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Abstract: A reaction in anhydrous toluene between the formally unsaturated fragment [Ln(hfac)3] (Ln3+ = Eu3+,
Gd3+ and Er3+; Hhfac = hexafluoroacetylacetone) and [Al(qNO)3] (HqNO = 8-hydroxyquinoline N-oxide),
here prepared for the first time from [Al(OtBu)3] and HqNO, affords the dinuclear heterometal-
lic compounds [Ln(hfac)3Al(qNO)3] (Ln3+ = Eu3+, Gd3+ and Er3+) in high yields. The molecular
structures of these new compounds revealed a dinuclear species with three phenolic oxygen atoms
bridging the two metal atoms. While the europium and gadolinium complexes show the coordi-
nation number (CN) 9 for the lanthanide centre, in the complex featuring the smaller erbium ion,
only two oxygens bridge the two metal atoms for a resulting CN of 8. The reaction of [Eu(hfac)3]
with [Alq3] (Hq = 8-hydroxyquinoline) in the same conditions yields a heterometallic product of
composition [Eu(hfac)3Alq3]. A recrystallization attempt from hot heptane in air produced single
crystals of two different morphologies and compositions: [Eu2(hfac)6Al2q4(OH)2] and [Eu2(hfac)6(µ-
Hq)2]. The latter compound can be directly prepared from [Eu(hfac)3] and Hq at room temperature.
Quantum mechanical calculations confirm (i) the higher stability of [Eu(hfac)3Al(qNO)3] vs. the
corresponding [Eu(hfac)3Alq3] and (ii) the preference of the Er complexes for the CN 8, justifying the
different behaviour in terms of the Lewis acidity of the metal centre.

Keywords: heterometallic complexes; lanthanides; aluminium; 8-hydroxyquinoline N-oxide; X-ray
structure; quantum mechanical calculations

1. Introduction

The rational design of heterometallic compounds with a selective introduction of lan-
thanide and d-block or p-block metal ions into the same molecular architecture has attracted
great attention in the literature [1–5]. The synthesis of heterometallic complexes is often
challenging for the high lability of lanthanide ions, their low stereochemical preference
and their tendency toward high and variable coordination numbers. Heterotopic divergent
ligands containing oxygen and nitrogen donor atoms can lead to the selective binding of
different metal ions, exploiting the different affinities of lanthanides and transition metal
ions for N and O donors. Their use as building blocks of preformed molecular complexes,
presenting hypodentate divergent ligands, may guarantee control of the synthesis of mixed
metals compounds [6–10], with synthetic strategies normally using d-transition metalloli-
gands, and less commonly, Ln-metalloligands [11–21]. An alternative, attractive way to
prepare heterobimetallic molecular complexes exploits the reaction of formally unsaturated
lanthanide fragments [Ln(diketonate)3] (with a diketonate carrying electron-withdrawing
groups) with a mononuclear octahedral tris-chelate complex of a d or p metal centre acting
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as a Lewis base [22–31]. We recently prepared a series of europium–aluminium compounds
and studied the effect of aluminium ligands on the sensitized emission of europium. Com-
bining photoluminescence experiments with density functional theory calculations, we
explained the europium emission using a model involving two noninteracting excitation
paths with the ligands coordinated to aluminium and europium, respectively [32]. Oc-
tahedral mononuclear aluminium complexes with oxygen donor monoanionic chelate
ligands have been found suitable to be used as Lewis bases towards heterometallic com-
plexes. Dinuclear heterometallic complexes with the composition [Ln(hfac)3Al(L)3] (where
Ln3+ = Eu3+, Gd3+ and Tb3+; Hhfac = hexafluoroacetylacetone and HL = methyl acetoac-
etate, Hmeac; salicylaldehyde, Hsal; and 2-hydroxynaphthaldehyde, Hnaphthal) have been
characterized. In all heterometallic complexes, aluminium maintains the octahedral geome-
try of the precursor, while for the lanthanide, in addition to the three chelate hfac ligands,
three bridging oxygen atoms of the aluminium donor fragment complete the coordination
sphere. The coordination geometry of the lanthanide centre is a tricapped trigonal prism
that shares one face of the octahedron of the aluminium fac isomer. Heterobimetallic Ln–Al
complexes are relevant for catalysis [33] as luminescent materials [34] or as molecular
precursors to ceramic materials [35]. Among a large number of potential precursors, the tris
8-hydroxiquinolinate aluminium ([Alq3]; Hq = 8-hydroxyquinoline, Scheme 1) attracted
our attention as a stable sublimable complex, commonly used for the electroluminescent
properties in OLED (organic light-emitting diode) [36–42]. The chemistry of [Alq3] and
its derivatives is wide, and the functionalization of the Hq ligand can deeply impact its
absorption–emission properties. This behaviour, in principle, could be exploited to de-
velop a library of Ln–Al heterobimetallic complexes endowed with peculiar emissions
or luminomagnetic properties depending on the employed lanthanoid ion. To this aim,
the preliminary investigation of the experimental conditions allowing for the formation of
the bimetallic complexes is fundamental.
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Scheme 1. 8-hydroxyquinoline (Hq) and the aluminium complex [Alq3].

[Alq3] has a mononuclear structure in an octahedral geometry, with three chelate
(N O) asymmetric ligands. Although the mer isomer is thermodynamically more stable,
NMR studies show the fast interconversion of the geometric isomers in solution [43].
In this work, we report the synthesis and characterization of heterometallic complexes
involving the reaction of a formally unsaturated fragment [Ln(hfac)3] (Ln = Eu, Gd and
Er) and [Al(qNO)3] (HqNO = 8-hydroxyquinoline N-oxide; Scheme 2), a new homoleptic
aluminium compound with an almost-forgotten ligand in coordination chemistry. HqNO is
an oxidated Hq that is able to behave, after deprotonation, as an asymmetric, monoanionic,
oxygen donor, six-membered ring chelate ligand.



Molecules 2024, 29, 451 3 of 16
Molecules 2024, 29, x FOR PEER REVIEW 3 of 16 
 

 

 
Scheme 2. 8-hydroxyquinoline N-oxide (HqNO). 

2. Results and Discussion 
The reaction between [Eu(hfac)3] and [Alq3] has been carried out in anhydrous 

toluene. After filtering off traces of undissolved solids, from the light-yellow solution, a 
product with an elemental analysis consistent with the [Eu(hfac)3Alq3] composition, 1, was 
recovered at a satisfactory yield. The infrared spectrum did not show the presence of the 
free precursors (Figure S1). Many recrystallization attempts, aimed at obtaining suitable 
single crystals for a structural study using X-ray diffraction, failed. However, in a 
recrystallization attempt from hot heptane carried out in air, a mixture of two clearly 
distinguishable crystalline phases was recovered. Colourless, square-shaped crystals were 
mixed with large, light-yellow lozenge crystals. A single crystal X-ray diffraction study on 
the first kind of crystals showed the heterometallic [Eu2(hfac)6Al2q4(OH)2] compound, 2. 
Two independent centrosymmetric molecules with the same composition are present. 
Both molecules present two octacoordinated europium and two hexacoordinated 
aluminium centres (Figure 1). The asymmetric unit consists of two half molecules, where 
the inversion centres are placed in the middle of the aluminium atoms. 

 
Figure 1. Molecular structure of the two independent molecules of [Eu2(hfac)6Al2q4(OH)2] (light 
green, europium; pink, aluminium; grey, carbon; red, oxygen; blue, nitrogen; yellow, fluorine). 
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Scheme 2. 8-hydroxyquinoline N-oxide (HqNO).

2. Results and Discussion

The reaction between [Eu(hfac)3] and [Alq3] has been carried out in anhydrous toluene.
After filtering off traces of undissolved solids, from the light-yellow solution, a product with
an elemental analysis consistent with the [Eu(hfac)3Alq3] composition, 1, was recovered at
a satisfactory yield. The infrared spectrum did not show the presence of the free precursors
(Figure S1). Many recrystallization attempts, aimed at obtaining suitable single crystals for
a structural study using X-ray diffraction, failed. However, in a recrystallization attempt
from hot heptane carried out in air, a mixture of two clearly distinguishable crystalline
phases was recovered. Colourless, square-shaped crystals were mixed with large, light-
yellow lozenge crystals. A single crystal X-ray diffraction study on the first kind of crystals
showed the heterometallic [Eu2(hfac)6Al2q4(OH)2] compound, 2. Two independent cen-
trosymmetric molecules with the same composition are present. Both molecules present
two octacoordinated europium and two hexacoordinated aluminium centres (Figure 1).
The asymmetric unit consists of two half molecules, where the inversion centres are placed
in the middle of the aluminium atoms.
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Figure 1. Molecular structure of the two independent molecules of [Eu2(hfac)6Al2q4(OH)2] (light
green, europium; pink, aluminium; grey, carbon; red, oxygen; blue, nitrogen; yellow, fluorine).

In the europium coordination sphere, six oxygen atoms of three diketonates, a bridging
oxygen atom of a quinolinate and a bridging hydroxyl are present (Figure 1). Two chelate
quinolinates, an oxygen atom of a quinolinate bridging the two aluminium centres and
the bridging hydroxyl are present in the coordination sphere of the aluminium centre.
The square antiprism of europium shares an edge (O7 O8) with the octahedral polyhedra
of aluminium (Figure 2).
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Figure 2. Polyhedral representation of [Eu2(hfac)6Al2q4(OH)2], 2 (light green, europium; pink,
aluminium; grey, carbon; red, oxygen; blue, nitrogen; yellow, fluorine).

In this compound, the molar ratio between the two metals used for the synthesis has
been maintained, although hydrolysis has displaced a quinolinato ligand in the aluminium
coordination sphere, releasing Hq. The previously reported [44] molecular structure of the
heterometallic aggregate [Al3(Mq)4(HMq)(µ3-OH)2(µ-OH)3{Ln(hfac)3}2] (Mq = 2-methyl-
8-hydroxyquinolinate; Ln = Nd, Eu and Yb), similar in some respects to our compound,
has been obtained, starting from a hydrated lanthanide precursor [Ln(hfac)3(H2O)2] in a
synthesis yielding a more hydrolysed product.

The release of Hq can give hints on the formation of the different light-yellow crystals.
The structural study carried out using X-ray diffraction identified the dinuclear europium
compound [Eu2(hfac)6(µ-Hq)2], 3 (Figure 3). Each octacoordinated europium atom has six
O atoms of three hfac and two O atoms of two Hq ligands in a distorted square antiprism
geometry. The molecule is centrosymmetric, with the inversion centre being in the middle of
the two oxygen atoms of the two Hq ligands. Two bridging Hq ligands adopt a zwitterionic
coordination mode, with the hydrogen placed on the nitrogen atom interested in a relevant
hydrogen bond with a fluorine atom of a hfac ligand.
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The cell metric closely looks like that of [Eu2(hfac)6(µ-HMq)2] [45], an analogous
compound with a methylated quinoline prepared by reacting the green intermediate
obtained from [CrCl3·6H2O], Mq and 4-hydroxybenzonitrile with [Eu(hfac)3(H2O)2].

To rationalize our results, it is worth noting that [Alq3] is normally obtained from an
aqueous solution [46] so that, most likely, the observed hydrolytic process concerns the
heterometallic product. It appears plausible that, in the presence of water, a protic attack to
a bridging quinolinato ligand in the heterometallic product displaces a quinoline that is
replaced by a bridging hydroxyl group. The following structural reorganization is probably
due to the preference of aluminium for an octahedral geometry (Scheme 3):
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Since [Alq3] is not reactive towards water, we believe that this reactivity can be
favoured by the steric demands of the three quinolinates bridging the two metals. The over-
all encumbrance is greatly reduced in the molecular architecture of the X-ray-characterized
heterometallic product. As already mentioned, the protic attack releases a quinoline, Hq,
a neutral molecule, reasonably a better ligand with respect to [Alq3] for the formally unsat-
urated fragment [Eu(hfac)3] (Scheme 3). This point has been clarified by an independent
experiment. [Eu2(hfac)6(µ-Hq)2] has been directly prepared from anhydrous [Eu(hfac)3]
and Hq in toluene at room temperature. A fast reaction occurs, yielding a poorly soluble,
light-yellow product. The analytical data are consistent with the proposed composition.
Single crystals suitable for an X-ray diffraction study, obtained from cooling a saturated
toluene solution, were isotypic with those previously measured. The quantum mechanical
calculations also confirm the large stability of the product [Eu2(hfac)6(µ-Hq)2], 3. Indeed,
by considering the stability of the product as the difference between the energy of the
product and the energies of the two reactants ([Eu(hfac)3] and Hq), a stabilization of
over −50 kcal/mol is obtained. In particular, there is a very large enthalpic contribution,
while, as expected, entropy disfavours the formation of a single moiety with respect to
two separate reactants.

Considering a steric issue, it was realized that all chelate ligands previously used
to prepare heterobimetallic dinuclear europium/aluminium compounds (meac, sal and
naphthal) were able to form six-membered rings, while an 8-hydroxyquinolinato ligand
only formed a five-membered ring. For this reason, the possibility of using the N-oxide
8-hydroxyquinoline, (HqNO) was evaluated, as the deprotonated form could afford a
chelate six-membered ring ligand.

HqNO has already been reported in the literature [47], although its coordination chem-
istry is largely unexplored, with only a few reports of structurally characterized complexes;
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most of them involve the protonated neutral form [48–50] acting as a monodentate ligand
through the N-oxide oxygen ligand, while the hydroxyl is involved in a hydrogen bond net.
Only a single report detailing a deprotonated chelating coordination mode is present in the
literature [51]. Our synthetic target [Al(qNO)3], 4, appeared interesting, considering the
extensive studies in the literature on the emission of substituted [Alq3] [52].

The reaction between [Al(OtBu)3] and HqNO in a molar ratio of 1 to 3 has been
carried out in toluene at the solvent refluxing temperature. The poorly soluble, yellow
product [Al(qNO)3] was recovered at a high yield. The ATR-IR spectrum shows significant
differences from the spectrum of the free ligand. Specifically, two strong ligand absorptions
at 1276 and 888 cm−1 are absent in the spectrum of the product, showing that no free HqNO
is present, and many differences in the form of wavenumber shifts or relative intensity
changes can be noticed (Figure S2). Although relatively stable in the solid state, the infrared
spectrum does not change for short air exposures; [Al(qNO)3] releases free HqNO in
solution in the presence of traces of water. The 1H NMR spectrum of [Al(qNO)3] in an
anhydrous CD2Cl2 solution showed a complex series of partially superimposed aromatic
signals (Figure S5). In octahedral compounds with three nonsymmetric bidentate ligands,
the fac isomer, having a C3 axis of symmetry, presents three magnetically equivalent ligands,
while the three ligands of the mer isomer are magnetically nonequivalent and may present
different sets of signals. Although a specific NMR study of the isomeric composition in
solution was beyond the scope of this work, a comparison with the literature data reported
for Alq3 [53,54] suggests the presence of both fac and mer isomers in the sample.

The reaction between [Ln(hfac)3] (Ln = Eu and Gd) and [Al(qNO)3] has been carried
out in anhydrous DCE at room temperature. The reaction was monitored observing the
dissolution of the initially sparingly soluble lanthanide precursor. The resulting yellow
solution was evaporated at reduced pressure, yielding a yellow-orange residue that was
recrystallized from toluene. The product is stable for short-term air exposures and is
partially soluble in common organic solvents.

Single crystals suitable for an X-ray diffraction study have been obtained by cooling at
−20 ◦C in a saturated toluene solution for [Ln(hfac)3Al(qNO)3]: Ln = Eu (5) and Ln = Gd (6).
They are isotypic. The molecular structure of 5 is reported in Figure 4.
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Figure 4. (Left) molecular structure of [Eu(hfac)3Al(qNO)3], 5; (Right) projection along an approx-
imated ternary axis. Lattice toluene has been omitted for clarity, (light green, europium; pink,
aluminium; grey, carbon; red, oxygen; blue, nitrogen; yellow, fluorine).

The molecular structure shows a dinuclear compound, with the aluminium in a fac
octahedral geometry and with three chelate qNO ligands sharing a trigonal face (O2, O4
and O6) with the tricapped trigonal prism of the nona-coordinated europium centre; three
phenolic oxygen atoms are bridging the two metal centres. Although several attempts
to crystallize [Al(qNO)3] failed, indirect information on its molecular structure has been
acquired. It is possible to see an approximately ternary axis along the Eu–Al axis. (Figure 4).
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The calculated relative stabilities for the [Eu(hfac)3Alq3] and [Eu(hfac)3Al(qNO)3] can
be estimated through DFT numerical simulations on the optimized structures of Al/Eu
mononuclear complexes and the heterodinuclear ones. The Gibbs free energies of the
formation reactions were taken as the difference between the Gibbs free energy of the
heterodinuclear complex and the sum of those of the anhydrous [RE(hfac)3] fragment and
[Al(qNO)3] or [Alq3] complexes. The calculated formation energies for [Eu(hfac)3Alq3]
and [Eu(hfac)3Al(qNO)3] are −22.95 and −26.49 kcal/mol, where a more negative value
indicates a more stable complex. The calculations suggest a higher relative stability for
the [Eu(hfac)3Al(qNO)3] in agreement with the different experimental behaviour of the
two complexes towards hydrolysis.

The possibility of obtaining an analogous compound for a late transition element such
as erbium has been investigated. The anhydrous precursor [Er(hfac)3] has been suspended
in toluene and treated with [Al(qNO)3] at room temperature. From the resulting solution,
a single product has been recovered at a high yield. The analytical data are consistent with
the composition [Er(hfac)3Al(qNO)3] (7). The infrared spectrum is similar to that of the
europium analogue, although not completely superimposable (Figure 5).
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Single crystals suitable for an X-ray diffraction study have been obtained for the slow
diffusion of pentane vapours in a DCE solution. The molecular structure of [Er(hfac)3Al(qNO)3]
is shown in Figure 6.
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The heterometallic dinuclear compound shows the Er(hfac)3 fragment, with the metal
completing its coordination sphere and receiving electron density from the Al(qNO)3
fragment. Different from the europium analogue, however, is that only two phenolic
oxygen atoms are bridging the two metals, so that the two coordination polyhedra share
an edge and not a face of the octahedron. It can be noticed that the Al(qNO)3 fragment is
here in a mer disposition, and erbium has an almost ideal square antiprism geometry with
a coordination number of 8. This difference can be rationalized considering the decrease in
the ionic radius along the lanthanide series: 100.4 pm for erbium compared with 106.6 pm
for europium [55].

Quantum mechanical calculations on these complexes can be useful to better rational-
ize the different geometrical arrangements (three or two phenolic bridging oxygen atoms)
of the Eu/Gd and Er complexes, respectively. As described before, the relative stability of
the structures can be evaluated as the difference between the Gibbs free energies of the het-
erometallic complexes [RE(hfac)3Al(qNO)3] with respect to the fragments [Al(qNO)3] and
[RE(hfac)3], and the same strategy will also be used with complexes in which two oxygen
atoms bridge the two fragments. To simplify calculations for rare-earth complexes, La is
commonly chosen for its closed-shell electronic structure [32,56,57], with the idea that this
replacement does not significantly alter the geometrical properties. For these heterometallic
complexes, by considering [La(hfac)3Al(qNO)3], the structure with three bridging ligands
is more stable than the one with two bridging ligands by about 4 kcal/mol (see Table 1).
This result is in good agreement with the experimental molecular structures of europium
and gadolinium but not with that of erbium.

Table 1. Calculated enthalpy (∆H), entropy (T∆S at 298.15 K) and free Gibbs (∆G) energies for a series
of [RE(hfac)3Al(qNO)3] (RE= La, Er, Gd and Eu) complexes for two or three oxygen atoms bridging
the two fragments. In the last column, the difference between Gibbs free energy for the bridging
ligands (three oxygen atoms minus two oxygen atoms) is shown. All values are in kcal/mol.

No.
Bridging
Ligands

Total
Enthalpy/∆H

Entropy/
−T∆S

Gibbs Free
Energy/∆G

∆G Dif-
ference

[La(hfac)3Al(qNO)3] 2 −46.30 23.77 −22.53
[La(hfac)3Al(qNO)3] 3 −52.67 26.18 −26.49 −3.96
[Eu(hfac)3Al(qNO)3] 2 −38.36 22.18 −16.18
[Eu(hfac)3Al(qNO)3] 3 −42.46 22.43 −20.03 −3.85
[Gd(hfac)3Al(qNO)3] 2 −39.82 15.91 −23.91
[Gd(hfac)3Al(qNO)3] 3 −42.94 15.10 −27.83 −3.92
[Er(hfac)3Al(qNO)3] 2 −53.02 22.08 −30.94
[Er(hfac)3Al(qNO)3] 3 −50.04 21.01 −29.02 1.92

For this reason, the calculations were performed including explicitly the lanthanides
Eu, Gd and Er. The energy differences obtained for Eu and Gd complexes, consistent
with those calculated for La, show a preference for a molecular architecture presenting
three bridging ligands (about 4 kcal/mol more stable, Table 1). This confirms that the
replacement of Eu/Gd with La is a good approximation. The calculations for the Er
complex show a larger stability for a molecular structure with only two bridging ligands,
which is in agreement with the experimental data. Thus, the replacement of RE with La
is valid only for larger lanthanide ions (Eu/Gd), while for smaller ones, it is necessary to
explicitly include the RE.

In addition to the different ionic radii, it is also possible to quantify the Lewis acidity
of the lanthanide site to better investigate the reason for these differences. The calculated
condensed Fukui functions [58] reflect the reactivity of a site and its capability to accept
(or lose) an electron, so that they identify the electrophilic (or nucleophilic) character of a
molecule. For [RE(hfac)3], the acceptor condensed Fukui function f+k provides information
about the ability of the site to receive additional electron density in the molecular system:
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the higher the function, the higher the capability to accept an electron. Thus, it is expected
that a site with a high acceptor condensed Fukui function f+k will be a stronger Lewis
acid. The calculated condensed Fukui functions f+k for [RE(hfac)3] with RE = Eu, Gd
and Er are 0.295, 0.433 and 0.055, respectively. These values suggest that the larger Eu
and Gd ions are better Lewis acids (and electrophiles) with respect to the smaller Er ion.
Previous spectroscopic studies carried out only in solution in the presence of water on
[(Ln(tta)3)(Co(acac)3)] (Htta = 2-thenoyltrifluoroacetone) [59,60] reported a decrease in the
stability of the Lewis acid to Lewis base interaction moving from lanthanum to lutetium, ex-
plained by the different kinds of structures for light and heavy lanthanides. They suggested
that for early transition metals, a heterometallic dinuclear compound can form, while for
late transition metals, their spectroscopic data could be explained by a hydrogen-bonding
interaction between the Ln-coordinated water and Co(acac)3. The present finding clarifies
that in anhydrous conditions, genuine heterometallic complexes [Ln(hfac)3Al(qNO)3] can
also be obtained for late transition metals. A similar result has been highlighted elsewhere
for [Ln(hfac)3Cu(acac)2)] complexes [61]. For [Ln(hfac)3Al(qNO)3] complexes, large early
lanthanides significantly prefer the coordination number 9, with three donor atoms from
three different qNO ligands lying on the same triangular face and bridging the two metal
ions, while late transition metals possibly prefer the coordination number 8, with only
two oxygen atoms bridging the two fragments. The calculated condensed Fukui function
f+k perfectly supports this sentence: the different electrophilicity can explain the differ-
ent structure between the stronger Lewis acid (Eu and Gd) and the less electrophilic Er
metal centre.

Moreover, it is worth pointing out that the presence of only two oxygen atoms bridging
the two fragments for the late transition metal Er does not mean a weaker bond energy.
Indeed, the comparison between the relative stabilities (Gibbs free energies in Table 1)
shows that the heterometallic Er complex is the most stable one.

3. Materials and Methods

All manipulations were performed under a dinitrogen atmosphere using anhydrous
solvents. [Alq3] [62,63] and HqNO [47] were synthesized according to the literature.
Anhydrous [Ln(hfac)3] species (Ln3+ = Eu3+, Gd3+ and Er3+) were obtained by dehydration
of the corresponding dihydrate complex [Ln(hfac)3(H2O)2] according to the procedure
reported in the literature [64]. [Al(OtBu)3] was purchased from Sigma Aldrich. ATR-IR
spectra on solid samples were recorded with a Perkin–Elmer “Spectrum One” spectrometer,
equipped with an ATR accessory. 1H NMR spectra were recorded with a Bruker “Avance
DRX400” spectrometer. Chemical shifts were measured in ppm (δ) from TMS using residual
solvent peaks. Elemental analyses (C, H and N) were performed using an Elementar “vario
MICRO cube” instrument at Dipartimento di Chimica e Chimica Industriale, Università
di Pisa.

3.1. Reaction of [Eu(hfac)3] with [Alq3]

To a suspension of [Eu(hfac)3] (0.688 g; 0.89 mmol) in anhydrous toluene (70 mL),
0.410 g (0.89 mmol) of [Alq3] was added. After 3 days of stirring at room temperature, traces
of an undissolved solid were filtered and discarded. From the filtrate, a yellow solid was re-
covered by removing the volatile phase in vacuo. (0.60 g; 54.4% yield for [Eu(hfac)3Alq3] (1).
The elemental analysis calculated for [Eu(hfac)3Alq3] (C42H21N3AlEuF18O9): C: 41.0%, H:
1.7% and N: 3.4%; we found C: 41.4%, H: 2.0% and N: 3.5%. ATR-IR (range 1700–650 cm−1):
1650 (m), 1592 (w), 1556 (w), 1530 (w), 1503 (m), 1460 (w), 1421 (w), 1385 (w), 1320 (w),
1300 (w), 1253 (m), 1197 (m), 1132 (s), 1098 (m), 873 (w), 951 (w), 896 (w), 867 (w), 797 (m),
773 (w), 750 (w), 740 (w) and658 (m). In a recrystallization attempt of the product from
hot heptane, in air, single crystals of two different morphologies and compositions were
obtained: [Eu2(hfac)6Al2q4(OH)2] (2) and [Eu2(hfac)6(µ-Hq)2] (3).
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3.2. Synthesis of [Eu2(hfac)6(µ-Hq)2] (3)

To a suspension of [Eu(hfac)3] (0.275 g; 0.356 mmol) in toluene (40 mL), 8-hydroxyquinoline
(0.052 g; 0.358 mmol) was added. The solid phase turned yellow. After 1 day of stir-
ring, the yellow solid was filtered and dried (0.200 g; 61% yield for [Eu2(hfac)6(µ-Hq)2]).
The elemental analysis calculated for [Eu2(hfac)6(µ-Hq)2] (Eu2C48H20O14N2F36): C: 31.4%,
H: 1.1% and N: 1.5%; we found C: 31.0%, H: 1.3% and N: 1.4%. ATR-IR (range 1700–650 cm−1):
1651 (m), 1592 (w), 1556 (m), 1530 (m), 1505 (m), 1458 (w), 1421 (w), 1385 (w), 1350 (w),
1200 (w), 1253 (s), 1195 (s), 1135 (s), 1100 (s), 973 (w), 951 (w), 895 (w), 867 (w), 814 (m),
798 (s), 772 (m), 750 (w), 740 (w), 714 (w) and 658 (s). A further crystalline crop of
the compound was recovered from cold toluene (−20 ◦C). Crystal data (3): triclinic,
P 1, a = 12.002(2) Å, b = 12.830(3) Å, c = 13.117(3) Å, α = 107.53(2)◦, β = 112.78(2)◦ and
γ = 105.09(1)◦.

3.3. Synthesis of [Al(qNO)3] (4)

A solution of HqNO (1.55 g; 9.63 mmol) in anhydrous toluene (80 mL) was treated with
[Al(OtBu)3] (0.79 g; 3.21 mmol) and heated at the reflux temperature for 4 h. The volatile
phases were then removed in vacuo, leaving a yellow-brown residue that was suspended
in toluene (20 mL) and filtered. (1.31 g; 80.4% yield for the title compound). It can be
recrystallized through the slow diffusion of pentane vapours in a chloroform solution.
Elemental analysis calculated for [Al(qNO)3] (C27H18N3AlO6): C: 63.9%, H: 3.6% and N:
8.3%; we found C: 63.6%, H: 3.3% and N: 8.2%. ATR-IR (range 1700–650 cm−1): 1587 (w),
1571 (m), 1513(w), 1460 (w), 1426 (w), 1389 (s), 1358 (w), 1321 (w), 1304 (w), 1217 (w),
1202 (w), 1167 (w), 1131 (w), 1087 (w), 1056 (w), 1039 (m), 826 (w), 813 (w), 789 (w), 759 (w)
and 726 (w). 1H NMR (CD2Cl2): δ (ppm) 15.24 (s, 1H), 8.26 (d, 2H), 8.19 (dd, 18H), 8.04–
7.97 (m, 38H), 7.84 (dt, 20H), 7.52 (t, 2H), 7.35–7.43 (m, 38H), 7.30–7.03 (m, 96H) and 6.72
(td, 38H).

3.4. Synthesis of [Ln(hfac)3Al(qNO)3] (Ln = Eu, Gd and Er)

The synthesis of the europium derivative is described at length.
Eu (5): To a yellow suspension of [Al(qNO)3] (0.20 g; 0.39 mmol) in anhydrous 1,2-

dichloroethane (DCE) (100 mL), [Eu(hfac)3] (0.30 g; 0.39 mmol) was added. The resulting
solution was stirred overnight at room temperature and concentrated to dryness in vacuo.
The yellow-orange residue was solubilized in toluene (10 mL) and precipitated with hep-
tane. (0.34 g; 66% yield). Elemental analysis calculated for [Eu(hfac)3Al(qNO)3 1/2 C7H8]
(C45.5H25N3AlF18EuO12) %: C: 41.2; H: 1.9; N: 3.2; we found C: 40.9, H: 1.7 and N: 3.2.
ATR-IR (range 1700–650 cm−1): 1654 (d), 1583 (d), 1554 (d), 1525 (d), 1489 (d), 1461 (d),
1392 (d), 1356 (d), 1320 (d), 1306 (d), 1254 (d), 1202 (d), 1139 (d), 1094 (d), 1054 (m), 1038 (m),
1016 (m), 817 (d), 792 (f), 747 (d), 732 (d) and659 (d). The sample is stable in air for short-
term exposures; no IR modification was noticed. Suitable crystals for X-ray diffraction were
recovered from cold toluene (−20 ◦C).

Gd (6): Starting from [Gd(hfac)3] (0.430 g; 0.55 mmol) and [Al(qNO)3] (0.278 g;
0.55 mmol) in toluene (25 mL), [Gd(hfac)3Al(qNO)3] was recovered (0.434 g; 59.2 yield).
Elemental analysis calculated for [Gd(hfac)3Al(qNO)3 1/2 C7H8] (C45.5H25N3AlF18GdO12)
%: C: 41.0; H: 1.9; N: 3.2; we found C: 40.7, H: 1.5 and N: 3.1. ATR-IR is almost com-
pletely superimposable with the europium analogue. Crystal data: monoclinic, P 2/c,
a = 20.390(2) Å, b = 12.923(1) Å, c= 20.693(2) Å and β = 106.131(7)◦.

Er (7): Starting from [Er(hfac)3] (0.46 g; 0.58 mmol) and [Al(qNO)3] (0.303 g; 0.60 mmol)
in toluene (50 mL), [Er(hfac)3Al(qNO)3] was recovered (0.459 g; 61.0 yield). Elemental
analysis calculated for [Er(hfac)3Al(qNO)3] (C42H21N3AlErF18O12): C: 38.9%, H: 1.6%
and N: 3.2%; we found C: 38.6%, H: 1.5% and N: 3.1%. ATR-IR (range 1700–650 cm−1):
1653 (s), 1586 (m), 1556 (m), 1530 (m), 1513 (m), 1461 (m), 1431 (w), 1388 (m), 1356 (w),
1319 (w), 12090 (m), 1254 (s), 1198 (s), 1139 (vs), 1102 (m), 1039 (m), 1047 (m), 982 (w),
952 (w), 879 (w), 823 (s), 794 (s), 741 (s), 714 (s) and 660 (s).
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X-ray diffraction studies. Crystals were selected at room temperature (293 K), sealed
in glass capillaries and analysed using a Bruker Smart Breeze CCD diffractometer equipped
with Mo Kα radiation. The lattice parameters and some collection details are summarized in
Table 2. After correction for Lorentz and polarization effects and for absorption, structures
were solved with the ShelXT [65] program by intrinsic phasing and refined with the
ShelXL [66] package using a least squares minimization. The crystal structure of 2 contains
an asymmetric unit made up of two half molecules placed around two inversion centres.
Two complete molecules with slightly different conformations are generated by the action
of the symmetry operators. Some terminal CF3 groups are affected by a certain rotational
disorder, which is reflected in rather elongated, calculated thermal ellipsoids. The disorder
extent did not require a refinement on two different limit positions. The crystal structure of
3 contains an asymmetric unit consisting of half a molecule placed close to an inversion
centre. The second half of the molecule is generated by the action of the 1 operator.
The high disorder present in one hfac ligand required a refinement on two different limit
positions, with total occupancy fixed to 1. The final values of the reliability factors obtained
at the end of the refinement are reported in Table 2. The asymmetric unit of the 5 · 0.5
toluene crystal structure contains a molecule of toluene placed across a symmetry axis.
The marked rotational disorder in one of the CF3 groups of the main compound required
refinement on two different positions by fixing to 1 the total occupancy of the group.
The high disorder also extends to the solvent molecule: introducing half a molecule of
toluene into the model, an unacceptable geometry is obtained with refinement. For this
reason, a whole toluene molecule, with a fixed geometry and occupancy of 0.5, was
introduced into the model across the symmetry axis, affording a refinement convergence
to the reliability factor reported in Table 2. The asymmetric unit of 7 corresponds to a
single molecule. Also in this case, the rotational disorder of five of the six CF3 groups
required a model with the disordered groups split into two different positions, with the
total occupancy equal to 1. Table 2 reports the final reliability factors obtained in the
refinement. Some control calculations were performed with the programs contained in the
suite WINGX [67].

The crystallographic data for 2, 3, 5 and 7 reported in this paper have been deposited
with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC
2298048-2298051. These data can be obtained free of charge from the Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif, (last access on 9 January
2024, CCDC: Cambridge, UK).

Computational Details. DFT calculations were carried out by using the Orca software
(version 4.2.0) [68]. The GGA PBE functional [69,70], coupled to an all-electron, triple-ζ
quality Ahlrichs basis set with one polarization function (def2-TZVP) [71] for all atoms, was
employed to optimize the ground state molecular structures. Dispersion corrections were
included by adopting Grimme’s DFT-D3 method [72]. The condensed Fukui functions,
which reflect the reactivity of a site [58], were evaluated by carrying out a single-point
calculation on the ground state geometry, first considering the neutral system and then
considering it as singly charged. They were then calculated as the difference between the
Mulliken atom charge in the two conditions. The condensed Fukui function f+k on the
atom k is defined as [73]: f+k = qk(N)− qk(N + 1), where qk is the Mulliken atom charge of
atom k, calculated either in the neutral state with N electrons, or in the negatively charged
molecule (N + 1 electrons).

www.ccdc.cam.ac.uk/data_request/cif
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Table 2. Crystal data and refinement summaries for 2, 3, 5 and 7.

Identification Code 2 3 5 · 0.5 Toluene 7

CCDC number 2298051 2298049 2298048 2298050
Empirical formula C66H32Al2Eu2F36N4O18 C48H20Eu2F36N2O14 C45.5H25AlEuF18N3O12 C42H21AlErF18N3O12

Formula weight 2210.83 1836.58 1326.62 1295.86
Crystal system Triclinic Triclinic Monoclinic Triclinic

Space group P 1 P 1 P 2/c P 1
a (Å) 13.3724(5) 11.9995(7) 20.3737(6) 13.433(3)
b (Å) 17.3056(6) 12.8030(7) 12.9319(3) 13.522(2)
c (Å) 17.7157(7) 13.1061(7) 20.6857(6) 14.240(3)
α (◦) 93.7570(10) 107.517(2) - 91.094(6)
β (◦) 92.5010(10) 112.709(2) 106.1290(10) 105.476(6)
γ (◦) 98.2140(10) 105.019(2) - 101.144(6)

Volume (Å3) 4043.1(3) 1601.95(16) 5235.6(2) 2439.0(8)
Z 2 1 4 2

ρcalc (g cm−1) 1.816 1.904 1.683 1.765
µ (mm−1) 1.709 2.104 1.340 1.870

F(000) 2152 884 2612 1266
θ range (◦) 1.19 to 26.50 3.26 to 27.48 2.59 to 25.99 2.67 to 26.39

Reflections collected 151373 54307 48953 85152
Data/restraints/parameters 16,701/0/1153 7314/210/505 10,231/43/741 9875/204/805

Goodness of fit on F2 1.019 1.132 1.054 1.125
Final R1 [I ≥ 2σ(I)] 0.0448 0.0380 0.0512 0.0510

Final wR2 [I ≥ 2σ(I)] 0.1191 0.0905 0.1290 0.1483
Final R1 [all data] 0.0684 0.0467 0.0791 0.0578

Final wR2 [all data] 0.1330 0.0995 0.1450 0.1559

Experiments were carried out at 294 K with Mo Kα radiation.

4. Conclusions

In this work, the synthetic protocol previously used to prepare heterobimetallic
europium–aluminium complexes has been exploited, starting from [Eu(hfac)3] and [Alq3]
as building blocks. Despite several attempts, the molecular compound [Eu(hfac)3Alq3]
has not been crystallographically characterized, possibly being hindered by steric factors
favouring a structural rearrangement promoted by a hydrolytic attack. Two different
products have been structurally characterized from crystallization in the presence of wa-
ter: the heterometallic [Eu2(hfac)6Al2q4(OH)2] and the homometallic, dinuclear europium
derivative [Eu2(hfac)6(µ-Hq)2]. The latter can be directly prepared from [Eu(hfac)3] and
8-hydroxiquinoline at room temperature in toluene at a high yield, suggesting that this
compound can be easily formed from the precursors, and that Hq is a better Lewis base
than [Alq3] for the Lewis acid [Eu(hfac)3].

Using the six-membered chelating ring ligand qNO, an oxidized quinolinato ligand
that has been rarely used in coordination chemistry, structural studies have been possible
for [Ln(hfac)3Al(qNO)3] (Ln = Eu, Gd and Er). The phenolic oxygen atoms in [Al(qNO)3]
are sufficiently basic to bridge the two metal centres and form the heterometallic compound.
This result can be relevant in considering the necessary requisites of the chelate ligands
on aluminium from a steric point of view. The synthetic protocol is utilizable also for
late lanthanides, although the reduction in the ionic radius along the series affords a
heterometallic compound with only two bridging oxygen atoms. These toluene-soluble
heterometallic compounds are air stable in the solid state and present two close, different
metal centres (about 3 Å). They are examples of a family of compounds that can be prepared
along the lanthanide series. The quantum mechanics calculations correctly reproduce the
different capabilities of the RE to bond with three or two oxygen atoms, and they justify
this different behaviour in terms of the Lewis acidity by using calculated condensed
Fukui functions.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29020451/s1. Figure S1: ATR-IR spectra (range 1700–650 cm−1) of
[Eu(hfac)3Alq3] (black), [Alq3] (red) and [Eu(hfac)3(H2O)2] (blue). Figure S2: ATR-IR spectrum of
8-hydroxyquinoline N-oxide (HqNO). Figure S3: 1H NMR of 8-hydroxyquinoline N-oxide (HqNO)
in CDCl3. Figure S4: ATR-IR spectrum of [Al(qNO)3] (red) compared with [HqNO] (blue). Figure S5:
1H NMR spectrum of [Al(qNO)3] in anhydrous CD2Cl2. Figure S6: ATR-IR spectra (1700–650 cm−1)
of [Eu(hfac)3Al(qNO)3] (black), [Al(qNO)3] (red) and [HqNO] (blue).
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