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Abstract

The estimation of extreme flood frequency for ungauged or poorly gauged catch-

ments is a longstanding problem of great practical importance. Simulated

streamflow derived from distributed hydrological models can be used to address

this issue, but their representation of extreme flood peaks is often prone to large

biases. This study evaluates the potential of a nonasymptotic statistical approach

able to consider all the independent flood peaks instead of extremes only, the

Simplified Metastatistical Extreme Value (SMEV), for the estimation of extreme

flood frequency from time series of simulated streamflow. We examined 28 years

of simulated daily streamflow across the contiguous United States and compared

SMEV to traditional statistical models based on annual maxima. Our results sug-

gest that when its assumptions are met SMEV can moderate the impact of

hydrological model biases in the quantification of extreme flood frequency.

SMEV exhibits a lower relative difference between quantiles derived from obser-

vations and simulations for all return periods and forcing dataset. Quantiles esti-

mated from simulated streamflow time series (28-year records) using SMEV are

usually in better agreement with the estimates based on 70-year-long observa-

tions. Geographical variations in the results of SMEV are noticed, with a better

performance of SMEV in the east and west coasts (California, New England,

and Mid-Atlantic) and in the southwestern regions (Texas-Gulf). These results

indicate that the potential of SMEV for flood frequency analyses in ungauged

and poorly gauged basins deserves further investigations.
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1 | INTRODUCTION

Quantifying extreme flood peaks with low yearly exceed-
ance probability is crucial for managing flood risk and

designing hydraulic structures (Apel et al., 2008;
Stedinger, 1983). Flood frequency analysis (FFA) usually
addresses this need by means of statistical distributions:
extremes (either annual maxima or the values exceeding
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a high threshold) are extracted from observations, an
analytical function describing their distribution is identi-
fied and used to extrapolate information about rare, and
potentially still unobserved, flood peaks—such as those
expected to occur only once in 100 years (1% yearly
exceedance probability) (Lam et al., 2017; St. George &
Mudelsee, 2019). For FFA to be successful, long and
accurate observational records are required (Franks &
Kuczera, 2002; Hu et al., 2020; Metzger et al., 2020; Ruiz-
Bellet et al., 2017; Srinivas et al., 2008): long records are
needed to have enough data points for the identification
of the statistical distribution and the estimation of its
parameters; accuracy of the extremes is needed to avoid
biases in the derived quantities. When records with these
characteristics are not available, such as in the case of
ungauged or poorly gauged catchments, FFA becomes an
even more challenging task to address.

Several approaches have been proposed to address the
issue. For example, regionalization methods are based on
the idea that some hydrological and thus statistical prop-
erties can be transferred from nearby gauged catchments
(Pallard et al., 2009; Rahman et al., 2014; Smith
et al., 2015). Commonly used techniques include the
rational method, the index flood method, and quantile
regression analysis (Griffis & Stedinger, 2007; Haddad
et al., 2012; Sharifi Garmdareh et al., 2018). These
methods rely on the identification of homogeneous
regions, and on the assumption that catchments within
such regions share some of the statistical properties of
extreme floods. However, this often neglects key pro-
cesses dominating the local flood generation. Moreover,
it is very difficult to extend these methods to broader
scales (Ayalew & Krajewski, 2017). As such, FFA in
ungauged (or poorly gauged) basins remains among the
grand challenges of the hydrological community (Blöschl
et al., 2019).

Distributed and process-based hydrological models
(Beven, 1986, 1987), as well as recent machine learning-
based hydrological models (Kratzert et al., 2019; Rasheed
et al., 2022; Yang et al., 2020), can be implemented to
simulate discharge at ungauged locations of a river net-
work. Continuous simulation approaches based on
hydrological models were first demonstrated by
Beven (1986, 1987) and applied widely in FFA on the
basis of design event models (Ahn et al., 2014; Ball
et al., 2016; Bradley & Potter, 1992; Passerotti et al., 2020;
Saghafian et al., 2014; Yang et al., 2004). These early
studies used hydrological models with stochastic rainfall
generators. The recent availability of more robust, long-
term and high-resolution reanalysis datasets, which pro-
vide physically consistent forcing, enhanced considerably
the ability of model simulations to represent the hydro-
logical variability of real systems (Kan et al., 2017).

Several recent studies showed that these simulations can
provide useful data to reconstruct flood peaks
(AghaKouchak et al., 2011; Bell et al., 2007; Chilkoti
et al., 2017; Kay et al., 2009; Moretti & Montanari, 2008;
Sun et al., 2015; Yang et al., 2004). However, the simu-
lated time series can be associated with considerable sys-
tematic and random errors related to the meteorological
forcing, the land surface parameterization, and the model
structure (Ehsan Bhuiyan et al., 2019; Renard
et al., 2006). Moreover, it is difficult to calibrate the
models to well reproduce extremes, because by definition
only few extremes are available in the data records
(Haberlandt & Radtke, 2014; Lamb, 1999). These uncer-
tainties eventually translate to important errors in the
simulated extremes, which can bias the subsequent ana-
lyses (Mirzaei et al., 2014). For example, despite the good
model performance in reproducing mild flow peaks, a
FFA study in Western Connecticut based on simulated
flows from the Coupled Routing and Excess Storage dis-
tributed hydrological model (Shen & Anagnostou, 2017),
showed systematic underestimation in the estimated
quantiles as a result of the biases in the extreme flow
peaks simulated by the model (Hardesty et al., 2018).

In this study, we evaluate the potential of a novel non-
asymptotic statistical approach based on ordinary, as
opposed to extreme, flood peaks (Miniussi, Marani, &
Villarini, 2020) for FFA of hydrologic simulations in
poorly-gauged or even ungauged basins. Our working
hypothesis is that, since simulations of extreme flood
peaks are generally characterized by larger errors than
simulations of ordinary flood peaks, this method could be
less sensitive to the issues that currently hinder FFA based
on simulated streamflow. We use data from 671 catch-
ments located across diverse hydroclimatic settings in the
Contiguous United States (CONUS) to evaluate the poten-
tial of this approach by comparing it to traditional
extreme-value methods based on annual maxima.

2 | STUDY AREA AND DATA

This study is based on the Catchment Attributes and
Meteorology for Large-sample Studies (CAMELS) dataset
(Addor et al., 2017; Newman et al., 2015), which includes
671 catchments (see Figure 1) spanning a wide range of
hydroclimatic conditions across CONUS. The dataset
consists of hydrometeorological time series from different
sources as well as several catchment attributes that influ-
ence catchment response and hydrological signature,
such as topographic characteristics and climatic indices
(Newman et al., 2015). The catchment scales span several
orders of magnitude, ranging from 22 to 25,680 km2

(median 470 km2).
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Streamflow time series include both observations
from the U.S. Geological Survey (USGS) and model simu-
lations derived from three different forcing: Daymet
(Thornton et al., 2014, 2020), NLDAS (North American
Land Data Assimilation System, Xia et al., 2012), and
Maurer (Maurer et al., 2002). Daymet comprises gridded
estimates of daily weather parameters and climatological
summaries derived from daily meteorological observa-
tions. NLDAS constructs a forcing dataset from a daily
gauge-based precipitation analysis, bias-corrected short-
wave radiation, and surface meteorology reanalysis to
produce outputs. Maurer presents a model-derived data-
set of land surface states and fluxes for the CONUS.

The corresponding simulated streamflow time series
are produced following the National Weather Service
standard, using the SNOW-17 and Sacramento soil mois-
ture accounting (SAC-SMA) hydrological model and
shuffled complex evolution optimization calibration pro-
cedure (Duan et al., 1994). Streamflow derived from Day-
met and NLDAS are available from January 1980 to
December 2014, while Maurer covers from January 1980
to December 2008. Here, we focus on the 28-year hydro-
logical period from October 1980 to September 2008.

Among the 671 USGS stations, we identified a subset
of 308 stations for which at least 70 years of observed
daily records are available. The full 70-year record is used
here as an optimal and fair reference for quantile esti-
mates and the sensitivity evaluation of statistical methods
on simulated records.

3 | METHODS

3.1 | Statistical approach

Marani and Ignaccolo (2015) proposed a nonasymptotic
approach to estimate extreme quantiles based on the
analysis of the so-called ordinary events, which are all the

independent realizations of a process of interest. The idea
is that extremes are realizations of these underlying ordi-
nary events, which are sampled a different and finite
number of times every year. When the cumulative distri-
bution function of the ordinary events is known, the
description of extremes becomes a function of (i) this
underlying distribution and (ii) the occurrence frequency
of the ordinary events (see details in Zorzetto et al., 2016).
Provided the underlying assumptions are met, these
methods based on ordinary events showed reduced sto-
chastic uncertainties in the estimation of extreme precipi-
tation (Marra et al., 2018; Zorzetto et al., 2016) and flood
(Miniussi, Marani, & Villarini, 2020) quantiles with
respect to traditional extreme-value methods based on
annual maxima or peaks over threshold, and proved less
sensitive to systematic and random errors in the observed
(or simulated) extremes (Marra et al., 2018). In fact, this
approach includes a larger amount of data in the estima-
tion of extreme quantiles with respect to traditional
extreme-value methods, because all the independent
flood peaks are used instead of annual maxima or thresh-
old exceedances only.

A simplified version of this approach, termed Simpli-
fied Metastatistical Extreme Value (SMEV, Marra,
Nikolopoulos, et al., 2019; Marra, Zoccatelli, et al., 2019),
provides two important advantages: (i) improved parame-
ter estimation accuracy; (ii) reduced sample-size issues
related to the limited number of independent flood peaks
in individual years (Marra et al., 2020; Miniussi, Mar-
ani, & Villarini, 2020; Vidrio-Sahagún & He, 2022).
SMEV resembles the ordinary statistics of finite-size
block maxima under independence (Serinaldi
et al., 2020); here we will use the term SMEV for consis-
tency with recent studies.

It is important to point out that ordinary-event based
methods rely on different assumptions with respect to
traditional extreme-value methods. Crucially, the class of
distribution describing the ordinary events tail (F in the

FIGURE 1 Stations with simulated

flows from CAMELS used in this study.

The figure shows a total of 671 stations

with 28-year simulations, indicated by blue

and orange dots; the orange dots mark the

308 stations with 70-year USGS

observations or more data records. Solid

lines indicate hydrological units (Seaber

et al., 1987) across CONUS.
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following) needs to be known or reasonably assumed.
Given the cumulative distribution function of the ordi-
nary events F x;θð Þ described by the array of parameters
θ, and the average yearly number of ordinary events n,
the SMEV cumulative distribution of extreme intensities
x can be written as:

ζ xð Þ¼F x;θð Þn ð1Þ

Miniussi, Marani, and Villarini (2020) applied for the first
time these methods to USGS observations across CONUS,
finding that the Gamma distribution is the most suitable
(among Weibull, Generalized Pareto, and Gamma) for
describing ordinary flood peaks. This means that
Gamma-distributed ordinary flood peaks were able to
best explain the distribution of annual maximum peak
discharges in most of the examined catchments. Follow-
ing these results, here we adopt the Gamma distribution
to describe ordinary flood events in this study.

In order to consistently apply the method, it is essen-
tial to identify ordinary events as independent. We follow
the recommendation of Lamb (1999), according to which
independent flood peaks should be separated by time
blocks longer or equal to T = 10 days + (log (A) � 0.41),
where A is the basin area in square kilometers. Mean-
while, the smallest discharge value between two consecu-
tive peaks below a threshold equal to 75% of the lower
peak should be rejected. Parameters of the Gamma distri-
bution are estimated using these independent peaks
(ordinary events) using the method of the L-Moments
(Hosking, 1990).

3.2 | Traditional extreme-value methods

Widely used traditional extreme-value methods used for
FFA are based on both annual maxima and peaks over
threshold: Generalized Extreme Value (GEV) fit of the
annual maxima and Generalized Pareto (GPD) fit of the
peaks exceeding a high threshold, as suggested by asymp-
totic statistical theory (Fischer & Tippett, 1928;
Gnedenko, 1943), and Log-Pearson III (LP3) fit of the
annual maxima, as recommended by the USGS. Previous
work by Hu et al., 2020 for FFA over CONUS showed
that, among these, the LP3 method provides more robust
performance, and therefore was chosen as a benchmark
for comparison with the SMEV. The parameters of the
LP3 distribution are estimated using the method of the L-
moments, owing to its lower sensitivity to outliers with
respect to maximum likelihood methods, and to its ability
to better estimate the tail heaviness in the presence of rel-
atively short data records (Hosking, 1990).

3.3 | Quantification of uncertainty

Uncertainty is quantified using the bootstrap approach
suggested by Overeem et al. (2008). A thousand M-year
synthetic records, where M is the data record length, are
generated via random sampling with replacement of the
years in the record. Flood quantiles are then estimated
for the synthetic records using the methods described
above (SMEV and LP3).

3.4 | Biases in annual maxima and in
FFA of simulated streamflow

To quantify how errors in the simulated extreme flood
propagate to the estimated quantiles using the different
statistical models, we studied the relationship between
the bias in the simulated annual peak flow maximum
series (AMS) and the one in the estimated quantiles.
Errors are here quantified as absolute biases normalized
over the catchment area:

BiasAMS ¼ 1
A�M �

XM

j¼1
Xj

sim�Xj
obs

� �
ð2Þ

where Xj
sim is the simulated annual peak flow maximum

for the year j, Xj
obs the corresponding observed maximum,

M is the number of years in the records (in our case the
28 years of simulated flows), and A is the catchment area.

3.5 | Evaluation of FFA of simulated
streamflow

To evaluate the performance of the statistical methods
using a robust reference, we conduct an analysis based
on 308 stations with at least 70 years of observations, in
order to ensure a robust reference. Based on these 308 sta-
tions, the performance of SMEV applied on 28-year simu-
lated streamflow was evaluated across CONUS. We also
compared SMEV with LP3 by calculating the ratios
between the corresponding relative differences (RD),
defined as:

RD¼ Qsim�Qobs

QsimþQobsð Þ=2�100% ð3Þ

where for each examined return period and realization,
Qsim is the quantile estimated from model-simulations
using a given statistical method and Qobs is the corre-
sponding quantile estimated from observed streamflow
using the same statistical method.
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We quantify the estimation accuracy using the Skill
Score (Hashino et al., 2006; Miniussi, Marani, &
Villarini, 2020; Murphy & Winkler, 1992):

SS¼ ρ2QsimQobs
� ρQsimQobs

� σQsim

σQobs

� �� �2
� μQsim

�μQobs

� 	
σQobs

" #2

ð4Þ

where ρxy is the correlation coefficient between x and y,
and σx and μx are the standard deviation and mean of x,
respectively. A perfect value for SS is 1.

4 | RESULTS

In the following, we present our results organized into
three parts: First, we show the relation between bias in
the simulated AMS and bias in the estimated flood
quantiles. This will quantify the error propagation from
simulated AMS to estimated flood quantiles
(Section 4.1). Then, we evaluate the ability of the differ-
ent methods to reproduce quantiles based on streamflow
simulations by comparing them with the quantiles
obtained from observed streamflow records; last, we
assess possible geographic dependence in the accuracy of
these methods.

4.1 | Propagation of errors from
simulated annual maxima to estimated
quantiles

The models reproduce flood occurrence reasonably,
although a general tendency toward the underestimation
of the number of flood peaks is noticed (median �20%,
see Appendix A). This implies that the models reproduce
flood occurrence reasonably. The relation between biases
in simulated vs. observed AMS (as in Equation 2) for the
case of NLDAS-driven simulated streamflow against the
corresponding biases in the quantile estimated using dif-
ferent statistical methods is reported in Figure 2. Argu-
ably, the bias of the quantiles exhibits a significant
dependence on return period. Most of the bias for the tra-
ditional method (LP3) is within 50 mm day�1 for the
10-year return period, and increases at the higher quan-
tiles (>100 mm/day for the 100-year return period). The
bias for SMEV-derived quantiles shows a smaller disper-
sion, which remains similar across return periods. This
indicates that SMEV-based results are less impacted by
the (large) biases which affect the simulated AMS, espe-
cially when longer return periods are sought. This comes
as a consequence of using ordinary events instead of
extremes only, and confirms our working hypothesis.
The largest peak flows, which are typically associated
with larger simulation errors, are weighted less in the

FIGURE 2 Bias on the 10-, 50-,

100-, and 200-year quantiles estimated

from NLDAS-driven simulated

streamflow using the four methods (LP3

and SMEV) as a function of the bias on

the annual maxima series.
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statistical inference, while the milder peak flows, which
often contribute more to the model calibration, are
weighted more.

It is worth pointing out that SMEV approaches allow
also to explicitly exclude annual maxima (or any other
specific event of the record) from the parameter estima-
tion procedure in case those are not trusted (Marra
et al., 2022), a possibility that can be explored in future
applications.

4.2 | Evaluation of FFA from simulated
streamflow

The evaluations of SMEV-based quantiles estimated
using simulated streamflow time series (Daymet, Maurer,
and NLDAS) are reported in Figure 3. SMEV exhibits a
lower RDs between quantiles derived from observations
and simulations for all return periods and forcing dataset
(Figure 4). This is true both in terms of systematic
(median value) and random (interquartile range and
values range) components. In particular, it is interesting
to notice that the dependence of RD on the return period
is smaller for SMEV than for traditional methods. We use
a Kolmogorov–Smirnoff test to check if the distributions
of RD from SMEV and LP3 in Figure 3 are significantly
different. The results show that the RD from SMEV and
LP3 are significantly different at 5% significance level for
all return periods except for the 2-year return period. In
addition, we conducted qualitative evaluation on the
interquartile ranges and whisker-to-whisker ranges of the
boxplots in Figure 3. The whisker-to-whisker ranges of
LP3 are 4%–96.5% higher than that of SMEV, and the
interquartile ranges of LP3 are 5.5%–93.1% higher than
that of SMEV, demonstrating that SMEV is less depen-
dent on the return period.

This comes as a consequence of the reduced parame-
ter estimation uncertainty, especially for what concerns
the tail parameter of the distribution: in traditional
extreme value methods, estimating the tail parameter
(e.g., the shape parameter of the LP3 or of the commonly
used GEV and GPD) is a well-known issue (Martins &
Stedinger, 2000).

While the skill of LP3 quickly decreases with increas-
ing return period, dropping from SS > 0.9 for 2-year
quantiles to SS = �0.6 for 100-year quantiles, SMEV
exhibits the highest Skill Score (SS = �0.9) consistently
across return periods longer than 5 years (Figure 6). This
follows what reported above and in Figure 2, and implies
that, when the assumption about the ordinary flood
events distribution is met (here, when the ordinary flood
peaks are Gamma-distributed), using SMEV on simulated
streamflow leads to estimates of high quantiles which are

significantly more accurate than those that can be
derived from traditional methods. This is due to the
larger simulation biases characterizing extreme flows
with respect to ordinary flow peaks.

4.3 | Geographic dependence of SMEV-
based FFA accuracy

Results so far focused on the 28-year records for which
simulated streamflow time series are available. Here, we
provide a deeper evaluation of LP3 and SMEV-based
methods using long-term observational records
(≥70 years) as a reference, and we explore the possible
dependence of their performance on hydroclimatic

FIGURE 3 Boxplots of the RDs between quantiles estimated

based on 28-year simulated streamflow against quantiles estimated

based on 28-year observations; horizontal bars indicate the median,

boxes indicate the interquartile range, and whiskers indicate the

full range of values. Three forcing data are presented: Daymet (a),

Maurer (b), and NLDAS (c).
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conditions and catchment area. Figure 5 and Table 1 pre-
sent RDs from SMEV computed across CONUS. Using
SMEV, over 70% and 65% stations exhibit less than 20%
bias in the estimated 10-year and 100-year quantiles,
respectively. Only less than 30 stations that exhibit more
than 50% bias. Those results show that the low sensitivity
of SMEV to record length is rather consistent across the
majority of stations examined. Figure 6 and Table 2 fur-
ther show the ratio between the RDs of LP3 and SMEV.
Values larger than 1 (red colors in the figure) imply that
SMEV estimates based on simulated streamflow are more
similar to the estimates based on long-term observations
and SMEV, while values smaller than 1 (blue colors in
the figure) imply that LP3 estimates based on simulated
streamflow are more similar to the estimates based on
long-term observations and LP3. Comparison of

traditional methods (here LP3) shows that quantiles esti-
mated from simulated streamflow time series (28-year
records) using SMEV are usually in better agreement
with the estimates based on 70-year-long observations
(66% of the cases for 10-year quantiles, 72% for 100-year
quantiles). This is more frequent in the east and west
coasts (California, New England, and Mid-Atlantic) and
in the southwestern regions (Texas-Gulf) of CONUS (red
dots in Figure 6), while a better performance of LP3 is
reported in the Midwest and in the southeastern hydro-
logical units.

In general, nonasymptotic approaches applied on
simulated streamflow exhibit better performance in most
of the climatic zones (Figure 7), with the notable excep-
tions of Mediterranean hot summer climates (Csa), cold
semi-arid climates (Bsk), and continental climates at
higher altitudes (Dsb). Interestingly, worse performances
of nonasymptotic approaches in these climates were also
reported for the case of precipitation (Marra et al., 2018);
it was suggested that the presence of multiple mecha-
nisms underlying the generation of extreme precipitation
could be among the causes for this, but further research
is needed to quantify the potential impact of other causes,
such as nonstationarity of the ordinary flood events dis-
tribution (Vidrio-Sahagún & He, 2022).

5 | CONCLUSIONS

In this study, we make a further step toward reliable
flood frequency analysis (FFA) in ungauged or poorly
gauged basins by presenting a framework that increases
the use of information from simulated streamflow series
for robust estimation of extreme flood quantiles. Specifi-
cally, we evaluate the potential of applying a novel FFA
approach, based on nonasymptotic ordinary statistics, on
simulated streamflow data: we compare the Simplified
Metastatistical Extreme Value approach (SMEV) with tra-
ditional methods based on extreme values (we used LP3
fit of annual maxima as recommended by the USGS and
as deemed as the most representative based on past
research). We use 308 stations with at least 70 years of
observations in the CONUS and simulated streamflow
from three different forcing datasets from CAMELS.

Our results confirm the working assumption of hav-
ing SMEV-based estimates of extreme quantiles to be less
sensitive to errors on the simulated extreme flows than
those of traditional methods. This causes SMEV-based
estimates of extreme quantiles to be less biased and char-
acterized by smaller uncertainty than those from tradi-
tional methods, in particular for the estimation of higher
quantiles (e.g., 100-year quantiles).

FIGURE 4 Skill score of the estimated quantiles using

different extreme value methods from three forcing data: Daymet

(a), Maurer (b), and NLDAS (c).
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When compared to analyses based on more than
70 years of data, FFA of simulated streamflow from
SMEV presented smaller biases with respect to LP3 in
66% (72%) of the stations across CONUS in the estimation
of 10-year (100-year) quantiles. Nevertheless, this is not
systematic: SMEV is found to exhibit higher accuracy in
the east and west coasts (California, New England, and
Mid-Atlantic) and in the southwestern regions (Texas-
Gulf) of CONUS, while LP3 seems preferable in the Mid-
west and in the southeastern catchments.

It should be recalled that both SMEV and LP3, as
used here, rely on the assumption of stationarity. The

possible violation of this assumption during the
period examined (simulated records are 28 years
long), however, is to be considered negligible with
respect to the methodological uncertainty (see for
instance Villarini et al., 2009). Should this violation
become important, nonstationary implementations of
SMEV are available, such as the one by Vidrio-Saha-
gún and He (2022).

Our quantitative results depend on the accuracy of
our assumptions for what concerns the distribution of the
ordinary events. We used a Gamma distribution follow-
ing the results by Miniussi, Marani, and Villarini (2020)

FIGURE 5 RDs from SMEV computed

for the 10- and 100-year return periods at

308 stations in CONUS. Three hundred and

eight stations with 70-year observations are

considered as reference. The deep red and

red dots indicate those stations at which

SMEV presents more bias.

TABLE 1 The number of stations

in RD_SMEV.
Number of stations

RD_SMEV (%) 10-year return period Total 100-year return period Total

<10 144 219 131 207

10–20 75 76

20–50 66 89 73 101

>50 23 28
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and Mushtaq et al. (2022), but other study areas (or even
some catchments within CONUS) could be better
described by different distributions. To this end, specific
tests should be used to define the optimal distribution
case by case (Marra et al., 2022). To avoid this potential
issue, our results are based on the comparison between
simulated streamflow and observations using correspond-
ing methods: SMEV (LP3) applied to simulated stream-
flow is compared to SMEV (LP3) applied to observations.
Therefore, our results imply that, whatever distribution is
the most appropriate for extremes, using ordinary events

is a viable way to have FFA with low bias and small
uncertainties using hydrological model simulations, espe-
cially if the hydrological model is not able to simulate
high flow peaks accurately.

While not directly solving the problem of ungauged
catchments, these results suggest a viable way for running
FFA over poorly gauged catchments: provided that the
distribution of the ordinary events is known, a hydrologi-
cal model that can be calibrated using few years of data
can be effectively used to simulate continuous streamflow
time series based on atmospheric forcing datasets.

FIGURE 6 Ratio between the RDs

from LP3 and those from SMEV, computed

for the 10- and 100-year return periods at

308 stations in CONUS. The deep red and

red dots indicate those stations at which

SMEV provides more accurate estimation.

TABLE 2 The number of stations

in the classifications of the ratios.
Number of stations

Ratio 10-year return period Total 100-year return period Total

<0.25 22 104 21 86

0.25–1 82 65

1–4 164 204 158 222

>4 40 64
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APPENDIX A

Figures A1 and A2

FIGURE A1 RDs between number of peaks estimated based

on 28-year simulated streamflow against number of peaks

estimated based on 28-year observations; horizontal bars indicate

the median, boxes indicate the interquartile range, and whiskers

indicate the full range of values. Three forcing data are presented:

Daymet, NLDAS, and Maurer.

FIGURE A2 Histograms between number of peaks estimated based on 28-year simulated streamflow against number of peaks

estimated based on 28-year observations; three forcing data are presented: Daymet, NLDAS, and Maurer.
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