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Abstract

Several models have been proposed to describdubesg system at whole-body,
organ/tissue and cellular level, designed to measwn-accessible parameters
(minimal models), to simulate system behavior amd in silico clinical trials
(maximal models). Here, we will review the authongrk, by putting it into a
concise historical background.

We will discuss first the parametric portrait prded by theoral minimal models-
building on the classical intravenous glucose tolee test minimal models — to
measure otherwise non-accessible key parametergBklin sensitivity and beta-
cell responsivity from a physiological oral teste tmixed meal or the oral glucose
tolerance tests, and what can be gained by addirsger to the oral glucose dose.
These models were used in various pathophysiolbgicalies, which we will
briefly review. A deeper understanding of insulensitivity can be gained by
measuring insulin action in the skeletal muscleisTequires the use of isotopic
tracers: both the classical multiple-tracer dilntiand the positron emission
tomography techniques are discussed, which quenthia effect of insulin on the
individual steps of glucose metabolism, i.e., lddironal transport plasma-
interstitium, and phosphorylation. Finally, we wpkesent a cellular model of
insulin secretion that, using a multiscale modeliagproach, highlights the
relations between minimal model indices and sublzllsecretory events.

In terms ofmaximal modelswe will move from a parametric to a flux portrait
the system by discussing the triple tracer meatopm implemented with the
tracer-to-tracee clamp technique. This allows tivarat quasi-model independent
measurement of glucose rate of appearance (Ra)gendus glucose production
(EGP), and glucose rate of disappearance (Rd).Retfast absorbing simple carbs
and the slow absorbing complex carbs are discusBed. rich data base has
allowed us to build the UVA/Padova Type 1 diabetesl the Padova Type 2
diabetes large scale simulators. In particular,UM&/Padova Type 1 simulator
proved to be a very useful tool to safely and eifety testin silico closed-loop
control algorithms for an artificial pancreas (ARhis was the first and unique
simulator of the glucose system accepted by the. Uk&d and Drug
Administration as a substitute to animal trials ifosilico testing AP algorithms.
Recent uses of the simulator have looked at glusessors for non-adjunctive use
and new insulin molecules.

1. INTRODUCTION

Since the early history of modeling in physiologylanedicine, the glucose system
has received considerable attention and has stieduthe development of new
modeling methodologies. The last decades haveasgeywing attention due to the
diabetes pandemic and to important developmentsiabetes modeling and
technology [1]. Biomedical engineering has allowegortant achievements in the
areas of technology, modeling, signal processing) @ntrol. Here we focus on
modeling in the quantitative understanding of thecgse system and its
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progressive derangement from prediabetes to typdybe 1 diabetes. The formal
understanding and description of glucose-insulitaimagism in health and diabetes
is, arguably, one of the most advanced applicatddnsodeling in the life sciences,
given the rich history of available models.

In this paper we will provide a personal story alvancements of diabetes
modeling in the last 20-25 years. It is neitheroanprehensive review on all the
modeling contributions of the literature nor a eviof our work in areas of glucose
sensor signals and closed-loop glucose contrakfoch we refer to [1]. However,
in Section 2 a concise historical background onestandmark models is provided
taken from [2] on the occasion of a special IEEBMBBissue devoted to historical
development of methodologies and technologies aslevfor biomedical
engineering which allows us to put our story im@ger perspective. Even with this
personal connotation, we do hope this paper, beaotg contributions appeared
in biomedical engineering, physiological and clalipurnals, will be useful to the
diabetes community, and especially to young ingastirs entering the field. To
allow a deeper insight into the various modelsthalmaterial used will be clearly
referenced to the original publications.

We will make reference to two classes of modetsminimal (coarse-grained) —
andmaximal (fine-grainednodels Minimal models are parsimonious descriptions
of key components of system functionality capalfleneasuring non-accessible
parameters of the system, while maximal models \@ey comprehensive
descriptions attempting to fully implement the bafiknowledge about the system
into a generally large, nonlinear model of highesrdwith several parameters,
allowing to perform simulation and to conduetsilico trials.

We will first discuss th@arametric portraitprovided by theral minimal models
to measure otherwise non-accessible parametermbBkéin sensitivityandbeta-
cell responsivityrom a physiological oral test, the mixed meattahce test (MTT)
or the oral glucose tolerance tests (OGTT), andtwha be gained by adding a
tracer to the oral dose. These models have beenmusarious pathophysiological
studies, which we will briefly describe. Subseqlemte will move down in the
hierarchical system structure and get a deeperiglbggcal understanding on
insulin action in the skeletal muschM/e will discuss the classicalultiple tracer
dilution techniqueand the technique based positron emission tomography
(PET), which quantitate the effect of insulin ore timdividual steps of glucose
metabolism, i.e. transport and phosphorylation.aliyn by using a multiscale
modeling approach we will highlight the relationstweenbeta-cell function
minimal model indiceandsecretory subcellular events

Then, we turn to discussaximal modelgvhich allow to arrive at 8ux portrait of

the glucose system. This is a very important gai@hieé jump in the system
description. In fact, assessing the postprandiacage fluxes may highlight
possible defects in how the system coordinatesggsaim the meal/OGTT glucose
rate of appearanceR§), endogenous glucose productigGP) and glucose
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disposal Rd) leading to postprandial hyperglycemia. Here tracae not only
desirable to get a more detailed portrait but adéspensable.

The tracer theory necessary to arrive at a flutraibris described in some detail
but with an easy language to favor its use in tidetes community. The gold
standard is thériple tracer meal protocolmplemented with the tracer-to-tracee
clamp technigue which allows to arrive at quasi-sloddependent measurement
of Ra, EGPand Rd While the method was originally proposed for tiast
absorbing simple carbs, it has recently been erbta handle the slow absorbing
complex carbs: both are discussed in this papes. ridh data base has allowed us
to build theUVA/Padova Type 1 diabetasdthe Padova Type 2 diabetes large
scale simulatorsin particular, the UVA/Padova Type 1 simulatooyed to be a
very useful tool to safely and effectively testsilico trials closed-loop control
algorithms of insulin administration (the so calkedificial Pancreas, AP). This is
the first and unique simulator of the glucose syséecepted by the U.S. Food and
Drug Administration as a substitute to animal &idbr in silico testing AP
algorithms. Recent uses of the simulator have ldakeglucose sensors for non-
adjunctive use and new insulin molecules.

2. HISTORICAL BACKGROUND: LANDMARK MODELS [2]

A conceptual breakthrough in the characterizatibrClaude Bernard’'s milieu
interieur was allowed by the introduction of trexceéo trace the movement of
substances (tracee): Rudolf Schoenheimer in 1942uilated in a famous book [3]
the concept ofdynamic state of body constituerlig which at any time the
concentration of a substance in the circulatiog, ef a substrate or a hormone, is
the result of production/secretion, distributioxgleange with other body pools, and
utilization/ degradation. The dynamic state of badystituents was a qualitative
paradigm and its quantitative into fluxes of praitut, distribution and metabolism
was a difficult problem, especially in vivo. Thesas the need to develop system
dynamic models able to interpret the plasma measmts, and thus tackle
problems like model structure determination, madehtification and validation.
Studies employing radioactive glucose tracers asxd in the 1940’s, especially
after World War 2 whemnadioactive isotopebecame commercially available (it
took another 30 years to see the first glustable isotopéracer study in children
[4]). The increased number of animal and humanetratudies stimulated the
development of modeling methodologies. In 1948 $hapintroduced for the first
time the termcompartmentand provided the firainulti-compartment model of
tracer kinetican a steady state tracee system described bytensys linear time-
invariant differential equations [5]. Handling leredifferential equation models in
the 1950s was computationally challenging and Basinly for the two- and some
three compartment models. A significant step fodwaas made possible in the
1960s by the introductionf analog computerand, later, bydigital computers
when the first book on compartmental models by $aep[6] was published. New
momentum in the use of digital computers for modglmetabolic systems was
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brought by Mones Berman at NIH, Bethesda, MD [feT60s saw also some
important methodological contributions, thankskte &bility ofmeasuring insulin
concentrationin the circulation with radioimmunoassy methodg fBerman and
Schoenfeld [9] addressed for the first time theiarpidentifiability problem for
linear compartmental models. Tracer theory wasnebdd to study tracee systems
also in non-steady state, i.e. after a perturbdtiea meal or physical activity:
tracer kinetics is still described by linear diffatial equations, but parameters
become time-variant (as a result of nonlinearit9)[1Compartmental models
moved out of the tracer context amwnlinear compartmental modelsere
formalized to describe physiological control syssemg. production, distribution,
utilization of glucose; secretion, distribution, gdadation of insulin, and the
feedback glucose and insulin signals. Later, @XB70/80s, the methodological
problems posed by linear, but also nonlinear, cotnpgntal models saw a new
cultural wave. The identifiability problem was attad by various investigators
(see the review [11]). The numerical identificatiohmodels was posed in the
correct theoretical setting with tools includingttef residuals, parameter precision
and parsimony criteria (see the review [12]) amalehvalidation [13]. Books were
published offering a consolidated methodology foodeling endocrine and
metabolic systems [14][15][16]. Of note has beem Wlse of Bayesian methods
given the increased a priori knowledge that wasbecavailable.

Some landmark models are described below.

Glucose fluxesThe tracer method by Steele [17], and, later,itlgenious tracer

clamp infusion protocol by Norwich [18] and Radz{i®] allowed to measure the
rate of appearance, Ra, and disappearance, RdJuobsg in a variety of

experimental situations. This approach was latdérgoumore solid theoretical

grounds [20]. The increased use of stable glucestpes has stimulated the
generalization to the tracer-to-tracee clamp teqplmni21].

Insulin secretion Measurement of insulin secretion after a glucstsaulus was

posed as a classical input estimation problem lopmenlution [22]. However, it

is not possible to reconstruct pancreatic secrétmn plasma insulin concentration
since insulin is degraded by the liver before appgain the circulation. The

problem was bypassed when the hormone C-peptidedisasvered since it is
secreted equimolarly with insulin, but it is extext by the liver to a negligible
extent [23][24]. The knowledge of C-peptide kinsticequires an additional
experiment, but a method was proposed in [25] #ilmws C-peptide kinetic

parameters to be derived in an individual basedsohject anthropometric
characteristics.

Insulin action.Victor Bolie [26] pioneered the filed by proposiadinear model to
describe the plasma glucose and insulin conceor@iin an intravenous glucose
tolerance test (IVGTT). The model was subsequesttgnded to an oral glucose
tolerance test (OGTT) in [27]. Both these modelsensmplistic, but at that time
plasma insulin was not available and the modelgWted on plasma glucose only.
An elegant tracer study by Insel et al. [28] witle glucose system in two steady
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states, i.e. basal glucose & basal insulin, anélbgisicose & elevated insulin,
advanced the field by assessing timing and magaitfdinsulin action. Linear
three-compartment models were used to describ@gguand insulin kinetics, and
in order to describe insulin-dependent glucoseazatibn, it was necessary to
postulate insulin control from a large, slowly dduating compartment, thus
confirming the finding of a year before by Sherwiral [29], who showed that it is
insulin in a remote compartment that controls ghecatilization. In 1979 Bergman
and Cobelli [30] introduced the minimal model tedebe an IVGTT, thus arriving
at an index of insulin action, called insulin sérgy, without the use of tracers.
We will discuss this model in Section 3 in the epatof its extension to an oral
test, i.e. a mixed meal tolerance test or an OGTT.

Beta-cell function.Deconvolution allows measuring insulin secretionerafa
glucose stimulus. However, a mechanistic insulioreton model is needed to
arrive at indices of beta-cell function. The keydebwas that of Licko [31] who,
starting from the cellular insulin secretion mobgl Grodsky [32], developed a
whole-body IVGTT model and proposed beta-cell fiorctndices, i.e. 1st and 2nd
phase responsivity. While models based on insudita callowed post-hepatic
insulin delivery to be quantified, an improved paedric portrait was later obtained
by a C-peptide IVGTT model [33], which integrathe tL.st and 2nd phase secretion
model into the two-compartment model of C-peptidestics. Since the glucose—
insulin system is a negative feedback system, tatafunction needs to be
interpreted in light of the prevailing insulin sénaty: the disposition indexDI)
paradigm was introduced in [34] where beta-celkfiom is multiplied by insulin
sensitivity.

Cellular model of insulin secretionfThe landmark model was developed by
Grodsky [32]. A variety of glucose stimuli in thenfused rat pancreas was the data
base. He proposed that insulin was located in 'gatk plausibly the insulin
containing granules, but possibly entire beta-cé&lishis model, part of the insulin
is stored in a reserve pool, while other insulirckeds belong to a labile and
releasable pool. The rapid release of the labil@ pesults in the first phase of
insulin secretion, while the reserve pool is regilde for the sustained second
phase. To explain the staircase experiment, whéweoge concentration is
increased in consecutive steps, he assumed thpatkets in the labile pool have
different thresholds with respect to glucose beywohith they release their content.

3. THE ORAL MINIMAL MODELS: INSULIN SENSITIVITY, BETA-
CELL RESPONSIVITY and HEPATIC EXTRACTION

For reader convenience/information, most of theammatreported in this section is
taken from our review [35].

The simultaneous assessment of insulin action,limsecretion and hepatic
extraction is key to understand postprandial glacastabolism in people with and
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without diabetes and to put therapy on solid greufid[35][36][37]. Here, we
discuss the oral minimal model method [35], i.edels that allow the estimation
of insulin sensitivity, beta-cell function and h&pansulin extraction from an oral
glucose test, either a mixed meal (MTT) or an ghatose (OGTT) tolerance test.
Both these tests are more physiologic and simpgian tthose based on an
intravenous test, (e.g. a glucose clamp or anvetraus glucose tolerance (IVGTT)
test), with MTT being superior to OGTT due to theegence of other
macronutrients (proteins and fat).

The oral glucose minimal model method sits on tlaatgshoulders of the IVGTT
minimal model [30], particularly taking advantagletwo revolutionary concepts
introduced in 1979: i) the system is partitionedoira glucose and insulin
subsystem, thus allowing modeling of each systemgusespectively, plasma
insulin and glucose as known inputs; and, ii) imsabntrol is from a compartment
remote from plasma (known today to be interstitiuiif)e IVGTT seems simpler
to model since one knows the input, i.e. the glacdese. However, modeling
glucose dynamics after the bolus is complex: theglei compartment may
undermodel the system with potential bias introdu@eg. on insulin sensitivity
[38]. To improve the quantitation of beta-cell ftioa, a C-peptide IVGTT minimal
model has been developed which allows to estimdtantl 29 phase beta-cell
responsivity [33], and also, in conjunction witettvGTT insulin minimal model,
hepatic insulin extraction [39]. Finally, the IVGTmethod does not describe the
incretin contribution to insulin secretion.

Historically, the oral minimal model method has ibdacilitated by triple tracer
meal studies done at Mayo Clinic, Rochester, MN&jtkein, section 7.2.2) which
have provided a rich data base for model developraed validation [40]. The
MTT/OGTT data are shown in Figure 1 (upper pangte system is partitioned
like in Figure 1 (bottom panel). What is the ratit@? For instance, to describe
plasma glucose and insulin data after an oral gleidest, there is the need to
simultaneously model both the glucose and insylgtesns and their interactions,
i.e. in addition to model insulin action, one alss to model glucose-stimulated
insulin secretion. Since by definition models aseful but never true, an error in
the insulin secretion model would be compensatedrbgrror in the insulin action
model, thus introducing a bias in insulin sendiyiviro avoid this source of error,
an artificial “loop cut” decomposes the systenwn subsystems which are linked
together by measured variables. The measured MTTIQiEne courses of insulin
and glucose can be considered as “input” (knownd &output” (noisy),
respectively, to measure insulin sensitivity (Fegdr bottom panel, top); those of
glucose and C-peptide to measure beta-cell fundfiegure 1, bottom panel,
middle); and those of glucose and insulin plus @tipe to measure hepatic insulin
extraction (Figure 1, bottom panel, below). In thigy, models are developed not
for the whole system but for each of the subsystamgpendently.

Figure 1 shows the recommended MTT/OGTT 10-samplehedule
(0,10,20,30,60,90,120,150,180,240 min) but 8-sasnfhathout 150 and 240 min)
still provide accurate results in subjects withdiaibetes at the individual level. If
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indices only in large population studies are needed-sample schedule can be
used in subjects without diabetes and with predéesbi1].
Table 1 summarizes the parameters of the oral nainmnethod.

3.1 The Glucose Minimal Model

The glucose minimal model is shown in Figure 2 @rgmanel). The gastrointestinal
tract is the new element with respect to the IVGhihimal model. Given the
smoother oral vs IVGTT time course of plasma glecasd insulin, a single
compartment model describes accurately glucose tikgne(while a two
compartment model is needed to describe IVGTT éir tintegrity [38][42]).
Denoting by Q the plasma glucose mass, Rd the oatplasma glucose
disappearance, Ra the rate of glucose appearaptasima from the oral input and
NHGB the net hepatic glucose balance, the modelfamateasurement equations
are:

Q(t) = ~Rd(t) + NHGB(t) + Ra(t) Q(0)=Q,
1
61 =X @

where G is plasma glucose concentration, V theogledistribution volume and
suffix b denotes basal value.

By assuming that Rd and NHGB are linearly dependen®, but modulated by
insulin in a remote (vs plasma) compartment, apgsed in [30], one obtains [43]:

Q) =[S, + X(H)] (1) + S, @, + Ra(e,t) Q) =Q,

X (t) = =p, DX (t) + ps I (1) = 1, ] X (0)=0
_ Q)
G(t) = =/
®) Vv (2)

where g is fractional (i.e., per unit distribution volumg)ucose effectiveness
measuring glucose ability per se to promote gluchsgosal and inhibit NHGB, |
plasma insulin concentration, X insulin action dmcgse disposal and production,
with pand p rate constants describing its dynamics and madgitia is described
as a piecewise-linear function with known breakapdiand unknown amplitude

Ra((l t)= ai—1+ai _ai—l_[(t—ti_l) fort_, <t<t,, i=1,...8 3)
0 othemwise

with o denoting §i1,02,...ag] .
Insulin sensitivity S, is given by:
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S = % BV (ditkg/min pemuu/mi) (4)
2
A piecewise linear description for Ra with 8 parteng is sufficiently flexible to
accommodate MTT/OGTT data. The input is plasmalimsuith plasma glucose
the output to be fitted by the model. Parameterender the model not a priori
uniquely identifiable because V is non-identifiabded S is non-uniquely
identifiable. Thus, V and Sare usually fixed to population values. To improve
numerical identifiability, a Maximum a Posteriorafesian estimator is used by
exploiting some prior onzpand a constraint on Ra, related to the total amofin
glucose appearing in the circulation.iSprecisely estimated with good precision
and has been validated in a multiple tracer meatbpol [44] and in an OGTT vs
euglycemic glucose clamp study [45] showing a dati@n of 0.86 and 0.81,
respectively. MTT $Shas been correlated with IVGTT i the same subjects with
correlation of 0.74. MTT Swas also compared with OGTT i 62 subjects [46]
with a correlation of r=0.75, but ®as significantly lower in MTT than OGTT.
Inter-subject variability of MTT Sin healthy individuals is comparable to that
of the IVGTT index [47], in particular its reprodbdity (expressed as percent
mean difference and coefficient of variation) wene average 8% and 23%,
respectively.

3.2 The C-peptide Minimal Model
The model is shown in Figure 2 (middle panel): plasC-peptide concentration is

the output with glucose concentration as the 8L
The model is described by:

cu(t) = ~(koy + Kyy) TH(1) + K, TB,(H) + ISR (0)=0
() = —ky, LE(t) + Koy Ley(t) q,(0)=0
_ G(t)
ISR(t) = y(t) + ks GdT )
30 =2 [y~ 60~ ¥(0)=0
_ a(®)
c®=",

where q and @ are respectively the above basal amount of C-gept the
accessible and remote compartment (C-peptide 2 amdrigure 2, middle panel),
ko1, ki2 and ki are rate constants describing C-peptide kinel®R,is C-peptide
(insulin) secretion rate, y is insulin provisiore(ithe portion of synthesized insulin
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that reaches the cell membrane and can be releasel) is above basal C-peptide
plasma concentration. ISR is made up of two comptsneone proportional,
through parameterdk to glucose rate of change (dG/dt), and one reptesy
insulin release that, after a delay T, occurs pridqaally to plasma glucose level
above a threshold, h, through paramedierThe two components are termed
dynamic ®q (=kg), and static ®s (=), responsivity indicesA single total
responsivity indexP, which combine®q and®s, is often useful. The model is both
a priori and numerically uniquely identifiable on€epeptide kinetic parameters
(ko1, kiz and k1) are fixed using the population model [25]. Thetpie is markedly
different from that of the IVGTT, where the incregéffect is absent and the glucose
signal is very different, with the derivative conmamt only contributing during the
first 2-3 minutes and the proportional componentli@ rest of test. This explains
the fact that dynami@®q and staticbsduring an MTT are 250% greater thath 1
phase,®1, and 29 phase®,, IVGTT indices in the same 204 individuals [40]
Dynamic,dq, and static®ds, during an oral glucose challenge and IVGTT @,
and 29 @, phase indices bear some relation (r=0.52 for batites), but they are
likely determined by different cellular events.

MTT beta-cell responsivity indices were also cormedawith their OGTT
counterparts in 62 subjects [46] with good corretatr=0.71 fordg, r=0.73 fords,
r=0.74 for®, but the indices were significantly higher in MTian OGTT.

It is an accepted notion that beta-cell functioadseto be interpreted in light of the
prevailing insulin sensitivity. One possibility ie resort to thelisposition index
(DI) paradigm, first introduced in 1981 [34], aretently revisited [47][49], where
beta-cell function is multiplied by insulin seneity. This concept is clearly
illustrated in Figure 3 (left panel). It is postidd that glucose tolerance of an
individual is related to the product of beta-celhétion and insulin sensitivity. In
essence, different values of tolerance are repreddyy different hyperbolas, i.e.
DI = beta-cell function x insulin sensitivity = cein The DI was first introduced for
IVGTT and has been extended to MTT/OGTT. Thus, ai#pn indices can be
calculated by multiplying responsivity indic®s, ®s, ® by S to determine if the
first phase, second phase and total beta-celliimetre appropriate in light of the
prevailing insulin sensitivity. For instance, whifewas found to be significantly
lower in MTT than OGTT ane significantly higher in MTT than OGTT, DI was
the same, making it a good marker of glucose tosx§46]. The DI can also
monitor in time the individual components of tolece and assess different
therapies (Figure 3, right panel).

However, the glucose-insulin feedback system isentmmplex than the simple
hyperbola paradigm, i.e. a more general DI couldbe= beta-cell functionx
(insulin sensitivityf = constant, where insulin sensitivity is raised

to a. In addition, this simple concept hides severalthoéological issues
addressed in [49], which, unless fully appreciateduld lead to errors in
interpretation.

MTT dgqand®s reproducibility was assessed in [47]: percentmaifference
was 1% and 7% and coefficient of variation was 3% 18%, respectively.

An important addition to the MTT/OGTT parametric ripait is an index
guantifying the effect of Glucagon-Like Peptide@LP-1) - a surrogate for the
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incretin effect [50]- on insulin secretion [51]. i§hextension of the model
accounting for the effect of exogenous GLP-1 irdason insulin secretion was
developed in [52]. In particular, the model [52$3aed that the above basal insulin
secretion rateASR, is linearly modulated by GLP-1, through the GlL&ensitivity
index= (% per pmol/l):

ASRCPY(t) = ASR() [ [GLP1(t)+1] (6)

where GLP1(t) is the above basal intact hormone@atnation.

7 quantifies the ability of GLP-1 to enhance therelvasal insulin secretion, and is
defined as the ratio between the average percengédse in over-basal insulin
secretion and average GLP-1 plasma concentration.

3.3 The Insulin & C-peptide Minimal Model

Minimal models can also assess hepatic insuliraetitm (Figure 2, bottom panel).
Insulin secretion, ISR, can be assessed from tpegfide model. Similarly, post-
hepatic insulin delivery, IDR, can be assessedmgleying an insulin model. In
[53] an insulin population model (along the ling25]), allows to calculate insulin
kinetic parameters from subject anthropometric attaristic in a population of
subjects without diabetes. The model allows to metract IDR. From ISR and
IDR, both the time course of hepatic insulin exiat and an index numerically
guantifying hepatic insulin extraction can be chdted:

ISR) - IDR(t) _, _ IDR()

HE(t) = -
ISR(t) ISR(t)
e - [, ISR(tT) - [ IDR(1) L [, TIDR(t) o
[[1SR() [(IsR®)

with T duration of the experiment.
The importance of adding HE te & d® for obtaining a more complete parametric
portrait has been shown in several studies, e4j[95].

3.4 Models at work in diabetes

The battery of oral glucose, C-peptide and insoiodels have been used to study
the effect of age and gender on glucose metab@#6i the effect of anti-aging
drugs [54]; the influence of ethnicity [55][56]; Salin sensitivity and beta-cell
function in people without diabetes [57] and ob§s@][59] adolescents, and
children [59]; the pathogenesis of prediabetes[pBd[61] and type 2 diabetes
[36][62]; the diurnal pattern of insulin action asekcretion in healthy [63] and type
1 diabetes [64]; the mechanism of insulin resistancpregnancy [65]; the effect
of DPP4 inhibitors on insulin secretion [66]; thiéeet of a bile acid sequestrant
[67]; caloric restriction [68][69]; vagal nerve lokade [70]; genetic variation
[71][72][73]; biliopancreatic diversion [74][75]; &ux-en-Y gastric bypass
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[76][77]; circadian misalignement [78][79]; oxytoc[80], and antidiabetic drugs
[81] on insulin secretion and action.

4. INSULIN ACTION DISSECTED BY TRACER MODELING INTO
PERIPHERY AND LIVER

For reader convenience/information, most of theamatreported in this section is
taken from our review [35] and a chapter of [82].

If the oral glucose load is labelled with a gluctrseer (t), the exogenous glucose
(Gexo), i.€. the glucose concentration due to meal/O@iily, can be calculate as:

1
Gexo ) = t(t)- (1 + TTRmeal) 9
where TTRnealis the tracer-to-tracee ratio in the meal/OGTT.

The endogenous glucogBe(d can then be derived &nd= G- Gexo, With G being
the total glucose in plasma. In other words additrgcer to the MTT/OGTT allows
total glucose concentration to be segregated ist@xogenous and endogenous
components.

4.1 Disposal Insulin Sensitivity

Gexomeasured in plasma is the result of the glucdseofaappearance coming from
the MTT/OGTT, Ra, and the rate of glucose dispd#di(Figure 4). Thus, by fitting
the model detailed in [83] 0Bexoand insulin one can estimate both Ra and disposal
insulin sensitivity $, i.e. the ability of insulin to enhance glucosiization.

The model equations are:

G, =-[ S+ X°( |G, +

RALD g0k ¢

Vv (10)

X () =-p° IX°()+ p° HI()- 1] X( 0= C
where P is fractional glucose effectiveness measuring agecability per se to
promote glucose disposalPXnsulin action on glucose disposal, wi#? andpsP
rate constants describing respectively its dynaamcsmagnitudeDisposal insulin
sensitivityis defined as:

D
s :%EV (dI/kg/min perpuU/ml) (11)
Rais that already described for OM{dq. 3).

The model has been validated first by comparingmeséed Ra with a model-
independent profile estimated with a multiple traeeperiment (RE, see Section
7.2.2) andSP both with the same index obtained with the hot TMGminimal
model [84] fed with the model-independentdR83] and with the disposal insulin
sensitivity derived from labelled clamp [45]. Cdation between 8 with disposal
insulin sensitivity measured with the tracer enlegheuglycemic-hyperinsulinemic
clamp technique was r=0.70 [45].
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4.2 Liver insulin sensitivity

Theoretically, by using the unlabelled and labeltextlels to measure, respectively,
total (i.e. periphery +liver) and peripheral indscene should be able to calculate
liver indices from the difference between the two.

However, liver indices derived in this way are oftenreliable (negative). This was
found also during an IVGTT using the classic minimendel [38][84][85][86].
Caumo et al. [38] suggested that these inconsig®ngere to an inaccurate
description of glucose and insulin effect BGP. In fact, both the IVGTT and the
oral minimal models assume that insulin action lo@ liver has the same time
course of insulin action on glucose disposal. Meeed=GP suppression includes
a term linearly dependent on glucose and a termaldquthe product of glucose
concentration and insulin action, i.e. insulin acton the liver is glucose-mediated.
The minimal modeEGP and alternativeEGP descriptions have been assessed
against virtually model-independent EGP profile][88] and liver insulin
sensitivity §') and glucose effectivenesSE) were estimated.

According to [88],EGP can be described as:

EGP(t) = EGR, — ks JG(t) -G, ]- X (t) - XP*'(t) EGP(0) = EGR, (12)

where EGP, is basal endogenous glucose producti&s, is liver glucose
effectiveness.
Xtis liver insulin action, defined as:

{XL(t)=—le(L(t)+le('(t) XL(0)=0
X'(0) =~k X0 = ko (1 () = 11) ] X'(0)=0 13)

with ki accounting for the delay of liver insulin actios plasma insulin, ankb a
parameter governing its efficacXP®" is a surrogate of portal insulin, which
anticipates insulin and glucose patterns, wad demonstrated to significantly
improve model ability to fit the rapid suppressmEGP occurring immediately
after a meal:

keg 20 ¢ 96054
X Der(t) — dt dt
0 if ac <0
dt (14)

wherekgr is a parameter governing the magnitude of gludeswative control.
An index ofliver insulin sensitivity(S*) can be derived from model parameters as
follows:

g _ _OEGP [—li— K,

' a .G, G,
where the symbolkdindicates that the derivative &GP is calculated in steady
state.

The model has been first assessed in healthy salff]. Then, it was validated
by comparingS* with liver insulin sensitivity measured with a tesicenhanced

(15)
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euglycemic-hyperinsulinemic clam@¢@™) in subjects with different degrees of
glucose tolerance [89%F-“a™Pis derived from total and peripheral indices as:
SLclamp — Sclamp _ S* clamp (16)
Correlation betweeg“a™PandS* was good (r=0.72, p<0.0001), wiit™e2'being
lower thanS-¢amp (4.60+0.64 vs 8.731.07 10* dl/kg/min peruU/ml, p<0.01). It is
noteworthy that the correlation improved to 0.8€0001 in normal fasting glucose
subjects, while it was lower in impaired fasting@lse subjects (r=0.56, p=0.11,
likely due to the limited sample size).

4.3 The Single Tracer Oral Minimal Model

The new model describingGP suppression after a meal has been incorporated
into the oral glucose minimal model to see if- @uld be obtained from plasma
concentrations measured after a single-tracer mgalescribing both glucose
production, P, and disposal, D (OMR) [90].

Triple-tracer meal data of two databases (20 hgadthd 60 subjects without
diabetes and with prediabetes) were used in whidht@ally model-independent
EGP estimate was available (see Section 7.2.2). &MMas identified on
exogenous and endogenous glucose concentratiansdipg indices of &, SP
and EGP time course.

The estimated S well compared with that derived directly from E@&ta [88].
Since the model is not able to assess basal EGP,)(Egaly the ratio (EGP/EGY
can be estimated together withad .

5.  MULTISCALE GLUCOSE TRACER MODELING: INSULIN
ACTION on SKELETAL MUSCLE PROCESSES

For reader convenience/information, most of theammatreported in this section is
taken from our reviejd].

While whole-body models can provide important quative information on
insulin action, it is important but at the same dimemarkably difficult, to
noninvasively measure the effect of insulin onucgke transport and metabolism
at the organ level. A crucial target tissue of gk metabolism is the skeletal
muscle. Impaired insulin action in muscle is a wetlognized characteristic of a
number of metabolic diseases, including type 2etiedy obesity, hypertension, and
cardiovascular disease. Understanding its caugeges to segregate and quantify
in situ the major individual steps of glucose pssieg, particularly those of
glucose delivery, transport in and out of the @l phosphorylation (Figure 5).

The classical experimental approach is based omthgple tracer dilution[91]
[91], which consists of the simultaneous injectiopstream of the organ, of more
than one tracer to allow the separate monitorinthefindividual steps of glucose
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metabolism. In the 2000s, tip@sitron emission tomograpiPET) noninvasive
imaging technique was proposed which can providghlfi specific and rich
biochemical information if applied in dynamic mode,, sequential tissue images
acquired following a bolus injection of tracer.

Multiple tracer dilution data can be interpretedthwboth linear distributed
parameter (see reviews [16] and [9@))d compartmental organ models [93]. The
only application to glucose metabolism of distrémiparameter models has been
in an isolated and perfused heart [91]. In contresinpartmental organ models
have been more intensively applied to interprettiplel tracer dilution data in the
human skeletal muscle. A compartmental model han lggoposed [94][95]
describing the transmembrane transport of glugasento and out of the cell. This
model has been extended [96] to describe the kmefi a third tracer, permeant
nonmetabolizablehus allowing to quantify not only the rate conssaof transport
and phosphorylation, but also the bidirectionalcgke flux through the cell
membrane, the phosphorylation flux, and the inthalee concentration, in subjects
with and without diabetes and obese [97][98]. Tdllewed to show that insulin
control on both transmembrane transport and phoglation flux in subjects with
diabetes is much less efficient with respect tgestb without diabetes.

PET data can be analyzed by regional compartmemddeling. The brain glucose
model by Sokoloff et al. [99)as been a landmark. The selected tracer for stgdyi
glucose metabolism in skeletal muscle (but alsthénbrain and myocardium) is
[*8F] fluorodeoxyglucose {fF]JFDG), a glucose analog. The ideal tracer would be
[11C —glucose], but the interpretative model by hawmgccount for all metabolic
products along the glycolysis and glycogenosyntheaihways cannot be resolved.
The advantage of'§F]JFDG is that a simpler model can be adopted. kt, fa
[*8F]FDG once in the tissue, similarly to glucose, eiéher be transported back to
plasma or can be phosphorilated #F]JFDG-6-phosphate,'{F][FDG-6-P. The
advantage is thatJF]FDG-6-P is trapped in the tissue and releasegsiewly. In
other words, FF]JFDG-6-P cannot be metabolized further, while gkes6-P does
so along the glycolysis and glycogenosynthesisvpagh. The major disadvantage
of [*®F]FDG is the necessity to correct for the diffeendn transport and
phosphorylation between the anald$JFDG and glucose. A correction factor
called lumped constant (LC) can be employed to edn@®F]FDG fractional
uptake (but not the'§F]JFDG transport rate parameters) to that of gluchse
values in human skeletal muscle are available [10Q]. The interpretative model
is a four-compartment model (plasma, extracellulissue }8F]JFDG, and
[*8F]FDG-6-phosfate) with five rate constants [102heTmodel (Figure 6) is
described by:

C.() =K.Cy() = (k, +k;)C. () +K.Co(t) C.(0)=0
Co(t) =K,C, (1) = (K, + ks )C (1) Co(0)=0
C..(t) =k.C.(t) Cm(@©) =0 (17)
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C(t) = L—Vp )(Cc(t) + Ce(t) + Crn(t)) + VpCh (1)

where G is [¥F]JFDG plasma arterial concentration,c Gs extracellular
concentration of IfFJFDG normalized to tissue volumee G®F]FDG is tissue
concentration, & [1®F]FDG-6-P is tissue concentration, C tot8f is activity
concentration in the ROI,:K[ml/ml/min] and k [min-] are the exchanges between
plasma and extracellular space[hin?] & k4[min] are the rates of transport in
and out of cell, andskmin?] is the rate of phophorylation.p\is the fractional
blood volume in the region of interest, and G the whole blood tracer
concentration. From the model one can calculatéréetional uptake of'fF]JFDG,
K [ml/ml/min]:

Kiksks

k2k4 + k2k5 + k3k5

and, by using LC value and the glucose basal plasmaentration value, the
glucose fractional uptake. .

To move from FDG to glucose, a multi-tracer PET hodtis needed [103], which
allows the simultaneous assessment of blood flolucoge transport, and
phosphorylation in the skeletal muscle. The metlwgbloys three different PET
tracers (Figure 7) injected at different times, ahows to quantify blood flow from
[*®0]H20 images with one- compartment two-rate constantley glucose
transport from 1:C]3-OMG images with a three compartment four-ratastant
model, and, finally, glucose phosphorylation by bamng [*®F]FDG fractional
uptake with }1C]3-OMG rate constants. Thé'€C]-3-OMG model is a simpler
version of that of Egs 17, sinc€€]3-OMG is not phosphorylated. This multi-
tracer model has provided important insight on linsaction on muscle unit
processes; in particular, it was shown that: glacwansport from plasma into
interstitial space is not affected by insulin; ilisusignificantly increases both
glucose transport and phosphorylation; predomigpaigidative muscles (soleus)
have higher perfusion and higher capacity for ghecphosphorylation than less
oxidative muscles (tibialis).

6. MULTISCALE INSULIN MODELING: INSIGHT into SECRETORY
CELLULAR EVENTS

For reader convenience/information, most of theammatreported in this section is
taken from our review [2].

The models of beta-cell function provide a quatititkaassessment of beta-cell
function at the whole-body level. To gain a meckaaiinsight into the cellular
phenomena responsible for insulin secretion, ong tkamove down in the
hierarchical system structure.

The starting point is the landmark model by Grodg&] (Figure 8, left panel),
briefly described in Section 2, and updates of thiglel based on data of cell-to-
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cell heterogeneity with respect to their activatibreshold [104] and Caimaging
experiments [105][106]. This new subcellular mddél7] describes the dynamics
of granule pools in the entire pancreatic poputatb beta-cells (Figure 8, right
panel). Granules mobilize from a reserve poolpoal of "docked" granules at the
plasma membrane. The granules can mature furthhenig) to gain release
competence and enter the “readily releasable p@RP). Calcium influx then
triggers exocytosis and insulin release from thd®’RRRP is heterogeneous, i.e.
only granules residing in cells with a threshold éalcium activity below the
ambient glucose concentration are allowed to flikanks to RRP heterogeneity,
the model can describe all the classical glucasai$if including staircase glucose
infusion protocol.

Using multiscale modeling the relation between Ile¢a-cell function minimal
model indices and the subcellular events desciibéide mechanistic model have
been investigated [108]. Both the oral and the IMGilinimal secretion models
can be interpreted in the light of this cellulardeb The analysis revealed that the
first-phasdVGTT and thelynamiaoral secretion both reflect the amount of readily
releasable insulin, but also that the dynamic siecres shaped by the threshold
distribution for cell activation as well as the dynics of mobilization and docking.
Second phase IVGTHENd static oral secretion reflect a combination of
mobilization, docking, priming and recruitment avn cells. A first attempt to a
better understanding of the mechanistic effectsmafetins was done in [109] by
including GLP-1 in the oral minimal model.

7. A FLUX PORTRAIT OF THE GLUCOSE SYSTEM: TRACERS to
MEASURE SIMPLE and COMPLEX CARBOHYDRATE
POSTPRANDIAL METABOLISM

Measuring the postprandial glucose turnover iseasy [110]. At variance with the
fasting state, after a meal, glucose concentrasarot in steady state and is the
results of Raeay EGP, and Rd pattern.

The first attempt to solve this difficult task wtmat of Steele et al. [111]. They
proposed to label the ingested glucose with oneogkl tracer and intravenously
infusing a second tracer at a constant rate. Umfately, subsequent studies have
shown that although this approach is technicalgpde, the marked changes in
plasma tracer-to-tracee ratio, if stable tracees wmed, or specific activity, if a
radioactive tracer is used, introduce a substaetrak in the calculation dRaneas
EGP,andRd thereby leading to incorrect and at times mistegdesults [112].
This is due to the so callemnsteady state errpwhich is very pronounced after a
meal perturbation if the tracer is infused condyaiio minimize such error, Basu
and coworkers have proposed a more complex expeta@inechnique called the
triple tracer methodpresented later in this paragraph, which implesé¢né¢ so
calledtracer-to-tracee clamp techniqui&7].

The theory behind the two techniques is describatétail below.

When the system is in steady state, the rate abgkientering the circulatioR#)
equals the rate of glucose leaving the systedh (f one starts to infuse the glucose
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tracer at a constant raté\E), after a while, also the tracer will be in steatiyte,
and so is also the trace) to tracee @) ratio (TTR=9/G.

It can easily been shown that one has:

Ra = Rd =2 v =25 (19)

gssV S TTR

In other words, the estimate RhandRdis model-independent.

In case of food ingestion, the estimatiolRafandRdbecomes more difficult. First,
Ra andRd are no longer equal and both are changing oves, tresulting in a
nonconstanT TR.In addition,Ranow equals the sum &aneaandEGP, which are
also changing with time [110].

In this case, one needs to specify both the streiciane compartment, two
compartment, multi-compartment...) and which paransetee time-varying and
these choices have an impact on the glucose flestanate.

For the glucose system the most popular assumpgienthat the model is a one-
[111] or a two-compartment [19] model and thattihee-varying parameter is the
fractional clearance rate, since it is known thiatisi controlled by insulin
concentration, which is likely to vary after a meal

7.1 The intravenous glucose infusion case

For sake of simplicity, let first consider the silempcase of exogenous glucose
intravenous infusionGIR), instead of a meal, so thatR is known and onl{EGP
and Rd have to be estimated. In other words, one will inese
Ra(t)=GIR(t)+EGP(t)and then calculateGP(t) by subtracting the knowBIR(t)
from the estimate®Ra(t). Rd(t) will be then calculated from the model using the
mass balance equation. Let also start with a sioghepartment description with
time-varying fractional clearance ratdt)) proposed by Steele et al [111].

Given that the system is not in steady state, théaihof the tracee is:

Q(t) = Ra(t) — Rd(t) = Ra(t) = k(H)Q®)  Q(0) = Qss = GgsV
Q(t (20)
G(t) =40
14
Thanks to the tracer-to-tracee indistinguishabpitinciple, one has:
q(t) = INF —rd(t) = INF — k(t)q(t) q(0) =0
{g(t) =40 D)

14
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The fractional clearance rdité) is derived from equation 21:

_ INF _ 4
fe(t) = a®) a@® (22)

By substitutingk(t) of eq 22 into eq. 20 and rearranging it, one oistai

_ _INF_ q(t) dTTR(t) _ INF__ g(t) ., dTTR(t)
Ra(t) T TTR(t) TTR() dt  TTR(t) TTR(t) dt

(23)

90 _ a®

where we have used the relationsHifR (t) = cO = o0

Steele et al. [113] realized thETRmeasured in the plasma does not represent that
in the liver, interstitial fluid, and other compants. To circumvent this problem,
they used a nonhomogenous compartment model anthedshat the “effective”
volume was only a fraction of the total body voluofedistribution of glucos¥/,
indicated apV, with p ranging from 0.5 to 0.8 [114][115][116]:

_ _INF__ g(® _dTTR(t)
Ra(t) " TTR(t) TTR(®) pV dt (24)

EGP andRdare then calculated as:
EGP(t) = Ra(t) — GIR(t) (25)
Rd(t) = Ra(t) — Q(t) = Ra(t) — pVG(t) (26)

On the other hand, if one assumes that the systemescribed by a two
compartment model and that onby(f) is a time-varying parameter [19], one has:

Q1(t) = Ra(t) — [koy (8) + ky11Q1 () + k120, (1) Q1(0) = Qs = G55V
02(t) = ka1 Qs () — k12 Q2 (1) Q:(0) = GViE  (27)

G(t) =28
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and the tracer model is:

G1(t) = INF — [ko1(t) + k21]1q:(t) + k1292 (8) q:(0) =0
G2(t) = k211 () — k12q,(8) q2(0) =0 (28)

— a®
gt) ==

Paralleling what done for Steele et al model, i dieriveski(t) from eq 28 and
substitute it into 27, one obtains:

_ _INF__ g(®) . dTTR(t) ()
Ra(t) ~ TTR(Y) TTR(t)V dt +ka (TTR(t) QZ(t)) (29)

t t
where TTR(t) = % = _giit;'

EGP is then calculated as in eq. 25, while Rd, @teg to the two-compartment
model, is:

RA(¢) = Ra(t) — Q(t) = Ra(t) — pVG(£) — k1 G(O)V + kq5Q,(0) (30)

By comparing eqgs 24 and 29, it is evident that ébemate ofRa(t) is model-
dependent and so dE&P(t)andRd(t).One can argue that the accuracy of the flux
estimate can be improved by postulating increaginogimplex models (e.g., those
that account for differences in the rates of efalion of glucose and onset of
action of insulin in the liver, muscle, and varicatber tissues in people with or
without diabetes). However, the increased compteaft the model has to be
balanced against increased difficulty in accuraigntifying model parameters.

Luckily, looking at eqgs 24 and 29, it is also clé¢laat the closer iIFTR(t)to a
constant (clamped TR the smaller are the second term in eq 24 anddhbend
and third terms in eq. 29. Therefore, the mainteaaiTTRin steady state by an
appropriate tracer experiment design enables a i qoaslel-independent
measurement dRa(t),EGP(t),andRd(t).

The question now become: is there a smart wayftsénthe tracer so thairR
becomes virtually constant?

The answer is yes: sind@Ris the ratio between the infused tracer and thed to
glucose concentration, the better way to clafR is to infuse the tracer by
mimicking the expected pattern BR(t), i.e. constantly infusing the tracer before
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the exogenous infusion starts, following the expeqiattern EGP thereafter, and
labeling GIR.

7.2 The mixed meal (MTT) and the oral glucose (OGT)tolerance test.

In the case of an unknown exogenous input, e.gng@an MTT or an OGTT, one
needs at least one tracer mixed with the meal (oeal) to segregate exogenous
from endogenous glucose in plasma and another t@be infused intravenously
to calculatek(t), in case of Steele et al. [111] model, o1tk in case of Radziuk
[19] model. This minimal configuration is calleckttiual tracer method.

7.2.1 The dual tracer method

Let’s call tracerl ¢ the tracer mixed in the meal, witiTdRin the meal equal to
TTRneay and tracer2 §J the tracer infused intravenously with a constate (Figure
9, left panel).

Exogenous glucose (&), both labeled and unlabeled, can be derived ftom
concentration and@ T Rneal

Gexo(t) = tq @®)- (1 + - ) (31)

TTRmeal

Endogenous glucose §kg is derived by subtracting exogenous and i.v.satu
tracer concentration (in case of a stable isotbpe) total glucose (G):

Gena () =6() — Gexo () — iy () (32)

Let now defineTTR,,,(t) = Gtz—(t()t) and TTR,,4(t) = Gtz—(t()t) then meal rate of
exo end

appearanc®anea@ndEGP can be derived with Steele equation as:

_ _INF(@®) t2(t)  dTTRexo(t)
Ramear(t) = TTRexo(t) TTRexo(t) de (33)
_ _INF() t2(t)  dTTRena(t)
EGP(t) " TTRena(t) TTRenq(t) dt (34)

or with Radziuk equation as:

_ _INF@) t2(t)  dTTRexo(t) ()
Ramear(t) = TTRexo(t) pV TTRexo(t) dt +kay (TTRexo(t) Q2 (t)) (35)
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_ _INF(®) t2()  dTTRena(t) a2
EGP(t) T TTReng(t) pVTTRend(t) dt +kay (TTRend(t) QZ(t)) (36)

It is intuitive, but it has also be proven expenmady Errore. L'origine
riferimento non & stata trovata, that it is impossible to clamp boifT R, and
TTReng, SinceRamea(t) is expected to first increase and than decredsits GP(t)
is expected to first decrease and then increase.

7.2.2 The triple tracer method

The triple tracer method[87]Errore. L'origine riferimento non e stata
trovata.implements the TTR clamp technique to keep the@pjate plasmaTRs
constant following glucose ingestion [112]. Howeviestead of infusing labeled
glucose at a constant rate, it varies the intrausnofusion rates of two different
tracers in a manner that mimics the anticipd®eslea and EGP (Figure 9, right
panel), so that the changes in the plagf&sare minimized (Figure 10).

Briefly, let’s call tracerl ) the tracer mixed in the meal, withTdRin the meal
equal toT TRnea; tracer2 @) the tracer infused intravenously to mimic the entpd
pattern of EGP and tracer3 §} the tracer infused intravenously to mimic the
expected pattern ®anea

Exogenous glucose (), both labeled and unlabeled, can be derived ftom
concentration an@TRnea as reported in eq 31.

Endogenous glucose é&g is derived by subtracting exogenous and therifused
tracers concentration (in case both are stablepss) from total glucose (G):

Gena () =6() — Gexo () — iy () — t3 () (37)

t3(t) t2(t)
Gexo(t) Gena(t)’

EGP can be derived with equations 34 or 36, wRi&ea is calculated as:

Let's now define twOlT TRS TTR,,, (t) = and TTRypq (t) =

INF(t) t3(t)  dTTRexo(t)
TTRexo(t) TTReyxo () dt

Rayear () = (38)

or, with Radziuk equation, as:

INF(t) t3(t)  dTTRexo(t)
TTRexo(t) TTRexo (t) dt

Ratyea(t) = kot (729 - 0u() (38)

TTRexo(t
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It is worth noting that this method requires a primowledge of the temporal
pattern of change dRanea and EGP. Such knowledge can be relatively easily
gained by conducting a few pilot studies and madgytracer infusion rate (if
necessary), so as to minimize the change in plasis

The triple tracer method has been presented in i successfully used to assess
glucose turnover in elderly vs young subjects aed rs women [40], in untreated
[62] and treated type 2 diabetes [36], to assiesadian variation in glucose both
in healthy [63] and type 1 diabetes [64]. In alih studies, the oral load consisted
of a mixed meal (a jello containing dextrose, pregeand fats) labeled with the
stable isotope [#3C]-glucose and the intravenously infused tracen®\lee stable
isotope [6,6°H2]-glucose and the radioactive $6-glucose. The use of the tritium
as third tracer simplified the preelaboration @ ttata, since specific activity can
be directly used instead dfTR in the above equations. However, the use of
radioactive tracer is not allowed in children addlascents, thus, the methodology
was successfully implemented in adolescents ubiegtstable isotopes ([62Bk]-
glucose orally administered with an OGTT,*fG]-glucose i.v. infused to mimic
Rameaand [U43Cg]-glucose i.v. infused to mimic EGP) [118].

Recently, the triple tracer technique was exteridesibsess glucose turnover after
meals containing complex, instead of simple, caydodtes [119]. The natural
enrichment of T*C]polysaccharide in some commercially availableirgrge.g.
Madagascar pink rice and sorghum) was exploitedlatoe the meal, while [6,6-
’Hj]-glucose and the [BH]-glucose were intravenously infused in healthy
volunteers. As expected, bothRa EGP and Rd significantly differed between
complex and simple carbohydrate containing mealighting that the use of the
simple carbohydrate glucose as the carbohydratesautriple tracer studies may
limit the translational applicability of the ressilsince every day's life meals
typically contain complex carbohydrates.

8. MAXIMAL MODELS FOR IN SILICO TRIALS: THE UVA/PADOVA
TYPE 1 AND THE PADOVA TYPE 2 SIMULATORS

For reader convenience/information, part of theemail reported in this section is
taken from [120] and [121].

In Silico Clinical Trials (ISCT) are defined as “The userafividualized computer
simulation in the development or regulatory evabraiof a medicinal product,
medical device, or medical intervention” [120]. Tkeyword is “individualized”.
The idea is to recreate the concept of in vivd tr&dng ann silico approach, where
a large number of individual patients is modeled Imjitializing a
disease/intervention model with quantitative infation either measured on an
individual (subject-specific model), or samplednfrgopulation distributions of
those values (population-specific model). As disedsin [120], realistic ISCTs
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necessitate the availability of a cohortisilico subjects spanning the variability
observed in the study population, i.e. an averageeis useless.

After years of rejection, some regulators are negittining to consider a possible
role for computer modeling and simulation in thertiieation process for
biomedical products. The United States Food andjPdministration (US-FDA)

is leading this trend, worldwide [120].

Of course, all this is driven by the growing capipof simulation technologies to
accurately simulate complex physiological processesh as the progression of a
disease, the effect of interventions on such pssjoa, and in some cases the
manifestation of side effects and complications tlu¢hese interventions. This
relies on significant pre-competitive research staeents done in the last 10 years
in the area of physiological modelling [120].

The general approach to establish the credibifiyn gilico clinical trials revolves
around the assumption that in vivo studies, whedimeanimals or on humans are
the most reliable source of information, and amysilico approach should be
validated against them. Thus, in the clinical assent of subject-specific models,
a group of patients is examined to collect quatngainformation required to
initialize the model, which is then used to predice or more outcome biomarkers
for each patient. The same outcome biomarkershare dbserved experimentally,
whether using an invasive technique or after enotigie to make the direct
experimental observation possible [120].

All this is based on the assumption that in vivimichl trials work fine, and the
motivation for replacing them is related to thekriduration or cost that the trial
involves, but not to their ability to provide aiedlle answer on the safety and/or
efficacy of a new biomedical product [120].

In the field of diabetes researdh, silico experiments are of enormous value to
accelerating technology development since it igrofhot possible, appropriate,
convenient, or desirable to perform an experimenhoman subjects because it
cannot be done at all, or it is too difficult, tdangerous, or unethical. In such cases,
simulation offers an alternative way of experimegtin silico with the system
[121]. Several simulation models have been pubtisiace the 1960s, mostly in
biomedical engineering journals ([122]-[128]) biair impact in the field has been
virtually zero. The reason is that all of these elsdvere average models, and, as
a result, their capabilities were generally limitegredicting a population average
that would be observed during a clinical trial. Hower, given the large inter-
individual variability, an average model approaenmot describe realistically the
variety of individual responses to diabetes treatm&hus, to enable realistio
silico experimentation, it is necessary to have a dialsteulator equipped with a
cohort ofin silico subjects that spans sufficiently well the obseimger-individual
variability of key metabolic parameters in the plagion of people with type 1
(T1D) and type 2 (T2D) diabetes.

In particular, in T1D,in silico experiments have been of enormous value to
accelerate technology development, e.g. subcutangbicose sensors, novel
insulin molecules and the artificial pancreas, Ksato the availability of the U.S.
Food and Drug Administration (FDA) accepted UVA/Baa T1D simulator
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[128][130][131], which allows a time- and cost-affiee alternative to preclinical
studies, (e.g. [132]).

8.1 The FDA Accepted UVA/Padova T1D Simulator

The FDA-accepted University of Virginia (UVA)/Pado¥1D simulator has had a
serendipity beginning. In 2006, as part of a NIkdgyam project studying the
effects of two-year administration of youth pills elderly men and women,
physiological performance, body composition, andebdensity were measured in
204 individuals without diabetes [40][120]. Thesgéjects underwent a triple-
tracer meal protocol (see section 7.2.2) which jolex¥, in addition to plasma
glucose and insulin concentrations, model-independstimates of key fluxes of
the glucose system, including the rate of appeardancplasma of ingested
carbohydrates, endogenous glucose production, sguadilization, and insulin
secretion [40][121]. This rich flux and concentoatiportrait was key to develop a
large-scale glucose—insulin model, which was imiibs$o build from only plasma
glucose and insulin concentrations. A model inaigdi8 differential equations
with 42 parameters, 33 of which were free and evalrived from steady state
constraints, was identified in each individual gsen Bayesian forcing function
strategy [133]. From the model parameter estimaiesthe 204 subjects
participating in this study, the inter-individuahnability was described in a
population without diabetes. From there, usingjtiet multivariate probability
distribution of the model parameters, any numbewidiial subjects could be
generated by random sampling, thereby producing irdual population.
Simultaneously with the events above, and thankthéoadvent of minimally
invasive subcutaneous (sc) continuous glucose ormgt (CGM), increasing
academic, industrial, and political effort has b&mused on the development of a
sc—sc closed-loop control system for diabetes, hvidcknown as the artificial
pancreas (AP). Generally, the AP uses a CGM coupl#da sc insulin infusion
pump and a control algorithm directing insulin chasin real time.

In September 2006, the Juvenile Diabetes Reseanghdation (JDRF), initiated
the Artificial Pancreas (AP) Project and fundedasortium of university centres
in the United States and Europe to carry close@-tmmtrol research. At the time,
the regulatory agencies mandated demonstratidmeasdfety and feasibility of AP
systems in animals, for example, dogs or pigs, reedmy testing could begin in
humans. This approach is well illustrated by twpgra showing the use of the
Medtronic AP system first in 8 dogs [134] and thiater, in 10 people with T1D
[135]. However, it also became evident that anistadlies were slow, not powered
for variability and costly, and that a simulatorTdfD would allow a cost-effective
pre-clinical testing of AP control strategies byvwiding direction for subsequent
clinical research and ruling out ineffective cohtsgenarios. We argued that a
reliable large-scale simulator would account bdtiemter-subject variability than
small-size animal trials and would allow for fastlaextensive testing of the limits
and robustness of AP control algorithms.
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We therefore set to build a simulation environmeased on the data and the
expertise accumulated at the University of Padahthe University of Virginia,
two groups that were already collaborating on sdvespects of diabetes
technology. A first necessary modification of theséng model [133] was the
substitution of endogenous insulin secretion sukgyswith an exogenous sc
insulin delivery, that is, an insulin pump. Thisqu&red describing insulin
absorption with a two-compartment model approxingathon-monomeric and
monomeric insulin fractions in the sc space. Gitremabsence in 2006 of tracer
studies in T1D similar to those described above Healthy subjects, a more
difficult task was the description of inter-persariability.

In order to obtain the joint model parameter dusttions in T1D, we introduced
certain clinically relevant modifications to the deds developed in health. The
resulting T1D simulation model included 13 diffetiah equations and 35
parameters, 26 of which were free and 9 were defreen steady-state constraints.
Once the T1D model was built, its validity was éestising number of T1D data
sets including adults, adolescents, and childrenv bhe UVA/Padova simulator is
equipped with 300 virtual subjects: 100 adults, &86lescents, and 100 children,
spanning the variability of the T1D population abveel in vivo. In addition, the
simulator is equipped with models of CGM and insupumps. With this
technology, any meal and insulin delivery scen@an be tested efficientlin
silico, prior to its clinical application [128]. After eénsive testing, in January
2008, this simulator was accepted by the US FDA aagbstitute to animal trials
for the pre-clinical testing of control strategiesAP studies and has been adopted
by the JDRF AP Consortium as a primary test bedhéw closed-loop control
algorithms. The simulator was immediately put saritended use with the silico
testing of a new model predictive control (MPC)aaithm, and in April 2008, an
investigational device exemption (IDE) was grartgdhe FDA for a closed-loop
control clinical trial. This IDE was issued sol@g the basis ah silico testing of
the safety and efficacy of AP control algorithm, erent that set a precedent for
future clinical studies [132]. In brief, to tesethalidity of the computer simulation
environment independently from the data used ®dévelopment, a number of
experiments were conducted, aiming to assess tlielncapability to reflect the
variety of clinical situations as closely as poksilihese experiments included the
following:

1. Reproducing the distribution of insulin correctifactors in the T1D population
of children and adults, which tests that the valitgbin the action of insulin
administered by control algorithms will reflect tiariability in observed insulin
action;

2. Reproducing glucose traces in children with Tdliserved in clinical trials
performed by the Diabetes Research in Children Nit\{DirecNet) consortium;

3. Reproducing glucose traces of induced modergp@diycemia observed in
adults in clinical trials at the UVA, which provislieomprehensive evaluation of
control algorithms during hypoglycemia.

Thus, the following paradigm has emerged:il3ilico modeling could produce
credible preclinical results that could substitggtain animal trials and () silico
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testing yields these results in a fraction of theetand the cost required for animal
trials. This was a paradigm change in the field DD research: for the first time, a
computer model has been accepted by a regulatencg@s a substitute of animal
trials in the testing of insulin treatments. Sinte introduction, this simulator
enabled an important acceleration of AP studiesh & number of regulatory
approvals obtained using silico testing. However, one needs to emphasize that
good in silico performance of a control algorithm does not gu@ann vivo
performance; it only helps to test the stabilityted algorithm in extreme situations
and to rule out inefficient scenarios. Thus, compusimulation is only a
prerequisite to, but not a substitute for, clinicalls.

Later, new data became available on hypoglycendacaanter-regulation, which
allowed an update of the silico model in 2014 [130]. This new version has been
proven to be valid on single-meal scenarios showiagthe simulator was capable
of well describing glucose variability observed?h type 1 diabetes subjects who
received dinner and breakfast in two occasionsr(ogad closed-loop), for a total
of 96 post-prandial glucose profiles [136]. The waor domain of validity was
then extended by the introduction of diurnal paisesf insulin sensitivity based on
data in 19 T1D subjects who underwent a tripledrastudy [64][137](see
paragraph 3.4). This has allowed the incorporatibra circadian time-varying
insulin sensitivity into the simulator, thus makitigs technology suitable for
running one-day multiple-meal scenarios and engldimore robust design of AP
control algorithms [131].

Finally, another validation of the simulator wasxddy comparing its predictions
to data of 47 T1D subjects from 6 clinical centwsp underwent three randomized
23-h admissions, one open- and two closed-loop.pFbtcol approximated real
life with breakfast, lunch and dinner and colleci€d daily traces of glucose and
insulin concentrations. We used Maximum a PosteBayesian approach, which
exploited both the information provided by the datal the a priori knowledge on
model parameters represented by the joint parardeteibution of the simulator.
Plasma insulin concentration was used as modeirpfanction, that is, assumed
to be known without error. The identification okteimulator on a specific person
provided ann silico “clone” of this person; thus, the possibility eged to clone
a large number of T1D individuals and to move fra@imngle- meal to
breakfast/lunch/dinner scenario, thus accounting ifdra-subject variation in
glucose absorption and insulin sensitivity [138)isTnew feature, together with a
model of dawn phenomenon data has been incorpoiratedew version of T1D
simulator [131]. This version also includes a mogalistic model of sc insulin
delivery, models of both intra-dermal and inhaladulin pharmacokinetics, and
new models of error affecting continuous glucosaiteoing and self-monitoring
of blood glucose devices (Figures 11 and 12) .

Since 2012, the AP studies successfully moved ttpadient free-living
environment and became longer, with durations otaiseveral weeks/months
[139][140][141][142][143][144]. These trials arellmxting large amounts of data,
typically including closed-loop control and an ogeap mode as a comparator.
The UVA/Padova T1D simulator has been used in eetyaof contexts by several
research groups in academia, by companies actitleeifield of diabetes pharma
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and technology and has led to more than one thdysalications in peer reviewed
journals. Three major application areas which emergcently are:

i) new generation of closed-loop control algorithnms phrticular, the simulator
allows to assess individualization strategies, thatmethods for tuning the
control algorithm to a specific person [145] andyg making the AP to be
adaptive, that is, learning from the behaviourinimet of a specific person [146]
[147][148][149][150].

ii) testing safety and efficacy of a Do-It-Yoursalfjorithm, specifically an
AndroidAPS implementation of the OpenAPS algorifirhl].

iii) detection of insulin pump malfunctioning to prove safety of an artificial
pancreas [152].

iv) testing of new insulin molecules (Figure 1&)g. pramlintide [153][154],
inhaled technosphere insulin [155], fast [156] b acting insulin analogues
[157][158].

V) testing glucose sensors. Of particular relevamase the use of the simulator to
address an important topic of investigation for thabetes community and
regulatory agencies: is CGM safe and effective ghdo substitute SMBG in
diabetes managemeni? silico clinical trials were performed with a patient
decision-making model ([159]) able to recreate -fiéalconditions (e.g., 100
adults and 100 pediatric patients, 3 meals pervd#y variability in time and
amount, and meal bolus behaviour) (Figure 14).

The simulations helped the outcome of an FDA paresting [160][161].

8.2 The Padova T2D Simulator

Among the almost 500 million people in the worlding diabetes, only 10-15%
has T1D. The vast majority are subjects with typkabetes (T2D). These patients
are often treated with medications to control theaod glucose levels: some of
these medications are orally administered (e.ggudmides, sulfonylureas,
Dipeptidyl Peptidase 4 inhibitors) [162] some othare given by injection (e.g.,
insulin, amylin analogues, Glucagon-Like Peptideeteptor agonists) [163].
Testing new treatments or combination of medicatiantime consuming and
expensive. Therefore, a simulator to perform IS@TTRD would be highly
desirable. Very recently, we have developed a singkal T2D simulator [164]
using a data base of 51 T2D subjects [36][60][6&23]1 studied with the triple-
tracer meal technique [40] and following the susfidsmodeling methodology
employed in the development of the T1D simulator.

Figure 15.A reports the mean * standard deviat®D)(of measured plasma
glucose, insulin and C-peptide concentrations,eREGP and U in T2D subjects.
The model scheme describing the glucose-insuliaraation in T2D subjects is
shown in figure 15.B (we refer to [164] for the qalete list of model equations
and the meaning of the model parameters).
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Briefly, the model derives from that proposed byi®&an and colleagues in 2007
[133]. Like the original model, this one descrilibe glucose transit through the
gastro-intestinal tract, the action of insulin dnogse utilization and endogenous
production, and the control of glucose on insuéarstion. The glucose subsystem
is described by a two-compartment model [133]: linsindependent utilization
occurs in the first compartment, representing p&asnd rapidly equilibrating
tissues, while insulin-dependent utilization occumsa remote compartment,
representing peripheral tissues. At variance wli88], a three-compartment model
is used to describe insulin kinetics in the livé}, (in the plasma ¢), and in
extravascular spacee() [166][167]. A two-compartment model is also added
describe C-peptide kinetics [23][25].

Metabolic fluxes accounted in the model are EGReRalucose utilization (U),
B-cell insulin secretion rate (ISR), and hepaticulims extraction (HE). EGP
suppression is assumed to be linearly dependeptasma glucose, liver insulin,
and a delayed plasma insulin signal [88]; one ekity model parameters is hepatic
insulin sensitivity (ks), which quantifies insulin control on EGP suppiess
Ranealis described with a three compartment model, ®presenting the stomach
(solid and triturated compartments), and one thgXfi8]. Glucose utilization, U,
is made up of two components: insulin-independéitization (Uii) in the brain
and erythrocytes is assumed constant, while insldjpendent utilization () in
muscle and adipose tissues depends nonlinearlyh@dls—Menten) from glucose
in the tissues [169]; one of the key model pararsagedisposal insulin sensitivity
(Vmx). The model also assumes that, when glucose dms&low its basal value,
a paradoxical increase in insulin sensitivity os¢@s previously described [130].
ISR is assumed to be made of a basal, a dynamiaastdtic component, and
modeled as in [48], HE is assumed to be linearlgited to plasma glucose
concentration as in [167].

The availability of the glucose fluxes in additimplasma glucose, insulin and C-
peptide concentrations, allowed identifying the elody using a system
decomposition and forcing function strategy, patalh what was done in [133].
The parameter estimates, obtained from model ifileation in the 51 T2D
subjects, were used to build up the joint paramdiribution, which allowed to
generate a T2 silico population.

The model well predicted glucose, insulin, C-peptiHGP, Raea and U data of
T2D subjects and the distributions of some key ipatars in T2D vs healthy
subjects (H) are reported in [164].

A population of 100in silico T2D subjects was generated. Simulated plasma
glucose, insulin and C-peptide are compared with @dta [164]. Results show a
good agreement between simulations and data ba#mrs of population median
and variability.

An interesting peculiarity of the simulator, besdeell covering the average
dynamics, lies in the possibility to evaluate tffecacy of a given treatment in rare,
but not so rare, subjects, as discussed in a tadgis [164].

This new T2D simulator has the potential to aceséethe research needed to put
on the market new antidiabetic drugs. By allowimg ¢valuation of many treatment
scenarios in a cost-effective way.
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The availability of 100 virtual subjects is impaontasince it allows runningp silico
large-scale trials, as usually occurs in phasditical trials. In addition, since
virtual subjects can undergo the identical expenitsescenario several times, one
can implement an ideal crossover design, where iplogical intra-subject
variability is minimized (and controlled by the estigator).

Furthermore, the possibility to virtually recruitsabset of subjects with common
characteristics, as shown in the case study of][f@6dmits to extensively study
situations characterized by extreme parameter k&cteampled from the
distribution tails. This could possibly be used d@timizing diabetes therapy also
in such rare pathological conditions.

The domain of validity of the simulator is currgnthe single meal scenario. This
might be a limitation for testing treatments thaigimh have a different effect
depending on time of administration. For exampbagtacting insulin analogues
might lead to a different glucose profile dependamgmorning or evening dosing,
as already observed in T1D [170]. A future modédinement will include the
description of intra-/inter-day variability of keyodel parameters, similarly to
what has been recently done in H and T1D [63][6#)s improving the simulator
reliability on long-term scenarios. In this regaah ongoing study in T2D will
provide important insights on intra- and inter-dayiability of insulin sensitivity
and beta-cell function [171].

CONCLUSIONS

In this paper we have accompanied the reader tmodel-based understanding of
the glucose system. We have started with a coh@serical background to put our
story in a proper perspective. Focus has beemimimal modelsand maximal
models

Minimal models provide parametric portraits of tflecose-insulin system from a
physiological test, either an MTT or and OGTT. om® sense, minimal models
allow to implement Galileo Galilei’s statement vehieaching at our University in
1592-1610 “...measure what is measurable and maksumable what is not...".The
key role of tracers to arrive at a more detailedhtbody picture of insulin action
by segregating disposal and liver insulin sensitilias been discussed. Powerful
multi-tracer techniques, i.e. the multiple trac#uttbn and the positron emission
tomography, which allow to arrive at a more intingticture insulin action on
skeletal muscle has been emphasized. Finally, 1scdtie modeling aiming to
effectively capture biological interdependencied arteractions among multiple
scales has been discussed for insulin secretiarlbation whole-body indices to
cellular secretory parameters.

Maximal models allow to perforin silico studies in life sciences and clinical trials,
following their successful but easier use in phgisiend engineering sciences.
Tracers have also allowed to move from a paramietiacflux portrait, enabling the
guantitative assessment of postprandial glucosabuksm, andie factoallowing

to put large scale simulation of Type 1 and Typksebetes on solid data-bases. The
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FDA accepted UVA/Padova Type 1 simulator was arrecgdented event in the
biological modeling community and proved to be ayuwgseful tool to safely and
effectively testin silico artificial pancreas control algorithm, glucose ses for
non-adjunctive use and new insulin molecules.
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Figure Legends

Figure 1: Top panel: Mixed meal (left) and OGTT(right) plasiglacose (top),
insulin (middle) and C-peptide (bottom) in the sasubject. Bottom panel:
Partition analysis of the system allows to sepé&ragstimate insulin sensitivity,
beta-cell responsivity and hepatic extraction withine confounding effect of the
two other parameters. Relevant input and outpmutads of the three models are
shown (adapted from [35]).

Figure 2: The oral glucose minimal models which allow to msiie insulin
sensitivity (top panel), beta-cell responsivity dellie panel) and hepatic insulin
extraction (bottom panel (adapted from [35]).

Figure 3: Schematic diagram to illustrate the importancexyressing beta-cell
responsivity in relation to insulin sensitivityilkistrated by using the disposition
index metric, i.e. the product of beta-cell respatgtimes insulin sensitivity is
assumed to be a constant. Left panel: A normakstiljgtate I) reacts to impaired
insulin sensitivity by increasing beta-cell resguitg (state 11) while a subject with
impaired tolerance does not (state 2). In stabetd-cell responsivity is increased
but the disposition index is unchanged, and nomghatose tolerance is retained
normal, while in state 2 beta-cell responsivitynisrmal but not adequate to
compensate the decreased insulin sensitivity (atand glucose intolerance is
developed. Right panel: Impaired glucose toleraacearise due to defects of beta-
cell responsivity and/or defects of insulin sengii In this hypothetical example,
subject X is intolerant due to her/his poor bettzIl function, while subject Y
has poor insulin sensitivity. The ability to diss¢he underlying physiological
defects (insulin sensitivity or beta-cell respoitgivallows to optimize medical
treatments (adapted from [35]).

Figure 4: The labeled oral minimal model which allows taraste disposal insulin
sensitivity (adapted from [35]).

Figure 5: Skeletal muscle major glucose processes: diffudimifrom the
intersitium, active transport in and out of thd,cahd phosphorylation/metabolism.

Figure 6: The 5k model of fF]JFDG in skeletal muscle: &ds [\®F]FDG plasma
arterial concentration, Cextracellular concentration ofF]JFDG normalized to
tissue volume, €[*¥F]FDG tissue concentration, Cnfff]JFDG — 6 — P tissue
concentration, C totdPF activity concentration in the ROI,1Kml/ml/min] and k
[min~!] the exchange between plasma and extracellularespa[min~] and k
[min~1] transport in and out of cells kmin~] phosphorylation.

Figure 7: The three PET tracer protocol to study glucoséusiibn through
capillary membrane, active transport into the catld metabolism.

Figure 8: Left panel: Grodsky's [32] model with a large regepool and a small
labile pool of insulin packets with different thhedds. Right panel: The model
[104] with a pool of docked insulin granules (D);eadily releasable pool (RRP)
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and a pool of fused granules (F) releasing insdle model assumes that beta-
cells have different activation threshold with resfpto the glucose concentration
(G) by distinguishing between RRP granules in a&ctells (denoted H(G), filled
circles) and in silent cells (open circles) (adddtem [2] and [104]).

Figure 9: Scheme of the dual (left) and the triple tracagh(ripanel) protocol. In
the dual tracer protocol the first tracer is mixeith the meal and the second one
is infused intravenously with a constant rate.Hae triple tracer protocol the first
tracer is mixed with the meal, the second one fissed intravenously trying to
mimic the expected pattern of EGP and the thirdisnmgused intravenously trying
to mimic the expected pattern of Ra

Figure 10: TTRexo (in dpmfumol) (upper) and TTRd(in dpmfumol) (lower panel)
used in the triple tracer methods in 8 healthyeetisj TTR are in dpmmol since

in this study the i.v. infused tracer is radioaetiyl17Errore. L'origine
riferimento non e stata trovata. Vertical bars represent standard error (adapted
from [117]).

Figure 11: Scheme of latest version of the UVa/Padova T1D kitay
incorporating time-varying parameters describinggaiday variability of insulin
sensitivity and dawn phenomenon. The simulator atstudes various insulin
delivery routes (subcutaneous fast-acting insutimadermal and inhaled insulins)
and glucose monitoring devices (both CGM and SMB@gapted from [131]).

Figure 12: Simulated plasma glucose (upper) and insulin (Iquegrels) in the 100
in silico adults (left), adolescents (middle), and childféght panels) available in
the UVa/Padova T1D simulator. Subjects underwett-aour scenario with three
identical meals (60 g of CHO) at 7:00 am, 1:00 @m0 pm, respectively, and
received optimal subcutaneous insulin basal anash@dapted from [131]).

Figure 13: The use of the UVa/Padova T1D simulator for testiagy molecules:
once the PK-PD of the molecule under investigati®nincorporated in the
simulator, simulations can be run predicting clithicutcomes, e.g. optimal dosing,
safety and efficacy.

Figure 14: Block-scheme representing the T1D patient decisiomlator. Arrows
entering each block are inputs, while arrows egitime causally-related outputs.
The input of the simulator is the sequence of mealsle the output is the BG
concentration profile. The simulator includes pagters describing the patient's
physiology and therapy. The picture reports repretive time courses for meals
in input and BG in output for a simple scenariavimich the patient takes 50 g for
breakfast at 07:00 am (adapted from [159]).

Figure 15: Upper panel: average (filled circle) + standardiagon (SD, shaded
area) plasma glucose, insulin and C-peptide coretgm and estimated
endogenous glucose production (EGP), glucose rfaspmearance (Raa) and

glucose utilization (U) in T2D subjects (N=51). Lempanel: scheme of the T2D
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simulation model. Metabolic fluxes are indicatedhwcontinuous lines, while
control actions are represented by dashed linespi&d from [164].
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TABLE 1. Oral Minimal Model Indices

Beta Cell Responsivity
Dynamic Component ®q Amount of Dynamic Phase Secreted Insulin per Unit
(10-9) Increase of Glucose Concentration
Static Component @ Over Basal Average Static Phase Secretion per Unit
(109min) Over Basal Average Glucose Concentration
Delay T Delay between Static Phase Secretion and Glucose
(min) Concentration
Total ® (10-min-1) Overall Responsivity from ®q and ®s

Insulin Sensitivity

Insulin Sensitivity Si Effect of Insulin to Stimulate Glucose Disposal and
(10-5d1-kg!- min'! per pmol-11) Inhibit Glucose Production

Disposal Insulin Sensitivity S;°
Effect of Insulin to Stimulate Glucose Disposal
(10-5dl-kg1- min-! per pmol-1-1)

Liver Insulin Sensitivity Si
Effect of Insulin to Inhibit Glucose Production
(10->dl-kg1- min-! per pmol-I1)

Disposition Indices

Dynamic Phase Disposition Index Dlgq

Dyx S
(10-14dl-kg-1-min-1 per pmol-1-1)
Static Phase Disposition Index DI

q)s X SI
(10-14dl-kg1-min-1 per pmol-1-1)
Total Disposition Index DI

dPxS;

(10-14dl-kg1-min-1 per pmol-1-1)

Hepatic Insulin Extraction

Hepatic Extraction HE Average fractional secreted insulin extracted by the
(%) liver during the first pass
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