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A B S T R A C T

In kernel-based approximation, it is well-known that the direct approach to interpolation is
prone to ill-conditioning of the interpolation matrix. One simple idea is to use other better-
conditioned bases that span the same space of the translated kernels i.e. their associated native
space. Pazouki and Schaback (2011) tracked this issue by investigating different factorization
of the interpolation matrix in order to build stable and orthonormal bases for the corresponding
native space of the positive definite kernels. In this paper, we work with the reproducing kernel
𝐾 for the associated native Hilbert space 𝛷(𝛺) corresponding to a conditionally positive
definite kernel 𝛷 on the nonempty set 𝛺. We give a well-organized matrix formulation of the
kernel matrix 𝐊 by constructing the matrices corresponding to cardinal basis from monomials.
Then, we present two possible ways to find full-rank data-dependent orthonormal bases that
are discretely 𝓁2 and 𝛷-orthonormal. The first approach is given by the factorization of the
kernel matrix 𝐊 and the next one is based on the eigenpairs approximation of the linear operator
associated with the reproducing kernel 𝐾 given by Mercer’s theorem. In the sequel, we employ
the truncated singular value decomposition technique to find an optimal low-rank basis with the
coefficient matrix whose rank is less than that of the original matrix. Special attention is also
given to error analysis, duality, and stability. Some numerical experiments are also provided.

1. Introduction

One of the most basic problems in approximation theory is to construct an approximation of an unknown function 𝑓 defined
on a set 𝛺 ⊂ R𝑑 from 𝑛 specified distinct points 𝑋 = {𝐱1,… , 𝐱𝑛} ⊂ 𝛺. A simple approach consists of choosing 𝑛 functions and then
looking for the unique combination of these functions which effectively fits the data at the specified points 𝑋. To ensure the success
of this procedure, the set of chosen functions must be linearly independent over the set of interpolation points (also referred to as
data sites or centers) 𝑋. In this setting, the so-called kernel methods are of growing importance. The kernel can be Positive Definite
(PD) or Conditionally Positive Definite (CPD). In what follows we denote by P𝑑

𝑚−1 the 𝑑−dimensional polynomial space of degree
at most 𝑚 − 1.

Definition 1. Let 𝛷 ∶ 𝛺×𝛺 → R be a continuous symmetric kernel. It is said that 𝛷 is a conditionally positive semi-definite kernel
of order 𝑚 on 𝛺 ⊂ R𝑑 if, for all 𝑛 ∈ N, all pairwise distinct centers 𝑋 ={𝐱1,… , 𝐱𝑛}⊂R𝑑 , and all 𝜶 ∈ R𝑛 satisfying
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𝑛
∑

𝑗=1
𝛼𝑗𝑝(𝐱𝑗 ) = 0, 𝑝 ∈ P𝑑

𝑚−1,

he quadratic form
𝑛
∑

𝑖,𝑗=1
𝛼𝑖𝛼𝑗𝛷(𝐱𝑖, 𝐱𝑗 ) ≥ 0.

Moreover, 𝛷 is said to be conditionally positive definite (CPD) of order 𝑚 if equality holds only for 𝜶 = 0. Finally, when 𝑚 = 0 the
kernel is positive (semi)-definite, i.e., conditionally positive (semi)-definite kernels of order zero are positive (semi)-definite kernels.

Let 𝛷 be a CPD kernel of order 𝑚 and 𝑝1,… , 𝑝𝑞 be a basis for the polynomial space P𝑑
𝑚−1. Then, for the P𝑑

𝑚−1-unisolvent set of
data sites 𝑋 and function values 𝑓 (𝐱𝑗 ) = 𝑓𝑗 ∈ R, 1 ≤ 𝑗 ≤ 𝑛, the interpolant of the unknown function 𝑓 can be written as

𝑠𝑓 (𝐱) =
𝑛
∑

𝑗=1
𝑐𝑗𝛷(𝐱, 𝐱𝑗 ) +

𝑞
∑

𝑗=1
𝑑𝑗𝑝𝑗 (𝐱), ∀ 𝐱 ∈ R𝑑 . (1)

In order to compute the coefficients 𝑐𝑗 and 𝑑𝑗 in (1), we may ask that 𝑠𝑓 exactly reproduces the function values {𝑓𝑗}𝑛𝑗=1. This leads
to the linear system

[

𝐴 𝑃
𝑃 𝑇 0

] [

𝐜
𝐝

]

=
[

𝐟
0

]

, (2)

with

𝐴 =
[

𝛷(𝐱𝑖, 𝐱𝑗 )
]

1≤𝑖≤𝑛
1≤𝑗≤𝑛

, 𝑃 =
[

𝑝𝑗 (𝐱𝑖)
]

1≤𝑖≤𝑛
1≤𝑗≤𝑞

, 𝐟 =
[

𝑓 (𝐱𝑗 )
]

1≤𝑗≤𝑛 ,

which is uniquely solvable (cf. e.g. [1, Chap. 8]). To investigate the linear system (2), consider the particular case 𝑚 = 0
i.e., considering the positive definite kernel 𝛷 which is reproducing in a ‘‘native’’ Hilbert space 𝛷(𝛺) of functions on 𝛺 in the
sense

⟨𝑓,𝛷(𝑥, ⋅)⟩𝛷
= 𝑓 (𝑥), 𝑥 ∈ 𝛺, 𝑓 ∈ 𝛷(𝛺).

In this case, the corresponding interpolation system would be

𝐴𝐜 = 𝐟 . (3)

Although the systems (3) are built to be well-posed for every data distribution, it is also well-known (see e.g [2]) that the
interpolation problem in the subspace

𝛷(𝑋) = span{𝛷(⋅, 𝐱𝑗 ) ∶ 𝐱𝑗 ∈ 𝑋} ⊂ 𝛷(𝛺),

spanned by the basis of translates 𝛷(⋅, 𝐱𝑗 ), 1 ≤ 𝑗 ≤ 𝑛, is numerically unstable due to the ill-conditioning of the kernel matrix 𝐴.
Therefore, it is natural to devise strategies to prevent such instabilities by either preconditioning the system (see e.g [3]), or by
finding a better basis for the approximation space we are using. The latter case gives rise to stable algorithms introduced in [4] for
the particular case of multiquadric kernels, and extended later to kernels on the sphere in [5]. Another approach for the construction
of better alternate bases for PD kernels has been introduced in [6] and was extended later in [7]. Their main idea is to produce
𝛷-orthonormal and discretely orthonormal data-dependent bases in the subspace 𝛷(𝑋). All data-dependent bases introduced are
given by using different matrix factorizations of the kernel matrix, such as SVD or Cholesky factorization. This has led to different
bases with different properties. For these new bases, stability issues, recursive compatibility, duality and orthogonality properties
were investigated.

Following such an idea, in [8] a particular orthonormal basis built on a weighted singular value decomposition of the kernel matrix
has been introduced. This basis is also related to a discretization of the compact integral operator 𝑇𝛷 given by Mercer’s theorem
and provides a connection with the continuous bases that arises from an eigendecomposition of 𝑇𝛷.

Although effective, this basis is computationally expensive to compute, so in [9] the authors discussed methods related to Krylov
subspaces to compute this basis in a fast way. Finally, in [10] the authors provided a new way to compute and evaluate Gaussian
RBF interpolants in a stable way by using Hilbert–Schmidt series expansions of positive definite kernels.

Coming back to the CPD kernels, the linear system (2) may also suffer from ill-conditioning for some constellations of the
interpolation points (see [11]). However, in contrast with the PD case, the literature contains very few contributions that address
finding more stable bases for CPD kernels. An exception is [12] in which the authors tried to extend the previous work in [7] to
the CPD case. But in their idea, it is impossible to have a full orthonormal basis of 𝑛 functions if 𝑞 > 0. Explicitly, it is shown that
one cannot simply use factorization techniques due to the augmented polynomial space, and therefore some care needs to be taken.
Another approach was taken in [13] to find bases that are in a certain sense homogeneous, meaning that they are not sensitive to
poorly scaled problems. Some numerical results regarding these homogeneous bases have also been reported in [14, Chap. 34].

In this paper, we present some possible ways to find full-rank data-dependent orthonormal bases that are discrete 𝓁2 and 𝛷-
orthonormal. The paper is organized as follows. In Section 2, we first give a brief review of the native space regarding CPD kernels,
and then their kernel matrix formulation is introduced. Section 3 contains an analysis of different approaches to obtain more stable
bases that are full-rank orthonormal and span the same native space. Subsequently, in Section 4 we investigate the interpolant
representation with respect to the new bases and their error bounds. Section 5 is dedicated to analyzing the dual of the new bases
2

and their relation with the corresponding evaluation matrices. Finally, in Section 6 some numerical tests are presented.
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2. Preliminaries

In this section, we briefly review some basic notions regarding reproducing kernels which are related to the CPD kernels. A vast
iscussion can be found in [1, Chap. 10].

.1. CPD kernels and associated native space

As mentioned before, the linear system arising in (2) becomes very ill-conditioned as the number of the data sites 𝑋 is
increased [14]. Therefore it is natural to devise strategies to prevent such instabilities by finding a more stable basis for the
approximation space. The process of finding a ‘‘better’’ basis for CPD kernels is closely connected to finding the reproducing kernel
of the associated ‘‘native’’ space. To begin with, given 𝜶 ∈ R𝑛, 𝐱𝑗 ∈ 𝛺 such that

𝑛
∑

𝑗=1
𝛼𝑗𝑝(𝐱𝑗 ) = 0 for all 𝑝 ∈ P𝑑

𝑚−1,

hen the space

𝐻𝛷(𝛺) =

{

𝑓 ∶ 𝑓 =
𝑛
∑

𝑗=1
𝛼𝑗𝛷(⋅, 𝐱𝑗 )

}

,

is a pre-Hilbert space equipped with the inner product

⟨𝑓, 𝑔⟩𝛷 =

⟨ 𝑛
∑

𝑗=1
𝛼𝑗𝛷(⋅, 𝐱𝑗 ),

𝑚
∑

𝑘=1
𝛽𝑘𝛷(⋅, 𝐲𝑘)

⟩

𝛷

=
𝑛
∑

𝑗=1

𝑚
∑

𝑘=1
𝛼𝑗𝛽𝑘𝛷(𝐱𝑗 , 𝐲𝑘),

and the corresponding Hilbert-space by completion 𝛷(𝛺) = 𝐻𝛷(𝛺). Now we define the mapping

𝑅 ∶ 𝛷(𝛺) → 𝐶(𝛺),

𝑅(𝑓 (𝐱)) = 𝑓 (𝐱) −𝛱𝑓 (𝐱) = 𝑓 (𝐱) −
𝑞
∑

𝑘=1
𝑓 (𝝃𝑘)𝑙𝑘(𝐱),

where 𝑙𝑘, 1 ≤ 𝑘 ≤ 𝑞, are the Lagrange basis of P𝑑
𝑚−1 for the points 𝛯 = {𝝃1,… , 𝝃𝑞} which is assumed to be a P𝑑

𝑚−1-unisolvent subset

of 𝑋. Notice that 𝑞 =
(

𝑚 − 1 + 𝑑
𝑚 − 1

)

= dim(P𝑑
𝑚−1).

Definition 2. The native space corresponding to a symmetric kernel 𝛷 that is CPD of order 𝑚 on 𝛺 is defined by

𝛷(𝛺) = 𝑅(𝛷(𝛺))⊕ P𝑑
𝑚−1,

quipped with the inner product

⟨𝑓, 𝑔⟩𝛷
= ⟨𝑓, 𝑔⟩ +

𝑞
∑

𝑘=1
𝑓 (𝝃𝑘)𝑔(𝝃𝑘),

where

⟨𝑓, 𝑔⟩ =
⟨

𝑅−1(𝑓 −𝛱𝑓 ), 𝑅−1(𝑔 −𝛱𝑔)
⟩

𝛷 .

With this inner product, 𝛷(𝛺) becomes a reproducing-kernel Hilbert space with the reproducing kernel

𝐾(𝐱, 𝐲) = 𝛷(𝐱, 𝐲) −
𝑞
∑

𝑘=1
𝑙𝑘(𝐱)𝛷(𝝃𝑘, 𝐲) −

𝑞
∑

𝑟=1
𝑙𝑟(𝐲)𝛷(𝐱, 𝝃𝑟)

+
𝑞
∑

𝑘=1

𝑞
∑

𝑟=1
𝑙𝑘(𝐱)𝑙𝑟(𝐲)𝛷(𝝃𝑘, 𝝃𝑟) +

𝑞
∑

𝑘=1
𝑙𝑘(𝐱)𝑙𝑘(𝐲), (4)

where as mentioned before, 𝑙𝑘, 1 ≤ 𝑘 ≤ 𝑞, are the Lagrange basis of P𝑑
𝑚−1 for the points 𝛯 = {𝝃1,… , 𝝃𝑞} which is assumed to be

a P𝑑
𝑚−1-unisolvent subset of 𝑋. An advantage of having found the reproducing kernel 𝐾 is that we can express the kernel-based

interpolant of some function 𝑓 at a given data set 𝑋 as

𝑠𝑓 (𝐱) =
𝑛
∑

𝑗=1
𝛼𝑗𝐾(𝐱, 𝐱𝑗 ), 𝐱 ∈ R𝑑 ,

which corresponds working in the following subspace of 𝛷(𝛺)

𝐾 (𝑋) = span{𝐾(⋅, 𝐱𝑗 ) ∶ 𝐱𝑗 ∈ 𝑋}, (5)

i.e. spanned by the basis of translates 𝐾(⋅, 𝐱𝑗 ), 1 ≤ 𝑗 ≤ 𝑛. Note that the kernel 𝐾 used here is a PD kernel (since it is a reproducing
kernel) with built-in polynomial precision. The coefficients 𝛼𝑗 are then determined by the interpolation conditions

𝑠 (𝐱 ) = 𝑓 (𝐱 ), 𝑖 = 1,… , 𝑛.
3

𝑓 𝑖 𝑖
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Table 1
Some global CPD RBFs.

Name 𝜙(𝑟) Condition Order (𝑚)

generalized Multiquadrics (MQ) (−1)⌈𝛽⌉
(

1 + (𝜖𝑟)2
)𝛽 0 < 𝛽 ∉ N ⌈𝛽⌉

Radial powers (−1)⌈
𝛽
2
⌉𝑟𝛽 0 < 𝛽 ∉ 2N ⌈

𝛽
2
⌉

Thin-plate splines (TPS) (−1)𝛽+1𝑟2𝛽 log(𝑟) 𝛽 ∈ N 𝛽 + 1

Remark 1. Bases of 𝐾 (𝑋) are called data-dependent in this paper, and we will consider a wide variety of them. It is well-known
hat the standard basis (5) of translates leads to ill-conditioned kernel matrices 𝐊 =

[

𝐾(𝐱𝑖, 𝐱𝑗 )
]

1≤𝑖≤𝑛
1≤𝑗≤𝑛

, but the results in [2] show that
nterpolants to data on 𝑋, when viewed as functions, are rather stable. This leads us to consider different data-dependent bases.

.2. Matrix formulation

We start by providing an explicit representation of the matrix 𝐊 by considering a cardinal basis of the polynomial-based space.
n fact, the Lagrange basis at any 𝐱 ∈ 𝛺, 𝑙(𝐱) =

[

𝑙1(𝐱),… , 𝑙𝑞(𝐱)
]

, can be expressed by the standard monomials 𝑚̃(𝐱) =
[

𝑚̃1(𝐱),… , 𝑚̃𝑞(𝐱)
]

cf. e.g. [15]) via

𝑙(𝐱) = 𝑚̃(𝐱) ⋅ 𝐶𝑙 , ∀𝐱 ∈ 𝛺, (6)

here 𝐶𝑙∈ R𝑞×𝑞 is known as the construction matrix.
Letting

[

𝑙𝑗 (𝝃𝑖)
]

1≤𝑖,𝑗≤𝑞 = 𝐼 , and the Vandermonde matrix 𝑉 =
[

𝑚̃𝑗 (𝝃𝑖)
]

1≤𝑖,𝑗≤𝑞 then by (6)𝐶𝑙 = 𝑉 −1. If the Lagrange basis is needed
t another set of evaluation points, say 𝑌 = {𝐲1,… , 𝐲𝑠}, by Eq. (6) we get

𝑉 𝑇𝐿𝑇
𝑌 = 𝑉 𝑇

𝑌 ,

here

𝐿𝑌 =
[

𝑙𝑗 (𝐲𝑖)
]

1≤𝑖≤𝑠
1≤𝑗≤𝑞

, 𝑉𝑌 =
[

𝑚̃𝑗 (𝐲𝑖)
]

1≤𝑖≤𝑠
1≤𝑗≤𝑞

.

ence, for the kernel matrix 𝐊 = 𝐾(𝐱𝑖, 𝐱𝑗 ) with

𝐾(𝐱𝑖, 𝐱𝑗 ) = 𝛷(𝐱𝑖, 𝐱𝑗 ) −
𝑞
∑

𝑘=1
𝑙𝑘(𝐱𝑖)𝛷(𝝃𝑘, 𝐱𝑗 ) −

𝑞
∑

𝑟=1
𝑙𝑟(𝐱𝑗 )𝛷(𝐱𝑖, 𝝃𝑟) (7)

+
𝑞
∑

𝑘=1

𝑞
∑

𝑟=1
𝑙𝑘(𝐱𝑖)𝑙𝑟(𝐱𝑗 )𝛷(𝝃𝑘, 𝝃𝑟) +

𝑞
∑

𝑘=1
𝑙𝑘(𝐱𝑖)𝑙𝑘(𝐱𝑗 ), 𝑖, 𝑗 = 1,… , 𝑛,

we get

𝐊 = 𝐴 − 𝐿1 ⋅ 𝐴1 − 𝐴2 ⋅ 𝐿
𝑇
1 + 𝐿1 ⋅ 𝐴3 ⋅ 𝐿

𝑇
1 + 𝐿1 ⋅ 𝐿

𝑇
1 ,

with 𝐴 as in Eq. (2) and

𝐿1 =
[

𝑙𝑘(𝐱𝑖)
]

1≤𝑖≤𝑛
1≤𝑘≤𝑞

, 𝐴1 =
[

𝛷(𝝃𝑘, 𝐱𝑗 )
]

1≤𝑘≤𝑞
1≤𝑗≤𝑛

,

𝐴2 =
[

𝛷(𝐱𝑖, 𝝃𝑟)
]

1≤𝑖≤𝑛
1≤𝑟≤𝑞

, 𝐴3 =
[

𝛷(𝝃𝑘, 𝝃𝑟)
]

1≤𝑘≤𝑞
1≤𝑟≤𝑞

.

o end this section, we list the most commonly used global CPD RBFs 𝜙(𝑟) in Table 1, where 𝛽 is the RBF parameter and 𝜀 is the
shape parameter that decide the flatness of the basis and can be found numerically for getting accurate numerical solutions and
conditioning of the collocation matrix.

3. Full-rank orthonormal bases

In what follows, we investigate suitable bases for subspaces of 𝛷(𝛺) when 𝛷 is CPD. Hence, let 𝛷 be a fixed CPD kernel with
corresponding reproducing kernel 𝐾 in (7), 𝑋 = {𝐱1,… , 𝐱𝑛} a fixed set of centers, and 𝑈 =

[

𝑢1,… , 𝑢𝑛
]

a general data-dependent
asis such that

𝐾 (𝑋) = span{𝐾(⋅, 𝐱𝑗 ) ∶ 𝐱𝑗 ∈ 𝑋} = span{𝑢1,… , 𝑢𝑛} ⊂ 𝛷(𝛺).

ollowing [7], any element of the basis 𝑈 can be written as a linear combination of the translates 𝐾(⋅, 𝐱𝑗 ), 𝑗 = 1,… , 𝑛 via the
onstruction matrix 𝐶

𝑢𝑖 =
𝑛
∑

𝐾(⋅, 𝐱𝑗 )𝑐𝑗𝑖, 1 ≤ 𝑖 ≤ 𝑛, (8)
4

𝑗=1
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d

W

or in matrix form

𝐸 = 𝐊𝐶, (9)

where 𝐸 =
[

𝑢𝑗 (𝐱𝑖)
]

1≤𝑖,𝑗≤𝑛 and 𝐶 = [𝑐𝑗𝑖]1≤𝑖,𝑗≤𝑛. For the sake of simplicity, instead of 𝛷(𝛺) and discrete 𝓁2(𝑋), we use the shorter
otation 𝛷 and 𝓁2, respectively.

heorem 1. The 𝛷 and 𝓁2 Gramian matrices associated with the general basis 𝑈 are symmetric and positive definite with full-rank 𝑛.

roof. The Gramian matrices associated with the basis 𝑈 corresponding to 𝛷 and 𝓁2 are

𝐺𝛷
=

[

⟨𝑢𝑖, 𝑢𝑗⟩𝛷

]

1≤𝑖,𝑗≤𝑛
= 𝐶𝑇𝐊𝐶,

𝐺𝓁2
=

[

⟨𝑢𝑖, 𝑢𝑗⟩𝓁2
]

1≤𝑖,𝑗≤𝑛
=

( 𝑛
∑

𝑘=1
𝑢𝑖(𝐱𝑘)𝑢𝑗 (𝐱𝑘)

)

1≤𝑖,𝑗≤𝑛

= 𝐸𝑇𝐸 = 𝐶𝑇𝐊2𝐶.

The evaluation matrix 𝐸 is necessarily full-rank because the basis must allow unique interpolation on 𝑋. Since 𝐶 = 𝐊−1𝐸 the
onstruction matrix 𝐶 is also full-rank, resulting the same for 𝐺𝛷

and 𝐺𝓁2
. The matrices 𝐺𝛷

and 𝐺𝓁2
are clearly symmetric. Now,

since 𝐊 is a positive definite matrix then, for all nonzero vectors 𝐳 ∈ R𝑛, we have

𝐳𝑇 ⋅ 𝐺𝛷
⋅ 𝐳 = (𝐶𝐳)𝑇𝐊(𝐶𝐳) > 0,

nd since 𝐸 is a full-rank matrix similarly

𝐳𝑇 ⋅ 𝐺𝓁2
⋅ 𝐳 = ⟨𝐸𝐳, 𝐸𝐳⟩ = ‖𝐸𝐳‖22 > 0.

e have then show that 𝐺𝛷
and 𝐺𝓁2

are positive definite. □

emark 2. Suppose that we construct the evaluation matrix 𝐸 through the augmented system
[

𝐸𝑛×𝑛

0𝑞×𝑛

]

=

[

𝐴𝑛×𝑛 𝑃𝑛×𝑞

𝑃 𝑇
𝑞×𝑛 0𝑞×𝑞

][

𝐶𝑛×𝑛

𝐷̃𝑞×𝑛

]

.

The moment conditions 𝑃 𝑇𝐶 = 0, reveals that the 𝑛 × 𝑛 matrix 𝐶 has rank 𝑛 − 𝑞 and the evaluation matrix 𝐸 is necessarily rank 𝑛,
ince the basis must allow unique interpolation on 𝑋. Then the Gramian matrix 𝐺𝛷

= 𝐶𝑇𝐸 is symmetric and positive semi-definite
ith rank 𝑛 − 𝑞. So it is impossible to have a full orthonormal basis if 𝑞 > 0.

The above remark highlights why we prefer to use the reproducing kernel rather than the standard basis with augmented
olynomials. Besides, it must be noted that we assumed that the space 𝛷(𝑋) is fixed, meaning that the data sites 𝑋 have been
pecified once. This clarifies why the new bases 𝑈 are data-dependent.

In the following, we address two possible ways to find data-dependent orthonormal bases corresponding to the CPD kernel 𝛷
n a domain 𝛺 ⊂ R𝑑 .

.1. Matrix decomposition approach

According to [7], Eq. (9) reveals that one can find data-dependent basis 𝑈 from the decomposition of the symmetric and positive
efinite matrix 𝐊 corresponding to the CPD kernel 𝛷 as

𝐊 = 𝐸𝐶−1.

e can characterize 𝛷 and discretely 𝓁2 orthonormal bases based on the Gramian matrices as follows:

(1) For 𝛷−orthonormal bases, we have

𝐺𝛷
= 𝐼 ↔ 𝐶𝑇𝐊𝐶 = 𝐼 ↔ 𝐊 = (𝐶−1)𝑇𝐶−1 ↔ 𝐸 = (𝐶−1)𝑇 .

Then, there are two important cases.

(i) The Cholesky decomposition 𝐊 = 𝐿𝐿𝑇 with a nonsingular lower triangular matrix 𝐿 which leads to the Newton basis
with a different normalization [6]. In this case 𝐸 = 𝐿 and 𝐶 = (𝐿𝑇 )−1.

(ii) The singular value decomposition (SVD) decomposition of the form 𝐊 = 𝑄𝐷𝑄𝑇 with an orthogonal matrix 𝑄 and a
diagonal matrix 𝐷 having the eigenvalues of 𝐊 on its diagonal. In this case 𝐸 = 𝑄

√

𝐷 and 𝐶 = 𝑄
(
√

𝐷
)−1

.

(2) For 𝓁2−orthonormal bases, we have

𝐺𝓁2
= 𝐼 ↔ 𝐶𝑇𝐊𝑇𝐊𝐶 = 𝐼 ↔ 𝐊𝐶 = 𝑄 ↔ 𝐊 = 𝑄𝐶−1 ↔ 𝐸 = 𝑄.
5

Also here there are two important special cases.
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(i) The standard 𝑄𝑅 decomposition 𝐊 = 𝑄𝑅 into an orthogonal matrix 𝑄 and an upper triangular matrix 𝑅 will lead to a
basis with 𝐸 = 𝑄 and 𝐶 = 𝑅−1.

(ii) The SVD of 𝐊 = 𝑄𝐷𝑄𝑇 which leads to 𝐸 = 𝑄 and 𝐶 = 𝑄𝐷−1.

3.2. Eigenpairs approximation approach

We discuss another family of orthonormal bases based on the eigenvalues and eigenfunctions of Hilbert–Schmidt operator [16,
Chap.2] associated with the reproducing kernel 𝐾 given in (4). Mercer’s theorem expresses the connection of such a linear operator
with the infinite series representation of a positive definite kernel.

Theorem 2 (Mercer’s Theorem). Let 𝐾 be a continuous positive definite kernel that satisfies

∫𝛺
𝐾(𝐱, 𝐲)𝑣(𝐱)𝑣(𝐲)𝑑𝐱𝑑𝐲 ≥ 0, ∀𝑣 ∈ 𝐿2(𝛺), 𝐱, 𝐲 ∈ 𝛺.

hen 𝐾 can be represented by

𝐾(𝐱, 𝐲) =
∞
∑

𝑗=1
𝜆𝑗 𝑢̃𝑗 (𝐱)𝑢̃𝑗 (𝐲), (10)

here 𝜆𝑗 are the eigenvalues such that 𝜆𝑗 → 0 as 𝑗 → ∞, and 𝑢̃𝑗 are the 𝐿2-orthonormal eigenfunctions of the operator 𝑇𝐾 ∶ 𝐿2(𝛺) → 𝐿2(𝛺)
iven by

𝑇𝐾 (𝑣)(𝐱) = ∫𝛺
𝐾(𝐱, 𝐲)𝑣(𝐲)𝑑𝐲, 𝑣 ∈ 𝐿2(𝛺), 𝐱 ∈ 𝛺.

oreover, this representation is absolutely and uniformly convergent.

Theorem 2 can lead to another characterization of the Native space 𝛷(𝛺) as

𝛷(𝛺) =

{

𝑓 ∶ 𝑓 =
∞
∑

𝑗=1
𝑐𝑗 𝑢̃𝑗

}

,

where the kernel 𝐾 itself is in 𝛷(𝛺) because of the eigenfunction expansion (10). The reproducing property of the kernel 𝐾 should
be checked by the following equation

⟨𝑓 (⋅), 𝐾(⋅, 𝐱)⟩𝛷
=

⟨ ∞
∑

𝑗=1
𝑐𝑗 𝑢̃𝑗 (⋅),

∞
∑

𝑖=1
𝜆𝑖𝑢̃𝑖(⋅)𝑢̃𝑖(𝐱)

⟩

𝛷

=
∞
∑

𝑗=1
𝑐𝑖𝑢̃𝑖(𝐱) = 𝑓 (𝐱),

which leads to the 𝛷-orthogonality of the eigenfunctions

⟨𝑢̃𝑖, 𝑢̃𝑗⟩𝛷
=

𝛿𝑖𝑗
√

𝜆𝑖
√

𝜆𝑗
. (11)

The inner product for 𝛷(𝛺) is then given by

⟨𝑓, 𝑔⟩𝛷
=

⟨ ∞
∑

𝑗=1
𝑐𝑗 𝑢̃𝑗 ,

∞
∑

𝑖=1
𝑑𝑖𝑢̃𝑖

⟩

𝛷

=
∞
∑

𝑗=1

𝑐𝑗𝑑𝑗
𝜆𝑗

.

q. (11) reveals two important cases for the basis functions.

(i) Basis functions
{

𝑢𝑗
}∞
𝑗=1 =

{√

𝜆𝑗 𝑢̃𝑗
}∞

𝑗=1
, ‖𝑢𝑗‖

2
𝛷

= 1, ‖𝑢𝑗‖
2
𝐿2

= 𝜆𝑗 , (12)

which is orthonormal in 𝛷(𝛺) and orthogonal in 𝐿2(𝛺).
(ii) Basis functions

{

𝑣𝑗
}∞
𝑗=1 =

{

𝑢̃𝑗
}∞
𝑗=1 , ‖𝑣𝑗‖

2
𝛷

= 1
𝜆𝑗

, ‖𝑣𝑗‖
2
𝐿2

= 1, (13)

which is orthogonal in 𝛷(𝛺) and orthonormal in 𝐿2(𝛺).

nfortunately, in most cases, eigenpairs of the operator 𝑇𝐾 are not known analytically. The exception is the Gaussian kernel which
s a PD kernel by definition. On the other hand, to our knowledge, no research has been conducted on investigating the analytical
orm of the eigenpairs related to CPD kernels in (4). Thus it will be required to approximate them using numerical schemes. This
eads to the following eigenvalue problem on 𝑋

𝐾(𝐱𝑖, 𝐲)𝑢̃𝑗 (𝐲)𝑑𝐲 = 𝜆𝑗 𝑢̃𝑗 (𝐱𝑖), 𝑖 = 1,… , 𝑛,∀𝑗 > 0,
6

∫𝛺
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which can be discretized by using the symmetric Nyström method [17] which is a cubature rule (𝑋,𝑊 )𝑛, 𝑛 ∈ N, for the set of distinct
oints 𝑋 and a set of positive weights 𝑊 =

{

𝑤𝑟
}𝑛
𝑟=1 such that

∫𝛺
𝑓 (𝐲)𝑑𝐲 ≈

𝑛
∑

𝑟=1
𝑓 (𝐱𝑟)𝑤𝑟, ∀𝑓 ∈ 𝛷(𝛺).

his leads to
𝑛
∑

𝑟=1
𝐾(𝐱𝑖, 𝐱𝑟)𝑢̃𝑗 (𝐱𝑟)𝑤𝑟 ≈ 𝜆𝑗 𝑢̃𝑗 (𝐱𝑖), 𝑖, 𝑗 = 1,… , 𝑛, (14)

with a set of positive weights {𝑤𝑟}𝑛𝑟=1. Eq. (14) can be re-written in matrix form

(𝐊𝑊 )𝐞̃(𝑗) = 𝜆𝑗 𝐞̃(𝑗), 𝑗 = 1,… , 𝑛,

with

𝑊 = diag(𝑤𝑟),

𝐞̃(𝑗) =
[

𝑢̃𝑗 (𝐱𝑖)
]

1≤𝑖≤𝑛 . (15)

Then, the continuum eigenvalue problem reduces to the solution of an unsymmetric eigenvalue problem

(𝐊𝑊 )𝐞̃ = 𝜆𝐞̃, (16)

for the positive definite matrix 𝐊𝑊 . One possible way to deal with (16) would be to make some manipulation to convert the
unsymmetric problem of (16) to the following symmetric one

(
√

𝑊𝐊
√

𝑊 )(
√

𝑊 ⋅ 𝐞̃) = 𝜆(
√

𝑊 ⋅ 𝐞̃).

Now, the SVD decomposition for the symmetric matrices, which is nothing but a unitary diagonalization, leads to
√

𝑊𝐊
√

𝑊 = 𝑄𝐷𝑄𝑇 , (17)

where 𝐷 = diag(𝜆𝑗 ),

𝑄 =
[
√

𝑊 𝐞̃(1),… ,
√

𝑊 𝐞̃(𝑛)
]

,

s an orthogonal matrix w.r.t the Euclidean norm. Eqs. (12), (13), and (15) lead to the evaluation matrices

(i) 𝐸1 =
[

𝑢𝑗 (𝐱𝑖)
]

1≤𝑖≤𝑛
1≤𝑗≤𝑛

=
[√

𝜆𝑗 𝑢̃𝑗 (𝐱𝑖)
]

1≤𝑖≤𝑛
1≤𝑗≤𝑛

=
[

√

𝜆1𝐞̃(1),… ,
√

𝜆𝑛𝐞̃(𝑛)
]

=
(
√

𝑊
)−1

𝑄
√

𝐷,

(ii) 𝐸2 =
[

𝑣𝑗 (𝐱𝑖)
]

1≤𝑖≤𝑛
1≤𝑗≤𝑛

=
[

𝑢̃𝑗 (𝐱𝑖)
]

1≤𝑖≤𝑛
1≤𝑗≤𝑛

=
[

𝐞̃(1),… , 𝐞̃(𝑛)
]

=
(
√

𝑊
)−1

𝑄.

According to (9) and (17), the corresponding construction matrices can be derived

(i) 𝐶𝑈 = 𝐊−1𝐸1 =
√

𝑊𝑄𝐷−1𝑄𝑇
√

𝑊
(
√

𝑊
)−1

𝑄
√

𝐷 =
√

𝑊𝑄
(
√

𝐷
)−1

.

(ii) 𝐶𝑉 = 𝐊−1𝐸2 =
√

𝑊𝑄𝐷−1𝑄𝑇
√

𝑊
(
√

𝑊
)−1

𝑄 =
√

𝑊𝑄𝐷−1.

y considering the discretized scaled inner product

⟨𝑓, 𝑔⟩2𝓁2,𝑤 =
𝑛
∑

𝑗=1
𝑤𝑗𝑓 (𝐱𝑗 )𝑔(𝐱𝑗 ) ≈ ⟨𝑓, 𝑔⟩2𝐿2(𝛺) = ∫𝛺

𝑓 (𝐱)𝑔(𝐱)𝑑𝐱,

we have 𝛷−orthonormal and 𝓁2,𝑤−orthogonal basis functions

𝑢𝑗 (𝐱) =
𝑛
∑

𝑖=1
𝐾(𝐱, 𝐱𝑖)𝑐𝑖𝑗 =

𝑛
∑

𝑖=1
𝐾(𝐱, 𝐱𝑖)

√

𝑤𝑖
√

𝜆𝑗
𝑄(𝑖, 𝑗)

=
𝑛
∑

𝑖=1
𝐾(𝐱, 𝐱𝑖)

√

𝑤𝑖
√

𝜆𝑗

√

𝑤𝑖
√

𝜆𝑗
𝐸1(𝑖, 𝑗) =

1
𝜆𝑗

𝑛
∑

𝑖=1
𝑤𝑖𝐾(𝐱, 𝐱𝑖)𝑢𝑗 (𝐱𝑖),

ith ‖𝑢𝑗‖2𝓁2,𝑤 = 𝜆𝑗 , and 𝛷−orthogonal and 𝓁2,𝑤−orthonormal basis functions

𝑣𝑗 (𝐱) =
𝑛
∑

𝑖=1
𝐾(𝐱, 𝐱𝑖)𝑐𝑖𝑗 =

𝑛
∑

𝑖=1
𝐾(𝐱, 𝐱𝑖)

√

𝑤𝑖

𝜆𝑗
𝑄(𝑖, 𝑗)

=
𝑛
∑

𝑖=1
𝐾(𝐱, 𝐱𝑖)

√

𝑤𝑖

𝜆𝑗

√

𝑤𝑖𝐸2(𝑖, 𝑗) =
1
𝜆𝑗

𝑛
∑

𝑖=1
𝑤𝑖𝐾(𝐱, 𝐱𝑖)𝑣𝑗 (𝐱𝑖),

ith ‖𝑣 ‖

2 = 1 , for 1 ≤ 𝑗 ≤ 𝑛.
7

𝑗 𝛷 𝜆𝑗
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Remark 3. According to this theory, we can deduce that all data-dependent bases, which are both discretely and 𝜙-orthogonal,
are scaled SVD bases derived from the eigenpairs approximation approach. It is also clear that the SVD bases given in Section 3.1
are special cases of the general bases given in this section.

Remark 4. The reader should note that the expansion series in (10) is valid only for the PD kernels. So, working with the associated
reproducing kernel of a CPD kernel rather than the standard basis itself, enables us to use Mercer’s theorem and find two additional
classes of bases.

Remark 5. We point out that to construct the basis we require that at least the weights
{

𝑤𝑟
}𝑛
𝑟=1 are positive and able to reproduce

constants that is ∑𝑛
𝑗=1 𝑤𝑗 = |𝛺|. Obviously, a higher order cubature formula will lead to a better approximation of the eigenbasis

{

𝑢̃𝑗
}

𝑗>0, so in the limit we could expect that our basis will be able to reproduce
{

𝑢̃𝑗
}

𝑗>0 and each function in 𝛷(𝛺). Nevertheless,
at a finite stage with fixed 𝑛, also assuming that we know an almost exact cubature formula, we are still approximating 𝑓 ∈ 𝛷(𝛺)
with a projection into 𝛷(𝑋). In principle it is also possible to use weights not related to a cubature rule, but in this way no
connection can be expected between 𝛷(𝛺) and the eigenbasis

{

𝑢̃𝑗
}

𝑗>0.

3.3. Low-rank approximation

As previously mentioned, a key characteristic of a reproducing kernel, which is the inevitability of the kernel matrix, has
been compromised in the transition from theory to practical implementation. This is primarily because the numerical rank of 𝐾
is frequently significantly lower than 𝑛, resulting in the kernel matrix 𝐾 becoming ill-conditioned. In other words, for many kernels,
the eigenvalues in (10) decrease very rapidly toward zero, and this implies that there is a very good low-rank approximation to the
kernel. Notice that vectors involved in kernel representation in (10), are of infinite size and so need to be truncated at some finite
length 𝑀 possibly mush smaller than 𝑛. Accordingly, we have the following theorem from [18].

Theorem 3. Let 𝐾 ∶ 𝛺 ×𝛺 → R be a PD kernel with Mercer series (10). Then, 𝑀-term truncation

𝐾𝑀 (𝐱, 𝐲) =
𝑀
∑

𝑛=1
𝜆𝑛𝑢̃𝑗 (𝐱)𝑢̃𝑗 (𝐲), (18)

for a fixed 𝐱 provides the best 𝑀-term least squares approximation of 𝐾(𝐱, 𝐲) from 𝐿2(𝛺).

The summation (18) yields the best 𝑀−term approximation of each kernel matrix in 𝐿2(𝛺) norm, but this is not necessarily the
best low-rank approximation in the 2-norm sense. Therefore we consider SVD low-rank representation (truncated SVD) of the kernel
matrix 𝐊 which is obtained by discarding all but the 𝑘 largest eigenvalues and the corresponding eigenvectors and is represented
as

𝐊𝑘 = 𝑄𝑘𝐷𝑘𝑄
𝑇
𝑘 , (19)

where 𝑄𝑘 ∈ R𝑛×𝑘 and 𝐷𝑘 ∈ R𝑘×𝑘. It means that 𝐊𝑘 is the projection of 𝐊 onto the space spanned by the top 𝑘 eigenvectors of 𝐊.
The followings state that the above approximation is the best rank-𝑘 approximation in both Frobenius and spectral norm.

Theorem 4 (Eckart–Young [19]). Let 𝐴𝑘 be the rank-𝑘 approximation of 𝐴∈ R𝑛×𝑛 achieved by the truncated SVD. Then 𝐴𝑘 is the closest
rank-𝑘 matrix to 𝐴, i.e.

min
rank(𝐺)=𝑘

‖𝐴 − 𝐺‖𝐹 = ‖𝐴 − 𝐴𝑘‖𝐹 =
√

𝜎2𝑘+1 +⋯ + 𝜎2𝑛 ,

here 𝜎𝑖’s denote singular values of 𝐴 and 𝐺 is an arbitrary rank-𝑘 matrix.

emark 6. We remark that the SVD also gives the best low-rank approximation in the spectral norm i.e.

min
rank(𝐺)=𝑘

‖𝐴 − 𝐺‖2 = ‖𝐴 − 𝐴𝑘‖2 = 𝜎𝑘+1.

So the rank-reduced system will be very close to the exact system but with a more well-behaved linear system with better-
onditioned value matrix [20]. Accordingly, the evaluation matrix of the new bases can be represented as

𝐸1𝑘 = 𝑄𝑘
√

𝐷𝑘,

𝐸2𝑘 = 𝑄𝑘, (20)

such that 𝐸1𝑘, 𝐸2𝑘 ∈ R𝑛×𝑘.

emark 7. One should notice that in order to consider the truncated SVD, it requires that there exists a well-defined gap in the
ingular values, i.e., 𝜎𝑘+1

𝜎𝑘
must be large enough. Otherwise, the determination of the optimal rank 𝑘 would be complicated, and

low-rank approximation of matrix 𝐊 is meaningless. A detailed discussion is available in [20, Chap 12.2].
8
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4. Application to interpolation

4.1. General interpolant

Having derived different types of data-dependent bases 𝑈 , the interpolant 𝑠𝑓 ∈ 𝛷(𝑋) to vector values 𝐟 of some function 𝑓 ,
an be represented as

𝑠𝑓 (𝐱) =
𝑛
∑

𝑗=1
𝛼𝑗𝑢𝑗 (𝐱), (21)

here the coefficients 𝛼𝑗 are determined by solving the linear system

𝐸𝜶 = 𝐟 , (22)

here 𝜶 =
[

𝛼𝑗
]

1≤𝑗≤𝑛 and 𝐸 =
[

𝑢𝑗 (𝐱𝑖)
]

1≤𝑖≤𝑛
1≤𝑗≤𝑛

can be one of the evaluation matrices obtained in Sections 3.1 and 3.2. Once the coefficient

ector 𝜶 is calculated through (22), one can obtain the approximate function values 𝑌 ≈ 𝐟𝑌 =
[

𝑓 (𝐲𝑖)
]

1≤𝑖≤𝑠 at the set of test points
= {𝐲1,… , 𝐲𝑠} by

𝑌 = 𝐸𝑌 ⋅ 𝜶, (23)

here 𝐸𝑌 =
[

𝑢𝑗 (𝐲𝑖)
]

1≤𝑖≤𝑠
1≤𝑗≤𝑛

is obtained by (9) as

𝐸𝑌 = 𝐊𝑌 𝐶,

here 𝐶 is the corresponding construction matrix and 𝐊𝑌 =
[

𝐾(𝐲𝑖, 𝐱𝑗 )
]

1≤𝑖≤𝑠
1≤𝑗≤𝑛

can be computed via the same procedure explained at
he end of Section 2.

heorem 5. The evaluation matrices of the 𝛷 and 𝓁2,𝑤−orthonormal basis functions are better conditioned than the kernel matrix 𝐊.

roof. If 𝐸 is the evaluation matrix corresponding to a 𝓁2,𝑤−orthonormal basis then it is an orthogonal matrix and so cond2,𝑤(𝐸) = 1.
ow let 𝐸 be the evaluation matrix corresponding to a 𝛷−orthonormal basis derived from the general scaled SVD bases, then

𝐸 =
(
√

𝑊
)−1

𝑄
√

𝐷.

oreover according to (17), we have

𝐊 = (
√

𝑊 )
−1
𝑄
√

𝐷
√

𝐷𝑄𝑇 (
√

𝑊 )
−1

= 𝐸𝐸𝑇 ,

and

(
√

𝐷)
−1
𝑄𝑇

√

𝑊𝐸𝐸𝑇
√

𝑊𝑄(
√

𝐷)
−1

= 𝐼.

Therefore

𝑄̂ = (
√

𝐷)
−1
𝑄𝑇

√

𝑊𝐸,

is an orthogonal matrix w.r.t the norm ‖ ⋅ ‖𝓁2,𝑤 , which in turn gives

𝐸 =
(
√

𝑊
)−1

𝑄
√

𝐷𝑄̂,

hat is nothing but the SVD of the matrix 𝐸. Therefore the spectral condition number of 𝐸 is the square root of the spectral condition
number of 𝐊. The same theory can be used for the Newton basis functions given in 3.1. □

Remark 8. If linear maps  like derivatives have to be evaluated, we use the system

𝐸𝑌 = 𝐊𝑌 𝐶,

where 𝐸𝑌 =
[

𝑢𝑗 (𝐲𝑖)
]

1≤𝑖≤𝑠
1≤𝑗≤𝑛

and 𝐊𝑌 =
[

𝐊(𝐲𝑖, 𝐱𝑗 )
]

1≤𝑖≤𝑠
1≤𝑗≤𝑛

is given by applying the operator  to the reproducing kernel (7) and doing
the same procedure explained at the end of Section 2.

4.2. Error bound

In this section, we provide the error estimate for the approximation given in (23). First, the following stability issue is proved.

Theorem 6. For a fixed CPD kernel 𝛷, fixed set of center points 𝑋 = {𝐱1,… , 𝐱𝑛}, general data-dependent basis 𝑈 , and 𝑓 ∈ 𝛷, the
following stability estimate holds for the approximate function values 𝑌 at the set of test points 𝑌 = {𝐲1,… , 𝐲𝑠},

‖ ‖

2 ≤ 𝑠 ⋅ 𝜌(𝐊̃) ⋅ cond (𝐺 ) ⋅ ‖𝑓‖2 ,
9

‖ 𝑌 ‖2 2 𝛷 𝛷
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where cond2(𝐺𝛷
) is the spectral condition number of the 𝛷−Gramian, 𝜌 is the spectral radius, and 𝐊̃ =

[

𝐾(𝐲𝑖, 𝐲𝑗 )
]

1≤𝑖≤𝑠
1≤𝑗≤𝑠

for the
orresponding reproducing kernel 𝐾.

roof. Since Frobenius norm is compatible with the Euclidean norm, according to (23), we have
‖

‖

𝑌
‖

‖

2
2 = ‖

‖

𝐸𝑌 ⋅ 𝜶‖
‖

2
2 ≤ ‖

‖

𝐸𝑌
‖

‖

2
𝐹 ‖𝜶‖22 . (24)

ow according to (21), we get

𝜶𝑇𝐺𝛷
𝜶 = ‖𝑠𝑓‖

2
𝛷

≤ ‖𝑓‖2𝛷
.

ince

𝜶𝑇𝐺𝛷
𝜶 = ⟨𝜶, 𝐺𝛷

𝜶⟩ ≤ ‖𝜶‖2‖𝐺𝛷
𝜶‖2 ≤ ‖𝜶‖22‖𝐺𝛷

‖2 = 𝜌(𝐺𝛷
)‖𝜶‖22,

hen

𝜌(𝐺𝛷
)‖𝜶‖22 ≤ ‖𝑓‖2𝛷

.

herefore

‖𝜶‖22 ≤ ‖𝑓‖2𝛷
𝜌(𝐺−1

𝛷
). (25)

oreover, we have

𝐊(𝑖)
𝑌 𝐊−1

(

𝐊(𝑖)
𝑌

)𝑇
= 𝐾(𝐲𝑖, 𝐲𝑖) − 𝑃 2

𝛷,𝑋 (𝐲𝑖), 𝑖 = 1,… , 𝑠,

here 𝐊(𝑖)
𝑌 is the 𝑖−th row of the matrix 𝐊𝑌 and 𝑃𝛷,𝑋 is the so-called power function. Now according to (9), we get

𝐸(𝑖)
𝑌 𝐶−1𝐊−1 (𝐶−1)𝑇

(

𝐸(𝑖)
𝑌

)𝑇
= 𝐾(𝐲𝑖, 𝐲𝑖) − 𝑃 2

𝛷,𝑋 (𝐲𝑖), 𝑖 = 1,… , 𝑠,

here 𝐸(𝑖)
𝑌 is the 𝑖th row of the matrix 𝐸𝑌 . Therefore

𝐸(𝑖)
𝑌

(

𝐺𝛷

)−1 (
𝐸(𝑖)
𝑌

)𝑇
= 𝐾(𝐲𝑖, 𝐲𝑖) − 𝑃 2

𝛷,𝑋𝐲𝑖 ≤ 𝐾(𝐲𝑖, 𝐲𝑖), 𝑖 = 1,… , 𝑠,

hich leads to

‖𝐸(𝑖)
𝑌 ‖

2
2 ≤ 𝐾(𝐲𝑖, 𝐲𝑖)𝜌(𝐺𝛷

), 𝑖 = 1,… , 𝑠,

ow since

‖

‖

𝐸𝑌
‖

‖

2
𝐹 =

𝑠
∑

𝑖=1
‖𝐸(𝑖)

𝑌 ‖

2
2,

e have
‖

‖

𝐸𝑌
‖

‖

2
𝐹 ≤ tr(𝐊̃)𝜌(𝐺𝛷

) ≤ 𝑠 ⋅ 𝜌(𝐊̃) ⋅ 𝜌(𝐺𝛷
). (26)

o by substituting (25) and (26) in (24), the proof is completed. □

heorem 7. For a fixed CPD kernel 𝛷, general data-dependent basis 𝑈 , and 𝑓 ∈ 𝛷, the following error bound holds

‖𝐟𝑌 − 𝑌 ‖
2
2 ≤

(

𝑠 ⋅ 𝜌(𝐊̃) − 𝜌(𝐺−1
𝛷

) ‖
‖

𝐸𝑌
‖

‖

2
𝐹

)

‖𝑓‖2𝛷
.

Proof.

‖𝐟𝑌 − 𝑌 ‖
2
2 =

𝑠
∑

𝑖=1
|𝑓 (𝐲𝑖) − 𝑠𝑓 (𝐲𝑖)|2 ≤

𝑠
∑

𝑖=1
𝑃 2
𝛷,𝑋 (𝐲𝑖)‖𝑓‖

2
𝛷

=
𝑠
∑

𝑖=1

(

𝐾(𝐲𝑖, 𝐲𝑖) − 𝐸(𝑖)
𝑌

(

𝐺𝛷

)−1 (
𝐸(𝑖)
𝑌

)𝑇
)

‖𝑓‖2𝛷

≤

(

tr(𝐊̃) −
𝑠
∑

𝑖=1

(

𝜌(𝐺−1
𝛷

)‖𝐸(𝑖)
𝑌 ‖

2
2

)

)

‖𝑓‖2𝛷

≤
(

𝑠 ⋅ 𝜌(𝐊̃) − 𝜌(𝐺−1
𝛷

) ‖
‖

𝐸𝑌
‖

‖

2
𝐹

)

‖𝑓‖2𝛷
. □

Remark 9. For the pointwise behavior of the 𝛷−orthonormal basis 𝑈 , the bounds obtained above become

|𝑠𝑓 (𝐲)| ≤
√

𝐾(𝐲, 𝐲) ⋅ ‖𝑓‖𝛷
,

|𝑓 (𝐲) − 𝑠𝑓 (𝐲)| ≤
√

𝐾(𝐲, 𝐲) − ‖𝑈 (𝐲)‖22 ⋅ ‖𝑓‖𝛷
,

10

for fixed 𝐲 ∈ 𝛺.
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5. Duality

The goal of this section is to construct new class of bases that are dual to the general data-dependent bases 𝑈 =
[

𝑢1,… , 𝑢𝑛
]

,
proposed for the finite-dimensional inner product subspace 𝛷(𝑋) of the native space 𝛷(𝛺) associated to the CPD kernel 𝛷. The
dual space 𝛷

∗ consists of all linear functionals on 𝛷. Consider the dual functionals 𝜂𝑖 such that

𝜂𝑖(𝛼1𝑢1 +⋯ + 𝛼𝑛𝑢𝑛) = 𝛼𝑖, 𝛼𝑖 ∈ R, 𝑖 = 1,… , 𝑛,

which in turn leads to

𝜂𝑖(𝑢𝑗 ) = 𝛿𝑖𝑗 .

Then any linear functional 𝜂 ∈ 𝛷
∗ can be written as

𝜂 = 𝜂(𝑢1)𝜂1 + 𝜂(𝑢2)𝜂2 +⋯ + 𝜂(𝑢𝑛)𝜂𝑛.

Now by the Riesz Representation Theorem, every linear functional on 𝛷
∗ has a representer in 𝛷. That is, for each 𝜂𝑖, there exists

𝑑𝑖 ∈ 𝛷 such that

𝜂𝑖(𝑢𝑗 ) = ⟨𝑢𝑗 , 𝑑𝑖⟩ = 𝛿𝑖𝑗 . (27)

Therefore, we associate 𝛬 =
[

𝜂1,… , 𝜂𝑛
]

with the representers  =
[

𝑑1,… , 𝑑𝑛
]

. Since 𝛬 is linearly independent in 𝛷
∗ and dual to

𝑈 , then the so-called dual basis  is linearly independent in 𝛷 and also dual to 𝑈 . Now let
(

𝛷, 𝑈 ,
)

with basis 𝑈 =
[

𝑢1,… , 𝑢𝑛
]

and dual basis  =
[

𝑑1,… , 𝑑𝑛
]

, then we can view the basis 𝑈 as the map

𝑈 ∶ R𝑛 → 𝛷

𝛼↦𝑈 (𝛼) =
𝑛
∑

𝑗=1
𝛼𝑗𝑢𝑗 ,

and likewise, the dual basis  as

 ∶ R𝑛 → 𝛷

𝛼↦(𝛼) =
𝑛
∑

𝑗=1
𝛼𝑗𝑑𝑗 .

Also the following dual map for identifying the dual space 𝛷
∗ with 𝛷

∗ ∶ 𝛷 → R𝑛

𝑓↦∗(𝑓 ) =
[

⟨𝑓, 𝑑1⟩,… , ⟨𝑓, 𝑑𝑛⟩
]𝑇 .

Then according to (27),  is dual to 𝑈 exactly when

∗(𝑈 ) =
[

⟨𝑢𝑗 , 𝑑𝑖⟩𝛷

]

1≤𝑖≤𝑛
1≤𝑖≤𝑛

= 𝐼.

Theorem 8. Let 𝑈 be a general data-dependent basis, then for
(

𝛷, 𝑈 ,
)

, the dual basis  can be expressed in terms of the basis 𝑈 as

 = 𝑈,

where

 = (𝑈∗(𝑈 ))−1,

is a symmetric, positive definite and full-rank 𝑛 × 𝑛 matrix.

Proof. Let  = 𝑈, then by applying 𝑈∗ to both sides, we get

𝑈∗() = 𝑈∗(𝑈 ),

which leads to

 = (𝑈∗(𝑈 ))−1𝑈∗().

Since  is dual to 𝑈 , this reduces to  = (𝑈∗(𝑈 ))−1, which is nothing but the inverse of the 𝛷-Gramian matrix as

 =

(

[

⟨𝑢𝑖, 𝑢𝑗⟩𝛷

]

1≤𝑖≤𝑛
1≤𝑗≤𝑛

)−1

=
(

𝐺𝛷

)−1
,

that is symmetric and positive definite with rank 𝑛. □
11
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Remark 10. For
(

𝛷, 𝑇 ,
)

, with the basis of translates

𝑇 =
[

𝐾(⋅, 𝐱1),… , 𝐾(⋅, 𝐱𝑛)
]

,

we have

 = (𝑇 ∗(𝑇 ))−1 = 𝐊−1,

hen

 = 𝑇𝐊−1.

o the Lagrange basis and the basis 𝑇 of translates are a dual pair.

emark 11. Among all data-dependent bases, the 𝛷-orthonormal bases are exactly those which are self-dual, since  = 𝐼 .

Theorem 9. Let 𝑈 be a general data-dependent basis, then for
(

𝛷, 𝑈 ,
)

, the dual basis  can be expressed in terms of the basis 𝑇 of
translates as

 = 𝑇 (𝐸𝑇 )−1,

where 𝐸 is the evaluation matrix.

Proof. According to Theorem 8 and Eq. (8), we have

 = 𝑈 = 𝑇𝐶(𝐶𝑇𝐊𝐶)−1 = 𝑇𝐊−1(𝐶𝑇 )−1 = 𝑇 (𝐸𝑇 )−1. □

Theorem 10. Let 𝑉 be the 𝓁2,𝑤−orthonormal basis functions proposed in Section 3.2, then for
(

𝛷, 𝑉 ,
)

, the dual basis  can be
expressed in terms of the basis 𝑇 of translates as

 = 𝑇
√

𝑊𝑄.

roof. According to the above theorem, we get

 = 𝑇 (𝐸𝑇
2 )

−1 = 𝑇 (𝑄𝑇 (
√

𝑊 )−1)−1 = 𝑇
√

𝑊𝑄. □

6. Numerical experiments

For the numerical experiments, we consider three different underlying functions and three different types of CPD kernels all of
order 2, namely

• generalized MQ RBF with 𝛽 = 3
2 ,

• Cubic RBF, 𝜑𝑐 (𝑟) = 𝑟3, which is shape parameter free,
• Thin plate spline RBF, 𝜑𝑡𝑝𝑠(𝑟) = 𝑟2 log(𝑟), which is shape parameter free too,

where 𝑟 = ‖𝐱 − 𝐲‖2 with 𝐱, 𝐲 ∈ 𝛺 ⊂ R𝑑 . In the following subsection, standard basis refers to any of the above RBFs appended by
polynomial space of the required degree (1), and Reproducing kernel refers to the corresponding PD kernel in (4). Besides, by
truncated SVD basis, we mean the basis explained in Section 3.3 such that the evaluation is selected to be 𝐸1𝑘 in (20).

Moreover, working with generalized MQ RBF, one always needs to find the optimal value of shape parameter 𝜀, which depends
on the number and constellation of the data sites. In particular, 𝜀 values have significant effects both on the accuracy and stability
of the interpolation process. However, we skip this task and always let 𝜀 = 1, since our numerical experiments show that with the
suggested alternate bases we obtain good accuracy even without optimizing the shape parameter. Moreover, in order to compute
the accuracy of the interpolation, the root mean square error (RMSE) is computed as

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑠

𝑠
∑

𝑖=1
(𝑓 (𝐳𝑖) − 𝑠𝑓 (𝐳𝑖))2, (28)

where {𝐳𝑖}𝑠𝑖=1 is the set of evaluation points.

6.1. Test problem 1

Let us consider the Runge function

𝑓 (𝑥) = 1
1 + 25𝑥2

, 𝑥 ∈ [−1, 1].

We reconstruct 𝑓 using sets of uniformly distributed center points with different sizes 𝑛 = {20, 50, 80, 110, 150}. Regarding the size of
12

data sites, our interpolant is evaluated over an equispaced point set on 𝛺 with size 𝑠 = 5𝑛. To evaluate the reproducing kernel (4)
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Fig. 1. RMSE of Runge’s (a) and Franke’s functions (b) approximants using different bases; Test problems 1 and 2.

Table 2
2-norm condition number of the interpolation matrix for different bases; Test problem 1.
𝑛 standard gMQ Reproducing Kernel SVD basis

20 1.9687e +17 1.5468e+17 3.9330e+08
50 9.3105e+17 2.3023e+18 1.0946e+08
80 1.2990e+19 5.5690e+18 1.0174e+08
110 1.2637e+19 3.0754e+18 1.2553e+08
150 5.0118e+19 1.911e+19 1.3472e+08

Table 3
2-norm condition number of interpolation matrix for different bases; Test problem 2.
𝑛 standard gMQ Reproducing Kernel Truncated SVD

9 2.5275e+05 7.5530e+04 274.8278
25 9.9028e+08 4.5283e+08 2.1280e+04
81 2.7716e+15 1.4380e+15 2.4357e+05
289 2.8478e+19 8.9075e+18 5.1423e+05
1089 5.6001e+20 6.1388+19 9.5946e+05
4225 3.9644e+21 1.1233e+22 1.9277e+06
10000 5.5799e+22 3.2801e+21 2.8522e+06

we let 𝛯 = {0, 1} to form the Lagrange linear basis for the polynomial space. Here we use 𝛷−orthonormal SVD basis i.e. evaluation
matrix 𝐸 = 𝑄

√

𝐷. Table 2 shows the 𝓁2 condition number of the interpolation matrix using different bases. It is observable that
SVD basis leads to better conditioning. Fig. 1(a) shows how more stable bases lead to better accuracy, particularly for an underlying
function that is prone to inaccurate interpolation due to its intrinsic oscillatory behavior.

6.2. Test problem 2

For the second test problem, we take the Franke function, [14, Chap 2] defined on 𝛺 = [0, 1]2 ⊂ R2 as the target function.
The interpolation this time is done at the sequence of Halton center points with different sizes 𝑛 = {9, 25, 81, 289, 1089, 4225, 10000}.
Moreover, let 𝛯 = {(0, 0), (0, 1), (1, 0)} representing the Lagrange linear polynomials. Similarly, for each 𝑛, the interpolant is evaluated
over a uniform grid with size 𝑠 = 2𝑛 on the domain of interest. We consider truncated 𝛷−orthonormal SVD basis, with threshold
𝛿 = 10−9, obtained by trial and error. It means zeroing all the eigenvalues of the interpolation matrix 𝐊 which are smaller than
𝛿. Table 3 shows the 𝓁2 condition number of the interpolation matrix for different bases. In Fig. 1(b), we show the RMSE of the
interpolation using these 3 different bases. Once more, we recall that we avoided any shape parameter value optimization algorithm
and we just let 𝜀 = 1.

6.3. Test problem 3

Here, we reconstruct the oscillatory function 𝑓 (𝐱, 𝐲) = cos(20(𝐱 + 𝐲)) defined on the unit disk with center (0, 0). In order to do
so, consider the data set 𝑋 consisting of 3000 Halton points on the unit disk (see Fig. 2(a)), 𝛯 as in the previous example, and the
13
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Fig. 2. Data sites 𝑋 (a), and the RMSE resulted from Truncated SVD approximation for two different bases (b); Test problem 3.

truncation sequence 𝑘 = {20, 100, 500, 1100, 1800, 2400} meaning that, in the first experiment, we take 20 singular values resulted from
the SVD decomposition of the kernel matrix 𝐊 in (7). We use 𝜑𝑐 and 𝜑𝑡𝑝𝑠 RBFs to approximate 𝑓 (𝐱, 𝐲). To measure the accuracy of
the reproduction process, we computed the RMSE on an equally spaced grid of evaluation points with size 𝑠 = 6000 on the domain.
Fig. 2(b) shows that indeed there is a very good low-rank approximation to the problem.

Remark 12. We have to highlight that according to our discussion in 2.1, one always needs to make sure that the set 𝛯 ⊂ 𝑋,
meaning that the subset used to build the Lagrange polynomials must belong to the set of data sites.

Remark 13. In all three experiments, one can see that the RMSE resulting from SVD bases are stuck after some step. In other words,
the increase in the number of data sites does not lead to an increase in accuracy. This behavior stems from the fact that after some
steps the singular values of the kernel matrix are too small and so they have only subtle effects on the interpolation.

7. Conclusion

Two different approaches have been presented to construct new stable bases for CPD kernel-based spaces. Both of these
approaches are based on working with reproducing kernel of the corresponding Native Hilbert Space of CPD kernels. Inspired
by [7], we used different factorizations of the kernel matrix to obtain other bases with different features. We also investigated
‘‘natural’’ class of bases by the eigenpairs approximation of the linear operator associated with Mercer’s theorem. The dual bases of
the general data-dependent bases are also introduced.

Regarding stability, the experiments confirm the good behavior of the new bases expected from the analysis conducted in the
previous sections. More precisely, employing a low-rank approximation of the kernel matrix enables the handling of approximations
involving a relatively large number of points also for not optimized shape parameters, and on quite general sets. From a numerical
point of view, this procedure can be accomplished without thinning the data sites 𝑋 ⊂ 𝛺, but simply checking if the singular values
of the kernel matrix decay under a certain tolerance.

Last but not least, as future work one may consider Remark 8, in order to employ all these new stable bases to solve PDE
problems.

Another facet of the newly established foundation through SVD factorization is its inability to employ an adaptive algorithm
for singular value computation, necessitating a complete matrix factorization for every fixed point distribution. In this case, we can
refer to optimized eigenvalue algorithms for finding only a subset of the full spectrum of the kernel matrix such as those presented
for example in [9,21].

Data availability

No data was used for the research described in the article.
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