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Abstract  

Several models have been proposed to describe the glucose system at whole-body, 
organ/tissue and cellular level, designed to measure non-accessible parameters 
(minimal models), to simulate system behavior and run in silico clinical trials 
(maximal models). Here, we will review the authors’ work, by putting it into a 
concise historical background. 
We will discuss first the parametric portrait provided by the oral minimal models – 
building on the classical intravenous glucose tolerance test minimal models – to 
measure otherwise non-accessible key parameters like insulin sensitivity and beta-
cell responsivity from a physiological oral test, the mixed meal or the oral glucose 
tolerance tests, and what can be gained by adding a tracer to the oral glucose dose. 
These models were used in various pathophysiological studies, which we will 
briefly review. A deeper understanding of insulin sensitivity can be gained by 
measuring insulin action in the skeletal muscle. This requires the use of isotopic 
tracers: both the classical multiple-tracer dilution and the positron emission 
tomography techniques are discussed, which quantitate the effect of insulin on the 
individual steps of glucose metabolism, i.e., bidirectional transport plasma-
interstitium, and phosphorylation. Finally, we will present a cellular model of 
insulin secretion that, using a multiscale modeling approach, highlights the 
relations between minimal model indices and subcellular secretory events. 

In terms of maximal models, we will move from a parametric to a flux portrait of 
the system by discussing the triple tracer meal protocol implemented with the 
tracer-to-tracee clamp technique. This allows to arrive at quasi-model independent 
measurement of glucose rate of appearance (Ra), endogenous glucose production 
(EGP), and glucose rate of disappearance (Rd). Both the fast absorbing simple carbs 
and the slow absorbing complex carbs are discussed. This rich data base has 
allowed us to build the UVA/Padova Type 1 diabetes and the Padova Type 2 
diabetes large scale simulators. In particular, the UVA/Padova Type 1 simulator 
proved to be a very useful tool to safely and effectively test in silico closed-loop 
control algorithms for an artificial pancreas (AP). This was the first and unique 
simulator of the glucose system accepted by the U.S. Food and Drug 
Administration as a substitute to animal trials for in silico testing AP algorithms. 
Recent uses of the simulator have looked at glucose sensors for non-adjunctive use 
and new insulin molecules.  

 

1. INTRODUCTION 

Since the early history of modeling in physiology and medicine, the glucose system 
has received considerable attention and has stimulated the development of new 
modeling methodologies. The last decades have seen a growing attention due to the 
diabetes pandemic and to important developments in diabetes modeling and 
technology [1]. Biomedical engineering has allowed important achievements in the 
areas of technology, modeling, signal processing and control. Here we focus on 
modeling in the quantitative understanding of the glucose system and its 



Pag. 4 a 61 

 

progressive derangement from prediabetes to type 2 or type 1 diabetes. The formal 
understanding and description of glucose-insulin metabolism in health and diabetes 
is, arguably, one of the most advanced applications of modeling in the life sciences, 
given the rich history of available models.  

In this paper we will provide a personal story on advancements of diabetes 
modeling in the last 20-25 years. It is neither a comprehensive review on all the 
modeling contributions of the literature nor a review of our work in areas of glucose 
sensor signals and closed-loop glucose control for which we refer to [1]. However, 
in Section 2 a concise historical background on some landmark models is provided 
taken from [2] on the occasion of a special IEEE TBME issue devoted to historical 
development of methodologies and technologies relevant for biomedical 
engineering which allows us to put our story in a proper perspective. Even with this 
personal connotation, we do hope this paper, by collecting contributions appeared 
in biomedical engineering, physiological and clinical journals, will be useful to the 
diabetes community, and especially to young investigators entering the field. To 
allow a deeper insight into the various models, all the material used will be clearly 
referenced to the original publications. 

We will make reference to two classes of models, i.e. minimal (coarse-grained) – 
and maximal (fine-grained) models. Minimal models are parsimonious descriptions 
of key components of system functionality capable of measuring non-accessible 
parameters of the system, while maximal models are very comprehensive 
descriptions attempting to fully implement the body of knowledge about the system 
into a generally large, nonlinear model of high order, with several parameters, 
allowing to perform simulation and to conduct in silico trials. 

We will first discuss the parametric portrait provided by the oral minimal models 
to measure otherwise non-accessible parameters like insulin sensitivity and beta-
cell responsivity from a physiological oral test, the mixed meal tolerance test (MTT) 
or the oral glucose tolerance tests (OGTT), and what can be gained by adding a 
tracer to the oral dose. These models have been used in various pathophysiological 
studies, which we will briefly describe. Subsequently we will move down in the 
hierarchical system structure and get a deeper physiological understanding on 
insulin action in the skeletal muscle. We will discuss the classical multiple tracer 
dilution technique and the technique based on positron emission tomography 
(PET), which quantitate the effect of insulin on the individual steps of glucose 
metabolism, i.e. transport and phosphorylation. Finally, by using a multiscale 
modeling approach we will highlight the relations between beta-cell function 
minimal model indices and secretory subcellular events. 

Then, we turn to discuss maximal models which allow to arrive at a flux portrait of 
the glucose system. This is a very important qualitative jump in the system 
description. In fact, assessing the postprandial glucose fluxes may highlight 
possible defects in how the system coordinates changes in the meal/OGTT glucose 
rate of appearance (Ra), endogenous glucose production (EGP), and glucose 
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disposal (Rd) leading to postprandial hyperglycemia. Here tracers are not only 
desirable to get a more detailed portrait but are indispensable.  

The tracer theory necessary to arrive at a flux portrait is described in some detail 
but with an easy language to favor its use in the diabetes community. The gold 
standard is the triple tracer meal protocol implemented with the tracer-to-tracee 
clamp technique which allows to arrive at quasi-model independent measurement 
of Ra, EGP and Rd. While the method was originally proposed for the fast 
absorbing simple carbs, it has recently been extended to handle the slow absorbing 
complex carbs: both are discussed in this paper. This rich data base has allowed us 
to build the UVA/Padova Type 1 diabetes and the Padova Type 2 diabetes large 
scale simulators. In particular, the UVA/Padova Type 1 simulator proved to be a 
very useful tool to safely and effectively test in silico trials closed-loop control 
algorithms of insulin administration (the so called Artificial Pancreas, AP). This is 
the first and unique simulator of the glucose system accepted by the U.S. Food and 
Drug Administration as a substitute to animal trials for in silico testing AP 
algorithms. Recent uses of the simulator have looked at glucose sensors for non-
adjunctive use and new insulin molecules. 

 

2. HISTORICAL BACKGROUND: LANDMARK MODELS [2] 

A conceptual breakthrough in the characterization of Claude Bernard’s milieu 
interieur was allowed by the introduction of tracers to trace the movement of 
substances (tracee): Rudolf Schoenheimer in 1942 formulated in a famous book [3] 
the concept of dynamic state of body constituents by which at any time the 
concentration of a substance in the circulation, e.g. of a substrate or a hormone, is 
the result of production/secretion, distribution, exchange with other body pools, and 
utilization/ degradation. The dynamic state of body constituents was a qualitative 
paradigm and its quantitative into fluxes of production, distribution and metabolism 
was a difficult problem, especially in vivo. There was the need to develop system 
dynamic models able to interpret the plasma measurements, and thus tackle 
problems like model structure determination, model identification and validation. 
Studies employing radioactive glucose tracers increased in the 1940’s, especially 
after World War 2  when radioactive isotopes became commercially available (it 
took another 30 years to see the first glucose stable isotope tracer study in children 
[4]). The increased number of animal and human tracer studies stimulated the 
development of modeling methodologies. In 1948 Sheppard introduced for the first 
time the term compartment, and provided the first multi-compartment model of 
tracer kinetics in a steady state tracee system described by a system of linear time-
invariant differential equations [5]. Handling linear differential equation models in 
the 1950s was computationally challenging and feasible only for the two- and some 
three compartment models. A significant step forward was made possible in the 
1960s by the introduction of analog computers and, later, by digital computers 
when the first book on compartmental models by Sheppard [6] was published. New 
momentum in the use of digital computers for modeling metabolic systems was 
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brought by Mones Berman at NIH, Bethesda, MD [7]. The 60s saw also some 
important methodological contributions, thanks to the ability of measuring insulin 
concentration in the circulation with radioimmunoassy methods [8]. Berman and 
Schoenfeld [9] addressed for the first time the a priori identifiability problem for 
linear compartmental models. Tracer theory was extended to study tracee systems 
also in non-steady state, i.e. after a perturbation like a meal or physical activity: 
tracer kinetics is still described by linear differential equations, but parameters 
become time-variant (as a result of nonlinearity)[10]. Compartmental models 
moved out of the tracer context and nonlinear compartmental models were 
formalized to describe physiological control systems, e.g. production, distribution, 
utilization of glucose; secretion, distribution, degradation of insulin, and the 
feedback glucose and insulin signals.  Later, in the 1970/80s, the methodological 
problems posed by linear, but also nonlinear, compartmental models saw a new 
cultural wave. The identifiability problem was attacked by various investigators 
(see the review [11]). The numerical identification of models was posed in the 
correct theoretical setting with tools including test of residuals, parameter precision 
and parsimony criteria (see the review [12])  and model validation [13]. Books were 
published offering a consolidated methodology for modeling endocrine and 
metabolic systems [14][15][16]. Of note has been the use of Bayesian methods 
given the increased a priori knowledge that was become available. 

Some landmark models are described below. 

Glucose fluxes. The tracer method by Steele [17], and, later, the ingenious tracer 
clamp infusion protocol by Norwich [18] and Radziuk [19] allowed to measure the 
rate of appearance, Ra, and disappearance, Rd, of glucose in a variety of 
experimental situations. This approach was later put on more solid theoretical 
grounds [20]. The increased use of stable glucose isotopes has stimulated the 
generalization to the tracer-to-tracee clamp technique [21].  

Insulin secretion. Measurement of insulin secretion after a glucose stimulus was 
posed as a classical input estimation problem by deconvolution [22]. However, it 
is not possible to reconstruct pancreatic secretion from plasma insulin concentration 
since insulin is degraded by the liver before appearing in the circulation. The 
problem was bypassed when the hormone C-peptide was discovered since it is 
secreted equimolarly with insulin, but it is extracted by the liver to a negligible 
extent [23][24]. The knowledge of C-peptide kinetics requires an additional 
experiment, but a method was proposed in [25] that allows C-peptide kinetic 
parameters to be derived in an individual based on subject anthropometric 
characteristics.  

Insulin action. Victor Bolie [26] pioneered the filed by proposing a linear model to 
describe the plasma glucose and insulin concentrations in an intravenous glucose 
tolerance test (IVGTT). The model was subsequently extended to an oral glucose 
tolerance test (OGTT) in [27]. Both these models were simplistic, but at that time 
plasma insulin was not available and the models were fitted on plasma glucose only. 
An elegant tracer study by Insel et al. [28] with the glucose system in two steady 
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states, i.e. basal glucose & basal insulin, and basal glucose & elevated insulin, 
advanced the field by assessing timing and magnitude of insulin action. Linear 
three-compartment models were used to describe glucose and insulin kinetics, and 
in order to describe insulin-dependent glucose utilization, it was necessary to 
postulate insulin control from a large, slowly equilibrating compartment, thus 
confirming the finding of a year before by Sherwin et al [29], who showed that it is 
insulin in a remote compartment that controls glucose utilization. In 1979 Bergman 
and Cobelli [30] introduced the minimal model to describe an IVGTT, thus arriving 
at an index of insulin action, called insulin sensitivity, without the use of tracers. 
We will discuss this model in Section 3 in the context of its extension to an oral 
test, i.e. a mixed meal tolerance test or an OGTT. 

Beta-cell function. Deconvolution allows measuring insulin secretion after a 
glucose stimulus. However, a mechanistic insulin secretion model is needed to 
arrive at indices of beta-cell function. The key model was that of Licko [31] who, 
starting from the cellular insulin secretion model by Grodsky [32], developed a 
whole-body IVGTT model and proposed beta-cell function indices, i.e. 1st and 2nd 
phase responsivity. While models based on insulin data allowed post-hepatic 
insulin delivery to be quantified, an improved parametric portrait was later obtained 
by a C-peptide IVGTT model [33], which integrates the 1st and 2nd phase secretion 
model into the two-compartment model of C-peptide kinetics. Since the glucose–
insulin system is a negative feedback system, beta-cell function needs to be 
interpreted in light of the prevailing insulin sensitivity: the disposition index (DI) 
paradigm was introduced in [34] where beta-cell function is multiplied by insulin 
sensitivity.  

Cellular model of insulin secretion. The landmark model was developed by 
Grodsky [32]. A variety of glucose stimuli in the perfused rat pancreas was the data 
base. He proposed that insulin was located in "packets", plausibly the insulin 
containing granules, but possibly entire beta-cells. In this model, part of the insulin 
is stored in a reserve pool, while other insulin packets belong to a labile and 
releasable pool. The rapid release of the labile pool results in the first phase of 
insulin secretion, while the reserve pool is responsible for the sustained second 
phase. To explain the staircase experiment, where glucose concentration is 
increased in consecutive steps, he assumed that the packets in the labile pool have 
different thresholds with respect to glucose beyond which they release their content.  

 

3. THE ORAL MINIMAL MODELS: INSULIN SENSITIVITY, BETA-
CELL RESPONSIVITY and HEPATIC EXTRACTION 

For reader convenience/information, most of the material reported in this section is 
taken from our review [35]. 
 
The simultaneous assessment of insulin action, insulin secretion and hepatic 
extraction is key to understand postprandial glucose metabolism in people with and 
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without diabetes and to put therapy on solid grounds [1][35][36][37]. Here, we 
discuss the oral minimal model method [35], i.e. models that allow the estimation 
of insulin sensitivity, beta-cell function and hepatic insulin extraction from an oral 
glucose test, either a mixed meal (MTT) or an oral glucose (OGTT) tolerance test. 
Both these tests are more physiologic and simpler than those based on an 
intravenous test, (e.g. a glucose clamp or an intravenous glucose tolerance (IVGTT) 
test), with MTT being superior to OGTT due to the presence of other 
macronutrients (proteins and fat).  
 
The oral glucose minimal model method sits on the giant shoulders of the IVGTT 
minimal model [30], particularly taking advantage of two revolutionary concepts 
introduced in 1979: i) the system is partitioned into a glucose and insulin 
subsystem, thus allowing modeling of each system using, respectively, plasma 
insulin and glucose as known inputs; and, ii) insulin control is from a compartment 
remote from plasma (known today to be interstitium). The IVGTT seems simpler 
to model since one knows the input, i.e. the glucose dose. However, modeling 
glucose dynamics after the bolus is complex: the single compartment may 
undermodel the system with potential bias introduced, e.g. on insulin sensitivity 
[38]. To improve the quantitation of beta-cell function, a C-peptide IVGTT minimal 
model has been developed which allows to estimate 1st and 2nd phase beta-cell 
responsivity [33], and also, in conjunction with the IVGTT insulin minimal model, 
hepatic insulin extraction [39]. Finally, the IVGTT method does not describe the 
incretin contribution to insulin secretion.  
Historically, the oral minimal model method has been facilitated by triple tracer 
meal studies done at Mayo Clinic, Rochester, MN (details in, section 7.2.2) which 
have provided a rich data base for model development and validation [40]. The 
MTT/OGTT data are shown in Figure 1 (upper panel). The system is partitioned 
like in Figure 1 (bottom panel). What is the rationale? For instance, to describe 
plasma glucose and insulin data after an oral glucose test, there is the need to 
simultaneously model both the glucose and insulin systems and their interactions, 
i.e. in addition to model insulin action, one also has to model glucose-stimulated 
insulin secretion. Since by definition models are useful but never true, an error in 
the insulin secretion model would be compensated by an error in the insulin action 
model, thus introducing a bias in insulin sensitivity. To avoid this source of error, 
an artificial “loop cut”  decomposes the system in two subsystems which are linked 
together by measured variables. The measured MTT/OGTT time courses of insulin 
and glucose can be considered as “input” (known) and “output” (noisy), 
respectively, to measure insulin sensitivity (Figure 1, bottom panel, top); those of 
glucose and C-peptide to measure beta-cell function (Figure 1, bottom panel, 
middle); and those of glucose and insulin plus C-peptide to measure hepatic insulin 
extraction (Figure 1, bottom panel, below). In this way, models are developed not 
for the whole system but for each of the subsystems, independently.  
Figure 1 shows the recommended MTT/OGTT 10-sample schedule 
(0,10,20,30,60,90,120,150,180,240 min) but 8-samples  (without 150 and 240 min) 
still provide accurate results in subjects without diabetes at the individual level. If 
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indices only in large population studies are needed, a 7-sample schedule can be 
used in subjects without diabetes and with prediabetes [41].  
Table 1 summarizes the parameters of the oral minimal method. 
 
3.1 The Glucose Minimal Model 
 
The glucose minimal model is shown in Figure 2 (upper panel). The gastrointestinal 
tract is the new element with respect to the IVGTT minimal model. Given the 
smoother oral vs IVGTT time course of plasma glucose and insulin, a single 
compartment model describes accurately glucose kinetics (while a two 
compartment model is needed to describe IVGTT in their integrity [38][42]). 
Denoting by Q the plasma glucose mass, Rd the rate of plasma glucose 
disappearance, Ra the rate of glucose appearance in plasma from the oral input and 
NHGB the net hepatic glucose balance, the model and the measurement equations 
are: 
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where SG is fractional (i.e., per unit distribution volume) glucose effectiveness 
measuring glucose ability per se to promote glucose disposal and inhibit NHGB, I 
plasma insulin concentration, X insulin action on glucose disposal and production, 
with p2 and p3 rate constants describing its dynamics and magnitude. Ra is described 
as a piecewise-linear function with known break-point ti and unknown amplitude 
αi: 
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 (dl/kg/min per µU/ml)                                                             (4) 

A piecewise linear description for Ra with 8 parameters is sufficiently flexible to 
accommodate MTT/OGTT data. The input is plasma insulin with plasma glucose 
the output to be fitted by the model. Parameters α render the model not a priori 
uniquely identifiable because V is non-identifiable and SG is non-uniquely 
identifiable. Thus, V and SG are usually fixed to population values. To improve 
numerical identifiability, a Maximum a Posteriori Bayesian estimator is used by 
exploiting some prior on p2 and a constraint on Ra, related to the total amount of 
glucose appearing in the circulation. SI is precisely estimated with good precision 
and has been validated in a multiple tracer meal protocol [44] and in an OGTT vs 
euglycemic glucose clamp study [45] showing a correlation of 0.86 and 0.81, 
respectively. MTT SI has been correlated with IVGTT SI in the same subjects with 
correlation of 0.74. MTT SI was also compared with OGTT SI in 62 subjects [46] 
with a correlation of r=0.75, but SI was significantly lower in MTT than OGTT. 

Inter-subject variability of MTT SI in healthy individuals is comparable to that 
of the IVGTT index [47], in particular its reproducibility  (expressed as percent 
mean difference and coefficient of variation) were on average 8% and 23%, 
respectively.  
 
 
3.2 The C-peptide Minimal Model 
 
The model is shown in Figure 2 (middle panel): plasma C-peptide concentration is 
the output with glucose concentration as the input [48].  
The model is described by: 
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that reaches the cell membrane and can be released), and c1 is above basal C-peptide 
plasma concentration. ISR is made up of two components: one proportional, 
through parameter kG, to glucose rate of change (dG/dt), and one representing 
insulin release that, after a delay T, occurs proportionally to plasma glucose level 
above a threshold, h, through parameter β. The two components are termed 
dynamic, Φd (=kG), and static, Φs (=β), responsivity indices. A single total 
responsivity index, Φ, which combines Φd and Φs, is often useful. The model is both 
a priori and numerically uniquely identifiable once C-peptide kinetic parameters 
(k01, k12 and k21) are fixed using the population model [25]. The picture is markedly 
different from that of the IVGTT, where the incretin effect is absent and the glucose 
signal is very different, with the derivative component only contributing during the 
first 2-3 minutes and the proportional component for the rest of test. This explains 
the fact that dynamic Φd and static Φs during an MTT are 250% greater than 1st 
phase, Φ1, and 2nd phase, Φ2, IVGTT indices in the same 204 individuals [40].  

Dynamic, Φd, and static, Φs, during an oral glucose challenge and IVGTT 1st, Φ1, 
and 2nd, Φ2, phase indices bear some relation (r=0.52 for both indices), but  they are 
likely determined by different cellular events.  

MTT beta-cell responsivity indices were also compared with their OGTT 
counterparts in 62 subjects [46] with good correlation, r=0.71 for Φd, r=0.73 for Φs, 
r=0.74 for Φ, but the indices were significantly higher in MTT than OGTT.  
It is an accepted notion that beta-cell function needs to be interpreted in light of the 
prevailing insulin sensitivity. One possibility is to resort to the disposition index 
(DI) paradigm, first introduced in 1981 [34], and recently revisited [47][49], where 
beta-cell function is multiplied by insulin sensitivity. This concept is clearly 
illustrated in Figure 3 (left panel). It is postulated that glucose tolerance of an 
individual is related to the product of beta-cell function and insulin sensitivity. In 
essence, different values of tolerance are represented by different hyperbolas, i.e. 
DI = beta-cell function x insulin sensitivity = const. The DI was first introduced for 
IVGTT and has been extended to MTT/OGTT. Thus, disposition indices can be 
calculated by multiplying responsivity indices Φd, Φs , Φ by SI to determine if  the 
first phase, second phase and total beta-cell function are appropriate in light of the 
prevailing insulin sensitivity. For instance, while SI was found to be significantly 
lower in MTT than OGTT and Φ significantly higher in MTT than OGTT, DI was 
the same, making it a good marker of glucose tolerance [46]. The DI can also  
monitor in time the individual components of tolerance and assess different 
therapies (Figure 3, right panel). 
However, the glucose-insulin feedback system is more complex than the simple 
hyperbola paradigm, i.e. a more general DI could be DI = beta-cell function ×  
(insulin sensitivity) α = constant, where insulin sensitivity is raised 
 to α. In addition, this simple concept hides several methodological issues 
addressed in [49], which, unless fully appreciated, could lead to errors in 
interpretation.  

MTT Φd and Φs reproducibility was assessed in [47]:  percent mean difference 
was 1% and 7% and coefficient of variation was 31% and 18%, respectively.  
An important addition to the MTT/OGTT parametric portrait is an index 
quantifying the effect of Glucagon-Like Peptide-1 (GLP-1) - a surrogate for the 
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incretin effect [50]- on insulin secretion [51]. This extension of the model 
accounting for the effect of exogenous GLP-1 infusion on insulin secretion was 
developed in [52]. In particular, the model [52] assumed that the above basal insulin 
secretion rate, ΔSR, is linearly modulated by GLP-1, through the GLP-1 sensitivity 
index π (% per pmol/l): 
 
          (6) 

where GLP1(t) is the above basal intact hormone concentration. 
 π quantifies the ability of GLP-1 to enhance the over-basal insulin secretion, and is 
defined as the ratio between the average percent increase in over-basal insulin 
secretion and average GLP-1 plasma concentration.  
 
3.3 The Insulin & C-peptide Minimal Model 
 
Minimal models can also assess hepatic insulin extraction (Figure 2, bottom panel). 
Insulin secretion, ISR, can be assessed from the C-peptide model. Similarly, post-
hepatic insulin delivery, IDR, can be assessed by employing an insulin model. In 
[53] an insulin population model (along the line of [25]), allows to calculate insulin 
kinetic parameters from subject anthropometric characteristic in a population of 
subjects without diabetes. The model allows to reconstruct IDR. From ISR and 
IDR, both the time course of hepatic insulin extraction and an index numerically 
quantifying hepatic insulin extraction can be calculated: 
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with T duration of the experiment. 
The importance of adding HE to SI and Φ for obtaining a more complete parametric 
portrait has been shown in several studies, e.g. [54][55]. 
 
3.4 Models at work in diabetes   
 
The battery of oral glucose, C-peptide and insulin models have been used to study 
the effect of age and gender on glucose metabolism [40]; the effect of anti-aging 
drugs [54]; the influence of ethnicity [55][56]; insulin sensitivity and beta-cell 
function in people without diabetes [57] and obese [58][59] adolescents, and 
children [59]; the pathogenesis of prediabetes [46][60][61] and type 2 diabetes 
[36][62]; the diurnal pattern of insulin action and secretion in healthy [63] and type 
1 diabetes [64]; the mechanism of insulin resistance in pregnancy [65]; the effect 
of DPP4 inhibitors on insulin secretion [66]; the effect of a bile acid sequestrant 
[67]; caloric restriction [68][69]; vagal nerve blockade [70];  genetic variation 
[71][72][73]; biliopancreatic diversion [74][75]; Roux-en-Y gastric bypass 

[ ]1GLP1(t)ΔSR(t)(t)ΔSRGLP1 +⋅⋅= π
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[76][77]; circadian misalignement [78][79]; oxytocin [80], and antidiabetic drugs 
[81] on insulin secretion and action.  
 

4. INSULIN ACTION DISSECTED BY TRACER MODELING INTO 
PERIPHERY AND LIVER 

For reader convenience/information, most of the material reported in this section is 
taken from our review [35] and a chapter of [82]. 
If the oral glucose load is labelled with a glucose tracer (t), the exogenous glucose 
(Gexo), i.e. the glucose concentration due to meal/OGTT only, can be calculate as: 
 ������� = ���� ∙ 
1 + 
��������    (9) 

 
where TTRmeal is the tracer-to-tracee ratio in the meal/OGTT. 
The endogenous glucose (Gend) can then be derived as Gend = G- Gexo , with G being 
the total glucose in plasma. In other words adding a tracer to the MTT/OGTT allows 
total glucose concentration to be segregated into its exogenous and endogenous 
components. 
 
4.1 Disposal Insulin Sensitivity  
Gexo measured in plasma is the result of the glucose rate of appearance coming from 
the MTT/OGTT, Ra, and the rate of glucose disposal, Rd (Figure 4). Thus, by fitting 
the model detailed in [83] on Gexo and insulin one can estimate both Ra and disposal 
insulin sensitivity SID, i.e. the ability of insulin to enhance glucose utilization. 
The model equations are: 
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where SG
D is fractional glucose effectiveness measuring glucose ability per se to 

promote glucose disposal, XD insulin action on glucose disposal, with p2
D

 and p3
D 

rate constants describing respectively its dynamics and magnitude. Disposal insulin 
sensitivity is defined as:  

3

2

D
D
I D

p
S V

p
= ⋅   (dl/kg/min per µU/ml)                                                                                     (11) 

Ra is that already described for OMM (eq. 3). 
 
The model has been validated first by comparing estimated Ra with a model-
independent profile estimated with a multiple tracer experiment (Raref, see Section 
7.2.2) and SI

D both with the same index obtained with the hot IVGTT minimal 
model [84] fed with the model-independent Raref [83] and with the disposal insulin 
sensitivity derived from labelled clamp [45]. Correlation between SID with disposal 
insulin sensitivity measured with the tracer enhanced euglycemic-hyperinsulinemic 
clamp technique was r=0.70 [45]. 
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4.2 Liver insulin sensitivity 
Theoretically, by using the unlabelled and labelled models to measure, respectively, 
total (i.e. periphery +liver) and peripheral indices, one should be able to calculate 
liver indices from the difference between the two.  
However, liver indices derived in this way are often unreliable (negative). This was 
found also during an IVGTT using the classic minimal model [38][84][85][86]. 
Caumo et al. [38] suggested that these inconsistencies were to an inaccurate 
description of glucose and insulin effect on EGP. In fact, both the IVGTT and the 
oral minimal models assume that insulin action on the liver has the same time 
course of insulin action on glucose disposal. Moreover, EGP suppression includes 
a term linearly dependent on glucose and a term equal to the product of glucose 
concentration and insulin action, i.e. insulin action on the liver is glucose-mediated. 
The minimal model EGP and alternative EGP descriptions have been assessed 
against virtually model-independent EGP profiles [87][88] and liver insulin 
sensitivity (SI

L) and glucose effectiveness (GEL) were estimated. 
According to [88], EGP can be described as: 
 

[ ] b
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where EGPb is basal endogenous glucose production, kG is liver glucose 
effectiveness. 
XL is liver insulin action, defined as: 
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with k1 accounting for the delay of liver insulin action vs plasma insulin, and k2 a 
parameter governing its efficacy. XDer is a surrogate of portal insulin, which 
anticipates insulin and glucose patterns, and was demonstrated to significantly 
improve model ability to fit the rapid suppression of EGP occurring immediately 
after a meal: 
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where kGR is a parameter governing the magnitude of glucose derivative control. 
An index of liver insulin sensitivity (SI

L) can be derived from model parameters as 
follows: 
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∂
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where the symbol |ss indicates that the derivative of EGP is calculated in steady 
state. 
The model has been first assessed in healthy subjects [88]. Then, it was validated 
by comparing SI

L with liver insulin sensitivity measured with a tracer enhanced 
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euglycemic-hyperinsulinemic clamp (SI
Lclamp) in subjects with different degrees of 

glucose tolerance [89]. SI
Lclamp is derived from total and peripheral indices as: 

clamp
I

clamp
I

clampL
I SSS  *  −=      (16) 

Correlation between SI
Lclamp and SI

L was good (r=0.72, p<0.0001), with SI
Lmeal being 

lower than SI
Lclamp (4.60±0.64 vs 8.73±1.07 10-4 dl/kg/min per μU/ml, p<0.01). It is 

noteworthy that the correlation improved to 0.80, p<0.001 in normal fasting glucose 
subjects, while it was lower in impaired fasting glucose subjects (r=0.56, p=0.11, 
likely due to the limited sample size). 

 

4.3 The Single Tracer Oral Minimal Model  

The new model describing EGP suppression after a meal has been incorporated  
into the oral glucose minimal model to see if   SI

L could be obtained from plasma 
concentrations measured after a single-tracer meal by describing both glucose 
production, P, and disposal, D (OMMPD) [90]. 

Triple-tracer meal data of two databases (20 healthy and 60 subjects without 
diabetes and with prediabetes) were used in which a virtually model-independent 
EGP estimate was available (see Section 7.2.2). OMMPD was identified on 
exogenous and endogenous glucose concentrations, providing indices of SIL, SI

D 
and EGP time course. 
The estimated SIL well compared with that derived directly from EGP data [88]. 
Since the model is not able to assess basal EGP (EGPb), only the ratio (EGP/EGPb) 
can be estimated together with SI

Land  SID. 

 

5. MULTISCALE GLUCOSE TRACER MODELING: INSULIN 
ACTION on SKELETAL MUSCLE PROCESSES 

For reader convenience/information, most of the material reported in this section is 
taken from our review [1]. 

While whole-body models can provide important quantitative information on 
insulin action, it is important but at the same time remarkably difficult, to 
noninvasively measure the effect of insulin on   glucose transport and metabolism 
at the organ level. A crucial target tissue of glucose metabolism is the skeletal 
muscle. Impaired insulin action in muscle is a well-recognized characteristic of a 
number of metabolic diseases, including type 2 diabetes, obesity, hypertension, and 
cardiovascular disease. Understanding its causes requires to segregate and quantify 
in situ the major individual steps of glucose processing, particularly those of 
glucose delivery, transport in and out of the cell, and phosphorylation (Figure 5). 

The classical experimental approach is based on the multiple tracer dilution [91] 
[91], which consists of the simultaneous injection, upstream of the organ, of more 
than one tracer to allow the separate monitoring of the individual steps of glucose 
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metabolism. In the 2000s, the positron emission tomography (PET) noninvasive 
imaging technique was proposed which can provide highly specific and rich 
biochemical information if applied in dynamic mode, i.e., sequential tissue images 
acquired following a bolus injection of tracer. 

Multiple tracer dilution data can be interpreted with both linear distributed 
parameter (see reviews [16] and  [92]) and compartmental organ models [93]. The 
only application to glucose metabolism of distributed parameter models has been 
in an isolated and perfused heart [91]. In contrast, compartmental organ models 
have been more intensively applied to interpret multiple tracer dilution data in the 
human skeletal muscle. A compartmental model has been proposed [94][95] 
describing the transmembrane transport of glucose, i.e. into and out of the cell. This 
model has been extended [96] to describe the kinetics of a third tracer, permeant 
nonmetabolizable, thus allowing to quantify not only the rate constants of transport 
and phosphorylation, but also the bidirectional glucose flux through the cell 
membrane, the phosphorylation flux, and the intracellular concentration, in subjects 
with and without diabetes and obese [97][98]. This allowed to show that insulin 
control on both transmembrane transport and phosphorylation flux in subjects with 
diabetes is much less efficient with respect to subjects without diabetes.  

PET data can be analyzed by regional compartmental modeling. The brain glucose 
model by Sokoloff et al. [99] has been a landmark. The selected tracer for studying 
glucose metabolism in skeletal muscle (but also in the brain and myocardium) is 
[18F] fluorodeoxyglucose ([18F]FDG), a glucose analog. The ideal tracer would be 
[11C –glucose], but the interpretative model by having to account for all metabolic 
products along the glycolysis and glycogenosynthesis pathways cannot be resolved. 
The advantage of [18F]FDG is that a simpler model can be adopted. In fact, 
[18F]FDG once in the tissue, similarly to glucose, can either be transported back to 
plasma or can be phosphorilated to [18F]FDG-6-phosphate, [18F]FDG-6-P. The 
advantage is that [18F]FDG-6-P is trapped in the tissue and released very slowly. In 
other words, [18F]FDG-6-P cannot be metabolized further, while glucose-6-P does 
so along the glycolysis and glycogenosynthesis pathways. The major disadvantage 
of [18F]FDG is the necessity to correct for the differences in transport and 
phosphorylation between the analog [18F]FDG and glucose. A correction factor 
called lumped constant (LC) can be employed to convert [18F]FDG fractional 
uptake (but not the [18F]FDG transport rate parameters) to that of glucose. LC 
values in human skeletal muscle are available [100][101]. The interpretative model 
is a four-compartment model (plasma, extracellular, tissue [18F]FDG, and 
[18F]FDG-6-phosfate) with five rate constants [102]. The model (Figure 6) is 
described by: 
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 ( ) )t(CV)t(C)t(C)t(C)V1()t(C bbmecb +++−=      
  

where Cp is [18F]FDG plasma arterial concentration, Cc is extracellular 
concentration of [18F]FDG normalized to tissue volume, Ce [18F]FDG is tissue 
concentration, Cm [18F]FDG-6-P is tissue concentration, C total 18F is activity 
concentration in the ROI, K1  [ml/ml/min] and k2 [min-1] are the exchanges  between 
plasma and extracellular space, k3 [min-1] & k4 [min-1] are the rates of transport in 
and out of cell, and k5 [min-1] is the rate of phophorylation. Vb is the fractional 
blood volume in the region of interest, and Cb is the whole blood tracer 
concentration. From the model one can calculate the fractional uptake of [18F]FDG, 
K [ml/ml/min]: 
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=                 (18) 

and, by using LC value and the glucose basal plasma concentration value, the 
glucose fractional uptake.  . 

To move from FDG to glucose, a multi-tracer PET method is needed [103], which 
allows the simultaneous assessment of blood flow, glucose transport, and 
phosphorylation in the skeletal muscle. The method employs three different PET 
tracers (Figure 7) injected at different times, and allows to quantify blood flow from 
[15O]H2O images  with one- compartment two-rate constant model; glucose 
transport from [11C]3-OMG images with a three compartment four-rate constant 
model, and, finally, glucose phosphorylation by combining [18F]FDG fractional 
uptake with [11C]3-OMG rate constants. The [11C]-3-OMG model is a simpler 
version of that of Eqs 17, since [11C]3-OMG is not phosphorylated. This multi-
tracer model has provided important insight on insulin action on muscle unit 
processes; in particular, it was shown that: glucose transport from plasma into 
interstitial space is not affected by insulin; insulin significantly increases both 
glucose transport and phosphorylation; predominately oxidative muscles (soleus) 
have higher perfusion and higher capacity for glucose phosphorylation than less 
oxidative muscles (tibialis).  

 

6. MULTISCALE INSULIN MODELING: INSIGHT into SECRETORY  
CELLULAR EVENTS 

For reader convenience/information, most of the material reported in this section is 
taken from our review [2]. 
The models of beta-cell function provide a quantitative assessment of beta-cell 
function at the whole-body level. To gain a mechanistic insight into the cellular 
phenomena responsible for insulin secretion, one has to move down in the 
hierarchical system structure. 
The starting point is the landmark model by Grodsky [32] (Figure 8, left panel), 
briefly described in Section 2, and updates of this model based on data of cell-to-
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cell heterogeneity with respect to their activation threshold [104] and Ca2+ imaging 
experiments [105][106]. This new subcellular model [107] describes the dynamics 
of granule pools in the entire pancreatic population of beta-cells (Figure 8, right 
panel). Granules mobilize from a reserve pool to a pool of "docked" granules at the 
plasma membrane. The granules can mature further (priming) to gain release 
competence and enter the “readily releasable pool” (RRP). Calcium influx then 
triggers exocytosis and insulin release from the RRP. RRP is heterogeneous, i.e. 
only granules residing in cells with a threshold for calcium activity below the 
ambient glucose concentration are allowed to fuse. Thanks to RRP heterogeneity, 
the model can describe all the classical glucose stimuli, including staircase glucose 
infusion protocol.  
Using multiscale modeling the relation between the beta-cell function minimal 
model indices and the subcellular events described in the mechanistic model have 
been investigated [108]. Both the oral and the IVGTT minimal secretion models 
can be interpreted in the light of this cellular model. The analysis revealed that the 
first-phase IVGTT  and the dynamic oral secretion both reflect the amount of readily 
releasable insulin, but also that the dynamic secretion is shaped by the threshold 
distribution for cell activation as well as the dynamics of mobilization and docking. 
Second phase IVGTT and static oral secretion reflect a combination of 
mobilization, docking, priming and recruitment of new cells. A first attempt to a 
better understanding of the mechanistic effects of incretins was done in [109] by 
including GLP-1 in the oral minimal model.  
 

7. A FLUX PORTRAIT OF THE GLUCOSE SYSTEM:  TRACERS  to  
MEASURE SIMPLE and COMPLEX CARBOHYDRATE 
POSTPRANDIAL METABOLISM 

Measuring the postprandial glucose turnover is not easy [110]. At variance with the 
fasting state, after a meal, glucose concentration is not in steady state and is the 
results of  Rameal, EGP, and Rd pattern.  

The first attempt to solve this difficult task was that of Steele et al. [111]. They 
proposed to label the ingested glucose with one glucose tracer and intravenously 
infusing a second tracer at a constant rate. Unfortunately, subsequent studies have 
shown that although this approach is technically simple, the marked changes in 
plasma tracer-to-tracee ratio, if stable tracers are used, or specific activity, if a 
radioactive tracer is used, introduce a substantial error in the calculation of Rameal, 
EGP, and Rd, thereby leading to incorrect and at times misleading results [112]. 
This is due to the so called nonsteady state error, which is very pronounced after a 
meal perturbation if the tracer is infused constantly. To minimize such error, Basu 
and coworkers have proposed a more complex experimental technique called the 
triple tracer method, presented later in this paragraph, which implements the so 
called tracer-to-tracee clamp technique [87]. 

The theory behind the two techniques is described in detail below. 

When the system is in steady state, the rate of glucose entering the circulation (Ra) 
equals the rate of glucose leaving the system (Rd). If one starts to infuse the glucose 
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tracer at a constant rate (INF), after a while, also the tracer will be in steady state, 
and so is also the tracer (g) to tracee (G) ratio (TTR=g/G).   

It can easily been shown that one has:  

 �� =  �� = ������� ��� =  ������                             (19) 

        

In other words, the estimate of Ra and Rd is model-independent.  

In case of food ingestion, the estimation of Ra and Rd becomes more difficult.  First, 
Ra and Rd are no longer equal and both are changing over time, resulting in a 
nonconstant TTR. In addition, Ra now equals the sum of Rameal and EGP, which are 
also changing with time [110]. 

In this case, one needs to specify both the structure (one compartment, two 
compartment, multi-compartment…) and which parameters are time-varying and 
these choices have an impact on the glucose fluxes estimate. 

For the glucose system the most popular assumptions are that the model is a one- 
[111] or a two-compartment [19] model and that the time-varying parameter is the 
fractional clearance rate, since it is known that it is controlled by insulin 
concentration, which is likely to vary after a meal. 

 

7.1 The intravenous glucose infusion case 

For sake of simplicity, let first consider the simpler case of exogenous glucose 
intravenous infusion (GIR), instead of a meal, so that GIR is known and only EGP 
and Rd have to be estimated. In other words, one will estimate 
Ra(t)=GIR(t)+EGP(t) and then calculate EGP(t) by subtracting the known GIR(t) 
from the estimated Ra(t). Rd(t) will be then calculated from the model using the 
mass balance equation. Let also start with a single compartment description with 
time-varying fractional clearance rate (k(t)) proposed by Steele et al [111]. 

Given that the system is not in steady state, the model of the tracee is: 

 

!"# ��� = ����� − ����� = ����� − %���"���           "�0� = "�� = ��� ���� = '�(��                                                                                                               (20) 

 

Thanks to the tracer-to-tracee indistinguishability principle, one has: 

 

)*# ��� = +,- − .���� = +,- − %���*���            *�0� = 0/��� = 0�(��                                                                                          (21) 
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The fractional clearance rate k(t) is derived from equation 21: 

 %��� = ���0�(� − 0# �(�0�(�        (22) 

 

By substituting k(t) of eq 22 into eq. 20 and rearranging it, one obtains: 

 ����� = �������(� − 0�(�����(� ∙ 1����(�1( = �������(� − ��(�����(�  ∙ 1����(�1(   (23) 

 

where we have used the relationship 22���� = ��(�3�(� = 0�(�'�(�. 
 

Steele et al. [113] realized that TTR measured in the plasma does not represent that 
in the liver, interstitial fluid, and other compartments. To circumvent this problem, 
they used a nonhomogenous compartment model and assumed that the “effective” 
volume was only a fraction of the total body volume of distribution of glucose V, 
indicated as pV, with p ranging from 0.5 to 0.8 [114][115][116]: 

 ����� = �������(� − ��(�����(� 4 ∙ 1����(�1(       (24) 

 

EGP and Rd are then calculated as: 

 5�6��� = ����� − �+����       (25) 

 ����� = ����� − "# ��� = ����� − 4 �# ���     (26) 

 

On the other hand, if one assumes that the system is described by a two 
compartment model and that only k01(t) is a time-varying  parameter [19], one has:  
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and the tracer model is: 

 

B *
# ��� = +,- − ;%<
��� + %=
>*
��� + %
=*=���          *
�0� = 0*=# ��� = %=
*
��� − %
=*=���                                             *=�0� = 0/��� = 0A�(��                                                                                                       (28) 

 

Paralleling what done for Steele et al model, if one derives k01(t) from eq 28  and 
substitute it into 27, one obtains: 

 

����� = �������(� − ��(�����(�  ∙ 1����(�1( + %=
 C 0@�(�����(� − "=���D   (29) 

 

where  22���� = ��(�3�(� = 0A�(�'A�(�. 
 

EGP is then calculated as in eq. 25, while Rd, according to the two-compartment 
model, is: 

 ����� = ����� − "# ��� = ����� − 4 �# ��� − %=
���� + %
="=��� (30) 

    

By comparing eqs 24 and 29, it is evident that the estimate of Ra(t) is model-
dependent and so are EGP(t) and Rd(t). One can argue that the accuracy of the flux 
estimate can be improved by postulating increasingly complex models (e.g., those 
that account for differences in the rates of equilibration of glucose and onset of 
action of insulin in the liver, muscle, and various other tissues in people with or 
without diabetes). However, the increased complexity of the model has to be 
balanced against increased difficulty in accurately identifying model parameters. 

Luckily, looking at eqs 24 and 29, it is also clear that the closer is TTR(t) to a 
constant (clamped TTR) the smaller are the second term in eq 24 and the second 
and third terms in eq. 29. Therefore, the maintenance of TTR in steady state by an 
appropriate tracer experiment design enables a quasi model-independent 
measurement of Ra(t), EGP(t), and Rd(t). 

The question now become: is there a smart way to infuse the tracer so that TTR 
becomes virtually constant?  

The answer is yes: since TTR is the ratio between the infused tracer and the total 
glucose concentration, the better way to clamp TTR is to infuse the tracer by 
mimicking the expected pattern of Ra(t), i.e. constantly infusing the tracer before 
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the exogenous infusion starts, following the expected pattern EGP thereafter, and 
labeling GIR. 

 

7.2 The mixed meal (MTT) and the oral glucose (OGTT) tolerance test. 

In the case of an unknown exogenous input, e.g. during an MTT or an OGTT, one 
needs at least one tracer mixed with the meal (oral load) to segregate exogenous 
from endogenous glucose in plasma and another tracer to be  infused intravenously 
to calculate k(t), in case of Steele et al. [111] model, or k01(t) in case of Radziuk 
[19] model. This minimal configuration is called the dual tracer method. 

 

7.2.1 The dual tracer method 

Let’s call tracer1 (t1) the tracer mixed in the meal, with a TTR in the meal equal to 
TTRmeal, and tracer2 (t2) the tracer infused intravenously with a constant rate (Figure 
9, left panel). 

Exogenous glucose (Gexo), both labeled and unlabeled, can be derived from t1 
concentration and TTRmeal: 

 ������� = �
��� ∙ 
1 + 
��������      (31) 

Endogenous glucose (Gend) is derived by subtracting exogenous and i.v. infused 
tracer concentration (in case of a stable isotope) from total glucose (G): 

 ��E1��� = ���� − ������� − �=���      (32) 

 

Let now define  22������� = (@�(�3�FG�(�  and  22��E1��� = (@�(�3�HI�(�, then meal rate of 

appearance Rameal and EGP can be derived with Steele equation as: 

 ��J�KL��� = ����(�����FG�(� − 4 (@�(�����FG�(� ∙ 1����FG�(�1(     (33) 

 5�6��� = ����(�����HI�(� − 4 (@�(�����HI�(� ∙ 1����HI�(�1(     (34) 

 

or with Radziuk equation as: 

 ��J�KL��� = ����(�����FG�(� − 4 (@�(�����FG�(� ∙ 1����FG�(�1( + %=
 
 0@�(�����FG�(� − "=����  (35) 
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 5�6��� = ����(�����HI�(� − 4 (@�(�����HI�(� ∙ 1����HI�(�1( + %=
 
 0@�(�����HI�(� − "=���� (36) 

 

It is intuitive, but it has also be proven experimentally Errore. L'origine 
riferimento non è stata trovata., that it is impossible to clamp both TTRexo and 
TTRend, since Rameal(t) is expected to first increase and than decrease, while EGP(t) 
is expected to first decrease and then increase. 

 

7.2.2 The triple tracer method 

The triple tracer method [87]Errore. L'origine riferimento non è stata 
trovata.implements the TTR clamp technique to keep the appropriate plasma TTRs 
constant following glucose ingestion [112]. However, instead of infusing labeled 
glucose at a constant rate, it varies the intravenous infusion rates of two different 
tracers in a manner that mimics the anticipated Rameal and EGP (Figure 9, right 
panel), so that the changes in the plasma TTRs are minimized (Figure 10).  

Briefly, let’s call tracer1 (t1) the tracer mixed in the meal, with a TTR in the meal 
equal to TTRmeal, tracer2 (t2) the tracer infused intravenously to mimic the expected 
pattern of EGP and tracer3 (t3) the tracer infused intravenously to mimic the 
expected pattern of Rameal. 

Exogenous glucose (Gexo), both labeled and unlabeled, can be derived from t1 
concentration and TTRmeal as reported in eq 31. 

Endogenous glucose (Gend) is derived by subtracting exogenous and the i.v. infused 
tracers concentration (in case both are stable isotopes) from total glucose (G): 

 ��E1��� = ���� − ������� − �=��� − �M���     (37) 

 

Let’s now define two TTRs: 22������� = (N�(�3�FG�(�  and  22��E1��� = (@�(�3�HI�(�.  
EGP can be derived with equations 34 or 36, while Rameal  is calculated as: 

 ��J�KL��� = ����(�����FG�(� − 4 (N�(�����FG�(� ∙ 1����FG�(�1(     (38) 

 

or, with Radziuk equation, as: 

 ��J�KL��� = ����(�����FG�(� − 4 (N�(�����FG�(� ∙ 1����FG�(�1( + %=
 
 0@�(�����FG�(� − "=����  (38) 
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It is worth noting that this method requires a priori knowledge of the temporal 
pattern of change of Rameal and EGP. Such knowledge can be relatively easily 
gained by conducting a few pilot studies and modifying tracer infusion rate (if 
necessary), so as to minimize the change in plasma TTRs.  

 
The triple tracer method has been presented in [87], and successfully used to assess 
glucose turnover in elderly vs young subjects and men vs women [40], in untreated 
[62] and treated  type 2 diabetes [36], to assess circadian variation in glucose both 
in healthy [63] and type 1 diabetes [64]. In all these studies, the oral load consisted 
of a mixed meal (a jello containing dextrose, proteins and fats) labeled with the 
stable isotope [1-13C]-glucose and the intravenously infused tracers were the stable 
isotope [6,6-2H2]-glucose and the radioactive [6-3H]-glucose. The use of the tritium 
as third tracer simplified the preelaboration of the data, since specific activity can 
be directly used instead of TTR in the above equations. However, the use of 
radioactive tracer is not allowed in children and adolescents, thus, the methodology 
was successfully implemented in adolescents using three stable isotopes ([6,6-2H2]-
glucose orally administered with an OGTT, [1-13C]-glucose i.v. infused to mimic 
Rameal and [U-13C6]-glucose i.v. infused to mimic EGP) [118]. 
Recently, the triple tracer technique was extended to assess glucose turnover after 
meals containing complex, instead of simple, carbohydrates [119]. The natural 
enrichment of [13C]polysaccharide in some commercially available grains (e.g. 
Madagascar pink rice and sorghum) was exploited to trace the meal, while [6,6-
2H2]-glucose and the [6-3H]-glucose were intravenously infused in healthy 
volunteers. As expected, both Rameal, EGP and Rd significantly differed between 
complex and simple carbohydrate containing meals, highlighting that the use of the 
simple carbohydrate glucose as the carbohydrate source in triple tracer studies may 
limit the translational applicability of the results since every day’s life meals 
typically contain complex carbohydrates. 

 

8. MAXIMAL MODELS FOR IN SILICO TRIALS: THE UVA/PADOVA 
TYPE 1 AND THE PADOVA TYPE 2 SIMULATORS  

For reader convenience/information, part of the material reported in this section is 
taken from [120] and [121]. 

 
In Silico Clinical Trials (ISCT) are defined as “The use of individualized computer 
simulation in the development or regulatory evaluation of a medicinal product, 
medical device, or medical intervention” [120]. The keyword is “individualized”. 
The idea is to recreate the concept of in vivo trial using an in silico approach, where 
a large number of individual patients is modeled by initializing a 
disease/intervention model with quantitative information either measured on an 
individual (subject-specific model), or sampled from population distributions of 
those values (population-specific model). As discussed in [120], realistic ISCTs 
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necessitate the availability of a cohort of in silico subjects spanning the variability 
observed in the study population, i.e. an average model is useless. 
After years of rejection, some regulators are now beginning to consider a possible 
role for computer modeling and simulation in the certification process for 
biomedical products. The United States Food and Drug Administration (US-FDA) 
is leading this trend, worldwide [120]. 
Of course, all this is driven by the growing capability of simulation technologies to 
accurately simulate complex physiological processes, such as the progression of a 
disease, the effect of interventions on such progression, and in some cases the 
manifestation of side effects and complications due to these interventions. This 
relies on significant pre-competitive research investments done in the last 10 years 
in the area of physiological modelling [120]. 
The general approach to establish the credibility of in silico clinical trials revolves 
around the assumption that in vivo studies, whether on animals or on humans are 
the most reliable source of information, and any in silico approach should be 
validated against them. Thus, in the clinical assessment of subject-specific models, 
a group of patients is examined to collect quantitative information required to 
initialize the model, which is then used to predict one or more outcome biomarkers 
for each patient. The same outcome biomarkers are then observed experimentally, 
whether using an invasive technique or after enough time to make the direct 
experimental observation possible [120].  
All this is based on the assumption that in vivo clinical trials work fine, and the 
motivation for replacing them is related to the risk, duration or cost that the trial 
involves, but not to their ability to provide a reliable answer on the safety and/or 
efficacy of a new biomedical product [120]. 
In the field of diabetes research, in silico experiments are of enormous value to 
accelerating technology development since it is often not possible, appropriate, 
convenient, or desirable to perform an experiment on human subjects because it 
cannot be done at all, or it is too difficult, too dangerous, or unethical. In such cases, 
simulation offers an alternative way of experimenting in silico with the system 
[121]. Several simulation models have been published since the 1960s, mostly in 
biomedical engineering journals ([122]-[128]) but their impact in the field has been 
virtually zero. The reason is that all of these models were average models, and, as 
a result, their capabilities were generally limited to predicting a population average 
that would be observed during a clinical trial. However, given the large inter-
individual variability, an average model approach cannot describe realistically the 
variety of individual responses to diabetes treatment. Thus, to enable realistic in 
silico experimentation, it is necessary to have a diabetes simulator equipped with a 
cohort of in silico subjects that spans sufficiently well the observed inter-individual 
variability of key metabolic parameters in the population of people with type 1 
(T1D) and type 2 (T2D) diabetes. 
In particular, in T1D, in silico experiments have been of enormous value to 
accelerate technology development, e.g. subcutaneous glucose sensors, novel 
insulin molecules and the artificial pancreas, thanks to the availability of the U.S. 
Food and Drug Administration (FDA) accepted UVA/Padova T1D simulator 
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[128][130][131], which allows a time- and cost-effective alternative to preclinical 
studies, (e.g. [132]).  

 

8.1 The FDA Accepted  UVA/Padova T1D  Simulator 

The FDA-accepted University of Virginia (UVA)/Padova T1D simulator has had a 
serendipity beginning. In 2006, as part of a NIH program project studying the 
effects of two-year administration of  youth pills in elderly men and women, 
physiological performance, body composition, and bone density were measured in 
204 individuals without diabetes [40][120]. These subjects underwent a triple-
tracer meal protocol (see section 7.2.2) which provided, in addition to plasma 
glucose and insulin concentrations, model-independent estimates of key fluxes of 
the glucose system, including the rate of appearance in plasma of ingested 
carbohydrates, endogenous glucose production, glucose utilization, and insulin 
secretion [40][121]. This rich flux and concentration portrait was key to develop a 
large-scale glucose–insulin model, which was impossible to build from only plasma 
glucose and insulin concentrations. A model including 18 differential equations 
with 42 parameters, 33 of which were free and 9 were derived from steady state 
constraints, was identified in each individual using a Bayesian forcing function 
strategy [133]. From the model parameter estimates of the 204 subjects 
participating in this study, the inter-individual variability was described in a 
population without diabetes. From there, using the joint multivariate probability 
distribution of the model parameters, any number of virtual subjects could be 
generated by random sampling, thereby producing a virtual population. 
Simultaneously with the events above, and thanks to the advent of minimally 
invasive subcutaneous (sc) continuous glucose monitoring (CGM), increasing 
academic, industrial, and political effort has been focused on the development of a 
sc–sc closed-loop control system for diabetes, which is known as the artificial 
pancreas (AP). Generally, the AP uses a CGM coupled with a sc insulin infusion 
pump and a control algorithm directing insulin dosing in real time. 
In September 2006, the Juvenile Diabetes Research Foundation (JDRF), initiated 
the Artificial Pancreas (AP) Project and funded a consortium of university centres 
in the United States and Europe to carry closed-loop control research. At the time, 
the regulatory agencies mandated demonstration of the safety and feasibility of AP 
systems in animals, for example, dogs or pigs, before any testing could begin in 
humans. This approach is well illustrated by two papers showing the use of the 
Medtronic AP system first in 8 dogs [134] and then, later, in 10 people with T1D 
[135]. However, it also became evident that animal studies were slow, not powered 
for variability and costly, and that a simulator of T1D would allow a cost-effective 
pre-clinical testing of AP control strategies by providing direction for subsequent 
clinical research and ruling out ineffective control scenarios. We argued that a 
reliable large-scale simulator would account better for inter-subject variability than 
small-size animal trials and would allow for fast and extensive testing of the limits 
and robustness of AP control algorithms.  
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We therefore set to build a simulation environment based on the data and the 
expertise accumulated at the University of Padova and the University of Virginia, 
two groups that were already collaborating on several aspects of diabetes 
technology. A first necessary modification of the existing model [133] was the 
substitution of endogenous insulin secretion subsystem with an exogenous sc 
insulin delivery, that is, an insulin pump. This required describing insulin 
absorption with a two-compartment model approximating non-monomeric and 
monomeric insulin fractions in the sc space. Given the absence in 2006 of tracer 
studies in T1D similar to those described above for healthy subjects, a more 
difficult task was the description of inter-person variability. 
In order to obtain the joint model parameter distributions in T1D, we introduced 
certain clinically relevant modifications to the models developed in health. The 
resulting T1D simulation model included 13 differential equations and 35 
parameters, 26 of which were free and 9 were derived from steady-state constraints. 
Once the T1D model was built, its validity was tested using number of T1D data 
sets including adults, adolescents, and children. Now the UVA/Padova simulator is 
equipped with 300 virtual subjects: 100 adults, 100 adolescents, and 100 children, 
spanning the variability of the T1D population observed in vivo. In addition, the 
simulator is equipped with models of CGM and insulin pumps. With this 
technology, any meal and insulin delivery scenario can be tested efficiently in 
silico, prior to its clinical application [128]. After extensive testing, in January 
2008, this simulator was accepted by the US FDA as a substitute to animal trials 
for the pre-clinical testing of control strategies in AP studies and has been adopted 
by the JDRF AP Consortium as a primary test bed for new closed-loop control 
algorithms. The simulator was immediately put to its intended use with the in silico 
testing of a new model predictive control (MPC) algorithm, and in April 2008, an 
investigational device exemption (IDE) was granted by the FDA for a closed-loop 
control clinical trial. This IDE was issued solely on the basis of in silico testing of 
the safety and efficacy of AP control algorithm, an event that set a precedent for 
future clinical studies [132]. In brief, to test the validity of the computer simulation 
environment independently from the data used for its development, a number of 
experiments were conducted, aiming to assess the model capability to reflect the 
variety of clinical situations as closely as possible. These experiments included the 
following: 

1. Reproducing the distribution of insulin correction factors in the T1D population 
of children and adults, which tests that the variability in the action of insulin 
administered by control algorithms will reflect the variability in observed insulin 
action; 

2. Reproducing glucose traces in children with T1D observed in clinical trials 
performed by the Diabetes Research in Children Network (DirecNet) consortium; 

3. Reproducing glucose traces of induced moderate hypoglycemia observed in 
adults in clinical trials at the UVA, which provides comprehensive evaluation of 
control algorithms during hypoglycemia. 

Thus, the following paradigm has emerged: (1) in silico modeling could produce 
credible preclinical results that could substitute certain animal trials and (2) in silico 
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testing yields these results in a fraction of the time and the cost required for animal 
trials. This was a paradigm change in the field of T1D research: for the first time, a 
computer model has been accepted by a regulatory agency as a substitute of animal 
trials in the testing of insulin treatments. Since its introduction, this simulator 
enabled an important acceleration of AP studies, with a number of regulatory 
approvals obtained using in silico testing. However, one needs to emphasize that 
good in silico performance of a control algorithm does not guarantee in vivo 
performance; it only helps to test the stability of the algorithm in extreme situations 
and to rule out inefficient scenarios. Thus, computer simulation is only a 
prerequisite to, but not a substitute for, clinical trials. 
Later, new data became available on hypoglycemia and counter-regulation, which 
allowed an update of the in silico model in 2014 [130]. This new version has been 
proven to be valid on single-meal scenarios showing that the simulator was capable 
of well describing glucose variability observed in 24 type 1 diabetes subjects who 
received dinner and breakfast in two occasions (open- and closed-loop), for a total 
of 96 post-prandial glucose profiles [136]. The simulator domain of validity was 
then extended by the introduction of diurnal patterns of insulin sensitivity based on 
data in 19 T1D subjects who underwent a triple-tracer study [64][137](see 
paragraph 3.4). This has allowed the incorporation of a circadian time-varying 
insulin sensitivity into the simulator, thus making this technology suitable for 
running one-day multiple-meal scenarios and enabling a more robust design of AP 
control algorithms [131].  
Finally, another validation of the simulator was done by comparing its predictions 
to data of 47 T1D subjects from 6 clinical centres, who underwent three randomized 
23-h admissions, one open- and two closed-loop. The protocol approximated real 
life with breakfast, lunch and dinner and collected 141 daily traces of glucose and 
insulin concentrations. We used Maximum a Posteriori Bayesian approach, which 
exploited both the information provided by the data and the a priori knowledge on 
model parameters represented by the joint parameter distribution of the simulator. 
Plasma insulin concentration was used as model-forcing function, that is, assumed 
to be known without error. The identification of the simulator on a specific person 
provided an in silico “clone” of this person; thus, the possibility emerged to clone 
a large number of T1D individuals and to move from single- meal to 
breakfast/lunch/dinner scenario, thus accounting for intra-subject variation in 
glucose absorption and insulin sensitivity [138]. This new feature, together with a 
model of dawn phenomenon data has been incorporated in a new version of T1D 
simulator [131]. This version also includes a more realistic model of sc insulin 
delivery, models of both intra-dermal and inhaled insulin pharmacokinetics, and 
new models of error affecting continuous glucose monitoring and self-monitoring 
of blood glucose devices (Figures 11 and 12) .  
Since 2012, the AP studies successfully moved to outpatient free-living 
environment and became longer, with durations of up to several weeks/months 
[139][140][141][142][143][144]. These trials are collecting large amounts of data, 
typically including closed-loop control and an open-loop mode as a comparator. 
The UVA/Padova T1D simulator has been used in a variety of contexts by several 
research groups in academia, by companies active in the field of diabetes pharma 
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and technology and has led to more than one thousand publications in peer reviewed 
journals. Three major application areas which emerged recently are:  

i) new generation of closed-loop control algorithms. In particular, the simulator 
allows to assess individualization strategies, that is, methods for tuning the 
control algorithm to a specific person [145] and, thus making the AP to be 
adaptive, that is, learning from the behaviour in time of a specific person [146] 
[147][148][149][150].   

ii) testing safety and efficacy of a Do-It-Yourself algorithm, specifically an  
AndroidAPS implementation of the OpenAPS algorithm [151]. 

iii) detection of insulin pump malfunctioning to improve safety of an artificial 
pancreas [152]. 

iv)  testing of new insulin molecules (Figure 13), e.g. pramlintide [153][154], 
inhaled technosphere insulin [155], fast [156] and long acting insulin analogues 
[157][158]. 

v) testing glucose sensors. Of particular relevance was the use of the simulator to 
address an important topic of investigation for the diabetes community and 
regulatory agencies: is CGM safe and effective enough to substitute SMBG in 
diabetes management? In silico clinical trials were performed with a patient 
decision-making model ([159]) able to recreate real-life conditions (e.g., 100 
adults and 100 pediatric patients, 3 meals per day with variability in time and 
amount, and meal bolus behaviour) (Figure 14). 

The simulations helped the outcome of an FDA panel meeting [160][161]. 

 

8.2 The Padova T2D Simulator 

Among the almost 500 million people in the world having diabetes, only 10-15% 
has T1D. The vast majority are subjects with type 2 diabetes (T2D). These patients 
are often treated with medications to control their blood glucose levels: some of 
these medications are orally administered (e.g., biguanides, sulfonylureas, 
Dipeptidyl Peptidase 4 inhibitors) [162] some others are given by injection (e.g., 
insulin, amylin analogues, Glucagon-Like Peptide-1 receptor agonists) [163]. 
Testing new treatments or combination of medications is time consuming and 
expensive. Therefore, a simulator to perform ISCT in T2D would be highly 
desirable. Very recently, we have developed a single meal T2D simulator [164] 
using a data base of 51 T2D subjects [36][60][62][165], studied with the triple-
tracer meal technique [40] and following the successful modeling methodology 
employed in the development of the T1D simulator. 
Figure 15.A reports the mean ± standard deviation (SD) of measured plasma 
glucose, insulin and C-peptide concentrations, Rameal, EGP and U in T2D subjects. 
The model scheme describing the glucose-insulin interaction in T2D subjects is 
shown in figure 15.B (we refer to [164] for the complete list of model equations 
and the meaning of the model parameters). 
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Briefly, the model derives from that proposed by Dalla Man and colleagues in 2007 
[133]. Like the original model, this one describes the glucose transit through the 
gastro-intestinal tract, the action of insulin on glucose utilization and endogenous 
production, and the control of glucose on insulin secretion. The glucose subsystem 
is described by a two-compartment model [133]: insulin-independent utilization 
occurs in the first compartment, representing plasma and rapidly equilibrating 
tissues, while insulin-dependent utilization occurs in a remote compartment, 
representing peripheral tissues. At variance with [133], a three-compartment model 
is used to describe insulin kinetics in the liver (Il), in the plasma (Ip), and in 
extravascular space (Iev) [166][167]. A two-compartment model is also added to 
describe C-peptide kinetics [23][25].  
Metabolic fluxes accounted in the model are EGP, Rameal, glucose utilization (U), 
β-cell insulin secretion rate (ISR), and hepatic insulin extraction (HE). EGP 
suppression is assumed to be linearly dependent on plasma glucose, liver insulin, 
and a delayed plasma insulin signal [88]; one of the key model parameters is hepatic 
insulin sensitivity (kp3), which quantifies insulin control on EGP suppression. 
Rameal is described with a three compartment model, two representing the stomach 
(solid and triturated compartments), and one the gut [168]. Glucose utilization, U, 
is made up of two components: insulin-independent utilization (Uii) in the brain 
and erythrocytes is assumed constant, while insulin-dependent utilization (Uid) in 
muscle and adipose tissues depends nonlinearly (Michaelis–Menten) from glucose 
in the tissues [169]; one of the key model parameters is disposal insulin sensitivity 
(Vmx). The model also assumes that, when glucose decreases below its basal value, 
a paradoxical increase in insulin sensitivity occurs, as previously described [130]. 
ISR is assumed to be made of a basal, a dynamic and a static component, and 
modeled as in [48], HE is assumed to be linearly related to plasma glucose 
concentration as in [167].  
The availability of the glucose fluxes in addition to plasma glucose, insulin and C-
peptide concentrations, allowed identifying the model by using a system 
decomposition and forcing function strategy, paralleling what was done in [133]. 
The parameter estimates, obtained from model identification in the 51 T2D 
subjects, were used to build up the joint parameter distribution, which allowed to 
generate a T2D in silico population. 
The model well predicted glucose, insulin, C-peptide, EGP, Rameal and U data of 
T2D subjects and the distributions of some key parameters in T2D vs healthy 
subjects (H) are reported in [164]. 
A population of 100 in silico T2D subjects was generated. Simulated plasma 
glucose, insulin and C-peptide are compared with T2D data [164]. Results show a 
good agreement between simulations and data both in terms of population median 
and variability. 
An interesting peculiarity of the simulator, besides well covering the average 
dynamics, lies in the possibility to evaluate the efficacy of a given treatment in rare, 
but not so rare, subjects, as discussed in a case study in  [164].  
This new T2D simulator has the potential to accelerate the research needed to put 
on the market new antidiabetic drugs. By allowing the evaluation of many treatment 
scenarios in a cost-effective way.  
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The availability of 100 virtual subjects is important, since it allows running in silico 
large-scale trials, as usually occurs in phase II clinical trials. In addition, since 
virtual subjects can undergo the identical experimental scenario several times, one 
can implement an ideal crossover design, where physiological intra-subject 
variability is minimized (and controlled by the investigator).  
Furthermore, the possibility to virtually recruit a subset of subjects with common 
characteristics, as shown in the case study of [164] permits to extensively study 
situations characterized by extreme parameter vectors, sampled from the 
distribution tails. This could possibly be used for optimizing diabetes therapy also 
in such rare pathological conditions.  
The domain of validity of the simulator is currently the single meal scenario. This 
might be a limitation for testing treatments that might have a different effect 
depending on time of administration. For example, long-acting insulin analogues 
might lead to a different glucose profile depending on morning or evening dosing, 
as already observed in T1D [170]. A future model refinement will include the 
description of intra-/inter-day variability of key model parameters, similarly to 
what has been recently done in H and T1D [63][64], thus improving the simulator 
reliability on long-term scenarios. In this regard, an ongoing study in T2D will 
provide important insights on intra- and inter-day variability of insulin sensitivity 
and beta-cell function [171]. 
 
 
CONCLUSIONS 

In this paper we have accompanied the reader to our model-based understanding of 
the glucose system. We have started with a concise historical background to put our 
story in a proper perspective. Focus has been on minimal models and maximal 
models.  

Minimal models provide parametric portraits of the glucose-insulin system from a 
physiological test, either an MTT or and OGTT. In some sense, minimal models 
allow to implement Galileo Galilei’s statement while teaching at our University in 
1592-1610 “...measure what is measurable and make measurable what is not...".The 
key role of tracers to arrive at a more detailed whole-body picture of insulin action 
by segregating disposal and liver insulin sensitivity has been discussed. Powerful 
multi-tracer techniques, i.e. the multiple tracer dilution and the positron emission 
tomography, which allow to arrive at a more intimate picture insulin action on 
skeletal muscle has been emphasized. Finally, multi-scale modeling aiming to 
effectively capture biological interdependencies and interactions among multiple 
scales has been discussed for insulin secretion by relation whole-body indices to 
cellular secretory parameters. 

Maximal models allow to perform in silico studies in life sciences and clinical trials, 
following their successful but easier use in physical and engineering sciences. 
Tracers have also allowed to move from a parametric to a flux portrait, enabling the 
quantitative assessment of postprandial glucose metabolism, and de facto allowing 
to put large scale simulation of Type 1 and Type 2 diabetes on solid data-bases. The 
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FDA accepted UVA/Padova Type 1 simulator was an unprecedented event in the 
biological modeling community and proved to be a very useful tool to safely and 
effectively test in silico artificial pancreas control algorithm, glucose sensors for 
non-adjunctive use and new insulin molecules. 
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Figure Legends  

Figure 1: Top panel: Mixed meal (left) and OGTT(right) plasma glucose (top), 
insulin (middle) and C-peptide (bottom) in the same subject. Bottom panel: 
Partition analysis of the system allows to separately estimate insulin sensitivity, 
beta-cell responsivity and hepatic extraction without the confounding effect of the 
two other parameters.  Relevant input and output signals of the three models are 
shown (adapted from [35]).  

Figure 2: The oral glucose minimal models which allow to estimate insulin 
sensitivity (top panel), beta-cell responsivity (middle panel) and hepatic insulin 
extraction (bottom panel (adapted from [35]).   

Figure 3: Schematic diagram to illustrate the importance of expressing beta-cell 
responsivity in relation to insulin sensitivity is illustrated by using the disposition 
index metric, i.e. the product of beta-cell responsivity times insulin sensitivity is 
assumed to be a constant. Left panel: A normal subject (state I) reacts to impaired 
insulin sensitivity by increasing beta-cell responsivity (state II) while a subject with 
impaired tolerance does not (state 2). In state II beta-cell responsivity is increased 
but the disposition index is unchanged, and normal glucose tolerance is retained 
normal, while in state 2 beta-cell responsivity is normal but not adequate to 
compensate the decreased insulin sensitivity (state 2), and glucose intolerance is 
developed. Right panel: Impaired glucose tolerance can arise due to defects of beta-
cell responsivity and/or defects of insulin sensitivity. In this hypothetical example, 
subject X is intolerant due to her/his poor beta-beta-cell function, while subject Y 
has poor insulin sensitivity.  The ability to dissect the underlying physiological 
defects (insulin sensitivity or beta-cell responsivity) allows to optimize medical 
treatments (adapted from [35]). 

Figure 4: The labeled oral minimal model which allows to estimate disposal insulin 
sensitivity (adapted from [35]). 

Figure 5: Skeletal muscle major glucose processes: diffusion to/from the 
intersitium, active transport in and out of the cell, and phosphorylation/metabolism. 

Figure 6: The 5k model of [18F]FDG in skeletal muscle: Cp is [18F]FDG plasma 
arterial concentration, Cc extracellular concentration of [18F]FDG normalized to 
tissue volume, Ce [18F]FDG tissue concentration, Cm [18F]FDG – 6 – P tissue 
concentration, C total 18F activity concentration in the ROI, K1 [ml/ml/min] and k2 

[min−1] the exchange between plasma and extracellular space, k3 [min−1] and k4 
[min−1] transport in and out of cell, k5 [min−1] phosphorylation. 
 
Figure 7: The three PET tracer protocol to study glucose diffusion through 
capillary membrane, active transport into the cells and metabolism. 

Figure 8: Left panel: Grodsky's [32] model with a large reserve pool and a small 
labile pool of insulin packets with different thresholds. Right panel: The model 
[104] with a pool of docked insulin granules (D), a readily releasable pool (RRP) 
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and a pool of fused granules (F) releasing insulin. The model assumes that beta-
cells have different activation threshold with respect to the glucose concentration 
(G) by distinguishing between RRP granules in active cells (denoted H(G), filled 
circles) and in silent cells (open circles) (adapted from [2] and [104]). 

Figure 9: Scheme of the dual (left) and the triple tracer (right panel) protocol. In 
the dual tracer protocol the first tracer is mixed with the meal and the second one 
is infused intravenously with a constant rate. In the triple tracer protocol the first 
tracer is mixed with the meal, the second one is infused intravenously trying to 
mimic the expected pattern of EGP and the third one is infused intravenously trying 
to mimic the expected pattern of Rameal. 

Figure 10: TTRexo (in dpm/µmol) (upper) and TTRend (in dpm/µmol) (lower panel) 
used in the triple tracer methods in 8 healthy subjects. TTR are in dpm/µmol since 
in this study the i.v. infused tracer is radioactive [117]Errore. L'origine 
riferimento non è stata trovata.. Vertical bars represent standard error (adapted 
from [117]). 

Figure 11: Scheme of latest version of the UVa/Padova T1D simulator, 
incorporating  time-varying parameters describing intraday variability of insulin 
sensitivity and dawn phenomenon. The simulator also includes various insulin 
delivery routes (subcutaneous fast-acting insulin, intradermal and inhaled insulins) 
and  glucose monitoring devices (both CGM and SMBG) (adapted from [131]). 

Figure 12: Simulated plasma glucose (upper) and insulin (lower panels) in the 100 
in silico adults (left), adolescents (middle), and children (right panels) available in 
the UVa/Padova T1D simulator. Subjects underwent a 24-hour scenario with three 
identical meals (60 g of CHO) at 7:00 am, 1:00 pm, 7:00 pm, respectively, and 
received optimal subcutaneous insulin basal and bolus (adapted from [131]). 

Figure 13: The use of the UVa/Padova T1D simulator for testing new molecules: 
once the PK-PD of the molecule under investigation is incorporated in the 
simulator, simulations can be run predicting clinical outcomes, e.g. optimal dosing, 
safety and efficacy. 

Figure 14: Block-scheme representing the T1D patient decision simulator. Arrows 
entering each block are inputs, while arrows exiting are causally-related outputs. 
The input of the simulator is the sequence of meals, while the output is the BG 
concentration profile. The simulator includes parameters describing the patient's 
physiology and therapy. The picture reports representative time courses for meals 
in input and BG in output for a simple scenario in which the patient takes 50 g for 
breakfast at 07:00 am (adapted from [159]). 

Figure 15: Upper panel: average (filled circle) ± standard deviation (SD, shaded 
area) plasma glucose, insulin and C-peptide concentration and estimated 
endogenous glucose production (EGP), glucose rate of appearance (Rameal) and 
glucose utilization (U) in T2D subjects (N=51). Lower panel: scheme of the T2D 
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simulation model. Metabolic fluxes are indicated with continuous lines, while 
control actions are represented by dashed lines. Adapted from [164]. 
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TABLE 1.  Oral Minimal Model Indices   

Beta Cell Responsivity 

Dynamic Component Φd 

(10-9) 

Amount of Dynamic Phase Secreted Insulin per Unit 

Increase of Glucose Concentration 

Static Component Φs 

(10-9min-1) 

Over Basal Average Static Phase Secretion per Unit 

Over Basal Average Glucose Concentration 

Delay T  

(min) 

Delay between Static Phase Secretion and Glucose 

Concentration  

Total Φ (10-9min-1) Overall Responsivity from Φd and Φs 

Insulin Sensitivity 

Insulin Sensitivity SI  

(10-5dl·kg-1· min-1 per pmol·l-1) 

Effect of Insulin to Stimulate Glucose Disposal and 

Inhibit Glucose Production 

Disposal Insulin Sensitivity SI
D 

(10-5dl·kg-1· min-1 per pmol·l-1) 
Effect of Insulin to Stimulate Glucose Disposal  

Liver Insulin Sensitivity SI
L 

(10-5dl·kg-1· min-1 per pmol·l-1) 
Effect of Insulin to Inhibit Glucose Production 

Disposition Indices 

Dynamic Phase Disposition Index DId 

(10-14dl·kg-1·min-1 per pmol·l-1) 
Φd x SI 

Static Phase Disposition Index DIs 

(10-14dl·kg-1·min-1 per pmol·l-1) 
Φs x SI 

Total Disposition Index DI 

(10-14dl·kg-1·min-1 per pmol·l-1) 
Φ x SI 

Hepatic Insulin Extraction 

Hepatic Extraction HE 

        (%) 

Average fractional secreted insulin extracted by the 

liver during the first pass  
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