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Abstract. We discuss whether finiteness properties of a profinite group G can be deduced from the

coefficients of the probabilistic zeta function PG(s). In particular we prove that if PG(s) is rational and

all but finitely many non abelian composition factors of G are isomorphic to PSL(2, p) for some prime

p, then G contains only finitely many maximal subgroups.

1. Introduction

Let G be a finitely generated profinite group. As G has only finitely many open subgroups of a given

index, for any n ∈ N we may define the integer an(G) as an(G) =
∑

H µG(H), where the sum is over all

open subgroups H of G with |G : H| = n. Here µG(H) denotes the Möbius function of the poset of open

subgroups of G, which is defined by recursion as follows: µG(G) = 1 and µG(H) = −
∑

H<K µG(K) if

H < G. Then we associate to G a formal Dirichlet series PG(s), defined as

PG(s) =
∑
n∈N

an(G)
ns

.

Notice that if H is an open subgroup of G and µG(H) 6= 0, then H is an intersection of maximal

subgroups of G. Therefore the formal Dirichlet series PG(s) encodes information about the lattice

generated by the maximal subgroups of G, just as the Riemann zeta function encodes information

about the primes, and combinatorial properties of the probabilistic sequence {an(G)} reflect on the

structure of G.
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If G contains only finitely many maximal subgroups (i.e. if the Frattini subgroup FratG of G has

finite index in G), then there are only finitely many open subgroups H of G with µG(H) 6= 0 and

consequently an(G) = 0 for all but finitely many n ∈ N (i.e. PG(s) is a finite Dirichlet series). A

natural question is whether the converse is true.

Let {Gn}n∈N be a countable descending series of open normal subgroups with the properties that

G1 = G,
⋂
n∈NGn = 1 and Gn/Gn+1 is a chief factor of G for each n ∈ N. The factor group G/Gn is

finite, so the Dirichlet series PG/Gn
(s) is also finite and belongs to the ring D of Dirichlet polynomials

with integer coefficients. Actually, PG/Gn
(s) is a divisor of PG/Gn+1

(s) in the ring D, i.e. there exists a

Dirichlet polynomial Pn(s) such that PG/Gn+1
(s) = PG/Gn

(s)Pn(s). As explained in [3], the Dirichlet

series PG(s) can be written as an infinite formal product

PG(s) =
∏
n∈N

Pn(s),

and if we change the series {Gn}n∈N, the factorization remains the same up to reordering the fac-

tors. Moreover it turns out that Pn(s) = 1 if Gn/Gn+1 is a Frattini chief factor (i.e. Gn/Gn+1 ≤
Frat(G/Gn+1). Notice that G has finitely many open maximal subgroups if and only if the chief series

{Gn}n∈N contains only finitely many non-Frattini factors. This could suggest a wrong argument: if the

product PG(s) =
∏
n∈N Pn(s) is a Dirichlet polynomial, then Pn(s) = 1 for all but finitely many n ∈ N

and consequently the series {Gn}n∈N contains only finitely many non-Frattini factors. The problem is

that it is possible that a Dirichlet polynomial can be written as a formal product of infinitely many

non trivial elements of D. To give an idea of what can occur, let us recall a related question, with an

unexpected solution: if G is prosolvable, then we can consider the p-local factor

PG,p(s) =
∑
m∈N

apm

pms
.

It turns out that PG,p(s) =
∏
n∈Ωp

Pn(s) where Ωp is the set of indices n such that Gn/Gn+1 has p-power

order. It is not difficult to prove that a finitely generated prosolvable group G contains only finitely

many maximal subgroups whose index is a power of p if and only if a chief series of G contains only

finitely many non-Frattini factors whose order is a p-power. Therefore the previous tempting wrong

argument would suggest the following conjecture: if the p-factor PG,p(s) is a Dirichlet polynomial, then

G has only finitely many maximal subgroups of p-power index. However this is false; in [4] a 2-generated

prosolvable group G is constructed, such that, for any prime p, G contains infinitely many maximal

subgroups of p-power index, while PG,p(s) is a finite Dirichlet series. Knowing that PG,p(s) can be a

polynomial even when Ωp is infinite, could lead to believe in the existence of a counterexample to the

conjecture that PG(s) ∈ D implies G/Frat(G) finite. However, using results from number theory, in [4]

it was proved that if G is prosolvable and PG,p(s) is a polynomial, then either Ωp is finite or, for every

prime q, there exists n ∈ Ωp such that the dimension of Gn/Gn+1 as FpG-module is divisible by q; using

standard arguments of modular representation theory one deduce that this is possible only if infinitely

many primes appear among the divisors of the order of the finite images of G; but then PG,r(s) 6= 1 for

infinitely many primes r and PG(s) cannot be a polynomial. So PG(s) can be a polynomial only if Ωp
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is finite for every prime and empty for all but finitely many, and therefore only if G/Frat(G) is finite.

Really a stronger result holds: if G is a finitely generated prosolvable group, then PG(s) is rational

(i.e. PG(s) = A(s)/B(s) with A(s) and B(s) finite Dirichlet series) if and only if G/FratG is a finite

group. Partial generalization has been obtained in [5] and in [6]. All these results can be summarized

in the following statement:

Theorem 1.1. Let G be a finitely generated profinite group. Assume that there exist a prime p and a

normal open subgroup N of G such that the set S of nonabelian composition factors of N satisfies one

of the following properties:

• all the groups in S are alternating groups;

• all the groups in S are of Lie type over fields of characteristic p, where p is a fixed prime;

• all the groups in S are sporadic simple groups.

Then PG(s) is rational if and only if G/Frat(G) is a finite group.

The main ingredient in the proof of the previous results is the following result, proved with the help

of the Skolem-Mahler-Lech Theorem and where π(G) is the set of the primes q with the property that

G contains at least an open subgroup H whose index is divisible by q.

Proposition 1.2. Let G be a finitely generated profinite group, assume that π(G) is finite and let

{ri}i∈N be the sequence of the composition lengths of the non-Frattini factors in a chief series of G.

Assume that there exists a positive integer q and a sequence {ci}i∈N of nonnegative integers such that

the formal product ∏
i

(
1− ci

(qri)s

)
is rational. Then ci = 0 for all but finitely many indices i.

In our applications, ci/(qri)s is one of the summands of the Dirichlet polynomial Pi(s) associated to

the chief factor Gi/Gi+1 and must be chosen so that the polynomials P ∗i (s) = 1− ci/(qri)s satisfy two

conditions:

(1) if Pi(s) 6= 1 for infinitely many i ∈ N, then also P ∗i (s) 6= 1 for infinitely many i ∈ N;

(2) if the infinite product
∏
i Pi(s) is rational, then also

∏
i P
∗
i (s) is rational.

The choice of the “approximation” P ∗i (s) of Pi(s) is not easy and we are not able to use this strategy

in the general case; roughly speaking, it requires an order on the set of the primes numbers with the

property that “small” simple groups in S have order not divisible by “large” primes. When S is the

set of the alternating groups, we just consider the natural order, but when S consists of simple groups

of Lie type in characteristic p, we say that a prime q1 is smaller than a prime q2 if the multiplicative

order of p mod q1 is smaller than its order modulo q2. This order depends on the choice of p and

our arguments do not work if S contains groups of different kinds, for example groups of Lie type in

different characteristics. However we expect that our statement remains true in the general case. In

the present paper we prove a new result in this direction:
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Theorem 1.3. Let G be a finitely generated profinite group. Assume that there exists a normal open

subgroup N of G such that any nonabelian composition factor of N is isomorphic to PSL(2, p) for

some prime p. Then PG(s) is rational if and only if G/Frat(G) is a finite group.

2. Preliminaries and notations

LetR be the ring of formal Dirichlet series with integer coefficients. We say that F (s) =
∑

n∈N an/n
s

∈ R is a Dirichlet polynomial if an = 0 for all but finitely many n ∈ N. The set D of the Dirichlet

polynomials is a subring of R. We will say that F (s) ∈ R is rational if there exist A(s), B(s) ∈ D with

F (s) = A(s)/B(s).

For every set π of prime number, we consider the ring endomorphism of R defined by:

F (s) =
∑
n∈N

an
ns
7→ F π(s) =

∑
n∈N

a∗n
ns

where a∗n = 0 if n is divisible by some prime p ∈ π, a∗n = an otherwise. We will use the following

remark:

Remark 2.1. For every set π of prime numbers, if F (s) is rational then F π(s) is rational.

The following result is a consequence of the Skolem-Mahler-Lech Theorem (see [4] for more details):

Proposition 2.2. Let I ⊆ N and let q, ri, ci be positive integers for each i ∈ I. Assume that

(i) for every n ∈ N, the set {i ∈ I | ri divides n} is finite;

(ii) there exists a prime t such that t does not divide ri for any i ∈ I.

If the product

F (s) =
∏
i∈I

(
1− ci

(qri)s

)
is rational, then I is finite.

Proposition 2.3. [5, Corollary 5.2] Let G be a finitely generated profinite group and assume that

π(G) is finite. For each n, there are only finitely many non-Frattini factors in a chief series whose

composition length is at most n. Moreover there exists a prime t such that no non-Frattini chief factor

of G has composition length divisible by t.

Proof of Proposition 1.2. It follows immediately from Propositions 2.2 and 2.3. �

Finally let us recall the following result.

Proposition 2.4. [5, Proposition 4.3] Let F (s) be a product of finite Dirichlet series:

F (s) =
∏
i∈I

Fi(s), where Fi(s) =
∑
n∈N

bi,n
ns

.
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Let q be a prime and Λ the set of positive integers divisible by q. Assume that there exists a set {ri}i∈I
of positive integers such that if n ∈ Λ and bi,n 6= 0 then n is an ri-th power of some integer and

vq(n) = ri (where vq(n) is the q-adic valuation of n). Define

w = min{x ∈ N
∣∣ vq(x) = 1 and bi,xri 6= 0 for some i ∈ I}.

If F (s) is rational, then the product

(2.1) F ∗(s) =
∏
i∈I

(
1 +

bi,wri

(wri)s

)
is also rational.

Now let G be a finitely generated profinite group and let {Gi}i∈N be a fixed countable descending

series of open normal subgroups with the property that G0 = G,
⋂
i∈NGi = 1 and Gi/Gi+1 is a chief

factor of G/Gi+1 for each i ∈ N. In particular, for each i ∈ N, there exist a simple group Si and

a positive integer ri such that Gi/Gi+1
∼= Srii . Moreover, as described in [3], for each i ∈ N a finite

Dirichlet series

(2.2) Pi(s) =
∑
n∈N

bi,n
ns

is associated with the chief factor Gi/Gi+1 and PG(s) can be written as an infinite formal product of

the finite Dirichlet series Pi(s):

(2.3) PG(s) =
∏
i∈N

Pi(s).

Moreover, this factorization is independent on the choice of chief series (see [2, 3]) and Pi(s) = 1 unless

Gi/Gi+1 is a non-Frattini chief factor of G.

We recall some properties of the series Pi(s). If Si is cyclic of order pi, then Pi(s) = 1 − ci/(prii )s,

where ci is the number of complements of Gi/Gi+1 in G/Gi+1. It is more difficult to compute the

series Pi(s) when Si is a non-abelian simple group. In that case a relevant role is played by the group

Li = G/CG(Gi/Gi+1). This is a monolithic primitive group and its unique minimal normal subgroup

is isomorphic to Gi/Gi+1
∼= Srii . If n 6= |Si|ri , then the coefficient bi,n in (2.2) depends only on the

knowledge of Li; more precisely we have

bi,n =
∑

|Li:H|=n
Li=Hsoc(Li)

µLi(H).

Some help in computing the coefficients bi,n comes from the knowledge of the subgroup Xi of AutSi
induced by the conjugation action of the normalizer in Li of a composition factor of the socle Sri (note

that Xi is an almost simple group with socle isomorphic to Si). More precisely, given an almost simple

group X with socle S, we can consider the following Dirichlet polynomial:

(2.4) PX,S(s) =
∑
n

cn(X)
ns

, where cn(X) =
∑

|X:H|=n
X=SN

µX(H).

The following can be deduced from [7]:
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Lemma 2.5. If Si is nonabelian and π is a set of primes containing at least one divisor of |Si| then

P πi (s) = P πXi,Si
(ris− ri + 1).

Moreover, if n is not divisible by any prime in π, then either bi,n = 0 or there exists m ∈ N with

n = mri and bi,n = cm(Xi) ·mri−1.

For an almost simple group X, let Ω(X) be the set of the odd integers m ∈ N such that

• X contains at least one subgroup Y such that X = Y socX and |X : Y | = m;

• if X = Y socX and |X : Y | = m, then Y is a maximal subgroup if X.

Note that if m ∈ Ω(X), X = Y socX and |X : Y | = m, then µX(Y ) = −1: in particular cm(X) < 0.

Combined with Lemma 2.5, this implies:

Remark 2.6. If m ∈ Ω(Xi), then bi,mri < 0.

Lemma 2.7. Let X be an almost simple group with soc(X) = PSL(2, q), where q ≥ 5 is an odd prime.

Then q divides the indices of all the subgroups of X with odd index.

Proof. Assume that S ∼= PSL(2, q) where q ≥ 5 is an odd prime: Aut(S) = PGL(2, q) and X =

PSL(2, q) or X = PGL(2, q). In both the cases the conclusion follows easily form the list of maximal

subgroups of X given in [1]. �

3. Proof of Theorem1.3

We start now the proof of our main result. We assume that G is a finitely generated profinite group

G with the properties that PG(s) =
∑

n an/n
s is rational. As described in Section 2, PG(s) can be

written as a formal infinite product of Dirichlet polynomials Pi(s) =
∑

n∈N bi,n/n
s corresponding to the

factors Gi/Gi+1 of a chief series of G. Let J be the set of indices i such that Gi/Gi+1 is a non-Frattini

chief factor. Since Pi(s) = 1 if i /∈ J, we have

PG(s) =
∏
j∈J

Pj(s).

For C(s) =
∑

n∈N cn/n
s ∈ R, we define π(C(s)) to be the set of the primes q for which there

exists at least one multiple n of q with cn 6= 0. Notice that if C(s) = A(s)/B(s) is rational then

π(C(s)) ⊆ π(A(s))
⋃
π(B(s)) is finite. Let S be the set of the finite simple groups that are isomorphic

to a composition factor of some non-Frattini chief factor of G. The first step in the proof of Theorem

1.3 is to show that S is finite. The proof of this claim requires the following result.

Lemma 3.1 ([5, Lemma 3.1]). Let G be a finitely generated profinite group and let q be a prime with

q /∈ π(PG(s)). If q divides the order of a non-Frattini chief factor of G, then this factor is not a q-group.

Lemma 3.2. If G satisfies the hypothesis of Theorem 1.3, then the sets S and π(G) are finite.
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Proof. Since PG(s) is rational, we have that π(PG(s)) is finite. Therefore, it follows from Lemma 3.1

that S contains only finitely many abelian groups. Assume by contradiction that S is infinite. This

is possible only if the subset S∗ of the simple groups in S that are isomorphic to PSL(2, p) for some

prime p is infinite. Let

I := {j ∈ J | Sj ∈ S∗}, A(s) :=
∏
i∈I

Pi(s) and B(s) :=
∏
i/∈I

Pi(s).

Notice that π(B(s)) ⊆
⋃
S∈S\S∗ π(S) is a finite set. Since PG(s) = A(s)B(s) and π(PG(s)) is finite,

if follows that the set π(A(s)) is finite. In particular, there exists a prime number q ≥ 5 such that

q /∈ π(A(s)) but PSL(2, q) ∈ S∗. Let Λ be the set of the odd integers n divisible by q but not divisible

by any prime strictly greater than q and set

r := min{ri | Si = PSL(2, q)},

I∗ := {i ∈ I | Si = PSL(2, q) and ri = r},

w := min{w(Xi) | Si = PSL(2, q) and ri = r},

β := min{n > 1 | n ∈ Λ, vq(n) = r and bi,n 6= 0 for some i ∈ I}.

Assume i ∈ I, n ∈ Λ and bi,n 6= 0. We have that Si ∼= PSL(2, qi) for a suitable prime qi and, by

Lemma 2.5, n = xrii and Xi contains a subgroup whose index divides xi. By Lemma 2.7 qi divides xi
and consequently n. Since qi is the largest prime divisor of |Si| and q is the largest prime divisor of

n, we deduce that q = qi. It follows that β = wr and bi,β 6= 0 if and only if i ∈ I∗ and w(Xi) = w;

moreover in this last case bi,β < 0. Hence the coefficient cβ of 1/βs in A(s) is

cβ =
∑

i∈I∗,w(Xi)=w

bi,β < 0.

This implies that q ∈ π(A(s)) which is a contradiction. So we have proved that S is finite. By [5,

Lemma 3.2], if follows that π(G) is also finite. �

Proof of Theorem 1.3. Let T be the set of the almost simple groups X such that there exists infinitely

many i ∈ J with Xi
∼= X and let I = {i ∈ J | Xi ∈ T }. By Lemma 3.2, J \ I is finite. We have

to prove that J is finite; this is equivalent to showing that I = ∅. Let i ∈ I : by the hypothesis of

Theorem 1.3, there exists a prime qi such that Si ∈ {Cqi , PSL(2, qi)}. Set q = max{qi | i ∈ I} and let

Λ be the set of odd integers n divisible by q. Assume n ∈ Λ and bi,n 6= 0 for some i ∈ I. If Si is cyclic,

then Pi(s) = 1− cn/ns where n = |Gi/Gi+1| = qrii and cn is the number of complements of Gi/Gi+1 in

G/Gi+1 : this implies q = qi. Otherwise Si = PSL(2, qi) with qi ≤ q and, by Lemma 2.5, n = xrii and

Xi contains a subgroup whose index divides xi; since xi divides |SL(2, qi)|, q divides xi and qi ≤ q, we

must have q = qi. In both the cases, we have ni = xrii where xi a positive integer with vq(xi) = 1. Let

w = min{x ∈ Λ | vq(x) = 1 and bi,xri 6= 0 for some i ∈ I}.
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Since J \ I is finite and PG(s) =
∏
i∈J Pi(s) is rational, also

∏
i∈I Pi(s) is rational. In particular, by

Remark 2.1, taking π = {2} we have that the following series is rational:

Q(s) =
∏
i∈I

P
{2}
i (s).

Let I∗ = {i ∈ I | bi,wri 6= 0}. By the above considerations and Remark 2.6, i ∈ I∗ if and only if either

Si ∼= Cq and w = q or soc(Xi) = PSL(2, q) and w(Xi) = w. In particular if i ∈ I∗ then there exist

infinitely many j ∈ I with Xi
∼= Xj and all of them are in I∗, hence I∗ is an infinite set. Moreover,

by Remark 2.6, we have that bi,wri < 0 for every i ∈ I∗, and therefore applying Proposition 2.4 to the

Dirichlet series Q(s), we deduce that the product

H(s) =
∏
i∈I

(
1 +

bi,wri

wris

)
=
∏
i∈I∗

(
1 +

bi,wri

wris

)
is rational. By Proposition 1.2 the set I∗ must be finite, a contradiction. �
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Dipartimento di Matematica, Università degli studi di Padova, Via Trieste 63, 35121 Padova, Italy

Email: lucchini@math.unipd.it


	1. Introduction
	2. Preliminaries and notations
	3. Proof of Theorem1.3
	References

