

Abstract

In the past decade, deep learning has given new life to the field of artificial intelligence, provid-

ing many breakthroughs in areas like computer vision, natural language processing, audio, game-

playing, and biology. The past few years have seen a particular interest in developing and applying

deep learningmodels that can operate on graph-structured data, also called graph neural networks

(GNNs). This is not surprising, as graphs are core data structures that are used to model rela-

tionships between different entities, which is a common scenario that appears inmolecules, social

networks, and physical interactions, just to cite a few.

GNNs have achieved many successes, and have been studied from both a theoretical, and a

practical point of view. However, several questions remain unanswered. In this thesis, we focus

on three open questions regarding practical aspects of GNNs, and we propose effective solutions

for tackling them.

The first question concerns global structural information, i.e., information that depends on

the global structure of the graph. This kind of information is particularly difficult to capture for

GNNs, which are targeted towards local interactions. While global structural information has

been previously overlooked, we show that it has an important impact on practical applications,

and we propose a regularization strategy to provide this information to GNNs during training.

The second question concerns size-generalization, which is the ability of GNNs to generalize

from small to large graphs. While GNNs are designed to operate on graphs of any size, it is ob-

served that when trained on small graphs, they struggle at generalizing to large graphs. This is

particularly problematic, as in certain domains, obtaining labels for large graphs is prohibitive.

Furthermore, training on large graphs may require expensive computational resources. We pro-

pose a novel regularization strategy, that can be applied on any GNN, and that can improve size-

generalization capabilities of up to 30%.

The third question focuses on multi-task settings. GNNs work by exchanging messages be-

tween nodes, and using learnable functions to produce node embeddings that encode structural

and feature-related information. During training, GNNs tend to optimize the produced embed-

dings to the training loss, making it hard to reuse them effectively for different tasks. This requires

the training of multiple models, and the use of different embeddings for different tasks. We pro-

pose a training strategy based on meta-learning that provides a single set of embeddings that can

be used to performmultiple tasks while achieving performance comparable to those of single-task

end-to-end trained models.

iii

Acknowledgements

First of all, I would like to thank my supervisor, Fabio Vandin. I am extremely grateful for the

freedom he has given me in choosing the research topics that would most interest me, and for

being a great person that truly cares about others. Working with Fabio has taught me many skills

that I will treasure for the rest of my career in research.

During my PhD I had the pleasure to share the office at the University of Padova with so many

talented people: Andrea Tonon, Antonio Collesei, Dario Simionato, Diego Santoro, Ilie Sarpe,

LeonardoPellegrina, andThachVănBùi. While I amgrateful to every single one of them, a special

thanks goes to Diego and Ilie. We started the PhD together, and we are now finishing it together.

Sharing experiences, frustrations, and chats with you has been an important component of this

journey.

During the PhD I had the immense luck of meeting many great researchers that have played a

big role in my professional development.

While the global pandemic has created a lot of challenges, and forced everyone to work from

home, I was very lucky to be able to do an internship at Samsung AI in Cambridge (UK). I would

like to thank Efthymia Tsamoura, for supervising me during the internship, and for transmitting

her dedication to research. While the pandemic forced everyone towork fromhome, andmeeting

people was not easy, I would still like to thank the very talented people I met at Samsung AI: An-

toine Toisoul, Brais Martinez, Da Li, Jan Stuhmer, Juan-Manuel Perez-Rua, Shell Xu Hu, Tim-

othy Hospedales, and Vladimir Pavlovic. Moving to Cambridge at the peak of the pandemic has

been really challenging, and I would like to give a huge thanks to Alex Bailey, for being incredibly

kind and for going the extra mile to help me in this process.

I am immensely grateful to Pietro Liò for hosting me in his group at the University of Cam-

bridge. Pietro is one of the most kind, welcoming, and stimulating person, researcher, and pro-

fessor I know, and I have grown a lot by working with him. I would also like to thank all the

amazing people I have met there and that made the experience even better: Alexander Norcliffe,

Antonio Longa, Arian Jamasb, Carlos Purves, Cătălina Cangea, Chaitanya Joshi, Charlie Har-

ris, Charlotte Magister, Cristian Bodnar, Dobrik Georgiev, Emanuele Rossi, Gabriele Ciravegna,

Gianluca Mittone, Iulia Duta, Luna Pianesi, Mateo Espinosa Zarlenga, Niccolò Pancino, Nikola

Simidjievsky, Paul Scherer, Pietro Barbiero, Shyam Tailor, SimonMathis, and Steve Azzolin.

I would also like to thank BastianRieck, for hostingme at theHelmholtz Institute, and for just

being an awesome person. Bastian has a true passion and enthusiasm for research, and I hope to

continue learning from him.

Right before the end ofmy PhD, I had the chance to intern atMeta AI in London. The experi-

ence here has been transformative, and I thoroughly enjoyed every second of it. It is quite impres-

iv

sive to see so much talent, knowledge, and great research, all in one place. Here I was lucky to be

supervised by Vassilis Plachouras, which I would like to thank for giving me a lot of freedom and

trust, and for always asking the right questions. I would also like thank my collaborators Ashish

Gupta and Agnieszka Strzalka, for being always available, and open to share their knowledge. I

also need to thank the whole team: Abdalgader Abubaker, Ciprian Pãtru, Daniel Lobato Gar-

cia, Ekaterina Trimbach, Konstantinos Papakonstantinou, Oleksandr Pryymak, Rishabh Agar-

wal, TakanoriMaehara, Yatharth Saraf, and co-internChrisMingard (thank you for all the shared

discussions and rants about politics). Everyonemademe feelwelcome from the very firstmoment,

and working in this team has been an unforgettable and invaluable opportunity.

I want to thank my closest friends, that supported me in so many ways, and without whom

I would not be the person I am today: Alberto Baci Ferrari, Alberto Fiocco, Andrea Daldosso,

Carlo Alberto Campedelli, Enrico Giacomazzi, Giacomo Lucchi, Giacomo Luisi, Jacopo Mon-

tolli, Leonardo Cristini, Michele Scandola, Nicola Scardoni, Piergiorgio Rudella, Riccardo Bon-

fante, Riccardo Antonelli, Silvio Cardo, and Stefano Signorini. You probably did not even realise

it, but your unconditional belief in me, and the many laughs, trips, plates of food, and (maybe

some might say too many, but that is questionable) drinks, have been fundamental for overcom-

ing the low moments, and for encouraging me to keep going forward.

I would also like thank my family, for always caring for me and supporting my decisions, and

simply for being present when I needed it. Finally, the biggest thank you goes to Cloé, for always

being there, at every step of this journey. You have helped me go through the difficult moments,

and made the best moments even better. I could not have wished for a better person by my side.

v

Contents

1 Introduction 1

1.1 Thesis Contributions and Layout . 3

2 Preliminaries 5

2.1 Graphs . 5

2.1.1 TheWeisfeiler-Leman Algorithm . 6

2.1.2 RandomWalks . 8

2.1.3 Graph Coarsening . 9

2.2 Representation learning . 10

2.2.1 Graph Representation Learning . 11

2.3 Graph Neural Networks . 12

2.3.1 Examples of Graph Neural Networks 14

2.3.2 Connection to theWeisfeiler-Leman Algorithm 17

2.3.3 Oversmoothing &Oversquashing 18

3 The Impact of Global Structural Information in Graph Neural Net-

works 19

3.1 RandomWalks can empower Graph Neural Networks 20

3.1.1 Empirical Analysis . 22

3.2 Injecting Global Information inMPNNs . 23

3.2.1 Types of Global Structural Information Injection 24

3.2.2 Choice of Models . 26

3.2.3 Training & Implementation Details 27

3.3 Evaluation of the Injection of Global Structural Information 30

3.4 Practical Aspects . 33

3.4.1 RWRReg . 34

3.4.2 Fast Implementation of the RandomWalk with Restart Regularization 37

3.5 RelatedWork . 37

3.6 Conclusions . 39

vii

Contents

4 Improving Size-Generalization in GraphNeural Networks 41

4.1 Preliminaries . 43

4.1.1 Centered Kernel Alignment . 43

4.1.2 Central Moment Discrepancy . 43

4.2 OurMethod . 44

4.2.1 Limitations . 45

4.3 Analysis of Node Embeddings . 46

4.4 Evaluation . 48

4.4.1 Results . 50

4.4.2 Ablation Study . 52

4.5 RelatedWork . 53

4.6 Conclusions . 56

5 LearningMulti-Task Representations 57

5.1 Preliminaries . 58

5.1.1 Multi-Task Learning . 59

5.1.2 Model-Agnostic Meta-Learning and ANIL 59

5.2 SAME: Single-Task Adaptation for Multi-Task Embeddings 60

5.2.1 Episode Design . 61

5.2.2 Model Architecture Design . 63

5.2.3 Meta-Training Design . 63

5.2.4 Connection between SAME and other Optimization-based Meta-

LearningMethods . 65

5.3 Experiments . 66

5.3.1 Experimental Setting . 66

5.3.2 Results . 68

5.4 RelatedWork . 73

5.5 Conclusions . 74

6 Conclusion 75

6.1 Future Work . 75

Acronyms 77

Bibliography 79

viii

1 Introduction

While we are still far from the advent of intelligentmachines that can rival those from the best sci-

fi books and movies, the field of Artificial Intelligence (AI) is as active as ever, and new research

progress emerges at unprecedented speed. One family of methods in particular deserves a special

mention, and it is that of deep learning, which has played a central role in many of the biggest AI

accomplishments of the past years: from beating the world champion at GO [194], to enabling

autonomous driving, powering virtual assistants, and almost perfectly solving the protein folding

problem [113].

Deep learning is a specific class of machine learning models, i.e., models that learn how to per-

form a given task by observing labelled examples1. The class of deep learning models is composed

of deep neural networks, which are mathematical models loosely inspired by the brain.

While neural networks have a long history [93, 152, 180, 184], 2012 has been the breakthrough

year for deep learning, with the introduction of the AlexNet model [128]. AlexNet showed that

convolutional neural networks could perform image classification significantly better than any

other machine learning method, and that GPUs can dramatically speed up the computations re-

quired for thesemodels. The past ten years have only seen deep learningmethods rise and become

arguably the most popular techniques in the fields of machine learning and AI.

After the breakthrough in computer vision, deep learning methods have started taking over

the natural language [12, 204], audio [94, 169], and reinforcement learning [158] domains. These

successes have been enabled by a combination of factors including more efficient hardware (and

better software support), and increased availability of data. Another important factor to men-

tion regards the advancements in our understanding of how to identify the right inductive biases

[157] for given tasks. The term “inductive bias” refers to the set of assumptions that are incorpo-

rated into the model (either with the choice of architecture, the training procedure, the training

objective, or the training data), and that impact how the model generalizes to unseen data.

In fact, convolutional neural networks [72, 131]work particularly well on images because they

share parameters across image locations, whichmakes them invariant to the position of the objects

in the image, while recurrent neural networks [95, 184]work particularly well on sequential data,

1In contrast to the traditional computer science approach of writing a sequence of instructions outlining how to
solve a given task.

1

1 Introduction

as they share parameters across time-steps. However, these kind of models are not suitable for

data represented with graphs, and manifolds, where there is no global system of coordinates, or

shift-invariance, and, as a results, these domains remained untouched by the first wave of deep

learning breakthroughs. Nevertheless, things rapidly changed in 2016, with the “official” birth of

theGeometricDeepLearning [30] research field2. This new area of research focused ondeveloping

neural networks that could take as input data that lives in non-Euclidean spaces. One particular

case that has received a lot of attention is that of neural networks that canprocess graph-structured

data, also calledGraph Neural Networks (GNNs), which are, to this day, one of the most popular

keywords in many top tier research venues.

The reason behind the large interest in these methods is that graph-structured data appears in

a huge variety of domains. Graphs are used to represent social networks, physical interactions,

molecules, transportation networks, meshes, transaction networks, and in general any kind of

relational data. Unsurprisingly,GNNshavebeen appliedwith success in a large variety of domains

(e.g., chemistry [73], biology [123], recommender systems [224], and transportationnetworks [58],

just to cite a few).

At a high level, GNNs operate on the input graph by exchanging messages between connected

nodes, while using neural networks to create and process thesemessages in order to obtain a vector

representation (also called embedding) for each node that can help perform downstream tasks. A

lot of work has been done to study the theoretical properties of GNNs (e.g., identifying the class

of graphs that they are able to distinguish [216]), and improve practical aspects (e.g, scaling to

billion nodes graphs [67]), but several questions remain open.

The work presented in this thesis aims at introducing new techniques to improve the effective-

ness of GNNs in practical applications, and is driven by the following three questions.

1. Is global structural information important for GNNs applications on graphs, and how can

it be exploited by GNNs? Contrary to other deep learning models, which obtain better

performance with deeper architectures [92], GNNs seem to perform best when applied

with a relatively small number of layers. This however limits the capability of GNNs of

extracting information that depends on the global structure of the graph (more details on

this are presented in Chapter 2.3.3).

2. Can we improve the generalization properties of GNNs from small to large graphs? In many

domains, it ismuch easier to obtain labels for smaller graphs than it is for larger ones (e.g., in

combinatorial optimization problems). Furthermore, training on smaller graphs requires

less computational resources. While GNNs are designed to be able to operate on graphs

2There was already research in this area, but this was the moment in which the field got united under the umbrella
term of “Geometric Deep Learning”.

2

1.1 Thesis Contributions and Layout

of any size, it is observed empirically that when trained on small graphs they struggle at

generalizing to larger ones.

3. Canwe trainGNNs to produce embeddings that are effective formultiple tasks? GNNs tend

to produce embeddings that are “optimized” for the task defined by the training loss. When

there are multiple downstream tasks to perform, it is then needed to have multiple models

(one for each task). However, in many scenarios it is desirable to have a single set of node

embeddings which can be used to performmultiple downstream tasks of interest.

1.1 Thesis Contributions and Layout

This thesis starts in Chapter 2, with a background section presenting the main topics on graphs,

graph representation learning, and GNNs, that are at the base of the work presented in the later

chapters.

The main contributions of this thesis are three studies around practical shortcomings of

GNNs, with the proposal of novel solutions for overcoming them. In more detail, we summa-

rize our main contributions as follows.

• In Chapter 3 we tackle the question of whether global information (i.e., information that

depends on the global structure of the graph) is needed in GNN applications. We empir-

ically address this question by giving access to global information, such as the statistics of

random walks, to several GNN models, and observing the impact it has on downstream

performance. Our results show that global information can in fact provide significant ben-

efits for common graph-related tasks. We further identify a novel regularization strategy

based on randomwalks with restart that leads to an average accuracy improvement ofmore

than 5% on all considered tasks, which include both inductive and transductive scenar-

ios. The use of randomwalks with restart is further supported by a theoretical connection

showing they can be used to speed-up theWeisfeiler-Leman algorithm.

• In Chapter 4 we propose a regularization strategy to improve the size-generalization capa-

bilities of GNNs. We consider the scenario in which we only have access to the training

data, and we propose a regularization strategy that can be applied to any GNN to improve

its generalization capabilities from smaller to larger graphs without requiring access to the

test data. Our regularization is based on the idea of simulating a shift in the size of the

training graphs using coarsening techniques, and enforcing the model to be robust to such

a shift. Experimental results on standard datasets show that popular GNNmodels, trained

on the 50% smallest graphs in the dataset and tested on the 10% largest graphs, obtain per-

formance improvements of up to 30% when trained with our regularization strategy.

3

1 Introduction

• In Chapter 5 we introduce a method based on meta-learning that trains GNNs to pro-

duce node embeddings that can be used to perform multiple downstream tasks with per-

formance comparable to those of separate single-task end-to-end trainedmodels. In partic-

ular, we exploit the properties of optimization-basedmeta-learning to learnGNNs that can

produce general node representations by learning parameters that can quickly (i.e., with a

few steps of gradient descent) adapt to multiple tasks. This is in contrast to traditional

multi-task learning approaches that instead try to directly learn to solve multiple tasks con-

currently.

The contents of this thesis are based on the following publications completed during the course

of my PhD:

• Davide Buffelli, Fabio Vandin, “The Impact of Global Structural Information in Graph

Neural Networks Applications”,Data, 2022 [36].

• Davide Buffelli, Fabio Vandin, “Graph Representation Learning forMulti-Task Settings:

a Meta-Learning Approach”, Proceedings of the International Joint Conference on Neural

Networks (IJCNN), 2022 [35]. An earlier version of this work was also presented at the

NeurIPSWorkshop onMeta-Learning (MetaLearn) 2020 [33].

• Davide Buffelli, Pietro Liò, Fabio Vandin, “SizeShiftReg: a Regularization Method for

Improving Size-Generalization inGraphNeuralNetworks”,Proceedings of the Thirty-sixth

Conference on Neural Information Processing Systems (NeurIPS), 2022 [31].

Other works performed during my PhD studies that however are not part of this thesis are the

following (* indicates equal contribution):

• Davide Buffelli, Fabio Vandin, “Attention-Based Deep Learning Framework for Human

Activity Recognition with User Adaptation”, IEEE Sensors Journal, 2021 [34].

• Davide Buffelli*, Efthymia Tsamoura*, “Scalable Theory-Driven Regularization of Scene

GraphGenerationModels”, (to appear in) Proceedings of the Thirty-Seventh AAAI Confer-

ence on Artificial Intelligence (AAAI), 2023 [32].

• Rishabh Jain, Gabriele Ciravegna, Pietro Barbiero, Francesco Giannini, Davide Buffelli,

Pietro Liò, “Extending Logic Explained Networks to Text Classification”, (to appear in)

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

(EMNLP), 2022 [102].

4

2 Preliminaries

In this section we introduce the main concepts behind the work presented in this thesis, and we

introduce the notation along the way.

Basic Notation. We use lowercase bold letters to indicate vectors v ∈ ℝ𝑑, and uppercase

bold letters to indicatematricesM ∈ ℝ𝑛×𝑚. We use the subscript “𝑖” to indicate the 𝑖-th element

of a vector (𝑣𝑖), while we refer to the element in the 𝑖-th row and 𝑗-column of a matrix with the

subscript “𝑖, 𝑗” (𝑀𝑖,𝑗). To indicate the 𝑖-th rowof amatrixweuse the subscript “𝑖, ∶” (M𝑖,∶), while

for the 𝑗-th column we use “∶, 𝑗” (M∶,𝑗). We use I to indicate the identity matrix, i.e., the matrix

where all entries in the main diagonal are equal to 1, and all other entries are zero. We usually do

not specify the dimensionality of the identity matrix and imply it is the appropriate one for the

context.

2.1 Graphs

Let 𝐺 = (𝑉 , 𝐸) be a graph, where 𝑉 is the set of nodes with size 𝑛, and 𝐸 ⊆ 𝑉 × 𝑉 is the set

of edges. For a node 𝑣 ∈ 𝑉, we use 𝒩𝑣 to indicate the set of its one-hop neighbours (i.e., the nodes

connected to 𝑣 by an edge). The size of the neighbourhood of a node is called its degree (indicated
with degree(𝑣) = |𝒩𝑣|), and it is common to define the degree matrix as the diagonal matrix

D ∈ ℝ𝑛×𝑛 with ⎧{⎨{⎩
𝐷𝑖,𝑖 = degree(𝑖) for 𝑖 = 1, … , 𝑛
𝐷𝑖,𝑗 = 0 for 𝑖, 𝑗 = 1, … , 𝑛, 𝑖 ≠ 𝑗 .

A path in a graph is a sequence of distinct nodes 𝑣1, 𝑣2, … , 𝑣𝑘 with (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸 ∀𝑖 =
1, … , 𝑘 − 1, and we say it has length 𝑘 − 1 if it traverses 𝑘 − 1 edges. A walk instead is a se-

quence of nodes 𝑣1, 𝑣2, … , 𝑣𝑘 with (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸 ∀𝑖 = 1, … , 𝑘 − 1 in which nodes (and

edges) do not need to be distinct. We say two nodes 𝑢 and 𝑣 are at distance 𝑘 in the graph if there

is a path of length 𝑘 that starts at 𝑢 and ends at 𝑣 and no path of length shorter than 𝑘 exists be-

tween the two nodes. When we use the term “𝑖-hop neighbourhood” of a node 𝑣, we refer to the
set of nodes with distance at most 𝑖 from 𝑣. An attributed graph ̂𝐺 = (𝑉 , 𝐸, 𝑋), is a graph in
which every node has an associated feature vector. In particular, 𝑋 is a function that maps each

5

2.1 Graphs

0
2

4

6

5

3

1
1

3

5

0
6

4

2

Figure 2.2: Example of two isomorphic graphs. The bijective function between the vertices of the two
graphs that determines the isomorphism is 𝑓(𝑣) = (𝑣 + 1) mod 7, where 𝑣 belongs to the
graph on the left.

that at the 𝑖-th iteration, the color of a node is given by its color at iteration 𝑖−1, and themultiset

of colors of its neighbours. As every node gets updated at every iteration, the color for a node at

iteration 𝑖 is influenced by the structure of its 𝑖-hop neighbourhood. In other words, two nodes
have the same color at the end of the 𝑖-th iteration if and only if their 𝑖-hop neighbourhoods have
the same structure (i.e., they are isomorphic).

More formally, following the terminology inMorris et al. [161] and Jegelka [103], a labelled graph

is a graph 𝐺 = (𝑉 , 𝐸) coupled with a labeling function 𝑙 ∶ 𝑉 → Σ, where Σ is an alphabet

(e.g., a sufficiently large subset of the natural numbers). Then, the 1-WL algorithm proceeds by

iteratively refining the coloring 𝑐(𝑡) ∶ 𝑉 → Σ for the graph as follows:

𝑐(0)(𝑣) = 𝑙(𝑣) (2.1)

𝑐(𝑡)(𝑣) = HASH(𝑐(𝑡−1)(𝑣), {{𝑐(𝑡−1)(𝑢)|𝑢 ∈ 𝒩𝑣}}) for 𝑡 > 0 (2.2)

where {{⋅}} indicates a multiset, and HASH is an ideal hashing function that assigns a different

color to every neighbourhood (i.e., an injective function from the input pair to Σ). Given two

graphs 𝐺1 = (𝑉1, 𝐸1), 𝐺2 = (𝑉2, 𝐸2), the algorithm compares their colorings {{𝑐(𝑡)(𝑣)|𝑣 ∈
𝑉1}} and {{𝑐(𝑡)(𝑣)|𝑣 ∈ 𝑉2}} at every 𝑡. If the multisets differ at any iteration, then the graphs

are certainly non-isomorphic, but if their coloring are the same at every iteration (the algorithms

stops when the coloring remain stable from one iteration to the other, which happens in at most

max{|𝑉1|, |𝑉2|} iterations), then it is not possible to conclude if the graphs are isomorphic or

not. A graphical illustration of the steps of the algorithm is shown in Figure 2.3. An example of

graphs that are not distinguishable by the 1-WL algorithm is the class of regular graphs with the

same number of nodes.

7

2 Preliminaries

Higher-order versions of the algorithm have been proposed to expand the class of distinguish-

able graphs [10, 39, 99], but it has been shown that the 1-WL is enough for most practical cases

[11, 235].

Iteration
0

Iteration
1

Iteration
2

Iteration
3

Figure 2.3: Graphical representation of the 1-WL algorithm. In this example there is a uniform initial col-
oring, so the first iteration distinguishes nodes with different degrees. If at iteration 𝑖 two nodes
have the same color, then their 𝑖-hop neighbourhoods have the same structure. After the third
iteration the coloring remains the same. The histograms at every iteration can be compared to
those of other graphs to determine if the graphs are not isomorphic.

2.1.2 RandomWalks

A random walk on a graph is a stochastic process that starts at a given node, and randomly moves

between adjacent nodes (i.e., nodes connected by an edge). As we consider unweighted graphs,

the neighbour to move to at every iteration of the random walk is chosen uniformly.

Formally, if we have a graph 𝐺 = (𝑉 , 𝐸) with 𝑛 nodes represented by an adjacency matrixA,

we then define the transitionmatrixW = D−1A, whereD is the degree matrix. Intuitively, if the

element in row 𝑖 and column 𝑗 ofW is non-zero, then it indicates the probability that a random

walker in node 𝑖 moves to node 𝑗. If we let p(0) ∈ ℝ𝑛, ∑𝑛

𝑖=1
𝑝(0)

𝑖 = 1 be the vector where the

𝑖-th element indicates the probability of starting the randomwalk at node 𝑖, it is then the possible
to obtain the probability that the random walk is in node 𝑢 after 𝑘 iterations by looking at the

𝑢-th element of (W⊺)𝑘p(0). In fact, the rule of the walk can be expressed as:

p(𝑖+1) = W⊺p(𝑖) ∀𝑖 > 0.
If the graph respects certain properties (it is irreducible and aperiodic), then the randomwalk con-

verges to a stationary distribution 𝑝(∞)
𝑣 = degree(𝑣)

2⋅|𝐸| . In other words, the probability of a random

walk being at a certain node (after a sufficiently large number of steps) does not depend on the

starting node, but on its degree. The stationary distribution can be obtained be computing the

eigenvector ofWwith associated eigenvalue of 1.

8

2.1 Graphs

Randomwalks on graphs are heavily studied [37, 74, 146, 166] and havemany practical use cases

[51, 70, 82, 186, 214].

RandomWalks with Restart

ARandomWalk with Restart (RWR) [170] is a randomwalk in which at every iteration there is a

certain probability that the walk “jumps back” to the starting node. Formally, for a starting node

𝑣, a RWR is expressed with the following equation:

r
(𝑖+1)
(𝑣) = (1 − 𝑐)W⊺r

(𝑖)
(𝑣) + 𝑐e(𝑣)

where r(𝑖)
(𝑣) is a vector of size 𝑛 where the 𝑗-th element indicates the probability that the RWR is

in node 𝑗 at iteration 𝑖, e(𝑣) is a vector where the 𝑣-th element is 1 and all the others are 0, 𝑐 is the
restart probability, and W is the transition matrix of the random walk. The restart probability

𝑐 defines the probability that the walk “jumps” back to the starting node (a common value for

𝑐, used in many libraries, is 0.15). The RWR vector for node 𝑣 is the steady state of the walk

r
(∞)
(𝑣) , and can be computed using the power iteration method. Over the years a large number of

methods have been developed for its efficient and practical computation, or approximation, even

for large scale graphs (e.g., see Lofgren [139] and Tong et al. [200]). Elements of r(∞)
(𝑣) capture the

relative relationships between nodes [200], and the RWR vectors capture the global structure of

the graph [91, 106]. Wewill use the termRWRmatrix to refer to thematrixR ∈ ℝ𝑛×𝑛 in which

the 𝑣-th row contains the RWR vector for node 𝑣, i.e.,R𝑣,∶ = r
(∞)
(𝑣) .

2.1.3 Graph Coarsening

Given a graph 𝐺 = (𝑉 , 𝐸), a coarsened version 𝐺𝑐 = (𝑉 𝑐, 𝐸𝑐) is obtained by partitioning 𝑉
and grouping together the nodes that belong to the same subset of the partition. More formally,

given a partition𝑃 = {𝑆1, 𝑆2, … , 𝑆𝑛′}where 𝑆𝑖 ⊆ 𝑉, 𝑆𝑖 ∩ 𝑆𝑗 = ∅,⋃
𝑖
𝑆𝑖 = 𝑉, we associate a

node 𝑠𝑖 to each subset 𝑆𝑖 and let

𝑉 𝑐 = {𝑠1, 𝑠2, … , 𝑠𝑛′}, and
𝐸𝑐 = {(𝑠𝑖, 𝑠𝑗) ∣ there is a node in 𝑆𝑖 connected to at least one node in 𝑆𝑗}.

The goal of graph coarsening is to generate a coarsened version of a graph (i.e., 𝑛′ < 𝑛) such that
specificproperties are preserved. For instance,Loukas andVandergheynst [145] aimat preserving the

principal eigenvalues and eigenspaces, while Jin et al. [107] aim at minimizing a distance function

that measures the changes in the structure and connectivity that occur in the coarsening process.

9

2 Preliminaries

Jin et al. [107] further prove that their algorithm bounds the spectral distance [111] between the

original and a “lifted” version of the coarsened graph.

2.2 Representation learning

The way that data is presented to a machine learning algorithm is of great importance [62]. The

way data is represented, or, in otherwords, the set of features used to describe the data, is called the

representation of the data. Traditionally, the task of determining the representation to use for the

data was donemanually, taking advantage of human expertise and prior knowledge. For example,

with regards to graph structured data, which is the focus of this work, traditional handcrafted

features include the extractionofproperties likenodedegrees, centralitymeasures [179], clustering

coefficient [164], and motif counts [226].

In modern machine learning, and specially deep learning [81], this task is instead automated

in the learning procedure. The term Representation Learning [20] refers exactly to the task of

learning the best representation for the data, where “best” can have many meanings, but usually

refers to the representation that can lead to the highest performance on the considered tasks (also

referred to as downstream performance). The quality of a representation is then strictly related to

the task(s) at hand. However, Bengio et al. [20] specify some general priors that should be behind

a good representation, e.g.:

• Smoothness: similar representations should lead to similar downstream outputs.

• Multiple explanatory factors: if the data generating distribution is generated by different

underlying factors, then the representation should allow todisentangle these factors of vari-

ation.

• Natural clustering: representations of objects from the same class should be close to each

other.

• Sparsity: the representation for a given input should contain only the relevant information.

Popular traditional representation learning techniques include the Principal Component

Analysis (PCA) [211], which has the goal of reducing the dimensionality of the data while pre-

serving the informative content, and Independent Component Analysis (ICA) [50], which is a

method for separating a multivariate signal into additive subcomponents. More recently, deep

learning [81] has become the most popular method for representation learning, in both super-

vised and unsupervised settings.

10

2 Preliminaries

in a graph. Consider our way of representing a graph through an adjacency matrix A and

a feature matrix X, as there is no canonical way of assigning an order to the nodes in the

graph, multiple adjacencymatrices can represent the same graph. More formally, given any

permutationmatrix1 P, the pair (PAP⊺,PX) is still representing the same graph. It is then

desirable to have methods that are equivariant or invariant to the ordering of the nodes.

An embedding function 𝑓 is equivariant to the ordering of the nodes if 𝑓(PAP⊺,PX) =
P𝑓(A,X) for all permutation matrices P, while it is invariant to the ordering of the nodes

if 𝑓(PAP⊺,PX) = 𝑓(A,X). Equivariant functions are used for node-level embeddings,

while invariant functions are used for graph-level embeddings.

Traditional GRL approaches were based on dimensionality reduction techniques, in which

the adjacency matrix is given as input and the target is to reduce its dimensionality while preserv-

ing some properties of the graph (e.g., pairwise distances between nodes) [17, 182, 199]. Succes-

sively, with the increasing popularity of deep learning, approaches based on neural networks have

started taking the spotlight. In particular, taking inspiration from the area of natural language

processing, where neural networks were used to produce word embeddings (e.g., seeMikolov et al.

[155] and Pennington et al. [174]), new approaches based on randomwalks were proposed [82, 176].

These approaches would use random walks to extract sequences of nodes, and then treat these

sequences as a corpus of phrases (where each node represents a word) and obtain embeddings

using techniques from the natural language processing literature. While these approaches have

been successful, they present some important limitations [86]: they do not leverage node features,

which contain important amounts of information, and they are inherently transductive, meaning

that they can only be used to generate embeddings for the nodes they are trained on. It is worth

mentioning that Yang et al. [220] extended these randomwalk-based approaches to overcome these

limitations, but the current state-of-the-artmethod forGRL is given byGNNs. GNNs overcome

the limitations of prior methods by being able to easily leverage features (which could be attached

to the nodes, edges, or could be global for the whole graph), and can be used in inductive settings,

i.e., they can be used to generate embeddings for nodes/graphs that were not seen during training.

2.3 GraphNeural Networks

Graph Neural Networks (GNNs) are neural networks that operate on graph structured data.

Since the first instances of GNNs have appeared [188, 195], the field has exploded in recent years

with a plethora of different architectures (e.g., seeCorso et al. [52], Kipf andWelling [121], Veličković

et al. [205], andXu et al. [216]) and applications (e.g., see Fung et al. [73], Klicpera et al. [123], Yasunaga

1A permutation matrix is a square matrix with exactly one entry with value 1 in each row and column, and 0 else-
where.

12

2.3 Graph Neural Networks

sentation of a node. If we let �̃�(𝑣) be a function that returns a neighbourhood of 𝑣 (and here

neighbourhood can refer to any generic set of nodes “around” 𝑣), then we can express the Graph-
Sage framework as follows:

m
(ℓ)

(�̃�(𝑣))
= Φ({{H(ℓ−1)

𝑢,∶ |𝑢 ∈ �̃�(𝑣)}}) (2.6)

H
(ℓ)
𝑣,∶ = 𝜎(W(ℓ) ⋅ CONCAT(H(ℓ−1)

𝑣,∶ ,m(ℓ)

(�̃�(𝑣))
)) (2.7)

WhereΦ can be any permutation invariant function. Some examples of �̃�(𝑣) are: uniform sam-

ples from the 𝑘-hop neighbourhood, or frequently visited nodes from fixed length randomwalks

starting at 𝑣.
Graph AttentionNetworks. The Graph Attention Network (GAT) [205] is a model de-

signed to enable the possibility of giving different “importance” to different neighbours through

an attention mechanism [12]. Given a, possibly learnable, attention function 𝑎, and projection

weightsW(𝑎), GAT performs the following computations:

𝑒(𝑣,𝑢) = LeakyReLu(𝑎(CONCAT(W(𝑎)H
(ℓ−1)
𝑣,∶ ,W(𝑎)H

(ℓ−1)
𝑢,∶))), ∀𝑢 ∈ 𝒩𝑣 (2.8)

𝛼(𝑣,𝑢) = exp(𝑒(𝑣,𝑢))∑
∀𝑘∈𝒩𝑣

exp(𝑒(𝑣,𝑘)) , ∀𝑢 ∈ 𝒩𝑣 (2.9)

H
(ℓ)
𝑣,∶ = 𝜎(∑

𝑢∈𝒩𝑣

𝛼(𝑣,𝑢)W
(ℓ)H

(ℓ−1)
𝑢,∶) (2.10)

where LeakyReLu(𝑥) = max(0, 𝑥)+𝜂min(0, 𝑥), with 𝜂 > 0. Themodel can then be extended

to use a multi-head attention mechanism, as introduced in Vaswani et al. [204]. The attention

mechanism allows the model to give different weight 𝛼 to different neighbours when computing

the aggregation function.

Graph IsomorphismNetwork. TheGraph IsomorphismNetwork (GIN) [216]was intro-

duced to enhance the expressive power of GNNs (see Section 2.3.2). This is achieved through the

use of learnable injective functions. GIN is formulated as follows:

H
(ℓ)
𝑣,∶ = MLP(ℓ)((1 + 𝜖(ℓ))H(ℓ−1)

𝑣,∶ + ∑
𝑢∈𝒩𝑣

H
(ℓ−1)
𝑢,∶) (2.11)

where 𝜖(ℓ) can be a learnable parameter or a fixed scalar, and MLP indicates a multi-layer percep-

tron.

15

2 Preliminaries

DiffPool. DiffPool [225] generates hierarchical representations of graphs, emulating the pool-

ing layer of a Convolutional Neural Network [129, 191]. Each pooling layer produces a coarser

representation of the graph that can ease the task of graph classification. DiffPool uses twoGCNs

at each layer. One that generates embeddings (GCN(ℓ)
embed), and another that generates a soft clus-

ter assignment matrix (GCN(ℓ)
pool), that is then used to obtain the feature and adjacency matrices

of the coarsened graph. The steps of DiffPool are provided below, where 𝑛(ℓ) is a hyperparame-

ter representing the number of clusters at layer 𝑙. At the last layer (𝐿) everything is pooled into a
single cluster/node to get the final graph embedding.

A(0),X(0) = A,X (2.12)

…
Z(ℓ) = GCN(ℓ)

embed(X(ℓ−1),A(ℓ−1)) (2.13)

S(ℓ) = GCN(ℓ)
pool(X(ℓ−1),A(ℓ−1)) (2.14)

X(ℓ) = S(ℓ)⊺Z(ℓ) (2.15)

A(ℓ) = S(ℓ)⊺A(ℓ)S(ℓ) (2.16)

…
Z(𝐿) = GCN(𝐿)

embed(X(𝐿−1),A(𝐿−1)) (2.17)

S(𝐿) = 1 (2.18)

𝜻 = S(𝐿)⊺Z(𝐿) (2.19)

Where we useA(ℓ),X(ℓ) to indicate the adjacency matrix and feature matrix for the pooled graph

at layer ℓ. As it produces a final graph-level representation, GraphSage is used only for graph-level
tasks.

𝑘-GNN. The main idea behind 𝑘-GNNs [162] is to consider groups of 𝑘 nodes, in order to

perform massage passing between subgraph structures, rather than nodes. This should allow the

network to access structural information that would not be available at node level. We present

here the tractable version of the 𝑘-GNN algorithm, as opposed to the theoretically more pow-

erful but intractable one. Let [𝑉]𝑘 be the set of all possible 𝑘-elements subsets over 𝑉. Let

𝑠 = {𝑠1, .., 𝑠𝑘} ∈ [𝑉]𝑘, then a neighbourhood of 𝑠 is defined as: 𝒩′(𝑠) = {𝑡 ∈ [𝑉]𝑘||𝑠 ∩ 𝑡| =
𝑘 − 1}. The 𝑙𝑜𝑐𝑎𝑙 neighbourhood is then defined as 𝒩′

(𝐿)(𝑠) = {𝑡 ∈ 𝒩′
𝑠|(𝑣, 𝑤) ∈

16

2.3 Graph Neural Networks

𝐸, for the unique 𝑣 ∈ 𝑠 𝑡, and the unique 𝑤 ∈ 𝑡 𝑠}. The propagation function of each layer is
then defined as, ∀𝑠 ∈ [𝑉]𝑘,

𝑓 (ℓ)
𝑘 (𝑠) = ⎧{⎨{⎩

𝑓 iso(𝑠) for ℓ = 0
𝜎(𝑓 (ℓ−1)

𝑘 (𝑠) ⋅ W(ℓ)
(1) + ∑

𝑢∈𝒩′
(𝐿)(𝑠)

𝑓 (ℓ−1)
𝑘 (𝑢) ⋅ W(ℓ)

(2)) for ℓ = 1, … , 𝐿
(2.20)

Where 𝑓 iso(𝑠) is a function returning a one-hot encoding of the isomorphism type of 𝑠. The
authors propose a hierarchical version that combines the information at different granularities,

where the initial feature vector of 𝑠 is given by a concatenation of the isomorphism type and the

features learned by a (𝑘 − 1)-GNN:

𝑓 (0)
𝑘 (𝑠) = 𝜎(CONCAT(𝑓 iso(𝑠), ∑

𝑢⊂𝑠

𝑓 (𝐿𝑘−1)
𝑘−1 (𝑢)) ⋅ W(𝑘−1)) (2.21)

where 𝐿𝑘−1 is the number of the last layer in the (𝑘 − 1)-GNN.

2.3.2 Connection to theWeisfeiler-Leman Algorithm

There is a strong connection between the 1-WL algorithm and MPNNs, which is described in

Theorem 2.1 (taken from Jegelka [103]):

Theorem2.1 ([162, 216]). If for two graphs𝐺1, 𝐺2 amessage passingGNN 𝑓 outputs 𝑓(𝐺1) ≠
𝑓(𝐺2), then the 1-WL algorithm will determine that 𝐺1 ≠ 𝐺2. A sufficient condition is that

the aggregate function Φ, the update function Ψ, and readout function Ω, are injective multiset

functions.

This connection, which was first noted by Kipf and Welling [121] and later expanded on by Xu

et al. [216], indicates that some GNNs inherit the capabilities of the 1-WL algorithm in distin-

guishing non-isomorphic graphs, which also implies they inherit its shortcomings, e.g., on regu-

lar graphs [8, 39, 118]. Comparing against the 1-WL algorithm has become the “standard” way of

measuring the theoretical expressiveness of GNNs. It is worthmentioning that while this connec-

tion gives interesting insights on the ability of different GNNs of distinguishing non-isomorphic

graphs, it does not always reflect practical performance. In fact, the presence of attributes on the

nodes of a graph can already make it possible to distinguish graphs that the 1-WL cannot distin-

guish [1]. Furthermore, while a GNN may have the theoretical ability of distinguishing all the

graphs distinguished by the 1-WL, there are no guarantees that the learning process will actually

reach a configuration of the parameters with this capability.

17

2 Preliminaries

Over the past few years, many GNNs with higher distinguishing power than the 1-WL algo-

rithmhave been proposed, usually at the cost of higher computational complexity, e.g., seeBodnar

et al. [24, 25], Cotta et al. [53], Maron et al. [150], Morris et al. [162], andMurphy et al. [163].

2.3.3 Oversmoothing &Oversquashing

Empirically, GNN architectures usually have a relatively small number of layers with respect to

the architectures used in other domains. In fact, in many popular domains like computer vision,

audio processing, and natural language processing, increasing the depth of the neural network has

shown to provide great benefits (e.g., seeHe et al. [92], Kenton and Toutanova [116], and Oord et al.

[168]). On the contrary, increasing the depth of GNNs often leads to much lower performance.

There are in fact two phenomenons, known as oversmoothing and oversquashing that are to blame

for this behavior.

Oversmoothing [136, 167] refers to the fact that the iterative message-passing mechanism at

the base of most GNNs, in which every node aggregates the information from its neighbours,

leads to all nodes having similar representations as the number of layers increases. Intuitively, if

we take the example of an aggregation function that computes the average of the representation

of the neighbours of a node, as the number of layers increases, the size of the neighbourhood

that impacts the representation of a node becomes bigger, and aggregating many representations

in a permutation invariant manner, pushes all nodes to a representation which is similar for all

nodes. In fact, it has been proven that the representations converge to a value that carries limited

information [167].

Oversquashing [5] instead refers to the distortion of messages coming from distant nodes. In

fact, as the number of layers increases, the aggregated message needs to encode information from

a usually exponentially increasing [45] number of nodes. Oversquashing causes the network to

necessarily drop information with the increase in the number of layers.

Many works have been proposed to tackle these issues, e.g., see Bodnar et al. [23], Chen et al. [44],

Topping et al. [201], and Zhou et al. [232], but it is still uncommon to encounter “deep” GNNs in

practice, and whether deep GNNs are needed or not is still an object of debate [29].

18

3 The Impact of Global Structural

Information in GraphNeural

Networks

GNNs are usually deployed with a “small” number of layers. In fact, empirically, the best results

are obtained when the message passing procedure is repeated a relatively small number of times

(typical numbers are 2 to 5), as a higher number of layers leads to oversmoothing [136] and over-

squashing [5] (introduced in Section 2.3.3). Consequently, practical GNNs are only leveraging

the graph structure in the form of small neighbourhoods around each node. A direct repercus-

sion of this limitation is that GNNs are not capable of accessing, or extracting, information that

depends on the whole structure of the graph (e.g., random walk probabilities [151]).

In this chapter we are interested in studying whether global information (i.e., information that

depends on the whole structure of the graph, and that cannot be recovered by just focusing on

local neighbourhoods) is important for GNNs and their practical applications.

In fact, there is an ongoing debate in the GNN research community on whether it is needed to

have “deep” GNNs [29], or, if most tasks of interest only require access to local neighbourhoods.

We tackle this question directly at its root, and address the overlooked aspect of whether global

structural information is useful for GNNmodels, by studying if global structural information is

important in practical scenarios.

In more detail, we introduce three different ways to provide GNN models with global struc-

tural information, and study how they affect the performance of state-of-the-artMPNNson com-

mon graph related tasks. The three strategies to include global structural informationwe consider

are: (i) providing the model direct access to the adjacency matrix, (ii) providing the model direct

access to RWR coefficients (introduced in Section 2.1.2), and (iii) combining (ii) with a regular-

ization term which enforces the role of the information extracted by RWR. These methods are

introduced to study the impact of global information, and are not meant to be used as practical

strategies to improve the performance ofGNNs. On the latter aspect, we show that the sole use of

our regularization termprovides significant gains in performancewhile being easily and efficiently

applicable to any GNNmodel. The use of RWR is also supported by a theoretical contribution

which proves they can increase the ability of GNNs in distinguishing non-isomorphic graphs.

19

3 The Impact of Global Structural Information in Graph Neural Networks

Our Contribution. Previous studies on the capabilities and limitations of GNNs have fo-

cused on the relation between GNNs and the 1-WL algorithm [209] to study the theoretical ex-

pressiveness of these models (see Section 2.3.2), or on how to alleviate the oversmoothing and

oversquashing issues (see Section 2.3.3). There are however no empirical studies on the practical

impact of global information (i.e., information that depends on the whole structure of the graph)

in MPNNs.

We assess whether providing global information regarding the whole graph structure has a sig-

nificant impact on the performance of state-of-the-artMPNNs. In this regard, our contributions

presented in this Chapter are threefold.

• Wepropose and formalize three different types of global structural information “injection”.

We test how the injection of global structural information impacts the performance of 6

GNNarchitectures (GCN [121],Graphsage [85], andGAT [205] fornode-level tasks; GCN

with global readout, DiffPool [225] and 𝑘-GNN [162] for graph-level tasks) on both trans-

ductive and inductive tasks. Results show that the injection of global structural informa-

tion significantly impacts current state-of-the-art models on common graph-related tasks.

• As we discuss later in the paper, injecting global structural information can be impractical.

We then identify a novel and practical regularization strategy, called RWRReg, based on

RWR [170]. RWRReg maintains the permutation-invariance of GNN models, and leads

to an average 5% increase in accuracy on both node classification, and graph classification.

• We introduce a theoretical result proving that the information extracted by RWR can

“speed up” the 1-WL algorithm. In more detail we show that by constructing an initial

coloring based on RWR probabilities, the 1-WL algorithm always terminates in one iter-

ation. Given the known relationship between GNNs and the 1-WL algorithm (Section

2.3.2), this result shows that providing information obtained fromRWR to GNNmodels

can improve their practical ability of distinguishing non-isomorphic graphs.

3.1 RandomWalks can empower GraphNeural Networks

We provide analytical evidence that RWR can significantly empower MPNNs by proving a con-

nection with the 1-WL algorithm.

It is known that not all non-isomorphic graphs are distinguishable by the 1-WL algorithm,

and that 𝑛 iterations are enough to distinguish two graphs of 𝑛 vertices which are distinguishable

by the 1-WL algorithm. There is a tight connection between 1-WL and MPNNs (see Section

2.3.2). Inparticular, graphs that canbedistinguished in𝑘 iterations by the 1-WLalgorithm, canbe

distinguishedby certainGNNs in𝑘message passing iterations [162]. This implies thatwhenusing

20

3.1 RandomWalks can empower Graph Neural Networks

a GNN that can theoretically achieve the distinguishing power of the 1-WL algorithm, if such

GNN is deployed with 𝑘′ layers, it will not be able to distinguish graphs that are distinguishable

by the 1-WL algorithm with 𝑘′′ > 𝑘′ iterations.

Here, we prove that graphs that are distinguishable by 1-WL in 𝑘 iterations have different

feature representations extracted by RWR of length 𝑘, and hence if we use the RWR feature

representations as initial coloring for the 1-WL algorithm, then the algorithm will always fin-

ish in one iteration. Given a graph 𝐺 = (𝑉 , 𝐸), we define its 𝑘-step RWR representation as

{{HASH(ℛ(𝑣)), ∀𝑣 ∈ 𝑉 }}, where ℛ(𝑣) = {{𝑟(𝑣)
𝑢1

, … , 𝑟(𝑣)
𝑢𝑛

}}, and each entry 𝑟(𝑣)
𝑢𝑖

is the proba-

bility that a RWR of length 𝑘 starting in 𝑣 ends in 𝑢𝑖 ∈ 𝑉.
Proposition 3.1. Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) be two non-isomorphic graphs for

which the 1-WL algorithm terminates with the correct answer after 𝑘 iterations and starting from

a uniform labelling (i.e., all nodes are initially assigned the same color). Then the 𝑘-step RWR

representations of 𝐺1 and 𝐺2 are different.

Proof. Consider the 1-WL algorithmwith a uniform initial labeling given by all 1’s. It’s easy to see
that (i) after 𝑘 iterations the label of a node 𝑣 corresponds to the information regarding the degree

distribution of the neighbourhood of distance≤ 𝑘 from 𝑣 and (ii) in iteration 𝑖 ≤ 𝑘, the degrees
of nodes at distance 𝑖 from 𝑣 are included in the label of 𝑣. In fact, after the first iteration, two

nodes have the same color if they have the same degree, as the color of each node is given by the

multiset of the colors of its neighbours (andwe startwith initial labeling given by all 1’s). After the

second color refinement iteration two nodes have the same color if they had the same color after

the first iteration (i.e., have the same degree), and the multisets containing the colors (degrees)

of their neighbours are the same. In general, after the 𝑘-th iteration, two nodes have the same

color if they had the same color in iteration 𝑘 − 1, and the multiset containing the colors of the

neighbours at distance𝑘 is the same for the twonodes. Hence, twonodes that have different colors

after a certain iteration, will have different colors in all the successive iterations. Furthermore, the

color after the 𝑘-th iteration depends on the color at the previous iteration (which “encodes” the
distributionof degree of neighbours up todistance𝑘−1 included), and themultiset of the degrees

of neighbours at distance 𝑘.
Given two non-isomorphic graphs𝐺1 and𝐺2, if the 1-WL algorithm terminates with the cor-

rect answer starting from the all 1’s labelling in 𝑘 iterations, it means that there is no matching

between vertices in 𝑉1 and vertices in 𝑉2 such that matched vertices have the same degree distri-

bution for neighbourhoods at distance exactly 𝑘. Equivalently, any matching 𝑀 that minimizes

the number ofmatched vertices with different degree distribution has at least one such pair. Now

consider one such matching 𝑀, and let 𝑣 ∈ 𝑉1 and 𝑤 ∈ 𝑉2 be vertices matched in 𝑀 with dif-

ferent degree distributions for neighbourhoods at distance exactly 𝑘. Since 𝑣 and𝑤 have different

21

3.2 Injecting Global Information inMPNNs

90% of the weights are contained within the 6-hop neighbourhood, with a significant portion

that is not contained in the 2-hop neighbourhood usually accessed byMPNNmodels.

Table 3.1: Average and standard deviation,
over all nodes, of Kendall Tau-
b values measuring the non-trivial
relationships between nodes cap-
tured by the RWRweights.

Dataset Average Kendall Tau-b

Cora 0.729 ± 0.082

Pubmed 0.631 ± 0.057

Citeseer 0.722 ± 0.171

Next we analyse if RWR capture some non-trivial

relationships between nodes. In particular, we inves-

tigate if there are nodes that are far from the starting

node, but receive a higher weight than some closer

nodes. To quantify this property we use the Kendall

Tau-b2 measure [115].

Inmore detail, for each node 𝑣we consider its row
of theRWRmatrixR𝑣,∶ where the 𝑖-th element is the

weight that the RWR from node 𝑣 has assigned to

node 𝑖 (i.e., 𝑅𝑣,𝑖). We then define the vector d(𝑣) ∈
ℝ𝑛 such that 𝑑(𝑣)

𝑗 = dist(𝑣, 𝑓𝑠𝑜𝑟𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑗,R𝑣,∶)),
where dist(x, y) is the shortest path distance between

node 𝑥 and node 𝑦, and 𝑓𝑠𝑜𝑟𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑗,R𝑣,∶) is the function returning the node with the 𝑗-th
highest RWRweight inR𝑣,∶. Intuitively, if the RWRmatrix isn’t capable of capturing non-trivial

relationship we would have that d(𝑣) is a sorted vector (with possible repetitions). By comparing

d(𝑣) with its sorted version with the Kendall Tau-b rank, we obtain a value between 1 and −1
where 1 means that the two sequences are identical, and −1 means that one is the reverse of the

other. Table 3.1 presents the results, averaged over all nodes, on the node classification datasets.

These results show thatwhile there is a strong relationbetween the informationprovidedbyRWR

and the distance between nodes, there is information in the RWR that is not captured by shortest

path distances.

As an example of the non-trivial relationships encoded by RWR, Figure 3.2 presents a d(𝑣)

vector taken from a node in Cora. This vector obtains a Kendall Tau-b value of 0.591. We can

observe that for distances greater than 1, we already have some non-trivial relationships. In fact,

we observe some nodes at distance 3 that receive a larger weight than nodes at distance 2. There
are many other interesting non-trivial relationships, for example we notice that some nodes at

distance 7, and some at distance 11, obtain a higher weight than some nodes at distance 5.
3.2 Injecting Global Information inMPNNs

To test if MPNNs are missing on important information that is encoded in the structure of a

graph, we inject global structural information into existingMPNNmodels, and test how the per-

formance of these models changes in several graph-related tasks. Intuitively, based on a model’s

2We use the Tau-b version because the elements in the sequences we analyze may not be all distinct.

23

3 The Impact of Global Structural Information in Graph Neural Networks

drw
(1000) = [1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 4, 3, 4,

3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4,

4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 4, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 5, 5, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 5, 4, 4, 4, 6, 3,

4, 4, 5, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 5, 5, 4, 5, 4, 5, 5, 4, 4, 4, 5, 4,

4, 4, 4, 5, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 4, 5, 4, 4, 5, 4, 5, 5, 5, 5, 5, 4, 5, 4, 5, 5,

4, 4, 5, 4, 5, 5, 4, 5, 5, 5, 4, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 6, 5, 5, 5, 4, 5, 5, 5, 4, 4, 5, 5, 5, 4, 5, 5, 5, 4,

4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 5, 6, 4, 4, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 4, 5, 5, 4, 6, 5, 4, 5, 5, 5, 4, 5, 5, 5, 6, 4, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 4, 5, 6, 5, 5, 5,

6, 5, 4, 5, 5, 5, 4, 5, 4, 5, 4, 5, 4, 4, 5, 6, 6, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 6, 6, 5, 5, 4, 5, 5, 5, 5, 6, 5, 6, 5,

6, 5, 4, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 5, 5, 5, 5, 4, 6, 6, 5, 4, 4, 4, 4, 6, 5, 5, 5,

5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 5, 5, 4, 6, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 5, 6, 6, 6, 5, 6, 5, 5, 5, 4, 5, 5, 6, 5, 5, 6, 4, 5, 5,

5, 6, 5, 6, 5, 4, 5, 6, 5, 4, 6, 5, 6, 5, 6, 4, 6, 5, 5, 5, 5, 6, 5, 6, 5, 5, 5, 6, 5, 6, 4, 6, 6, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 4, 6, 5, 5, 5, 6, 6, 6, 6, 6, 4, 6, 5, 6, 5, 5, 6, 5, 5, 6, 5, 6, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 4, 5, 6, 5, 5, 6, 4, 6, 5,

5, 5, 5, 5, 5, 6, 5, 6, 6, 5, 5, 6, 5, 5, 4, 6, 5, 5, 7, 5, 6, 6, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 5, 5, 5, 5,

5, 6, 5, 6, 6, 5, 6, 5, 6, 5, 6, 6, 5, 5, 5, 7, 5, 6, 5, 6, 5, 6, 6, 6, 5, 5, 5, 5, 5, 6, 4, 5, 6, 6, 6, 5, 5, 6, 5, 6, 5, 5, 5, 6,

5, 5, 6, 6, 4, 6, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 6, 5, 6, 6, 4, 6, 6, 7, 5, 5, 5, 6, 6, 5, 6, 5, 6, 6, 5, 4, 5, 4, 6, 6, 6, 5, 5, 5,

6, 7, 6, 5, 4, 6, 5, 6, 6, 5, 4, 6, 5, 5, 5, 7, 5, 6, 5, 5, 4, 6, 5, 5, 6, 4, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 7, 6, 6, 6, 6, 5, 6, 5,

5, 5, 5, 7, 5, 5, 5, 6, 5, 5, 5, 6, 6, 6, 5, 5, 6, 7, 5, 5, 6, 4, 6, 5, 6, 6, 4, 6, 6, 6, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 5, 6,

7, 5, 5, 7, 6, 6, 6, 6, 5, 7, 6, 4, 5, 5, 6, 6, 5, 5, 5, 6, 6, 5, 5, 6, 7, 5, 5, 6, 5, 7, 5, 5, 6, 6, 7, 6, 6, 7, 6, 6, 6, 6, 6, 5,

5, 4, 5, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 4, 7, 6, 4, 4, 5, 6, 6, 6, 4, 6, 7, 6, 7, 6, 6, 5, 5, 4, 6, 6, 6, 5, 5, 6, 7, 6, 5, 4, 6,

7, 6, 4, 6, 5, 7, 6, 7, 5, 7, 6, 6, 4, 4, 5, 6, 4, 6, 6, 7, 6, 6, 6, 7, 5, 6, 6, 4, 6, 6, 6, 6, 5, 6, 5, 5, 7, 6, 7, 5, 7, 6, 6, 6,

5, 7, 6, 7, 6, 5, 6, 7, 6, 6, 5, 7, 7, 4, 6, 6, 5, 6, 4, 6, 6, 6, 5, 6, 6, 6, 6, 7, 4, 6, 5, 4, 6, 5, 6, 7, 7, 6, 6, 6, 4, 6, 6, 6,

6, 4, 4, 6, 4, 5, 4, 6, 7, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 5, 4, 4, 6, 6, 4, 5, 6, 7, 6, 6, 6, 5, 6, 4, 4, 5, 5, 4, 5, 7, 7, 4, 7,

6, 6, 7, 7, 7, 7, 5, 5, 6, 4, 5, 5, 6, 6, 6, 5, 6, 4, 7, 6, 6, 7, 6, 6, 6, 6, 4, 5, 6, 6, 7, 7, 4, 6, 6, 6, 6, 4, 4, 4, 5, 7, 5, 5,

6, 5, 5, 6, 7, 4, 6, 7, 6, 4, 6, 5, 5, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 8, 6, 7, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,

6, 5, 6, 4, 5, 6, 6, 7, 4, 6, 6, 6, 6, 6, 8, 5, 7, 7, 4, 4, 6, 6, 6, 7, 6, 6, 6, 6, 6, 5, 6, 7, 6, 6, 4, 7, 5, 4, 6, 6, 4, 4, 4, 4,

7, 6, 6, 6, 6, 6, 6, 6, 7, 5, 7, 6, 4, 6, 4, 5, 6, 6, 7, 4, 4, 4, 6, 4, 7, 6, 7, 6, 5, 6, 7, 7, 4, 6, 7, 5, 4, 6, 6, 5, 6, 5, 6, 7,

4, 4, 4, 5, 6, 4, 7, 4, 4, 6, 6, 6, 6, 6, 7, 7, 6, 7, 5, 7, 6, 7, 6, 7, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 8, 6, 5, 5, 7, 4, 5, 4, 6, 8,

8, 6, 7, 6, 7, 7, 4, 7, 6, 7, 7, 5, 7, 4, 6, 4, 6, 6, 6, 7, 7, 4, 7, 7, 7, 6, 6, 6, 6, 7, 6, 6, 6, 4, 6, 4, 7, 4, 6, 7, 6, 6, 5, 6,

4, 6, 4, 4, 4, 6, 7, 5, 4, 5, 6, 5, 4, 7, 4, 5, 7, 6, 6, 7, 6, 7, 6, 4, 4, 4, 7, 4, 4, 5, 7, 8, 4, 6, 5, 5, 6, 6, 4, 6, 6, 7, 6, 6,

7, 6, 7, 4, 7, 7, 5, 6, 6, 5, 4, 7, 6, 7, 7, 7, 6, 8, 7, 7, 6, 6, 5, 7, 6, 7, 7, 7, 8, 4, 7, 4, 7, 5, 7, 4, 6, 6, 5, 4, 4, 7, 4, 6,

4, 4, 4, 7, 7, 5, 5, 8, 6, 6, 5, 5, 6, 6, 6, 5, 6, 6, 7, 6, 6, 6, 5, 7, 7, 6, 5, 6, 7, 7, 4, 7, 6, 5, 4, 5, 6, 4, 6, 7, 8, 7, 7, 6,

6, 7, 6, 7, 7, 7, 5, 7, 7, 5, 6, 6, 6, 8, 6, 7, 6, 7, 8, 6, 6, 6, 5, 7, 6, 6, 7, 5, 6, 5, 6, 4, 5, 7, 4, 7, 6, 7, 6, 4, 7, 5, 7, 4,

7, 7, 7, 4, 7, 8, 6, 6, 5, 5, 6, 4, 7, 5, 6, 7, 6, 6, 6, 4, 7, 6, 6, 7, 7, 5, 7, 5, 7, 7, 6, 8, 6, 7, 6, 7, 5, 4, 6, 6, 6, 6, 7, 4,

6, 7, 6, 4, 9, 7, 6, 5, 6, 6, 4, 5, 6, 7, 5, 6, 6, 5, 6, 7, 6, 6, 8, 4, 8, 6, 9, 6, 6, 5, 6, 5, 6, 6, 6, 6, 6, 6, 7, 5, 6, 6, 7, 7,

5, 7, 8, 5, 6, 6, 7, 6, 4, 6, 6, 7, 7, 7, 7, 5, 7, 5, 4, 7, 5, 7, 7, 6, 6, 6, 7, 8, 7, 4, 10, 5, 7, 7, 6, 6, 8, 6, 6, 6, 7, 4, 7, 8,

5, 7, 7, 7, 7, 5, 5, 7, 5, 6, 6, 6, 5, 6, 5, 5, 5, 7, 5, 4, 5, 5, 6, 4, 6, 5, 6, 8, 4, 4, 6, 5, 5, 8, 7, 5, 7, 7, 7, 5, 8, 7, 6, 8,

5, 8, 7, 6, 7, 6, 7, 6, 8, 6, 8, 7, 7, 5, 6, 6, 6, 5, 7, 5, 5, 6, 5, 6, 7, 7, 7, 5, 7, 6, 7, 5, 6, 5, 6, 8, 7, 7, 6, 7, 5, 6, 6, 7,

6, 6, 7, 7, 7, 8, 5, 7, 8, 7, 5, 7, 6, 6, 7, 5, 5, 7, 7, 6, 6, 7, 5, 8, 6, 7, 8, 6, 8, 9, 7, 7, 5, 8, 8, 7, 7, 5, 5, 7, 5, 5, 9, 7,

6, 6, 7, 7, 6, 5, 8, 5, 10, 10, 7, 6, 8, 5, 6, 7, 6, 8, 5, 7, 6, 5, 7, 5, 5, 7, 7, 6, 5, 8, 6, 7, 5, 8, 8, 5, 5, 6, 7, 6, 6, 7, 5,

6, 8, 6, 7, 7, 5, 8, 9, 6, 7, 5, 7, 8, 6, 7, 5, 5, 7, 7, 5, 7, 7, 5, 7, 4, 6, 5, 7, 7, 7, 6, 7, 6, 7, 7, 7, 6, 8, 6, 5, 5, 6, 6, 6,

6, 8, 7, 7, 8, 5, 6, 8, 8, 8, 9, 5, 8, 8, 7, 8, 7, 5, 5, 6, 5, 7, 6, 8, 7, 8, 7, 9, 5, 7, 7, 5, 8, 5, 5, 7, 6, 6, 5, 9, 6, 7, 6, 6,

5, 7, 7, 6, 7, 8, 5, 7, 8, 7, 5, 7, 7, 8, 9, 7, 7, 5, 8, 7, 7, 8, 8, 5, 9, 5, 6, 6, 8, 7, 6, 10, 5, 8, 6, 8, 7, 7, 7, 6, 7, 6, 6, 5,

7, 6, 6, 5, 5, 7, 8, 8, 7, 5, 7, 7, 8, 6, 8, 8, 6, 7, 6, 6, 6, 6, 6, 8, 8, 8, 8, 6, 5, 11, 8, 7, 8, 8, 7, 8, 9, 7, 6, 6, 8, 8, 8, 9,

6, 7, 6, 5, 6, 5, 6, 8, 8, 6, 7, 7, 8, 8, 8, 7, 8, 8, 9, 6, 9, 8, 6, 7, 8, 7, 7, 5, 8, 7, 7, 7, 7, 10, 8, 7, 7, 9, 7, 8, 8, 8, 9, 8,

5, 7, 7, 7, 8, 8, 5, 7, 6, 7, 7, 7, 8, 6, 7, 7, 7, 5, 8, 7, 10, 8, 8, 8, 8, 8, 8, 8, 5, 7, 5, 11, 9, 6, 5, 6, 7, 8, 8, 8, 8, 7, 9,

8, 5, 8, 7, 7, 8, 8, 7, 6, 7, 8, 6, 6, 7, 7, 8, 6, 6, 5, 10, 6, 10, 8, 5, 9, 8, 5, 8, 6, 8, 8, 8, 6, 6, 8, 8, 9, 9, 7, 6, 7, 8, 8,

8, 9, 7, 10, 8, 5, 6, 8, 6, 8, 9, 9, 6, 6, 6, 7, 7, 5, 6, 5, 10, 8, 5, 9, 7, 9, 8, 9, 8, 8, 8, 7, 10, 10, 5, 6, 6, 8, 8, 8, 8, 5, 6,

8, 8, 8, 9, 5, 8, 8, 9, 8, 6, 8, 7, 11, 6, 8, 9, 11, 6, 8, 5, 8, 6, 12, 8, 5, 8, 7, 7, 6, 8, 9, 9, 6, 8, 6, 8, 9, 8, 7, 9, 8, 9, 9,

7, 11, 8, 9, 10, 10, 8, 10, 9, 8, 8, 9, 7, 5, 10, 9, 9, 8, 7, 8, 5, 6, 7, 8, 5, 6, 6, 10, 8, 8, 6, 9, 7, 11, 5, 8, 8, 7, 10, 8, 8,

8, 5, 9, 8, 6, 8, 8, 9, 8, 8, 8, 9, 8, 11, 8, 8, 11, 8, 6, 9, 9, 6, 8, 5, 8, 8, 8, 6, 8, 6, 7, 11, 6, 7, 7, 9, 6, 8, 8, 9, 6, 6, 9,

9, 11, 10, 9, 8, 9, 9, 10, 10, 10, 7, 9, 8, 8, 6, 7, 8, 9, 7, 6, 6, 8, 10, 9, 10, 6, 8, 9, 8, 10, 11, 9, 10, 10, 11, 6, 11, 11, 8,

9, 7, 7, 8, 8, 10, 8, 9, 10, 13, 9, 8, 9, 7, 9, 8, 11, 7, 9, 10, 9, 9, 12, 8, 8, 9, 9, 11, 9, 11, 9, 12, 10, 11, 11]

<latexit sha1_base64="d4TeX6QajUDVgkDuEg++TbW+Lhg=">AAAdRniclVlLbyNFEJ5dXkt4ZeHoIFlkkRYJRZ5k+jEHpBVcOC4S2V0pMavJZLI7Wr9kj4HIyr/jwJUjf4EDF0BcsT3j8ldVPc5idZye7uqq7/uqqidSLiaDclb1er/fufvGm2+9/c69d/fee/+DDz/av//xk9l4Ps2L03w8GE+fXWSzYlCOitOqrAbFs8m0yIYXg+LpxatvVvtPfyyms3I8+r66nhT9YfZiVF6VeVYtl57f7/TPq3J0vXc+Gpejy2JUPbic/vTD4mHc6/W+uOl+1X2wd14VP1dVtTiLv+zW45iPE/huW9QTtMHd5UjgW4zkNSb0mIQOtoVIYFGPoNskdPakxY9Zjzb/eMTAog2tG2XWBt4oM33KgJkJndIegrvBiVH+9SRRoXdDCrrSQYM+8dG2rAf9BLf07o7vOuKtsgtg/2tYJY5VzkWgHWQ1Tdseq404HdT2bVHQXh+x6jvo0yoZtaqWG+sjCUeOXbk7BUZV1+tE1/OgMpi7oCwJnwvFNBgdThgHSbVlUPjBkahYth3Dcrj2IhE6BIGhpCIcHnGhgtHF0Ob81ri2BQyGFgbBaklCBm25I8tbNRehKeOO+wyyoDbXsGsPugjFitZB7Fqe8WBOnWrhHYUUrE90petKKNOmhgkZOMAgdh3v4h0VKIAZ/ogKiCgoqeGobGgkgErUWwIHnXIeVBJz7cCJAT+oDAbFOrQwvzUdbc5FXC1Fvev4pWcVO8vx4EsWfWJcAZVeIonSpy2QgSgJ+NHZNBACU0/UsFRoiF4zIYdtNYZ1IgREvgRDXz6upUhEiwXFWc59qDLbyjvoSlDQZp5riAbBjsP1ZMMaE0ejDTBWb9ICEgspWNgoLAIQVwEmiLwlIR0cBBLdhHyDjDyk1fHi9yqJjpNycMoq/cnYKT11GyZcFlEGlgtLumEDEnjREY4fd6CqWxMUhY1EtKsEiFse3XKynhM3ysYDHqEkuUVZkAI1rAd7fT8IqQ1AEtWI7wWU3SkigoVRglhVNl5hwG7CRBuOh3Ln+BbC1gok4FlUmrhmDaegkYvXKNUAYku5pHgniDpBPHX263Bp6AbQPW5C4L3KdcLNBNNEUSZjv2EX95SF56YJxBZhDMeKrAzHgQkjMw99TiXueCBatBsM9IjfnvehgOQAgOF6iT9WEJtTW+KacFwZzx1arpJYpOIj5CmnjFyQQqow2M0RU6dz9YOCWf7olCrCjeUoDHeCenhAYTYkLMjgQzKICf5FipJbvoIvL2wW0skDKr8Bg1p6QIK3E+6mHJ4H5FRNKVfDcNjBcnChDNO637g1nJSl9hTl7UII8GZ0QBsRkDriurRcONI6jkEez3lYJTY5FY2EZeK5KzqY8pbQOtVjpQctpdxjqm4pDyuiZcUd4NG7HtQtK0FSfo94TopQiAxjgVguCGVuFd8SDMOdodiofQoJEXI49IW3ZAovIuzgLQyKT5RSznNz05hQ9exoxBRguFpQwrR9IMrxsdJTUEBSnuNNKUTjv0fkVr9SwOSIeQqePM8zcd0WisUoRuiDeiBvoWY9b2BuZ5aTNHAC795GNGoJDGHBy8puyzplgjSvjBT8B1u9Od/U6RZ6jzqDPNao1kFjcEUV2uizOXICwBxK4simgXzMC38TN6bdTfg47t883z/sHfXWn66exM3kMGo+j5/v/3Z+Oc7nw2JU5YNsNjuLe5Oqv8imVZkPipu98/msmGT5q+xFcbacjrJhMesv1v8HvOl+vly57F6Np8ufUdVdr+KJRTacza6HF0vLYVa9nMm91WJo72xeXfn+ohxN5lUxyutAV/NBtxp3V/9U7F6W0yKvBtfLSZZPyyXWbv4ym2Z5VUxnSw1iyVhPnhwfxclR+t3x4aOvGzXuRZ3os+hhFEcuehR9Gz2OTqO880vnj85fnb8Pfj348+Cfg39r07t3mjOfROzzafQfmEY4Tg==</latexit>

<latexit sha1_base64="ap+LrReAZJJD2D2DaTRfIHVEVw8=">AAACNnicbVDLTgIxFO34RPABsnTTSExwIZkxvpZENy40wUQeCSDpdO5AQ6czaTsmZMK3uNU/8FfcuDNu/QQ7wELAmzQ9OefenJPjRpwpbdsf1srq2vrGZmYrm9ve2d3LF/YbKowlhToNeShbLlHAmYC6ZppDK5JAApdD0x3epHrzGaRioXjUowi6AekL5jNKtKF6+WInIHrg+ok3fkrKjm3bx+NevmRX7MngZeDMQAnNptYrWLmOF9I4AKEpJ0q1HTvS3YRIzSiHcbYTK4gIHZI+tA0UJADVTSbpx/jIMB72Q2me0HjC/r1ISKDUKHDNZppVLWop+Z/WjrV/1U2YiGINgk6N/JhjHeK0CuwxCVTzkQGESmayYjogklBtCptziQWjoQcnE6tsR4FOURo3uTNFCnxvVGm+VDf1OYtlLYPGacW5qJw/nJWq17MiM+gAHaIyctAlqqJbVEN1RNEIvaBX9Ga9W5/Wl/U9XV2xZjdFNDfWzy86HKq/</latexit>

d
(1000)

Figure 3.2: d(𝑣) vector for the 1000-th node in Cora.
performance when injected with different types of global structural information, we can under-

stand if this additional knowledge can improve performance on the considered tasks. In the rest

of this section we present the types of global structural information injection that we consider,

and the models chosen for our experimental evaluation.

3.2.1 Types of Global Structural Information Injection

We consider three different types of global structural information injection, described below. The

injection strategies presented in this section are not designed for practical use, as the scope of these

strategies is to help us understand the importance of global structural information. At this point,

our objective is to study the impact of global structural information that is not accessible toGNN

models. We discuss scalability and practical aspects in Section 3.4.

Adjacency Matrix. We provide GNNs with direct access to the adjacency matrix by concate-

nating each node’s adjacency matrix row to its feature vector. This explicitly empowers

the GNNmodel with the connectivity of each node, and allows for higher level structural

reasoning when considering a neighbourhood (the model will have access to the connec-

24

3.2 Injecting Global Information inMPNNs

tivity of the whole neighbourhood when aggregating messages from neighbouring nodes).

While it might seem centered around local information, the row of the adjacency matrix

for a specific node pinpoints the position of the node in the graph (i.e., it can be seen as a

kind of positional encoding), which acts as a unique signature for the node, carrying some

information that depends on the whole graph. Furthermore, during the message passing

procedure, when a node aggregates information from its neighbours, it allows the network

to get a more precise positioning of the node in the graph.

RandomWalkwithRestart (RWR)Matrix.WeperformRWR [170] from each node 𝑣, thus
obtaining a 𝑛-dimensional vector that gives a score of how much 𝑣 is “related” to every

other node in the graph. For every node, we concatenate its vector of RWR coefficients

to its feature vector. The choice of RWR is motivated by their capability to capture the

relevance between two nodes [200] and the global structure of a graph [91, 106], and by the

possibility tomodulate the exploration of long-range dependencies by changing the restart

probability. Intuitively, if aRWRstarting at node 𝑣 is very likely to visit a node𝑢 (e.g., there

are multiple paths that connect the two), then there will be a high score in the RWR vector

for 𝑣 at position 𝑢. This gives the GNN model higher level information about the global

structure of the graph, and, again, it allows for high level reasoning on neighbourhood

connectivity.

RWRMatrix + RWR Regularization. Together with the addition of the RWR score vector

to the feature vector of each node, we also introduce a regularization term based on RWR

that pushes nodes with mutually high RWR scores to have embeddings that are close to

each other (independently of how far they are in the graph). We define theRWRReg (Ran-

domWalk with Restart Regularization) loss as follows:

ℒRWRReg = ∑
𝑖,𝑗∈𝑉

𝑅𝑖,𝑗||H𝑖,∶ − H𝑗,∶||2
whereH is amatrix of size𝑛×𝑑 containing 𝑑-dimensional node embeddings that are in be-

tweenmessage-passing layers (see Section 3.2.3 for the exact point in whichH is considered

for each model). With this approach, the loss function used to train the model becomes:

ℒ = ℒoriginal + 𝜆ℒRWRReg , where ℒoriginal is the original loss function for each model,

and 𝜆 is a balancing term. In Section 3.4 we show how to compute the RWRReg term

efficiently using GPUs. We expect this type of information injection to have the highest

impact on performance of the models on downstream tasks.

25

3 The Impact of Global Structural Information in Graph Neural Networks

3.2.2 Choice ofModels

In order to test the effect of the different types of global structural information injection and to

obtain results that are indicative of the whole class of MPNNs models, we conceptually identify

four different categories of MPNNs from which we select representative models.

Simple Aggregation Models. Such models utilize a “simple” aggregation strategy, where

each node receives messages (e.g., feature vectors) from its neighbours, aggregates them by assign-

ing the same “importance” to each neighbour (e.g., by averaging their messages), and uses the

aggregated messages to update its embedding vector. As a representative we choose GCN [121],

one of the fundamental and widely used GNNs models. We also consider GraphSage [85], as it

represents a different computation strategy where a set of neighbourhood aggregation functions

are learned, and a sampling approach is used for defining fixed size neighbourhoods.

Attention Models. Several models have used an attention mechanism in a GNN scenario

[132, 133, 205, 230]. These methods differ from the previous category as they use an attention

mechanism to assign a different “weight”, or “importance”, to eachneighbour. As a representative

we focus onGAT [205], the first to present an attentionmechanismover nodes for the aggregation

phase, and one of the best performing models on several datasets.

Pooling Techniques. Pooling on graphs is a very challenging task, since it has to take into

account the underlying graph structure. At a high level, pooling methods provide a coarsened

version of the input graph by combining groups of nodes into clusters. Among the methods that

have been proposed for differentiable pooling on graphs [40, 59, 76, 134, 225], we choose Diff-

Pool [225] for its strong empirical results. Furthermore, it can learn to dynamically adjust the

number of clusters (the number is a hyperparameter, but the network can learn to use fewer clus-

ters if necessary).

Beyond WL. Morris et al. [162] prove that message-passing GNNs cannot be more powerful

than the 1-WL algorithm, and propose 𝑘-GNNs, which rely on a subgraphmessage-passingmech-

anism and are proven to be as powerful as the 𝑘-WL algorithm. Another approach that goes be-

yond theWL algorithmwas proposed byMurphy et al. [163]. Bothmodels are computationally in-

tractable in their initial theoretical formulation, so approximations are needed. As representative

we choose 𝑘-GNNs, to test if subgraphmessage-passing is affected by additional global structural

information.

26

3.2 Injecting Global Information inMPNNs

3.2.3 Training & Implementation Details

All models are trained with early stopping on the validation set (stopping the training if the val-

idation loss doesn’t decrease for a certain amount of epochs), and unless explicitly specified, we

use Cross Entropy as loss function for all the classification tasks.

For the task of graph classification we zero-pad the feature vectors of each node to make them

all the same length when we inject structural information into the node feature vectors.

For the task of triangle counting we follow Knyazev et al. [126] and use the one-hot representa-

tionofnodedegrees as node feature vectors to impose some structural information in thenetwork.

Computing Infrastructure. The experiments were run on a GPU cluster using 1 Nvidia

1080Ti, and on a CPU cluster (when the memory consumption was too big to fit in the GPUs)

equipped with 8 CPUs 12-Core Intel Xeon Gold 5118 @2.30GHz, with 1.5Tb of RAM.

Implementation details

In the rest of this Section we go through eachmodel used in our experiments, specifying architec-

ture, hyperparameters, and the position of the node embeddings used for RWRReg.

GCN (node classification). We use a two layer architecture. The first layer outputs a 16-

dimensional embedding vector for each node, and passes it through a ReLu activation, before

applying dropout [196], with probability 0.5. The second layer outputs a 𝑐-dimensional embed-

ding vector for each node, where 𝑐 is the number of output classes and these vectors are passed

through Softmax to get the output probabilities for each class. An additional L2-loss is added

with a balancing term of 0.0005. The model is trained using the Adam optimizer [120] with a

learning rate of 0.01.

We apply the RWRReg on the 16-dimensional node embeddings after the first layer.

GCN (graph classification). We first have two GCN layers, each one generating a 128-

dimensional embedding vector for each node. Then we apply max-pooling on the features of

the nodes and pass the pooled 128-dimensional vector to a two-layer feed-forward neural network

with 256 neurons at the first layer and 𝑐 at the last one, where 𝑐 is the number of output classes.

A ReLu activation is applied in between the two feed-forward layers, and Softmax is applied after

the last layer. Dropout [196] is applied in between the last GCN layer and the feed-forward layer,

and in between the feedforward layers (after ReLu), in both cases with probability of 0.1. The

model is trained using the Adam optimizer [120]with a learning rate of 0.0005.

We apply the RWRReg on the 128-dimensional node embeddings after the last GCN layer.

27

3 The Impact of Global Structural Information in Graph Neural Networks

GCN (counting triangles). We first have three GCN layers, each one generating a 64-

dimensional embedding vector for each node. Then we apply max-pooling on the features of

the nodes and pass the pooled 64-dimensional vector to a one-layer feed-forward neural network

with one neuron. Dropout [196] is applied in between the last GCN layer and the feed-forward

layer with probability of 0.1. The model is trained by minimizing the mean squared error (MSE)

and is optimized using the Adam optimizer [120]with a learning rate of 0.005.

We apply the RWRReg on the 64-dimensional node embeddings after the last GCN layer.

GraphSage. We use a two layer architecture. For Cora we sample 5 nodes per-neighbourhood

at the first layer and 5 at the second, while on the other datasets we sample 10 nodes per-

neighbourhood at the first layer and 25 at the second. Both layers are composed of mean-

aggregators (i.e., we take the mean of the feature vectors of the nodes in the sampled neighbour-

hood) that output a 128-dimensional embedding vector per node. After the second layer these

embeddings are multiplied by a learnable matrix with size 128 × 𝑐, where 𝑐 is the number of

output classes, giving thus a 𝑐-dimensional vector per-node. These vectors are passed through

Softmax to get the output probabilities for each class. The model is optimized using Stochastic

Gradient Descent with a learning rate of 0.7.

We apply theRWRReg on the 128-dimensional node embeddings after the second aggregation

layer.

GAT. We use a two layer architecture. The first layer uses an 8-headed attention mechanism

that outputs an8-dimensional embedding vector per-node. LeakyReLu is setwith slope𝛼 = 0.2.
Dropout [196] (with probability of 0.6) is applied after both layers. The second layer outputs a

𝑐-dimensional vector for each node, where 𝑐 is the number of classes, and before passing each

vector through Softmax to obtain the output predictions, the vectors are passed through an Elu

activation [49]. An additional L2-loss is added with a balancing term of 0.0005. The model is

optimized using Adam [120]with a learning rate of 0.005.

We apply theRWRReg on the 8-dimensional node embeddings after the first attention layer. A

particular note needs to be made for the training of GATs: we found that naively implementing

the RWRReg term on the node embeddings in between two layers brings to an exploding loss

as the RWRReg term grows exponentially at each epoch. We believe this happens because the

attention mechanism in GATs allows the network to infer that certain close nodes, even 1-hop

neighbours, might not be important to a specific node and so they shouldn’t be embedded close

to each other. This clearly goes in contrast with theRWRReg loss, since 1-hop neighbours always

have a high score. We solved this issue by using the attentionweights to scale theRWRcoefficients

at each epoch (wemake sure that gradients arenot calculated for this operation asweonlyuse them

28

3.2 Injecting Global Information inMPNNs

for scaling). This way the RWRReg penalties are in accordance with the attention mechanism,

and are still encoding long-range dependencies.

DiffPool. We use a 1-pooling architecture. The initial node feature matrix is passed through

two (one to obtain the assignment matrix and one for node embeddings) 3-layer GCN, where

each layer outputs a 20-dimensional vector per-node. Pooling is then applied, where the number

of clusters is set as 10% of the number of nodes in the graph, and then another 3-layer GCN is

applied to the pooled node features. Batch normalization [100] is added in between every GCN

layer. The final graph embedding is passed through a 2-layerMLPwith a final Softmax activation.

An additional L2-loss is added with a balancing term of 10−7, together with two pooling-specific

losses. The first enforces the intuition that nodes that are close to each other should be pooled

together and is defined as: ℒ𝐿𝑃 = ‖A(𝑙), S(𝑙)⊺
S(𝑙)‖𝐹, where ‖ ⋅ ‖𝐹 is the Frobenius norm, and

S(𝑙) is the assignment matrix at layer 𝑙. The second one encourages the cluster assignment to be

close to a one-hot vector, and is defined as: ℒ𝐸 = 1
𝑛 ∑𝑛

𝑖=1
𝐻(S𝑖,∶), where 𝐻 is the entropy

function. However, in the implementation available online, the authors do not make use of these

additional losses. We follow the latter implementation. Themodel is optimized usingAdam [120]

with a learning rate of 0.001.

We apply the RWRReg on the 20-dimensional node embeddings after the first 3-layer GCN

(before pooling). We tried applying it also after pooling on the coarsened graph, but the fact that

this graph could change during training yields to poor results.

𝑘-GNN. Weuse the hierarchical 1-2-3-GNNarchitecture (which is the one showing the highest

empirical results). First a 1-GNN is applied to obtain node embeddings, then these embeddings

are used as initial values for the 2GNN(1-2-GNN).The embeddings of the 2-GNNare then used

as initial values for the 3-GNN (1-2-3-GNN). The 1-GNNapplies 3 graph convolutions, while 2-

GNN and the 3-GNN apply 2 graph convolutions. Each convolution outputs a 64-dimensional

vector and is followed by an Elu activation [49]. For each 𝑘, node features are then globally aver-
aged and the final vectors are concatenated and passed through a three layer MLP. The first layer

outputs a 64-dimensional vector, while the second outputs a 32-dimensional vector, and the third

outputs a 𝑐-dimensional vector, where 𝑐 is the number of output classes. To obtain the final out-

put probabilities for each class, log(Softmax) is applied, and the negative log likelihood is used as

loss function. After the first and the second MLP layers an Elu activation [49] is applied, fur-

thermore, after the first MLP layer dropout [196] is applied with probability 0.5. The model is

optimized using Adam [120] with a learning rate of 0.01, and a decaying learning rate schedule

based on validation results (with minimum value of 10−5).

29

3 The Impact of Global Structural Information in Graph Neural Networks

Table 3.2: (Left) Node classification dataset statistics. (Right) Graph classification dataset statistics.

Dataset Nodes Edges Classes Features Label Rate

Cora 2708 5429 7 1433 0.052
Pubmed 19717 44338 3 500 0.003
Citeseer 3327 4732 6 3703 0.036

Dataset Graphs Classes Avg. # Nodes Avg. # Edges

ENZYMES 600 6 32.63 62.14
D&D 1178 2 284.32 715.66
PROTEINS 1113 2 39.1 72.82

TRIANGLES 45000 10 20.85 32.74

We apply the RWRReg on the 64-dimensional node embeddings after the 1-GNN. We were

not able to apply it also after the 2-GNNand the 3-GNN, as it would cause out-of-memory issues

with our computing resources.

3.3 Evaluation of the Injection of Global Structural

Information

We now present our framework for evaluating the effects of the injection of global structural in-

formation into GNNs, and the results of our experiments. We consider one transductive task

(node classification) and two inductive tasks (graph classification, and triangle counting). We use

each architecture for the task that better suits its design: GCN, GraphSage, and GAT for node

classification, and DiffPool and 𝑘-GNN for graph classification. We also add an adapted version

of GCN for graph classification, where we first obtain node-level embeddings, and then apply a

readout function to combine node embeddings into a global graph embedding vector.

With regards to datasets, for node classification we considered the three most used bench-

marking datasets in literature (at the time of writing the relative paper): Cora, Citeseer, and

Pubmed [190]. Analogously, for graph classificationwe chose three frequently used datasets: EN-

ZYMES, PROTEINS, and D&D [117]. Table 3.2 summarizes the datasets for node classifica-

tion, graph classification, and triangle counting. The node classification datasets are available at

https://linqs.soe.ucsc.edu/data, while the graph classification and the triangle counting

at https://chrsmrrs.github.io/datasets/.

For all the considered models we take the hyperparameters from the implementations released

by the authors. The only parameter tuned using the validation set is the balancing term 𝜆 when

RWRReg is applied. We found that the RWRReg loss tends to be larger than the Cross Entropy

loss for prediction, and the best values for 𝜆 lie in the range [10−9, 10−6]. For all the RWR-based

techniques we used a restart probability of 0.153. (The effects of different restart probabilities are
explored in Section 3.4.)

3We use 0.15 as it is a common default value used in many papers and software libraries.

30

https://linqs.soe.ucsc.edu/data
https://chrsmrrs.github.io/datasets/

3.3 Evaluation of the Injection of Global Structural Information

Table 3.3: Node classification accuracy results of different models with added Adjacency matrix features
(AD), RWR features (RWR), and RWR features + RWRRegularization (RWR+RWRReg).

Model Structural Dataset
Information Cora Pubmed Citeseer

none 0.799 ± 0.029 0.776 ± 0.022 0.663 ± 0.095

AD 0.806 ± 0.035 0.779 ± 0.070 0.653 ± 0.104

GCN RWR 0.817 ± 0.025 0.782 ± 0.042 0.665 ± 0.098

RWR+RWRReg 0.842 ± 0.026 0.811 ± 0.037 0.690 ± 0.102

none 0.806 ± 0.017 0.807 ± 0.016 0.681 ± 0.021

AD 0.803 ± 0.014 0.803 ± 0.013 0.688 ± 0.020

GraphSage RWR 0.816 ± 0.014 0.807 ± 0.015 0.693 ± 0.019

RWR+RWRReg 0.837 ± 0.015 0.820 ± 0.010 0.728 ± 0.020

none 0.815 ± 0.021 0.804 ± 0.011 0.664 ± 0.008

AD 0.823 ± 0.019 0.796 ± 0.014 0.672 ± 0.017

GAT RWR 0.833 ± 0.020 0.811 ± 0.009 0.686 ± 0.009

RWR+RWRReg 0.848 ± 0.019 0.828 ± 0.010 0.701 ± 0.011

NodeClassification. For eachdatasetwe follow the approach that has beenwidely adopted

in literature: we take 20 labelednodes per class as training set, 500nodes as validation set, and1000

nodes for testing. Most authors have used the train/validation/test split defined byYang et al. [220].

Since we want to test the general effect of the injection of global structural information, we differ

from this approach and we do not rely on a single split. We perform 100 runs, where at each run

we randomly sample 20 nodes per class for training, 500 random nodes for validation, and 1000

random nodes for testing. We then report mean and standard deviation for the accuracy on the

test set over these 100 runs.

Results are summarized in Table 3.3, where we observe that the simple addition of RWR fea-

tures to the feature vector of each node is sufficient to give a performance gain (up to 2%). The

RWRReg term then significantly increments the gain (up to 7.5%). These results show that,

perhaps surprisingly, even for the task of node classification global structural information is im-

portant.

Graph Classification. Following the approach from Ying et al. [225] andMorris et al. [162]

we use 10-fold cross validation, and report mean and standard deviation of the accuracy on graph

classification. Results are summarized in Table 3.4. The performance gains given by the injec-

tion of global structural information are evenmore apparent than for the node classification task.

31

3 The Impact of Global Structural Information in Graph Neural Networks

Table 3.4: Graph classification accuracy results of different models with added Adjacency matrix features
(AD), RWR features (RWR), and RWR features + RWRRegularization (RWR+RWRReg).

Model Structural Dataset
Information ENZYMES D&D PROTEINS

none 0.570 ± 0.052 0.755 ± 0.028 0.740 ± 0.035

AD 0.591 ± 0.076 0.779 ± 0.022 0.775 ± 0.042

GCN RWR 0.584 ± 0.055 0.775 ± 0.023 0.784 ± 0.034

RWR+RWRReg 0.616 ± 0.065 0.790 ± 0.023 0.795 ± 0.032

none 0.661 ± 0.031 0.793 ± 0.022 0.813 ± 0.017

AD 0.711 ± 0.027 0.837 ± 0.020 0.821 ± 0.039

DiffPool RWR 0.687 ± 0.025 0.824 ± 0.028 0.783 ± 0.043

RWR+RWRReg 0.721 ± 0.039 0.840 ± 0.024 0.834 ± 0.038

none 0.515 ± 0.111 0.756 ± 0.021 0.763 ± 0.043

AD 0.572 ± 0.063 0.778 ± 0.020 0.751 ± 0.034𝑘-GNN RWR 0.573 ± 0.077 0.794 ± 0.022 0.781 ± 0.028

RWR+RWRReg 0.571 ± 0.080 0.786 ± 0.021 0.785 ± 0.026

Intuitively, this is explained by the fact that the global structure of the nodes in a graph is impor-

tant for distinguishing different graphs. Most notably, the addition of the adjacency features is

sufficient to give a large performance boost (up to 11%).

Surprisingly, models like DiffPool and 𝑘-GNN show an important difference in accuracy (up

to 10%) when there is injection of structural information, meaning that even the most advanced

methods suffer from the inability to exploit global structural information.

Table 3.5: Mean Squared Error of GCN with dif-
ferent types of global structural infor-
mation injection on the TRIANGLES
dataset.

Model TRIANGLES Test Set

Global Small Large

GCN 2.290 1.311 3.608
GCN-AD 4.746 1.162 5.971
GCN-RWR 2.044 1.101 2.988
GCN-RWR+RWRReg 2.029 1.166 2.893

Counting Triangles. The TRIANGLES

dataset [126] is composed of randomly gener-

ated graphs, where the task is to count the num-

ber of triangles contained in each graph. This

is a hard task for GNNs and, as in Knyazev et al.

[126], we use node degrees as node features to

impose some structural information in the net-

work. The TRIANGLES dataset has a test set

with 10’000 graphs, of which half are similar in

size to the ones in the training and validation sets

32

3 The Impact of Global Structural Information in Graph Neural Networks

Table 3.6: Results for the addition of only the RWRReg term to existing models on node classification
(accuracy), graph classification (accuracy), and triangle counting (MSE– lower is better).

Model Regularization Dataset

Node Classification
Cora Pubmed Citeseer

GCN
none 0.799 ± 0.029 0.776 ± 0.022 0.663 ± 0.095

RWRReg 0.861 ± 0.025 0.799 ± 0.034 0.686 ± 0.096

GraphSage
none 0.806 ± 0.017 0.807 ± 0.016 0.681 ± 0.021

RWRReg 0.841 ± 0.016 0.818 ± 0.017 0.721 ± 0.021

GAT
none 0.815 ± 0.021 0.804 ± 0.011 0.664 ± 0.008

RWRReg 0.824 ± 0.022 0.811 ± 0.013 0.702 ± 0.013

Graph Classification
ENZYMES D&D PROTEINS

GCN
none 0.570 ± 0.052 0.755 ± 0.028 0.740 ± 0.035

RWRReg 0.621 ± 0.041 0.786 ± 0.024 0.785 ± 0.036

DiffPool
none 0.661 ± 0.031 0.793 ± 0.022 0.813 ± 0.017

RWRReg 0.733 ± 0.032 0.822 ± 0.025 0.820 ± 0.038

𝑘-GNN
none 0.515 ± 0.111 0.756 ± 0.021 0.763 ± 0.043

RWRReg 0.582 ± 0.075 0.787 ± 0.022 0.780 ± 0.028

Triangles Test Set
Global Small Large

GCN
none 2.290 1.311 3.608
RWRReg 2.187 1.282 3.014

parameters at the first layer by𝑛 × 𝑑(1) (where 𝑑(1) is the dimension of the feature vector for each

node after the first GNN layer). In this section we propose a practical way to take advantage of

the injection of global structural information without increasing the number of parameters, and

controlling the memory consumption during training.

3.4.1 RWRReg

From Section 3.3, the use of RWR coefficients as additional features coupled with the additional

RWRReg term is the strategy that provides the highest performance improvement on all tasks. As

discussed at the beginning of this section, the addition of RWR coefficients can be problematic,

34

3.4 Practical Aspects

and hence we study the impact of using only the RWRReg term. We consider the same settings

and tasks presented in Section 3.3, and results are shown in Table 3.6. The results show that the

sole addition of the RWRReg term increases the performance of the considered models by more

than 5%. At the same time, RWRReg (i) does not increase the input size or the number of param-

eters, (ii) does not require additional operations at inference time, (iii) does not require additional

supervision (it is in fact a self-supervised objective), (iv)maintains the permutation invariance of

MPNNmodels, and (v) there is a vast literature on efficient methods for computing RWR, even

for web-scale graphs (e.g., see Lofgren [139], Wang et al. [206], andWei et al. [208]). Hence, the only

downside of RWRReg is the storage of the RWRmatrix during training on very large graphs. In

the rest of this sectionwe present a strategy to reduce thememory requirements for RWRReg, we

explore howour regularization is impacted by different values of the restart parameter, and finally,

we show how to compute RWRReg by using matrix multiplications to take advantage of GPU

computing.

Sparsification of theRWRMatrix. To tackle the issue of storing inmemory large RWR

matrices, we explore how the sparsification of the RWR matrix affects the regularization of the

model. In particular, we apply a top-𝐾 strategy: for each node, we only keep the 𝐾 highest RWR

weights. This approach can further take advantage of existing efficient methods to directly com-

pute only the top-𝐾 RWR weights [140, 206, 207, 208]. As an example, TopPPR [208] provides

guarantees on the precision of the returned scores, and requires only 15 seconds to retrieve the

top-500 scores on a billion edge graph.

Figure 3.4 shows how different values of 𝐾 impact performance on node classification (which

usually is the task with the largest graphs). We can see that the addition of the RWRReg term

is always beneficial. Furthermore, by taking the top-𝑛
2 , we can reduce the number of entries in

the RWRmatrix of 𝑛2

2 elements, while still obtaining an average 3.2% increment on the accuracy

of the model. This strategy then allows the selection of the value of 𝐾 that best suits the avail-

able memory, while still obtaining a high performing model (better than GCN without global

structural information injection).

Impact of RWR Restart Probability. The use of RWR requires to set the restart prob-

ability parameter. We show how performance changes with different restart probabilities. In-

tuitively, higher restart probabilities might put more much focus on close nodes, as the random

walkerwith frequently return to the starting node. On the other side, lower probabilities allow for

more long-range exploration, but may get “trapped” into densely connected subgraphs. As such,

we would expect lower probabilities to provide more information that is not already available to

practical GNNs, and hence lead to higher performance. Figure 3.5 summarises how the accuracy

35

3.5 RelatedWork

3.4.2 Fast Implementation of the RandomWalkwith Restart

Regularization

We can take advantage of the speed of GPUs by formulating the computation of the RWRReg

loss through a product of matrices. Given the matrix of node embeddingsH and the matrix with

the RWR statisticsR. We are interested in the following quantity

ℒRWRReg = ∑
𝑖,𝑗

𝑅𝑖,𝑗||H𝑖,∶ − H𝑗,∶||2
This is a summation over 𝑛2 elements, which can be slow, specially for very large graphs. We

then express the less as a product of matrices with the following procedure. Let us first define the

matrices:

�̂� = 𝑛 × 𝑛 symmetric matrix with �̂�𝑖,𝑗 = ⎧{⎨{⎩
𝑅𝑖,𝑗 + 𝑅𝑗,𝑖 for 𝑖 ≠ 𝑗
𝑅𝑖,𝑗 for 𝑖 = 𝑗

�̂� = 𝑛 × 𝑛 diagonal matrix with �̂�𝑖,𝑖 = ∑
𝑗

�̂�𝑖,𝑗

𝚫 = �̂� − �̂�
We can then express the loss as

ℒRWRReg = ∑
𝑖,𝑗

𝑅𝑖,𝑗||H𝑖,∶ − H𝑗,∶||2 = ∑
𝑖

H⊺
∶,𝑖𝚫H∶,𝑖 = 𝑇 𝑟(H⊺𝚫H)

Where 𝑇 𝑟(⋅) is the trace of the matrix. Note that the matrix 𝚫 can be computed once, as a pre-

processing step, and then used for computing the loss during training without the need of re-

computing it.

3.5 RelatedWork

Random Walks with Restart and Graph Neural Networks. Several works have

taken advantage of RWR in the context of MPNNs. Klicpera et al. [125] use RWR to create a

new (weighted) adjacency matrix where message passing is performed. Li et al. [136] use random

walks in a co-training scenario to add new nodes for theMPNNs’ training set. Ying et al. [224] and

Zhang et al. [229] use randomwalks to define aggregation neighbourhoods that are not confined to

a fixed distance. Abu-El-Haija et al. [2] andAbu-El-Haija et al. [3]use powers of the adjacencymatrix,

which can be considered as random walk statistics, to define neighbourhoods of different scales.

Zhuang and Ma [234] use random walks to define the positive pointwise mutual information ma-

37

3 The Impact of Global Structural Information in Graph Neural Networks

trix and then use it in place of the adjacencymatrix in theMPNN formulation. Klicpera et al. [124]

use a diffusion strategy based onRWR instead of aggregating information fromneighbours. This

last work has recently been extended by Bojchevski et al. [26] to scale to large graphs using RWRs

to sample neighbourhoods. We remark how the aforementioned works focus on creating novel

MPNNmodels, while we are interested in studying the impact of global structural information

(whichMPNNs do not have access to).

RegularizationofGraphNeuralNetworks. Gao et al. [75], and Jiang and Lin [104] use

regularization techniques to enforce that the embeddings of neighbouring nodes should be close

to each other. The first uses Conditional Random Fields, while the second uses a regularization

term based on the graph Laplacian. Both approaches only focus on 1-hop neighbours and do not

take global information into account.

Theoretical Aspects of Graph Neural Networks. With regards to the study of the

capabilities and weaknesses of GNNs, Li et al. [136] and Xu et al. [217] study the over-smoothing

problem that appears inDeep-GCN architectures, whileXu et al. [216] andMorris et al. [162] char-

acterize the relation to the Weisfeiler-Leman algorithm. Other works have expressed the similar-

ity with distributed computing [144, 187], and the alignment with particular algorithmic struc-

tures [218]. These important contributions have advanced our understanding of the capabilities

of GNNs, but they do not analyze or quantify the impact of global structural information.

Efficient computation of RandomWalks with Restart. Our RWRReg term relies

on the computation of the RWR coefficients for every node (for computing the loss function).

When dealingwith large graphs, there is a vast literature on fast approximations ofRWR scores [6,

13, 139, 200, 206, 208].

AnonymousRandomWalks. Recent work [154] has shown that anonymous randomwalks

(i.e., random walks where the global identities of nodes are not known) of fixed length starting

at node 𝑢 are sufficient to reconstruct the local neighbourhood within a fixed distance of a node

𝑢 [154]. Subsequently, anonymous randomwalks have been introduced in the context of learning

graph representations [101]. Such results are complementary to ours, since they assume access

to the distribution of entire walks of a given length, while our RWR representation only stores

information on the probability of ending in a given node. In addition, suchworks do not provide

a connection between RWR and 1-WL.

38

3.6 Conclusions

Overcoming the Oversquashing issue. Finally, we mention two works released during

the writing of this thesis that propose strategies to overcome the oversquashing issue and allow

information to be propagated more easily over the entirety of the graph [15, 55].

3.6 Conclusions

Whether global structural information (i.e., information that depends on the structure of the

whole graph) is needed inGNNs for common tasks on graph-structured data is an open question.

In this chapter we tackle this question directly at its root. In particular, we identify three strate-

gies to inject global structural information intoMPNNmodels, and we quantify their impact on

popular downstream tasks. Our experiments show that the additional information significantly

boosts the performance of all considered state-of-the-art models, highlighting and quantifying

the importance that global structural information can have on common MPNN applications.

We further discuss a novel practical regularization technique based on RWR, which leads to an

average improvement of 5% on all models, and is supported by a novel connection betweenRWR

and the 1-WL algorithm.

39

4 Improving Size-Generalization in

GraphNeural Networks

GNNs are designed to be able to work on graphs of any size. However, empirical results show

that they struggle at generalizing to graphs of sizes that differ from those in the training data

[22, 79, 109, 223], and this is referred to as the problem of “size-generalization”. Obtaining good

size-generalization performance from smaller to larger graphs is crucial for several reasons. First,

it is common for graphs in the same domain to vary in size. For example, social networks can

range from tens to millions of nodes, and molecular graphs can go from few atoms, to large com-

pounds with thousands of atoms. Second, in many scenarios, obtaining labels for smaller graphs

is cheaper than for larger graphs. For example, recently deep learning is being used in combinato-

rial optimization problems [21], and GNNs are heavily used in this area as many problems can be

formulated as graph classification instances [41, 78, 177]. Combinatorial optimization often deals

with NP-hard problems, and obtaining ground truth labels can be extremely expensive for large

scale graphs. Third, training on smaller graphs requires less computational resources.

Two approaches have been proposed in literature to tackle the poor size-generalization of

GNNs. The first strategy requires an explicit definition of the generative process behind the data,

which, in the case of Bevilacqua et al. [22], leads to a model requiring the computation of induced

homomorphism densities over all connected 𝑘-vertex subgraphs in order to make a prediction.

While this strategy shows great results on synthetic graphs produced by the assumed generative

process, its benefits are reduced on real-world graphs, for which the underlying generative process

is unknown. The second approach assumes access to graphs coming from different domains, or

from the test distribution, and applies domain adaptation techniques to transfer knowledge across

domains [60, 223]. These methods do not require ad-hoc models, but require knowledge about

each graph’s domain, or access to the test distribution, both of which are not always available or

easily obtainable in advance.

In this chapter we consider the graph classification scenario in which we only have access to

the training data (as in the first approach described above). However, in contrast to prior work,

we do not try to improve the size-generalization capabilities (from smaller to larger graphs) of

GNNs by handcrafting models on the base of specific knowledge or assumptions, but we study

41

4 Improving Size-Generalization in Graph Neural Networks

Supervised

Loss

Regularization

Loss

Predicted

Label

Label

GNN

GNN

GNN

G1

G
c

0.9,1

G
c

0.8,1

Node

Embeddings

Node

Embeddings

Node

Embeddings

<latexit sha1_base64="Ga+yA3NfuHMcuH/HYh4dxoqIs1A=">AAACO3icbVDLSsNAFJ34tvXR6kZwM1gEBS2J+NyJLnShUME+oKlhMrnVoZNJmJkIJdSvcat/4Ie4didu3TuJXaj1wjCHc+7l3Hv8mDOlbfvVGhufmJyanpktFOfmFxZL5aWGihJJoU4jHsmWTxRwJqCumebQiiWQ0OfQ9Hunmd68B6lYJK51P4ZOSG4F6zJKtKG80oobEn1HCU/PBjcUb5x5zha2q0ebXqliV+288ChwhqCChlXzylbRDSKahCA05USptmPHupMSqRnlMCi4iYKY0B65hbaBgoSgOml+wgCvGybA3UiaJzTO2Z8TKQmV6oe+6cwWVn+1jPxPaye6e9hJmYgTDYJ+G3UTjnWEszxwwCRQzfsGECqZ2RXTOyIJ1Sa1Xy6JYDQKYDu3KrgKdIayddMLk6bAl0aV5st0E5/zN6xR0NipOvvVvavdyvHJMMgZtIrW0AZy0AE6RueohuqIogf0iJ7Qs/VivVnv1sd365g1nFlGv8r6/AJ/8KvA</latexit>

𝒢𝑐(𝐺
1
, 0.9)

<latexit sha1_base64="aHA8htbYWBjVHmBS9lTbcevfVUc=">AAACO3icbVDLSsNAFJ34tr5a3QhuBougoCURH12KLnShoGBtoYlhMrlth04mYWYilFC/xq3+gR/i2p24de+k7UKtF4Y5nHMv594TJJwpbdtv1sTk1PTM7Nx8YWFxaXmlWFq9U3EqKdRozGPZCIgCzgTUNNMcGokEEgUc6kH3LNfrDyAVi8Wt7iXgRaQtWItRog3lF9fdiOgOJTw7799TvH3uO7vYrlR3/GLZrtiDwuPAGYEyGtW1X7IW3DCmaQRCU06Uajp2or2MSM0oh37BTRUkhHZJG5oGChKB8rLBCX28ZZgQt2JpntB4wP6cyEikVC8KTGe+sPqr5eR/WjPVraqXMZGkGgQdGrVSjnWM8zxwyCRQzXsGECqZ2RXTDpGEapPaL5dUMBqHsDewKrgKdI7ydbNLk6bAV0aV5st1E5/zN6xxcLdfcY4qhzcH5ZPTUZBzaANtom3koGN0gi7QNaohih7RE3pGL9ar9W59WJ/D1glrNLOGfpX19Q1+Mau/</latexit>

𝒢𝑐(𝐺
1
, 0.8)

Figure 4.1: Overview of our method: given a training set of labelled graphs, we simulate a size shift by
applying a coarsening function 𝒢𝑐 and we regularize the model to be robust towards this shift.
The regularization enforces the distribution of node embeddings generated by the model for
the original graph and its coarsened versions to be similar.

a general form of regularization that can be applied to any GNN, and that aims at letting the

model learn to be robust to size-shifts. The idea behind our regularization is to simulate a shift

in the size of the training graphs, and to regularize the model to be robust towards this shift.

The size-shift simulation is obtained using graph coarsening techniques, while the regularization

is performed by minimizing the discrepancy between the distributions of the node embeddings

generated by the GNN model for the original training graphs and their coarsened versions (an

overview is shown in Figure 4.1).

In the experimental section we evaluate GNNmodels on popular benchmark datasets using a

particular train/test split designed to test for size-generalization. In particular, following Bevilac-

qua et al. [22] and Yehudai et al. [223], we train on the 50% smallest graphs and test on the 10%
largest. This split leads to an average size of the test graphs which is 3 to 9 times larger than the

average size of the training graphs. Our results show that our regularization method applied to

standard GNNmodels (GCN [121], PNA [52], GIN [216]) leads to an average performance im-

provement on the test set of up to 30% across datasets. Furthermore, these performance im-

provements show that standard GNNmodels trained with our regularization can achieve better

size-generalization performance than more expensive models. The latter more expensive models

were designed after making explicit assumptions on the generative process behind the graphs in

the dataset [22],while our method relies on learning to be robust towards size-shifts.

42

4.1 Preliminaries

Our contributions. Our contributions in this chapter are threefold.

• We propose a regularization strategy that can be applied to any GNN to improve its size-

generalization capabilities on the task of graph classification.

• We analyze the impact that our strategy has on the embeddings generated by a GNN.

• We test our strategy on popular GNN models, and compare against previously proposed

methods, showing that “standard” GNNmodels augmented with our regularization strat-

egy achieve comparable or better size-generalization performance thanmore complexmod-

els designed after explicit assumptions on the generative process behind the data.

4.1 Preliminaries

We provide below a brief introduction to some techniques used in this chapter.

4.1.1 Centered Kernel Alignment

The Centered Kernel Alignment (CKA) [127] takes as input two matrices A ∈ ℝ𝑚×𝑑′ ,B ∈
ℝ𝑚×𝑑′′

of representations and provides a value between 0 and 1 quantifying how aligned the rep-

resentations are (allowing for 𝑑′ ≠ 𝑑′′). CKAquantifies the similarity of representations learned

by (possibly) different models and, for example, it gives us a way to study if different architectures

are learning the same concepts, or if different layers aremaintaining the same informative content.

4.1.2 CentralMoment Discrepancy

The Central Moment Discrepancy (CMD) [228] is a metric used to measure the discrepancy be-

tween the distribution of high-dimensional random variables. Let 𝑝 and 𝑞 be two probability

distributions with support in the interval [𝑎, 𝑏]𝑑 and let 𝑐𝑘 be the 𝑘-th order moment, then the

CMD between 𝑝 and 𝑞 is defined as:
CMD(𝑝, 𝑞) = 1|𝑏 − 𝑎|‖𝔼(𝑝) − 𝔼(𝑞)‖

2
+ ∞∑

𝑘=2

1|𝑏 − 𝑎|𝑘 ‖𝑐𝑘(𝑝) − 𝑐𝑘(𝑞)‖
2
. (4.1)

At a practical level, we follow Zhu et al. [233], and limit the number of considered moments to

5. To align with the definition of CMD it is possible to treat node embeddings as realizations of

bounded high dimensional distributions by applying bounded activation functions like tanh or

sigmoid at the embeddings layer (as done in prior work [228, 233]). Nevertheless, in our experi-

ments we notice good performance even when a ReLU activation is used.

43

4 Improving Size-Generalization in Graph Neural Networks

4.2 OurMethod

The high level idea behind our method is to “simulate” a size-shift in the training dataset, and to

regularize the GNN to be robust to this shift (an overview is shown in Figure 4.1). While previ-

ous works rely on handcrafted models that incorporate domain-specific inductive biases and/or

assumptions on the generative process, our method aims at learning to be robust towards size-

shifts.

Simulating the shift. Let 𝒢𝑐 ∶ (𝐺, 𝑟) → 𝐺𝑐
𝑟 be a coarsening function, that takes as in-

put a graph 𝐺 with 𝑛 nodes and a ratio 𝑟 ∈ (0, 1), and returns a coarsened version of the

graph, 𝐺𝑐
𝑟, which has ⌊𝑟 × 𝑛⌋ nodes. Our method is not bound to a specific coarsening func-

tion 𝒢𝑐, any existing method can be used, e.g., the techniques by Jin et al. [107], Loukas [143],

and Loukas and Vandergheynst [145]. Our method then proceeds in the following way: given a

dataset of graphs 𝒟 = {𝐺1, 𝐺2, … , 𝐺ℓ}, a coarsening function 𝒢𝑐, and a set of 𝑘 coarsen-

ing ratios 𝐶 = {𝑟1, 𝑟2, … , 𝑟𝑘}, we create a coarsened dataset 𝒟𝑟𝑗
for each ratio by applying

the coarsening function to each graph in the dataset: 𝒟𝑟𝑗
= {𝐺𝑐

𝑟𝑗,1 = 𝒢𝑐(𝐺1, 𝑟𝑗), 𝐺𝑐
𝑟𝑗,2 =

𝒢𝑐(𝐺2, 𝑟𝑗), ⋯ , 𝐺𝑐
𝑟𝑗,ℓ = 𝒢𝑐(𝐺ℓ, 𝑟𝑗)}, ∀𝑗 = 1, 2, … , 𝑘. When the graph is attributed, we ob-

tain the features for each node of the coarsened version of the graph by aggregating the features of

the corresponding nodes in the original graph using simple aggregations (e.g., mean, max, sum),

as commonly done in readout functions for GNNs [213].

Regularizing the GNN. Given the graph dataset 𝒟, its coarsened versions 𝒟𝑟1
, 𝒟𝑟2

, ⋯ ,
𝒟𝑟𝑘

, and a GNN 𝑓𝜃, where 𝜃 are the parameters, we aim at regularizing the GNN so that the

distribution of the node embeddings generated by themodel for the graphs in the original dataset

and their coarsened version is similar. In otherwords, for a given graph, wewant themodel to gen-

erate a distribution of node embeddings that is robust across different coarsened versions of the

graph. In more detail, we regularize a GNNbyminimizing the CMD [228] between the distribu-

tion of the node embeddings generated by theGNN for the original graph and the distribution of

the node embeddings generated by theGNN for the coarsened version(s) of the graph. We choose

CMD as it has proven to be successful and stable as a regularization term for non-linear models

[142, 233]. Formally, let ℒ be the supervised loss function that is used to train the model (e.g.

cross-entropy for classification), and let 𝜆 be a termmeasuring the strength of the regularization,

our optimization problem is

argmin
𝜃

ℒ + 𝜆ℒsize, where ℒsize = 𝑘∑
𝑗=1

ℓ∑
𝑖=1

CMD(𝑓𝜃(𝐺𝑖), 𝑓𝜃(𝐺𝑐
𝑟𝑗,𝑖)) (4.2)

44

4.2 OurMethod

Our method is model-agnostic, and can hence be applied to any GNN.

Pseudocode and practical aspect. Algorithm 1 presents the pseudocode for computing

our regularization loss for a batch of graphs during training. The pseudocode is presented in an

extended manner for clarity, but at a practical level, the coarsened versions of the training graphs

are pre-computed before training, and the computation of the loss is done in a vectoredmanner so

it is computed concurrently for all graphs in the batch in one pass (i.e., we do not iterate through

the graphs in the batch). At a practical level, in our experiments we notice that training a model

with our regularization introduces a 50% overhead in the running time for a training epoch w.r.t.

training the same model without regularization.

Algorithm 1 Computing Regularization Loss for an Input Batch during Training

Require: Coarsening ratios 𝐶, coarsening function 𝒢𝑐(graph, ratio)
Input: Batch 𝐵 of size 𝑛𝑏, GNNmodel 𝑓𝜃

coarsened_batches ← {} {Create a new batch of coarsened graphs for each ratio}

for 𝑟 in 𝐶 do

Batch 𝐵𝑟 ← []
for 𝐺 in 𝐵 do

𝐺𝑐
𝑟 ← 𝒢𝑐(𝐺, 𝑟)

𝐵𝑟.add(𝐺𝑐
𝑟)

end for

coarsened_batches ← coarsened_batches ∪ 𝐵𝑟

end for

ℓ ← 0 {Initialize loss}

ℓ ← 0 {Initialize loss}

for 𝐵𝑟 in coarsened_batches do

for 𝑖 in {1, 2, … , 𝑛𝑏} do
embs_og = 𝑓𝜃(𝐵[𝑖]) {Compute node embeddings for original graph}

embs_coarse = 𝑓𝜃(𝐵𝑟[𝑖]) {Compute node embeddings for coarsened version of graph}

ℓ ← ℓ + CMD(embs_og, embs_coarse) {Compute CMD between node embeddings}

end for

end for

Return ℓ
4.2.1 Limitations

Similarly topreviousworks [22, 223]weare assuming that there are someproperties that determine

the label of a graph and that do not depend on the size of the graph. In a scenario in which small

graphs do not carry information that is relevant for solving the task on larger graphs, we do not

expect our regularization to provide substantial benefits, and the best option would be to include

45

4 Improving Size-Generalization in Graph Neural Networks

larger graphs in the training set. In our experiments, the ratio between the average size of the

graphs in the test set and the average size of the graphs in the training set is between 3 and 9.

While ourmethod shows significant performance improvements in this setting, itmay show lower

performance improvements when this ratio reaches much higher values.

4.3 Analysis of Node Embeddings

Table 4.1: AverageCKAvalues between the node em-
beddings generated by two models, one
trained with and one without our regular-
ization, across the graphs in a dataset and
their coarsened versions.

Dataset NCI1 NCI109 PROTEINS DD

Original 0.43 ± 0.06 0.58 ± 0.10 0.45 ± 0.06 0.47 ± 0.01

Coarsened 0.12 ± 0.06 0.38 ± 0.13 0.34 ± 0.08 0.40 ± 0.01

Before evaluating how our regularization im-

pacts the size-generalization performance of a

model, we analyze the effects that our regular-

ization has on the embeddings generated by

the model. In order to do this, we consider

two identical GIN [216] models and we train

one with our regularization and one with-

out. We then use these models to generate

node embeddings and use the Central Ker-

nel Alignment (CKA) [127] to study the gen-

erated representations, similarly to Joshi et al.

[110]. CKA takes as input two matrices 𝐴 ∈ ℝ𝑚×𝑑′ , 𝐵 ∈ ℝ𝑚×𝑑′′
of representations and

provides a value between 0 and 1 quantifying how aligned the representations are (allowing for

𝑑′ ≠ 𝑑′′). CKAquantifies the similarity of representations learned by (possibly) differentmodels

and gives us a way to study the effects of our regularization. We report results averaged over 10

different random seeds.

First, we ask if a model trained with our regularization and a model trained without our regu-

larization produce similar node embeddings. To compare the node embeddings between the two

models we obtain a representation for each graph by concatenating the node embeddings for that

graph. We then compute the CKA between the representations generated by the model trained

with regularization and the representations from model trained without regularization. We do

this for the original graphs and the coarsened versions of the graphs, and report the average CKA.

Results shown in Table 4.1 highlight that there is low alignment between the embeddings gener-

ated by a model trained with regularization and one trained without regularization (the average

CKA across datasets is 0.48 for the original graphs). This is evenmore apparent for the coarsened

graphs, showing that our regularization is impacting the way a model generates embeddings, es-

pecially for size-shifted versions of the graphs. To analyze the trendmore in detail, we also plot the

CKA values across coarsening ratios in Figure 4.2 (a). Here we notice that the CKA between the

embeddings generated by a model trained with our regularization and a model trained without,

46

4.4 Evaluation

Table 4.2: Dataset statistics; this table is taken from Bevilacqua et al. [22] and Yehudai et al. [223].

NCI1 NCI109
all Smallest 50% Largest 10% all Smallest 50% Largest 10%

Class A 49.95% 62.30% 19.17% 49.62% 62.04% 21.37%
Class B 50.04% 37.69% 80.82% 50.37% 37.95% 78.62%
Num. of graphs 4110 2157 412 4127 2079 421
Avg. graph size 29 20 61 29 20 61

PROTEINS DD
all Smallest 50% Largest 10% all Smallest 50% Largest 10%

Class A 59.56% 41.97% 90.17% 58.65% 35.47% 79.66%
Class B 40.43% 58.02% 9.82% 41.34% 64.52% 20.33%
Num. of graphs 1113 567 112 1178 592 118
Avg. graph size 39 15 138 284 144 746

Computing Infrastructure. The experiments were run on a GPU cluster with 8 Nvidia

1080Ti, and on aCPUcluster equippedwith 8CPUs 12-Core IntelXeonGold 5118@2.30GHz,

with 1.5Tb of RAM.

HyperparametersandEvaluationProtocol. For the standardGNNmodelswe adopt

the same hyperparameters of Bevilacqua et al. [22], which were obtained from a tuning procedure

involving number of layers, learning rate, batch size, hidden layers dimension, and regularization

terms. The GCN [121], GIN [216], and PNA [52]models used in our experiments have 3 graph

convolution layers and a final multi-layer perceptron with a softmax activation function to ob-

tain the predictions. Batch norm is used in between graph convolution layers, and ReLU is used

as activation function. The networks are trained with a dropout of 0.3, and were tuned using the
validation set. In particular the batch size was chosen between 64 and 128, the learning rate be-
tween 0.01, 0.005, and 0.001, and the network width between 32 and 64. All models are trained

with early stopping (i.e., taking the weights at the epoch with best performance on the validation

set). We do not modify the original hyperparameters when we apply our regularization. We tune

the regularization coefficient 𝜆 and the coarse ratios𝐶 for GIN on the PROTEINS validation set

(we find 𝜆 = 0.1 and 𝐶 = {0.8, 0.9} to be the best), and we apply these settings to all models

and datasetswhen using our regularization, to show that ourmethod canworkwithout extensive

(and expensive) hyperparameter tuning. Weuse the SGCcoarsening algorithm [107] to obtain the

coarsened versions of the graphs (chosen for its theoretical properties). The only hyperparameter

that is tuned on a per-dataset basis is the aggregation strategy used to obtain the features for the

nodes in the coarsened versions of the graphs (in particular we take the best performing between

‘sum’, ‘max’, and ‘mean’). For all other models we use the hyperparameters introduced by their

respective papers. Bevilacqua et al. [22] presented results by averaging over 10 runs (each time with

49

4 Improving Size-Generalization in Graph Neural Networks

Table 4.3: Average Matthews Correlation Coefficient (MCC) for standard GNN models over the size-
generalization test set. The models have been trained with (✓) and without (✗) our regular-
ization method. The right-most column shows the average improvement brought by our regu-
larization.

Dataset NCI1 NCI109 PROTEINS DD Avg.
Reg. ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ Impr.

PNA 0.19 ± 0.08 0.22 ± 0.07 0.23 ± 0.07 0.24 ± 0.07 0.22 ± 0.12 0.33 ± 0.09 0.23 ± 0.09 0.27 ± 0.08 +22%
GCN 0.17 ± 0.06 0.25 ± 0.06 0.15 ± 0.06 0.19 ± 0.06 0.21 ± 0.10 0.29 ± 0.13 0.24 ± 0.07 0.26 ± 0.07 +30%
GIN 0.19 ± 0.06 0.23 ± 0.08 0.18 ± 0.05 0.20 ± 0.05 0.25 ± 0.07 0.36 ± 0.11 0.23 ± 0.09 0.25 ± 0.09 +21%

a different random seed), but given the high variance observed, we re-run the experiments for all

the models and present the results averaged over 50 runs.

Tuning and Evaluation Procedure. To identify the values of𝜆 and𝐶 to use for ourmethod,

we tried different values (𝜆 = {1.0, 0.1, 0.01, 0.001} and 𝐶 = {(0.5), (0.8), (0.9), (0.5, 0.8),
(0.5, 0.9), (0.8, 0.9)}) on the validation set using a GINmodel on the PROTEINS dataset. We

found that 𝜆 = 0.1 and 𝐶 = (0.8, 0.9) performed best on the validation set, and we then

used those values on the validation set of other datasets and with other models. As the results on

the validation sets were leading to better performance with respect to a model trained without

regularization, we adopted the same values of 𝜆 and 𝐶 for all datasets and models to show that

our method can work without extensive (and expensive) hyperparameter tuning. It is possible

that dataset-specific and model-specific tuning can lead to higher results.

We first obtained the results for Table 4.1, Figure 4.2, Table 4.3, and Table 4.4. The ablation is

then used to understand the impact of the components of ourmethod only after having evaluated

it, as is the standard procedure for ablation studies.

4.4.1 Results

Table 4.3 shows how the three considered standard GNN models perform on the test set, con-

taining the 10% largest graphs in the dataset, when trained with and without our regularization

on the 50% smallest graphs in the dataset. As this split leads to an imbalanced dataset, we follow

previous works and report the results in terms ofMatthews correlation coefficient (MCC), which

has been shown to be more reliable in imbalanced settings with respect to other commonmetrics

[48]. MCC gives a value between −1 and 1, where −1 indicates perfect disagreement, 0 is the

value for a random guesser, and 1 indicates perfect agreement between the predictions and the

true labels. The results show that the use of the proposed regularization is always beneficial to the

performance of the models, and that it leads to an average improvement across datasets of 21 to

30%.

50

4.4 Evaluation

Table 4.4: Comparison of average Matthews Correlation Coefficient (MCC) over the size-generalization
test data between the standard GNNmodels trained with our proposed regularization and pre-
viously proposedmethods. Highlighted are thefirst, second, and thirdbest performingmodels
per dataset.

Dataset NCI1 NCI109 PROTEINS DD

PNA (reg) [ours] 0.22 ± 0.07 0.24 ± 0.07 0.33 ± 0.09 0.27 ± 0.08

GCN (reg) [ours] 0.25 ± 0.06 0.19 ± 0.06 0.29 ± 0.13 0.26 ± 0.07

GIN (reg) [ours] 0.23 ± 0.08 0.20 ± 0.05 0.36 ± 0.11 0.25 ± 0.09

PNA + IRM [7] 0.17 ± 0.07 0.20 ± 0.07 0.21 ± 0.12 0.24 ± 0.08

GCN+ IRM [7] 0.22 ± 0.06 0.20 ± 0.06 0.23 ± 0.16 0.23 ± 0.08

GIN + IRM [7] 0.18 ± 0.06 0.15 ± 0.04 0.24 ± 0.08 0.21 ± 0.10

WL kernel [192] 0.39 ± 0.00 0.21 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

GC kernel [193] 0.02 ± 0.00 0.01 ± 0.00 0.29 ± 0.00 0.00 ± 0.00

RPGIN [163] 0.18 ± 0.06 0.16 ± 0.04 0.22 ± 0.08 0.13 ± 0.04

Γ1-hot [22] 0.15 ± 0.05 0.22 ± 0.06 0.18 ± 0.08 0.22 ± 0.09ΓGIN [22] 0.24 ± 0.05 0.16 ± 0.07 0.28 ± 0.10 0.27 ± 0.05ΓRPGIN [22] 0.26 ± 0.05 0.19 ± 0.06 0.26 ± 0.07 0.20 ± 0.05

In Table 4.4, we compare the standard GNNs trained with our regularization strategy against

more expressivemodels (RPGNN), graph kernels, models trained with the IRM strategy, and the

E-invariant models. We notice that on 3 out of 4 datasets, a “standard” GNN trained with our

regularization obtains the best performance on the test set composed of graphs with size larger

than those present in the training set. Furthermore on all datasets there is at least one model

trained with our regularization in the top-3 best performing models. We also confirm previous

results [22, 60] showing that IRM is not effective in the graph domain, and that using theoreti-

cally more expressive models, like RPGNN, does not necessarily lead to good size-generalization

performance. Graph kernels are highly dataset-dependent, and, while they can perform well for

some datasets, in many cases they fail to perform better than a random classifier. Perhaps more

surprisingly, on 3 out of 4 datasets there is at least one “standard” GNN trained with our regular-

ization that performs comparably or better than the best E-Invariant model. In fact, E-invariant

models are tied to the assumed causal model for the generation of graphs, which is not guaran-

teed to hold reliably for real-world datasets for which we do not have this kind of information.

Furthermore, E-invariant models require the computation of induced homomorphism densities

over all possible connected k-vertex subgraphs both at training time and at test time. Ourmethod

instead tries to learn to be robust to size-shifts, does not require any additional computation at

51

4 Improving Size-Generalization in Graph Neural Networks

inference time, and yet can lead even simple models like GCN to have size-generalization perfor-

mance comparable to E-invariant models.

Table 4.5: Average MCC results on the Deezer
dataset for models trained with (✓) and
without (✗) our regularization.

Dataset Deezer

Reg. ✗ ✓

PNA 0.59 ± 0.06 0.64 ± 0.07

GCN 0.49 ± 0.10 0.59 ± 0.06

GIN 0.55 ± 0.08 0.61 ± 0.07

Finally, in addition to the benchmarks con-

sidered by Bevilacqua et al. [22], we also ex-

periment on a dataset from a different do-

main. In particular, we consider a social net-

work dataset obtained from Deezer [183]. We

follow the same evaluation strategy as before:

train on the 50% smallest and test on the 10%
largest, and we apply our regularization with

𝜆 = 0.1 and 𝐶 = {0.8, 0.9} without

any additional hyperparameter tuning. Re-

sults shown in Table 4.5 confirm the effective-

ness of our method, with improvements of up to 20%.

4.4.2 Ablation Study

Table 4.6: Average MCC results on the size-
generalization test set for a PNA model
trained with our regularization strategy
using different coarsening ratios.

Datasets NCI1 NCI109 PROTEINS DD

Ratio(s)

0.1 0.07 ± 0.11 0.19 ± 0.08 0.12 ± 0.15 0.07 ± 0.14

0.2 0.11 ± 0.12 0.20 ± 0.08 0.18 ± 0.16 0.20 ± 0.11

0.3 0.15 ± 0.09 0.22 ± 0.07 0.17 ± 0.16 0.22 ± 0.10

0.4 0.18 ± 0.08 0.22 ± 0.08 0.23 ± 0.14 0.26 ± 0.11

0.5 0.22 ± 0.08 0.24 ± 0.07 0.29 ± 0.12 0.22 ± 0.09

0.6 0.23 ± 0.08 0.23 ± 0.07 0.26 ± 0.09 0.27 ± 0.10

0.7 0.22 ± 0.07 0.24 ± 0.06 0.30 ± 0.14 0.24 ± 0.06

0.8 0.24 ± 0.06 0.23 ± 0.07 0.32 ± 0.11 0.25 ± 0.09

0.9 0.19 ± 0.06 0.21 ± 0.08 0.28 ± 0.12 0.25 ± 0.10

{0.1, 0.9} 0.12 ± 0.10 0.20 ± 0.06 0.14 ± 0.16 0.14 ± 0.14

{0.5, 0.9} 0.23 ± 0.08 0.22 ± 0.07 0.32 ± 0.12 0.27 ± 0.08

{0.8, 0.9} 0.22 ± 0.07 0.24 ± 0.07 0.33 ± 0.09 0.27 ± 0.08

{0.3, 0.7} 0.22 ± 0.09 0.21 ± 0.08 0.24 ± 0.11 0.25 ± 0.09

ALL 0.18 ± 0.09 0.18 ± 0.09 0.17 ± 0.14 0.23 ± 0.10

In this section we study the contribution and

importance of the different components of

our regularization. We focus primarily on the

PNAmodel because of its performance in the

previous analysis, but similar conclusions are

observed and reported also forGIN andGCN

(in Table 4.8, Table 4.7, Table 4.10, and Table

4.9).

Changing Size of Coarsened Graphs.

In Table 4.6, we train a PNA model (results

for GCN and GIN can be found in Table 4.7,

andTable 4.8)with our regularization strategy

using different coarsening ratios 𝐶. We notice

an overall trend in which the performance de-

creases as the coarsening ratio decreases. This

follows intuitively as very low coarsening ra-

tios may lead to uninformative graphs. Fur-

thermore we notice that using all ratios (from 0.1 to 0.9) is usually not effective and setting

52

4 Improving Size-Generalization in Graph Neural Networks

Table 4.7: Table shows the average Matthews cor-
relation coefficient (MCC) for a GCN
model trainedwith our proposed regular-
ization with the Spectral Graph Coarsen-
ing (SGC) strategy applied with different
coarsening ratios.

Datasets NCI1 NCI109 PROTEINS DD
Ratio(s)
0.1 0.09 ± 0.12 0.23 ± 0.07 0.05 ± 0.14 0.15 ± 0.09

0.2 0.17 ± 0.11 0.23 ± 0.07 0.05 ± 0.16 0.20 ± 0.08

0.3 0.18 ± 0.10 0.23 ± 0.07 0.08 ± 0.18 0.23 ± 0.07

0.4 0.21 ± 0.07 0.24 ± 0.06 0.09 ± 0.17 0.24 ± 0.09

0.5 0.23 ± 0.07 0.22 ± 0.05 0.21 ± 0.14 0.27 ± 0.09

0.6 0.24 ± 0.05 0.21 ± 0.06 0.23 ± 0.17 0.25 ± 0.08

0.7 0.26 ± 0.06 0.21 ± 0.05 0.25 ± 0.16 0.24 ± 0.08

0.8 0.27 ± 0.06 0.20 ± 0.04 0.29 ± 0.15 0.27 ± 0.08

0.9 0.25 ± 0.07 0.19 ± 0.05 0.22 ± 0.14 0.25 ± 0.09{0.1, 0.9} 0.15 ± 0.11 0.21 ± 0.06 0.09 ± 0.15 0.21 ± 0.09{0.5, 0.9} 0.22 ± 0.05 0.22 ± 0.06 0.28 ± 0.12 0.25 ± 0.08{0.8, 0.9} 0.25 ± 0.06 0.19 ± 0.06 0.29 ± 0.13 0.26 ± 0.07{0.3, 0.7} 0.21 ± 0.07 0.22 ± 0.05 0.10 ± 0.14 0.23 ± 0.07

ALL 0.17 ± 0.08 0.23 ± 0.09 0.12 ± 0.16 0.21 ± 0.09

Table 4.8: Table shows the average Matthews cor-
relation coefficient (MCC) for a GIN
model trainedwith our proposed regular-
ization with the Spectral Graph Coarsen-
ing (SGC) strategy applied with different
coarsening ratios.

Datasets NCI1 NCI109 PROTEINS DD
Ratio(s)
0.1 0.07 ± 0.11 0.04 ± 0.11 0.26 ± 0.12 0.22 ± 0.10

0.2 0.07 ± 0.11 0.07 ± 0.11 0.30 ± 0.10 0.24 ± 0.12

0.3 0.07 ± 0.11 0.10 ± 0.09 0.29 ± 0.15 0.25 ± 0.09

0.4 0.02 ± 0.13 0.09 ± 0.09 0.31 ± 0.15 0.24 ± 0.09

0.5 0.07 ± 0.11 0.10 ± 0.11 0.32 ± 0.12 0.25 ± 0.09

0.6 0.02 ± 0.11 0.08 ± 0.07 0.34 ± 0.12 0.26 ± 0.10

0.7 0.01 ± 0.09 0.09 ± 0.06 0.31 ± 0.14 0.25 ± 0.11

0.8 0.15 ± 0.10 0.15 ± 0.07 0.36 ± 0.11 0.27 ± 0.08

0.9 0.22 ± 0.08 0.19 ± 0.05 0.34 ± 0.10 0.25 ± 0.10{0.1, 0.9} 0.09 ± 0.10 0.05 ± 0.09 0.32 ± 0.15 0.22 ± 0.10{0.5, 0.9} 0.03 ± 0.10 0.09 ± 0.07 0.32 ± 0.13 0.23 ± 0.09{0.8, 0.9} 0.23 ± 0.08 0.20 ± 0.05 0.36 ± 0.11 0.25 ± 0.09{0.3, 0.7} 0.05 ± 0.12 0.08 ± 0.09 0.26 ± 0.15 0.24 ± 0.10

ALL 0.05 ± 0.12 0.11 ± 0.09 0.25 ± 0.16 0.23 ± 0.10

ad-hocmodels that leverage the properties of the domain [16, 18, 71, 185, 202]. For example,Tsub-

aki and Mizoguchi [202] impose constraints dictated by the physical properties of their data, and

report good size-generalization in predicting the energy of a molecule. While these works show

that placing the right inductive biases can help the size-generalization capabilities of GNNs, the

current literature is lacking a general method that can be applied on generic GNNs.

Bevilacqua et al. [22] tackle the issue of poor size-generalization by assuming a causal model de-

scribing the generative process for the graphs in the dataset, and designing a specific model which

can be invariant to the size of the graphs obtained through this causal model. While this strat-

egy shows great size-generalization capabilities on synthetic graphs generated according to their

causal model, its benefits decrease when applied to real-world graphs where there are no guar-

antees that the causal model is correct. This method requires an ad-hoc model and additional

computations at both train and test time, while our method can be applied on any GNN and

does not require pre-computations at test time. Yehudai et al. [223] provide a theoretical and em-

pirical analysis showing that, even for simple tasks, it is not trivial to obtain a GNN with good

size-generalization properties. Yehudai et al. [223] consider a different scenario from ours, as, to-

gether with the labelled training graphs, they assume access to graphs from the test distribution,

and treat the task as a domain-adaptation scenario.

54

4.5 RelatedWork

Table 4.9: Table shows the average Matthews cor-
relation coefficient (MCC) for a GCN
model trained with our proposed regu-
larization and different coarsening strate-
gies: Spectral Clustering (SC), Spec-
tral Graph Coarsening (SGC), Multilevel
Graph Coarsening (MLGC), K-Means
(KMEANS).

Datasets NCI1 NCI109 PROTEINS DD

GCN-SGC 0.25 ± 0.06 0.19 ± 0.06 0.29 ± 0.13 0.26 ± 0.07

GCN-MLGC 0.21 ± 0.07 0.21 ± 0.06 0.27 ± 0.14 0.25 ± 0.06

GCN-SC 0.28 ± 0.07 0.18 ± 0.06 0.24 ± 0.16 0.24 ± 0.07

GCN-KMEANS 0.28 ± 0.06 0.18 ± 0.05 0.25 ± 0.15 0.24 ± 0.07

Table 4.10: Table shows the average Matthews
correlation coefficient (MCC) for a
GIN model trained with our proposed
regularization and different coarsening
strategies: Spectral Clustering (SC),
Spectral Graph Coarsening (SGC),
Multilevel Graph Coarsening (MLGC),
K-Means (KMEANS).

Datasets NCI1 NCI109 PROTEINS DD

GIN-SGC 0.23 ± 0.08 0.20 ± 0.05 0.36 ± 0.11 0.25 ± 0.09

GIN-MLGC 0.22 ± 0.07 0.19 ± 0.06 0.36 ± 0.10 0.25 ± 0.10

GIN-SC 0.08 ± 0.11 0.07 ± 0.08 0.32 ± 0.12 0.21 ± 0.10

GIN-KMEANS 0.21 ± 0.09 0.20 ± 0.06 0.35 ± 0.08 0.28 ± 0.09

Graph coarsening. While there is no consensus on what is the best metric to consider for

coarsening a graph,manymethods andmetrics have beenproposed in recent years [28, 64, 107, 143,

145]. Therehave alsobeen some attempts at usingGNNs for the task of graph coarsening [38, 147].

Orthogonally, graph coarsening has been used to reduce the computational resources needed for

training GNNs on large graphs [98, 105]. For a detailed presentation of graph coarsening we refer

to Chen et al. [46].

Invariant risk minimization, domain adaptation, and regularization with dis-

crepancy measures. Our method is conceptually related to Invariant Risk Minimization

(IRM) [7],which aims at learning representations that are invariant across training environments

(where different training environments are intended as sets of data points collectedunder different

conditions). IRM has been shown to have several shortcomings, specially when the data comes

from a single environment (e.g. when there is access only to small graphs) [22, 181]. Our method

does not require access to different training environments, which may not be easy to obtain in

practical scenarios, and, as also observed in Bevilacqua et al. [22] and Ding et al. [60], our results

show that IRM seems ineffective for improving size-generalization in GNNs.

Similarly to IRM, the field of domain adaptation [19] subsumes access to (unlabelled) external

data, in addition to labelled training data, and aims at transferring knowledge between domains.

Domain adaptation has been used in a large variety of fields, andmany surveys are available [54, 83,

210]. Ding et al. [60] analyze how existing domain adaptation algorithms perform on graph data,

and observe that these tend to not be effective, indicating that newmethods specific for graph data

are needed.

Discrepancy measures that have been used for regularizing deep learning models are the Max-

imum Mean Discrepancy (MMD) [65, 141, 142, 219] and the Central Moment Discrepancy

55

4 Improving Size-Generalization in Graph Neural Networks

(CMD) [173, 228, 233], which has been shown to be empirically more effective. Finally, we men-

tion the work by Zhu et al. [233] which, similarly to ours, uses CMD to obtain a GNN that is

robust to biases in the sampling process that is used to select the nodes for the training set in node

classification scenarios.

4.6 Conclusions

GNNs are heavily used models for the task of graph classification. In many domains it is typical

for graphs to vary in size, and while GNNs are designed to be able to process graphs of any size,

empirical results across literature have highlighted that GNNs struggle at generalizing to sizes un-

seen during training. In this Chapter we introduce a regularization strategy that can be applied

on anyGNN, and that improves size-generalization performance from smaller to larger graphs by

up to 30%.

56

5 LearningMulti-Task Representations

be to deploy a specific model (generating specific node embeddings) for each task, this inevitably

leads to significant overhead.

This chapter studies the problem of generating node embeddings that can be used for multi-

ple tasks, which is a scenario with many practical applications that, nonetheless, has received little

attention from the GNN community. In more detail, we propose a multi-task representation

learning procedure, based on optimization-based meta-learning [68], that learns a GNN encoder

producing node embeddings that generalize across multiple tasks. Our focus is on the most stud-

ied tasks in the GNN literature: graph classification, node classification, and link prediction.

The proposed meta-learning procedure is targeted towards multi-task representation learning

and takes advantage of MAML [68] and ANIL [178] to reach a setting of the parameters where

a few steps of gradient descent on a given task lead to good performance on that task. This pro-

cedure leads to an encoder-decoder model that can easily be adapted to perform each of the tasks

singularly, and hence encourages the encoder to learn representations that can be reused across

tasks. At the end of the training procedure, the decoder is discarded, and the encoder GNN is

used to generate embeddings.

We summarize the contributions of this chapter as follows:

• We consider the under-studied problem of learning GNN models generating node repre-

sentations that can be used to perform multiple tasks. In this regard, we design a meta-

learning strategy for training GNNmodels with such capabilities.

• To the best of our knowledge, we are the first to propose a GNNmodel generating a single

set of node embeddings that can be used to perform the three most common graph-related

tasks (i.e., graph classification, node classification, and link prediction). In particular, the

generated embeddings lead to comparable or even higher performance with respect to sep-

arate end-to-end trained single-task models.

• We show that the episodic training strategy at the base of ourmeta-learning procedure leads

to a model generating node embeddings that are more effective for downstream tasks, even

in single-task settings. This unexpected finding is of interest in itself, and may provide

fruitful directions for future research.

5.1 Preliminaries

Belowwe provide a brief introduction tomulti-task learning, andmeta-learning, which are at the

base of the topics presented in this chapter.

58

5.1 Preliminaries

5.1.1 Multi-Task Learning

Multi-Task Learning (MTL) [42] is the area of machine learning which studies how to solve mul-

tiple learning tasks in parallel. The main idea is that several tasks have commonalities between

them (e.g., learning to detect dogs and learning to detect cats), and so learning to solve them con-

currently should not only be feasible, but may also lead to higher performance. Identifying tasks

which “combine” well together, and making sure the that tasks do not interfere with each other

during the learning procedure are however still open problems. A recent survey of the modern

techniques for MTL with deep learning can be found in the survey by Vandenhende et al. [203].

Multi-HeadModels

In deep learning, the standard approach forMTL is to employ amulti-head architecture (see Fig-

ure 5.2 (a)). Amulti-headmodel is composed of a backbone andmultipleheads (one for each task).

The backbone is a neural network which processes the input to extract features which should be

common across tasks. The features extracted by the backbone are then used by the heads (which

are also neural networks) to perform the desired tasks (each head performs one task). The whole

model is then trained end-to-end to minimize a combination of the single-task losses (e.g., the

sum of the losses on each task). We refer to this strategy as the classical training procedure for

multi-task models.

5.1.2 Model-AgnosticMeta-Learning and ANIL

MAML (Model-Agnostic Meta-Learning) is an optimization-based meta-learning strategy pro-

posed by Finn et al. [68]. Let 𝑓𝜃 be a deep learning model, where 𝜃 represents its parameters. Let

𝑝(ℰ) be a distribution over episodes1, with an episode ℰ𝑖 ∼ 𝑝(ℰ) being defined as a tuple con-
taining a loss function ℒℰ𝑖

(⋅), a support set 𝒮ℰ𝑖
, and a target set 𝒯ℰ𝑖

: ℰ𝑖 = (ℒℰ𝑖
(⋅), 𝒮ℰ𝑖

, 𝒯ℰ𝑖
),

where support and target sets are simply sets of labelled examples. MAML’s goal is to find a value

of 𝜃 that can quickly, i.e., in a few steps of gradient descent, be adapted to new episodes. This

is done with a nested loop optimization procedure: an inner loop adapts the parameters to the

support set of an episode by performing some steps of gradient descent, and an outer loop updates

the initial parameters aiming at a setting that allows fast adaptation. Formally, by defining 𝜃′
𝑖(𝑡)

as the parameters after 𝑡 adaptation steps on the support set of episode ℰ𝑖, we can express the

computations in the inner loop as

𝜃′
𝑖(𝑡) = 𝜃′

𝑖(𝑡 − 1) − 𝛼∇𝜃′
𝑖(𝑡−1)ℒℰ𝑖

(𝑓𝜃′
𝑖(𝑡−1), 𝒮ℰ𝑖

) (5.1)

1Themeta-learning literature usually derives episodes from tasks (i.e., tuples containing a dataset and a loss function).
We focus on episodes to avoid using the term task for both a MTL task, and a meta-learning task.

59

5 LearningMulti-Task Representations

where 𝜃′
𝑖(0) = 𝜃, ℒ(𝑓𝜃′

𝑖(𝑡−1), 𝒮ℰ𝑖
) indicates the loss over the support set 𝒮ℰ𝑖

for the model

𝑓𝜃′
𝑖(𝑡−1) with parameters 𝜃′

𝑖(𝑡 − 1), and 𝛼 is the learning rate. Themeta-objective that the outer

loop tries to minimize is defined as ℒmeta = ∑
ℰ𝑖∼𝑝(ℰ)

ℒℰ𝑖
(𝑓𝜃′

𝑖(𝑡), 𝒯ℰ𝑖
), which leads to the fol-

lowing parameter update2 performed in the outer loop:

𝜃 = 𝜃 − 𝛽∇𝜃ℒmeta = 𝜃 − 𝛽∇𝜃 ∑
ℰ𝑖∼𝑝(ℰ)

ℒℰ𝑖
(𝑓𝜃′

𝑖(𝑡), 𝒯ℰ𝑖
). (5.2)

Raghu et al. [178] showed that feature reuse is the dominant factor in MAML: in the adapta-

tion loop, only the last layer(s) in the network are updated, while the first layer(s) remain almost

unchanged. The authors then propose ANIL (Almost No Inner Loop) where they split the pa-

rameters in two sets: one that is used for adaptation in the inner loop, and one that is only updated

in the outer loop. This simplification leads to computational improvements while maintaining

performance.

5.2 SAME: Single-Task Adaptation forMulti-Task

Embeddings

We design a meta-learning approach targeted towards representation learning, by building on

three insights:

(i) optimization-basedmeta-learning is implicitly learning robust representations. The

findings byRaghu et al. [178] suggest that, in amodel trainedwithMAML, the first layers learn fea-

tures that are reusable across episodes, while the last layers are set up for fast adaptation. MAML

is then implicitly learning a model with two components: an encoder (the first layers), focusing

on learning reusable representations that generalize across episodes, and a decoder (the last layers)

that can be quickly adapted for different episodes.

(ii) meta-learning episodes can be designed to encourage generalization. By designing

support and target sets to mimic the training and validation sets of a classical training procedure,

then the meta-learning procedure is effectively optimizing for generalization.

(iii) meta-learning can learn to quickly adapt to multiple tasks singularly, without

having to learn to solve multiple tasks concurrently. The meta-learning procedure can be

designed so that, for each considered task, the inner loop adapts the parameters to a task-specific

support set, and tests the adaptation on a task-specific target set. The outer loop then updates the

parameters to allow this fastmultiple single-task adaptation.

Basedon (ii) and (iii), wedesign themeta-learningprocedure such that the inner loop adapts to

multiple tasks singularly, each time with the goal of single-task generalization. Using an encoder-

2We limit ourselves to one step of gradient descent for clarity, but any optimization strategy could be used.

60

5.2 SAME: Single-Task Adaptation forMulti-Task Embeddings

Layer 1

Layer 2

Layer n

Head 1 Head 2 Head k

Task 1 Task 2 Task k

Backbone

(a)

Support Set Target Set

GC

NC

LP

GC

NC

LP

(b)

GCN

Node

Embeddings

GC

NC

LP

Multi-head

Output Layer

Update in outer loop

Adapt in inner loop

(c)

GCN

Node

Embeddings

GC

NC

LP

Multi-head

Output Layer

Update in outer loop

Adapt in  

inner loop

(d)

Figure 5.2:Main ingredients of our meta-learning procedure SAME. (a)Multi-head architecture. (b)
Schematic representation of a multi-task episode. For each task, support and target set are de-
signed to be as the training and validation sets for single-task training. (c-d) Overview of the pa-
rameter updates in SAME’s meta-learning procedure. In the inner loop, the model is adapted
separately to each task in the support set; the outer loop then tests the performance of each
adaptation on the corresponding task in the target set, and updates the initial parameters of the
network to allow it to rapidly be adapted to each task, by minimizing the meta-objective. In
iSAME (c) all parameters are adapted in the inner loop. In eSAME (d) only the task-specific
output layers are adapted in the inner loop. Both in iSAME and eSAME, after training the
model, only the backbone GCN is kept, and used to generate embeddings.

decoder architecture, (i) suggests that this procedure leads to an encoder that learns features re-

usable across episodes. As, in each episode, the learner is adapting tomultiple tasks, the encoder is

learning features that generalize acrossmultiple tasks. After trainingwith ourmeta-learning strat-

egy, the decoder is discarded, and only the encoder is kept and used to generate representations.

Contrary to many applications of meta-learning, there is no adaptation performed at test time, as

meta-learning is used only for training the model from which an encoder is extracted.

In the rest of this section, we formally present our meta-learning procedure for training multi-

task graph representation learning models. There are three aspects that need to be defined:

(1) Episode Design: how is an episode composed, (2) Model Architecture Design: what

is the architecture of our model, (3) Meta-Training Design: how, and which, parameters are

adapted/updated.

5.2.1 Episode Design

In our case, an episode becomes amulti-task episode (Figure 5.2 (b)). To formally introduce the

concept, let us consider the case where the tasks are graph classification (GC), node classification

61

5 LearningMulti-Task Representations

(NC), and link prediction (LP). We define amulti-task episode ℰ(𝑚)
𝑖 ∼ 𝑝(ℰ(𝑚)) as a tuple

ℰ(𝑚)
𝑖 = (ℒ(𝑚)

ℰ𝑖
, 𝒮(𝑚)

ℰ𝑖
, 𝒯(𝑚)

ℰ𝑖
) where

ℒ(𝑚)
ℰ𝑖

= {ℒ(GC)
ℰ𝑖

, ℒ(NC)
ℰ𝑖

, ℒ(LP)
ℰ𝑖

}, (5.3)

𝒮(𝑚)
ℰ𝑖

= {𝒮(GC)
ℰ𝑖

, 𝒮(NC)
ℰ𝑖

, 𝒮(LP)
ℰ𝑖

}, (5.4)

𝒯(𝑚)
ℰ𝑖

= {𝒯(GC)
ℰ𝑖

, 𝒯(NC)
ℰ𝑖

, 𝒯(LP)
ℰ𝑖

}. (5.5)

The meta-objective ℒ(𝑚)
meta of our method is then defined as:

ℒ(𝑚)
meta = ∑

ℰ
(𝑚)
𝑖 ∼𝑝(ℰ(𝑚))

𝜆(𝐺𝐶)ℒ(GC)
ℰ𝑖

+ 𝜆(𝑁𝐶)ℒ(NC)
ℰ𝑖

+ 𝜆(𝐿𝑃)ℒ(LP)
ℰ𝑖

. (5.6)

where 𝜆(⋅) are balancing coefficients.

Support and target sets are set up to resemble training and validation sets. This way the outer

loop’s objective becomes to maximize the performance on a validation set, given a training set,

hence encouraging generalization. In more detail, given a batch of graphs, we divide it in equally

sized splits (one per task), and create support and target sets as follows:

Graph Classification: 𝒮(GC)
ℰ𝑖

and 𝒯(GC)
ℰ𝑖

contain labeled graphs, obtained with a random split.

Node Classification: 𝒮(NC)
ℰ𝑖

and 𝒯(NC)
ℰ𝑖

are composed of the same graphs, with different la-

belled nodes. We mimic the common semi-supervised setting [121] where feature vectors

are available for all nodes, and only a small subset of nodes is labelled.

Link Prediction: 𝒮(LP)
ℰ𝑖

and𝒯(LP)
ℰ𝑖

are composed of the same graphs, with different query edges.

In every graph we randomly remove some edges, used as positive examples together with

non-removed edges, and randomly sample pairs of non-adjacent nodes as negative exam-

ples.

Notice howwe only need labels for one task for each graph. The full algorithm for the creation of

multi-task episodes is provided below.

Episode Design Algorithm

Algorithm 2 contains the procedure for the creation of the episodes for our meta-learning proce-

dures. The algorithm takes as input a batch of graphs (with graph labels, node labels, and node

features) and the loss function balancing weights, and outputs a multi-task episode. We assume

that each graph has a set of attributes that can be accessed with a dot-notation (like inmost object-

oriented programming languages).

62

5.2 SAME: Single-Task Adaptation forMulti-Task Embeddings

Notice how the episodes are created so thatonly one task is performed on each graph (which

implies that we only need labels for one task for each graph). This is important as in the inner loop

of our meta-learning procedure, the learner adapts and tests the adapted parameters on one task

at a time. The outer loop then updates the parameters, optimizing for a representation that leads

to fast single-task adaptation. This procedure bypasses the problem of learning parameters that

directly solve multiple tasks, which can be very challenging.

Another important aspect to notice is that the support and target sets are designed as if they

were the training and validation splits for training a single-taskmodel with the classical procedure.

This way the meta-objective becomes to train a model that can generalize well.

5.2.2 Model Architecture Design

We use an encoder-decoder model with a multi-head architecture. The backbone (which repre-

sents the encoder) is composed of 3 GCN [121] layers with ReLU non-linearities and residual

connections [92]. The decoder is composed of three heads. The node classification head is a single

layer neural network with a Softmax activation that is shared across nodes and maps node em-

beddings to class predictions. In the graph classification head, first a single layer neural network

(shared across nodes) performs a linear transformation (followed by a ReLU activation) of the

node embeddings. The transformed node embeddings are then averaged and a final single layer

neural network with Softmax activation outputs the class predictions. The link prediction head

is composed of a single layer neural network with ReLU non-linearity that transforms node em-

beddings, and a single layer neural network that given concatenation of two embeddings outputs

the probability of a link between them. We remark that after training the full model with the pro-

posedmeta-learning procedure, only the encoder is kept, and is used to generate node embeddings

which can be fed to any machine learning model for downstream tasks.

5.2.3 Meta-Training Design

Wefirst present themeta-learning training procedure, and successively describe which parameters

are adapted/updated in the inner and outer loops.

Meta-Learning Training Procedure. Themeta-learning procedure is designed such that the

inner loop adaptation involves a single task at a time. Only the parameter update performed to

minimize the meta-objective involves multiple tasks, but, crucially, it does not aim at a setting of

parameters that can solve, or quickly adapt to,multiple tasks concurrently, but to a setting allowing

multiple fast single-task adaptation.

The pseudocode of our procedure is in Algorithm 3. init is a method that initializes the

weights of the GNN. ADAPT performs a few steps of gradient descent on a task-specific loss func-

63

5 LearningMulti-Task Representations

Algorithm 2 Episode Design Algorithm

Input: Batch of 𝑛 graphs ℬ = {𝒢1, .., 𝒢𝑛}; Loss weights 𝜆(𝐺𝐶), 𝜆(𝑁𝐶), 𝜆(𝐿𝑃) ∈ [0, 1]
Output: Episode ℰ𝑖 = (ℒ(𝑚)

ℰ𝑖
, 𝒮(𝑚)

ℰ𝑖
, 𝒯(𝑚)

ℰ𝑖
)ℬ(𝐺𝐶), ℬ(𝑁𝐶), ℬ(𝐿𝑃) ← equally divide the graphs in ℬ in three sets

{Graph Classification}𝒮(GC)
ℰ𝑖

, 𝒯(GC)
ℰ𝑖

← randomly divide ℬ(𝐺𝐶) with a 60/40 split

{Node Classification}
for 𝒢𝑖 in ℬ(𝑁𝐶) do

num_labelled_nodes ← 𝒢𝑖.num_nodes × 0.3𝒩 ← divide nodes per class, then iteratively randomly sample one node per class without
replacement and add it to 𝒩 until |𝒩| = num_labelled_nodes𝒢′

𝑖 ← copy(𝒢𝑖)𝒢𝑖.labelled_nodes ← 𝒩; 𝒢′
𝑖.labelled_nodes ← 𝒢𝑖.nodes 𝒩𝒮(𝑁𝐶)

ℰ𝑖
.add(𝒢𝑖); 𝒯(𝑁𝐶)

ℰ𝑖
.add(𝒢′

𝑖)
end for

{Link Prediction}
for 𝒢𝑖 in ℬ(𝐿𝑃) do𝐸(𝑁)

𝑖 ← randomly pick negative samples (edges that are not in the graph; possibly in the
same number as the number of edges in the graph)𝐸1,(𝑁)

𝑖 , 𝐸2,(𝑁)
𝑖 ← divide 𝐸(𝑁)

𝑖 with an 80/20 split𝐸(𝑃)
𝑖 ← randomly remove 20% of the edges in 𝒢𝑖𝒢′(1)
𝑖 ← 𝒢𝑖 removed of 𝐸(𝑃)

𝑖 ; 𝒢′(2)
𝑖 ← copy(𝒢′(1)

𝑖)𝒢′(1)
𝑖 .positive_edges ← 𝒢′(1)

𝑖 .edges; 𝒢′(2)
𝑖 .positive_edges ← 𝐸(𝑃)

𝑖𝒢′(1)
𝑖 .negative_edges ← 𝐸1,(𝑁)

𝑖 ; 𝒢′(2)
𝑖 .negative_edges ← 𝐸2,(𝑁)

𝑖𝒮(𝐿𝑃)
ℰ𝑖

.add(𝒢′(1)
𝑖); 𝒯(𝐿𝑃)

ℰ𝑖
.add(𝒢′(2)

𝑖)
end for

𝒮(𝑚)
ℰ𝑖

← {𝒮(GC)
ℰ𝑖

, 𝒮(NC)
ℰ𝑖

, 𝒮(LP)
ℰ𝑖

}; 𝒯(𝑚)
ℰ𝑖

← {𝒯(GC)
ℰ𝑖

, 𝒯(NC)
ℰ𝑖

, 𝒯(LP)
ℰ𝑖

}
ℒ(GC)

𝒯𝑖
, ℒ(NC)

𝒯𝑖
← Cross-Entropy(⋅); ; ℒ(LP)

𝒯𝑖
← Bin. Cross-Entropy(⋅)

ℒ(𝑚)
ℰ𝑖

= 𝜆(𝐺𝐶)ℒ(GC)
𝒯𝑖

+ 𝜆(𝑁𝐶)ℒ(NC)
𝒯𝑖

+ 𝜆(𝐿𝑃)ℒ(LP)
𝒯𝑖

Return ℰ = (ℒ(𝑚)
ℰ𝑖

, 𝒮(𝑚)
ℰ𝑖

, 𝒯(𝑚)
ℰ𝑖

)

tion and support set (as in eq. 5.1), TEST computes the value of the meta-objective component

on a task-specific loss function and target set for a model with parameters adapted on that task,

and UPDATE optimizes the parameters 𝜃 by minimizing the meta-objective in eq. 5.6 (which is

64

5.2 SAME: Single-Task Adaptation forMulti-Task Embeddings

Algorithm 3 Proposed (meta-learning based) procedure.

Input: Model 𝑓𝜃; Episodes ℰ = {ℰ1, .., ℰ𝑛}; Coefficients 𝜆(𝐺𝐶), 𝜆(𝑁𝐶), 𝜆(𝐿𝑃).
init(𝜃)
for ℰ𝑖 in ℰ do

o_loss ← 0
for 𝜏 in (GC, NC, LP) do𝜃′(𝜏) ← 𝜃𝜃′(𝜏) ← ADAPT(𝑓𝜃, 𝒮(𝜏)

ℰ𝑖
, ℒ(𝜏)

ℰ𝑖
)

o_loss ← o_loss + 𝜆(𝜏)TEST(𝑓𝜃′(𝜏) , 𝒯(𝜏)
ℰ𝑖

, ℒ(𝜏)
ℰ𝑖

)
end for𝜃 ← UPDATE(𝜃, o_loss, 𝜃′(𝐺𝐶), 𝜃′(𝑁𝐶), 𝜃′(𝐿𝑃))

end for

contained in o_loss in the pseudocode). Notice themultiple heads of the decoder are never used

concurrently.

Parameter Update in Inner/Outer Loop. Let us partition the parameters of our model in

four sets: 𝜃 = [𝜃GCN, 𝜃NC, 𝜃GC, 𝜃LP] representing the parameters of the backbone (𝜃𝐺𝐶𝑁), node

classification head (𝜃𝑁𝐶), graph classification head (𝜃𝐺𝐶), and link prediction head (𝜃𝐿𝑃). We

name our meta-learning strategy SAME (Single-Task Adaptation for Multi-Task Embeddings),

and present two variants (Figure 5.2 c-d):

Implicit SAME (iSAME): all the parameters 𝜃 are used for adaptation. This strategymakes use

of the implicit feature-reuse factor ofMAML, leading to parameters 𝜃GCN that are general

acrossmulti-task episodes.

Explicit SAME (eSAME): only the head parameters 𝜃NC, 𝜃GC, 𝜃LP are used for adaptation (as
done byANIL).Contrary to iSAME, this strategy explicitly aims at learning the parameters

𝜃GCN to be general acrossmulti-task episodes by only updating them in the outer loop.

The pseudocode inAlgorithm3 is the same for both iSAMEand eSAME.The difference between

the methods is in which subset of the parameters 𝜃 is updated by the ADAPT function. In iSAME

the ADAPT function will update the head and the backbone parameters (𝜃GCN, 𝜃NC, 𝜃GC, 𝜃LP),
while for eSAME only the head parameters (𝜃NC, 𝜃GC, 𝜃LP) will be updated.
5.2.4 Connection between SAME and other Optimization-based

Meta-LearningMethods

SAME is an instantiation of optimization-based meta-learning (in particular iSAME is an instan-

tiation of MAML [68], while eSAME of ANIL [178]) specially designed for learning multi-task

representations. In particular SAME employs the following design choices:

65

5 LearningMulti-Task Representations

(1) In SAME each episode is composed of multiple tasks (i.e., downstream applications).

(2) In SAME each task (both in the inner and in the outer loop) can involve only a subset of the

parameters of the model.

(3) In SAME’s inner loop, separate adaptations are performed for each task in the episode. In

the outer loop, themeta-objective defines how thesemultiple adaptations are combined for

updating the initial representations of the parameters.

After training a model with SAME, an encoder is extracted and used to generate representa-

tions of the input that can then be fed to any machine learning model. As SAME is only used

for training, no adaptation is performed at test time, and hence support and target sets are not

required at test time.

5.3 Experiments

Our goal is to assess the quality of the representations learned bymodels trained with SAME, and

to study the impact of SAME’s underlying components. In more detail, we aim to answer the

following questions:

Q1: Do iSAMEand eSAME lead to node embeddings that can be used to performmultiple down-

stream tasks with comparable (or better) performance than end-to-end single-task models?

Q2: Can node embeddings learned by a model trained with iSAME and eSAME be used for

multiple tasks with comparable or better performance than classically trained (i.e., see Sec-

tion 5.1.1) multi-task models?

Q3: Do iSAME and eSAME extract information that is not captured by the classical training

procedure (i.e., see Section 5.1.1)?

Q4 (Ablation Study): What are the contributions of the different components of SAME’s meta-

learning procedure?

Unless otherwise stated, accuracy (%) is used forNC andGC, while ROCAUC (%) is used for

LP. (As a reminder, we use GC to refer to graph classification, NC for node classification, and LP

for link prediction.)

5.3.1 Experimental Setting

Datasets. To performmultiple tasks, we consider datasets with graph labels, node attributes,

and node labels from the TUDataset library [160]: ENZYMES [189], PROTEINS [61], DHFR

66

5.3 Experiments

and COX2 [198]. ENZYMES is a dataset of protein structures belonging to six classes. PRO-

TEINS is a dataset of chemical compounds with two classes (enzyme and non-enzyme). DHFR,

and COX2 are datasets of chemical inhibitors which can be active or inactive.

Experimental Setup. We perform a 10-fold cross validation, and average results across folds.

To ensure a fair comparison, the same architecture is used for all training strategies. We set

𝜆(𝐺𝐶) = 𝜆(𝑁𝐶) = 𝜆(𝐿𝑃) = 1 as we noticed that weighting the losses did not provide sig-

nificant benefits. Loss balancing techniques (e.g. uncertainty weights [114], and gradnorm [47])

were tested, both with SAME and with the classical training procedure, but they did not result

effective. This is in accordancewith recentworks [130, 203]which observe that, when appropriate

tuning is done, no method is significantly better than minimizing the sum of the task losses. As

an example, a GNNmodel trained for GC and LP with the classical procedure and using Grad-

Norm, achieves results onGC,NC, and LP, that are on average 0.5% higher than the samemodel

trained without GradNorm. However, a GNN model trained for NC and LP with the classical

procedure and usingGradNorm achieves results that are 0.8% lower than the samemodel trained

without GradNorm. A similar behaviour happens by applying Uncertainty Weights, and, when

the improvements were positive, they would never be higher than 1.7%.

Implementation. We implement our models using PyTorch [171], PyTorch Geometric [66]

and Torchmeta [57]. For all models the number and structure of the layers is as described in Sec-

tion 4.2 of the paper, where we use 256-dimensional node embeddings at every layer.

At every cross-validation fold, 9 folds are used for training, and 1 for testing. Out of the 9

training folds, one is used as validation set. For eachmodel we perform 100 iterations of hyperpa-

rameter optimization over the same search space (for shared parameters) using Ax [14].

Linear Model. The linear model trained on the embeddings produced by our proposed

method is a standard linear SVM. In particular we use the implementation available in Scikit-

learn [172] with default hyperparameters. For graph classification, we take the mean of the node

embeddings as input. For link prediction we take the concatenation of the embeddings of two

nodes. For node classification we keep the embeddings unaltered.

Deep Learning Baselines.We train the single taskmodels for 1000 epochs, and themulti-task

models for 5000 epochs, with early stopping on the validation set (for multi-task models we use

the sum of the task validation losses or accuracies as metrics for early-stopping). Optimization is

done using Adam [120]. For node classification and link prediction we found that normalizing

the node embeddings to unit norm in between GCN layers helps performance.

Our Meta-Learning Procedure. We train the single task models for 5000 epochs, and the

multi-taskmodels for 15000 epochs, with early stopping on the validation set (formulti-taskmod-

67

5 LearningMulti-Task Representations

els we use the sum of the task validation losses or accuracies as metrics for early-stopping). Early

stopping is very important in this case as it is the only way to check if the meta-learned model

is overfitting the training data. The inner loop adaptation consists of 1 step of gradient descent.

Optimization in the outer loop is done using Adam [120]. We found that normalizing the node

embeddings to unit norm in between GCN layers helps performance.

Computing Infrastructure. The experiments were run on aNvidia 1080TiGPU, and on

a CPU cluster equipped with 8 cpus 12-Core Intel Xeon Gold 5118 @2.30GHz, with 1.5Tb of

RAM.

5.3.2 Results

Table 5.1: Results for a single-task model trained in a classical supervised manner, a fine-tuned model
(trained on all, and fine-tuned on two tasks), and a linear classifier trained on node embeddings
generated by a model trained with our strategies (iSAME, eSAME) in a multi-task setting.

Task Dataset
GC NC LP ENZYMES PROTEINS DHFR COX2

GC NC LP GC NC LP GC NC LP GC NC LP

Classical End-to-End Training

✓ 51.6 73.3 71.5 76.7
✓ 87.5 72.3 97.3 96.4

✓ 75.5 85.6 98.8 98.3

Fine-Tuning

✓ ✓ 48.3 85.3 73.6 72.0 66.4 92.4 80.0 92.3
✓ ✓ 49.3 71.6 69.6 80.7 65.3 58.9 80.2 50.9

✓ ✓ 87.7 73.9 80.4 81.5 80.7 56.6 87.4 52.3

iSAME (ours)

✓ ✓ 50.1 86.1 73.1 76.6 71.6 94.8 75.2 95.4
✓ ✓ 50.7 83.1 73.4 85.2 71.6 99.2 77.5 98.9

✓ ✓ 86.3 83.4 79.4 87.7 96.5 99.3 95.5 99.0
✓ ✓ ✓ 50.0 86.5 82.3 71.4 76.6 87.3 71.2 95.5 99.5 75.4 95.2 99.2

eSAME (ours)

✓ ✓ 51.7 86.1 71.5 79.2 70.1 95.7 75.6 95.5
✓ ✓ 51.9 80.1 71.7 85.4 70.1 99.1 77.5 98.8

✓ ✓ 86.7 82.2 80.7 86.3 96.6 99.4 95.6 99.1
✓ ✓ ✓ 51.5 86.3 81.1 71.3 79.6 86.8 70.2 95.3 99.5 77.7 95.7 98.8

Q1: We train a model with SAME, on all multi-task combinations, and use the embeddings

produced by the learned encoder as the input for a linear classifier. We compare against models

with the same task-specific architecture trained in a classical supervised manner on a single task,

and with a fine-tuning baseline. The latter is a model that has been trained on all three tasks, and

then fine-tuned on two specific tasks. The idea is that the initial training on all tasks should lead

the model towards the extraction of features that it would otherwise not consider (by only seeing

68

5.3 Experiments

Table 5.2: Δ𝑚 (%) results for a classically trained multi-task model (Cl), a fine-tuned model (FT; trained
on all three tasks and fine-tuned on two) and a linear classifier trained on the node embeddings
generated by a model trained with our strategies (iSAME, eSAME) in a multi-task setting.

Task Model Dataset
GC NC LP ENZYMES PROTEINS DHFR COX2

✓ ✓

Cl −0.1 ± 0.5 4.0 ± 1.0 −0.3 ± 0.2 0.5 ± 0.1

FT −4.5 ± 1.2 0.1 ± 0.5 −7.4 ± 1.4 0.1 ± 0.4

iSAME −2.3 ± 0.9 2.7 ± 1.5 −1.2 ± 0.4 −1.6 ± 0.2

eSAME −0.8 ± 0.8 3.2 ± 1.4 −1.8 ± 0.3 −1.2 ± 0.3

✓ ✓

Cl −25.3 ± 3.2 −5.3 ± 1.2 −28.3 ± 4.3 −21.4 ± 3.4

FT −5.1 ± 1.9 −5.4 ± 1.5 −24.5 ± 3.7 −22.6 ± 3.8

iSAME 4.1 ± 0.5 −0.2 ± 0.9 0.2 ± 3.2 0.2 ± 0.5

eSAME 3.2 ± 0.4 −1.2 ± 1.1 −0.7 ± 3.4 −0.8 ± 0.7

✓ ✓

Cl 7.2 ± 2.7 6.8 ± 0.9 −29.1 ± 7.7 −28.2 ± 4.5

FT −1.0 ± 0.3 3.1 ± 1.2 −28.9 ± 6.4 −28.3 ± 4.2

iSAME 4.4 ± 1.1 6.1 ± 1.0 −0.1 ± 6.2 −0.6 ± 2.5

eSAME 3.9 ± 1.3 6.1 ± 1.1 0.1 ± 6.4 −0.6 ± 2.6

✓ ✓ ✓

Cl 1.6 ± 1.3 2.9 ± 0.3 −18.9 ± 2.3 −16.9 ± 3.1

iSAME 1.5 ± 1.0 2.2 ± 0.2 −0.5 ± 1.4 −0.9 ± 1.3

eSAME 1.8 ± 0.9 2.8 ± 0.2 −1.0 ± 1.7 −0.4 ± 1.2

2 tasks). The fine-tuning process should then allow the model to use these features to target the

specific tasks of interest. Results are shown inTable 5.1. The embeddings produced by themodel

learned with SAME in a multi-task setting achieve performance comparable to, and frequently

even better than, end-to-end single-task models. In fact, the embeddings from SAME are never

outperformed by more than 3%, and in 50% of the cases actually achieve higher performance.

Moreover, the fine-tuning baseline is almost always outperformed by both single-task models,

and our proposed methods. These results confirm that meta-learning is a powerful solution for

multi-task representation learning on graphs.

Q2: We train the same multi-task model, both in the classical supervised manner (see Section

5.1.1), and with our proposed approaches, on all multi-task combinations. For our approaches,

a linear classifier is then trained on top of the node embeddings produced by the learned en-

coder. We further consider the fine-tuning baseline introduced in Q1. The multi-task perfor-

mance (Δ𝑚) metric [149] is used, defined as the average per-task drop with respect to the single-

task baseline: Δ𝑚 = 1
𝑇 ∑𝑇

𝑖=1
(𝑀(𝑚,𝑖) − 𝑀(𝑏,𝑖))/𝑀(𝑏,𝑖), where 𝑀(𝑚,𝑖) is the value of the 𝑖-th

task’smetric for themulti-taskmodel, and𝑀(𝑏,𝑖) is the value for the baseline. Results are shown in

Table 5.2. Multi-task models usually achieve lower performance than specialized single-task ones.

Moreover, linear classifiers trained on the embeddings generated by a model trained with SAME

are not only comparable, but in many cases significantly superior to classically trained multi-task

models. In fact, a multi-task model trained in a classical manner is highly sensible to the tasks that

are being learned (e.g. GC and LP negatively interfere with each other in every dataset), while

69

5.3 Experiments

Table 5.3: Results of a neural network trained on the embeddings generated by a multi-task model, to per-
form a task that was not seen during training by the multi-task model. “𝑥,𝑦 ->𝑧” indicates that
the multi-task model was trained on tasks 𝑥 and 𝑦, and the neural network is performing task 𝑧.

Task Model Dataset
ENZYMES PROTEINS DHFR COX2

GC,NC ->LP
Cl 56.9 ± 3.9 54.4 ± 1.4 61.2 ± 2.2 59.8 ± 0.4

iSAME 77.3 ± 4.5 88.5 ± 1.8 99.8 ± 1.8 97.1 ± 2.0

eSAME 78.9 ± 2.8 89.1 ± 1.5 99.7 ± 2.2 95.8 ± 3.3

GC,LP ->NC
Cl 69.1 ± 1.2 57.3 ± 1.6 58.3 ± 9.3 68.9 ± 10.7

iSAME 73.3 ± 2.1 59.2 ± 2.5 77.6 ± 1.6 78.1 ± 4.6

eSAME 79.1 ± 1.7 64.7 ± 3.0 76.1 ± 2.7 76.9 ± 3.3

NC,LP ->GC
Cl 47.1 ± 2.4 75.3 ± 1.5 77.5 ± 3.1 79.9 ± 3.4

iSAME 48.5 ± 5.5 76.1 ± 2.3 76.1 ± 3.7 79.7 ± 5.1

eSAME 56.6 ± 3.1 74.6 ± 2.7 77.1 ± 3.6 79.3 ± 6.2

(1) the design of support and target sets, to encourage generalization bymimicking training and

validation sets (see Section 5.2.1).

(2) the separate multiple single-task adaptations performed in the inner loop, which relieve the

model from having to learn to solve all the tasks concurrently (Section 5.2.3).

To better understand the importance and contribution of each component we perform two ex-

periments, for which results are presented below.

First, we isolate the contribution of (1) by applying iSAME and eSAME in a single-task setting

(i.e., the same single task is performed in both inner and outer loops), with episodes following the

generalization-encouraging design proposed in Section 5.2.1. Notice that this is like applying the

original MAML and ANIL training procedures with our design of support and target sets. In

this experiment, for every task, we train a linear classifier on top of the embeddings produced

by a model trained with “single-task” iSAME and eSAME, and compare against a network with

the same architecture trained in a classical end-to-end manner. Results are shown in Figure 5.4.

For all three tasks, a linear classifier on the embeddings produced by a model trained with our

methods achieves comparable, if not superior, performance to an end-to-end model. In fact, the

linear classifier is never outperformed by more than 2%, and it can outperform the classical end-

to-end model by up to 12%. We believe this unexpected outcome is particularly interesting, and

hints that episodic training procedures can be used to learn better representations.

Second, we investigate the benefits of (2) by removing the separate multiple single-task adapta-

tions of SAME and performing all tasks (i.e., GC, NC, and LP) concurrently both in the inner

and outer loop. This leads to a simple concurrent multi-task version of the conventional training

procedure ofMAMLandANIL, butwith our support and target set design. For this experiment,

we evaluate the ablated versions of SAME on the same procedure of Q2 and Q3, and compare

71

5 LearningMulti-Task Representations

Table 5.4: Results for a single-taskmodel trained in a classical supervisedmanner (Cl), and a linear classifier
trainedon the embeddings generatedby amodel trainedwith an ablated “single-task” versionour
meta-learning strategies ((a)iSAME, (a)eSAME).

Task Model Dataset
ENZYMES PROTEINS DHFR COX2

NC
Cl 87.5 ± 1.9 72.3 ± 4.4 97.3 ± 0.2 96.4 ± 0.3

(a)iSAME 87.3 ± 0.8 81.8 ± 1.6 96.6 ± 0.3 96.1 ± 0.4

(a)eSAME 87.8 ± 0.7 82.4 ± 1.6 96.8 ± 0.2 96.5 ± 0.6

GC
Cl 51.6 ± 4.2 73.3 ± 3.6 71.5 ± 2.3 76.7 ± 4.7

(a)iSAME 50.8 ± 2.9 73.5 ± 1.2 73.2 ± 3.2 76.3 ± 4.6

(a)eSAME 52.1 ± 5.0 72.6 ± 1.6 71.6 ± 2.4 75.6 ± 4.1

LP
Cl 75.5 ± 3.0 85.6 ± 0.8 98.8 ± 0.7 98.3 ± 0.8

(a)iSAME 81.7 ± 1.7 84.0 ± 1.1 99.2 ± 0.4 99.1 ± 0.5

(a)eSAME 80.1 ± 3.4 84.1 ± 0.9 99.2 ± 0.3 99.2 ± 0.7

Table 5.5: Results of a neural network trained on the embeddings generated by a multi-task model, to per-
form a task that was not seen during training by the multi-task model. The multi-task model
has been trained with an ablated version of iSAME and eSAME (which we refer to as (a)iSAME
and (a)eSAME), where no single-task adaptation is performed, but a multi-task version of the
traditionalmeta-learning procedure is applied. “𝑥,𝑦 ->𝑧” indicates that themulti-taskmodelwas
trained on tasks 𝑥 and 𝑦, and the neural network is performing task 𝑧.

Task Model Dataset
ENZYMES PROTEINS DHFR COX2

GC,NC ->LP
(a)iSAME 75.6 ± 3.3 88.3 ± 1.2 98.4 ± 0.9 95.1 ± 1.7

(a)eSAME 79.4 ± 2.8 89.2 ± 1.6 97.4 ± 0.7 95.3 ± 1.4

GC,LP ->NC
(a)iSAME 71.8 ± 2.5 59.7 ± 3.2 76.4 ± 2.3 79.1 ± 2.3

(a)eSAME 79.5 ± 1.6 63.8 ± 2.1 77.0 ± 2.1 78.9 ± 2.1

NC,LP ->GC
(a)iSAME 42.3 ± 5.5 75.8 ± 2.6 76.9 ± 4.4 78.3 ± 7.5

(a)eSAME 53.6 ± 3.5 75.6 ± 2.1 77.3 ± 2.8 77.7 ± 5.2

against the results of iSAME and eSAME. The results from the ablated version are not signifi-

cantly different from those of non-ablated iSAME and eSAME as shown in Table 5.4, Table 5.5,

and Table 5.6.

From these experiments we draw two conclusions. (i) The generalization-encouraging design

of support and target sets is what allows SAME to reach performance on multiple tasks that are

comparable to specialised single-task models trained in a classical manner. (ii) The separatemul-

tiple single-task adaptations that are performed in the inner loop of iSAME and eSAME allow the

models to reach the same performance of a version of SAME where all tasks are performed con-

currently on all graphs, hence increasing the learning efficiency by not requiring labels for each

task on every graph.

72

5.4 RelatedWork

Table 5.6: Δ𝑚 (%) results for a linear classifier trained on the node embeddings generated by a model
trained with an ablated version of iSAME and eSAME (which we refer to as (a)iSAME and
(a)eSAME), where no single-task adaptation is performed, but a multi-task version of the tra-
ditional meta-learning procedure is applied.

Task Model Dataset
GC NC LP ENZYMES PROTEINS DHFR COX2

✓ ✓
(a)iSAME −3.2 ± 0.4 2.8 ± 1.3 −0.4 ± 0.3 −0.5 ± 0.2

(a)eSAME 0.5 ± 1.1 1.7 ± 0.5 −0.5 ± 1.2 −1.5 ± 0.5

✓ ✓
(a)iSAME 1.5 ± 2.9 −0.9 ± 1.1 0.1 ± 4.1 −0.2 ± 3.1

(a)eSAME 3.0 ± 1.7 −2.5 ± 1.6 −0.4 ± 3.5 −0.4 ± 4.2

✓ ✓
(a)iSAME 4.3 ± 2.8 4.5 ± 1.1 −0.2 ± 6.2 −0.6 ± 4.2

(a)eSAME 3.1 ± 0.4 5.0 ± 1.1 −0.1 ± 5.9 −0.5 ± 4.1

✓ ✓ ✓
(a)iSAME 1.0 ± 1.2 2.7 ± 0.3 −1.2 ± 2.4 −1.1 ± 2.9

(a)eSAME 0.4 ± 1.2 1.1 ± 0.3 −1.3 ± 1.1 −0.9 ± 1.1

5.4 RelatedWork

MTL, andmeta-learning are very active areas of research. We highlight works that are at the inter-

section of GNNs and these subjects, and point the interested reader to comprehensive reviews of

each field. To the best of our knowledge there is no work usingmeta-learning to train a model for

graph MTL, or proposing a GNN performing graph classification, node classification, and link

prediction concurrently.

Multi-Task Learning and GraphNeural Networks. Works at the intersection of

MTL and GNNs have mostly focused on multi-head architectures. These models are composed

of a series ofGNN layers followed bymultiple heads (i.e., independent neural network layers) that

perform the desired downstream tasks. In this category,Montanari et al. [159] propose a model for

the prediction of physico-chemical properties. Holtz et al. [96] and Xie et al. [215] propose multi-

task models for concurrently performing node and graph classification. Finally, Avelar et al. [9]

introduce a multi-head GNN for learning multiple graph centrality measures, and Li and Ji [135]

propose a MTL method for the extraction of multiple biomedical relations. Other related work

includesHaonan et al. [89]which introduces amodel that can be trained for several tasks singularly,

hence, unlike the previouslymentioned approaches and our proposedmethod, it can not perform

multiple tasks concurrently.

Meta-Learning and Graph Neural Networks. Meta-Learning consists in learning to

learn. Many methods have been proposed (see the review by Hospedales et al. [97]), specially in

the area of few-shot learning. Garcia and Bruna [77] frame the few-shot learning problem with a

partially observed graphical model and use GNNs as an inference algorithm. Liu et al. [137] use

73

5 LearningMulti-Task Representations

GNNs to propagate messages between class prototypes and improve existing few-shot learning

methods, while Suo et al. [197] use GNNs to introduce domain-knowledge in the form of graphs.

There are also several works that use meta-learning to train GNNs in few-shot learning scenarios

with applications to node classification [221, 231], edge labelling [119], link prediction [4, 27], and

graph regression [165]. Finally, other combinations of meta-learning andGNNs involve adversar-

ial attacks [236] and active learning [148].

5.5 Conclusions

This chapter introduces the use of meta-learning as a training strategy for graph representation

learning in multi-task settings. We find that our method leads to models that produce “more

general” node embeddings. In fact, our results show that the embeddings produced by a model

trained with our technique can be used to perform graph classification, node classification, and

link prediction, with comparable or better performance than separate single-task end-to-end su-

pervised models. Furthermore, we find that the embeddings generated by a model trained with

our procedure lead to higher performance on downstream tasks that were not seen during train-

ing, and that the episodic training procedure leads to better embeddings even in the single-task

setting.

74

6 Conclusion

The aim of this thesis is to provide practical solutions that can help improving the performance of

GNNs. Inparticular, the focus has beenon three questions, introduced inChapter 1, which cover

topics regarding the impact of global structural information in GNNs applications, the difficulty

in generalizing from small to large graphs, and the challenge of generating “general” embeddings

that can be used effectively for multiple tasks. We summarize our contributions to the considered

questions as follows.

1. Is global structural information important for GNNs applications on graphs, and how can

it be exploited by GNNs? In Chapter 3 we analyzed the impact that information about the

global structure of the graph can have on downstream node-level and graph-level tasks, and

identified a strategy to “inject” some global information through a regularization loss.

2. Canwe improve the generalization properties of GNNs from small to large graphs? InChap-

ter 4we studied the problemof size-generalization, andproposed a technique for increasing

the capabilities of GNNs in generalizing from small to large graphs.

3. Can we train GNNs to produce embeddings that are effective for multiple tasks? In Chapter

5 we observed how GNNs produce embeddings that are specific to the training task, but

that are hardly reusable for other tasks, and we proposed a meta-learning based training

strategy to obtainmulti-task embeddings.

6.1 FutureWork

There are many directions to explore in order to expand the knowledge on the problems consid-

ered in this thesis, as more research needs to be done before they can be considered fully solved.

Below are some interesting directions for future work.

With regards to the topics on global structural information studied in Chapter 3, it can be

interesting to see if more recent deep learning graphmodels based on the Transformer [204] archi-

tecture (see the survey byMin et al. [156]) are better equipped for capturing and processing global

information.

75

6 Conclusion

Understanding the generalization capabilities of neural networks in general is still a very open

research topic, so more theoretical work is needed for all models, not just GNNs. With regards

to size generalization in GNNs, explored in Chapter 4, it could be interesting to explore how

our method performs in scenarios where this kind of generalization is crucial, like combinatorial

optimization (e.g., see Prates et al. [177]) for example. Furthermore, it would be interesting to see

the impact of domain-specific coarsening techniques when applying our method.

On themulti-task embedding side, explored in Chapter 5, I hope the research in this thesis can

encourage the community to explore this overlooked problem. I believe it would be interesting

to propose an unsupervised version of SAME which could combine graph-level (e.g., see Ju et

al. [112]), and node-level (e.g., seeHassani and Khasahmadi [90]) unsupervised training techniques,

formore general embeddings. Furthermore, recent advancements inmeta-learning (e.g., thework

from Flennerhag et al. [69]) could be used to improve our method.

On a more general note, I believe the field of geometric deep learning has reached a good level

of maturity, and these models are now ready to make important practical achievements. I am

particularly excited to see the progress in the biological domain (e.g., [88, 108]). Finally, I believe

the use of GNNs as an inductive bias for structurality and compositionality [122] will play an

important role in deep learning applications that require reasoning capabilities.

Working on graph representation learning and GNNs has thought me a lot, and I am excited

to see how the field evolves. I hope this thesis can be of use to practitioners, who are looking for

effective ways to improve their models, and encourage researchers to continue pushing the limits

of graph machine learning. I certainly aim at doing the same.

76

Acronyms

1-WL Weisfeiler-Leman Algorithm

AI Artificial Intelligence

CKA Centered Kernel Alignment

CMD Central Moment Discrepancy

CPU Central Processing Unit

GAT Graph Attention Network

GCN Graph Convolutional Network

GIN Graph IsomorphismNetwork

GNN Graph Neural Network

GPU Graphics Processing Unit

GRL Graph Representation Learning

MCC Matthews Correlation Coefficient

MLP Multi-Layer Perceptron

MMD MaximumMean Discrepancy

MPNN Message-Passing Neural Network

MSE Mean Squared Error

MTL Multi-Task Learning

RWR RandomWalk with Restart

RWRReg RandomWalk with Restart Regularization

SAME Single-Task Adaptation for Multi-Task Embeddings

77

Bibliography

1. R.Abboud,A. A.Ceylan,M.Grohe, andT.Lukasiewicz. “TheSurprisingPower ofGraph

Neural Networks with Random Node Initialization”. In: Proceedings of the Thirtieth In-

ternational Joint Conference on Artificial Intelligence, IJCAI-21. Ed. by Z.-H. Zhou. Inter-

national Joint Conferences on Artificial Intelligence Organization, 2021, pp. 2112–2118

(cit. on p. 17).

2. S. Abu-El-Haija, A. Kapoor, B. Perozzi, and J. Lee. “N-GCN: Multi-scale Graph Convo-

lution for Semi-supervised Node Classification”. In:UAI. 2018 (cit. on p. 37).

3. S. Abu-El-Haija, B. Perozzi, A. Kapoor, H. Harutyunyan, N. Alipourfard, K. Lerman,

G. V. Steeg, and A. Galstyan. “MixHop:Higher-Order GraphConvolution Architectures

via Sparsified NeighborhoodMixing”. In: ICML. 2019 (cit. on p. 37).

4. F. Alet, E. Weng, T. L. Perez, and L. Kaelbling. “Neural Relational Inference with Fast

Modular Meta-learning”. In:NeurIPS. 2019 (cit. on p. 74).

5. U.Alon and E. Yahav. “On the Bottleneck ofGraphNeuralNetworks and its Practical Im-

plications”. In: InternationalConference onLearningRepresentations. 2020 (cit. on pp. 18,

19).

6. R.Andersen, F.Chung, andK.Lang. “LocalGraphPartitioningusingPageRankVectors”.

2006 47thAnnual IEEESymposium onFoundations of Computer Science (FOCS’06), 2006.

doi: 10.1109/focs.2006.44. url: http://dx.doi.org/10.1109/FOCS.2006.44

(cit. on p. 38).

7. M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. “Invariant risk minimization”.

arXiv preprint arXiv:1907.02893, 2019 (cit. on pp. 48, 51, 55).

8. V. Arvind, J. Köbler, G. Rattan, and O. Verbitsky. “On the power of color refinement”.

In: International Symposium on Fundamentals of Computation Theory. Springer. 2015,

pp. 339–350 (cit. on p. 17).

9. P. Avelar, H. Lemos, M. Prates, and L. Lamb. “Multitask Learning on Graph Neural

Networks: Learning Multiple Graph Centrality Measures with a Unified Network”. In:

ICANNWorkshop and Special Sessions. 2019 (cit. on p. 73).

79

http://dx.doi.org/10.1109/focs.2006.44
http://dx.doi.org/10.1109/FOCS.2006.44

Bibliography

10. L. Babai. “Graph Isomorphism in Quasipolynomial Time [Extended Abstract]”. In: Pro-

ceedings of the Forty-EighthAnnualACMSymposium onTheory of Computing. STOC ’16.

Association for Computing Machinery, Cambridge, MA, USA, 2016, 684â€“697. isbn:

9781450341325. doi: 10.1145/2897518.2897542. url: https://doi.org/10.

1145/2897518.2897542 (cit. on p. 8).

11. L. Babai and L. Kucera. “Canonical labelling of graphs in linear average time”. In: 20th

Annual Symposium on Foundations of Computer Science (sfcs 1979). 1979, pp. 39–46.

doi: 10.1109/SFCS.1979.8 (cit. on p. 8).

12. D.Bahdanau,K.H.Cho, andY.Bengio. “Neuralmachine translationby jointly learning to

align and translate”. In: 3rd International Conference on Learning Representations, ICLR

2015. 2015 (cit. on pp. 1, 15).

13. B. Bahmani, A. Chowdhury, andA. Goel. “Fast incremental and personalized PageRank”.

Proceedings of the VLDB Endowment 4:3, 2010, pp. 173–184. issn: 2150-8097. doi: 10.

14778 / 1929861 . 1929864. url: http : / / dx . doi . org / 10 . 14778 / 1929861 .

1929864 (cit. on p. 38).

14. E. Bakshy, L. Dworkin, et al. “AE: A domain-agnostic platform for adaptive experimenta-

tion”. In:NeurIPSMLSysWorkshop. 2018 (cit. on p. 67).

15. P. K. Banerjee, K. Karhadkar, Y. G. Wang, U. Alon, and G. Montúfar. “Oversquashing in

GNNs through the lens of information contraction and graph expansion”. In: 2022 58th

AnnualAllertonConference onCommunication, Control, andComputing (Allerton). 2022,

pp. 1–8. doi: 10.1109/Allerton49937.2022.9929363 (cit. on p. 39).

16. P. Battaglia,R. Pascanu,M.Lai,D. JimenezRezende, et al. “Interactionnetworks for learn-

ing about objects, relations and physics”.Advances in neural information processing systems

29, 2016 (cit. on p. 54).

17. M. Belkin and P. Niyogi. “Laplacian eigenmaps and spectral techniques for embedding

and clustering”.Advances in neural information processing systems 14, 2001 (cit. on p. 12).

18. I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. “Neural combinatorial optimiza-

tion with reinforcement learning”. arXiv preprint arXiv:1611.09940, 2016 (cit. on p. 54).

19. S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J.W. Vaughan. “A theory

of learning from different domains”.Machine learning 79:1, 2010, pp. 151–175 (cit. on

p. 55).

20. Y. Bengio, A. Courville, and P. Vincent. “Representation learning: A review and new

perspectives”. IEEE transactions on pattern analysis and machine intelligence 35:8, 2013,

pp. 1798–1828 (cit. on p. 10).

80

http://dx.doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
http://dx.doi.org/10.1109/SFCS.1979.8
http://dx.doi.org/10.14778/1929861.1929864
http://dx.doi.org/10.14778/1929861.1929864
http://dx.doi.org/10.14778/1929861.1929864
http://dx.doi.org/10.14778/1929861.1929864
http://dx.doi.org/10.1109/Allerton49937.2022.9929363

Bibliography

21. Y. Bengio, A. Lodi, and A. Prouvost. “Machine learning for combinatorial optimization:

Amethodological tour d’horizon”.European Journal ofOperationalResearch 290:2, 2021,

pp. 405–421. doi: 10.1016/j.ejor.2020.07.063 (cit. on p. 41).

22. B. Bevilacqua, Y. Zhou, and B. Ribeiro. “Size-Invariant Graph Representations for Graph

ClassificationExtrapolations”. In:Proceedings of the 38th InternationalConference onMa-

chine Learning, ICML 2021, 18-24 July 2021, Virtual Event. Ed. by M. Meila and T.

Zhang. Vol. 139. Proceedings ofMachine LearningResearch. PMLR, 2021, pp. 837–851.

url: http://proceedings.mlr.press/v139/bevilacqua21a.html (cit. on pp. 41,

42, 45, 48, 49, 51–55).

23. C. Bodnar, F.DiGiovanni, B. P.Chamberlain, P. Liò, andM.M. Bronstein. “Neural sheaf

diffusion: A topological perspective on heterophily and oversmoothing in gnns”. arXiv

preprint arXiv:2202.04579, 2022 (cit. on p. 18).

24. C. Bodnar, F. Frasca, N. Otter, Y.Wang, P. Lio, G. F.Montufar, andM. Bronstein. “Weis-

feiler and Lehman go cellular: CW networks”.Advances in Neural Information Processing

Systems 34, 2021, pp. 2625–2640 (cit. on p. 18).

25. C. Bodnar, F. Frasca, Y.Wang, N. Otter, G. F.Montufar, P. Lio, andM. Bronstein. “Weis-

feiler and lehman go topological: Message passing simplicial networks”. In: International

Conference onMachine Learning. PMLR. 2021, pp. 1026–1037 (cit. on p. 18).

26. A.Bojchevski, J.Klicpera, B. Perozzi,A.Kapoor,M. J. Blais, B.Rozemberczki,M.Lukasik,

and S. Gunnemann. “Scaling Graph Neural Networks with Approximate PageRank”.

ACM SIGKDD, 2020 (cit. on p. 38).

27. A. J. Bose, A. Jain, P. Molino, and W. L. Hamilton. “Meta-Graph: Few Shot Link Predic-

tion via Meta Learning”. arXiv, 2019 (cit. on p. 74).

28. G. Bravo-Hermsdorff and L.M. Gunderson. “A Unifying Framework for Spectrum-

PreservingGraphSparsification andCoarsening”. In:Proceedings of the 33rd International

Conference on Neural Information Processing Systems. Curran Associates Inc., RedHook,

NY, USA, 2019 (cit. on p. 55).

29. M. Bronstein. Do we need deep graph neural networks? 2020. url: https : / /

towardsdatascience . com / do - we - need - deep - graph - neural - networks -

be62d3ec5c59 (visited on 11/17/2021) (cit. on pp. 18, 19).

30. M.M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. “Geometric Deep

Learning: Going beyond Euclidean data”. IEEE Signal Processing Magazine 34:4, 2017,

pp. 18–42. doi: 10.1109/MSP.2017.2693418 (cit. on p. 2).

81

http://dx.doi.org/10.1016/j.ejor.2020.07.063
http://proceedings.mlr.press/v139/bevilacqua21a.html
https://towardsdatascience.com/do-we-need-deep-graph-neural-networks-be62d3ec5c59
https://towardsdatascience.com/do-we-need-deep-graph-neural-networks-be62d3ec5c59
https://towardsdatascience.com/do-we-need-deep-graph-neural-networks-be62d3ec5c59
http://dx.doi.org/10.1109/MSP.2017.2693418

Bibliography

31. D. Buffelli, P. Liò, and F. Vandin. “SizeShiftReg: a RegularizationMethod for Improving

Size-Generalization inGraphNeuralNetworks”. In:Advances inNeural Information Pro-

cessing Systems. Ed. byA.H.Oh,A. Agarwal, D. Belgrave, andK.Cho. 2022. url: https:

//openreview.net/forum?id=wOI0AUAq9BR (cit. on p. 4).

32. D. Buffelli and E. Tsamoura. “Scalable Theory-Driven Regularization of Scene Graph

GenerationModels”. In: AAAI Conference on Artificial Intelligence. 2023 (cit. on p. 4).

33. D. Buffelli and F. Vandin. “Ameta-learning approach for graph representation learning in

multi-task settings”. arXiv preprint arXiv:2012.06755, 2020 (cit. on p. 4).

34. D. Buffelli and F. Vandin. “Attention-Based Deep Learning Framework for Human Ac-

tivityRecognitionWithUser Adaptation”. IEEE Sensors Journal 21:12, 2021, pp. 13474–

13483. doi: 10.1109/JSEN.2021.3067690 (cit. on p. 4).

35. D. Buffelli and F. Vandin. “Graph Representation Learning for Multi-Task Settings: a

Meta-Learning Approach”. In: 2022 International Joint Conference on Neural Networks

(IJCNN). 2022, pp. 1–8. doi: 10.1109/IJCNN55064.2022.9892010 (cit. on p. 4).

36. D. Buffelli and F. Vandin. “The Impact of Global Structural Information in Graph

Neural Networks Applications”. Data 7:1, 2022. issn: 2306-5729. doi: 10 . 3390 /

data7010010. url: https://www.mdpi.com/2306-5729/7/1/10 (cit. on p. 4).

37. R.Burioni andD.Cassi. “Randomwalks on graphs: ideas, techniques and results”. Journal

of Physics A: Mathematical and General 38:8, 2005, R45–R78. doi: 10.1088/0305-

4470/38/8/r01. url: https://doi.org/10.1088/0305-4470/38/8/r01 (cit. on

p. 9).

38. C. Cai, D. Wang, and Y. Wang. “Graph Coarsening with Neural Networks”. In: Interna-

tional Conference on Learning Representations. 2021. url: https://openreview.net/

forum?id=uxpzitPEooJ (cit. on p. 55).

39. J.-Y. Cai, M. Fürer, and N. Immerman. “An optimal lower bound on the number of vari-

ables for graph identification”.Combinatorica 12:4, 1992, pp. 389–410 (cit. on pp. 8, 17).

40. C. Cangea, P. Veličković, N. Jovanović, T. Kipf, and P. Liò. “Towards Sparse Hierarchical

Graph Classifiers”.NeurIPSWorkshop on Relational Representation Learning, 2018 (cit.

on p. 26).

41. Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Veličković. “Combina-

torial Optimization and Reasoning with Graph Neural Networks”. In: Proceedings of the

Thirtieth International Joint Conference onArtificial Intelligence. International JointCon-

ferences onArtificial IntelligenceOrganization, 2021. doi: 10.24963/ijcai.2021/595

(cit. on p. 41).

82

https://openreview.net/forum?id=wOI0AUAq9BR
https://openreview.net/forum?id=wOI0AUAq9BR
http://dx.doi.org/10.1109/JSEN.2021.3067690
http://dx.doi.org/10.1109/IJCNN55064.2022.9892010
http://dx.doi.org/10.3390/data7010010
http://dx.doi.org/10.3390/data7010010
https://www.mdpi.com/2306-5729/7/1/10
http://dx.doi.org/10.1088/0305-4470/38/8/r01
http://dx.doi.org/10.1088/0305-4470/38/8/r01
https://doi.org/10.1088/0305-4470/38/8/r01
https://openreview.net/forum?id=uxpzitPEooJ
https://openreview.net/forum?id=uxpzitPEooJ
http://dx.doi.org/10.24963/ijcai.2021/595

Bibliography

42. R.Caruana. “Multitask learning”.Machine learning 28:1, 1997, pp. 41–75 (cit. on p. 59).

43. I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy. “Machine learning on

graphs: A model and comprehensive taxonomy”. arXiv preprint arXiv:2005.03675, 2020

(cit. on p. 13).

44. D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. “Measuring and relieving the over-

smoothing problem for graph neural networks from the topological view”. In:Proceedings

of the AAAIConference on Artificial Intelligence. Vol. 34. 04. 2020, pp. 3438–3445 (cit. on

p. 18).

45. J.Chen, J. Zhu, andL. Song. “StochasticTraining ofGraphConvolutionalNetworkswith

Variance Reduction”. In: International Conference on Machine Learning. PMLR. 2018,

pp. 942–950 (cit. on p. 18).

46. J. Chen, Y. Saad, and Z. Zhang. “Graph coarsening: from scientific computing tomachine

learning”. SeMA Journal 79:1, 2022, pp. 187–223. doi: 10.1007/s40324-021-00282-

x (cit. on p. 55).

47. Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich. “GradNorm: Gradient Nor-

malization for Adaptive Loss Balancing in Deep Multitask Networks”. In: ICML. 2018

(cit. on p. 67).

48. D. Chicco and G. Jurman. “The advantages of the Matthews correlation coefficient

(MCC) over F1 score and accuracy in binary classification evaluation”. BMC Genomics

21:1, 2020. doi: 10.1186/s12864-019-6413-7 (cit. on p. 50).

49. D.-A. Clevert, T. Unterthiner, and S. Hochreiter. “Fast and Accurate Deep Network

Learning by Exponential Linear Units (ELUs)”. ICLR, 2016 (cit. on pp. 28, 29).

50. P. Comon. Independent component analysis. 1992 (cit. on p. 10).

51. D.Coppersmith, P. Doyle, P. Raghavan, andM. Snir. “Randomwalks onweighted graphs

and applications to on-line algorithms”. Journal of the ACM(JACM) 40:3, 1993, pp. 421–

453 (cit. on p. 9).

52. G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković. “PrincipalNeighbourhoodAg-

gregation for GraphNets”. In:Advances in Neural Information Processing Systems. Ed. by

H. Larochelle,M.Ranzato,R.Hadsell,M. Balcan, andH. Lin. Vol. 33.CurranAssociates,

Inc., 2020, pp. 13260–13271. url: https://proceedings.neurips.cc/paper/

2020/file/99cad265a1768cc2dd013f0e740300ae-Paper.pdf (cit. on pp. 12, 42,

48, 49).

83

http://dx.doi.org/10.1007/s40324-021-00282-x
http://dx.doi.org/10.1007/s40324-021-00282-x
http://dx.doi.org/10.1186/s12864-019-6413-7
https://proceedings.neurips.cc/paper/2020/file/99cad265a1768cc2dd013f0e740300ae-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/99cad265a1768cc2dd013f0e740300ae-Paper.pdf

Bibliography

53. L. Cotta, C. Morris, and B. Ribeiro. “Reconstruction for powerful graph representa-

tions”. Advances in Neural Information Processing Systems 34, 2021, pp. 1713–1726 (cit.

on p. 18).

54. G. Csurka. “A Comprehensive Survey on Domain Adaptation for Visual Applications”.

In: Domain Adaptation in Computer Vision Applications. Ed. by G. Csurka. Springer In-

ternational Publishing, Cham, 2017, pp. 1–35. isbn: 978-3-319-58347-1. doi: 10.1007/

978-3-319-58347-1_1. url: https://doi.org/10.1007/978-3-319-58347-1_1

(cit. on p. 55).

55. A. Deac, M. Lackenby, and P. Veličković. “Expander Graph Propagation”. In: The First

Learning on Graphs Conference. 2022. url: https://openreview.net/forum?id=

IKevTLt3rT (cit. on p. 39).

56. M. Defferrard, X. Bresson, and P. Vandergheynst. “Convolutional neural networks on

graphs with fast localized spectral filtering”.Advances in neural information processing sys-

tems 29, 2016 (cit. on p. 14).

57. T. Deleu, T.Würfl, et al. “Torchmeta: AMeta-Learning library for PyTorch”. arXiv, 2019

(cit. on p. 67).

58. A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez, M. Nunkesser, S. Lee,

X. Guo, B. Wiltshire, P.W. Battaglia, V. Gupta, A. Li, Z. Xu, A. Sanchez-Gonzalez, Y.

Li, and P. Velickovic. “ETA Prediction with Graph Neural Networks in Google Maps”.

In: Proceedings of the 30th ACM International Conference on Information & Knowledge

Management. CIKM ’21. Association forComputingMachinery, Virtual Event, Queens-

land, Australia, 2021, pp. 3767–3776. isbn: 9781450384469. doi: 10.1145/3459637.

3481916. url: https://doi.org/10.1145/3459637.3481916 (cit. on p. 2).

59. F.Diehl, T. Brunner,M.Truong Le, andA.Knoll. “TowardsGraph Pooling by EdgeCon-

traction”. ICMLWorkshop onLearningandReasoningwithGraph-StructuredData, 2019

(cit. on p. 26).

60. M. Ding, K. Kong, J. Chen, J. Kirchenbauer, M. Goldblum, D. Wipf, F. Huang, and T.

Goldstein. “ACloser Look atDistribution Shifts andOut-of-DistributionGeneralization

on Graphs”. In:NeurIPS 2021Workshop on Distribution Shifts: ConnectingMethods and

Applications. 2021. url: https://openreview.net/forum?id=XvgPGWazqRH (cit. on

pp. 41, 51, 55).

61. P. D. Dobson and A. J. Doig. “Distinguishing Enzyme Structures from Non-Enzymes

Without Alignments”. Journal ofMolecular Biology, 2003 (cit. on p. 66).

84

http://dx.doi.org/10.1007/978-3-319-58347-1_1
http://dx.doi.org/10.1007/978-3-319-58347-1_1
https://doi.org/10.1007/978-3-319-58347-1_1
https://openreview.net/forum?id=IKevTLt3rT
https://openreview.net/forum?id=IKevTLt3rT
http://dx.doi.org/10.1145/3459637.3481916
http://dx.doi.org/10.1145/3459637.3481916
https://doi.org/10.1145/3459637.3481916
https://openreview.net/forum?id=XvgPGWazqRH

Bibliography

62. G. Dong and H. Liu. Feature engineering for machine learning and data analytics. CRC

Press, 2018 (cit. on p. 10).

63. S. S. Du, Y. Wang, X. Zhai, S. Balakrishnan, R. R. Salakhutdinov, and A. Singh. “How

Many Samples are Needed to Estimate a Convolutional Neural Network?” In: Ad-

vances in Neural Information Processing Systems. Ed. by S. Bengio, H. Wallach, H.

Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Associates,

Inc., 2018. url: https : / / proceedings . neurips . cc / paper / 2018 / file /

03c6b06952c750899bb03d998e631860-Paper.pdf (cit. on p. 11).

64. D. Durfee, Y. Gao, G. Goranci, and R. Peng. “Fully dynamic spectral vertex sparsifiers and

applications”. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of

Computing. 2019, pp. 914–925 (cit. on p. 55).

65. G. K.Dziugaite, D.M.Roy, and Z.Ghahramani. “Training generative neural networks via

maximummean discrepancy optimization”. In: Proceedings of the Thirty-First Conference

on Uncertainty in Artificial Intelligence. 2015, pp. 258–267 (cit. on p. 55).

66. M.Fey and J. E.Lenssen. “FastGraphRepresentationLearningwithPyTorchGeometric”.

In: ICLR RLGMWorkshop. 2019 (cit. on p. 67).

67. M. Fey, J. E. Lenssen, F.Weichert, and J. Leskovec. “GNNAutoScale: Scalable and Expres-

siveGraphNeuralNetworks viaHistorical Embeddings”. In: International Conferences on

Machine Learning (ICML). 2021 (cit. on p. 2).

68. C. Finn, P. Abbeel, and S. Levine. “Model-Agnostic Meta-Learning for Fast Adaptation

of Deep Networks”. In: ICML. 2017 (cit. on pp. 58, 59, 65).

69. S. Flennerhag, Y. Schroecker, T. Zahavy, H. van Hasselt, D. Silver, and S. Singh. “Boot-

strapped Meta-Learning”. In: International Conference on Learning Representations.

2022. url: https://openreview.net/forum?id=b-ny3x071E5 (cit. on p. 76).

70. F. Fouss, A. Pirotte, J.-m. Renders, and M. Saerens. “Random-Walk Computation of

Similarities between Nodes of a Graph with Application to Collaborative Recommenda-

tion”. IEEE Transactions on Knowledge and Data Engineering 19:3, 2007, pp. 355–369.

doi: 10.1109/TKDE.2007.46 (cit. on p. 9).

71. Z.-H. Fu, K.-B. Qiu, and H. Zha. “Generalize a Small Pre-trained Model to Arbitrarily

Large TSP Instances”. Proceedings of the AAAI Conference on Artificial Intelligence 35:8,

2021, pp. 7474–7482. url: https://ojs.aaai.org/index.php/AAAI/article/

view/16916 (cit. on p. 54).

85

https://proceedings.neurips.cc/paper/2018/file/03c6b06952c750899bb03d998e631860-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/03c6b06952c750899bb03d998e631860-Paper.pdf
https://openreview.net/forum?id=b-ny3x071E5
http://dx.doi.org/10.1109/TKDE.2007.46
https://ojs.aaai.org/index.php/AAAI/article/view/16916
https://ojs.aaai.org/index.php/AAAI/article/view/16916

Bibliography

72. K. Fukushima. “Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position”. Biological Cybernetics 36, 1980,

pp. 193–202 (cit. on p. 1).

73. V. Fung, J. Zhang, E. Juarez, and B.G. Sumpter. “Benchmarking graph neural networks

for materials chemistry”. npj Computational Materials 7:1, 2021, pp. 1–8 (cit. on pp. 2,

12).

74. F. GÃ¶bel and A. Jagers. “Randomwalks on graphs”. Stochastic Processes and their Appli-

cations 2:4, 1974, pp. 311–336. issn: 0304-4149. doi: https://doi.org/10.1016/

0304-4149(74)90001-5. url: https://www.sciencedirect.com/science/

article/pii/0304414974900015 (cit. on p. 9).

75. H. Gao, J. Pei, and H. Huang. “Conditional Random Field Enhanced Graph Convolu-

tional Neural Networks”. ACM SIGKDD, 2019. doi: 10.1145/3292500.3330888.

url: http://dx.doi.org/10.1145/3292500.3330888 (cit. on p. 38).

76. H. Gao and S. Ji.Graph U-Nets. 2019. arXiv: 1905.05178 [cs.LG] (cit. on p. 26).

77. V. Garcia and J. Bruna. “Few-Shot Learning with Graph Neural Networks”. In: ICLR.

2018 (cit. on p. 73).

78. M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. “Exact Combinatorial Op-

timization with Graph Convolutional Neural Networks”. In: Proceedings of the 33rd In-

ternational Conference on Neural Information Processing Systems. Curran Associates Inc.,

Red Hook, NY, USA, 2019 (cit. on p. 41).

79. J. Gasteiger, M. Shuaibi, A. Sriram, S. Günnemann, Z. Ulissi, C. L. Zitnick, and A.

Das. How Do Graph Networks Generalize to Large and Diverse Molecular Systems? 2022.

doi: 10.48550/ARXIV.2204.02782. url: https://arxiv.org/abs/2204.02782

(cit. on pp. 41, 53).

80. J.Gilmer, S. S. Schoenholz, P. F.Riley,O.Vinyals, andG. E.Dahl. “NeuralMessagePassing

forQuantumChemistry”. In:Proceedings of the 34th InternationalConference onMachine

Learning - Volume 70. ICML’17. JMLR.org, Sydney, NSW, Australia, 2017, pp. 1263–

1272 (cit. on p. 13).

81. I. Goodfellow, Y. Bengio, andA.Courville.Deep learning.MITpress, 2016 (cit. on pp. 10,

11).

82. A.Grover and J. Leskovec. “node2vec: Scalable feature learning for networks”. In:Proceed-

ings of the 22ndACMSIGKDD international conference onKnowledge discovery and data

mining. 2016, pp. 855–864 (cit. on pp. 9, 12).

86

http://dx.doi.org/https://doi.org/10.1016/0304-4149(74)90001-5
http://dx.doi.org/https://doi.org/10.1016/0304-4149(74)90001-5
https://www.sciencedirect.com/science/article/pii/0304414974900015
https://www.sciencedirect.com/science/article/pii/0304414974900015
http://dx.doi.org/10.1145/3292500.3330888
http://dx.doi.org/10.1145/3292500.3330888
https://arxiv.org/abs/1905.05178
http://dx.doi.org/10.48550/ARXIV.2204.02782
https://arxiv.org/abs/2204.02782

Bibliography

83. H. Guan and M. Liu. “Domain adaptation for medical image analysis: a survey”. IEEE

Transactions on Biomedical Engineering, 2021 (cit. on p. 55).

84. C. Guo, S. Zheng, Y. Xie, and W. Hao. “A survey on spectral clustering”. In:World Au-

tomation Congress 2012. 2012, pp. 53–56 (cit. on p. 53).

85. W. L. Hamilton, R. Ying, and J. Leskovec. “Inductive Representation Learning on Large

Graphs”. In:NeurIPS. 2017 (cit. on pp. 14, 20, 26).

86. W. L. Hamilton. “Graph representation learning”. Synthesis Lectures on Artifical Intelli-

gence andMachine Learning 14:3, 2020, pp. 1–159 (cit. on pp. 11–13).

87. W. L. Hamilton, R. Ying, and J. Leskovec. “Representation learning on graphs: Methods

and applications”. IEEE Data Engineering Bulletin, 2017 (cit. on p. 13).

88. K. Han, B. Lakshminarayanan, and J. Z. Liu. “Reliable GraphNeural Networks for Drug

DiscoveryUnderDistributional Shift”. In:NeurIPS2021Workshop onDistributionShifts:

ConnectingMethods and Applications. 2021. url: https://openreview.net/forum?

id=311QRRkfrep (cit. on p. 76).

89. L. Haonan, S.H. Huang, T. Ye, and G. Xiuyan. “Graph Star Net for Generalized Multi-

Task Learning”. arXiv, 2019 (cit. on p. 73).

90. K. Hassani and A.H. Khasahmadi. “Contrastive Multi-View Representation Learning

on Graphs”. In: Proceedings of the 37th International Conference on Machine Learning.

ICML’20. JMLR.org, 2020 (cit. on p. 76).

91. J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang. “Manifold-Ranking Based Image Re-

trieval”. In: Proceedings of the 12th Annual ACM International Conference on Multime-

dia. MULTIMEDIA ’04. Association for Computing Machinery, New York, NY, USA,

2004, 9â€“16. isbn: 1581138938. doi: 10.1145/1027527.1027531. url: https:

//doi.org/10.1145/1027527.1027531 (cit. on pp. 9, 25).

92. K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”.

In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,

pp. 770–778 (cit. on pp. 2, 18, 63).

93. D.O. Hebb. The Organization of Behavior. Wiley, New York, 1949 (cit. on p. 1).

94. G.Hinton,L.Deng,D.Yu,G. E.Dahl,A.-r.Mohamed,N. Jaitly,A. Senior,V.Vanhoucke,

P. Nguyen, T.N. Sainath, and B. Kingsbury. “Deep Neural Networks for Acoustic Mod-

eling in Speech Recognition: The Shared Views of Four Research Groups”. IEEE Signal

ProcessingMagazine 29:6, 2012, pp. 82–97. doi: 10.1109/MSP.2012.2205597 (cit. on

p. 1).

87

https://openreview.net/forum?id=311QRRkfrep
https://openreview.net/forum?id=311QRRkfrep
http://dx.doi.org/10.1145/1027527.1027531
https://doi.org/10.1145/1027527.1027531
https://doi.org/10.1145/1027527.1027531
http://dx.doi.org/10.1109/MSP.2012.2205597

Bibliography

95. S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. Neural Comput. 9:8,

1997, pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735. url:

https://doi.org/10.1162/neco.1997.9.8.1735 (cit. on p. 1).

96. C.Holtz, O. Atan, R. Carey, andT. Jain. “Multi-Task Learning onGraphs withNode and

Graph Level Labels”. In:NeurIPSWorkshop onGraphRepresentation Learning. 2019 (cit.

on p. 73).

97. T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. “Meta-Learning in Neural Net-

works: A Survey”. arXiv, 2020 (cit. on p. 73).

98. Z.Huang, S. Zhang,C.Xi, T. Liu, andM.Zhou. “ScalingUpGraphNeuralNetworksVia

Graph Coarsening”. In: In Proceedings of the 27th ACM SIGKDD Conference on Knowl-

edge Discovery and DataMining (KDD ’21). 2021 (cit. on p. 55).

99. N. Immerman and E. Lander. “Describing Graphs: A First-Order Approach to Graph

Canonization”. In: Complexity Theory Retrospective: In Honor of Juris Hartmanis on the

Occasion of His Sixtieth Birthday, July 5, 1988. Ed. by A. L. Selman. Springer New York,

NewYork,NY, 1990, pp. 59–81. isbn: 978-1-4612-4478-3.doi:10.1007/978-1-4612-

4478-3_5. url: https://doi.org/10.1007/978-1-4612-4478-3_5 (cit. on p. 8).

100. S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift”. ICML, 2015 (cit. on p. 29).

101. S. Ivanov and E. Burnaev. “Anonymous walk embeddings”. arXiv, 2018 (cit. on p. 38).

102. R. Jain, G. Ciravegna, P. Barbiero, F. Giannini, D. Buffelli, and P. Liò. “Extending Logic

ExplainedNetworks to Text Classification”. In: Proceedings of the 2022 Conference on Em-

piricalMethods in Natural Language Processing (EMNLP). 2022 (cit. on p. 4).

103. S. Jegelka.Theory ofGraphNeuralNetworks:RepresentationandLearning. 2022.doi:10.

48550/ARXIV.2204.07697. url: https://arxiv.org/abs/2204.07697 (cit. on

pp. 7, 17).

104. B. Jiang and D. Lin. “Graph Laplacian Regularized Graph Convolutional Networks for

Semi-supervised Learning”. arXiv abs/1809.09839, 2018 (cit. on p. 38).

105. W. Jin, L. Zhao, S. Zhang, Y. Liu, J. Tang, and N. Shah. “Graph Condensation for Graph

Neural Networks”. In: International Conference on Learning Representations. 2022. url:

https://openreview.net/forum?id=WLEx3Jo4QaB (cit. on p. 55).

106. W. Jin, J. Jung, andU.Kang. “Supervised and extended restart in randomwalks for ranking

and link prediction in networks”. PLoS ONE 14, 2019 (cit. on pp. 9, 25).

88

http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/978-1-4612-4478-3_5
http://dx.doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1007/978-1-4612-4478-3_5
http://dx.doi.org/10.48550/ARXIV.2204.07697
http://dx.doi.org/10.48550/ARXIV.2204.07697
https://arxiv.org/abs/2204.07697
https://openreview.net/forum?id=WLEx3Jo4QaB

Bibliography

107. Y. Jin, A. Loukas, and J. JaJa. “Graph Coarsening with Preserved Spectral Properties”. In:

Proceedings of the Twenty Third International Conference on Artificial Intelligence and

Statistics. Ed. by S. Chiappa and R. Calandra. Vol. 108. Proceedings of Machine Learning

Research. PMLR, 2020, pp. 4452–4462. url: https://proceedings.mlr.press/

v108/jin20a.html (cit. on pp. 9, 10, 44, 49, 53, 55).

108. B. Jing, G. Corso, R. Barzilay, andT. S. Jaakkola. “Torsional Diffusion forMolecular Con-

former Generation”. In: ICLR2022 Machine Learning for Drug Discovery. 2022. url:

https://openreview.net/forum?id=D9IxPlXPJJS (cit. on p. 76).

109. C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent. “Learning TSP Requires Re-

thinking Generalization”. In: 27th International Conference on Principles and Practice

of Constraint Programming (CP 2021). Ed. by L.D. Michel. Vol. 210. Leibniz Interna-

tional Proceedings in Informatics (LIPIcs). SchlossDagstuhl –Leibniz-Zentrumfür Infor-

matik, Dagstuhl, Germany, 2021, 33:1–33:21. isbn: 978-3-95977-211-2. doi: 10.4230/

LIPIcs.CP.2021.33. url: https://drops.dagstuhl.de/opus/volltexte/

2021/15324 (cit. on pp. 41, 53).

110. C. K. Joshi, F. Liu,X.Xun, J. Lin, andC.-S. Foo. “OnRepresentationKnowledgeDistilla-

tion for GraphNeural Networks”. arXiv preprint arXiv:2111.04964, 2021 (cit. on p. 46).

111. I. Jovanović and Z. Stanić. “Spectral distances of graphs”. Linear Algebra and its Appli-

cations 436:5, 2012, pp. 1425–1435. issn: 0024-3795. doi: https://doi.org/10.

1016/j.laa.2011.08.019. url: https://www.sciencedirect.com/science/

article/pii/S0024379511006021 (cit. on p. 10).

112. W. Ju, Y. Gu, X. Luo, Y.Wang, H. Yuan, H. Zhong, andM. Zhang. “Unsupervised graph-

level representation learning with hierarchical contrasts”. Neural Networks 158, 2023,

pp. 359–368. issn: 0893-6080. doi: https : / / doi . org / 10 . 1016 / j . neunet .

2022.11. 019. url: https:// www.sciencedirect .com/science /article/

pii/S0893608022004609 (cit. on p. 76).

113. J.M. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunya-

suvunakool, R. Bates, A. Zídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A.

Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen,

D. A. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S.

Bodenstein, D. Silver, O. Vinyals, A.W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hass-

abis. “Highly accurate protein structure prediction with AlphaFold”. Nature 596, 2021,

pp. 583–589 (cit. on p. 1).

89

https://proceedings.mlr.press/v108/jin20a.html
https://proceedings.mlr.press/v108/jin20a.html
https://openreview.net/forum?id=D9IxPlXPJJS
http://dx.doi.org/10.4230/LIPIcs.CP.2021.33
http://dx.doi.org/10.4230/LIPIcs.CP.2021.33
https://drops.dagstuhl.de/opus/volltexte/2021/15324
https://drops.dagstuhl.de/opus/volltexte/2021/15324
http://dx.doi.org/https://doi.org/10.1016/j.laa.2011.08.019
http://dx.doi.org/https://doi.org/10.1016/j.laa.2011.08.019
https://www.sciencedirect.com/science/article/pii/S0024379511006021
https://www.sciencedirect.com/science/article/pii/S0024379511006021
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2022.11.019
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2022.11.019
https://www.sciencedirect.com/science/article/pii/S0893608022004609
https://www.sciencedirect.com/science/article/pii/S0893608022004609

Bibliography

114. A. Kendall, Y. Gal, and R. Cipolla. “Multi-task Learning Using Uncertainty to Weigh

Losses for Scene Geometry and Semantics”. In: CVPR. 2018 (cit. on p. 67).

115. M.G. Kendall. “The Treatment of Ties in Ranking Problems”. Biometrika 33:3, 1945,

pp. 239–251. issn: 00063444 (cit. on p. 23).

116. J. D.M.-W.C. Kenton and L. K. Toutanova. “BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding”. In: Proceedings of NAACL-HLT. 2019,

pp. 4171–4186 (cit. on p. 18).

117. K. Kersting, N.M. Kriege, C.Morris, P.Mutzel, andM.Neumann. Benchmark Data Sets

for Graph Kernels. 2016 (cit. on p. 30).

118. S. Kiefer, P. Schweitzer, and E. Selman. “Graphs identified by logics with counting”. In:

International Symposium on Mathematical Foundations of Computer Science. Springer.

2015, pp. 319–330 (cit. on p. 17).

119. J. Kim, T. Kim, S. Kim, andC. Yoo. “Edge-Labeling GraphNeural Network for Few-Shot

Learning”. In: CVPR. 2019 (cit. on p. 74).

120. D. P.Kingma and J. Ba. “Adam:AMethod for StochasticOptimization”. ICLR, 2015 (cit.

on pp. 27–29, 67, 68).

121. T.N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convolutional

Networks”. In: International Conference on Learning Representations (ICLR). 2017 (cit.

on pp. 12, 14, 17, 20, 26, 42, 48, 49, 62, 63).

122. T.N. Kipf. “Deep learning with graph-structured representations”. In: PhD Thesis. Uni-

versity of Amsterdam, 2020 (cit. on p. 76).

123. J. Klicpera, F. Becker, and S.Günnemann. “GemNet:UniversalDirectionalGraphNeural

Networks for Molecules”. In: Advances in Neural Information Processing Systems. 2021

(cit. on pp. 2, 12).

124. J. Klicpera, A. Bojchevski, and S. Günnemann. “Predict then Propagate: Graph Neural

Networks meet Personalized PageRank”. In: ICLR. 2019 (cit. on p. 38).

125. J. Klicpera, S. Weißenberger, and S. Günnemann. “Diffusion Improves Graph Learning”.

In:NeurIPS. 2019 (cit. on p. 37).

126. B. Knyazev, G. Taylor, and M. Amer. “Understanding Attention in Graph Neural Net-

works”. In: ICLR RLGMWorkshop. 2019 (cit. on pp. 27, 32).

127. S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. “Similarity of neural network repre-

sentations revisited”. In: International Conference on Machine Learning. PMLR. 2019,

pp. 3519–3529 (cit. on pp. 43, 46).

90

Bibliography

128. A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep Con-

volutional Neural Networks”. In: Advances in Neural Information Processing Systems.

Ed. by F. Pereira, C. Burges, L. Bottou, and K. Weinberger. Vol. 25. Curran Associates,

Inc., 2012. url: https : / / proceedings . neurips . cc / paper / 2012 / file /

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf (cit. on p. 1).

129. A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep convo-

lutional neural networks”.Advances in neural information processing systems 25, 2012 (cit.

on p. 16).

130. V. Kurin, A.D. Palma, I. Kostrikov, S. Whiteson, andM. P. Kumar. In Defense of the Uni-

tary Scalarization forDeepMulti-Task Learning. 2022. arXiv: 2201.04122 [cs.LG] (cit.

on p. 67).

131. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to docu-

ment recognition”. Proceedings of the IEEE 86:11, 1998, pp. 2278–2324. doi: 10.1109/

5.726791 (cit. on p. 1).

132. J. B. Lee, R. A. Rossi, S. Kim,N. K. Ahmed, and E. Koh. “AttentionModels in Graphs: A

Survey”. arXiv abs/1807.07984, 2018 (cit. on p. 26).

133. J. B. Lee, R. A.Rossi, andX.Kong. “GraphClassification using Structural Attention”. In:

ACM SIGKDD. 2018 (cit. on p. 26).

134. J. Lee, I. Lee, and J. Kang. “Self-AttentionGraph Pooling”. In: ICML. 2019 (cit. on p. 26).

135. D. Li andH. Ji. “Syntax-awareMulti-task GraphConvolutional Networks for Biomedical

Relation Extraction”. In: LOUHI. 2019 (cit. on p. 73).

136. Q. Li, Z. Han, and X.-M. Wu. “Deeper insights into graph convolutional networks for

semi-supervised learning”. In: Thirty-Second AAAI conference on artificial intelligence.

2018 (cit. on pp. 18, 19, 37, 38).

137. L. Liu, T. Zhou, G. Long, J. Jiang, andC. Zhang. “Learning to Propagate for GraphMeta-

Learning”. In:NeurIPS. 2019 (cit. on p. 73).

138. S. Lloyd. “Least squares quantization in PCM”. IEEETransactions on Information Theory

28:2, 1982, pp. 129–137. doi: 10.1109/TIT.1982.1056489 (cit. on p. 53).

139. P. Lofgren. “Efficient Algorithms for Personalized PageRank”. PhDThesis, Stanford Uni-

versity, 2015 (cit. on pp. 9, 35, 38).

91

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/2201.04122
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/TIT.1982.1056489

Bibliography

140. P. Lofgren, S. Banerjee, and A. Goel. “Personalized PageRank Estimation and Search: A

Bidirectional Approach”. In: Proceedings of the Ninth ACM International Conference on

Web Search and Data Mining. WSDM ’16. Association for Computing Machinery, San

Francisco, California, USA, 2016, pp. 163–172. isbn: 9781450337168. doi: 10.1145/

2835776.2835823. url: https://doi.org/10.1145/2835776.2835823 (cit. on

p. 35).

141. M. Long, Y. Cao, J.Wang, andM. Jordan. “Learning transferable features with deep adap-

tation networks”. In: International conference onmachine learning. PMLR. 2015, pp. 97–

105 (cit. on p. 55).

142. M. Long,H. Zhu, J.Wang, andM. I. Jordan. “DeepTransfer Learning with Joint Adapta-

tionNetworks”. In:Proceedings of the 34th International Conference onMachine Learning

- Volume 70. ICML’17. JMLR.org, Sydney,NSW,Australia, 2017, pp. 2208–2217 (cit. on

pp. 44, 55).

143. A. Loukas. “Graph Reduction with Spectral and Cut Guarantees”. Journal of Machine

Learning Research 20:116, 2019, pp. 1–42. url: http://jmlr.org/papers/v20/18-

680.html (cit. on pp. 44, 55).

144. A. Loukas. “What graph neural networks cannot learn: depth vs width”. In: ICLR. 2020

(cit. on p. 38).

145. A. Loukas and P. Vandergheynst. “Spectrally Approximating Large Graphs with Smaller

Graphs”. In:Proceedings of the 35th InternationalConference onMachine Learning. Ed. by

J. Dy and A. Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018,

pp. 3237–3246. url: https://proceedings.mlr.press/v80/loukas18a.html

(cit. on pp. 9, 44, 55).

146. L. Lovász. “RandomWalks onGraphs: A Survey”. In:Combinatorics, Paul Erdős is Eighty.

Ed. by D. Miklós, V. T. Sós, and T. Szőnyi. Vol. 2. János Bolyai Mathematical Society, Bu-

dapest, 1996, pp. 353–398 (cit. on p. 9).

147. T.Ma and J. Chen. “Unsupervised Learning ofGraphHierarchical AbstractionswithDif-

ferentiableCoarsening andOptimalTransport”. In:Proceedings of theAAAIConference on

Artificial Intelligence. Vol. 35. 10. 2021, pp. 8856–8864 (cit. on p. 55).

148. K. Madhawa and T. Murata. “Active Learning on Graphs via Meta Learning”. In: ICML

Workshop on Graph Representation Learning and Beyond, ICML. 2020 (cit. on p. 74).

149. K.-K. Maninis, I. Radosavovic, and I. Kokkinos. “Attentive Single-Tasking of Multiple

Tasks”. In: CVPR. 2019 (cit. on p. 69).

92

http://dx.doi.org/10.1145/2835776.2835823
http://dx.doi.org/10.1145/2835776.2835823
https://doi.org/10.1145/2835776.2835823
http://jmlr.org/papers/v20/18-680.html
http://jmlr.org/papers/v20/18-680.html
https://proceedings.mlr.press/v80/loukas18a.html

Bibliography

150. H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. “Provably powerful graph net-

works”. Advances in neural information processing systems 32, 2019 (cit. on p. 18).

151. N.Masuda,M.A. Porter, andR. Lambiotte. “Randomwalks and diffusion on networks”.

Physics Reports 716-717, 2017. Randomwalks and diffusion on networks, pp. 1–58. issn:

0370-1573. doi: https://doi.org/10.1016/j.physrep.2017.07.007. url:

https://www.sciencedirect.com/science/article/pii/S0370157317302946

(cit. on p. 19).

152. W.Mcculloch andW. Pitts. “A Logical Calculus of Ideas Immanent inNervous Activity”.

Bulletin ofMathematical Biophysics 5, 1943, pp. 127–147 (cit. on p. 1).

153. K. Mehlhorn. Data structures and algorithms 2: graph algorithms and NP-completeness.

Vol. 2. Springer Science & Business Media, 2012 (cit. on p. 6).

154. S.Micali and Z. A. Zhu. “Reconstructingmarkov processes from independent and anony-

mous experiments”.Discrete AppliedMathematics 200, 2016, pp. 108–122 (cit. on p. 38).

155. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed representa-

tions of words and phrases and their compositionality”. Advances in neural information

processing systems 26, 2013 (cit. on p. 12).

156. E. Min, R. Chen, Y. Bian, T. Xu, K. Zhao, W. Huang, P. Zhao, J. Huang, S. Ananiadou,

and Y. Rong. Transformer for Graphs: An Overview from Architecture Perspective. 2022.

doi: 10.48550/ARXIV.2202.08455. url: https://arxiv.org/abs/2202.08455

(cit. on p. 75).

157. T.M. Mitchell. The Need for Biases in Learning Generalizations. Technical report. New

Brunswick, NJ: Rutgers University, 1980 (cit. on p. 1).

158. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M.G. Bellemare, A. Graves,

M.A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I.

Antonoglou, H. King, D. Kumaran, D.Wierstra, S. Legg, andD.Hassabis. “Human-level

control through deep reinforcement learning”. Nature 518, 2015, pp. 529–533 (cit. on

p. 1).

159. F. Montanari, L. Kuhnke, A. T. Laak, and D.A. Clevert. “Modeling Physico-Chemical

ADMET Endpoints with Multitask Graph Convolutional Networks”. Molecules, 2019

(cit. on p. 73).

160. C.Morris,N.M.Kriege, F. Bause,K.Kersting, P.Mutzel, andM.Neumann. “TUDataset:

A collection of benchmark datasets for learning with graphs”. In: ICML Workshop on

Graph Representation Learning and Beyond. 2020 (cit. on pp. 48, 66).

93

http://dx.doi.org/https://doi.org/10.1016/j.physrep.2017.07.007
https://www.sciencedirect.com/science/article/pii/S0370157317302946
http://dx.doi.org/10.48550/ARXIV.2202.08455
https://arxiv.org/abs/2202.08455

Bibliography

161. C.Morris, Y. Lipman,H.Maron, B. Rieck, N.M. Kriege,M. Grohe,M. Fey, and K. Borg-

wardt. Weisfeiler and Leman go Machine Learning: The Story so far. 2021. doi: 10 .

48550/ARXIV.2112.09992. url: https://arxiv.org/abs/2112.09992 (cit.

on p. 7).

162. C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe.

“Weisfeiler and leman go neural: Higher-order graph neural networks”. In: Proceedings of

the AAAI conference on artificial intelligence. Vol. 33. 01. 2019, pp. 4602–4609 (cit. on

pp. 16–18, 20, 26, 31, 38).

163. R. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro. “Relational pooling for graph repre-

sentations”. In: International Conference onMachine Learning. PMLR. 2019, pp. 4663–

4673 (cit. on pp. 18, 26, 48, 51).

164. M. Newman.Networks. Oxford university press, 2018 (cit. on p. 10).

165. C.Q. Nguyen, C. Kreatsoulas, and B. K. M. “Meta-Learning GNN Initializations for

Low-Resource Molecular Property Prediction”. In: ICMLWorkshop on Graph Represen-

tation Learning and Beyond, ICML. 2020 (cit. on p. 74).

166. R. I. Oliveira and Y. Peres. “Random walks on graphs: new bounds on hitting, meeting,

coalescing and returning”. In: 2019 Proceedings of the Meeting on Analytic Algorithmics

and Combinatorics (ANALCO), pp. 119–126. doi: 10.1137/1.9781611975505.13.

eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611975505.13. url:

https://epubs.siam.org/doi/abs/10.1137/1.9781611975505.13 (cit. on p. 9).

167. K. Oono and T. Suzuki. “Graph Neural Networks Exponentially Lose Expressive Power

for Node Classification”. In: International Conference on Learning Representations. 2019

(cit. on p. 18).

168. A. van denOord, S.Dieleman,H. Zen,K. Simonyan,O.Vinyals, A.Graves,N.Kalchbren-

ner, A. Senior, and K. Kavukcuoglu. “WaveNet: AGenerativeModel for RawAudio”. In:

9th ISCA Speech SynthesisWorkshop, pp. 125–125 (cit. on p. 18).

169. A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbren-

ner, A. Senior, and K. Kavukcuoglu.WaveNet: A GenerativeModel for RawAudio. 2016.

doi: 10.48550/ARXIV.1609.03499. url: https://arxiv.org/abs/1609.03499

(cit. on p. 1).

170. L. Page, S. Brin,R.Motwani, andT.Winograd. “The PageRank citation ranking: Bringing

order to the Web”. In:WWW. 1998 (cit. on pp. 9, 20, 25).

171. A. Paszke, S. Gross, et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library”. In:NeurIPS. 2019 (cit. on p. 67).

94

http://dx.doi.org/10.48550/ARXIV.2112.09992
http://dx.doi.org/10.48550/ARXIV.2112.09992
https://arxiv.org/abs/2112.09992
http://dx.doi.org/10.1137/1.9781611975505.13
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975505.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611975505.13
http://dx.doi.org/10.48550/ARXIV.1609.03499
https://arxiv.org/abs/1609.03499

Bibliography

172. F. Pedregosa, G. Varoquaux, A. Gramfort, et al. “Scikit-learn: Machine Learning in

Python”. Journal ofMachine Learning Research, 2011 (cit. on p. 67).

173. M. Peng, Q. Zhang, Y.-g. Jiang, and X.-J. Huang. “Cross-domain sentiment classification

with target domain specific information”. In: Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers). 2018, pp. 2505–

2513 (cit. on p. 56).

174. J. Pennington, R. Socher, and C.D. Manning. “Glove: Global vectors for word represen-

tation”. In: Proceedings of the 2014 conference on empirical methods in natural language

processing (EMNLP). 2014, pp. 1532–1543 (cit. on p. 12).

175. B. Perozzi, R. Al-Rfou, and S. Skiena. “DeepWalk: Online Learning of Social Represen-

tations”. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining. KDD ’14. ACM, New York, New York, USA, 2014,

pp. 701–710. isbn: 978-1-4503-2956-9. doi: 10.1145/2623330.2623732. url: http:

//doi.acm.org/10.1145/2623330.2623732 (cit. on p. 11).

176. B. Perozzi, R. Al-Rfou, and S. Skiena. “Deepwalk: Online learning of social representa-

tions”. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining. 2014, pp. 701–710 (cit. on p. 12).

177. M. Prates, P.H. C. Avelar, H. Lemos, L. C. Lamb, and M. Y. Vardi. “Learning to Solve

NP-Complete Problems: A Graph Neural Network for Decision TSP”. Proceedings of the

AAAI Conference on Artificial Intelligence 33, 2019, pp. 4731–4738. doi: 10 . 1609 /

aaai.v33i01.33014731 (cit. on pp. 41, 76).

178. A. Raghu,M.Raghu, S. Bengio, andO.Vinyals. “Rapid learning or feature reuse? towards

understanding the effectiveness of maml”. In: ICLR. 2020 (cit. on pp. 58, 60, 65).

179. F. A. Rodrigues. “Network centrality: an introduction”. In:Amathematicalmodeling ap-

proach from nonlinear dynamics to complex systems. Springer, 2019, pp. 177–196 (cit. on

p. 10).

180. F. Rosenblatt. “The perceptron: a probabilistic model for information storage and orga-

nization in the brain.” Psychological review 65 6, 1958, pp. 386–408 (cit. on p. 1).

181. E. Rosenfeld, P. Ravikumar, andA.Risteski. “TheRisks of InvariantRiskMinimization”.

In: International Conference on Learning Representations. Vol. 9. 2021 (cit. on p. 55).

182. S. T. Roweis and L. K. Saul. “Nonlinear dimensionality reduction by locally linear embed-

ding”. science 290:5500, 2000, pp. 2323–2326 (cit. on p. 12).

95

http://dx.doi.org/10.1145/2623330.2623732
http://doi.acm.org/10.1145/2623330.2623732
http://doi.acm.org/10.1145/2623330.2623732
http://dx.doi.org/10.1609/aaai.v33i01.33014731
http://dx.doi.org/10.1609/aaai.v33i01.33014731

Bibliography

183. B. Rozemberczki, O. Kiss, and R. Sarkar. “Karate Club: An API Oriented Open-source

Python Framework for Unsupervised Learning on Graphs”. In: Proceedings of the 29th

ACM International Conference on Information and Knowledge Management (CIKM

’20). ACM. 2020, pp. 3125–3132 (cit. on p. 52).

184. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by back-

propagating errors”.Nature 323, 1986, pp. 533–536 (cit. on p. 1).

185. A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell,

and P. Battaglia. “Graph networks as learnable physics engines for inference and control”.

In: International Conference onMachine Learning. PMLR. 2018, pp. 4470–4479 (cit. on

p. 54).

186. P. Sarkar and A.W. Moore. “Random walks in social networks and their applications: a

survey”. In: Social Network Data Analytics. Springer, 2011, pp. 43–77 (cit. on p. 9).

187. R. Sato,M. Yamada, andH.Kashima. “ApproximationRatios ofGraphNeuralNetworks

for Combinatorial Problems”. In:NeurIPS. 2019 (cit. on p. 38).

188. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. “The Graph

Neural Network Model”. IEEE Transactions on Neural Networks 20:1, 2009, pp. 61–80.

doi: 10.1109/TNN.2008.2005605 (cit. on p. 12).

189. I. Schomburg, A.Chang, C. Ebeling,M.Gremse, C.Heldt, G.Huhn, andD. Schomburg.

“BRENDA, the enzyme database: updates and major new developments”. Nucleic acids

research, 2004 (cit. on p. 66).

190. P. Sen, G.Namata,M. Bilgic, L. Getoor, B. Galligher, andT. Eliassi-Rad. “Collective Clas-

sification in Network Data”. AIMagazine 29:3, 2008, p. 93. issn: 0738-4602. doi: 10.

1609/aimag.v29i3.2157. url: http://dx.doi.org/10.1609/aimag.v29i3.

2157 (cit. on p. 30).

191. P. Sermanet, S. Chintala, and Y. LeCun. “Convolutional neural networks applied to house

numbers digit classification”. In:Proceedings of the 21st international conference on pattern

recognition (ICPR2012). IEEE. 2012, pp. 3288–3291 (cit. on p. 16).

192. N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K.M. Borgwardt.

“Weisfeiler-Lehman Graph Kernels”. Journal of Machine Learning Research 12:77, 2011,

pp. 2539–2561. url: http://jmlr.org/papers/v12/shervashidze11a.html

(cit. on pp. 48, 51).

96

http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://dx.doi.org/10.1609/aimag.v29i3.2157
http://jmlr.org/papers/v12/shervashidze11a.html

Bibliography

193. N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. “Efficient

graphlet kernels for large graph comparison”. In: Proceedings of the Twelth International

Conference on Artificial Intelligence and Statistics. Ed. by D. van Dyk and M. Welling.

Vol. 5. Proceedings of Machine Learning Research. PMLR, Hilton Clearwater Beach Re-

sort, Clearwater Beach, FloridaUSA, 2009, pp. 488–495. url: https://proceedings.

mlr.press/v5/shervashidze09a.html (cit. on pp. 48, 51).

194. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam,M. Lanctot, S. Dieleman, D. Grewe, J. Nham,

N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and

D. Hassabis. “Mastering the Game of Go with Deep Neural Networks and Tree Search”.

Nature 529:7587, 2016, pp. 484–489. doi: 10.1038/nature16961 (cit. on p. 1).

195. A. Sperduti and A. Starita. “Supervised neural networks for the classification of struc-

tures”. IEEE Transactions on Neural Networks 8:3, 1997, pp. 714–735. doi: 10.1109/

72.572108 (cit. on p. 12).

196. N. Srivastava, G.Hinton, A. Krizhevsky, I. Sutskever, andR. Salakhutdinov. “Dropout: A

SimpleWay to Prevent Neural Networks fromOverfitting”. Journal ofMachine Learning

Research 15, 2014, pp. 1929–1958 (cit. on pp. 27–29).

197. Q. Suo, J.Chou,W.Zhong, andA.Zhang. “TAdaNet:Task-AdaptiveNetwork forGraph-

EnrichedMeta-Learning”. In: ACM SIGKDD. 2020 (cit. on p. 74).

198. J. J. Sutherland, L. A. O’Brien, and D. F. Weaver. “Spline-Fitting with a Genetic Algo-

rithm:AMethod forDevelopingClassification Structure-ActivityRelationships”. Journal

of Chemical Information and Computer Sciences, 2003 (cit. on p. 67).

199. J. Tenenbaum, V. Silva, and J. Langford. “A Global Geometric Framework for Nonlinear

Dimensionality Reduction”. Science 290, 2000, pp. 2319–2323 (cit. on p. 12).

200. H.Tong,C. Faloutsos, and J. Pan. “FastRandomWalkwithRestart and Its Applications”.

ICDM, 2006 (cit. on pp. 9, 25, 38).

201. J. Topping, F. DiGiovanni, B. P. Chamberlain, X. Dong, and M.M. Bronstein. “Under-

standing over-squashing and bottlenecks on graphs via curvature”. In: International Con-

ference on Learning Representations. 2021 (cit. on p. 18).

202. M. Tsubaki and T. Mizoguchi. “On the equivalence of molecular graph convolution and

molecular wave function with poor basis set”. Advances in Neural Information Processing

Systems 33, 2020, pp. 1982–1993 (cit. on p. 54).

97

https://proceedings.mlr.press/v5/shervashidze09a.html
https://proceedings.mlr.press/v5/shervashidze09a.html
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1109/72.572108
http://dx.doi.org/10.1109/72.572108

Bibliography

203. S. Vandenhende, S. Georgoulis, W. VanGansbeke, M. Proesmans, D. Dai, and L.

VanGool. “Multi-Task Learning for Dense Prediction Tasks: A Survey”. IEEE Transac-

tions on PatternAnalysis andMachine Intelligence, 2021, pp. 1–1. doi: 10.1109/TPAMI.

2021.3054719 (cit. on pp. 59, 67).

204. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, and I.

Polosukhin. “Attention is all you need”.Advances in neural information processing systems

30, 2017 (cit. on pp. 1, 15, 75).

205. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. “GraphAtten-

tion Networks”. In: International Conference on Learning Representations. 2018 (cit. on

pp. 12, 15, 20, 26).

206. S. Wang, R. Yang, R. Wang, X. Xiao, Z. Wei, W. Lin, Y. Yang, and N. Tang. “Efficient Al-

gorithms forApproximate Single-Source Personalized PageRankQueries”.ACMTransac-

tions on Database Systems, 2019. issn: 0362-5915. doi: 10.1145/3360902. url: http:

//dx.doi.org/10.1145/3360902 (cit. on pp. 35, 38).

207. S.Wang,R.Yang,X.Xiao,Z.Wei, andY.Yang. “FORA:Simple andEffectiveApproximate

Single-Source Personalized PageRank”. In: SIGKDD 2017. 2017, pp. 505–514 (cit. on

p. 35).

208. Z. Wei, X. He, X. Xiao, S. Wang, S. Shang, and J. Wen. “TopPPR: Top-k Personal-

ized PageRank Queries with Precision Guarantees on Large Graphs”. SIGMOD, 2018.

doi: 10.1145/3183713.3196920. url: http://dx.doi.org/10.1145/3183713.

3196920 (cit. on pp. 35, 38).

209. B.Weisfeiler andA.Leman. “A reductionof a graph to a canonical formand an algebra aris-

ing during this reduction”. In:Nauchno-Technicheskaya Informatsia. 1968 (cit. on pp. 6,

20).

210. G.Wilson andD. J. Cook. “A Survey of Unsupervised DeepDomain Adaptation”.ACM

Transactions on Intelligent Systems and Technology 11:5, 2020, pp. 1–46. doi: 10.1145/

3400066 (cit. on p. 55).

211. S. Wold, K. Esbensen, and P. Geladi. “Principal component analysis”. Chemometrics and

intelligent laboratory systems 2:1-3, 1987, pp. 37–52 (cit. on p. 10).

212. L. Wu, P. Cui, J. Pei, and L. Zhao. Graph Neural Networks: Foundations, Frontiers, and

Applications. Springer Singapore, Singapore, 2022, p. 725 (cit. on p. 13).

213. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. “A Comprehensive Survey on

Graph Neural Networks”. IEEE Transactions on Neural Networks and Learning Systems

32:1, 2021, pp. 4–24. doi: 10.1109/TNNLS.2020.2978386 (cit. on pp. 13, 44).

98

http://dx.doi.org/10.1109/TPAMI.2021.3054719
http://dx.doi.org/10.1109/TPAMI.2021.3054719
http://dx.doi.org/10.1145/3360902
http://dx.doi.org/10.1145/3360902
http://dx.doi.org/10.1145/3360902
http://dx.doi.org/10.1145/3183713.3196920
http://dx.doi.org/10.1145/3183713.3196920
http://dx.doi.org/10.1145/3183713.3196920
http://dx.doi.org/10.1145/3400066
http://dx.doi.org/10.1145/3400066
http://dx.doi.org/10.1109/TNNLS.2020.2978386

Bibliography

214. F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong. “RandomWalks: A Review of Algo-

rithms and Applications”. IEEE Transactions on Emerging Topics in Computational Intel-

ligence 4:2, 2020, pp. 95–107. doi: 10.1109/TETCI.2019.2952908 (cit. on p. 9).

215. Y. Xie, M. Gong, Y. Gao, A. K. Qin, and X. Fan. “AMulti-Task Representation Learning

Architecture for Enhanced Graph Classification”. Frontiers in Neuroscience, 2020 (cit. on

p. 73).

216. K. Xu, W. Hu, J. Leskovec, and S. Jegelka. “How Powerful are Graph Neural Net-

works?” In: International Conference on Learning Representations. 2019. url: https:

//openreview.net/forum?id=ryGs6iA5Km (cit. on pp. 2, 12, 15, 17, 38, 42, 46, 48,

49).

217. K.Xu,C.Li, Y.Tian,T. Sonobe,K.Kawarabayashi, and S. Jegelka. “RepresentationLearn-

ing on Graphs with Jumping Knowledge Networks”. In: ICML. 2018 (cit. on p. 38).

218. K. Xu, J. Li, M. Zhang, S. S. Du, K.-i. Kawarabayashi, and S. Jegelka. “What Can Neural

Networks Reason About?” In: ICLR. 2020 (cit. on p. 38).

219. H. Yan, Y. Ding, P. Li, Q.Wang, Y. Xu, andW. Zuo. “Mind the class weight bias:Weighted

maximummean discrepancy for unsupervised domain adaptation”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2017, pp. 2272–2281 (cit. on

p. 55).

220. Z. Yang,W.Cohen, andR. Salakhudinov. “Revisiting semi-supervised learningwith graph

embeddings”. In: International conference on machine learning. PMLR. 2016, pp. 40–48

(cit. on pp. 12, 31).

221. H. Yao, C. Zhang, Y. Wei, M. Jiang, S. Wang, J. Huang, N. V. Chawla, and Z. Li. “Graph

Few-shot Learning via Knowledge Transfer”. In: AAAI. 2020 (cit. on p. 74).

222. M. Yasunaga, H. Ren, A. Bosselut, P. Liang, and J. Leskovec. “QA-GNN:Reasoning with

Language Models and Knowledge Graphs for Question Answering”. In: Proceedings of

the 2021 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies. 2021, pp. 535–546 (cit. on p. 12).

223. G. Yehudai, E. Fetaya, E. Meirom, G. Chechik, and H. Maron. “From Local Structures

to Size Generalization in Graph Neural Networks”. In: Proceedings of the 38th Interna-

tional Conference on Machine Learning. Ed. by M. Meila and T. Zhang. Vol. 139. Pro-

ceedings of Machine Learning Research. PMLR, 2021, pp. 11975–11986. url: https:

//proceedings.mlr.press/v139/yehudai21a.html (cit. on pp. 41, 42, 45, 48, 49,

53, 54).

99

http://dx.doi.org/10.1109/TETCI.2019.2952908
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.mlr.press/v139/yehudai21a.html
https://proceedings.mlr.press/v139/yehudai21a.html

Bibliography

224. R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. “Graph

convolutional neural networks for web-scale recommender systems”. In: Proceedings of

the 24th ACM SIGKDD international conference on knowledge discovery & data mining.

2018, pp. 974–983 (cit. on pp. 2, 12, 13, 37).

225. Z. Ying, J. You, C.Morris, X. Ren,W. L. Hamilton, and J. Leskovec. “Hierarchical Graph

Representation Learning with Differentiable Pooling”. In:NeurIPS. 2018 (cit. on pp. 16,

20, 26, 31).

226. S. Yu, Y. Feng, D. Zhang, H.D. Bedru, B. Xu, and F. Xia. “Motif discovery in networks: a

survey”. Computer Science Review 37, 2020, p. 100267 (cit. on p. 10).

227. W.W. Zachary. “An Information FlowModel for Conflict and Fission in Small Groups”.

Journal ofAnthropologicalResearch 33:4, 1977, pp. 452–473. issn: 00917710.url:http:

//www.jstor.org/stable/3629752 (visited on 07/28/2022) (cit. on p. 11).

228. W. Zellinger, B. A. Moser, T. Grubinger, E. Lughofer, T. Natschläger, and S. Saminger-

Platz. “Robust unsupervised domain adaptation for neural networks via moment align-

ment”. Information Sciences 483, 2019, pp. 174–191. issn: 0020-0255. doi: https://

doi.org/10.1016/j.ins.2019.01.025. url: https://www.sciencedirect.

com/science/article/pii/S0020025519300301 (cit. on pp. 43, 44, 56).

229. C. Zhang,D. Song, C.Huang, A. Swami, andN. V.Chawla. “HeterogeneousGraphNeu-

ral Network”. ACM SIGKDD, 2019. doi: 10.1145/3292500.3330961. url: http:

//dx.doi.org/10.1145/3292500.3330961 (cit. on p. 37).

230. J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung. “GaAN: Gated Attention Net-

works for Learning on Large and Spatiotemporal Graphs”. In:UAI. 2018 (cit. on p. 26).

231. F. Zhou, C. Cao, K. Zhang, G. Trajcevski, T. Zhong, and J. Geng. “Meta-GNN: On Few-

Shot Node Classification in GraphMeta-Learning”. In: CIKM. 2019 (cit. on p. 74).

232. K. Zhou, X. Huang, Y. Li, D. Zha, R. Chen, and X. Hu. “Towards deeper graph neural

networks with differentiable group normalization”. Advances in neural information pro-

cessing systems 33, 2020, pp. 4917–4928 (cit. on p. 18).

233. Q. Zhu, N. Ponomareva, J. Han, and B. Perozzi. “Shift-Robust GNNs: Overcom-

ing the Limitations of Localized Graph Training data”. In: Advances in Neural In-

formation Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.

Liang, and J.W. Vaughan. Vol. 34. Curran Associates, Inc., 2021, pp. 27965–27977.

url: https : / / proceedings . neurips . cc / paper / 2021 / file /

eb55e369affa90f77dd7dc9e2cd33b16-Paper.pdf (cit. on pp. 43, 44, 56).

100

http://www.jstor.org/stable/3629752
http://www.jstor.org/stable/3629752
http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.01.025
http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.01.025
https://www.sciencedirect.com/science/article/pii/S0020025519300301
https://www.sciencedirect.com/science/article/pii/S0020025519300301
http://dx.doi.org/10.1145/3292500.3330961
http://dx.doi.org/10.1145/3292500.3330961
http://dx.doi.org/10.1145/3292500.3330961
https://proceedings.neurips.cc/paper/2021/file/eb55e369affa90f77dd7dc9e2cd33b16-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/eb55e369affa90f77dd7dc9e2cd33b16-Paper.pdf

Bibliography

234. C. Zhuang and Q. Ma. “Dual Graph Convolutional Networks for Graph-Based Semi-

Supervised Classification”. WWW, 2018. doi: 10 . 1145 / 3178876 . 3186116. url:

http://dx.doi.org/10.1145/3178876.3186116 (cit. on p. 37).

235. M. Zopf. 1-WL Expressiveness Is (Almost) All You Need. 2022. doi: 10.48550/ARXIV.

2202.10156. url: https://arxiv.org/abs/2202.10156 (cit. on p. 8).

236. D. Zügner and S. Günnemann. “Adversarial Attacks onGraphNeuralNetworks viaMeta

Learning”. In: ICLR. 2019 (cit. on p. 74).

101

http://dx.doi.org/10.1145/3178876.3186116
http://dx.doi.org/10.1145/3178876.3186116
http://dx.doi.org/10.48550/ARXIV.2202.10156
http://dx.doi.org/10.48550/ARXIV.2202.10156
https://arxiv.org/abs/2202.10156

	Introduction
	Thesis Contributions and Layout

	Preliminaries
	Graphs
	The Weisfeiler-Leman Algorithm
	Random Walks
	Graph Coarsening

	Representation learning
	Graph Representation Learning

	Graph Neural Networks
	Examples of Graph Neural Networks
	Connection to the Weisfeiler-Leman Algorithm
	Oversmoothing & Oversquashing

	The Impact of Global Structural Information in Graph Neural Networks
	Random Walks can empower Graph Neural Networks
	Empirical Analysis

	Injecting Global Information in MPNNs
	Types of Global Structural Information Injection
	Choice of Models
	Training & Implementation Details

	Evaluation of the Injection of Global Structural Information
	Practical Aspects
	RWRReg
	Fast Implementation of the Random Walk with Restart Regularization

	Related Work
	Conclusions

	Improving Size-Generalization in Graph Neural Networks
	Preliminaries
	Centered Kernel Alignment
	Central Moment Discrepancy

	Our Method
	Limitations

	Analysis of Node Embeddings
	Evaluation
	Results
	Ablation Study

	Related Work
	Conclusions

	Learning Multi-Task Representations
	Preliminaries
	Multi-Task Learning
	Model-Agnostic Meta-Learning and ANIL

	SAME: Single-Task Adaptation for Multi-Task Embeddings
	Episode Design
	Model Architecture Design
	Meta-Training Design
	Connection between SAME and other Optimization-based Meta-Learning Methods

	Experiments
	Experimental Setting
	Results

	Related Work
	Conclusions

	Conclusion
	Future Work

	Acronyms
	Bibliography

