorithm has been also adapted for the VS of the TCV
tokamak. Preliminary simulations have been carried out to validate
the approach with the plan of testing it also in an experimental
campaign next year.

• The setup of a Reinforcement Learning (RL) algorithms proposed as
potential data-driven solutions for the VS problem. RL agents have
been trained to counteract the vertical instability of the plasma by
interacting with a linearized plasma model in simulation. To show
the effectiveness of the proposed RL-based VS approaches, plasma
models, different from those used for training, have been considered
to test the obtained agents in various operational scenarios. More
in detail, a tabular Q-learning algorithm was firstly developed for
the VS system of the EAST tokamak. Subsequently, a more com-
plex Deep Reinforcement Learning (DRL) algorithm, such as Deep
Deterministic Policy Gradient (DDPG) was explored including the
whole ITER MCS in the environment. DDPG exploits deep NNs
to approximate the behavior of the agent, and because of this it is
specifically designed to handle problems with continuous action and
state spaces, which are essential in this case for a fair representa-
tion of plasma behavior. Furthermore, to better understand DRL
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algorithms, a sensitivity analysis was performed to choose the best-
performing set of DDPG hyperparameters. Specifically, the effects
of these hyperparameters and their tuning have been analyzed with
respect to the convergence of rewards.

1.4 Thesis layout

The thesis is organized into two parts.

Chapter 1 introduced the reader throughout the field of nuclear fu-
sion, illustrating the peculiarities of tokamak devices that will be con-
sidered in the remainder of the thesis. The plasma control problem was
also addressed together with the plasma control-oriented model and the
main components of a plasma MCS used, specifically, to design and assess
the VS solutions proposed in this thesis. Particular attention was given
to the VS problem discussing the motivation for research in the field of
model-independent controllers for the VS of tokamak plasmas. A compre-
hensive review of the model-based techniques usually employed for the VS
system was reported together with the thesis’s main contributions.

The first part of the thesis deals with the development of a model-free
VS system based on the ES algorithm for stabilization. First, in Chapter 2
the ES control algorithm studied in this thesis to tackle the VS problem is
described in its unbounded and bounded versions. Then, Chapter 3 begins
from the ES basic approach and then introduces the different features
added to the control scheme to improve performance, ending with the
most enhanced version in which a power supply characterized by switching
behavior is used in combination with an even driven adaptation logic for
the control gain of the ES bounded control law. In this chapter, the ITER
tokamak has been considered as a test case and both linear and non-linear
numerical simulations have been performed for the robustness assessment
of the ES-based VS system. In Chapter 5, on the other hand, the VS
system of the TCV tokamak is considered as a test case for the proposed
ES approach.

Finally, in Chapter 4 is presented the final version of the ES-based VS
system where the model-agnostic ES algorithm is combined with a NN.
After an extensive review of the use of NN in the nuclear fusion community,
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a complete model-free control scheme for the VS system of the ITER
tokamak is presented, highlighting how the use of a data-driven NN allows
to increase the robustness of the approach.

The second part of this thesis treats the development of data-driven VS
systems using RL algorithms. Specifically, Chapter 6 starts with a general
introduction on RL properties and peculiarities and then presents the two
algorithms considered in this thesis: Q-learning and DDPG algorithms.
In Chapter 7 the Q-learning algorithm is applied to the VS system of
the EAST tokamak as a case study. Since the EAST tokmak is in oper-
ation, this chapter also discusses the comparison of the results obtained
using the Q-learning agent and the real experimental data. Chapter 8
presents the training of a DDPG agent to be used as a substitute of the
VS system in the ITER MCS. In this context, a sensitivity analysis is also
proposed to study the optimal tuning of the DDPG hyperparameters.

Finally, in Chapter 9 final remarks are given.
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2
Extremum Seeking for

stabilization

This chapter introduces the ES control algorithm with a particular
focus on the versions that can be used to stabilize unknown unstable

systems when used as a feedback controller [41].

The ES control is a widely used model-free online adaptive control
algorithm that is especially beneficial in cases where the dynamics of the
system are unknown or change over time. This control technique is used
to stabilize and control systems by continuously searching for the optimal
operating point or extremum of a performance metric. The performance
metric can differ depending on the application, such as a cost function that
needs to be minimized (e.g. energy consumption or production time), or
a quality metric that needs to be maximized (e.g. product yield or system
stability). The fundamental concept of ES is to adjust some input or
parameters of the process based on the observed performance to drive the
system toward the optimal operating point.

The ES does not require explicit knowledge of plant dynamics, as it
uses online measurements and optimization techniques to achieve stabi-
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lization. This model-free characteristic is one of the primary advantages
of ES compared to other optimization methods; it is applicable in sit-
uations where available modeling resources are too limited to create a
sufficiently precise model for optimization, as well as in cases where fun-
damental difficulties, such as the presence of uncertainties, prevent accu-
rate modeling. The foregoing makes the ES approach an appealing control
method for the VS problem in tokamak plasmas (see 1.2.2 for the limi-
tations introduced by standard model-based controllers). Additionally, as
a feedback-based method, it also inherits the flexibility and robustness of
this control architecture. Specifically, the feedback structure enables the
method not only to locate an optimum solution, but also to track it if it
changes over time (e.g., due to disturbances or process dynamics), demon-
strating robustness to some of the common types of uncertainty that are
present in most process control problems [42].

Since the first proposal in 1922 [43] where it was suggested as a method
to optimize power transfer between a train and an overhead power line, ES
has been successfully applied in various fields. Its simple and effective
optimization scheme gained attention, especially in Russia during the
1940s[44, 45] until it gained a wider audience within the international
control community due to the publication of Draper and Li[46]. More-
over, like all other forms of adaptive control, ES was a popular research
topic in the 1950s and 1960s. In these decades, many variants of the ES
algorithm were explored, in particular, based on specific applications and
design issues[47]. Then during the next decades, research related to ES
continued steadily[48], experiencing the biggest growth in the practical
field of industrial application.

In 2000, the interest in ES sparked again with the breakthrough result
by Krstić and Wang [49, 50]. In their works, Krstić and Wang, provided
the first rigorous stability analysis of ES showing that it was possible
to apply it to a much larger class of plants than had previously been
considered.

As already mentioned, ES has been successfully implemented in many
different engineering systems, and there have been thousands of publica-
tions on theory and application (see [51] for more detail about ES history
and behavior characteristics).

This thesis focuses on the use of the ES algorithm to stabilize un-
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CHAPTER 2. EXTREMUM SEEKING FOR STABILIZATION

known unstable plants, as presented in [41] by Schienker and Krstić. The
idea exploited is to use the ES method to minimize a candidate Lyapunov
function (clf) for an unstable system using a Lie-bracket averaging tech-
nique. In fact, averaging is an important tool in the analysis of this type
of ES controllers. Even if the ES approach does not rely on the sys-
tem model, yet still achieves the same effect as a clf-based feedback laws
(which employ the full modeling knowledge), but in a time-average sense.
The combination of clf with the ES periodic perturbation signal leads to
semi-global and practical asymptotic stability (instead of a classic global
stability property), which can be a reasonable trade-off for model-free sta-
bilization with a very simple control algorithm.

In particular, it has been shown that given the nonlinear systems affine
in control

ẋ(t) = f(x, t) + g(x, t)u , (2.1)

it is possible to employ the nonlinear time-varying control law

u = α
√

ωcos(ωt)− k
√

ωsin(ωt)V (x) , (2.2)

where V (x) is a clf for (2.1). The scaling factor
√

ω is to amplify the
mixing and dithering terms to appropriately increase them; otherwise,
highly oscillatory components may have little or no influence on the overall
dynamics of the system.

It follows, considering the corresponding Lie Bracket average system

˙̄x = f(x̄, t)− kα g(x̄, t)gT (x̄, t)
(

δV (x̄)
δx̄

)T

, (2.3)

that the choice of a sufficiently high positive gain kα makes the gradi-
ent term dominant and the average system asymptotically stabilized. It
can be demonstrated, by means of averaging arguments, that the trajec-
tories of the initial system (2.1) can be kept arbitrarily close to those of
the averaged system (2.3), provided that the frequency ω is chosen high
enough. This guarantees that all the trajectories of the original system
are confined to a neighborhood of the averaged ones, making the system
semi-globally practically stabilized (more details can be found in [41]).
Finally,although Extremum Seeking for Stabilization (ESS) does not re-
quire knowledge of the system model, it assumes that the value of V (·) is
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accessible.

The ESS is designed to work with unknown systems. Despite the
theoretical progress and applications that have followed from the first
definition of (2.2), there is still a limitation in terms of the uncertainty of
the convergence rate and the control effort. This is because clf, which is
an unknown function, is incorporated into the control scheme in an affine
way. A new ES scheme is proposed in [52], in which the uncertainty is
confined to the argument of a bounded function, resulting in guaranteed
bounds on both the update rate in the minimum seeking and the control
effort in stabilization. Therefore, in case of minimization of a measurable,
but unknown clf a possible nonlinear time-varying bounded control law
can be

u(t) =
√

αωcos (ωt + kV (x)) , (2.4)

It yields the same Lie Bracket average system as in (2.3), which ensures
the same stabilization properties discussed for (2.2).

2.1 ES-based Vertical Stabilization

A possible ES-based control scheme for the VS system of tokamak plasma
is reported in Figure 2.1. The proposed architecture can be used to deploy
the VS system in the plasma MCS.

As already mentioned, even though ES does not require a plant model,
which in the case of magnetic control is a model that describes the be-
havior of the plasma and currents in the surrounding structures in the
form of (1.1), it assumes that the state of the system can be accessed
through V (·), implying that some knowledge of the behavior of the sys-
tem is necessary. In a tokamak plasma, only a subset of the currents in
the system state reported in (1.1) can be measured, namely the PF cur-
rents IP F and the plasma current Ip, while the eddy currents cannot be
easily estimated in real-time. As a matter of fact, it is not possible to
define a candidate Lyapunov function solely based on the measurements
of IP F and Ip, since the eddy currents play a fundamental role in the
dynamic of vertical instability. Without the passive effect of the eddy cur-
rents, the vertical instability would be too fast, making it impossible to
be actively stabilized. Therefore, the clf for this application is constructed
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Figure 2.1: The VS system, based on the ESS algorithm, applied to the
plant, i.e. to the plasma and the surrounding conductive structures and
PF coils.

from the unstable mode of (1.1) and chosen as V (x) = ξ2, where ξ is the
movement along the unstable mode of the diagonalized plant state (which
is well defined in the case of a linearized system; it is assumed that this
definition holds “locally” for the fully nonlinear plant as well).

The value of ξ can be estimated using a Kalman filter. Although such
a filter requires the knowledge of a plant model, it is proved that the
proposed architecture can cope with relevant model uncertainties because
it exploits the model-agnostic nature of the ES algorithm. Indeed, since
there is no a priori guarantee that the estimate of the unstable dynamic
provided by the Kalman filter is accurate enough to stabilize the plant, a
robustness assessment is carried out a posteriori by means of numerical
simulations that cover a wide range of plasma parameters and configura-
tions.

As shown in Figure 2.1, the control output provided by the ES law (2.2)
is the voltage applied to the dedicated VS circuit (the plant input uV S).
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Further, the plant input uSC consists of the voltages applied to the su-
perconductive coils provided by the plasma current and shape controllers.
The Kalman filter receives as input, together with uV S , also the uSC vec-
tor. This additional input is necessary for the Kalman filter estimation
but is not accountable in the VS problem. Furthermore, the Kalman filter
receives as input the following plant outputs

y =
(
δIT

SC δIV S δIp δZc

)T
,

where δIT
SC , δIV S and Ip are the current variations in the superconductive

coils, in the VS circuit and in the plasma itself, while δZc is the variation
of the vertical position of the plasma current centroid with respect to its
nominal equilibrium value1. Finally, the filter is designed by assuming high
confidence in the measurements, which is reflected in the choice of almost
negligible covariance matrices. The estimation of the dynamic along the
unstable mode ξ̂ returned by the Kalman filter is then used to compute
the clf V (x) = ξ̂2 that is minimized by the ES control algorithm.

The tuning of the control gains k and α can be carried out by means
of numerical simulations. However, a first guess for the product k · α can
be derived by making negative the single eigenvalue of the average system
obtained starting from the first-order reduced model that links the voltage
applied to the VS circuit to the unstable state. Indeed, when the reduced
first-order linear model is considered, from (2.3) it readily follows that the
closed-loop average system is equal to

ẋ =
(
ared − kα bredbT

red

)
x .

Hence, if ared > 0 is the unstable eigenvalue of the reduced system, the
average reduced system is stable if the product kα is sufficiently high. Fur-
thermore, the choice of a high value of the frequency ω can be limited due
to the bandwidth of the power supply that feeds the vertical stabilization
circuit.

1The position of the plasma centroid can be reconstructed starting from the magnetic
field and flux measurements by the so-called plasma magnetic diagnostic system, which
consists of a set of real-time algorithms that reconstruct relevant plasma parameters.
The interested reader can refer to [53], for more details).
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3
Application of the

Extremum Seeking
approach to the ITER case

This chapter introduces the different ES-based approaches that have
been studied to design a model-free VS system. Some of these ap-

proaches have previously been discussed and presented in [54, 55, 56].
Specifically, in [54] the first attempt to apply ESS to the VS system of
the ITER tokamak was made. Initially, the unbounded ES law is consid-
ered together with a linear power supply used as an actuator for the VS
circuit. Subsequently, to improve performance, additional features were
added to the VS system architecture. In [56] a switching power supply
has been substituted to the VS circuit amplifier allowing the choice of a
higher switching frequency in the ES control law. This helped reduce the
amplitude of the oscillations in the system response compared to what
was presented in [55]. In [56], a bounded version of the ESS control law
is considered, which includes a gain adaptation logic to exploit all avail-
able voltage levels of the switching power supply. Linear and nonlinear
simulations, performed considering the ITER tokamak as a case study,
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prove that the proposed ES-based VS schemes can satisfy a certain level
of robustness regardless of the specific plasma configuration and that each
added feature contributes to improving the general performance of the
controller. Finally, a revised logic for the event-driven mechanism used to
adjust the gain in the bounded ES control law allows to reduce the max-
imum voltage in the VS circuit by a factor of four compared to what is
presented in [56], bringing it closer to the value envisaged for the ITER VS
power supply.

Furthermore, in Chapter 4 a complete model-free VS control scheme
will be developed by combining the ES algorithm with deep NNs.

To demonstrate the efficacy of the proposed approach, each consid-
ered VS scheme has been tested on a set of ITER operational scenarios.
For this reason, two groups of ITER plasma equilibria described by the
linearized models in Equation (1.1) were generated for the simulation pur-
poses of this thesis. The equilibrium parameters of these two families of
plasma equilibria are reported in Table 3.1. Both Group A and Group B
models refer to the behavior of the plasma and currents in the surrounding
structures during the flat-top phase of 15 MA ITER plasma discharges
(see Figure 1.7), however, they were obtained through different methods:

• Group A is a collection of models that all have origins in the same
plasma equilibrium. By altering the plasma parameters, a single
plasma model can be used to generate new equilibria and explore
different behaviors. Different values of plasma elongation κ and dis-
tributions of plasma internal kinetic profiles result in different values
of βp and li. The elongation κ, together with both βp and li, have
an impact on the plasma unstable mode through the growth rate γ.
Thus, changing these parameters allows to model different behav-
iors as far as vertical stabilization is concerned. See Table 3.1a for
the ranges of plasma equilibrium parameters considered for these
linearized models.

• The models in Group B are three different snapshots taken from the
same 15 MA scenario. In particular, Equilibrium #1 and #3 refer
to the beginning of the flat-top, i.e. when Ip reaches 15 MA, while
Equilibrium #2 to the end, right before the beginning of the ramp-
down (at ITER the current flat-top at 15 MA can last for minutes).
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Group A
Equilibrium # [1, 24]

Ipeq 15 MA
βpeq [0.1, 1]
lieq [0.8, 1.3]
κ [1.77, 1.81]
γ [2.6, 12.5] s−1

(a) Group A: Family of 24 different ITER plasma equilibria, all at a
plasma current of 15MA, generated to cover the reported intervals for
the value of the profile parameters βpeq , lieq , elongation κeq and growth
rate γ. The corresponding linearized models are the ones considered for
the training of the NNs in Chapter 4.

Group B
ITER equilibrium Ipeq βpeq lieq κ γ

Equilibrium #1 15 MA 0.66 0.88 1.77 4.9 s−1

Equilibrium #2 15 MA 0.82 0.71 1.8 2.9 s−1

Equilibrium #3 15 MA 0.08 0.92 1.86 9.1 s−1

(b) Group B: Plasma equilibrium parameters for the three equilibria ob-
tained as snapshots of the same ITER discharge. For these three equi-
libria, the values of the corresponding parameters Ipeq

, of βpeq
, lieq

, κeq

and γ are reported.

Table 3.1: The equilibrium parameters for the 27 available ITER models
used within this work are reported.

These equilibria lead to different γ values due to the different condi-
tions of the plasma. Plus, Equilibrium #3 was collected before the
additional heatings were turned on, making it a more difficult con-
figuration to stabilize. The corresponding equilibrium parameters
are reported in Table 3.1b.
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It is important to point out that all the results presented in this the-
sis, to validate the new VS approaches, have been obtained considering
not only the VS system, but the whole plasma MCS, whose scheme is re-
ported in Figure 1.8. This means that the control architecture used for the
simulations also includes the plasma shape and current controllers. This
allowed to observe the behavior of the plasma MCS when the proposed VS
solution is employed. Indeed, in this way, it is possible to verify that the
plasma boundary does not come into contact with the first wall during
transients, that the plasma current is not excessively perturbed, and that
the desired plasma shape is successfully recovered at steady state.

In particular, the shape control algorithm adopted is the
so-called eXtreme Shape Controller (XSC), which in this case controls 29
plasma wall distances, called gaps, with a settling time of about 10 s. To
control a number of plasma shape descriptors, i.e. the 29 gaps, greater
than the number of available actuators (i.e., the 11 currents in the super-
conductive coils), the XSC design is based on a Singular Value Decompo-
sition of the static relationship between the control inputs and outputs. In
this way, it is possible to minimize in the least mean-square sense the con-
trol error at steady state. For more details about the XSC the interested
reader can refer to [57, 58].

3.1 Linear power supply

The first attempt to use the ESS algorithm for the VS of ITER involves the
control law (2.2), as proposed in [54]. The behavior of the power supplies
for both the PF and VS circuits is modeled as a straightforward amplifier.
To be more precise, they have been designed as a saturation plus a pure
time delay τ1 in series with a first-order dynamic characterized by a pole
at 1/τ2 [40]. The parameters for the ITER power supply model dedicated
to the VS circuit are listed in Table 3.2a.

The bandwidth of this type of power supply limits the rate of con-
vergence of the ES algorithm and affects the choice of ω in (2.2). The
frequency of the dithering and mixing terms in (2.2) has been set equal
to ω = 20π rad/s (10 Hz).

The values of the ES law (2.2) control parameters considered for this
specific application are reported in Table 3.3.
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Figure 3.1: Gaps used for the shape control. The gaps shown in black are
the ones whose behavior is reported in Figures 3.11.

Results

A set of operation scenarios for the ITER tokamak is considered to show
the effectiveness of the proposed VS system.

Two different plasma equilibria from Group B (see Table 3.1b) have
been considered for the simulations, namely Equilibrium #1 and Equi-
librium #2. The first corresponds to a linearized model obtained at the
beginning of the flat-top phase of a 15 MA ITER discharge, while the
latter is from the end of the flat-top. It follows that the behavior of the
plant around the two considered equilibria is modeled by two different
linearized models in the form (1.1), whose equilibrium values are reported
in Table 3.1b. However, in all operational scenarios considered, the same
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Linear power supply
τ1 τ2 umax

2.5 ms 7.5 ms 2.3 kV

(a) Parameters of the ITER V S3 linear power supply model. τ1 is the
pure delay, τ2 is the time constant of the first-order response, while umax
is the maximum absolute output voltage (the V S3 power supply is a four
quadrants one).

Switching power supply
Parameters ERFA
Max output voltage ±12 kV dc
Max output current ±5 kA dc
Max output voltage step ±3 kV
Time for full ± voltage excursion ≤ 100µ s
Max switching frequency 1 kHz

(b) Main parameters of the fast switching power supply.

Table 3.2: Parameters of the linear amplifier and the switching power
supply employed as actuators of the VS circuit for the ITER tokamak.

configuration of the VS system reported in Figure 2.1 is used. This implies
that the same Kalman filter, as well as the same ES parameters reported
in Table 3.3 were used in all simulations. In particular, the Kalman fil-
ter was designed considering a reduced linearized model of order 25 for
Equilibrium #1.

The test scenarios considered refer to the counteraction of relevant
disturbances that can occur during ITER operations. In particular, the
following cases were considered:

• the rejection of a Vertical Displacement Event (VDE) [40] of 5 cm;

• the response to a Minor Disruption (MD);
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k α ω

7.2 · 10−3 50 20π rad/s

Table 3.3: Control parameters for the proposed VS system based on the ES
control law (2.2) when a linear amplifier is used as actuator for the VS
circuit.

• the response to an H to L transition.

VDE rejection A VDE is an uncontrolled growth of the unstable ver-
tical mode of the plasma. Although the plasma is always vertically con-
trolled, in practice these uncontrolled growths can occur for various rea-
sons, such as fast disturbances acting on a time scale that is outside the VS
bandwidth, unforeseen delays in the control loop, or wrong control action
due to measurement noise when the plasma velocity is almost zero. Since
it models various types of disturbances the VDE became a standard bench-
mark to assess VS performance [59].

From the magnetic control point of view, a VDE is equivalent to an
almost instantaneous change in the position of the plasma. Indeed, it can
be modeled as an instantaneous change of the state vector in (1.1) along
the unstable mode, scaled to produce the prescribed vertical displacement
of the plasma centroid (see also [40]). After a VDE, the VS system must
be able to stop the vertical plasma motion and, together with the position
and shape controller, bring the vertical position of the plasma centroid
back to the equilibrium value.

To evaluate the behavior of the proposed VS approach in the case
of VDEs, the response of the overall MCS to a 5 cm VDE for Equilib-
rium #2 is performed. The simulation results are shown in Figure 3.2,
where the displacement with respect to the equilibrium position of the ver-
tical position of the plasma centroid δZc, the voltage in the V S3 circuit
uV S and the plasma current Ip are shown. The proposed VS system sta-
bilizes the plasma column and recovers the original position for Zc while
minimizing the induced variation on Ip. By including the shape controller
in the simulation scheme, it was possible to verify that the plasma bound-
ary does not touch the vessel during the transient and that the desired
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Figure 3.2: The Response to a 5 cm VDE applied to the Equilibrium #2
plasma. The displacement of the plasma current centroid vertical posi-
tion δZc, the voltage applied to the V S3 circuit uV S , the corresponding
current IV S and the plasma current Ip are shown. The Kalman filter used
in the VS system has been designed using the reduced order linear model
corresponding to Equilibrium #1.

shape is recovered at steady state, as shown by the two plasma boundary
snapshots shown in Figure 3.3.

Moreover, the oscillations induced in all control and controlled vari-
ables by the proposed ES-based approach are acceptable. Indeed, in many
cases, these oscillations are within the expected noise range1 (e.g., the rel-
ative Ip variation is about 0.15 %), while in the case of δZc the oscillations

1In the presented results the noise on the reconstructed plasma parameters has not
been considered.
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Figure 3.3: Plasma boundary shapes for the case of a VDE applied to
pulse Equilibrium #2. The red curve shows the desired plasma boundary,
while the black one is the simulated one. Two snapshots at t1 = 0 s
and t2 = 0.6 s are shown.

are kept within the ± 1 cm range, which is compatible with ITER opera-
tion.

Minor disruption For the minor disruption scenario, the closed-loop
response of Equilibrium #1 is considered.

During a MD, a fraction of the plasma thermal energy is lost due to
the uncontrolled growth of some plasma instability [60]. For magnetic
control, a minor disruption can be modeled as a variation of the two
disturbances δβp and δli in (1.1); Figure 3.6a reports the time traces of
these variations for a MD that may occur during an ITER discharge. The
closed-loop response for the Equilibrium #1 is shown in Figure 3.4. Also
in this case, the proposed VS system can guarantee stability while keeping
the oscillations on δZc within ±1 cm.
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Figure 3.4: Response to the minor disruption modeled by the time traces
of the disturbance variables δw shown in Figure 3.6a, when Equilibrium
#1 is considered. The displacement of the plasma current centroid vertical
position δZc, the voltage applied to the V S3 circuit uV S , the corresponding
current IV S and the plasma current Ip are shown. The Kalman filter
employed in the VS system has been designed using the reduced-order
system of the same linear model.

H to L transition At the end of an ITER discharge, when the addi-
tional heating systems are turned off, a transition from
a high-confinement (H) to a low-confinement (L) regime occurs [61]. Sim-
ilarly to the case of minor disruption, this transition represents a dis-
turbance that can be modeled by the δβp and δli time traces shown in
Figure 3.6b and therefore needs to be rejected by the plasma magnetic
control.

The case of the H to L transition has been assessed on Equilibrium #2,
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Figure 3.5: Response to a H to L transition modeled by the time traces
of δβp and δli shown in Figure 3.6b, when Equilibrium #2 is considered.
The displacement of the plasma current centroid vertical position δZc, the
voltage applied to the V S3 circuit uV S , the corresponding current IV S and
the plasma current Ip are shown. The Kalman filter used in the VS system
has been designed using the reduced order linear model corresponding to
Equilibrium #1.

since it refers to the plasma state at the end of the discharge, before the
plasma current ramp-down. The results are shown in Figure 3.5. Similar
comments to those for the previous cases apply.

3.2 Switching power supply

For the averaging arguments leading to (2.3) to be valid, the switching
frequency ω in (2.2) must be chosen “high enough”. This is a common
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(a) δβp and δli time traces that
model the minor disruption in Fig-
ure 3.4.

(b) δβp and δli time traces that
model the H to L transition reported
in Figure 3.5.

Figure 3.6: Time traces of the disturbances δw considered for simulating
the MD and H to L transition.

requirement in averaging analyses, and the resulting system exhibits in-
trinsic time-scale separation. However, when a power amplifier is used, as
in [54], the value of ω is limited due to the bandwidth of the power supply.
To address this problem, in [55], a switching power supply was started to
be considered for the V S3 circuit of ITER. Specifically, a power supply
similar to the one used for the JET VS system, based on integrated gate
commuted thyristors [62] is employed.

The availability of a faster actuator enables the choice of a higher
switching frequency ω for the mixing and dithering terms in the ES control
law (2.2), leading to an improvement in performance. A higher dithering
frequency leads to a reduction in the amplitude of the induced oscillations
in the system response with respect to what is presented in [54].

The characteristic of this type of power supply, which exhibits a mul-
tilevel hysteresis, is reported in Figure 3.7 while the setting parameters
are the same that were used at JET with a maximum voltage of 12 kV
and steps of 3 kV (see Table 3.2b).

The values of the ES parameters in the control law (2.2) used in this
case are reported in Table 3.4.
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Figure 3.7: Characteristic of the fast switching power supply.

k α ω

2.7 · 10−3 1 250 · 2π rad/s

Table 3.4: Control parameters for the proposed VS system based on the ES
control law (2.2) when a switching power supply is used as actuator for
the VS circuit.

Results

The proposed ES-based VS is tested using linear and nonlinear simulations
to demonstrate its validity and evaluate its robustness. Linear simulations
show that the system can stabilize a wide range of plasma models, specifi-
cally all Group A equilibria in Table 3.1b, although the embedded Kalman
filter is always the same. Nonlinear simulations, which involve solving a
free boundary evolutionary problem, are used to demonstrate the robust-
ness of the ES-based VS throughout the entire ITER discharge, starting
with the Group B equilibria in Table 3.1a.
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Linear Validation The purpose of the linear simulation was to demon-
strate that the designed ES-based approach can stabilize a wide range
of plasma models, even though the embedded Kalman filter remains the
same. Indeed, the Group A family of plasma models consists of 24 dif-
ferent plasma equilibria, all at a plasma current of 15MA, generated to
cover the interval

(li, βp) ∈ [0.8, 1.3]× [0.1, 1] ,

with two different plasma shapes characterized by two slightly different
elongations κ = 1.81, 1.76, respectively, as reported in Table 3.1a.

The unique Kalman filter adopted for linear simulations was obtained
considering a reduced linearized model, of order 25, for the equilibrium
characterized by li = 1.3, βp = 1 and a growth rate γ = 7.6 s−1. The
operational scenario considered for the linear simulations is a rejection of
a VDE of 5 cm. The results of the simulations are shown in Figures 3.8, 3.9
and 3.10, where the displacement from the equilibrium of the plasma cen-
troid position δZc, the current and voltage in the VS coils, IV S3 and
V S3 respectively, and the behavior of the main gaps (chosen according to
Figure 3.1) are reported for the family of models considered.

The results demonstrate that the proposed architecture can deal with
relevant model uncertainties due to the model-agnosticism of the ES al-
gorithm. A single Kalman filter is sufficient to stabilize all the plasma
configurations studied, even if it is designed to estimate a simplified and
reduced-order dynamic. This implies that the proposed VS system can
guarantee a satisfactory degree of robustness and flexibility. Indeed, as
can be seen in Figure 3.8, the vertical position variation δZc is rejected
very rapidly in most of the cases considered. It should also be noted that
in all cases considered, the maximum in-vessel current is on the order of
a few kA.

Since plasma current and shape controllers were also included in the
simulation scheme, it was possible to verify that the plasma current re-
mains practically unchanged (variations are on the order of a few kA for a
plasma current of 15 MA), while the plasma boundary does not touch the
vessel during the transient in any of the scenarios considered. Figure 3.11
shows that the gaps are always positive, that is, the plasma boundary
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Figure 3.8: Response to a VDE of 5 cm for the family of different plasma
models in Group A (Table 3.1a) in terms of the displacement from the
equilibrium value of the plasma vertical position δZc.

never collides with the surrounding walls.

Nonlinear simulations In addition to the linear simulation discussed
in the previous paragraph, nonlinear numerical simulations were con-
ducted using the CREATE-NL+ free boundary evolutionary code. These
simulations allow to validate the proposed VS control approach taking
into account significant nonlinearities and a more realistic representation of
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Figure 3.9: Response to a VDE of 5 cm for the considered family of differ-
ent plasma model in Group A (Table 3.1a. The figure reports the voltages
applied to the VS circuit, uV S .

the ITER plasma. In the past, the CREATE-NL+ code has been validated
against experimental data from several tokamaks, including JET [25]. For
the simulations, the three equilibria from Group B (whose main parame-
ters are summarized in Table 3.1b) have been chosen as starting equilibria.

The simulations have been performed considering a set of operational
scenarios concerning:

• the rejection of a VDE of 5 cm;
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Figure 3.10: Response to a VDE of 5 cm for the Group A family of different
plasma (Table 3.1a). The time behaviour of the currents in the VS system
coils, IV S have been reported.

• the response to a MD.

The MD has been modeled as a drop of ∆ = 0.1 for both disturbance
parameters βp and li. It should be noted that while the disturbance of
a VDE has been applied to all three equilibria (see Figure 3.12, the MD
has been considered only for Equilibrium #1 and Equilibrium #2 (see
Figure 3.13 and 3.14, respectively). This is because MD is a phenomenon
that can arise when the plasma energy content is high, which in the plasma
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Figure 3.11: Response to a VDE of 5 cm for the Group A family of differ-
ent plasma (Table 3.1a). The time behavior of the main controlled gaps
highlighted in Figure 3.1 has been reported.

model is represented by the value βp. Since Equilibium #3 refers to the
beginning of the flat-top phase, it is characterized by a value of βp which
is lower than ∆ = 0.1 considered int the MD simulation.

As for the linear case, the nonlinear simulations have been performed
including all blocks of the plasma MCS shown in Figure 1.8, thus taking
into account the interaction of the VS with the plasma current and shape
controls. Furthermore, in all simulations the Kalman filter employed in
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the VS scheme (Figure 2.1) is always the one obtained from the reduced 25
order linearized model of Equilibrium #1 (already considered in [54]) while
the ES control parameters in the control law (2.2) are the same ones
reported in Table 3.4.

The displacement of the plasma centroid from the equilibrium posi-
tion δZc, the voltage uV S and current IV S in the VS circuit and the be-
havior of some of the controlled gaps are reported for the scenario consid-
ered. Specifically, the gaps considered are those highlighted in Figure 3.1.
It can be seen that the controller is able to reject both the considered dis-
turbances starting from the proposed equilibria. The worst case, in terms
of δZc overshoot is that of Equilibrium #2 in the case of the MD. More-
over, as expected, the highest current is reached again for Equilibrium #2
in the case of MD. Lastly, the evolution of the gaps shows how the initial
shape is restored after the appearance of the disturbance.

These simulations once again underline the robustness of the proposed
model-free architecture.
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Nonlinear simulations - VDE 5 cm - Group B
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Figure 3.12: The nonlinear response to a VDE of 5 cm in terms of the
time traces of the vertical displacement of the plasma centroid δZc, of the
voltages uV S3 andcurrent IV S3 in the in-vessel circuit and of some of the
controlled gaps (highlighted in Figure 3.1) are shown for the equilibria in
Group B.
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Figure 3.13: The nonlinear response to a MD in terms of the time traces of
the vertical displacement of the plasma centroid δZc, of the voltages uV S3
andcurrent IV S3 in the in-vessel circuit and of some of the controlled gaps
(those highlighted in Figure 3.1) is shown for Equilibrium #1.
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Figure 3.14: The nonlinear response to a MD in terms of the time traces of
the vertical displacement of the plasma centroid δZc, of the voltages uV S3
andcurrent IV S3 in the in-vessel circuit and of some of the controlled gaps
(those highlighted in Figure 3.1) is shown for Equilibrium #2.
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3.3 Bounded control law

VS fast switching 
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Figure 3.15: The block diagram of the VS system based on the ES bounded
stabilization algorithm (2.4) extended with an event-driven adaptive mech-
anism and the switching power supply.

The bounded version of the ESS algorithm applied to the VS system
of ITER was first proposed in [56]. In this case, the function to be mini-
mized is introduced as an argument of a cosine or sine term, thus ensuring
a bounded control effort. However, when the bounded control law (2.4)
is combined with a power supply characterized by an intrinsic switching
behavior (see Figure 3.7), different control gain thresholds are needed to
activate the available voltage levels. Therefore, to take full advantage of
both the available control input range and the bounded control action pro-
vided by the considered ES algorithm, an event-based control gain adapta-
tion logic is introduced. A complete scheme of the bounded ES-based VS
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S1:
α = α1
ι̇(t) = 1

S2:
α = α2
ι̇(t) = 1

S3:
α = α3
ι̇(t) = 1

S4:
α = α4
ι̇(t) = 1

(∣∣Zc

∣∣ > ∆Zc1 ∨
∣∣Żc

∣∣ > ∆Żc1
)
∧ ι > ∆tup | ι(t) = 0

∣∣Zc

∣∣ < ∆Zc1 ∧ ι > ∆tdown | ι(t) = 0

(∣∣Zc

∣∣ > ∆Zc2 ∨
∣∣Żc

∣∣ > ∆Żc2
)
∧ ι > ∆tup | ι(t) = 0

∣∣Zc

∣∣ < ∆Zc2 ∧ ι > ∆tdown | ι(t) = 0

(∣∣Zc

∣∣ > ∆Zc3 ∨
∣∣Żc

∣∣ > ∆Żc3
)
∧ ι > ∆tup | ι(t) = 0

∣∣Zc

∣∣ < ∆Zc3 ∧ ι > ∆tdown | ι(t) = 0

Figure 3.16: Event-driven gain adaptive logic included in the control ar-
chitecture of Figure 3.15.

controller explored in [56] is reported in Figure 3.15

α1 α2 α3 α4

Maximum allowed voltage ±3kV ±6kV ±9kV ±12kV

Table 3.5: Correspondence between the values of the ES control parame-
ter α and the level of voltages in the switching power supply characteristic
activated by the control gain.

From (2.4) it can be seen that only the levels below
√

αω can be ac-
tivated by the control law. Choosing

√
αω to activate only the lowest

voltage level, i.e. ±3 kV , the control action is not robust enough to coun-
teract the relevant disturbances that can affect the plasma during typical
tokamak operations. On the other hand, when the power supply is used
at its maximum capability, i.e. ±12 kV , the control effort is often un-
necessarily high, which reflects in a higher request of current in the V S3
circuit.

Therefore, an event-driven mechanism is implemented in the control
architecture to use all available voltage levels. The adaptation logic can be
modeled with the hybrid automaton [63] shown in Figure 3.16. It adjusts
the gain α of the control law (2.4) based on the real-time behavior of the
system.

The proposed machine has four states, each of which is related to
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∆tup ∆tdown

Values 20 ms 50 ms

(a)

∆Zc1 ∆Zc2 ∆Zc3

Values 0.02 m 0.03 m 0.04 m

(b)

∆Żc1 ∆Żc2 ∆Żc3

Values 0.2 m/s 0.3 m/s 0.4 m/s

(c)

Table 3.6: Values of the parameters introduced in the states and transi-
tions of the event-driven state machine of the control gain adaptive logic
shown in Figure 3.16.

one of the four distinct (and specular) voltage levels of the power supply
characteristic (Figure 3.7). Each state is associated with a value αi, as
indicated in Table 3.5.

The transitions between different states are subordinate to variations
of the vertical position Zc and velocity Żc of the plasma centroid with
respect to the nominal values. The farther these variables move from the
equilibrium condition, the more effort is needed to control as the machine
explores states where the value of α is incremented. On the opposite,
as Zc approaches zero the control gain is reduced. The values of ∆Zci

and ∆Żci used in the event-driven logic shown in Figure 3.16 are reported
in Tables 3.6b and 3.6c, respectively.

Moreover, the transitions are time-inhibited, in the sense that the sys-
tem must remain in a state for a certain period for the control action to
affect the behavior of the plasma before the state machine is allowed to
transit to another state and hence to a different value of α. The values
of ∆t are listed in Table 3.6a. In particular, the value of ∆tup used for the
transitions to states that correspond to a higher control gain is shorter
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than ∆tdown considered in the transition to lower values of α. This is
because the controller should act faster and with a higher effort when the
plasma is moving away from the desired position.

Results

In this section, the results obtained with the VS architecture proposed
in Figure 3.15 are presented and discussed. The simulations have been
carried out considering meaningful plasma operational scenarios, i.e.:

• the rejection of a VDE of 5 cm;

• the response to a MD.

Two different equilibria, corresponding to different time instants of a 15 MA
ITER discharge, were taken into account. Specifically, Equilibrium #1
and Equilibrium #2 from Group B. The nominal values of the plasma
parameters for the two equilibria are reported in Table 3.1b.

For all scenarios considered, the same configuration of the VS system
has been used. Specifically, the parameters of the control law (2.4) have
been chosen as in [55] equal to k = 2.7 · 10−3 and ω = 250 · 2π (see
Table 3.4) while the values αi is chosen according to Table 3.6. The same
Kalman filter, used also in the previously proposed applications, has been
adopted; it is designed by referring to a reduced model of order 25 for
Equilibrium #1.

VDE rejection A VDE rejection for Equilibrium #2 is considered.
Figure 3.17 reports a comparison between different configurations of the ES
algorithm: the former VS system presented in Section 3.2 based on the
unbounded ES control law (2.2) (yellow line), the bounded ES architec-
ture proposed in this Section (red line) and the same bounded control law
where the parameter α has been fixed at the highest value to allow all
available voltage levels. The vertical position of the plasma centroid Zc,
the uV S voltage, the IV S current, and the plasma current Ip are shown.
These results show that even if all three algorithms can stabilize the plasma
column, the proposed bounded ES is more effective than the original ES
control law in stabilizing the plasma column. The bounded ES recovers in
a shorter time the original Zc position while requiring a lower current in

56



CHAPTER 3. APPLICATION OF THE EXTREMUM SEEKING
APPROACH TO THE ITER CASE

the VS circuit. Furthermore, the oscillations induced on both the centroid
vertical position Zc and on the current in the actuator IV S are reduced
with respect to the case where all voltage levels are enabled.
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Figure 3.17: The Response to a 5 cm VDE applied to the Equilibrium #2
plasma. The traces refer to 3 different configurations of the ES algorithm:
the bounded ES algorithm with the event-driven adaptation logic intro-
duced in this section (red line), the unbounded ES algorithm presented in
Section 3.2 (yellow line), and the bounded ES version with all available
power supply levels enabled at all times (blue line). The uV S voltage,
the IV S current, the plasma current Ip, and the vertical position of the
plasma current centroid Zc are shown. The Kalman filter used in the VS
system has been designed considering the reduced order linear model cor-
responding to Equilibrium #1.
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Minor disruption The MD is modeled as an instantaneous drop of
the plasma internal profile parameters, which in this case corresponds to
a drop of 0.11 for βp and of 0.12 for li with respect to their nominal value.
The comparison between the bounded (2.4) and the unbounded (2.2) ver-
sions of the ES control law is reported in Figure 3.18. In particular, the
red traces refer to the bounded ES-based VS, while the yellow traces refer
to the solution with the unbounded control law discussed in Section 3.2.
Comments similar to those made for the previous case apply. It results
that the bounded ES algorithm by requesting a higher voltage in the first
phase, achieves a better transient response by minimizing the effect of
the disturbance on both Zc and Ip while requesting a slightly lower IV S

current.

3.4 Gain adaptation logic

The switching power supply used in [55, 56] exhibits a characteristic with
multilevel hysteresis with a maximum voltage of 12 kV and steps of 3 kV .
However, these voltage levels appear to be quite high compared to the
maximum voltage that can be supplied by the linear amplifier envisaged
for the ITER VS system. On the other hand, coupling a switching power
supply with a control algorithm such as the ES brings clear advantages
compared to the use of a linear amplifier (see results in [54]). The faster
time response of the former enables the choice of a higher switching fre-
quency ω in the ES control law (2.4) reducing the amplitude of oscillations
in the system response and improving overall performance.

For this application, the switching power supply was retained along
with a modified version of the control gain adaptation logic that allows
lower voltage levels to be employed. In particular, steps of 250 V with a
maximum allowed voltage of 3 kV are considered. This allowed a four-fold
decrease in voltage level in the VS circuit with respect to the use of the
hybrid automaton previously considered (Figure 3.16).

In this case, the event-driven adaption logic is modeled with the au-
tomaton shown in Figure 3.19. This automaton has five states highlighted
in green that are associated with five different voltage levels allowed by the
corresponding values of αi, which are reported in Table 3.7a. The novelty
in comparison to the one implemented in [56] (see Figure 3.16) is that the
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Figure 3.18: Response to an MD when Equilibrium #1 is considered.
The behavior with the bounded ES algorithm with the event-driven gain
adaptation logic presented in this section (red line) and with the un-
bounded ES VS presented in Section 3.2 (yellow line) are shown. The uV S

voltage, the IV S current, the plasma current Ip, and the vertical position
of the plasma current centroid Zc are shown.

transitions between these states are subordinated only to the variation
of the vertical position of the plasma centroid. The further away from
equilibrium Zc moves, the more effort the controller must expend, as the
machine investigates states where the value of αi is increased. On the con-
trary, as the variation of Zc approaches zero, the control gain diminishes.
These transitions are no longer time-inhibited to allow the controller to
act faster, enhancing, or reducing, the control effort as soon as the plasma
is moving away from, or getting closer to, the controlled position.

Another improvement is the addition of the states highlighted in or-
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Ż
c4
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Figure 3.19: The event-driven gain adaptive logic included in the VS con-
trol architecture reported in Figure 4.1.

ange in Figure 3.19. These states are used to control the transition be-
tween the states S2 and S1, thus to smooth the switching from a control
voltage of 2.25 kV to the lowest level of 500 V . These orange-states are
associated with the voltage levels allowed by the corresponding values of
the control gain βi (see Table 3.7b). The transitions between these states
are also subordinate to the vertical velocity of the plasma centroid. When
the variations of Zc or Żc increase the machine moves back to S2 ask-
ing for a higher control effort. On the other hand, after an idle step in
the S2wait state, where the machine waits for both position and velocity to
decrease, the control gain values can be further reduced as the transition
between the orange-states progresses until the initial state S1 when the
equilibrium is recovered. These latter transitions are time-inhibited. The
state machine is allowed to transit to another state only after an interval
of time ∆t = 150 ms. This ensures that the control action affects the
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α1 α2 α3 α4 α5

Maximum voltage ±500 V ±2.25 kV ±2.5 kV ±2.75 kV ±3 kV

(a)

β1 β2 β3

Maximum voltage ±1.75 kV ±1.5 kV ±1.25 kV

(b)

∆Zc1 ∆Zc2 ∆Zc3 ∆Zc4 ∆Zc5

Values 0.01 m 0.02 m 0.03 m 0.04 m 0.05 m

(c)

∆Żc1 ∆Żc2 ∆Żc3

Values 0.1 m/s 0.5 m/s 0.6 m/s

(d)

Table 3.7: The parameters of the event-driven state machine designed for
the adaptation logic of the control gains in Figure 3.19 are reported. (a)
and (b) report the correspondence between the values of the ES control
parameter α in the different states and the voltage levels that can be
activated. (c) and (d) report the values of the variation of Zc and Żc used
fpr the state transitions.

plasma behavior before decreasing the value of α.

Results

In this section, the result obtained considering the automaton in Fig-
ure 3.19 for the gain adaptation of the bounded ES control law (2.4) in
the VS scheme in Figure 3.15 are presented and discussed. In particular,
this approach is compared to the one obtained considering the previous
version of the adaptation logic presented in Section 3.3. The main benefit
obtained with the new automaton is the reduction of the allowed voltage
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in the VS circuit using steps of 250 V (instead of 3kV ) for a maximum
value of 3 kV (instead of 12 kV ).

For this purpose, the rejection of a VDE of 5 cm for Equilibrium #2
and the response to a MD while considering Equilibrium #1 have been
carried out. Recall that these equilibria correspond to different time in-
stants of a 15 MA ITER discharge and Table 3.1b reports the nominal
values of their plasma parameters.

Moreover, the same ES control parameters and the same Kalman filter
as in Section 3.3 have been considered. Specifically, the parameters of
the control law (2.4) have been chosen again equal to k = 2.7 · 10−3

and ω = 250 · 2π (see Table 3.4 while the values αi chosen according to
Table 3.7a-3.7b and the same Kalman filter, designed by referring to a
reduced model of order 25 for Equilibrium #1, has been adopted.

VDE rejection A comparison between the VS scheme with the adap-
tation logic performed by the automaton in Figure 3.16 and Figure 3.16
is reported in Figure 3.20. The comparison considers the rejection of
a 5 cm VDE for Equilibrium #2.The uV S voltage, the IV S current, the
vertical position of the plasma centroid Zc, and the plasma current Ip are
shown. The time traces show that it is possible to reject the disturbance
and recover the equilibrium position by requesting lower voltage and cur-
rent in the VS circuit. Moreover, this allows to reduce even more the
amplitude of the oscillation introduced by the ES approach.

Minor Disruption The case of a MD is analyzed considering Equilib-
rium #1. The comparison between the performance of the ES-based VS
scheme when considering the even-driven adaptation logic in Figure 3.16
and Figure 3.16 is shown in Figure 3.21. The uV S voltage, the IV S current,
the vertical position of the plasma centroid Zc, and the plasma current Ip

are reported. The same consideration applies as in the VDE rejection
case. It is possible to counteract the same disturbance while requesting a
lower effort to the VS in terms of both values of uV S and IV S .
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Figure 3.20: The Response to a 5 cm VDE applied to the Equilibrium #2
plasma. The uV S voltage, the IV S current, the plasma current Ip, and the
vertical position of the plasma current centroid Zc are shown.

Summary

In this chapter, the plasma VS problem in the ITER tokamak has been ad-
dressed by means of the ESS algorithm. The proposed technique is almost
model-free in the sense that the only knowledge of the plant dynamics lies
in a single, reduced-order Kalman filter. Moreover, the simulations have
been performed taking into account the whole ITER plasma MCS to verify
that the interaction between the proposed VS system and the plasma cur-
rent and shape controllers does not result in a degradation of the overall
plasma magnetic control performance.

By a posteriori assessment it is shown that the proposed VS scheme
can practically stabilize the plasma column by bringing to zero the mo-
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Figure 3.21: Response to an MD when Equilibrium #1 is considered.
Drop of 0.11 for βp and of 0.12 for li with respect to their nominal value
The uV S voltage, the IV S current, the plasma current Ip, and the vertical
position of the plasma current centroid Zc are shown.

tion of the plasma along the unstable mode while counteracting relevant
plasma disturbances. Moreover, thanks to the model-agnostic nature of
the ES algorithm the proposed approach allow also to cope with relevant
model uncertainties. Indeed, the simulations presented, even if always em-
ploying the same Kalman filter, have been performed considering different
plasma equilibria to cover a variety of plasma parameters and configura-
tions. These results have also been confirmed by nonlinear simulations
performed on a whole ITER discharge and using equilibrium codes [25].

Moreover, the bounded ES control algorithm is incorporated with an
event-driven control gain adaptation mechanism to fully exploit the char-
acteristics of the considered switching power supply. The bounded solution
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is shown to be more effective than the unbounded ES control algorithm
when dealing both with VDEs and MDs. Finally, by a proper design of
the hybrid automaton performing the gain adaptation, it is possible to re-
duce the required voltage in the VS circuit bringing it closer to the value
actually envisaged for the ITER VS system.

It is worth stressing once again that the main advantage of the pro-
posed technique resides in the fact that it can be adapted rather easily to
different plasma configurations. In fact, this usually requires low or no ef-
fort, provided that the considered observer is capable of describing, at least
roughly, the unstable dynamic of the plant and that suitable controller
gains are chosen. This is not the case for standard VS techniques, which
usually need to be tuned based on the specific plasma configuration, a task
that usually requires some significant modeling and testing effort. This
opened an interesting perspective for the development of model-free VS
stabilization techniques. Along this line of research, a fully model-free VS
system in which the residual model dependence embedded in the Kalman
filter is removed is presented in the next Chapter 4.
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4
Neural Network-based

Extremum Seeking

This chapter starts bringing forward the role that neural networks
are playing in the nuclear fusion community. Subsequently, an en-

tirely model-free ES-based solution for VS system of the ITER tokamak
is presented. The ES-based VS system proposed in Chapter 3 has been
enhanced including NNs in the control scheme.

The ES based approaches presented in [54, 55, 56], even if showing
promising results, can only be considered quasi model-independent since
the need for a Kalman filter to compute the required Lyapunov function.
In this chapter, a new solution is presented in which this issue is tackled
and resolved. Indeed, NNs have been studied to replace the Kalman filter,
as shown in the block diagram, with the novel architecture reported in
Figure 4.1. Specifically, the possibility of using either a LR, a MLP, an
ELM, or a LSTM networks i considered for this application.

As will be shown by simulations of relevant ITER test cases, such a
control approach allows to enlarge the operative space of the overall VS
system, making it possible to stabilize plasma equilibria that are not sta-
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VS fast switching 

Power Supply
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Event-driven

adaptation 
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Figure 4.1: The block diagram of the proposed VS system is based on
the ES bounded stabilization algorithm, the event-driven adaptive mecha-
nism, and a NN that reconstructs the movement along the unstable mode.

bilized by the setup based on a single Kalman filter. Indeed, a single
Kalman filter could not achieve the accuracy for the estimation of the
plasma unstable mode that is needed to stabilize a wide range of plasma
configurations. In this chapter, it will be shown how such limitation is
overcome by replacing the Kalman filter with a NN and thus removing
the residual model-dependence from the VS scheme.

4.1 Neural networks for nuclear fusion

The scientific community for nuclear fusion is raising awareness about the
potential of artificial NNs to analyze large amounts of data collected from
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experiments and simulations. Data-driven techniques have been studied
and applied in various aspects of fusion research. In particular, NNs have
been extensively studied to predict plasma instabilities and disruption,
as well as to monitor the evolution of plasma profiles. Different data-
driven algorithms and network architectures, such as unsupervised learn-
ing algorithms [64], k-nearest neighbor technique [65], Binary Classifica-
tion [66], MLP [67, 68], Recurrent Neural Networks (RNN) [69], Support
Vector Machines (SVM) [64, 70], Self-Organizing Maps [67], Generative
Topographic Mapping (GTM) [69, 71], Classification and Regression
Trees [72] and Random Forests (RF) [73] algorithms have been used to
predict and classifying disruption in various operating tokamaks. More-
over, beyond being trained considering real-time data collected from ma-
chine experiments, several of these approaches have also been tested in
real time. As an example [74] discuss the result of an RF disruption pre-
dictor used to run than DIII-D 900 discharges (more than 4 months of
operation) as part of the Plasma Control System (PCS). Moreover, since
for ITER the development of a disruption training database may be infea-
sible, in [75] a RF learning method was trained on a large database that in-
cluded data from different machines (Alcator C-Mod, DIII-D, and EAST)
for cross-machine validation. Indeed, since on a machine of the size such
as ITER, disruptions should be avoided by any means necessary, different
from what is done on relatively small existing experimental machines, the
authors of [75] proved the generalization property of NNs. While in [64]
was shown how an SVM predictor can outperform the JET Protection
System (JPS) of about 1800 ms before the occurrence of a disruption.
Recently, deep Convolutional Neural Network (CNN)s have become at-
tractive also in disruption prediction, as they allow imaging to be included
directly in the training database, such as electron cyclotron emission imag-
ing diagnostic [76] and spatio-temporal information obtained from plasma
profile diagnostics [77]. Furthermore, [78] reports a performance compari-
son between CNN disruption prediction system at JET [79] with those of
a classical MLP and a more sophisticated GTM model [71].

Moreover, starting from a first isolated attempt in the ‘90s [80], a big
effort has recently been made to use MLP for plasma equilibrium recon-
struction from magnetic measurements [81, 82, 83]. Deep learning algo-
rithms have been implemented for Magnetohydrodynamic (MHD) model
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identification [84] and tearing modes and disruption avoidance [85]. NNs
have been trained also to classify Alfvén eigenmodes [86, 87] and predict
the evolution of plasma profiles [88], performance, and tearability [89].

It is worth noting that the solutions mentioned above are not a direct
matter of feedback control. Most of them are operated offline for the
reconstruction or estimation of plasma quantities from experimental data.
When they are used online, and as in the case of some disruption predictors
included in the tokamak PCS, they are not incorporated into any feedback
control loop. The main function is exception handling. The predictions
obtained can be used to trigger specific events, such as the occurrence of
disruptions or instabilities, which can then be handled by a safety system.

4.2 Estimation of the plasma unstable mode us-
ing neural networks

In this section, the training of NNs to estimate the movement of the plasma
along the unstable mode ξ for replacing the Kalman filter in the ES-
based VS system is presented. The section starts by explaining how the
data used to train and validate the NNs have been generated, i.e., the vari-
ables considered as inputs, how they have been sampled, and the plasma
linear model used to generate them, are detailed in what follows. Subse-
quently, the NN models considered are introduced with their architectures
and training strategies. Indeed, for each network, different trainings were
performed to evaluate the generalization property of the different networks
and the robustness of the VS control system when the data-driven NNs
are used in the closed loop instead of the Kalman filter.

The ES stabilization algorithm, albeit being model-independent, re-
quires some access to the system’s state to compute V (x) in (2.4). In [55], ξ
is obtained by a unique Kalman filter, which requires the access to a
plasma linear model (1.1) to be computed. In particular, in [55] a single
Kalman filter was employed to stabilize a family of 24 ITER plasma lin-
earized models (whose equilibrium parameters are reported in Table 3.1a,
Group A), while another filter was used to stabilize other three ITER
equilibria (reported in Table 3.1b, Group B) and was proven to work
with linear and non-linear simulations. However, none of the considered

70



CHAPTER 4. NEURAL NETWORK-BASED EXTREMUM
SEEKING

Kalman filters could be used to stabilize plasmas from both the considered
groups of equilibria.

The residual model dependence embedded in the Kalman filter limits
the generalizability of the approach. The main objective of this part of
the thesis work is to turn the ES-based VS system completely model-free.
Namely, a NN has been incorporated into the architecture proposed in
the previous chapter. A LR, a MLP, an ELM [90, 91], and a LSTM
networks were explored as a substitute for the Kalman filter. The above-
mentioned NNs have been trained to estimate, starting from magnetic
measurements, the dynamic of the plant along the unstable mode, which
is then used to compute the Lyapunov function to be minimized by the ES
control algorithm.

In what follows, it will be shown how the use of a NN can help overcome
the above-mentioned limitation. Indeed, data-driven NNs can enhance the
generalization property of the ES control law, ensuring more robustness
with respect to model uncertainties or changes in the plasma configuration
and behavior. In particular, the different NNs will be trained to estimate
the plasma unstable mode ξ considering only a subgroup of linearized
models in Group A and then tested in closed-loop also on the equilibria
of Group B.

4.2.1 Synthetic data-set for NNs training and validation

Since ITER is not yet in operation, in this work models have been used to
generate training data by running synthetic plasma simulation, referred
to as plasma shots. More in detail, data were generated by performing
linear simulations using the models in Group A. The ES-based VS ar-
chitecture reported in Figure 3.15 (embedded with the event-driven gain
adaptation logic of Figure 3.19) has been used to generate the synthetic
data. Although different plasma linear models have been considered, all
shots have been performed using the same Kalman filter, that is, the
one considered in [55] for the equilibria in Group A. In particular, such
Kalman filter is obtained by exploiting the linear model characterized
by γ = 7.6 s−1, κ = 1.8, βp = 1 and li = 1.3.

It is worth to remark that, once the NNs have been trained and used
to replace the Kalman filter, the dependence on the specific plasma model
is also removed from the controller. However, for closed-loop testing of
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NNs inputs
Signals name Units
PF circuit currents δIP F kA
Plasma current δIp MA
Plasma vertical position δZc cm
PF circuit voltages uP F kV
Gaps position cm
X-point position cm

Table 4.1: Variables used as NNs inputs for the estimation of movement
of plasma state along the unstable mode ξ̂. The data were collected per-
forming synthetic ITER pulses and sampled at a frequency of 20 kHz, and
each variable was normalized by subtracting out the median value and di-
viding by the interquartile range.

the NNs a model of the plasma is still required, driven by the need to
mimic the plant behavior. Consequently, different plasma models have
been considered to perform closed-loop validation, contributing to assess
the generalization property of the proposed architecture.

Futhermore all simulations, both for generating the training database
and for validating the NNs have been carried out considering not only
the VS system but the whole MCS as reported in Figure 1.8, i.e. the
plasma shape and current controllers have also been included in the sim-
ulation scheme. This allowed to also take into account the interaction of
the proposed ES-based VS with the other control loops.

The operational scenario considered to generate the shots is the rejec-
tion of a VDE, whose amplitude was randomly chosen between [−5 , 5] cm.

The variables considered as inputs for the NNs are reported in Ta-
ble 4.1. They include the variation with respect to the nominal val-
ues of currents in the PF coils δIP F , of the plasma currents δIp, of the
plasma centroid vertical position δZc, which were also used as input for
the Kalman filer. Moreover, the variations of plasma shape descriptors
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such as the X-point position δXP and of the controlled gaps1 have also
been considered as inputs for the NNs. Note that, as far as magnetic con-
trol is concerned, the considered input variables can be used as a suitable
representation of the plasma state at each time step.

These variables need to be sampled at a frequency fs = 20 kHz to
achieve the required accuracy for the estimation of the plasma unstable
mode ξ using NNs. However, it should be noted that once included in
the VS feedback loop, the NNs do not need to run at 20 kHz.

Finally, the data were preprocessed by normalizing each variable or
group of variables by subtracting the median value and dividing by the
interquartile range. The training set (80 %), the validation set (10 %), and
the test set (10 %) have been randomly chosen.

4.2.2 Training and validation

Here, the NNs considered in this application are introduced. Specifically,
two feed-forward networks, a vanilla MLP and a single-layer ELM, and a
recurrent one such as the LSTM, have been taken into account.

The ELM network belongs to the family of efficient and fast learn-
ing Reservoir Computing Networks (RCN)s [94, 95], which use random,
nonlinear projections of inputs into a high-dimensional feature space. Their
input nodes are randomly connected to a single hidden layer, the so-
called reservoir, consisting of nonlinear neurons (see Figure 4.4 for the ELM
learning architecture). Only the connections from the hidden layer to the
output are trained, typically using linear regression. This approach elimi-
nates the need for iterative training, which is required in traditional neural
networks, resulting in faster learning time. They have been proven to per-
form well in many applications, among which there are the forecasting
of Remaining Useful Life (RUL) of mechanical components [96], the radar
signal processing [97], the diagnosis of faults for industrial systems [98],
the noise-robust speech processing [99] and, in medicine, they have been
used for cancer classification [100].

1In fusion jargon the gaps refer to a finite number of distances between the first wall
and the plasma boundary computed along a given set of segments. They are used to
control the plasma boundary [92], while the X-point is the point at the plasma boundary
where the poloidal magnetic field is zero, and can be observed in the so-called diverted
or X-shaped plasmas (see Tutorial 10 in [93]).
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LSTM networks have been considered to assess the performance of
recurrent NNs in the proposed architecture. However, compared to feed-
forward solutions, the RNN introduces a delay in estimation that may
lead to loss of control when inserted into a feedback stabilization loop. In-
deed, as will be shown in Section 4.2.2, by using LSTMs it is not possible
to satisfy the VS requirements, being negligible the maximum rejectable
disturbance.

The following subsections will introduce the considered NNs with their
architectures and optimized hyperparameters used for the training. More-
over, different trainings performed on each network will be presented
and compared, while in Section 4.3 the comparison between the differ-
ent NNs will be discussed. Indeed, to evaluate the generalization property
of the NNs different trainings have been carried out by expanding the
training database while keeping fixed the NNs architectures. This gives
an idea of how much data need to be shown to the considered NNs to en-
large the operational space of the ES-based VS algorithm. A summary of
the numerical experiments considered is reported in Table 4.3 while more
details will be given in the next subsections.

The results shown in this section and the next refer to the closed-
loop assessment of the NNs when included in the VS feedback loop of
the ITER MCS (see schemes in Figure 1.8). Moreover, the simulations
have been performed considering the counteraction of VDEs of 6 cm. The
rejection of such VDEs, also in closed-loop, already shows the generaliza-
tion property of the NN since only smaller disturbances were shown to
the NNs during the training. It is also worth remarking that for the equi-
libria of Group A the Kalman filter considered in [55] is not able to reject
a 6 cm VDE, while the considered NNs can stabilize such disturbance.
Therefore, when the response to such a VDE is presented for this group
of models, the Kalman filter performance is not reported. On the con-
trary, the Kalman filter designed exploiting one of the Group B equilibria
in [55] is able to reject the 6 cm VDEs for the three Group B models and,
therefore, the performance of the Kalman filter has been compared with
obtained NNs. Time traces of the vertical displacement of the plasma
centroid with respect to the equilibrium position, δZc, of the voltage uV S3
and the current IV S3 in the VS circuit have been reported for all the test
cases considered.
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MLP hyper-parameters
Activation function ReLu
Optimizer Adam
Learning rate 0.001
Hidden layers 2
Hidden layers dimension 400
Batch size 2000
Dropout 10%
Number of epochs 20

(a) Set of optimized hyper-parameters used for training the MLP described in
Section 4.2.2.

ELM hyper-parameters
Input weight scaler αU 1.5

Leaking rate λ 0.3
Regularization ϵ 0.0001
Reservoir size 2000

Activation function htan

Input sparsity Kin 5

(b) Set of optimized hyper-parameters used for training the ELM described in
Section 4.2.2.

Multilayer Percepton

In this section, the MLP network is considered. The closed-loop results
for the MLP models obtained from the experimental trainings reported
in Table 4.3b, show how a richer training database can improve both the
generalization property of the network and the overall VS performance.

MLPs are a type of feed-forward neural network that is commonly
used for classification and regression tasks. It consists of multiple hidden
layers of fully interconnected nodes, or neurons, that process input data to
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generate output predictions. The weights and biases of these neurons are
learned via backpropagation. Each neuron in the hidden layers applies a
nonlinear activation function to its inputs, allowing the network to model
complex relationships between the input and output data. They are known
for their ability to model complex nonlinear relationships between input
and output data, making them a powerful tool for solving a wide range of
problems.

In Table 4.2a the MLP hyper-parameters used for the training are
reported. A random search, by executing different trainings using differ-
ent values of the NNs hyperparameter, was carried out to find the best-
performing perceptron model on the validation and test data sets. Starting
from the backpropagation parameters (optimizer algorithm and learning
rate), the network architecture was optimized with the choice of a wider
than deep network: two hidden layers of 400 neurons each, with Rectified
Linear Unit (ReLU) activation functions, defined as ReLU(x) = max(x, 0) ..
The batch size of 2000 for data sampled with a frequency of 20 kHz, which
implies that each batch carries information of 0.1 s of the total simulation
time. The use of smaller batches, while significantly increasing the compu-
tation time, did not lead to relevant performance improvements. The same
consideration holds for the number of epoch runs for training the network.
The addition of dropout layers (one after each fully connected layer) im-
proved the generalization property of the network, especially when further
tested in closed-loop.

Furthermore, during the training process of the MLP model, it ap-
peared that the synthetic shots performed to collect the training data
needed to last at least 5 s. Indeed, training performed on databases with
shots of shorter lengths leads to MLPs that in closed-loop are not able to
produce a good estimation of the plasma unstable movement in the long
term.

Table 4.3b reports the characteristics of three different training strate-
gies of the MLP. Training A was the first performed with a training
database that counts 100 shots obtained considering only one equilibrium
from Group A (see Table 3.1a). The chosen model is the same one that was
considered in [55] to build the Kalman filter for the equilibria in Group A.
What matters is that the MLP obtained from Training A is able to sta-
bilize 26 models among the 27 available ones. Indeed, it is possible to use
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MLP trainings
Shots Equilibria Shots Tf Stabilization rate

MLP Training A 100 1 5 s 26/27 equilibria
MLP Training B 200 5 5 s 27/27 equilibria
MLP Training C 200 10 5 s 27/27 equilibria

(a)

ELM trainings
Shots Equilibria Shots Tf Stabilization rate

ELM Training A 200 5 1 s 27/27 equilibria
ELM Training B 400 10 1 s 27/27 equilibria
ELM Training C 900 24 1 s 27/27 equilibria

(c)

Table 4.3: A summary of the training performed for the two considered
NNs is reported in these tables. Training databases were changed to eval-
uate the generalization property of the different networks and the robust-
ness of the VS feedback loop when data-driven NNs are used instead of
the Kalman filter. (b) refers to three different trainings of the MLP model
while (d) of the ELM. The number of shots collected for each training
database, the number of equilibria used to generate the synthetic simula-
tions, and the duration of the shot Tf (that is, the duration of the single
simulation) are reported. The stabilization rate is related to the potential
of NN to produce an accurate estimation of the plasma unstable mode ξ
such that it is possible to stabilize VDEs of 6 cm. The tests are performed
including the NNs in the VS closed-loop of the ITER plasma MCS and
considering all the 27 available ITER models.

the same network to stabilize not only Group A models but also Equi-
librium #1 and Equilibrium #2 from Group B (see Table 3.1b). This is
already an enhancement with respect to the use of the Kalman filter, where
it is not possible to stabilize with the same filter models from a different
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group. To increase the robustness, the next trainings were performed tak-
ing into account additional equilibria. Indeed, for both Training B and
Training C, 200 shots have been collected by respectively considering 5
and 10 equilibria from Group A, respectively.

MLP - Rejection of VDEs of 6 cm - Group A

Figure 4.2: The response to a VDE of 6 cm when the MLPs models,
obtained from the trainings in Table 4.3b, are substituted to the Kalman
filter in the VS control loop is considered. In particular, the time trace of
the vertical displacement of the plasma centroid δZc, of the voltages uV S3
and current IV S3 are shown. Three models selected from Group A, whose
corresponding equilibrium parameters are reported above the figures, have
been considered. These samples were selected to give an idea of the overall
performance of the MLPs for the whole family of models in Group A.
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MLP - Rejection of VDEs of 6 cm - Group B

Figure 4.3: The response to a VDE of 6 cm when the MLPs models ob-
tained from the training in Table 4.3b, replace the Kalman filter in the VS
control loop is considered. In particular, the time trace of the vertical
displacement of the plasma centroid δZc, of the voltages uV S3 and cur-
rent IV S3 in the in-vessel circuit are shown for the equilibria in Group B.
For these equilibria it was possible to stabilize the same VDE also with the
Kalman filter. Therefore, the performance of the MLP models is compared
with that obtained before introducing the NN in the VS loop.

A comparison between the MLP models obtained from these trainings
when an initial VDE of 6 cm is simulated is reported in Figures 4.2 and 4.3.
In particular, the results shown in Figure 4.2 refer to equilibria in Group A,
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whose corresponding equilibrium parameters are reported in the title of
each figure. These equilibria have been selected among the 24 available
ones to give an idea of the overall performance of the MLPs for the whole
family of models in Group A. Indeed, concerning the first one, the MLP
models have a comparable performance, while in the second and third it
is clear that the network that has seen more equilibria during the training
(Training C) generalizes better and outperforms the others. The voltage
and current requests in the VS coils are always similar or lower for the MLP
obtained from Training C.

A similar consideration holds also for the three equilibria of Group B
shown in Figure 4.3. As expected, the MLP obtained with Training A
is not capable to reject the VDE for Equilibrium #3, while the other
two MLPs, trained with richer databases, can assure the stability for all
the models considered.

Extreme Learning Machine

The ELM networks are introduced highlighting the characteristics that
make this family of NN attractive. Indeed, as a result of this work, com-
pared to MLP, it turned out that they required fewer training data and
time to achieve similar or better performance (see Section 4.3).

ELMs belong to the class of single-layer feedforward neural networks.
The input nodes are connected to the so-called reservoir, a single layer
consisting of nonlinear neurons. The basic ELM architecture is shown
in Figure 4.4. The idea behind ELM is to randomly initialize the input
weights and biases for the neurons of the hidden layer and then optimize
only the output weights to solve the target problem.

In the case of ELMs, the neurons in the hidden layer are not intercon-
nected and the basic ELM is thus closely related to a MLP with a much
simpler and faster training algorithm. The ELM equation is

Rt = (1− λ)Rt−1 + λfres(WinUt) (4.1a)
Yt = WoutRt , (4.1b)

where λ ∈ (0, 1] is the leak rate, Ut, Rt and Yt represent, respectively,
the reservoir inputs, the reservoir outputs and the network outputs which
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Figure 4.4: The basic ELM consists of a reservoir and a readout layer. The
reservoir is composed of non-linear neurons which are randomly connected
to the inputs. The readout layer consists of linear neurons with trained
weights.

25
0
50

0
10

00
20

00
30

00
50

00
80

00

Reservoir size

0

0.2

0.4

0.6

0.8

1

1.2

R
M

S
E

 [
%

]

Figure 4.5: Performance of ELM on the validation set as a function of the
reservoir size (number of nodes). The RMSE is reported in percentage
and normalized with respect to the minimum obtained when using 8000
neurons.

in the RCN context is referred to as readouts, at time t. The fres is
the non-linear activation function of the reservoir neurons, which, in our
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case, is taken equal to a hyperbolic tangent. Moreover, Win and Wout

are the input and output weight matrices (see Figure 4.4). The ELM
equation provides some sort of output memory smoothing the update of
the reservoir output by a factor given by the value of the leak rate λ.
Indeed, at each time step t, the reservoir output is calculated using a
linear combination of the input at time t and of the same output at the
previous time step t− 1.

The weights of the hidden neurons are fixed using a random process
that is characterized by two parameters. The first, αU allows specifying the
maximum absolute eigenvalue of the input weight matrix Win and controls
the relative importance of the inputs in the activation of the reservoir
neurons. The latter Kin defines the number of inputs that drive each
reservoir neuron and can be used to control the sparsity of the input weight
matrix. The values chosen for these parameters for the ELM network
considered in this work are reported in Table 4.2b.

During the training, the ELM algorithm tries to find a set of output
weights that minimizes the mean square difference between the readouts Yt

and their desired values Dt across the available training examples. Given
the R and D matrices with columns Rt and Dt, respectively, the output
weight can be found, in closed form, as

Wout = (RRT + εI)−1(DRT ) . (4.2)

The considered value of the regularization parameter ε is reported in
Table 4.2b, together with the other optimized ELM hyperparameters used
in the proposed application. Figure 4.5 shows the performance of ELMs
on the validation set as a function of the reservoir size (number of nodes).
The Root Mean Squared Error (RMSE) for each training is shown in
percentage and normalized with respect to the minimum encountered at
a reservoir size of 8000 neurons. However, the optimal parameter was
chosen as a reservoir size of 2000 nodes. Higher numbers of nodes lead to
a significant increase in the model complexity and therefore training time
while bringing only marginal performance improvement.

Compared to vanilla MLPs, in the case of ELMs the training data set
cannot be limited to synthetic data generated with only one equilibrium.
Indeed, to obtain a suitable estimation of the plasma unstable mode ξ,
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ELM - Rejection of VDEs of 6 cm - Group A

Figure 4.6: The response to a VDE of 6 cm when the ELMs models,
obtained from the trainings in Table 4.3d, are substituted to the Kalman
filter in the VS control loop is considered. In particular, the time trace of
the vertical displacement of the plasma centroid δZc, of the voltages uV S3
and current IV S3 are shown. Three models selected from Group A, whose
corresponding equilibrium parameters are reported above the figures, have
been considered. These samples were selected to give an idea of the overall
performance of the MLPs for the whole family of models in Group A.

data from more than one model must be shown to the network during
training. Table 4.3d refers to three trainings for which 5, 10, and all 24
models of Group A were taken into account to generate the data. Each
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ELM - Rejection of VDEs of 6 cm - Group B

Figure 4.7: The response to a VDE of 6 cm when the MLPs models,
obtained from the training in Table 4.3b, are substituted to the Kalman
filter in the VS control loop is considered. In particular, the time trace of
the vertical displacement of the plasma centroid, δZc, of the voltages uV S3
and current IV S3 in the in-vessel circuit are shown for the equilibria in
Group B. For these equilibria it was possible to stabilize the same VDE also
with the Kalman filter. Therefore, the performance of the MLP models is
compared with that obtained before introducing the NN in the VS loop

training database is also characterized by an increasing number of shots.
This allows the network to have access to enough information about the
different equilibria that it is seeing. On the other hand, it is sufficient to
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consider shots that last just 1 s to successfully train ELM networks. The
performance of the ELM models obtained from the different trainings in
Table 4.3d are shown in Figures 4.6 and 4.7.

Figure 4.6 reports the few cases where the NNs obtained with Train-
ing A show slightly different behavior than the others. In general, the
three ELM models tested show similar performance in terms of settling
time and power request. The same appears in Figure 4.7, where for the
three equilibria of Group B the NNs outperform the results obtained when
the Kalman filter is employed.

Therefore, in terms of the use of feedforward NNs to estimate ξ in the
set-up considered, it is possible to conclude that while for the MLP models
the training on richer databases can bring a performance improvement, in
the case of ELM networks a smaller group of equilibria for generating the
training data is already enough to obtain networks with good generaliza-
tion property.

Recurrent Neural Network

This section briefly discusses why LSTMs are not a suitable choice for
a NN to be included in the VS system considered.

LSTM is a type of RNN that is specifically designed to address the
problem of long-term dependency. In classic RNNs, neurons in the layers
are allowed to remember the previous sequence of input data by means
of recurrent connections: the output of a neuron at a given step is pro-
vided alongside the input in the next step. However, over time, as more
information piles up, RNNs become less effective at learning new things.

The key feature of LSTM networks is their ability to selectively re-
member or forget information over long periods of time. This is achieved
by including an internal state in the LSTM node, i.e. specialized memory
cells that are connected to each other through a series of gates. Gates
control the flow of information into and out of cells, allowing the network
to selectively remember or forget information based on its relevance to the
current task. They are widely used in applications with time-dependent
or sequence input data, such as speech recognition, natural language pro-
cessing, and image captioning.
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Machine learning models
Training Training Training Validation Training Stabilization

data parameters RMSE RMSE time rate
MLP 10 models 2400 0.31 0.43 1 h 7 min 27/27 equilibria
ELM 200 shots 2000 0.4 0.43 25 min 42 sec 27/27 equilibria
LR Tf = 5 s 58 1.47 1.37 35 sec 21/27 equilibria

Table 4.4: Comparison between the NN models. The number of training
parameters, the RMSE obtained on the training and validation data, the
training time (measured on an Intel Skylake CPU), and the stabilization
rate on the whole available models are reported as performance indicators
for the MLP, the ELM, and the LR models. The stabilization rate refers to
the capability to reject a VDE of 6 cm when the NN models are included
in the VS feedback loop and tested over the whole equilibria available.
The training database used was the same for all models.

Since in plasma control the available data are time series data, the
use of LSTM seemed a good starting point. However, as a matter of
fact, in the proposed study the delay introduced by LSTMs that were
successfully validated and tested on the corresponding data sets, was such
that stabilization in closed-loop cannot always be guaranteed. Indeed, the
use of LSTMs in the VS control loop, with their unavoidable initial delay,
results in a loss of control for relatively small VDEs. The maximum VDE
that can be counteracted while using the LSTM is of maximum 1 cm.

4.3 Results

In this section, the feed-forward NNs ( MLP and ELM) studied in this
work are compared. The same training database has been used for both
models. The data of Training B used for the MLP model in Table 4.3b
have also been used for training the ELM model. Specifically, 10 equilibria
of Group A (see Table 3.1a) were considered to generate a database of 200
shots simulating the rejection of VDEs between [−5 , 5] cm and lasting 5 s.
Table 4.4 reports the details of the training data together with the per-
formance indicators for the different models. The RMSE obtained on the
training and validation data, the number of training parameters for each
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Rejection of VDEs of 5 cm - Group A

Figure 4.8: Comparison between the MLP, the EML, and the LR models
reported in Table 4.4 and the Kalman filter when used in the VS control
loop to estimate the plasma unstable mode ξ is reported. In particular,
the time traces of the vertical displacement of the plasma centroid δZc,
of the voltages uV S3 and current IV S3 in the in-vessel circuit are shown
for the equilibria in Group A. The response to an initial VDE of 5 cm has
been considered for the simulations.

network, the time required to train the networks, and the stabilization
rate for VDEs of 6 cm are reported.

Furthermore, the obtained networks are also compared with a LR
model. A simple LR tries to predict the future applying linear regression
directly to input features, bypassing the reservoir in the ELM architecture.
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It can be considered as a baseline for other more complex networks.
Figure 4.8 reports the rejection of a VDE of 5 cm for three equilibria

selected from Group A. The NNs are compared with the simpler LR and
the model-based Kalman filter. The latter was able to stabilize such VDE
for all minus one equilibrium of Group A while the LR has a stabilization
rate of 21/27 equilibria when a VDE of 5 cm is considered. In fact, the LR
model cannot be used to stabilize Group B equilibria (Table 3.1b). In
Figure 4.9 the rejection of a higher VDE of 6 cm is considered for the
equilibria of Group B and the data-driven NNs are compared only with
the Kalman filter and with the model-based ITER-like VS proposed in [27].

The three examples selected from the Group A in Figure 4.8, refer to
different results. In the first, NN models are able to stabilize the initial
disturbance while the Kalman filter cannot, and the MLP model does not
guarantee the same transient performance as the others. For the second
equilibrium, when the simplest LR model leads to a slightly different time
trace for δZc, and lastly the NN models and the Kalman filter yield sim-
ilar performance. However, from an overall comparison between the NNs
studied as substitutes for the Kalman filter, it follows that the ELM model
can outperform the MLP for about 5 equilibria over the 24 in Group A.
This is especially in terms of the plasma centroid vertical position Zc re-
covery time. The same conclusions come when considering the result for
the Group B equilibria in Figure 4.9, where the NNs have been also with
a classic ITER-like VS system [27].

The ITER-like controller computes the voltage requests for the in-
vessel circuit uV S3 and for a superconductive circuit, at ITER called V S1,
usually employed to assist in the stabilization of the plasma column. A
combination of the plasma centroid vertical speed Żc and of the in-vessel
current IV S are used to obtain control actions, such as:

uV S3 = 1 + sτ1
1 + sτ2

(
KvIpeq

s

1 + sτz
Zc(s) + K1IV S(s)

)
(4.3a)

uV S1 = K2IV S (4.3b)

where Kv is the plasma speed gain, K1 and K2 are the current gains, τ1
and τ2 are the time constants of the lead compensator used to adjust the
stability margins and τz the time constant of the derivative filter (for more

88



CHAPTER 4. NEURAL NETWORK-BASED EXTREMUM
SEEKING

Rejection of VDEs of 6 cm - Group B

Figure 4.9: The response to a VDE of 6 cm when the MLP and ELM
models, obtained from the training setup described in Table 4.4, and the
Kalman filter are used in the VS control loop to estimate the plasma un-
stable mode ξ is reported. In particular, the time traces of the vertical
displacement of the plasma centroid δZc, of the voltages uV S3 and cur-
rent IV S3 in the in-vessel circuit are shown for the equilibria in Group B.
For a baseline comparison, the results of a classic ITER-like VS algorithm
are also reported.

details, the reader can refer to [27, 40]).
The MLP and ELM models outperform the Kalman filter in terms

of both δZc settling time and voltage uV S and current IV S request for
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Rejection of a VDEs of 6 cm - Group B
Equilibrium #1 Equilibrium #2 Equilibrium #3
IEA ITAE IEA ITAE IEA ITAE

Kalman filter 3.1× 10−2 5.8× 10−2 1.5× 10−2 2.2× 10−2 7× 10−2 2× 10−1

MLP 8.3× 10−3 7.7× 10−3 9.6× 10−3 9.5× 10−3 2.3× 10−2 3.5× 10−2

ELM 8.1× 10−3 1.6× 10−2 8.9× 10−3 7× 10−3 2.1× 10−2 7.5× 10−2

ITER-like 1.4× 10−2 2× 10−2 9.6× 10−3 9.5× 10−3 7.7× 10−3 9.6× 10−3

Table 4.5: Performance indices for the VS controllers for the rejection of
a VDE of 6 cm when considering the models in Group B. The correspond-
ing simulation time traces are those reported in Figure 4.9

all three equilibria. However, they assure similar performance in case
of Equilibrium #1 and Equilibrium #2 while the ELM model seems to
generalize better for Equilibrium #3. As already seen in Section 4.2.2,
the MLP models obtained both from Training B and Training C are able
to stabilize the latter equilibrium but with an initial overshoot in the
vertical position.

Furthermore, the effectiveness of the proposed VS controllers is evalu-
ated by considering the Integral Absolute Error (IAE) and Integral Time-
weighted Absolute Error (ITAE) performance indexes. Given the specific
objective of the vertical stabilization task, which aims at bring to zero the
plasma vertical displacement, these indexes are computed as follows:

IAE =
∫ tf

0
|δZc(t)| dt , (4.4)

ITAE =
∫ tf

0
t|δZc(t)| dt , (4.5)

where tf = 8 s. Table 4.5 reports these performance indices for the VS
systems compared in Figure 4.9 for Group B models. It follows that, if
the NNs are included in the VS loop then it is possible to improve the
overall performance, since both the IAE and ITAE indices assume values
smaller than those assumed when the Kalman filter is used, or when the
model-based ITER-like VS is considered; in some cases, the improvement
is almost an order of magnitude. This improvement comes only partially
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at the expense of a greater control effort due to the ES switching control
law. Indeed, there is an improvement between the ES architecture with
the Kalman filter and the one with NN, although both rely on a switching
control law.

Finally, the two NNs can also be compared in terms of computational
complexity. From Table 4.4 it is clear that even if the training and val-
idation losses, computed as RMSE between the sampled data and the
predicted ones are similar for the two models, the training times are quite
different. On the same database and on the same hardware (one core
of Intel(R) Xeon(R) Gold 6226R), the ELM model is almost three times
faster than the MLP one. This latter result is making RCNs more appeal-
ing compared to the traditional deep learning architecture. This is due to
that while for the MLP model the number of parameters to be trained is
given by the interconnection between all the network layers (input, hid-
dens, and output), for the ELM the only trained parameters are those
that connect the reservoir to the output layer.

Lastly, both NNs have been trained on data sampled at the frequency
of 20 kHz. Therefore, when the trained NNs were included in the VS
closed loop during the test phases, they were executed at the same fixed
step. All reported results are obtained considering the NNs computation
rate at the frequency of 20 kHz. Further analysis of the NNs prediction
property, when executed at a different rate, has been performed. In Fig-
ures 4.10a and 4.10b the simulations of the rejection of an initial VDE
of 5 cm for the MLP and ELM model defined in Table 4.4 when per-
formed at different rates are reported. The results obtained with the
baseline frequency of 20 kHz are compared to those obtained with the
slower frequency of 10 kHz and 5 kHz, respectively. It should be noted
that the slightly worsening of the performance obtained at 5 kHz is not
related to the use of a specific NNs, but to the fact that the estimation
of ξ is updated less frequently, hence inducing a delay in the closed-loop.
It follows that the MLP and ELM models can also run with an execution
time slower than the sample time used to collect the training data.
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MLP - Rejection of VDE of 5 cm - Equilibrium #1

ELM - Rejection of VDE of 5 cm - Equilibrium #1

Figure 4.10: (a) The response to an initial VDE of 5 cm when the MLP
model from Table 4.4 is executed at different sampling rates is reported.
The time behavior of the plasma centroid vertical position δZc, of the
voltage uV S and current IV S in the VS circuit are reported. The MLP
model can be run at a frequency around 1 kHz and retain its generalization
property. While at lower values of computational rate, the stabilization
capability of the proposed VS system is lost.(b) The ELM model defined
in Table 4.4 has been performed at different frequencies during the sim-
ulation of the rejection of a VDE of 5 cm. The lower computational rate
for this model that still allows for satisfactory performance is associated
with 4 kHz.

Summary

In this chapter, the possibility of replacing the Kalman filter in the bounded
ITER ES-based VS proposed in [56, 55] with a NN has been investigated.
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The ES control law requires knowledge of the state of the system, which
was previously ensured by the use of the model-based Kalman filter. Even
if in [55] the same filter model was employed in different scenarios, this
approach suffers from the dependency on the models used to design the
Kalman filter. Therefore, the main contribution of this part of the thesis
work is to show how the use of a NN can improve the robustness and
the generalization property of the ES approach, making it fully model-
free. Two feed-forward NNs have been studied and suit the purpose: a
classic MLP and an ELM network. For both models, different training
has been performed especially to understand their generalization capabil-
ity when tested in closed-loop on plasma equilibria not seen during the
training. The ELM network proved to perform better, while also ensuring
shorter training times.
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5
Application of the

Extremum Seeking
approach to the TCV case

This chapter treats the research project to validate in TCV the model-
free ES-based VS system originally proposed in [55, 56]. In fact,

given the flexibility of both the machine and the control system [101, 102],
TCV has often been the machine where cutting-edge control techniques
have been tested for the first time, such as H-infinity [103] and DRL [104],
and therefore represents a good candidate to evaluate the capacity of the
proposed ES-based VS system.

A preliminary assessment of the proposed VS architecture for TCV
has been carried out considering the bounded ES control law (2.4). The
latter algorithm is an appropriate application given the switching power
supply currently adopted at TCV to feed the G coils used as actuators by
the VS system [105]. Furthermore, the version based on the Kalman filter
has been taken into account since it does not require a training simulation
campaign for the NNs.
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(a) (b) (c)

Figure 5.1: TCV plasma equilibria considered for the preliminary studies.
The corresponding main plasma parameters are reported in Table 5.1.

The TCV equilibria considered are reported in Figure 5.1. They corre-
spond to different plasma shapes and different growth rates γ, as reported
in Table 5.1.

The simplified Simulink scheme of the TCV magnetic control system
shown in Figure 5.2 has been built considering only the VS system. As
a consequence of this choice, the Kalman filter used to estimate plasma
movement along the unstable dynamic ξ̂ considers as input only the volt-
age applied to the G coils used for the VS, VaG , and the corresponding
current IaG , the plasma current Ip and the plasma centroid vertical po-
sition zIp. The Kalman filter has been designed considering a reduced
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TCV plasma equilibria parameters
Pulse Time instant Ipeq γ

#61400 (Single null) t = 1.5 s 210.6 kA 1420 s−1

#63783 (Negative triangularity) t = 1 s 252.3 kA 620 s−1

#73037 (Elongated) t = 0.4 s 554.7 kA 2034 s−1

Table 5.1: Main plasma parameters for the equilibria reported in Fig-
ure 5.1.

k α ω

2.3 · 10−2 50 2000π rad/s

Table 5.2: Control parameters for the proposed model-free VS system
based on the bounded ES control law (2.4).

plasma linear model of order equal to 25 of the equilibrium obtained at
the time instant t = 1.5 s from pulse #61400, whose shape is reported in
Figure 5.1a. It is worth remarking that, despite the equilibria considered
for the assessments being different, the same Kalman filter has been used
for all the considered cases.

The considered ES control parameters are reported in Table 5.2. The
power supply that feeds the G coils at TCV has been modeled according
to the non-linear model described in [105]. Therefore, although simplified,
the simulation scheme considered includes the non-linear behavior of the
power supply.

The preliminary assessment have been performed by running the fol-
lowing two test cases:

• rejection of a VDE when only the ES-based VS system is considered
in closed-loop;

• rejection of a VDE when the plasma current and plasma centroid
position control loop currently adopted at TCV are included. This
allows to perform a preliminary evaluation of possible unwanted cou-
pling between the considered VS system and the remaining plasma
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Figure 5.2: Simulink scheme of the TCV ES-based VS, including the non-
linear model of the switching power supply for the G coils.

magnetic control loops.

Rejection of VDEs The response to a VDE of 4 cm for
the TCV plasma equilibrium obtained from pulse #61400 is reported
in Figure 5.3a, while Figure 5.3b shows the rejection of a VDE of 5 cm
when the equilibrium from pulse #63783 is considered. The time traces
of the plasma vertical position displacement δZp and of the current in the
G coils IaG have been reported.

Assessment with the other control loops Currently, the TCV
plasma magnetic control system is the so-called hybrid controller that in-
cludes the plasma shape and current controllers. Specifically, it is a MIMO-
Proportional–Integral–Derivative (PID) controller where the plasma cen-
troid radial and vertical positions Rp and Zp, respectively, are controlled
in feedback together with the plasma current Ip, while orthogonal PF coil
currents are controlled in feedforward based on pre-computed waveforms.
A mutual decoupling and resistive compensation term is then employed
to obtain the voltages to be applied to the coils starting from the current

98



CHAPTER 5. APPLICATION OF THE EXTREMUM SEEKING
APPROACH TO THE TCV CASE

0 10 20 30 40 50

Time [ms]

-2

0

2

4

6

P
o
s
it
io

n
 [
c
m

]

0 10 20 30 40 50

Time [ms]

-5

0

5

10

A
m

p
e

re
 [

k
A

]

(a) Rejection of a VDE of 4 cm obtained considering the plasma equilibrium from
pulse #61400.
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(b) Rejection of a VDE of 5 cm obtained considering the plasma equilibrium from
pulse #63783.

Figure 5.3: Rejection of VDEs when only proposed the ES-based VS
scheme is considered. The Simulink model used to obtain these results
is reported in Figure 5.2.

requests provided by the hybrid controller.
For this preliminary work assessment, only the plasma vertical position

and current loops have been considered, to evaluate the interaction of
the proposed ES-based VS system with the other magnetic control tasks.
Moreover, the power supply for the G coils has been modeled as a time
delay τ = 0.05 ms (more details can be found in [105]).
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(a) Rejection of a VDE of 3 cm obtained considering the plasma equilibrium from
pulse #61400.
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(b) Rejection of a VDE of 4 cm obtained considering the plasma equilibrium from
pulse #63783.
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(c) Rejection of a VDE of 1 cm obtained considering the plasma equilibrium from
pulse #73037.

Figure 5.4: Rejection of VDEs when only proposed the ES-based VS
scheme is coupled with the plasma vertical position Zp and current Ip

loops.

In Figure 5.4 is reported the response to VDEs of different amplitude
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for the TCV plasma equilibria considered (see Table 5.1). Specifically, for
each equilibrium, the comparison between the rejection of the same VDE
when only the proposed ES-based VS system is considered and when also
the plasma position and current feedback loops are closed is shown. The
time traces of the variation of the plasma vertical position δZp, the plasma
radial position δRp and current Ip around the given equilibrium are also
reported. As expected, there are induced oscillations in all the controlled
variables, due to the sinusoidal perturbation injected by the ES-based VS.
However, as far as the Ip control is concerned, the amplitude of such
oscillations is negligible, while, in the worst case, the oscillations on the
position of the plasma centroid are within ±2.5 mm in the case of Rp,
while are within ±1.5.cm for Zp, for the considered VDEs. These results
are considered encouraging.
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Part II

Data-driven
Vertical Stabilization
of tokamak plasma

via Reinforcement Learning
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6
Reinforcement Learning

This chapter starts with a brief introduction on RL followed by a re-
view of the application of RL algorithms in the field of nuclear fusion.

Subsequently, the RL algorithms considered in this thesis to develop data-
driven VS, the Q-learning and DDPG specifically, are presented. More
details about RL can be found in Appendix A.

RL [106] is a branch of Machine Learning (ML) dedicated to developing
intelligent agents capable of making autonomous decisions in dynamic and
uncertain environments. It can be especially beneficial in tackling goal-
directed and decision-making problems where the optimal course of action
is not known beforehand and the agent must learn by trial and error, i.e.,
making mistakes along the way.

At its core, RL is a process of successive interactions between an agent
and an environment. At each moment, t, the agent takes an action, at,
and receives feedback from the environment in the form of rewards or
penalties, Rt. This feedback helps the agent learn the optimal behavior
based on the corresponding outcome of its actions. Indeed, the goal of
the agent is to maximize, over time, the cumulative reward it receives
from the environment by learning the optimal policy that maps states
to actions. In this framework, the agent does not need prior knowledge
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of the environment; instead, it continuously learns from its interactions
with it. This allows the implementation of efficient model-free adaptation
algorithms without the need for ad hoc solutions.

In recent years, considerable progress has been made especially in the
area of DRL [106] where RL algorithms are combined with deep NNs. This
combination has enabled remarkable success in solving complex tasks such
as playing Atari games, mastering the game of Go, and controlling robotic
systems. Indeed, DRL has recently become a promising approach in the
nuclear fusion community. So far, few attempts have been made to apply
these techniques to avoid tokamak tearing instability [107], to control
plasma internal profiles [108]), or to design optimal feedforward reference
waveforms [109] by exploiting a virtual tokamak environment (also based
on NN [110]), and constraining the plasma state in terms of stability or
magnetic structure [111]. DRL has also been considered to address the
plasma magnetic control problem. A full demonstration of a DRL agent
capable of solving the whole magnetic control problem at TCV has been
successfully tested for a diverse set of plasma configurations [104].

This thesis presents the design of two RL-based VS systems as a poten-
tial data-driven solution for the VS problem in tokamak plasmas. To begin
with, a Q-learning algorithm is applied to the VS system of EAST toka-
mak [112]. Additionally, the possibility of using DRL with the International
Thermonuclear Experimental Reactor (ITER) plasma and MCS as the en-
vironment for a DDPG algorithm is explored [113].

6.1 Q-learning

Q-learning is a model-free, value-based, off-policy algorithm that is used
for systems with discrete action and state spaces. It stores the expected
cumulative rewards for each state-action pair, referred to as Q-values, in
a table known as a Q-table. The Q-values, which are calculated from
the action-value function Q(s, a), indicate the quality of taking a certain
action in a given state.

The Q-learning algorithm utilizes an iterative approach to refine its
tabular approximation of the action-value function Q(s, a). It does this
by excuting the following steps:
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1. Begin by initializing the Q-table with random values or zeros for all
state-action pairs.

2. Select the action to take based on the current state using an
exploration-exploitation trade-off strategy. Specifically, the agent
follows an ϵ-greedy policy to explore new actions and gather more
information about the environment at the beginning and then gradu-
ally exploits the learned knowledge to make optimal decisions, choos-
ing actions that correspond to the highest Q-values.

3. After performing the selected action, observe the next state of the
environment and the corresponding reward.

4. Update the Q-value for the current state-action pair using the Bell-
man equation, which is a mathematical formula used to calculate the
expected cumulative reward. This equation makes use of Temporal
Difference (TD) learning to update the optimal action-value function
following the law:

Q(St, At)← Q(St, At) + θ(Rt + ΓQ(St+1, a)−Q(St, At)) (6.1)

where Q(St, At) is the Q-value for the current state-action pair,
Q(St+1, a) is the Q-value for the subsequent state, τ is the discount
factor, and θ ∈ [0, 1) is a step size parameter.

5. Repeat steps 2-4 until convergence or for a predefined number of
iterations.

Through this process, the agent can effectively navigate complex en-
vironments and learn optimal decision-making strategies, which are the
sequences of actions that lead to the maximum cumulative reward.

6.2 Deep Deterministic Policy Gradient

DDPG is an off-policy, online, model-free RL algorithm that is especially
suitable for tasks with a continuous action space. Indeed, it is an actor-
critic algorithm that combines the advantages of both policy-based and
value-based methods. It uses a neural network (the actor network), to
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approximate the policy and select actions based on the current state, and
another neural network, (the critic network), to estimate the action-value
function Q. The use of an actor network to directly output continuous
actions allows the DDPG agent to be effective also in the case of plasma
magnetic control and accurately represents the plasma behavior.

Additionally, since an off-policy algorithm is employed, the critic and
actor networks are replicated in the so-called target networks. The weights
of these networks are updated slowly over time towards the weight of the
original networks using a soft update mechanism. This helps to provide a
more stable and accurate estimation of the Q-values while also ensuring a
more consistent and reliable learning process.

Generally, the DDPG training algorithm performs the following steps:

1. Initialize the actor and critic networks with random weights.

2. Copy the weights of the original networks to the target networks for
both actor and critic networks.

3. Select an action based on the current state using the actor network
and add noise to encourage exploration.

4. Execute the chosen action and observe the subsequent state and the
related reward.

5. Store the experience tuple (state, action, reward, next state) in a
replay buffer.

6. Draw a mini-batch of experiences from the replay buffer.

7. Use the data in the mini-batch to update the critic network by min-
imizing the mean squared TD error between the predicted Q-value
and the target Q-value .

8. Use the data in the mini-batch to update the actor network by com-
puting the gradient of the expected return with respect to the actor’s
parameters and performing gradient ascent.

9. Gradually blend the weights of the target networks with the weights
of the original networks.
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10. Repeat steps 3-9 until convergence or for a predefined number of
iterations.

The replay buffer is a memory structure that stores the experiences
(state, action, reward, next state) the agent has encountered while inter-
acting with the environment. This allows more efficient use of the data
by breaking the temporal correlations between consecutive experiences
and providing the agent with a diverse set of transitions to learn from.
Indeed, during the training process, mini-batches of experiences are ran-
domly sampled from the replay buffer and used to update the actor and
critic networks.

The leverage of both the reply buffer and target networks in the DDPG
algorithm offers a more reliable learning process, as it reduces bias and
variance in updates, thus resulting in better convergence and performance.

Finally, similar to Q-learning, DDPG uses an exploration-exploitation
trade-off strategy, by introducing decaying noise in selecting actions. This
allows the agent to balance the initial exploration of new actions with the
exploitation of the acquired knowledge to make the best decisions.
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7
Q-learning based Vertical

Stabilization for the EAST
tokamak

This chapter shows how an agent was trained using the Q-learning
approach to act as an alternative VS system for the EAST toka-

mak MCS. The objective of the training is to make the mentioned con-
troller learn how to counteract the plasma vertical instability by interact-
ing with a linearized plasma model in simulation, which plays the role of
the RL environment.

A common choice for the feedback quantities of a tokamak VS system
is represented by the in-vessel current and the vertical velocity of the
plasma centroid. For this reason, the couple (IIC , Żc)1 has been chosen
as the environment observed quantity. The RL-based VS agent will then
implement a policy to select the voltage request to the in-vessel coils VIC

based on such observations. Note that the plasma current and shape
1In the case of the EAST tokamak the in-vessel circuit dedicated to the VS is referred

to as IC
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VIC IIC Żc

Points number 17 21 21
Max absolute value 300 V 6 kA 30 m/s
Bonus assignation threshold – 50 A 0.5 m/s

Table 7.1: Number of discretization points and ranges for both states and
action of the proposed VS agent. The state thresholds for the assignment
of the bonus are also reported.

controllers are not included in the training environment to reduce the
computational burden. However, validation of the VS agent is carried out
taking into account the overall EAST plasma MCS.

The state and action spaces have been both linearly discretized. The
number of points used for the discretization together with the correspond-
ing variable ranges used in the Q-learning algorithm are reported in Ta-
ble 7.1. The following reward function has been adopted:

R(s , a) = −k1 ·
(

Żc

Żcmax

)2

− k2 ·
(

IIC

IICmax

)2
− k3 ·

(
VIC

VICmax

)2
, (7.1)

being the state s = (IIC , Żc) and the action a = VIC , and where Żcmax ,
IICmax and VICmax refer to the maximum values specified in Table 7.1. The
former two terms in (7.1) reflect the main objective of the VS system, i.e.
to stop the vertical unstable motion of the plasma, while keeping the
in-vessel current as low as possible. On the other hand, the latter term
penalizes high values of the control action VIC ; indeed, a low voltage limits
the control power and further contributes to keeping the in-vessel current
low. For the case of the EAST tokamak, the reward gains have been set
as k1 = 3 , k2 = 1 and k3 = 0.2.

In Algorithm 1 the process of training the VS agent for the EAST
tokamak while following the Q-learning algorithm is reported. The initial
value of Q(s, a) for each tuple (Żc, IIC , VIC) is set equal to R(s, a) at the
beginning of the training procedure (see Step 2 in Algorithm 1), while the
cumulative reward G is initialized to 0 at the beginning of each episode
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Input:
• state s = (Żc , IIC) and action a = VIC discretized spaces
• Maximum state values Żcmax , IICmax

• Bonus assignation threshold Żb , IICb

• Bonus b

• step size θ ∈ [0, 1)
• discount factor Γ ∈ [0, 1)
• initial exploration parameter ϵ ∈ [0 , 1)
• ϵ-decay factor δ ∈ [0 , 1)

1 Specify reward function R(s , a) according to (7.1)
2 Initialize Q(s , a)← R(s , a) for all state-action pairs
3 foreach episode do
4 Initialize s0 with a random VDE in the range [−5 , 5] cm
5 Initialize the cumulative reward G← 0
6 foreach step t in an episode do
7 Choose at ∈ A given st ∈ S according to the ϵ-greedy policy applied

on current Q table
8 Simulate plasma linearized model starting from state st applying

action at

9 Observe the new state st+1
10 Update Q(st , at) according to (6.1)
11 Update st ← st+1
12 (* Evaluate bonus and episode terminating condition *)
13 Initialize the current reward r ← R(st , at)
14 if |Żct | < Żb and |IICt | < IICb then
15 r ← r + b
16 end
17 else if |Żct | >= Żmax or |IICt | >= IICmax then
18 r ← r − 10 ∗ b
19 terminate the episode
20 end
21 Update the episode cumulative reward G← G + Γtr
22 Update ϵ← δϵ

23 end
24 end
Algorithm 1: Q-learning algorithm for the training of the RL-
based VS system of the EAST tokamak.
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(see Step 5). Each training episode simulates the reaction to a VDE over
a time interval of 400 ms, with a time step of 1 ms. For each episode, the
initial state of the plasma linearized model is randomly chosen along the
unstable eigenvector of the A matrix to result in a VDE with a possibly
maximum amplitude of 5 cm (see Step 4).

Since the purpose of the VS system is not only to bring the vertical
velocity of the plasma to zero but also to keep it close to zero through-
out the entire training episode, a positive bonus is added to the current
step reward R(St, At) every time the agent manages to keep the state
within a prescribed bound specified by the thresholds reported in Ta-
ble 7.1 (see Step 14). On the other hand, an episode is terminated, and
a penalty is assigned to the reward when at least one of the two states
reaches the maximum allowed value (see Step 17).

Both the cumulative reward G and the exploration parameter ϵ are
updated after each time step (see Steps 21 and 22).

The VS system used in the simulations has been trained using the
model (1.1) of the equilibrium corresponding to the EAST pulse #78289
at the time instant t = 3 s (see the plasma equilibrium parameters in
Table 7.2). The training lasted ≈ 9000 episodes, after which the cumu-
lative reward settled down to a “regime” value, as shown in Figure 7.1,
suggesting that at least a locally optimal policy had been learned. The
result is the action-value function Q, represented as a table that associates
the expected cumulative reward for every state (Żc, IIC) and action VIC .
The obtained RL-based VS system has been then validated on a set of
different equilibria, by including also the other components of the EAST
plasma MCS (for details on the simulation environment, see [114]).

7.1 Agent validation

To show the effectiveness of the proposed RL-based VS approach, two EAST
plasma models different from the one used for training have been taken
into account. Plasma parameters of the validation equilibria are reported
in Table 7.2. In particular, for the case of the EAST pulse #92141, the
response of the VS to the experimental disturbance that corresponds to
the injection of 1 MW of lower hybrid [115] is presented. Subsequently,
the rejection of a 2 cm VDE applied during the plasma current flat-top of
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Episode reward

episode
5000 9000

-20

0
G

0

Figure 7.1: Cumulative reward G over the training of the VS agent.

EAST equilibrium βpeq lieq Growth rate γ

Pulse #78289 at t=3 s (training) 0.39 1.06 224 s−1

Pulse #92141 at t=3 s (validation) 0.17 1.49 156 s−1

Pulse #79289 at t=3 s (validation) 0.33 1.19 177 s−1

Table 7.2: Values of the plasma parameters for the equilibria used for both
the training and validation of the proposed RL-based VS system. For all
the considered cases Ipeq = 250 kA.

the EAST pulse #79289 is considered.
It should be noted that the VS agent has been invoked at a frequency

of 10 kHz, which is consistent with the sampling frequency of the EAST
plamsa MCS.

Minor disruption Figure 7.3 shows the time traces of the disturbance
parameters βp and li that corresponds to the injection of ≈ 1 MW of lower
hybrid into the plasma during pulse #92141 at t ≈ 4 s. The simulation
results are shown in Figure 7.2 as red traces and are compared with the one
obtained during the experiment (blue traces). In particular, the voltage
and current in the in-vessel coil VIC and IIC , respectively, the plasma
vertical speed Żc, as well as the plasma current Ip are reported. It can
be seen that despite a slight increase in terms of control effort (i.e., of
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both the voltage and the current in the IC circuit), the plasma vertical
motion is stabilized and the behavior of the plasma current is improved.
Furthermore, comparing the behavior of the differences in poloidal flux
at the control points shown in Figure 7.4, it can be seen that a better
decoupling between the VS and the shape control is achieved with the RL
agent. Indeed, when the latter is used, no oscillations arise when the
disturbance occurs.

-100

-50

0

50

100
sim

exp

-2

-1

0

1

2

3
sim

exp

3 4 5 6
244

246

248

250

252

254

256
exp

sim

3 4 5 6
-4

-2

0

2

4
sim

exp

Figure 7.2: Rejection of external disturbances due to lower hybrid power
injection. The control voltage VIC , the corresponding current IIC , the
plasma vertical speed Żc and current Ip are shown. The simulated re-
sults (red traces) are compared to the ones obtained during the EAST
pulse #92141.
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Figure 7.3: Time traces of the disturbances βp and li for pulse #92141.
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Figure 7.4: Poloidal flux error at the control points for pulse #92141.
The comparison between the simulation result obtained with the pro-
posed RL based VS system (red traces) and the experimental data (blue
traces) is shown.

117



7.1. AGENT VALIDATION

-300

-200

-100

0

100

200

300

-4

-2

0

2

4

6

3.8 4 4.2 4.4

240

245

250

255

3.8 4 4.2 4.4

-15

-10

-5

0

5

10

15

Figure 7.5: Response to a 2 cm VDE for pulse #79289. The control
voltage VIC , the corresponding current IIC , the plasma vertical speed Żc
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VDE rejection The response of the overall EAST plasma MCS to
a VDE of 2 cm for pulse #79289 is shown in Figure 7.5. In this case,
the proposed RL-based VS system proves to be able to stop the plasma
vertical motion, recovering from the initial VDE. Also in this case the
interaction of the RL-based VS with the overall EAST plasma MCS does
not affect the performance of the plasma shape controller. Figure 7.6
shows two snapshots of the plasma cross-section during the simulation.

As a final remark of this section, it is worth noting that, although a
single equilibrium with a growth rate of ≈ 220 s−1 has been used for the
training, the VS agent has proved to be robust enough to cope with plasma
with different growth rates (≈ 155 s−1 and ≈ 180 s−1) and scenarios not
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the black one is the simulated one. Two snapshots at t1 = 4 s and t2 = 6 s
are shown. The bars show the poloidal flux error at the control points.

considered during training.
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8
Deep Reinforcement

Learning based Vertical
Stabilization for the ITER

tokamak

In this chapter, the applicability of DDPG approach to the VS problem is
analyzed. The effectiveness of the proposed solution is shown in the test
case of the ITER tokamak. In addition to what has been proposed in the
previous section the whole ITER plasma MCS has been taken into account
during the training process and a sensitivity analysis has been performed
that allowed the choice of the best-performing set of training DDPG hy-
perparameters.

A scheme showing how the DDPG agent has been applied to
the ITER VS is shown in Figure 8.1. The agent interacts with a RL
environment consisting of a linear model representing the plasma dynam-
ics and power supply, and includes the interaction of the VS system with
the other magnetic control loops, i.e. the plasma current and shape con-
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Figure 8.1: DDPG scheme of interaction between the RL environment of
plasma magnetic control and the actor-critic VS agent.

trollers.
The actuator considered for the VS agent is the in-vessel circuit, so for

the VS agent the control action is chosen as a = uV S . Feedback signals are
organized in the observed vector s = (IV S , ymag), and are, respectively,
the current in the VS circuit IV S , and the vector of magnetic diagnostic
signals ymag. The latter signals are part of the output of the linearized
plasma model (1.1) and are usually used to reconstruct the plasma centroid
vertical position Zc and velocity Żc. Specifically, the in-vessel Mirnov coil
measurements and flux sensors have been included in ymag.

The simulation scheme used in this part of the thesis work as a train-
ing and validation environment for the proposed VS agent is shown in
Figure 8.2.

The actor and critic neural networks are feed-forward networks with
fully connected layers and have been implemented as reported in Fig-
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ure 8.3. ReLU activation functions have been chosen, defined
as ReLU(x) = max(x, 0).

The reward function has been chosen as a function of the agent state s
and action a, and is given by:

R(s , a) = −k1 ·
(

Żc(ymag)
Żcmax

)2

− k2 ·
(

IV S

IV Smax

)2
− k3 ·

(
uV S

uV Smax

)2
, (8.1)

where Żcmax , IV Smax and uV Smax refer to the maximum values specified
for the vertical speed of the plasma centroid and the current and voltage
of the vessel coils, respectively.

The reward function (8.1) reflects the main objective of a VS system
i.e. to stop the unstable vertical motion of the plasma to avoid disruption
while keeping the in-vessel current as low as possible and limiting the
control voltage. An additional penalty is then added to the reward (8.1)
and the training episode is terminated if the centroid position variation
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Figure 8.3: DDPG Actor and Critic networks architecture. The networks
are only feed-forward, with no recurrent element, and have been imple-
mented using fully connected layers.

with respect to the equilibrium value δZc exceeds a threshold beyond
which disruption cannot be avoided. Furthermore, a +2 bonus is added
to (8.1) at each simulation time step if the agent manages to keep δZc

within the prescribed bound. These bonuses, summed over all the episode
time samples, turn into a maximum value for the cumulative reward that
becomes positive. In particular, given the sampling time Ts = 2.5 ms,
the possible maximum cumulative reward could be 4000 for the episodes
whose duration is equal to 5 s (see Figures 8.4, 8.6 and 8.7), while if the
episode duration is 20 s the maximum could reach 16000 (see Figure 8.5).

Moreover, at each time step of the DDPG training process the expected
reward yi is computed as

yi = Ri + ΓQ(si+1, ai+1) , (8.2)

where Ri is the experienced reward at the i-th step, Γ is the discount
factor and Q(si+1, ai+1) is the action-value function predicted by the critic
network.

The described setup has been implemented in MATLAB® by using the
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Figure 8.4: Episodes cumulative rewards obtained with the best choice
of the considered DDPG hyper-parameters and for the reward function
coefficients set equal to k1 = 1 , k2 = 2 , k3 = 1 (which also correspond to
the setup considered for Training A in Section 8.2).

Reinforcement Learning Toolbox® [116], to take advantage of Simulink®

to integrate the VS agent with the other components of the ITER plasma
magnetic control, already available in this environment.

8.1 Sensitivity analysis for the DDPG training
hyper-parameters

The effects of some hyperparameters and their tuning are analyzed with
respect to reward convergence. This study allowed to find the set of pa-
rameters that led to the successful training of the VS agent. Specifically, it
has been considered the effect of the following hyperparameters: episode
duration, number of hidden layers for both the actor and critic networks,
and action-noise variance decay rate. Table 8.1 reports the setting of all
the DDPG hyper-parameters and the range of variation for those that
have been changed during our analysis.

Figure 8.4 reports the training graph, i.e. the trace of the cumulative
reward as a function of the i-th episode, when the coefficients in (8.1) are
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HYPER-PARAMETERS

Hyper-parameter Considered Values
Sampling time Ts 2.5 ms

Episode duration T 5 s 20 s

Actor learning rate 5× 10−4

Critic learning rate 10−3

Actor hidden layers #m 64 128
Critic hidden layers #n 32 128
Discount factor Γ 0.99
Batch size 256
OUP variance 1840
OUP variance decay rate 8.66× 10−6 3.5× 10−6

Table 8.1: Set of the DDPG hyper-parameters. The range of variations
exploited during the sensitivity analysis is specified for those parameters
whose setting was changed. When multiple values are specified, those
reported in boldface are the ones chosen to obtain the results reported
in Figure 8.4.

set equal to k1 = 1 , k2 = 2 , k3 = 1, and the optimal choice for the three
considered hyperparameters has been made. In particular, the latter has
been set equal to the values reported in bold in Table 8.1.

In the following, for each hyperparameter variation considered, the
corresponding training graph is reported and a brief discussion is made
to motivate the final choice. Notice that in the training graph not only
the time trace of the cumulative reward as a function of the i-th episode
(lighter trace) is reported but also the average cumulative reward (darker
trace) over the 20 most recent episodes.

Episode duration Initially, the duration of an episode has been set
equal to 20 s; the corresponding training is shown in Figure 8.5. When
comparing this training with the one shown in Figure 8.4, it can be seen
that a longer interaction between the DDPG agent and the plasma envi-
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Figure 8.5: DDPG episodes cumulative rewards obtained with an episode
duration of 20 s

ronment leads to higher rewards, but does not ensure convergence toward
an optimum. Furthermore, when the duration of the episode is set equal
to 20 s, the obtained agents focus more on satisfying the performance
in steady state, rather than during the transient. Therefore, an episode
duration of 5 s has been chosen for the agent training procedure.

OUP Variance Decay Rate The agent uses the Ornstein-Uhlenbeck
action noise model for exploration. The noise variance and its decay rate
are computed as

σ2 ·
√

Ts = (1% to 10%) of ∆A

while its half-life, in time steps, is given by

HL = ln (0.5)
ln(1− σ2

dr)

where σ2 is the noise variance, ∆A is the range of the action variable,
HL is the half-life of the noise and σ2

dr is the decay rate of the variance
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Figure 8.6: DDPG episodes cumulative rewards obtained with an agent
noise decay rate of 3.5× 10−6.

of the noise. In this analysis, two values of the decay rate have been con-
sidered. This parameter has been first set equal to 3.5 × 10−6, which is
equivalent to about 2×105 time samples. The resulting training, reported
in Figure 8.6, shows that even if exploration seems to terminate after
about 1000 episodes, there is a sudden drop in the reward value between
episodes 1700 and 2200, after which the agent does not fully recover. On
the other hand, when the decay rate is set equal to 8.66 × 10−6, corre-
sponding to a variance half-life of about 8× 104 time samples, the results
shown in Figure 8.4 are obtained. In this case, once the plateau is reached,
the behavior of the reward oscillates less up to episode 2500. Therefore,
in our setup, we set the decay rate equal to 8.66× 10−6.

Critic and Actor hidden layers size The first choice of size for fully
connected layers in the architecture of the critic and actor networks was
equal to 128, as shown in Figure 8.3. From the training reported in Fig-
ure 8.7, it appears that network architectures can significantly affect re-
sults and convergence and that considering a simpler network can produce
better results.
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Figure 8.7: DDPG episodes cumulative rewards obtained with, both ac-
tor and critic networks implemented using fully connected layers with a
size 128.

Therefore, in the training reported in Figure 8.4, 64 layers were chosen
for the actor, and 32 for the critic.

8.2 Agents validation

For agent validation, two equilibria different from those used during train-
ing have been taken into account. These two validation equilibria cor-
respond toEquilibrium #2 and Equilibrium #3 from Group B of ITER
plasma linear models previously introduced and whose nominal values are
reported in Table 3.1b. While Equilibrium #1 has been used for training.

In addition to an agent obtained from the training shown in Figure 8.4
(hereafter referred to as Training A), two more agents have been selected;
these correspond to two choices of the reward function aimed at improving
the VS performance, and, in particular, reducing the steady state current
in the in-vessel coils. Namely, Training B, corresponds to a higher value

of k2, while Training C was obtained by adding the term −k4 ·
(

IV S

IV Smax

)2

129



8.2. AGENTS VALIDATION

k1 k2 k3 k4

Training A 1 2 1 0
Training B 1 2000 1 0
Training C 1 10 1 20

Table 8.2: Values of the penalty parameters in the reward function (8.1)
for the different considered DDPG trainings.

to the reward function. This additional term allows penalizing also the
integral value IV S = 1

T

∫ T
0 IV S(τ)dτ of the current in the in-vessel coils.

The parameters of the reward function for the trainings considered are
summarized in Table 8.2. A preliminary performance assessment of the
three agents considered is reported in the following.

Validation without disturbances The model corresponding to Equi-
librium #2 is used to assess the ability of the various agents to stabilize
a plasma different from that used for training when no external distur-
bances are applied. At the beginning of the considered simulation, the
plasma starts from the considered equilibrium. The RL-based agent, how-
ever, can lead to small initial displacements in the plasma position that
must be actively compensated for. Figure 8.8 shows the in-vessel circuit
voltage uV S and current IV S , the plasma current Ip, and the variation in
the vertical position of the plasma centroid δZc for the training options
considered. It can be seen that although all agents considered achieve the
stabilization objective, the ones corresponding to Training B and Training
C are preferable. They require a lower steady-state in-vessel coil current
since they bring the centroid closer to its equilibrium value.

Validation in the presence of a VDE Further validation is per-
formed by applying a VDE of 5 cm to Equilibrium #3 and Figure 8.9
shows the comparison between the results obtained using the three con-
sidered DDPG VS agents. Also in this case the agents corresponding to
Training B and Training C allow minimizing the steady-state current in
the in-vessel coil, confirming the results obtained with Equilibrium #2.
Moreover, the agent corresponding to Training C shows a smoother be-
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Figure 8.8: Simulation results obtained with Equilibrium #2 for
the DDPG VS agents corresponding to Training A (blue trace), Train-
ing B (blue trace) and Training C (red trace). The uV S voltage, the IV S

current, the plasma current Ip, and the vertical displacement of the plasma
centroid δZc with respect to the equilibrium are shown.

havior in terms of variations in plasma current and vertical displacement.

Comparison with a linear VS A comparison between a model-based
linear VS algorithm and the validated VS agents is reported in Figure 8.10.
The former controller is an ITER-like VS system and computes the volt-
age uV S to be applied to the in-vessel coils as a combination of the plasma
vertical speed Żc and of the current IV S flowing in the VS circuit. The
interested reader can refer to [27] and [34] for more details. To compare
the two approaches considered, here we report the results of the simula-
tion of a 5 cm VDE applied to Equilibrium #3. For this case considered,
Figure 8.10 shows that all the RL agents have a performance similar to

131



8.2. AGENTS VALIDATION

-0.5

0

0.5

-30

-20

-10

0

10

0 0.2 0.4 0.6 0.8 1

14.9

 

15

0 0.2 0.4 0.6 0.8 1

-2

0

2

4

6

Figure 8.9: Rejection of a 5 cm VDE applied to the linear model corre-
sponding to Equilibrium #2. The time traces of the uV S voltage, the IV S

current, the plasma current Ip, and the vertical displacement of the plasma
centroid δZc with respect to the equilibrium are shown.

the model-based VS in terms of setting time. Moreover, RL approaches
require a lower control effort in terms of applied voltage, during the initial
phase of the simulation, when the plasma displacement with respect to
the equilibrium value is maximum.
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Figure 8.10: Comparison between the model-based linear VS algorithm
(purple trace) and the RL agents corresponding to Training A (blue trace),
Training B (blue trace), Training C (red trace) in case of rejection of
a VDE of 5 cm applied to Equilibrium #2.
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9
Conclusions and future

activities

In this doctoral the current state of tokamak technology and especially
the challenges and limitations of plasma confinement when it comes

to plasma vertical stabilization are presented and questioned. The work
done in this thesis addresses the limitations introduced by commonly used
model-based VS systems by developing control strategies that guarantee
the required level of performance without relying on the knowledge of a
plant model. Indeed, model-free and data-driven approaches to the prob-
lem of VS in tokamak plasma were pursued. With model-free approaches,
it is possible to rely on the controller agnosticism with respect to the plant
model to increase robustness, while the data-driven ones learn the desired
plant behavior via extensive simulation campaigns and/or access to large
experimental data sets.

The ES algorithm for stabilization has been applied to the VS system
of the ITER tokamak and validated on a palette of linearized equilibria
showing that even if always employing the same Kalman filter, the model-
agnostic nature of the ES algorithm allows to cope with large model un-
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certainties. The simulation results show that the proposed VS scheme
achieves a satisfactory level of robustness during the overall flat-top phase
of an ITER discharge and for different plasma parameters and configura-
tions. Indeed, by means of linear and nonlinear simulations, it was proved
that the proposed control architecture can practically stabilize the plasma
column, by keeping the system state in a bounded set, while counteracting
relevant plasma disturbances.

The introduction of a switching power supply enhanced with an adap-
tation logic for the bounded ES control gain yields an improvement in
overall performance. It was possible to minimize the oscillation induced
in the controlled variables by the ES approach and reduce the maximum
voltage in the VS circuit bringing the control effort closer to the value
currently envisaged for the ITER tokamak.

The main advantage of the proposed ES-based technique lies in its
rather easy adaptation to different plasma configurations. Indeed, this
usually requires low or no effort, provided that the considered observer is
capable of describing, at least roughly, the unstable dynamic of the plant
and that controller gains need to be suitably chosen just once. This is
not the case for standard model-based VS techniques, which usually need
to be tuned on the basis of the specific plasma configuration, a task that
requires some significant modeling and testing effort.

This latter characteristic of ES approach made the proposed VS a
suitable candidate for the WPTE (Work Package Tokamak Exploitation)
at TCV tokamak. A preliminary evaluation for applying the ES control
technique has already been carried out, drawn also by the switching power
supply employed for the VS system of TCV. However, during this Ph.D.
there was no possibility to test the proposed approach during experiments,
but there are plans to validate it in an experimental campaign in 2024.

To remove the residual model dependence embedded in the Kalman
filter, NNs have been trained to estimate the movement of the plasma along
the unstable dynamic, This allowed to turn the proposed ES-based VS
in a completely model-free control approach. A LR, a MLP, an ELM,
and a LSTM networks were trained on synthetic shots performing ITER
discharges and their generalization property has been tested in closed-loop
considering scenarios not seen during training. It was shown that the use
of NNs can enhance the operational space and generalization property of
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the ES control law, ensuring more robustness to model uncertainties or
changes in the plasma configuration and behavior. This makes it possible
to stabilize plasma equilibria that are not stabilized by the set-up based
on a single Kalman filter.

Nevertheless, the replacement of the Kalman filter and the introduc-
tion of NNs in the VS control loop is not a trivial extension of the previous
method in [55, 56]. As reflected by the results presented, the Kalman fil-
ter generalizes less than the NNs considered but yet it can be easily tuned
on the basis of the controller experience. In contrast, NNs significantly
increase the generalizability of the controller, but their training requires
more effort. In fact, data needed to be collected to generate the required
datasets, and a significant amount of time was required to train, validate
and test the models obtained since the performance of NNs depends on
the specific data seen during training.

However, the main advantage is that thanks to NNs generalization
property, the proposed approach can be adapted even more easily to differ-
ent plasma configurations, being the NNs, once properly trained, capable
of reconstructing the unstable dynamic of the plant, while the ES con-
troller ensures model-free adaption, without the need to tailor the gains
for the specific scenario. This represents a potential improvement if com-
pared with standard model-based VS techniques.

The presented results pave the way for further developments. For
example, to increase robustness, the training database could be collected
by performing synthetic shots on different scenarios and disturbances that
can occur during ITER operations. The trained models can also take into
account the variation of the disturbance βp and li, or of shape parameters
such as triangularity and elongation, which have an impact on the dynamic
of the vertical instability. Moreover, the availability of operating tokamak,
such as TCV, can be exploited not only to test the proposed approach in
an experimental campaign but also to train the NNs on experimental data.

Finally, the possibility of applying RL to the VS problem was investi-
gated. Both RL strategies pursued, the Q-learing and DDPG algorithms,
allowed the implementation of a single VS agent which is robust enough
to handle different plasma operating conditions without the need to adapt
the controller parameters. The proposed VS agents were also shown to
have similar or even improved performance compared to other classical
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controllers.
Also in this case, it is possible to further improve the robustness of

the VS agent by enlarging the operational space seen during its training.
Indeed, training could be carried out considering a palette of different
plasma equilibria and configurations so that the final agent can also adapt
to the value of the disturbance and shape parameters. Specifically, these
parameters could be included in the observed quantities provided to the
agent from RL environment.
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A
Reinforcement Learning

This chapter provides a more comprehensive introduction to the RL
framework. It delves into its key features and explains the iterative

optimization process that is the basis of all RL algorithms.

RL is one of the three main paradigms of ML, alongside with super-
vised and unsupervised learning. Unlike the other two, RL is used to deal
with sequential decision-making problems, in which the action to be taken
is contingent on the current state of the system and has an effect on its
future.

The learner or decision maker in RL problems is referred to as the
agent and interacts with what is called the environment. This interaction
is continuous: the agent selects an action, and the environment responds
to this action by altering its state and providing a scalar reward. The
agent is not given instructions beforehand about which actions to take
but instead must discover which actions result in the highest long-term
cumulative reward by trying them. Through a trial-and-error process,
it decides what to do based on the feedback it receives from the environ-
ment. Moreover, since the aim ofRL is to maximize the cumulated reward,
i.e., the sum of the rewards over a period of time, the choice of actions
affects not only the immediate reward but also all future ones. Trial-
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and-error searches together with delayed rewards are the most important
distinguishing features of RL.

In addition to the agent and the environment, four main components
are necessary for the successful implementation of RL algorithms: a policy,
a reward signal, a value function, and a model of the environment. These
four elements are essential for the successful application of RL techniques.
Specifically:

• A policy π(s) is a way of determining how an agent will act in a
given situation. It is a mapping from states to actions that the
agent follows to make decisions. The policy can be either determin-
istic, meaning that it always chooses the same action for a given
state, or stochastic, meaning that the agent chooses actions based
on probability. Agents try to find the optimal policy that leads to
the highest cumulative reward.

• The reward signal is a scalar value that provides the agent with
feedback on the desirability of its actions. It is usually represented
as R(st, at), where t is the current time step, and st and at are the
state and action at that time. The programmer designs the function
R(st, at) based on the goal of the problem to be solved and uses it
to guide the agent’s learning; by giving higher rewards to desirable
actions and lower rewards to undesirable actions, the agent learns
to prefer actions that lead to higher cumulative rewards.

• The value function evaluates the desirability of different states or
actions in the long run. It estimates the expected cumulative reward
an agent will receive from a particular state or state-action pair and
is used to guide the agent’s decision-making process. The value
function can be expressed in two forms: the state-value function
V (s) and the action-value function Q(s, a). The state-value function
estimates the expected cumulative reward from a given state, while
the action-value function estimates the expected cumulative reward
from a particular state and when a specific action is taken.

• The model of the environment is a representation or approximation
of the way the environment works, which the agent uses to make
decisions. This model can predict the next state and reward given
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Figure A.1: Agent-environment interaction in the RL framework.

a certain state and action. It allows the agent to simulate the en-
vironment and make decisions without actually interacting with it.
However, it is important to note that not all RL algorithms require
a model. Model-free algorithms learn directly from the interaction
with the real environment, without needing an explicit representa-
tion of its dynamics.

An RL algorithm is a method to formulate an optimization problem in
which the agent’s control objective is expressed in terms of a scalar reward
function R(s, a). The aim of RL agents is to identify the optimal behavior
policy π∗(s) for the given problem by maximizing the total reward received
during the interaction with the environment. In the optimization process,
the RL algorithms usually refer to the discounted cumulated reward, which
is defined as:

Gt =
N∑

t=0
ΓtR(st, at) , (A.1)

with Γ ∈ [0, 1) the so-called discount factor that determines the impor-
tance of future rewards with respect to the immediate one. The discount-
cumulated reward, Gt allows RL algorithms to handle non-deterministic
environments since it can account for future uncertainty. The agent can
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learn the optimal policy by making decisions based on a forecast of the to-
tal reward, which is obtained by using value functions. In RL, this process
is referred to as the Bellman Optimality Principle and can be expressed
in the Bellman equations:

Vπ(s) = Eπ[R(St, a) + ΓVπ(St+1)|St = s] , (A.2a)
Qπ(s, a) = Eπ[R(St, a) + ΓQπ(St+1, At+1)|St = s, At = a] . (A.2b)

These equations express the expected value of a state when an agent
takes an action prescribed by a policy π. The value of a state St is calcu-
lated by adding the immediate reward R(St, a) to the discounted expected
value of the subsequent state St+1.

The Bellman Optimality Principle states that the optimal course of
action in any given situation can be decomposed into two parts: the most
advantageous action to take in the current state, which yields R(St, a), and
the optimal policy to follow from the subsequent state given by vπ(St+1)
(or qπ(St+1, At+1)). This enables the Bellman equation to be used to
progressively refine the value function. The update process, which may
differ depending on the specific RL algorithm employed, generally follows
the principle of updating towards a target value. For instance, for the
Monte-Carlo algorithm, the value function is updated toward the actual
cumulated return Gt:

V (St)← V (St) + θ (Gt − V (St)) , (A.3)

where θ is the learning rate and is used to determine the importance
given to new information and how much the value function is updated
at each step. Indeed, higher learning rates lead to faster convergence
but potentially less stability, while lower learning rates lead to slower
convergence but potentially more stability.

The Monte Carlo approach utilizes complete episodes of the agent’s in-
teraction with the environment to generate samples and modify the agent’s
strategy (see Figure A.2a for the related backup diagram). Conversely,
algorithms, like TD, modify the value function at each state-action transi-
tion (see Figure A.2 for the backup diagram). For TD, the update equation
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(a) Monte Carlo (b) Temporal Difference

Figure A.2: Backup diagram for the value function update process of
Monte Carlo (a) and TD learning (b) algorithms.

for the value function is:

V (St)← V (St) + θ (Rt + ΓV (st+1)− V (St)) . (A.4)

The target value is the sum of the current reward and the estimated
value of the next state and the update is based on the so called TD errors:
the difference between the observed value of a state and the estimated
value of that state.

The Bellman Optimality Principle is often employed in conjunction
with a greedy policy. After each update of the value function, the agent
will always select the action that leads to the state with the highest es-
timated value. Therefore, the optimal policy is obtained by maximizing
the (expected) state-action value function Q over all the possible actions,
such as

π∗(s) = argmax
a∈A

Q(s, a) . (A.5)

In this way, the agent is always exploiting current knowledge and mak-
ing the most advantageous decisions based on it. However, relying only
on a greedy policy can lead to suboptimal solutions, as the agent may not
consider other possible actions that could potentially bring higher rewards
in the long run. To continue exploring the environment, it is possible to
occasionally allow for random exploratory moves. This creates a trade-off
between environmental exploration, with the aim of collecting more in-
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formation to improve π(s). and the exploitation of the already available
information. A common exploration strategy is the ϵ-greedy policy, which
allows the agent to occasionally choose a random action, with a small
probability ϵ, instead of always selecting the greedy one. As the iteration
progresses, the value of ϵ is gradually reduced so that the probability of
taking random moves instead of optimal ones decays over time.

Finally, the RL algorithms can be divided into different categories.
Depending on how the agent is allowed to learn optimal behaviors, there
are value-based methods and policy-based methods. Value-based meth-
ods focus on estimating the state-value function V (s) or the action-value
function Q(s, a) to allow the agent to select the action that yields the
highest expected rewards. These techniques usually involve Q-learning or
SARSA to learn the optimal value function. On the other hand, policy-
based methods, instead of estimating the value of each state, aim to learn
the optimal policy that maps states to actions directly. These techniques
usually involve REINFORCE or Actor-Critic architecture to learn the op-
timal policy.

Furthermore, the RL algorithms can be classified according to the way
the value functions are updated. On-policy algorithms update their value
functions based on the current policy being followed. This means that
the agent uses the same policy to both select actions and update the value
function based on the rewards received from those actions. In contrast, off-
policy algorithms update their value functions based on a policy different
from the one that is being followed. The agent follows one policy, known
as the behavior policy, to select actions, but updates its value function
based on the maximum expected value of the next state, regardless of
the action taken. How the value function is updated has implications for
exploration and exploitation. On-policy algorithms are more conservative
in their exploration, as they only modify their value function based on the
actions they actually take. Conversely, off-policy algorithms can explore
more extensively as they update their value function based on the highest
expected value, regardless of the action taken.

144



B
Publications

Extremum Seeking

• S. Dubbioso and A. Jalalvand and J. Wai and G. De Tommasi
and E. Kolemen, “Vertical Stabilization of Tokamak Plasmas via a
Model-free Neural Networks-based Architecture” submitted to Engi-
neering Applications of Artificial Intelligence.

• S. Dubbioso and L.E. di Grazia and G. De Tommasi and M. Mat-
tei and A. Mele and A. Pironti, “Vertical stabilization of tokamak
plasmas via extremum seeking” in IFAC Journal of Systems and
Control, vol. 21, pp. 2468-6018, 2022.
DOI: 10.1016/j.ifacsc.2022.100203
URL: https://www.sciencedirect.com/science/article/pii/
S2468601822000116

• G. De Tommasi and S. Dubbioso and A. Mele and A. Pironti,
“Event-driven adaptive Vertical Stabilization in tokamaks based on
a bounded Extremum Seeking algorithm” in Proceeding of 6th IEEE
Conference on Control Technology and Applications (CCTA),
Trieste, Italy, 2022, pp. 831-836.

145

https://www.sciencedirect.com/science/article/pii/S2468601822000116
https://www.sciencedirect.com/science/article/pii/S2468601822000116


DOI: 10.1109/CCTA49430.2022.9966100

• G. De Tommasi and S. Dubbioso and A. Mele and A. Pironti,
“Stabilizing elongated plasmas using extremum seeking: the ITER
tokamak case study” in Proceeding of 29th Mediterranean Con-
ference on Control and Automation (MED), Bari, Italy, 2021,
pp. 472-478.
DOI: 10.1109/MED51440.2021.9480302

Reinforcement Learning

• S. Dubbioso and G. De Tommasi and A. Mele and G. Tartaglione
and M. Ariola and A. Pironti, “A Deep Reinforcement Learning ap-
proach for Vertical Stabilization of tokamak plasmas” in Fusion En-
gineering and Design, vol. 194, pp. 113725, 2023.
DOI: 10.1016/j.fusengdes.2023.113725
URL: https://www.sciencedirect.com/science/article/pii/
S0920379623003083

• G. De Tommasi and S. Dubbioso and Y. Huang and Z. P. Luo
and A. Mele and B. J. Xiao, “A RL-based Vertical Stabilization Sys-
tem for the EAST tokamak” in Proceeding of American Control
Conference (ACC), Atlanta, GA, USA, 2022, pp. 5328-5333.
DOI: 10.23919/ACC53348.2022.9867499

Others

• D. Ottaviano and M. Cinque and G. Manduchi and S. Dubbioso,
‘Virtualization of accelerators in embedded systems for mixed-criticality:
RPU exploitation for fusion diagnostics and control”, in Fusion En-
gineering and Design, Vol. 190, pp. 113518, 2023.
DOI: 10.1016/j.fusengdes.2023.113518.
URL: https://www.sciencedirect.com/science/article/pii/
S0920379623001023

146

https://www.sciencedirect.com/science/article/pii/S0920379623003083
https://www.sciencedirect.com/science/article/pii/S0920379623003083
https://www.sciencedirect.com/science/article/pii/S0920379623001023
https://www.sciencedirect.com/science/article/pii/S0920379623001023


APPENDIX B. PUBLICATIONS

• M. Cinque and G. De Tommasi and S. Dubbioso and D. Otta-
viano, “RPUGuard: Real-Time Processing Unit Virtualization for
Mixed-Criticality Applications” in Proceeding of 18th IEEE Euro-
pean Dependable Computing Conference (EDCC), Zagaroza,
Spain, 2022, pp. 97-104.
DOI: 10.1109/EDCC57035.2022.00025

• M. Cinque and G. De Tommasi and S. Dubbioso and D. Otta-
viano, “Virtualizing Real-Time Processing Units in Multi-Processor
Systems-on-Chip” in Proceeding of 6th IEEE International Fo-
rum on Research and Technology for Society and Industry
(RTSI), Naples, Italy, 2021, pp. 329-333.
DOI: 10.1109/RTSI50628.2021.9597281

147



148



Bibliography

[1] “ITER website,” https://www.iter.org/.

[2] “ITER Research Plan within the Staged Approach,” https://www.
iter.org/doc/www/content/com/Lists/ITER%20Technical%20Re
ports/Attachments/9/ITER Research Plan within the Staged A
pproach levIII provversion.pdf, 2018.

[3] M. L., “Spectroscopic characterisation of tcv divertor towards a de-
tached regime,” Ph.D. dissertation, Lausanne, EPFL, 2023.

[4] “Fusion Plasmas - TCV Tokamak,” https://www.epfl.ch/research/
domains/swiss-plasma-center/research/tcv/.

[5] “ITER - FusionWiki,” http://fusionwiki.ciemat.es/wiki/ITER.

[6] J. Li and Y. Wan, “The experimental advanced superconducting
tokamak,” Engineering, vol. 7, no. 11, pp. 1523–1528, 2021.
[Online]. Available: https://www.sciencedirect.com/science/articl
e/pii/S2095809921003933

[7] “European Research Roadmap to the Realisation of Fusion Energy,”
https://www.euro-fusion.org/fileadmin/user upload/EUROfusion
/Documents/2018 Research roadmap long version 01.pdf, 2018.

[8] “A Community Plan for Fusion Energy and Discovery Plasma Sci-
ences,” https://arxiv.org/ftp/arxiv/papers/2011/2011.04806.pdf,
2020.

[9] J. Wesson and D. Campbell, Tokamaks. Oxford University Press,
2011.

149

https://www.iter.org/
https://www.iter.org/doc/www/content/com/Lists/ITER%20Technical%20Reports/Attachments/9/ITER_Research_Plan_within_the_Staged_Approach_levIII_provversion.pdf
https://www.iter.org/doc/www/content/com/Lists/ITER%20Technical%20Reports/Attachments/9/ITER_Research_Plan_within_the_Staged_Approach_levIII_provversion.pdf
https://www.iter.org/doc/www/content/com/Lists/ITER%20Technical%20Reports/Attachments/9/ITER_Research_Plan_within_the_Staged_Approach_levIII_provversion.pdf
https://www.iter.org/doc/www/content/com/Lists/ITER%20Technical%20Reports/Attachments/9/ITER_Research_Plan_within_the_Staged_Approach_levIII_provversion.pdf
https://www.epfl.ch/research/domains/swiss-plasma-center/research/tcv/
https://www.epfl.ch/research/domains/swiss-plasma-center/research/tcv/
http://fusionwiki.ciemat.es/wiki/ITER
https://www.sciencedirect.com/science/article/pii/S2095809921003933
https://www.sciencedirect.com/science/article/pii/S2095809921003933
https://www.euro-fusion.org/fileadmin/user_upload/EUROfusion/Documents/2018_Research_roadmap_long_version_01.pdf
https://www.euro-fusion.org/fileadmin/user_upload/EUROfusion/Documents/2018_Research_roadmap_long_version_01.pdf
https://arxiv.org/ftp/arxiv/papers/2011/2011.04806.pdf


BIBLIOGRAPHY

[10] J. Wesson, “The Science of JET,” https://www.euro-fusion.org/fil
eadmin/user upload/Archive/wp-content/uploads/2012/01/the-sci
ence-of-jet-2000.pdf, 2000.

[11] “First Tokamak plasma for JT-60SA,” https://fusionforenergy.euro
pa.eu/news/first-tokamak-plasma-for-jt-60sa/, 2023.

[12] “JT-60SA is officially the most powerful Tokamak.” https://fusion
forenergy.europa.eu/news/jt-60sa-is-officially-the-most-powerful-t
okamak/, 2023.

[13] J. Luxon, “A design retrospective of the diii-d tokamak,” Nuclear
Fusion, vol. 42, 2002.

[14] S. Wu, “An overview of the east project,” Fusion Engineering and
Design, vol. 82, 2007.

[15] H. Reimerdes et al., “Overview of the tcv tokamak experimental
programme,” Nuclear Fusion, vol. 62, no. 4, p. 042018, 2022.

[16] “DEMO - EUROfusion,” https://euro-fusion.org/programme/de
mo/.

[17] “EAST,” http://east.ipp.ac.cn/.

[18] G. De Tommasi et al., “Shape control with the extreme shape con-
troller during plasma current ramp-up and ramp-down at the JET
tokamak,” J. Fus. Energy, vol. 33, 2014.

[19] F. C. Schuller, “Disruptions in tokamaks,” Plasma Physics and Con-
trolled Fusion, vol. 37, 1995.

[20] P. de Vries, M. Johnson et al., “Survey of disruption causes at jet,”
Nuclear Fusion, vol. 51, 2011.

[21] M. Ariola and A. Pironti, Magnetic Control of Tokamak Plasmas,
2nd ed. Springer, 2016.

[22] G. Jackson, D. Humphreys, A. Hyatt, and J. Leuer, “Control issues
related to start-up of tokamaks,” Fusion Science and Technology,
vol. 59, 2011.

150

https://www.euro-fusion.org/fileadmin/user_upload/Archive/wp-content/uploads/2012/01/the-science-of-jet-2000.pdf
https://www.euro-fusion.org/fileadmin/user_upload/Archive/wp-content/uploads/2012/01/the-science-of-jet-2000.pdf
https://www.euro-fusion.org/fileadmin/user_upload/Archive/wp-content/uploads/2012/01/the-science-of-jet-2000.pdf
https://fusionforenergy.europa.eu/news/first-tokamak-plasma-for-jt-60sa/
https://fusionforenergy.europa.eu/news/first-tokamak-plasma-for-jt-60sa/
https://fusionforenergy.europa.eu/news/jt-60sa-is-officially-the-most-powerful-tokamak/
https://fusionforenergy.europa.eu/news/jt-60sa-is-officially-the-most-powerful-tokamak/
https://fusionforenergy.europa.eu/news/jt-60sa-is-officially-the-most-powerful-tokamak/
https://euro-fusion.org/programme/demo/
https://euro-fusion.org/programme/demo/
http://east.ipp.ac.cn/


BIBLIOGRAPHY

[23] M. Walker and D. Humphreys, “On feedback stabilization of the
tokamak plasma vertical instability,” Automatica, vol. 45, 2009.

[24] V. Shafranov, “Plasma equilibrium in a magnetic field,” Reviews of
Plasma Physics, vol. 2, 1966.

[25] R. Albanese, R. Ambrosino, and M. Mattei, “CREATE-NL+: A
robust control-oriented free boundary dynamic plasma equilibrium
solver,” Fus. Eng. Des., vol. 96–97, 2015.

[26] F. Sartori, G. De Tommasi, and F. Piccolo, “The Joint European
Torus,” IEEE Control Sys. Mag., vol. 26, 2006.

[27] R. Albanese, R. Ambrosino et al., “Iter-like vertical stabilization
system for the east tokamak,” Nuclear Fusion, vol. 57, 2017.

[28] R. Ambrosino et al., “Design and nonlinear validation of the ITER
magnetic control system,” in 2015 IEEE Conference on Control Ap-
plications (CCA), 2015.

[29] M. Cinque et al., “Management of the ITER PCS design using a
system-engineering approach,” IEEE Trans. Plasma Sci., vol. 48,
2020.

[30] G. De Tommasi, “Plasma magnetic control in tokamak devices,” J.
Fus. Energy, vol. 38, 2019.

[31] F. Hoffman, O. Sauter et al., “Experimental and thoretical stabil-
ity limits of highly elongated tokamak plasmas,” Physical Review
Letters, 1998.

[32] J. P. Freidberg, A. Cerfon, and J. Lee, “Tokamak elongation–how
much is too much? Part 1. Theory,” J. Plasma Phys., vol. 81, no. 6,
p. 515810607, 2015.

[33] G. Ambrosino, M. Ariola, G. De Tommasi, and A. Pironti, “Ro-
bust vertical control of ITER plasmas via static output feedback,”
in 2011 IEEE International Conference on Control Applications
(CCA), 2011.

151



BIBLIOGRAPHY

[34] G. De Tommasi, A. Mele, and A. Pironti, “Robust plasma vertical
stabilization in tokamak devices via multi-objective optimization,”
in Int. Conf. on Optimization and Decision Science, 2017.

[35] E. Schuster, M. Walker, D. Humphreys, and M. Krstić, “Plasma
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