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Abstract— Lately, nonlinear model predictive control (NMPC)
has been successfully applied to (semi-) autonomous driving
problems and has proven to be a very promising technique.
However, accurate control models for real vehicles could require
costly and time-demanding specific measurements. To address
this problem, the exploitation of system data to complement or
derive the prediction model of the NMPC has been explored,
employing learning dynamics approaches within learning-based
NMPC (LbNMPC). Its application to the automotive field has
focused on discrete gray-box modeling, in which a nominal
dynamics model is enhanced by the data-driven component.
In this manuscript, we present an LbNMPC controller for a
real go-kart based on a continuous black-box model of the
accelerations obtained by Gaussian processes (GP). We show
the effectiveness of the proposed approach by testing the con-
troller on a real go-kart vehicle, highlighting the approximation
steps required to get an exploitable GP model on a real-time
application.

Index Terms— Automotive control, autonomous vehicles, data-
driven modeling, learning-based model predictive control.

I. INTRODUCTION

IN RECENT decades, the development of sophisticated
advanced driver assistance systems and the increased use

of (semi-) autonomous driving have led to growing interest in
four-wheel vehicle controllers, in both industrial and academic
research.

In driving tasks, model predictive control (MPC) strategy
has been successfully applied, such as for path following
and vehicle control [1], [2], [3], [4], [5], [6]. MPC is an
advanced control technique that, based on a plant model
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and constraints, optimizes the performance of the closed-loop
system. However, plant characterization plays a crucial role in
the optimization, and several models have been proposed for
four-wheel vehicles, ranging from complex dynamics models
to simple bicycle models. Each formulation has advantages
and disadvantages in terms of computational resources and
prediction capabilities. Moreover, a precise characterization
of car dynamics involves the proper identification of tires,
drag and friction forces, suspensions, steering systems, and
so on, which may require expensive and time-consuming
specific measurements. Therefore, the exploitation of inertial
measurement unit (IMU) and localization data to infer the
vehicle dynamics could remove the necessity of these explicit
analyses. To cope with this modeling issue, learning dynamics
approaches can be used within the learning-based nonlinear
model predictive control (LbNMPC) framework, that is, the
combination of data-driven techniques and the nonlinear model
predictive control (NMPC) strategy [7].

The methods of learning dynamics focus on the prediction
model of the NMPC, which can be fully derived or partially
improved through the exploitation of system data, leading to
black-box or gray-box modeling, respectively [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17]. In this context, Gaus-
sian process regression (GPR) has proven to be remarkably
effective, thanks to offline and runtime reduction techniques
that maintain the Gaussian processes (GP) characteristics, for
example, continuity and smoothness of the function, favoring
its usage in strictly real-time scenarios. Recently, its use
has been investigated in various applications, for example,
autonomous racing [9], path following of off-road mobile
robots [17], and trajectory tracking with robotic manipula-
tors [12]. In such applications, real-time feasibility is achieved
with GPR applied in a gray-box context relying on a discrete-
time learning-based formulation [18].

In this manuscript, we present the application of a pure
black-box LbNMPC controller to a scenario with complex
dynamics, that is, a go-kart platform, specifically designed
to meet the real-time constraint. The proposed formulation
eliminates the need for a priori knowledge of the dynamics
by exploiting an entirely data-driven dynamical model that is
defined in continuous time. Indeed, by conveniently adopting a
continuous model of accelerations, it is possible to directly use
a space-based contouring problem formulation [19]. This latter
computes the optimal trajectory and velocity profiles directly
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Fig. 1. Go-kart platform.

within the online optimization, requiring a sufficiently infor-
mative system model. The continuous framework also allows
the exploitation of a nonuniform integration grid, that is, with
integration steps of different lengths within the prediction hori-
zon, to reduce the number of model evaluations and limit the
computational burden. To further limit the computational time,
an ad hoc GP model reduction strategy for GP-based LbNMPC
has been implemented: specific approximations, based on the
state prediction of the LbNMPC, are computed at every control
step, leading to a sequence of low-dimensional local GP
models. The article’s objective is to describe the procedure,
its advantages, and disadvantages, mainly in relation to the
tradeoff between computational cost and performance.

A preliminary study to assess the feasibility of the proposed
strategy and the tuning of the most relevant hyperparam-
eters for real-time implementation has been conducted in
a simulation scenario. Validation of the approach has been
accomplished by driving a real go-kart vehicle (shown in
Fig. 1) on a 180-m-long indoor track. The strategies imple-
mented to reduce computational burden allow for real-time
execution of the LbNMPC controller on the embedded plat-
form. Indeed, the proposed method allowed for accomplishing
the driving task, properly performing the lap while keeping the
go-kart within the track bounds, demonstrating that the black-
box dynamic model can be a viable approach even in such
a complex scenario. A comparison with an NMPC controller
based on a validated nominal dynamic model has been also
added, showing that the behaviors are comparable in terms
of exhibited vehicle dynamics. Despite the satisfactory result,
it is worth mentioning that the modest computational power of
the system required the application of significant GP approx-
imations, thus suggesting that performance improvements can
be achieved by enhancing the computational capacity.

The rest of the article is organized as follows. In Section II,
the control problem and the employed techniques are pre-
sented, while in Section III, the LbNMPC internal model
is described in detail. The mathematical description of the
resulting optimal control problem (OCP) is given in Section
IV, and Section V presents the feasibility study in simulation
and the obtained results on the real go-kart. Section VI
concludes and presents future development.

II. PROBLEM STATEMENT AND BACKGROUND

In this manuscript, we present an LbNMPC controller
based on a black-box model of the system, where the
dynamics are obtained through GPR. In the following,
we describe the formulation of the unknown system within
the LbNMPC framework and the GPR procedure adopted,
as well as the reduction techniques used to obtain real-time
performances.

A. Model Definition

Consider the following system:

ẋ(t) = f (x(t), u(t)) (1)

where x ∈ Rnx is the system state and u ∈ Rnu is the system
input. A physical description is usually used for deriving the
model, hence the state can be divided as

x = [q, q̇]
T (2)

where q ∈ Rnq and q̇ ∈ Rnq are the position and velocities of
the physical system, respectively.

While interacting with the system, the current system state
xk , inputs uk , and real accelerations q̈ can be acquired for T
time steps. The data are assumed to be collected in discrete
time instants, as usual in digital control, and the subscript ·k
indicates the measurement at time instant tk . Group those data
as

X = {x1, x2, . . . , xT }

U = {u1, u2, . . . , uT }

Q̈ = {q̈1, q̈2, . . . , q̈T }. (3)

The quantities in (3) can be used to estimate the acceleration
functions relying on GPR, as described in Section II-B. The
obtained black-box model of the system dynamics is expressed
by the following equation:

ˆ̇x(t) =

[
ˆ̇q(t)
ˆ̈q(t)

]
=

[
q̇(t)
ψ q̈(t)

]
(4)

where ψq̈ is the GP estimate of the accelerations and the hat
ˆ(·) symbol refers to the predicted values.

To conclude, define a numerical integrator operator

x̂k+1 = φ̂(xk, uk) (5)

that integrates the dynamics ˆ̇x(t) and returns the solution at
tk+1 with x(0) = xk , for example, a fourth-order explicit
Runge–Kutta.

B. Gaussian Process Regression

Based on the dataset in (3), an estimator of the dynamics
can be derived relying on GPR. Each component of the
acceleration vector q̈ is modeled as a distinct and independent
GP. The GPs input vector at time tk , hereafter denoted with
xgp

k , accounts for xk and uk , namely, xgp
k = [xT

k uT
k ]

T . The
corresponding set of GPs input vectors is referred to as XGP.
The output of the ith GP is yi

k = q̈ i
k , where q̈ i

k is the measured
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ith component of q̈. GPR considers the following probabilistic
model:

yi
=

 yi
1
...

yi
T

 =

 q̈ i
1
...

q̈ i
T

 =

ψ̄
i
q̈
(
xgp

1
)

...

ψ̄ i
q̈
(
xgp

T
)
+

ei
1
...

ei
T

 = ψ̄
i
q̈ + ei

where ei is zero-mean independent Gaussian noise with stan-
dard deviation σn , while ψ̄

i
q̈ ∼ N (0, K i ) is a zero-mean

GP. A kernel function ki (·, ·) defines the GP’s covariance
matrix K i . Specifically, the covariance between ψ̄ i

q̈(x
gp
k ) and

ψ̄ i
q̈(x

gp
j ), that is, the entry of K i at row k and column j ,

is E[ψ̄ i
q̈(x

gp
k )ψ̄

i
q̈(x

gp
j )] = ki (xgp

k , xgp
j ). Let xgp

∗ be a gen-
eral input location. Conveniently, the posterior distribution of
ψ̄ i

q̈(x
gp
∗ ) is Gaussian, with mean and variance given by the

following expressions [20]:

ψ i
q̈
(
xgp

∗

)
= ki

∗α
i (6)

Var
(
ψ i

q̈
(
xgp

∗

))
= ki (xgp

∗ , xgp
∗

)
− ki

∗

(
K i

+ σ 2
n I
)−1(ki

∗

)T (7)

where

ki
∗ =

[
ki (xgp

∗ , xgp
1
)
, . . . , ki (xgp

∗ , xgp
T
)]

(8)

αi
=
(
K i

+ σ 2
n I
)−1yi (9)

with I ∈ RT ×T defined as the identity matrix. Then, since the
posterior is Gaussian-distributed, the maximum a posteriori
estimate of ψ̄ i

q̈(x
gp
∗ ) is given by the posterior mean in (6),

while the posterior variance (7) provides a confidence interval
of the estimate. Consequently, the expression of ψ q̈ introduced
in (4) is

ψ q̈(x∗, u∗) =

 ψ
1
q̈ (x∗, u∗)

...

ψ
nq
q̈ (x∗, u∗)

 =

 k1
∗α

1

...

knq
∗ α

nq

. (10)

For future convenience, in the previous equation, we have
made explicit the input of ψ q̈ instead of using xgp

k .
Regarding the kernel choice, several options are available,

depending on a priori assumptions on ψ̄q̈ . A convenient kernel
for modeling continuous functions is the squared exponential
(SE) kernel, defined as

ki (xgp
k , xgp

j
)

= e−

(
xgp

k −xgp
j

)T
6i−2(

xgp
k −xgp

j

)
× e−

∥∥xgp
k −xgp

j

∥∥2

Li (11)

where 6i is a diagonal matrix, with the diagonal elements
named lengthscales, and hereafter denoted Li . From the above
expression, we can see that the SE kernel defines the similarity
between two samples based on the distance of their GP
inputs. The set of GP’s hyperparameters consists of the length
scales and the noise standard deviation σn . The length scales
determine the metric used to compute the distance between
samples. Importantly, σn determines the balance between
adherence to the training data and complexity of ψ q̈(xk, uk).
High values of σn promote the smoothness of ψ q̈(xk, uk), but
could limit accuracy. On the other hand, too small values of
σn could lead to overfitting and nonsmooth ψ q̇(xk, uk), which

might be an issue for the NMPC. The hyperparameters can be
tuned relying on empirical methods, such as cross-validation,
or by maximization of the training data marginal likelihood
(ML) (see [20]). In this work, we selected the hyperparameters
by optimizing the ML through a gradient-based optimization,
exploiting the functionalities made available by pytorch [21].

C. GP Model Approximation for Real-Time Applications

The main issue when dealing with learning dynamics
LbNMPC is the computational burden induced by the data-
driven model. As shown by (6), the time required for GP
predictions grows linearly with the number of data points
used. Besides that, the growth of the data points makes the
model of the system dynamics more and more complex,
leading to an optimization problem difficult to solve within
the available control period. For these reasons, the reduction of
the data points is fundamental in this framework. In this work,
we implemented a strategy that, at each prediction time, aims
at selecting a significant subset of the data points to limit the
computational burden and dynamics complexity. We applied
in cascade two reduction techniques. First, an offline heuristic
procedure, named subset of data (SoD), derives XGP

SoD, a subset
of the original dataset XGP. Second, at execution time, the
nearest neighbor (NN) [22] approach selects XGP

NN , the subset
of XGP

SoD actually used for prediction. In this regard, the
SE kernel introduced in (11) provides the NN algorithm
with a principled metric to select the subset of NN points.
Furthermore, it approximates well functions close to training
inputs, which is the goal of our local models. In the following,
we describe the two reduction techniques implemented for
each GP acceleration model.

1) Subset of Data: The heuristic procedure implemented
to reduce the original dataset XGP consists of an iterative
algorithm that runs offline and exploits information provided
by the posterior variance (7). First, XGP

SoD is initialized with
the first data point of XGP. Then, the algorithm iterates over
the remaining points in XGP. For each point, the algorithm
computes (7) using as training data the current points in XGP

SoD
and includes the new point in XGP

SoD if the variance is higher
than a certain threshold provided by the user. The basic idea
behind this approach is that if the model is confident in
the current input location we can neglect this point, while
if the variance is high we add the point to XGP

SoD to improve
prediction accuracy.

2) Nearest Neighbor: This approach is based on the key
idea that the closest points to the target are the most infor-
mative for the prediction of the GP. In particular, the closest
points are defined by the distance considering the trained
lengthscales L using a weighted norm, that is, dk, j = ∥xgp

k −

xgp
j ∥

2
L . The search for the nearest points is done on the

previously obtained inducing set XGP
SoD, obtaining a further

reduced number of inducing points T NN < T SoD < T . Once
the points have been selected, the quantities to obtain the
posterior mean of the GP have to be recomputed, that is,
ψNN

q̈ (xgp
∗ ) = kNN

∗ αNN, where kNN
∗ and αNN are defined as in

(8), where T = T NN and y = yNN is the subset of measures
related to the chosen points. This procedure is accomplished
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online before the LbNMPC call, selecting, for each step in
the prediction horizon, the closest points with respect to the
trajectory predicted at the previous iteration, and updating the
GP-related parameters within the OCP (see Section IV).

III. CONTINUOUS LBNMPC MODEL

The prediction model of the LbNMPC is presented hereafter.
The dynamics are completely data-driven, that is, both the
direct lateral acceleration v̇y and yaw acceleration θ̈ are
entirely characterized by two different GP. The longitudinal
command of the go-kart is based directly on the requested
longitudinal acceleration, that is, the desired acceleration is
transmitted to the control system of the electric motors on the
wheels that is responsible for actuation, so the characterization
of the longitudinal acceleration is not needed. Both simulation
and experimental scenarios are considered, to evaluate the
strategy also in the absence of noise and actuator dynamics.
On the other hand, the spatial domain reformulation has
been mathematically described, characterizing the velocity
rotations, to define a time-minimization strategy. Finally, a pre-
viously derived nominal dynamics model is presented for
comparison.

A. Black-Box Dynamics Model

The black-box dynamics model has been obtained as
detailed in Section II-B and applying the approximations
described in Section II-C. In particular, the go-kart state
components xgp

= [vx , vy, θ̇ , γ, β, τv], that is, vehicle veloc-
ities and commands (see Section III-C), have been used as
regressors for the GP training, and a minimum σn = 0.15 has
been imposed to enhance regularization properties, both for
simulation and experimental scenarios. The GP has then been
trained in batch, using a batch size of 100 data points, for
400 epochs and a learning rate of 0.001. Furthermore, SoD
reduction has been applied with threshold 1.0σ 2

n . To check
the prediction capabilities of the method that will be employed
online, the NN strategy with T NN

v̇y
= 30 and T NN

θ̈
= 50 for

v̇y and θ̈ , respectively, has been applied on the obtained GP.
Such dimensions, in fact, allow balancing between the com-
putational burden and prediction capabilities of the controller.
Moreover, the nominal model (described in Section III-D) has
been tested on the same data.

1) Simulation: Due to the simulation environment structure,
a nominal controller-driven run, that is, using the nominal
model within the NMPC controller (see Section IV), was
recorded and used for black-box model training. As the simu-
lation serves as a preliminary stage for the experimental setup
and manual driving was not possible due to hardware limita-
tions, we used a closed-loop control action to mimic human
driving. This step allows for verifying the capability of the GP
to fit the acceleration data in a fully controlled environment
and comparing the accuracy with respect to the nominal model.
The sparse GP after SoD reduction contains 53 inducing points
for both v̇y and θ̈ , hence the local approximation with T NN

points precision is almost similar. The root mean squared error
(RMSE) of both lateral and yaw accelerations for nominal and
black-box dynamics resulted to be very similar (reported in

TABLE I
RMSE OF LATERAL AND YAW ACCELERATIONS FOR NOMINAL AND

BLACK-BOX MODELS (BOTH USING SOD AND NN
REDUCTIONS) IN SIMULATION

Fig. 2. Trajectories of the data acquired for training.

Fig. 3. Longitudinal velocity of the data acquired for training.

Table I), hence supporting the possibility to use the developed
strategy for the real platform.

2) Experimental: To excite the highly nonlinear and com-
plex dynamics of the system, ten human-driven laps close to
the vehicle’s maximum acceleration were performed. A total
number of around 5000 data points were recorded, comprising
IMU, localization, and velocity data, along with steering posi-
tion and longitudinal acceleration commands. A depiction of
the acquired data in terms of path, velocity profiles, and used
commands is reported in Figs. 2–4. The traveled trajectories
are quite similar, as expected in a track driving task, but the
different laps allow to give sufficient variety in the training
data. Additionally, it is worth mentioning that GPs do not
include the curvilinear abscissa as a predictor variable. Instead,
they are capable of estimating accelerations by exploiting the
system’s velocities and inputs, which separates the vehicle’s
dynamic behavior from its position on the track. As a result,
the various turns on the track present different operating
conditions for the system, making the ten laps a sufficiently
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Fig. 4. Commands given to the go-kart of the data acquired for training.

Fig. 5. Direct lateral acceleration and yaw acceleration of the data acquired
for training.

information-rich training dataset. The resulting data, acquired
at different frequencies depending on the sensor, were inter-
polated and the IMU and velocity data were filtered through a
forward-backward Kalman filter [23], resulting in aligned and
smooth acceleration data for the GP training, shown in Fig. 5.
SoD reduction led to sparse GPs of 98 and 114 points for
v̇y and θ̈ , respectively. The resulting accelerations estimates,
that is, the mean of the GP for lateral ψv̇y and yaw ψθ̈
accelerations, are shown in Figs. 6 and 7, together with the
real accelerations on the go-kart. Both the ability of the model
to fit the data and the approximation given by the reduction
are clearly visible. In particular, the NN strategy on a 6-D
space is not always effective and may generate some spikes.
At the same time, note also that the nominal model is not
able to always describe correctly the acceleration values, but
mostly the tendency. However, the RMSE of lateral and yaw
accelerations, reported in Table II, is still comparable with the
nominal dynamics ones.

B. Spatial Reformulation

The complete model is comprehensive of the yaw eθ and
lateral ey errors with respect to the track centerline and the
integration has been applied in spatial coordinates with respect

Fig. 6. Comparison of nominal and black-box models (both with SoD and
NN reductions) with respect to the real direct lateral acceleration v̇y on the
real go-kart.

Fig. 7. Comparison of nominal and black-box models (both with SoD and
NN reductions) with respect to the real yaw acceleration θ̈ .

TABLE II
RMSE OF LATERAL AND YAW ACCELERATIONS FOR NOMINAL AND

BLACK-BOX MODELS (BOTH USING SOD AND NN REDUCTIONS) ON
THE REAL GO-KART

to the arc length s along the track, as shown in Fig. 8 and
previously presented in [5] and [6]. This strategy allows for
using time as a minimization variable, setting the spatial
constraints, and eliminating the dependency on the velocity
in the trajectory reference for the controller. The kinematic
relation between velocities and the angular and lateral errors
can be expressed as

ėθ = θ̇ − ζ ṡ

ėy = vx sin(eθ )+ vy cos(eθ ) (12)

where vx , vy, θ̇ are the longitudinal, lateral, and yaw velocities,
respectively, ζ = (1/ρ) is the trajectory curvature, and ṡ =

(1/(1 − ζ ey))(ẋ cos(eθ )− ẏ sin(eθ )).
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Fig. 8. Spatial coordinates system. It allows defining the lateral and heading
errors and formulating the dynamics with respect to the curvilinear abscissa s.

C. Complete Model

The problem has been formulated in velocity form, that is,
the inputs are the derivatives of the actual go-kart commands.
Hence, the state has been defined as

x = [vx , vy, θ̇ , eθ , ey, γ, β, τv, t]T (13)

where γ , β, and τv are the actual commands to the go-kart,
that is, the desired longitudinal acceleration, the steering angle,
and the torque vectoring component, respectively, and t is the
time, while the input vector is

u = [γ̇ , β̇, τ̇v, η]
T (14)

where γ̇ , β̇, τ̇v are the derivatives of the actual commands,
and η is a slack variable needed for implementing a soft
constraint [24]. The resulting dynamics are expressed by

ẋ = [γ, ψÿ, ψθ̈ , ėθ , ėy, γ̇ , β̇, τ̇v, 1]
T . (15)

Finally, the state vector x is differentiated with respect to s
using the chain rule as

x′
=

dx
ds

=
dx
dt

dt
ds

=
dx
dt

1
ṡ

=
ẋ
ṡ

∀ṡ ̸= 0 (16)

thus defining the integration with respect to the curvilinear
abscissa s.

D. Nominal Model
A complete dynamics model was already available and has

been used for comparison. It is based on a three-wheel vehicle
and includes different important dynamics, such as follows.

1) An identified Pacejka’s magic formula for lateral tire
forces.

2) An approximation of the adherence ellipsoid for com-
bined tire behavior.

3) Longitudinal load transfer dynamics.
In particular, Pacejka’s formulas for front and rear wheels
are the core of the model, as they require specific tests to
correctly identify the shape of the curves. Further details on
the formulation can be found in [25].

IV. LBNMPC FORMULATION

The NMPC problem has been implemented in LbMATMPC,
an open-source software developed in MATLAB for the

development of NMPC strategies [26], and easily exploitable
for C implementation.

At every time instant k, the OCP is converted in a non linear
programming problem (NLP) through direct multiple shooting
methods over the prediction horizon, which is composed by
N shooting intervals [t0|k, t1|k, . . . , tN |k], as follows:

min
x,u

N−1∑
j=0

1
2
∥h j (x j |k, u j |k)∥

2
W +

1
2
∥hN (xN |k)∥

2
WN

(17a)

s.t. 0 = x0|k − x̄0|k (17b)

0 = x j+1|k − φ̂(x j |k, u j |k), j = 0, 1, . . . , N − 1
(17c)

r j |k ≤ r(x j |k, u j |k) ≤ r j |k, j = 0, 1, . . . , N − 1

(17d)
r N |k ≤ r N (xN |k) ≤ r N |k (17e)

where x̄0|k is the state at the current time instant k. At the
discrete time point t j |k for j = 0, . . . , N , the system states
x j |k ∈ Rnx are defined while the control inputs u j |k ∈ Rnu

for j = 0, . . . , N − 1 are piecewise constant. Equation (17a)
refers to the objective function in which the inner objectives
h j and hN are expressed in (21). Equation (17b) refers to
the initial value embedding and the constraint function (17d)
and (17e) is defined as r(x j |k, u j |k) : Rnx × Rnu → Rnr

and r N (xN |k) : Rnx → RnrN with upper and lower bound
r j |k, r j |k . The learning-based dynamics, (5), is enforced by
the continuity constraint, (17c) [27].

The sequential quadratic programming (SQP) method is
used to solve problem (17), that is, through an iterative
procedure that reformulates the NLP at a given iterate in a
quadratic programming (QP) problem. Specifically, the objec-
tive functions (17a) are replaced by their local quadratic
approximation and the constraint functions (17b)–(17e) by
their local affine approximations. Thus, at SQP iterate l, a QP
problem is formulated as follows (the subscript ·|k is omitted
for clarity):

min
1x,1u

N−1∑
j=0

(
1
2

[
1x j
1u j

]⊤

H l
j

[
1x j
1u j

]
+ gi⊤

j

[
1x j
1u j

])

+
1
2
1x⊤

N H l
N1xN + gl⊤

N 1xN

s.t. 1x0 = x̂0 − x0

1x j+1 = Al
j1x j + B j1u j + al

j

cl
j ≤ C l

j1x j + Dl
j1u j ≤ cl

j

cl
N ≤ C l

N1xN ≤ cl
N (18)

where 1x = x − xl ,1u = u − ul , using the compact
notation x = [x⊤

0 , x⊤

1 , . . . , x⊤

N ]
⊤, u = [u⊤

0 , u⊤

1 , . . . , u⊤

N−1]
⊤

for the discrete state and control variables, and xl and ul

are the previous guess for state and control trajectories. The
linearization matrices are given by

Al
j =

∂φ̂

∂x j
, Bl

j =
∂φ̂

∂u j

al
j = φ̂

(
xl

j , ul
j
)
− xl

j+1
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C l
j =

∂ r j

∂x j
, Dl

j =
∂ r j

∂u j
, C l

N =
∂ r N

∂xN

cl
j = r j − r j

(
xl

j , ul
j
)
, cl

j = r j − r j
(
xl

j , ul
j
)

cl
N = r N − r N

(
xl

N
)
, cl

N = r N − r N
(
xl

N
)

(19)

and the Hessian matrices H l
j , H l

N are obtained by the con-
strained Gauss–Newton method [28].

The solution of (18) is then used to update the solution of
(17) by

xl+1
= xl

+ βl1xl

ul+1
= ul

+ βl1ul (20)

where βl is the step length determined by globalization
strategies. Additional details on the algorithm can be found
in [26] and [29].

V. RESULTS

In this section, the results obtained are presented: a pre-
liminary simulative trial allows the viability of the procedure
to be analyzed in a fully controlled environment, while the
experimental scenario illustrates the actual validation of the
strategy. The controller must determine both the trajectory
and the velocity profile in the prediction horizon, knowing
the track bounds, while the time-minimization is enforced
in the cost function. This formulation allows adapting to
unexpected behaviors of the vehicle since the desired path
and speed are recomputed at every time step. The prediction
capabilities are also investigated, considering the one-step
ahead velocity prediction error, that is, êq̇ = ˆ̇q − q̇ , where
ˆ̇q is the one-step-ahead velocity prediction and q̇ is the real
velocity of the go-kart. To fulfill hard real-time requirements,
local approximations (see Section II-C) and nonuniform grid
integration (see Section V-A) have been adopted.

Throughout the whole section, the proposed LbNMPC based
on black-box modeling and an NMPC based on nominal
dynamics is compared, referring to the two controllers as
black-box and nominal strategy, respectively.

A. Controller Setup

The cost function for the LbNMPC is defined as

h j (x j , u j ) = [γ̇ , τ̇v, β̇, η]
⊤

hN (xN ) =
[
t, eψ − eref

ψ , ey − eref
y
]⊤
. (21)

The input terms allow a smooth control action, while the
objective variable time t supports the computation of a time-
minimizing path and its weight can be used to tune the
importance of the lap time performance. The slack variable
η is used to define the soft constraint on the track bounds
violations. The terminal cost terms related to errors eθ and ey
are adopted to enforce reasonable dynamics of the vehicle at
the end of the prediction horizon. The trajectory to be used
for this task has been precomputed by minimizing the path
curvature. To maintain the same configuration in all the tests
and to allow fair comparisons of the results in the different
cases, the controller tuning has been accomplished through an
empirical analysis, resulting in the following weight matrices:

W = diag([2 · 10−3, 5 · 10−2, 10−2, 5 · 101
])

WN = diag([10−1, 103, 102
]). (22)

The constraints are defined as

r j = [vx , eθ , γ, β, τv, γ̇ , τ̇v, β̇, η, ey + η]⊤

r N = [vx , eθ , γ, β, τv, ey + η]⊤ (23)

where the constraints on vx and eθ are used to exclude
singularities in the model kinematics and numerical issues,
the ones on the states γ, β and τv are the integration of the
computed inputs and represent intrinsic bounds of the actual
vehicle commands, while those on γ̇ , β̇ and τ̇v are added to
improve the smoothness of the computed inputs and can be
used to tune the aggressivity of the NMPC driving commands.
Finally, the constraint on η allows setting a maximum track
bound exceed and the one on ey defines the width of the track.
The bounds are hence defined as

r =
[
2.5,−π/2,−4.2,−π/2,−1.7,−103,−102,

− 101,−5, elb
y
]T

r =
[
15,+π/2,+2,+π/2,+1.7,+103,+102,+101,

+ 5, eub
y
]T (24)

where elb
y and eub

y are the track bounds updated online based
on the current position, slightly reduced by 0.5 m to effectively
implement the soft constraint.

HPIPM [30] has been used within LbMATMPC as the QP
sparse solver, and a real-time iteration (RTI) scheme [31] has
been adopted. By using the RTI scheme, local convergence of
the algorithm is ensured by RTI guarantees on contractivity
and boundness of the loss of optimality compared to
optimal feedback control [31], [32]. The integration step
has been set as Ts = 0.3 m for N = 80 steps, allowing
a prediction horizon of 24 m, and a reduction of the
shooting points has been obtained through a nonuniform
integration grid of r = 33 points distributed as G =

{1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 23, 26, 29, 32, 35, 38,
41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80}. The grid
allows accurate control actions to be computed at the
beginning of the horizon while reducing the computational
burden and enabling less precision for subsequent points in
the future. The technique, with the number of data points
chosen for sparse GPs, that is, T NN

v̇y
= 30 and T NN

θ̈
= 50 for

v̇y and θ̈ , respectively, allows the controller to run at a control
frequency fc = 20 Hz on the real go-kart.

In such complex experimental scenarios, theoretical guar-
antees on the stability of the algorithm are hardly achievable.
Moreover, the adoption of a black-box model identified in the
continuous domain and then discretized further complicates
the mathematical description. However, our approach empiri-
cally supports the recursive feasibility of NLP by adopting the
following expedients.

1) A soft constraint on ey , which is the only con-
straint where the model uncertainty is emphasized, that,
by marginally reducing the bound value, allows for a
collision-free trajectory.

2) A sufficiently long prediction horizon that includes the
next curve allows the controller to compute a velocity
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Fig. 9. Simulation environment in Gazebo.

profile compatible with the maximum lateral accelera-
tion and the track boundaries.

3) A final reference with high weights on lateral and
angular errors ey and eψ exploits the well-known effect
of the final cost to lead to conservative behavior.

B. Preliminary Simulation Study
A preliminary study in simulation has been accomplished to

validate the feasibility of the developed strategy and identify a
tuning set of the hyperparameters, to be used as a starting point
for the experimental scenario in a completely controllable
environment. In particular, the control algorithm is forced
to fulfill real-time requirements while no sensor noise and
actuation delays are present, allowing setting the GP number
of point T NN, the prediction horizon length N , the integration
step Ts , and the grid G.

A previously developed simulation environment [33], [34],
based on C++ and Gazebo within robot operating system
(ROB) [35], has been used for this phase (see Fig. 9). It uses
the same communication protocol and reproduces the same
channels as the real go-kart, allowing for a practical test of
the controller as it would be in the experimental scenario.

The LbNMPC controller has been run in the simulation
framework, adopting the same configuration that will be tested
on the real go-kart, except for the black-box prediction model
within. As expected, the black-box model is fairly precise in
predicting online the one-step-ahead velocities for both vy
and θ̇ , as shown in Table III. In particular, the error is in
the same order of magnitude as the nominal model, counting
half the error for vy and slightly lower for θ̇ , confirming
that the GPs are actually describing the system dynamics,
in average, accurately. This fact is reflected in a superior
closed-loop behavior of the black-box strategy in some curves,
but yet worse in others. Indeed, the driven paths are quite
similar (see Fig. 10), while the turns are traveled at different
velocities (shown in Fig. 11), leading to nearly the same lap-
time overall, that is, 26.80 s for black-box model and 26.55 s
for the nominal model. The obtained behavior is relevant
from the perspective of using the scheme in the experimental
environment since it illustrates the validity of the proposed
approach.

C. Experimental Results
The LbNMPC controller based on the model presented in

Section III-A2 has been implemented and tested on the real

Fig. 10. Comparison of trajectory obtained by the LbNMPC using the
nominal and black-box models in simulation.

Fig. 11. Comparison of longitudinal velocity obtained by the LbNMPC using
the nominal and black-box models in simulation.

TABLE III
RMSE OF ONLINE ONE-STEP-AHEAD VELOCITY PREDICTIONS êq̇ FOR

NOMINAL AND BLACK-BOX MODELS IN SIMULATION

go-kart platform. An indoor 180-m-long track has been used
as a test bench, comparing the performance obtained using the
black-box modeling with respect to the nominal ones. In the
experimental scenario, relevant approximations for the data-
driven modeling have been observed, and therefore reducing
prediction capabilities. In particular, the higher complexity of
the learned functions leads to higher errors when applying the
NN local approximation (as reported in Table II). The mean
time for solving the LbNMPC problem resulted in 28.53 ms,
while it resulted in 10.21 ms for the nominal NMPC one.

1) Go-Kart Platform: The go-kart is based on a RiMO
SiNUS iON electric rear wheel-driven go-kart platform. The
vehicle is equipped with different sensors for state estima-
tion and localization such as IMU and LiDAR. It mounts
a custom computer on the back, that is, an Intel Xeon
D-1540 @2.00 GHz CPU with eight cores. The computer
interfaces with the sensors and the actuators, then it pro-
cesses the data and runs the localization, mapping, and state
estimation modules while executing the controller. The com-
munication between the different frameworks is done using
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Fig. 12. Real go-kart platform driving autonomously.

Fig. 13. Comparison of trajectory obtained by the LbNMPC using the
nominal and black-box models on the real go-kart.

Fig. 14. Comparison of longitudinal velocity obtained by the LbNMPC using
the nominal and black-box models on the real go-kart.

ROS which gives a structured communication layer above the
Ubuntu operating system.

2) Results on Track: The LbNMPC presented in Section IV
has been employed to drive the go-kart along the track,
depicted in Figs. 12 and 13, obtaining comparable results

Fig. 15. Comparison of sideslip obtained by the LbNMPC using the nominal
and black-box models on the real go-kart.

Fig. 16. Comparison of controls computed by the LbNMPC using the
nominal and black-box models on the real go-kart.

with respect to the nominal strategy. Specifically, the driven
trajectories resulted very similarly over most of the track, with
slight differences in specific parts. The path, velocity, sideslip,
and controls are shown in Figs. 13–16. In particular, the black-
box approach travels the bottom-left turn (at 160–180 m)
with higher velocity, controlling a high sideslip and gaining
speed over the whole bottom straight. The two schemes obtain
similar performance at the top-left corner (120–150 m) and
between the first and the second U-turn (at 40–60 m), with
different strategies. In both cases, the black-box controller is
cutting the curve more than the nominal, traveling less distance
but slightly lowering the speed at the curve center. On the
other hand, in the top-right corner (at 80–100 m) the center
of the turn is traveled at a lower velocity by the black box
strategy, making the whole top straight with a speed gap with
respect to the nominal controller. This behavior results in a
lap time of 29.3 s for black-box, that is, 3.75% slower than
the nominal lap time, that is, 28.2 s. Interestingly, both models
resulted in similar behavior under sideslip conditions (Fig. 15),
with the black-box model allowing to stabilize the vehicle
after an oversteer with a side slip of 15◦ during the exit of
the bottom-left curve, at 160–180 m. The actual commands
sent to the go-kart using the different modeling, shown in
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Fig. 17. Comparison of gg-diagram (longitudinal versus lateral accelerations)
obtained by the LbNMPC using the nominal and black-box models on the
real go-kart.

Fig. 18. Detail of the trajectory traveled by the LbNMPC controller,
highlighting the reduced bound on lateral error during the top left curve.

Fig. 16, are mostly consistent, except for the counter-steering
actions at 50 m and 170 m for the black-box controller and
at 90 m for the nominal one. The maximum accelerations
are similar for both control strategies (Fig. 17), with peaks
of ±1g for lateral and [+0.2,−0.6]g for longitudinal (i.e.,
the longitudinal maximum accelerations given by motor and
braking system) respectively. In this framework, the nominal
model is more precise on average in predicting velocities
with respect to the black-box one, that is, velocity errors
around 25% lower, as reported in Table IV: indeed, the GP
approximations needed to obtain a real-time controller led to
a relevant reduction in the prediction capabilities. However,
the obtained system representation is sufficiently informative
to effectively complete the driving task on the experimental
go-kart. It is expected that it could be further improved by
providing more computing resources.

3) Empirical Feasibility Validation: The expedients
employed to empirically achieve recursive feasibility, that
is, avoiding hitting track boundaries, of the NLP described
in Section V-A have been validated to establish their
effectiveness. In particular, the effect of soft constraint on the
lateral error can be clearly observed in the top-left turn of
the track. Figs. 18–20 show the details of trajectory, lateral

TABLE IV
RMSE OF ONLINE ONE-STEP-AHEAD VELOCITY PREDICTIONS êq̇ FOR

NOMINAL AND BLACK-BOX MODELS ON REAL GO-KART

Fig. 19. Detail of the lateral error value and its reduced bound during the
top left curve.

Fig. 20. Detail of the slack variable value during the top left curve.

error, and slack variable values. While traveling the curve,
the go-kart is very close to the left bound of the track, and
the slack variable is needed to ensure the feasibility of the
problem, while, at the same time, pushing the controller to
move away from the limit. In fact, once the reduced bound
has been overcome, the slack variable is activated, avoiding
both the controller to fail and the go-kart to crash.

VI. CONCLUSION

An LbNMPC controller for a go-kart based on a black-box
model of the accelerations obtained by GP has been presented.
The formulation exploits IMU and localization data collected
while a human is driving to obtain GP models of the dynamics,
eliminating the need for an a priori known dynamics model.
The computational burden of this method was addressed by
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reducing the GP size, exploiting local approximations, and
applying fast NMPC solutions. The strategy achieved satisfac-
tory results on a 180-m-long indoor track, comparable to an
NMPC based on a detailed nominal dynamic model, although
with slightly lower performances, limited by the needed
approximations. However, the experiment demonstrates the
capability of this approach to effectively control a complex
system in a real-world scenario. In particular, the possibility
of using a black-box approach for modeling a four-wheel
vehicle for use in an NMPC controller was demonstrated.
Further development will include an analysis of different
offline reduction methods and online local approximations for
GP, beyond the usage of adaptive models leveraging the data
acquired in real-time.
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