
29th International Conference on Parallel and Distributed Computing
Limassol, Cyprus, August 28 – September 1, 2023
Proceedings

Euro-Par 2023:
Parallel ProcessingLN

CS
 1

41
00

AR
Co

SS
José Cano · Marios D. Dikaiakos ·
George A. Papadopoulos · Miquel Pericàs ·
Rizos Sakellariou (Eds.)

Distributed k-Means with Outliers
in General Metrics

Enrico Dandolo, Andrea Pietracaprina, and Geppino Pucci(B)

Department of Information Engineering, University of Padova, Padova, Italy
enrico.dandolo.1@studenti.unipd.it,

{andrea.pietracaprina,geppino.pucci}@unipd.it

Abstract. Center-based clustering is a pivotal primitive for unsuper-
vised learning and data analysis. A popular variant is the k-means prob-
lem, which, given a set P of points from a metric space and a parameter
k < |P |, requires finding a subset S ⊂ P of k points, dubbed centers,
which minimizes the sum of all squared distances of points in P from
their closest center. A more general formulation, introduced to deal with
noisy datasets, features a further parameter z and allows up to z points of
P (outliers) to be disregarded when computing the aforementioned sum.
We present a distributed coreset-based 3-round approximation algorithm
for k-means with z outliers for general metric spaces, using MapReduce
as a computational model. Our distributed algorithm requires sublinear
local memory per reducer, and yields a solution whose approximation
ratio is an additive term O(γ) away from the one achievable by the
best known polynomial-time sequential (possibly bicriteria) approxima-
tion algorithm, where γ can be made arbitrarily small. An important
feature of our algorithm is that it obliviously adapts to the intrinsic
complexity of the dataset, captured by its doubling dimension D. To the
best of our knowledge, no previous distributed approaches were able to
attain similar quality-performance tradeoffs for general metrics.

Keywords: Clustering · k-means · Outliers · MapReduce · Coreset

1 Introduction

Clustering is a fundamental primitive for data analysis and unsupervised learn-
ing, with applications to such diverse domains as pattern recognition, informa-
tion retrieval, bioinformatics, social networks, and many more [19]. Among the
many approaches to clustering, a prominent role is played by center-based clus-
tering, which aims at partitioning a set of data items into k groups, where k is an
input parameter, according to a notion of similarity modeled through a metric
distance over the data. Different variants of center-based clustering aim at min-
imizing different objective functions. The k-means problem is possibly the most
popular variant of center-based clustering. Given a set P of points in a general
metric space and a positive integer k < |P |, the discrete version of the problem
requires to determine a subset S ⊂ P of k points, called centers, so that the sum
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 474–488, 2023.
https://doi.org/10.1007/978-3-031-39698-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39698-4_32&domain=pdf
https://doi.org/10.1007/978-3-031-39698-4_32

Distributed k-Means with Outliers in General Metrics 475

of all squared distances of the points of P from their closest center is minimized.
(In Euclidean spaces, centers may be chosen also outside the set P , giving rise
to a wider spectrum of feasible solutions.)

Since the objective function of k-means involves squares of distances, the
optimal solution is at risk of being impacted by few “distant” points, called
outliers, which may severely bias the optimal center selection towards reducing
such distances. In fact, the presence of outliers is inevitable in large datasets,
due to the presence of points which are artifacts of data collection, either repre-
senting noisy measurements or simply erroneous information. To cope with this
limitation, k-means admits a heavily studied robust formulation that takes into
account outliers [8]: when computing the objective function for a set of k centers,
the z largest squared distances from the centers are not included in the sum,
where z < |P | is an additional input parameter representing a tolerable level of
noise. This formulation of the problem is known as k-means with z outliers.

There is an ample and well-established literature on sequential strategies
for different instantiations of center-based clustering, with and without outliers.
However, with the advent of big data, the high volumes that need to be pro-
cessed often rule out the use of unscalable, sequential strategies. Therefore, it is
of paramount importance to devise efficient clustering strategies tailored to typ-
ical distributed computational frameworks for big data processing (e.g., MapRe-
duce [12]). The primary objective of this paper is to devise scalable, distributed
strategies for discrete k-means with z outliers for general metric spaces.

1.1 Related Work

The body of literature on solving k-means without outliers sequentially is huge.
For brevity, we report only the results relative to the discrete case on general
metrics, which is our target scenario. The best sequential algorithms to date for
this scenario are the deterministic (6.357 + ε)-approximation algorithm of [1],
or the randomized PTAS of [10] for spaces of constant doubling dimension. A
simpler and faster randomized option is the k-means++ algorithm of [2], whose
approximation ratio, which is O(log k) in expectation, can be lowered to a con-
stant by running the algorithm for ρk centers, with ρ = O(1) [27]. For the
distributed case, a 3-round MapReduce algorithm for k-means is presented in
[23]. For arbitrarily small γ > 0, the algorithm attains an approximation ratio
which is a mere O (γ) term away from the best sequential approximation attain-
able for the weighted variant of the problem, where the weight wp of each point
p ∈ P multiplies the square-distance contribution of p to the objective function.

A considerable number of sequential algorithms have also been proposed
for k-means with z outliers. Here, we report only on the works most relevant
to our framework, and refer to [13] for a more detailed overview of the liter-
ature. In [16], a randomized local search strategy is described, which runs in
time O

(
|P |z + (1/ε)k2(k + z)2 log(|P |∆)

)
, yielding a 274-approximate bicrite-

ria solution with k centers and O((1/ε)kz log(|P |∆)) outliers, where ∆ is the
ratio between the maximum and minimum pairwise distances. For spaces of

476 E. Dandolo et al.

doubling dimension D, [14] devises a different (deterministic) local search strat-
egy yielding a bicriteria solution with (1 + ε)k centers and z outliers, achieving
an approximation 1 +O (ε), in time O

(
(k/ε)|P |(D/ε)Θ(D/ε)

log(|P |∆)
)
. Finally,

the LP-based approach of [21] yields the first non-bicriteria solution featuring
an expected 53.002 · (1 + ε)-approximation in time |P |O(1/ε3).

The literature on distributed approaches to k-means with outliers is more
scant. The simple, sequential coreset-based strategy of [26] can be easily made
into a 2-round MapReduce algorithm yielding a solution featuring a nonconstant
O (log(k + z)) approximation and local memory

√
|P |(k + z). In [15], an LP-

based algorithm is developed for the coordinator model, yielding a O (1 + 1/ε)-
approximate bicriteria solution, with an excess factor (1+ε) either in the number
of outliers or in the number of centers, using Õ(Lk + z) communication words,
where L is the number of available workers. In the coordinator model, better
bounds have been obtained for the special case of Euclidean spaces in [9,22].

1.2 Our Contribution

We present a scalable coreset-based distributed MapReduce algorithm for k-
means with z outliers, targeting the solution of very large instances from general
metrics. The algorithm first computes, distributedly, a coreset of suitably selected
input points which act as representatives of the whole input, where each coreset
point is weighted in accordance to the number of input points it represents.
Then, the final solution is computed by running on the coreset an α-approximate
sequential algorithm for the weighted variant of the problem, defined similarly
to the case without outliers. Our approach is flexible, in the sense that the final
solution can also be extracted through a sequential bicriteria algorithm returning
a larger number ρk of centers and/or excluding a larger number τz of outliers.
Our distributed algorithm features an approximation ratio of α + O (γ), where
γ is a user-provided accuracy parameter which can be made arbitrarily small.
The algorithm requires 3 rounds and a local memory at each worker of size
O

(√
|P |(ρk + τz)(c/γ)2D log2 |P |

)
, where c is a constant and D is the doubling

dimension of the input. For reasonable configurations of the parameters and,
in particular, low doubling dimension, the local space is substantially smaller
than the input size. It is important to remark that the algorithm is oblivious to
D, in the sense that while the actual value of this parameter (which is hard to
compute) influences the analysis, it is not needed for the algorithm to run. As a
proof of concept, we describe how the sequential bicriteria algorithms by [16] and
[14] can be extended to handle weighted instances, so that, when used within our
MapReduce algorithm, allow us to get comparable distributed approximations.

We remark that the main contributions of our algorithm are: (i) its simplicity,
since our coreset construction does not require multiple invocations of complex,
time-consuming sequential algorithms for k-means with outliers (as is the case
in [15]); and (ii) its versatility, since it is able to exploit any sequential algorithm
for the weighted case (bicriteria or not) which can be run on a small coreset,
with a minimal extra loss in accuracy. In fact, to the best of our knowledge, ours

Distributed k-Means with Outliers in General Metrics 477

Table 1. Notations used throughout the paper: P is a set of n points, S is a subset of
P , and 0 < z < |P | is an integer parameter.

cost(P, S) =
∑

p∈P d(p, S)2

OPTk(P) = minS⊂P,|S|=k cost(P, S)

outz(P, S) = z points of P farthest from S

OPTk,z(P) = minS⊂P,|S|=k cost(P\outz(P, S), S)
cost(P,w, S) =

∑
p∈P wpd(p, S)

2

OPTk(P,w) = minS⊂P,|S|=k cost(P,w, S)

OPTk,z(P,w) = minS⊂P,|S|=k cost(P, ŵ, S), where ŵ is obtained from w
by subtracting z units from points of P farthest from S

is the first distributed algorithm that can achieve an approximation arbitrarily
close to the best one achievable by a (possibly bicriteria) polynomial sequential
algorithm. Finally, we observe that our MapReduce algorithm can solve instances
of the problem without outliers with similar approximation guarantees, and its
memory requirements improve substantially upon those of [23].

Organization of the Paper. Section 2 contains the main definitions and some
preliminary concepts. Section 3 describes a simplified coreset construction (Sub-
sect. 3.1), the full algorithm (Subsect. 3.2), and a sketch of a more space-efficient
coreset construction, which yields our main result (Subsect. 3.3). Finally, Sect. 4
discusses the extension of the algorithms in [16] and [14] to handle weighted
instances. Section 5 provides some final remarks.

2 Preliminaries

Let P be a set of points from a metric space with distance function d(·, ·). For
any point p ∈ P and subset S ⊆ P , define the distance between p and S as
d(p, S) = minq∈S d(p, q). Also, we let pS denote a point of S closest to p, that
is, a point such that d(p, pS) = d(p, S), with ties broken arbitrarily. The discrete
k-means problem requires that, given P and an integer k < |P |, a set S ⊂ P of k
centers be determined, minimizing the cost function cost(P, S) =

∑
p∈P d(p, S)2.

We focus on a robust version of discrete k-means, known in the literature as k-
means with z outliers, where, given an additional integer parameter z < |P |, we
seek a set S ⊂ P of k centers minimizing the cost function cost(P\outz(P, S), S),
where outz(P, S) denotes the set of z points of P farthest from S, with ties broken
arbitrarily. We let OPTk(P) (resp., OPTk,z(P)) denote the cost of the optimal
solution of k-means (resp., k-means with z outliers) on P . The following two facts
state technical properties that will be needed in the analysis. (Proofs, omitted
for brevity, can be found in the full version of this extended abstract [11].)

Fact 1. For every k, z > 0 we have OPTk+z(P) ≤ OPTk,z(P).

478 E. Dandolo et al.

Fact 2. For any p, q, t ∈ P , S ⊆ P , and c > 0, we have:

d(p, S) ≤ d(p, q) + d(q, S)
d(p, t)2 ≤ (1 + c)d(p, q)2 + (1 + 1/c)d(q, t)2.

In the weighted variant of k-means, each point p ∈ P carries a positive inte-
ger weight wp. Letting w : P → Z+ denote the weight function, the problem
requires to determine a set S ⊂ P of k centers minimizing the cost function
cost(P,w, S) =

∑
p∈P wp · d(p, S)2. Likewise, the weighted variant of k-means

with z outliers requires to determine S ⊂ P which minimizes the cost function
cost(P, ŵ, S), where ŵ is obtained from w by decrementing the weights asso-
ciated with the points of P farthest from S, progressively until exactly z units
of weights overall are subtracted (again, with ties broken arbitrarily). We let
OPTk(P,w) and OPTk,z(P,w) denote the cost of the optimal solutions of the
two weighted variants above, respectively. Table 1 summarizes the main nota-
tions used in the paper.

Doubling Dimension. The algorithms presented in this paper are designed
for general metric spaces, and their performance is analyzed in terms of the
dimensionality of the dataset P , as captured by the well-established notion of
doubling dimension [18], extensively used in the analysis of clustering [6,10] and
other primitives [5,7], and defined as follows. For any p ∈ P and r > 0, let the
ball of radius r centered at p be the set of points of P at distance at most r
from p. The doubling dimension of P is the smallest value D such that for every
p ∈ P and r > 0, the ball of radius r centered at p is contained in the union of
at most 2D balls of radius r/2, centered at suitable points of P . The doubling
dimension can be regarded as a generalization of the Euclidean dimensionality
to general spaces. In fact, it is easy to see that any P ⊂ Rdim under Euclidean
distance has doubling dimension O (dim).

Model of Computation. We present and analyze our algorithms using the
MapReduce model of computation [12,24], which is one of the reference models
for the distributed processing of large datasets, and has been effectively used
for clustering problems (e.g., see [3,6,25]). A MapReduce algorithm specifies a
sequence of rounds, where in each round, a multiset X of key-value pairs is first
transformed into a new multiset X ′ of pairs by applying a given map function
in parallel to each individual pair, and then into a final multiset Y of pairs by
applying a given reduce function (referred to as reducer) in parallel to each subset
of pairs of X ′ having the same key. Key performance indicators are the number
of rounds and the maximum local memory required by individual executions of
the map and reduce functions. Efficient algorithms typically target few (possibly,
constant) rounds and substantially sublinear local memory. We expect that our
algorithms can be easily ported to the popular Massively Parallel Computation
(MPC) model [4].

Distributed k-Means with Outliers in General Metrics 479

3 MapReduce Algorithm for k-Means with z Outliers

In this section, we present a MapReduce algorithm for k-means with z outliers
running in O (1) rounds with sublinear local memory. As typical of many efficient
algorithms for clustering and related problems, our algorithm uses the following
coreset-based approach. First, a suitably small weighted coreset T is extracted
from the input P , such that each point p ∈ P has a “close” proxy π(p) ∈ T ,
and the weight wq of each q ∈ T is the number of points of P for which q is
proxy. Then, the final solution is obtained by running on T the best (possibly
slow) sequential approximation algorithm for weighted k-means with z outliers.
Essential to the success of this strategy is that T can be computed efficiently
in a distributed fashion, its size is much smaller than |P |, and it represents P
well, in the sense that: (i) the cost of any solution with respect to P can be
approximated well in T ; and (ii) T contains a good solution to P .

In Subsect. 3.1 we describe a coreset construction, building upon the one
presented in [17,23] for the case without outliers, but with crucial modifications
and a new analysis needed to handle the more general cost function, and to allow
the use of bicriteria approximation algorithms on the coreset. In Subsect. 3.2
we present and analyze the final algorithm, while in Subsect. 3.3 we outline
how a refined coreset construction can yield substantially lower local memory
requirements.

3.1 Flexible Coreset Construction

We first formally define two properties that capture the quality of the coreset
computed by our algorithm. Let T be a subset of P weighted according to a
proxy function π : P → T , where the weight of each q ∈ T is wq = |{p ∈ P :
π(p) = q}|.

Definition 1. For γ ∈ (0, 1), (T,w) is a γ-approximate coreset for P with
respect to k and z if for every S,Z ⊂ P , with |S| ≤ k and |Z| ≤ z, we have:

|cost(P\Z, S) − cost(T, ŵ, S)| ≤ γ · cost(P\Z, S),

where ŵ is such that for each q ∈ T , ŵq = wq − |{p ∈ Z : π(p) = q}|.

Definition 2. For γ ∈ (0, 1), (T,w) is a γ-centroid set for P with respect to k
and z if there exists a set X ⊆ T of at most k points such that

cost(P\outz(P,X),X) ≤ (1 + γ) ·OPTk,z(P).

In other words, a γ-approximate coreset can faithfully estimate (within relative
error γ) the cost of any solution with respect to the entire input dataset P ,
while a γ-centroid set is guaranteed to contain one good solution for P . The
following technical lemma states a sufficient condition for a weighted set to be
an approximate coreset.

480 E. Dandolo et al.

Lemma 1. Let (T,w) be such that
∑

p∈P d(p,π(p))2 ≤ δ · OPTk,z(P). Then,
(T,w) is a γ-approximate coreset for P with respect to k and z, with γ = δ+2

√
δ.

Proof. Consider two arbitrary subsets S,Z ⊂ P with |S| = k and |Z| = z, and
let ŵ be obtained from w by subtracting the contributions of the elements in Z
from the weights of their proxies. We have:

|cost(P\Z, S) − cost(T, ŵ, S)| = |
∑

p∈P\Z

d(p, S)2 −
∑

q∈T

ŵqd(q, S)2|

≤
∑

p∈P\Z

∣∣d(p, S)2 − d(π(p), S)2
∣∣

≤
∑

p∈P\Z

(d(p,π(p)) + 2d(p, S))d(p,π(p))

(since, by Fact 2,−d(p,π(p) ≤ d(p, S) − d(π(p), S) ≤ d(p,π(p))

=
∑

p∈P\Z

d(p,π(p))2 + 2
∑

p∈P\Z

d(p, S) · d(p,π(p)).

By the hypothesis, we have that
∑

p∈P d(p,π(p))2 ≤ δ · OPTk,z(P), and since
OPTk,z(P) ≤ cost(P\Z, S), the first sum is upper bounded by δ · cost(P\Z, S).
Let us now concentrate on the second summation. It is easy to see that for any
a, b, c > 0, we have that 2ab ≤ ca2 + (1/c)b2. Therefore,

2
∑

p∈P\Z

d(p, S) · d(p,π(p)) ≤
√

δ
∑

p∈P\Z

d(p, S)2 +
(
1/

√
δ
) ∑

p∈P\Z

d(p,π(p))2

≤ 2
√

δ · cost(P\Z, S).

The lemma follows since γ = δ + 2
√

δ. ()

The first ingredient of our coreset construction is a primitive, called
CoverWithBalls, which, given any set X ⊂ P , a precision parameter δ, and
a distance threshold R, builds a weighted set Y ⊂ P whose size is not much
larger than X, such that for each p ∈ P , d(p, Y) ≤ δmax{R, d(q,X)}. Specif-
ically, the primitive identifies, for each p ∈ P , a proxy π(p) ∈ Y such that
d(p,π(p)) ≤ δmax{R, d(p,X)}. For every q ∈ Y , the returned weight wq

is set equal to the number of points of P for which q is proxy. Primitive
CoverWithBalls has been originally introduced in [23] and is based on a sim-
ple greedy procedure. For completeness, we report the pseudocode below, as
Algorithm 1. We wish to remark that the proxy function π is not explicitly
represented and is reflected only in the vector w. In our coreset construction,
CoverWithBalls will be invoked multiple times to compute coresets of increas-
ingly higher quality.

The second ingredient of our distributed coreset construction is some sequen-
tial algorithm, referred to as SeqkMeans in the following, which, given in input a

Distributed k-Means with Outliers in General Metrics 481

Algorithm 1: CoverWithBalls(P,X, δ, R)
1 Y ← ∅;
2 while P $= ∅ do
3 q ←− arbitrarily selected point in P ;
4 Y ←− Y ∪ {q};wq ←− 1;
5 foreach p ∈ P do
6 if d(p, q) ≤ δ max{R, d(p,X)} then
7 remove p from P ;
8 wq ←− wq + 1; {implicitly, q becomes the proxy π(p) of p}
9 end

10 end
11 end
12 return (Y,w)

dataset Q and an integer k, computes a β-approximate solution to the standard
k-means problem without outliers with respect to Q and k.

We are ready to present a 2-round MapReduce algorithm, dubbed MRcoreset,
that, on input a dataset P , the values k and z, and a precision parameter γ,
combines the two ingredients presented above to produce a weighted coreset
which is both an O(γ)-approximate coreset and an O(γ)-centroid set with respect
to k and z. The computation performed by MRcoreset(P, k, z, γ) in each round
is described below.

First Round. The dataset P is evenly partitioned into L equally sized sub-
sets, P1, P2, . . . , PL, through a suitable map function. Then, a reducer function
comprising the following steps is run, in parallel, on each Pi, with 1 ≤ i ≤ L:

1. SeqkMeans is invoked with input (Pi, k′), where k′ is a suitable function of k
and z that will be fixed later in the analysis, returning a solution Si ⊂ Pi.

2. Let
Ri =

√
cost(Pi, Si)/|Pi|. The primitive CoverWithBalls(Pi, Si, γ/

√
2β, Ri)

is invoked, returning a weighted set of points (Ci,wCi).

Second Round. The same partition of P into P1, P2, . . . , PL is used. A suit-
able map function is applied so that each reducer receives, as input, a dis-
tinct Pi and the triplets (|Pj |, Rj , Cj) for all 1 ≤ j ≤ L from Round 1
(the weights wCj are ignored). Then, for 1 ≤ i ≤ L, in parallel, the reducer
in charge of Pi sets R =

√∑L
j=1 |Pj | ·R2

j/|P |, C = ∪L
j=1Cj , and invokes

CoverWithBalls(Pi, C, γ/
√
2β, R). The invocation returns the weighted set

(Ti,wTi).
The final coreset returned by the algorithm is (T,wT), where T = ∪L

i=1Ti and
wT is the weight function such that wTi is the projection of wT on Pi, for
1 ≤ i ≤ L.

We now analyze the main properties of the weighted coreset returned
by MRcoreset, which will be exploited in the next subsection to derive the

482 E. Dandolo et al.

performance-accuracy tradeoffs featured by our distributed solution to k-means
with z outliers. Recall that we assumed that SeqkMeans is instantiated with
an approximation algorithm that, when invoked on input (Pi, k′), returns a set
Si ⊂ Pi of k′ centers such that cost(Pi, Si) ≤ β ·OPTk′(Pi), for some β ≥ 1. Let
D denote the doubling dimension of P . The following lemma is a consequence
of the analysis in [23] for the case without outliers, and its proof is a simple
composition of the proofs of Lemmas 3.6, 3.11, and 3.12 in that paper.

Lemma 2. Let (C,wC) and (T,wT) be the weighted coresets computed by
MRcoreset(P, k, z, γ), and let πC ,πT be the corresponding proxy functions. We
have: ∑

p∈P

d(p,πX(p))2 ≤ 4γ2 ·OPTk′(P), (withX = C, T)

and

|C| = O
(
|L| · k′ · (8

√
2β/γ)D · log |P |

)
,

|T | = O
(
|L|2 · k′ · (8

√
2β/γ)2D · log2 |P |

)
.

As noted in the introduction, while the doubling dimension D appears in the
above bounds, the algorithm does not require the knowledge of this value, which
would be hard to compute. The next theorem establishes the main result of this
section regarding the quality of the coreset (T,wT) with respect to the k-means
problem with z outliers.

Theorem 1. Let γ be such that 0 < γ ≤
√

3/8 − 1/2. By setting k′ = k + z in
the first round, MRcoreset(P, k, z, γ) returns a weighted coreset (T,wT) which
is a (4γ +4γ2)-approximate coreset and a 27γ-centroid set for P with respect to
k and z.

Proof. Define σ = 4γ + 4γ2 and, by the hypothesis on γ, note that σ ≤ 1/2.
The fact that (T,wT) is a σ-approximate coreset for P with respect to k and
z, follows directly from Fact 1, Lemma 1 (setting δ = 4γ2), and Lemma 2. We
are left to show that (T,wT) is a 27γ-centroid set for P with respect to k and
z. Let S∗ ⊂ P be the optimal set of k centers and let Z∗ = outz(P, S∗). Hence,
cost(P\Z∗, S∗) = OPTk,z(P). Define X = {pT : p ∈ S∗} ⊂ T . We show that
X is a good solution for the k-means problem with z outliers for P . Clearly,
cost(P\outz(P,X),X) ≤ cost(P\Z∗,X), hence it is sufficient to upper bound
the latter term. To this purpose, consider the weighted set (C,wC) computed
at the end of Round 1, and let πC be the proxy function defining the weights
wC . Arguing as before, we can conclude that (C,wC) is also a σ-approximate
coreset for P with respect to k and z. Therefore, since σ ≤ 1/2,

cost(P\Z∗,X) ≤ 1
1 − σ

cost(C, ŵC ,X) ≤ (1 + 2σ)cost(C, ŵC ,X),

Distributed k-Means with Outliers in General Metrics 483

where ŵC is obtained from wC by subtracting the contributions of the elements
in Z∗ from the weights of their proxies. Then, we have:

cost(C, ŵC ,X) =
∑

q∈C

ŵC
q d(q,X)2

≤ (1 + γ)
∑

q∈C

ŵC
q d(q, q

S∗
)2 + (1 + (1/γ))

∑

q∈C

ŵC
q d(q

S∗
,X)2

(by Fact 2)

≤ (1 + γ)(1 + σ)OPTk,z(P) + (1 + (1/γ))
∑

q∈C

ŵC
q d(q

S∗
,X)2

(since (C,wT) is aσ-approximate coreset).

We now concentrate on the term
∑

q∈C ŵC
q d(qS

∗
,X)2. First observe that,

sinceX ⊂ T contains the point in T closest to qS
∗
, we have d(qS

∗
,X) = d(qS

∗
, T)

and CoverWithBalls guarantees that d(qS
∗
, T) ≤ (γ/

√
2β)max{R, d(qS

∗
, C)},

where R is the parameter used in CoverWithBalls. Also, for q ∈ C, d(qS
∗
, C) ≤

d(qS
∗
, q). Now,

∑

q∈C

ŵC
q d(q

S∗
,X)2 ≤ (γ2/(2β))

∑

q∈C

ŵC
q (R

2 + d(q, S∗)2)

≤ (γ2/(2β))

((|P | − z)/|P |)
L∑

i=1

|Pi| ·R2
i +

∑

q∈C

ŵC
q d(q, S

∗)2

≤ (γ2/(2β))

L∑

i=1

cost(Pi, Si) +
∑

q∈C

ŵC
q d(q, S

∗)2

≤ (γ2/(2β))

(
β

L∑

i=1

OPTk+z(Pi) + cost(C, ŵC , S∗)

)

≤ (γ2/2)

(
L∑

i=1

OPTk+z(Pi) + cost(C, ŵC , S∗)

)
(sinceβ ≥ 1).

Using the triangle inequality and Fact 1, it is easy to show that∑L
i=1 OPTk+z(Pi) ≤ 4 ·OPTk,z(P). Moreover, since (C,wC) is a σ-approximate

coreset for P with respect to k and z, cost(C, ŵC , S∗) ≤ (1 + σ)OPTk,z(P).
Consequently,

∑
q∈C ŵC

q d(qS
∗
,X)2 ≤ (γ2/2)(5 + σ)OPTk,z(P). Putting it all

together and recalling that σ = 4γ+4γ2 ≤ 1/2, tedious computations yield that
cost(P\Z∗,X) ≤ (1 + 27γ)OPTk,z(P). ()

3.2 Complete Algorithm

Let SeqWeightedkMeansOut be a sequential algorithm for weighted k-means with
z outliers, which, given in input a weighted set (T,wT) returns a solution S of

484 E. Dandolo et al.

ρk centers such that cost(T, ŵT , S) ≤ α ·OPTk,z(T,w), where ρ ≥ 1 and ŵT is
obtained from w by subtracting τz units of weight from the points of T farthest
from S, for some τ ≥ 1. Observe that values of ρ and τ greater than 1 allow
for sequential bicriteria algorithms, that is, those requiring more centers or more
outliers to achieve an approximation guarantee on OPTk,z(T,w).

For γ > 0, the complete algorithm first extracts a weighted coreset (T,wT) by
running the 2-round MRcoreset(P, ρk, τz, γ) algorithm, setting k′ = ρk + τz in
its first round. Then, in a third round, the coreset is gathered in a single reducer
which runs SeqWeightedkMeansOut(T,wT , k, z) to compute the final solution S.
We have:

Theorem 2. For 0 < γ ≤
√

3/8− 1/2 and ρ, τ ≥ 1, the above 3-round MapRe-
duce algorithm computes a solution S of at most ρk centers such that

cost(P\outτz(P, S), S) ≤ (α +O (γ)) ·OPTk,z(P),

and requires O
(
|P |2/3 · (ρk + τz)1/3 · (8

√
2β/γ)2D · log2 |P |

)
local memory.

Proof. Let T be the coreset computed at Round 2, and let Ẑ ⊆ P be such that
the weight function ŵT , associated to the solution S computed in Round 3, can
be obtained from wT by subtracting the contribution of each point in Ẑ from
the weight of its proxy in T . Clearly, |Ẑ| ≤ τz and cost(P\outτz(P, S), S) ≤
cost(P\Ẑ, S). Now, let σ = 4γ + 4γ2 ≤ 1/2. We know from Theorem 1 that
(T,wT) is a σ-approximate coreset for P with respect to ρk and τz. We have:

cost(P\Ẑ, S) ≤ 1
1 − σ

cost(T, ŵT , S)

≤ (1 + 2σ)cost(T, ŵT , S) ≤ (1 +O (γ)) · α ·OPTk,z(T,w).

Since OPTρk,τz(P) ≤ OPTk,z(P), Fact 1 and Lemma 2 can be used to prove that
both (C,wC) (computed in Round 1) and (T,wT) are σ-approximate coresets
for P with respect to k and z. A simple adaptation of the proof of Theorem 1
shows that (T,wT) is a 27γ-centroid set for P with respect to k and z. Now, let
X ⊆ T be the set of at most k points of Definition 2, and let wT be obtained
from wT by subtracting the contributions of the elements in outz(P,X) from
the weights of their proxies. By the optimality of OPTk,z(T,w) we have that

OPTk,z(T,w) ≤ cost(T,wT ,X)
≤ (1 + σ)cost(P\outz(P,X),X)
≤ (1 + σ)(1 + 27γ) ·OPTk,z(P) = (1 +O (γ)) ·OPTk,z(P).

Putting it all together, we conclude that

cost(P\outτz(P, S), S) ≤ cost(P\Ẑ, S) ≤ (α +O (γ)) ·OPTk,z(P).

The local memory bound follows from Lemma 2, setting L = (|P |/(ρk+ τz))1/3.
()

Distributed k-Means with Outliers in General Metrics 485

3.3 Improved Local Memory

The local memory of the algorithm presented in the previous subsections can
be substantially improved by modifying Round 2 of MRcoreset(P, k, z, γ) as
follows. Now, each reducer first determines a β-approximate solution SC to
weighted k-means (without outliers) on (C,wC), with k′ = k + z centers,
and then runs CoverWithBalls(C,SC , γ/

√
2β, R), yielding a weighted set C ′,

whose size is a factor |L| less than the size of C. Finally, the reducer runs
CoverWithBalls(Pi, C ′, γ/

√
2β, R). A small adaptation to CoverWithBalls is

required in this case: when point p ∈ C is mapped to a proxy q ∈ C ′, the weight
of q is increased by wC

p rather than by one. With this modification, we get the
result stated in the following theorem, whose proof follows the same lines as the
one of Theorem 2, and is found in the full version of this extended abstract [11].

Theorem 3. For 0 < γ ≤ (
√
3 −

√
2)/6 and ρ, τ ≥ 1, the modified 3-round

MapReduce algorithm computes a solution S of at most ρk centers such that

cost(P\outτz(P, S), S) ≤ (α +O (γ)) ·OPTk,z(P),

and requires O
(
|P |1/2 · (ρk + τz)1/2 · (8

√
2β/γ)2D · log2 |P |

)
local memory.

4 Instantiation with Different Sequential Algorithms
for Weighted k-Means

We briefly outline how to adapt two state-of-the-art sequential algorithms for
k-means with z outliers in general metrics, namely, LS-Outlier by [16] and
k-Means-Out by [14], to handle the weighted variant of the problem. Both
these algorithms are bicriteria, in the sense that the approximation guarantee is
obtained at the expense of a larger number of outliers (LS-Outlier), or a larger
number of centers (k-Means-Out). Then, we assess the accuracy-resource trade-
offs attained by the MapReduce algorithm of Sect. 3, when these algorithms are
employed in its final round.

Given a set of points P and parameters k and z, LS-Outlier starts with
a set C ⊂ P of k arbitrary centers and a corresponding set Z = outz(P,C)
of outliers. Then, for a number of iterations, it refines the selection (C,Z) to
improve the value cost(P\Z,C) by a factor at least 1 − ε/k, for a given ε > 0,
until no such improvement is possible. In each iteration, first a new set C ′ is
computed through a standard local-search [20] on P\Z, and then a new pair
(Cnew, Znew) with minimal cost(P\Znew, Cnew) is identified among the following
ones: (C ′, Z ∪ outz(P\Z,C ′) and (C ′′, Z ∪ outz(P,C ′′), where C ′′ is obtained
from C ′ with the most profitable swap between a point of P and a point of C ′.

It is shown in [16] that LS-Outlier returns a pair (C,Z) such that
cost(P\Z,C) ≤ 274·OPTk,z(P) and |Z| = O ((1/ε)kz log(|P |∆)), where ∆ is the
ratio between the maximum and minimum pairwise distances in P . LS-Outlier
can be adapted for the weighted variant of the problem as follows. Let (P,w)
denote the input pointset. In this weighted setting, the role of a set Z of m

486 E. Dandolo et al.

outliers is played by a weight function wZ such that 0 ≤ wZ
p ≤ wp, for each

p ∈ P , and
∑

p∈P wZ
p = m. The union of two sets of outliers in the origi-

nal algorithm is replaced by the pointwise sum or pointwise maximum of the
corresponding weight functions, depending on whether the two sets are dis-
joint (e.g., Z and outz(P\Z,C ′)) or not (e.g., Z and outz(P,C ′′)). It can be
proved that with this adaptation the algorithm returns a pair (C,wZ) such that
cost(P,w−wZ , C) ≤ 274·OPTk,z(P,w) and

∑
p∈P wZ

p = O ((1/ε)kz log(|P |∆)).
Algorithm k-Means-Out also implements a local search. For given ρ, ε >

0, the algorithm starts from an initial set C ⊂ P of k centers and per-
forms a number of iterations, where C is refined into a new set C ′ by
swapping a subset Q ⊂ C with a subset U ⊂ P\C (possibly of dif-
ferent size), such that |Q|, |U | ≤ ρ and |C ′| ≤ (1 + ε)k, as long as
cost(P\outz(P,C ′), C ′) < (1 − ε/k) · cost(P\outz(P,C), C). It is argued in [14]
that for ρ = (D/ε)Θ(D/ε), k-Means-Out returns a set C of at most (1 + ε)k
centers such that cost(P\outz(P,C), C) ≤ (1 + ε) · OPTk,z(P), where D is the
doubling dimension of P . The running time is exponential in ρ, so the algorithm
is polynomial when D is constant.

The adaptation of k-Means-Out for the weighted variant for an input (P,w)
is straightforward and concerns the cost function only. It is sufficient to sub-
stitute cost(P\outz(P,C), C) with cost(P, ŵ, C), where ŵ is obtained from w
by decrementing the weights associated with the points of P farthest from C,
progressively until exactly z units of weights overall are subtracted. It can be
proved that with this adaptation the algorithm returns a set C of at most (1+ε)k
centers such that cost(P, ŵ, C) ≤ (1 + ε) ·OPTk,z(P).

By Theorems 2 and 3, these two sequential strategies can be invoked in Round
3 of our MapReduce algorithm to yield bicriteria solutions with an additive O (γ)
term in the approximation guarantee, for any sufficiently small γ > 0.

5 Conclusions

We presented a flexible, coreset-based framework able to yield a scalable, 3-round
MapReduce algorithm for k-means with z outliers, with an approximation qual-
ity which can be made arbitrarily close to the one of any sequential (bicriteria)
algorithm for the weighted variant of the problem, and requiring local memory
substantially sublinear in the size of the input dataset, when this dataset has
bounded dimensionality. Future research will target the adaptation of the state-
of-the-art non-bicriteria LP-based algorithm of [21] to the weighted case, and
the generalization of our approach to other clustering problems.

Acknowledgements. This work was supported, in part, by MUR of Italy, under
Projects PRIN 20174LF3T8 (AHeAD: Efficient Algorithms for HArnessing Networked
Data), and PNRR CN00000013 (National Centre for HPC, Big Data and Quantum
Computing), and by the University of Padova under Project SID 2020 (RATED-X:
Resource-Allocation TradEoffs for Dynamic and eXtreme data).

Distributed k-Means with Outliers in General Metrics 487

References

1. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for
k-means and Euclidean k-median by primal-dual algorithms. SIAM J. Comput.
49(4), 97–156 (2020)

2. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In:
Proceedings of the ACM-SIAM SODA, pp. 1027–1035 (2007)

3. Bakhthemmat, A., Izadi, M.: Decreasing the execution time of reducers by revising
clustering based on the futuristic greedy approach. J. Big Data 7(1), 6 (2020)

4. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query process-
ing. In: Proceedings of the ACM PODS, pp. 273–284 (2013)

5. Ceccarello, M., Pietracaprina, A., Pucci, G.: Fast coreset-based diversity max-
imization under matroid constraints. In: Proceedings of the ACM WSDM, pp.
81–89 (2018)

6. Ceccarello, M., Pietracaprina, A., Pucci, G.: Solving k-center clustering (with out-
liers) in MapReduce and streaming, almost as accurately as sequentially. Proc.
VLDB Endow. 12(7), 766–778 (2019)

7. Ceccarello, M., Pietracaprina, A., Pucci, G., Upfal, E.: A practical parallel algo-
rithm for diameter approximation of massive weighted graphs. In: Proceedings of
the IEEE IPDPS, pp. 12–21 (2016)

8. Charikar, M., Khuller, S., Mount, D., Narasimhan, G.: Algorithms for facility loca-
tion problems with outliers. In: Proceedings of the ACM-SIAM SODA, pp. 642–651
(2001)

9. Chen, J., Azer, E., Zhang, Q.: A practical algorithm for distributed clustering and
outlier detection. In: Proceedings of the NeurIPS, pp. 2253–2262 (2018)

10. Cohen-Addad, V., Feldmann, A., Saulpic, D.: Near-linear time approximation
schemes for clustering in doubling metrics. J. ACM 68(6), 44:1–44:34 (2021)

11. Dandolo, E., Pietracaprina, A., Pucci, G.: Distributed k-means with outliers in
general metrics. CoRR abs/2202.08173 (2022)

12. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

13. Deshpande, A., Kacham, P., Pratap, R.: Robust k-means++. In: Proceedings of
the UAI, pp. 799–808 (2020)

14. Friggstad, Z., Khodamoradi, K., Rezapour, M., Salavatipour, M.: Approximation
schemes for clustering with outliers. ACM Trans. Algorithms 15(2), 26:1–26:26
(2019)

15. Guha, S., Li, Y., Zhang, Q.: Distributed partial clustering. ACM Trans. Parallel
Comput. 6(3), 11:1–11:20 (2019)

16. Gupta, S., Kumar, R., Lu, K., Moseley, B., Vassilvitskii, S.: Local search methods
for k-means with outliers. Proc. VLDB Endow. 10(7), 757–768 (2017)

17. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
Proceedings of the ACM STOC, pp. 291–300 (2004)

18. Heinonen, J.: Lectures on Analysis of Metric Spaces. Universitext. Springer, Berlin
(2001)

19. Hennig, C., Meila, M., Murtagh, F., Rocci, R.: Handbook of Cluster Analysis. CRC
Press, Boca Raton (2015)

20. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.Y.:
A local search approximation algorithm for k-means clustering. Comput. Geom.
28(2–3), 89–112 (2004)

488 E. Dandolo et al.

21. Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k-median and
k-means with outliers via iterative rounding. In: Proceedings of the ACM STOC
2018, pp. 646–659 (2018)

22. Li, S., Guo, X.: Distributed k-clustering for data with heavy noise. In: Proceedings
of the NeurIPS, pp. 7849–7857 (2018)

23. Mazzetto, A., Pietracaprina, A., Pucci, G.: Accurate MapReduce algorithms for
k-median and k-means in general metric spaces. In: Proceedings of the ISAAC, pp.
34:1–34:16 (2019)

24. Pietracaprina, A., Pucci, G., Riondato, M., Silvestri, F., Upfal, E.: Space-round
tradeoffs for MapReduce computations. In: Proceedings of the ACM ICS, pp. 235–
244 (2012)

25. Sreedhar, C., Kasiviswanath, N., Chenna Reddy, P.: Clustering large datasets using
k-means modified inter and intra clustering (KM-I2C) in Hadoop. J. Big Data 4,
27 (2017)

26. Statman, A., Rozenberg, L., Feldman, D.: k-means: outliers-resistant cluster-
ing+++. MDPI Algorithms 13(12), 311 (2020)

27. Wei, D.: A constant-factor bi-criteria approximation guarantee for k-means++. In:
Proceedings of the NIPS, pp. 604–612 (2016)

	Preface
	Organization
	Euro-Par 2023 Invited Talks
	Distributed Intelligence in the Computing Continuum
	A Continuum of Matrix Multiplications: From Scientific Computing to Deep Learning
	Bias in Data and Algorithms: Problems, Solutions and Stakeholders
	Euro-Par 2023 Track Overviews
	Track 1: Programming, Compilers and Performance
	Track 2: Scheduling, Resource Management, Cloud, Edge Computing, and Workflows
	Track 3: Architectures and Accelerators
	Track 4: Data Analytics, AI, and Computational Science
	Track 5: Theory and Algorithms
	Track 6: Multidisciplinary, Domain-Specific and Applied Parallel and Distributed Computing
	Contents
	Programming, Compilers and Performance
	DIPPM: A Deep Learning Inference Performance Predictive Model Using Graph Neural Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Deep Learning Model into Relay IR
	3.2 Node Feature Generator
	3.3 Static Feature Generator
	3.4 Performance Model Graph Network Structure (PMGNS)
	3.5 MIG Predictor

	4 Experiments and Results
	4.1 The DIPPM Dataset
	4.2 Enviroment Setup
	4.3 Evaluation
	4.4 Prediction of MIG Profiles
	4.5 DIPPM Usability Aspects

	5 Conclusion
	References

	perun: Benchmarking Energy Consumption of High-Performance Computing Applications
	1 Introduction
	2 Related Work
	3 Energy Benchmarking in High-Performance Computing
	3.1 Background: Determining Energy Consumption
	3.2 perun

	4 Experimental Evaluation
	4.1 Application Use Cases
	4.2 Hardware Environment
	4.3 Software

	5 Results
	5.1 Monitoring Overhead
	5.2 Monitoring Accuracy and Missing Power Consumption
	5.3 Impact of Non-compute Devices on the Overall Energy Consumption
	5.4 Scaling Behavior for Multi-Node Applications

	6 Conclusion
	6.1 Limitations

	References

	Extending OpenSHMEM with Aggregation Support for Improved Message Rate Performance
	1 Introduction
	2 Background
	2.1 OpenSHMEM
	2.2 Bale

	3 Design
	4 Results
	4.1 Histogram
	4.2 Indexgather
	4.3 Sparse Matrix Transpose
	4.4 Triangle Counting

	5 Related Work
	6 Conclusion and Future Work
	References

	Fault-Aware Group-Collective Communication Creation and Repair in MPI
	1 Introduction
	2 Background and Previous Work
	3 Group-Collective Operations
	4 Liveness Discovery Algorithm
	5 Experimental Campaign
	6 Conclusions
	References

	Scheduling, Resource Management, Cloud, Edge Computing, and Workflows
	MetaLive: Meta-Reinforcement Learning Based Collective Bitrate Adaptation for Multi-Party Live Streaming*-4pt
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 System Model
	3.2 QoE Metrics
	3.3 Optimization Objective

	4 MetaLive Solution
	4.1 Collaborative Bitrate Adaptation with Reinforcement Learning
	4.2 MetaLive Framework
	4.3 Meta-Training Algorithms

	5 Experiments
	5.1 Implementation
	5.2 QoE Parameters
	5.3 Network Traces
	5.4 Baseline Algorithms
	5.5 Comparison of Performance on Three Network Scenarios
	5.6 Comparison of Performance Adaptive Capability
	5.7 Trade-Off Between QoE Metrics

	6 Conclusion
	References

	Asymptotic Performance and Energy Consumption of SLACK
	1 Introduction
	2 Related Work
	3 Framework
	4 A Bound for SLACK
	5 Convergence Speed of SLACK
	5.1 Convergence of the Makespan
	5.2 Convergence of the Energy Consumption

	6 Simulations
	6.1 Experimental Setting
	6.2 Simulations: Study of j and j
	6.3 Simulations: Energy Minimization

	7 Conclusion
	References

	A Poisson-Based Approximation Algorithm for Stochastic Bin Packing of Bernoulli Items
	1 Introduction
	2 Related Work
	3 Problem Formulation and Notation
	4 Refined Poisson Approximation Packing Algorithm
	5 Proof of Correctness
	5.1 Confident and Minor Items
	5.2 Standard Items

	6 Approximation Ratio
	6.1 Proof of the Approximation Ratio
	6.2 Optimization of the Approximation Ratio

	7 Dependence on the Maximal Overflow Probability
	8 Evaluation by Simulations
	9 Conclusions
	References

	Hierarchical Management of Extreme-Scale Task-Based Applications
	1 Introduction
	2 Related Work
	3 Workflow Management Encapsulation
	4 Runtime System Architecture
	5 Evaluation
	5.1 GridSearch
	5.2 Random Forest

	6 Conclusion
	References

	MESDD: A Distributed Geofence-Based Discovery Method for the Computing Continuum
	1 Introduction
	2 Related Work
	2.1 Centralized Service Discovery
	2.2 Decentralized Service Discovery

	3 Model
	3.1 Service Model
	3.2 Geofence Model
	3.3 Service Discovery
	3.4 Service Runtime Update
	3.5 Objective

	4 Methodology
	5 Experimental Setup
	5.1 Testbed
	5.2 Related Work Comparison
	5.3 Traffic Warning Application

	6 Results
	6.1 Service Discovery
	6.2 Cumulative Service Discovery and Runtime Update

	7 Conclusion
	References

	Parameterized Analysis of a Dynamic Programming Algorithm for a Parallel Machine Scheduling Problem
	1 Introduction
	2 Definition of the State Graph G
	2.1 Basic Definitions and States
	2.2 Set R(v) of Candidate Jobs and tmin
	2.3 Successors of a State v
	2.4 Longest Path of the State Graph

	3 Implementation of the DP Algorithm
	3.1 Dominance on States Structure
	3.2 Dominance of Demeulemeester and Herroelen
	3.3 Steps of the Dynamic Programming Algorithm

	4 Complexity Analysis of the DP Algorithm
	5 Computational Experiments
	5.1 Data Generation
	5.2 Computational Results

	6 Conclusion
	References

	SparkEdgeEmu: An Emulation Framework for Edge-Enabled Apache Spark Deployments
	1 Introduction
	2 Related Work
	3 System Overview
	4 Implementation Aspects
	5 Experimental Study
	5.1 Experiments and Results

	6 Conclusion and Future Work
	References

	ODIN: Overcoming Dynamic Interference in iNference Pipelines
	1 Introduction
	2 Background and Motivation
	3 ODIN: A Dynamic Solution to Overcome Interference on Inference Pipelines
	3.1 Methodology
	3.2 ODIN: A Heuristic-Based Approach for Pipeline Stage Re-balancing Under Interference
	3.3 Implementation Details

	4 Evaluation
	4.1 Experimental Setup
	4.2 Interference Mitigation with ODIN
	4.3 Maintaining QoS with ODIN
	4.4 Scalability Analysis of ODIN

	5 Conclusion
	References

	DAG-Based Efficient Parallel Scheduler for Blockchains: Hyperledger Sawtooth as a Case Study
	1 Introduction
	2 Background on Hyperledger Sawtooth
	3 Proposed Framework
	3.1 Parallel Scheduler
	3.2 Secure Validator

	4 Experiments Analysis
	4.1 Implementation Details
	4.2 Experiments

	5 Related Work
	6 Conclusion and Future Work
	References

	INSTANT: A Runtime Framework to Orchestrate In-Situ Workflows
	1 Introduction
	2 Methodology
	2.1 Mapper
	2.2 Execution Engine

	3 Use Cases
	3.1 WRF-SFIRE
	3.2 Computational Fluid Dynamics with Real-Time Machine Learning/Visualization

	4 Related Work
	5 Discussion
	5.1 Co-allocation of Computation Resources and Queue Time Waste
	5.2 Application Deployment in Distributed Computing Environments

	6 Conclusion
	References

	How Do OS and Application Schedulers Interact? An Investigation with Multithreaded Applications
	1 Introduction
	2 Related Work
	3 Scheduling in Context
	3.1 Linux OS Scheduling
	3.2 Application Thread-Level Scheduling

	4 Interaction Between OS and Application Scheduler
	4.1 Quantifying OS Scheduler Influence on Application Performance
	4.2 Recording Linux OS Scheduling Events

	5 Performance Results and Discussion
	5.1 Applications
	5.2 Design of Experiments
	5.3 Influence of OS Scheduling Events on Application Performance
	5.4 Interaction Between OS- And Application-Level Scheduling

	6 Conclusion
	References

	Assessing Power Needs to Run a Workload with Quality of Service on Green Datacenterspg*-2pt
	1 Introduction
	2 Related Work
	3 Problem Definition, Model and Objective
	4 Determining the Minimum Power Value
	5 Maximizing the Computing Power
	6 Experiment and Results
	7 Conclusion
	References

	Architectures and Accelerators
	Improving Utilization of Dataflow Architectures Through Software and Hardware Co-Design
	1 Introduction
	2 Background and Related Works
	3 Motivation
	4 Our Design
	4.1 Load Balancing
	4.2 Decoupled Model
	4.3 Decoupled Architecture

	5 Methodology
	6 Evaluation
	6.1 Results and Analysis
	6.2 Comparison with Other Dataflow Architectures

	7 Conclusion
	References

	A Multi-level Parallel Integer/Floating-Point Arithmetic Architecture for Deep Learning Instructions
	1 Introduction
	2 Background
	2.1 Integer and Floating-Point Formats
	2.2 The Computing Requirement of DLIs

	3 Related Work
	4 The Configurable Integer/Floating-Point Arithmetic Architecture
	4.1 The Flexible Dataflow of the Dual-Path Architecture
	4.2 The Bit-Partitioning Method for Multiplier Design

	5 Circuit Implementation
	5.1 Configurable Multiple-Precision Multiplier Array
	5.2 Cascade Alignment Shifter and Product Processing
	5.3 Adder, Leading Zero Anticipator, Normalization and Rounding

	6 Synthesis and Evaluation
	6.1 Comparisons with Related Works
	6.2 Evaluation of the DLIs Implementation
	6.3 Evaluation of the Inter-operation Parallelism

	7 Conclusion
	References

	Lock-Free Bucketized Cuckoo Hashing
	1 Introduction
	2 Preliminaries
	2.1 Bucketized Cuckoo Hashing
	2.2 Difficulties when Supporting Lock-Free Operations

	3 Overview of LFBCH
	3.1 Data Structure
	3.2 Basic Operations

	4 Detailed Algorithm Description
	4.1 Lock-Free Kick on Bucketized Cuckoo Hashing
	4.2 Prevent Duplicated Key
	4.3 Lock Free Rehash
	4.4 Hot Key Perception and Adjustment

	5 Experiments
	6 Related Works
	7 Conclusion
	References

	BitHist: A Precision-Scalable Sparse-Awareness DNN Accelerator Based on Bit Slices Products Histogram
	1 Introduction
	2 Motivation
	2.1 Bit-Level Fusion and Decomposition
	2.2 The Redundant Computation in Bit-Level Computation

	3 MAC Based on Bit-Slices Products Histogram
	4 BitHist Accelerator
	4.1 MAC Unit Based on Bitslices Products Histogram
	4.2 Dataflow and Architecture of BitHist

	5 Evaluation
	5.1 Experiment Methodology
	5.2 Area and Power at MAC Unit Level
	5.3 Performance Comparison
	5.4 Performance Boost with Sparse Exploitation

	6 Conclusion
	References

	Computational Storage for an Energy-Efficient Deep Neural Network Training System
	1 Introduction
	2 Background and Related Work
	3 Computational Storage for DNN Prepossessing
	4 System Implementation Details
	5 Case Studies and Experiment Results
	6 Conclusion and Future Work
	References

	Data Analytics, AI, and Computational Science
	Optimizing Data Movement for GPU-Based In-Situ Workflow Using GPUDirect RDMA*-6pt
	1 Introduction
	2 Background
	2.1 In-Situ Workflow
	2.2 GPUDirect Technologies

	3 Related Work
	4 Design
	4.1 Sender Side
	4.2 Receiver Side
	4.3 Implementation and Interoperability

	5 Evaluation
	5.1 End-to-End Benchmark
	5.2 Real Scientific Workflow

	6 Conclusion and Future Work
	References

	FedGM: Heterogeneous Federated Learning via Generative Learning and Mutual Distillation
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Typical Federated Learning Setup
	3.2 Knowledge Distillation

	4 Methodology
	4.1 Global Knowledge Extraction
	4.2 Mutual Distillation

	5 Experiments
	5.1 Datasets
	5.2 Baseline
	5.3 Implementation Details
	5.4 Overall Performance
	5.5 Sensitivity Analysis

	6 Conclusion
	References

	DeTAR: A Decision Tree-Based Adaptive Routing in Networks-on-Chip
	1 Introduction
	2 Background and Related Work
	2.1 Machine Learning in Adaptive Routing Design
	2.2 Decision Tree Models

	3 Design of DeTAR Routing
	3.1 Construction of Dataset
	3.2 Learning a Routing Policy
	3.3 Analysis of the DeTAR Routing Algorithm
	3.4 Generating Implementable Routing Logic

	4 Evaluation
	4.1 Scalable to Different Injection Rates
	4.2 Generalization to Different Traffic Patterns
	4.3 Real Workloads
	4.4 Area of the DeTAR Routing Logic
	4.5 Discussion

	5 Conclusion
	References

	Auto-Divide GNN: Accelerating GNN Training with Subgraph Division
	1 Introduction
	2 Background and Motivation
	2.1 Sampling-Based GNN Training
	2.2 Acceleration Based on GPU Caching
	2.3 Bottlenecks of GPU Caching

	3 Design
	3.1 Subgraph Division
	3.2 Automatic Profiling

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Performance
	4.3 Decrease of GPU Memory Overhead
	4.4 Benefit of Auto-profile Method
	4.5 Ablation Experiments
	4.6 Scalability
	4.7 Training Convergence

	5 Related Works
	6 Conclusion
	References

	Model-Agnostic Federated Learning
	1 Introduction
	2 Related Works
	3 Model-Agnostic Federated Algorithms
	4 MAFL Architecture
	4.1 The Plan Generalization
	4.2 Expanded Communication Protocol
	4.3 Core Classes Extension

	5 Evaluation
	5.1 Performance Optimizations
	5.2 Correctness
	5.3 Flexibility
	5.4 Scalability Analysis

	6 Discussion
	7 Conclusions
	References

	Scalable Random Forest with Data-Parallel Computing
	1 Introduction
	2 Related Work
	3 Random Forest Algorithm
	4 Parallelization
	4.1 PyCOMPSs and dislib
	4.2 Parallelization of the Algorithm
	4.3 Nested Task Solution

	5 Evaluation
	6 Conclusions
	References

	SymED: Adaptive and Online Symbolic Representation of Data on the Edge
	1 Introduction
	2 Motivation and Background
	3 SymED: Symbolic Edge Data Representation
	3.1 Sender Side - Compression
	3.2 Receiver Side - Symbolic Conversion

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Running Example
	4.3 Results and Analysis

	5 Related Work
	6 Conclusions and Future Work
	References

	MMExit: Enabling Fast and Efficient Multi-modal DNN Inference with Adaptive Network Exits
	1 Introduction
	2 MMExit: Architecture Design
	2.1 Problem Setup
	2.2 Discussion on MMExit

	3 MMExit: Adaptive Inference
	3.1 Utility Assessment Metric
	3.2 Equivalent Modality Serialization
	3.3 MMExit Inference Process

	4 MMExit: Joint Training
	4.1 Joint Loss Function
	4.2 Objective Analysis
	4.3 MMExit Training Algorithm

	5 Experiments and Evaluations
	5.1 Experiment Setup
	5.2 Visualization
	5.3 Ablation Study
	5.4 Performance Evaluation
	5.5 Reduction of Computation

	6 Related Work
	7 Conclusion
	References

	Theory and Algorithms
	Distributed Deep Multilevel Graph Partitioning
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Distributed Deep Multilevel Graph Partitioning
	5 Implementation Details
	6 Experiments
	7 Conclusion and Future Work
	References

	TrainBF: High-Performance DNN Training Engine Using BFloat16 on AI Accelerators
	1 Introduction
	2 Preliminaries
	3 Overview of TrainBF
	4 Normalization Techniques in TrainBF
	4.1 Central and Range-Maximized Normalization for Activations
	4.2 Activation-Aware Normalization for Weights
	4.3 Range-Aware Loss Scaling for Gradients

	5 Adaptive Layer Modifier in TrainBF
	5.1 Sensitivity Study
	5.2 Adaptive Layer Modifier

	6 Efficient Parallel Strategy in TrainBF
	7 Evaluation
	7.1 Experimental Setup
	7.2 Throughput and Accuracy
	7.3 Breakdown for Accuracy Improvement
	7.4 Effectiveness of Three Modules in TrainBF
	7.5 Overhead Analysis

	8 Related Work
	9 Conclusion
	References

	Distributed k-Means with Outliers in General Metrics
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 MapReduce Algorithm for k-Means with z Outliers
	3.1 Flexible Coreset Construction
	3.2 Complete Algorithm
	3.3 Improved Local Memory

	4 Instantiation with Different Sequential Algorithms for Weighted k-Means
	5 Conclusions
	References

	A Parallel Scan Algorithm in the Tensor Core Unit Model
	1 Introduction
	2 MatMulScan: Parallel Scan in the TCU Model
	2.1 Analysis
	2.2 Extend Algorithm 1 to Arbitrary Input Length
	2.3 Discussion

	3 Related Work
	4 Conclusion and Future Work
	A Appendix
	A.1 Correctness of Algorithm 1

	References

	Improved Algorithms for Monotone Moldable Job Scheduling Using Compression and Convolution
	1 Introduction
	1.1 Problem Definitions and Notations
	1.2 Related Work
	1.3 Our Results

	2 General Techniques and FPTAS for Many Machines
	2.1 Constant Factor Approximation

	3 FPTAS for Large Machine Counts
	4 (32+)-Approximation
	4.1 Solving the Knapsack Problems

	5 Implementation
	6 Conclusion and Open Questions
	References

	On Size Hiding Protocols in Beeping Model
	1 Introduction
	2 Formal Model
	3 Universal Algorithm for Beeping Model
	4 Size Hiding in Regular Protocols
	5 Conclusions and Future Work
	References

	Efficient Protective Jamming in 2D SINR Networks
	1 Introduction
	2 Model and Problem Statement
	3 Uniform Networks Jamming
	3.1 Two Stations in the Uniform Model
	3.2 Jamming the Enclosing Area

	4 Noisy Dust for Non-uniform Networks
	4.1 Single Station Effective Jamming Range
	4.2 Noisy Dust Algorithm

	5 Conclusions and Future Work
	References

	Multidisciplinary, Domain-Specific and Applied Parallel and Distributed Computing
	GPU Code Generation of Cardiac Electrophysiology Simulation with MLIRpg*-2pt
	1 Introduction
	2 Compilation Flow in OpenCARP
	2.1 EasyML: Description of Ionic Models
	2.2 Code Generation in OpenCARP
	2.3 Vectorized CPU Code Generation Using limpetMLIR

	3 Optimized GPU Code Generation
	3.1 Overview of GPU Code Compilation Flow
	3.2 LimpetMLIR for GPU

	4 Discussion
	5 Experimental Results
	5.1 Performance
	5.2 Energy Efficiency

	6 Related Work
	7 Conclusion
	References

	.26em plus .1em minus .1emSWSPH: A Massively Parallel SPH Implementation for Hundred-Billion-Particle Simulation on New Sunway Supercomputer
	1 Introduction
	2 Background
	2.1 Smooth Particle Hydrodynamic Method
	2.2 Related Work and Analysis
	2.3 Overview of the New Sunway System and SW26010pro Many-Core Processor

	3 Implementation and Optimization
	3.1 Domain Decomposition Strategy
	3.2 Point-to-Point Asynchronous Communication and Task Overlapping

	4 Evaluation
	4.1 Single Node Evaluation
	4.2 Scalability
	4.3 Load-Balance Test

	5 Conclusion
	References

	Transactional-Turn Causal Consistency
	1 Introduction
	2 Background
	2.1 Groundwork
	2.2 Actor Execution Model
	2.3 Message-Based Communication Model and Causal Delivery
	2.4 Shared-Memory Transactional Execution Model
	2.5 Shared-Memory Communication and Causal Consistency

	3 Transactional-Turn Causal Consistency: Unifying Messages and Shared Memory
	3.1 TTCC Unified Execution Model
	3.2 TTCC Unified Causally-Consistent Communication Model

	4 Unified Message-Memory Protocol
	4.1 Overview
	4.2 Notation and Definitions
	4.3 Execution on an Actor
	4.4 Execution on Replication Actor

	5 Implementation
	5.1 Causal Shared Memory
	5.2 Causal Message Delivery

	6 Evaluation
	6.1 Experimental Protocol
	6.2 Results

	7 Conclusion
	References

	Im2win: An Efficient Convolution Paradigm on GPU
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Notations
	2.2 The Direct Convolution
	2.3 The GEMM-Based Convolution
	2.4 The Convolution Algorithms Implemented in cuDNN

	3 The Im2win-Based Convolution Paradigm on GPU
	3.1 Motivations
	3.2 The im2win-based convolution on GPU
	3.3 Optimizations on GPU

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Performance
	4.3 Memory Usage
	4.4 Ablation Study

	5 Conclusion
	References

	Accelerating Drug Discovery in AutoDock-GPU with Tensor Cores
	1 Introduction
	2 Background
	2.1 Computational Method in AutoDock-GPU
	2.2 NVIDIA Tensor Cores

	3 Performance Characterization on GPU
	4 Methodology
	4.1 Requirements and Design Choices
	4.2 Matrix-Based Multi-dimensional Reduction Method

	5 Evaluation
	5.1 Validation of the Scoring Function
	5.2 Runtime Per Evaluation of the Scoring Function
	5.3 Impact on the Docking Time

	6 Related Works
	7 Conclusions
	References

	FedCML: Federated Clustering Mutual Learning with non-IID Data
	1 Introduction
	2 Related Work
	2.1 Federated Learning
	2.2 Clustering Federated Learning

	3 Problem Formulation
	3.1 Problem Definition
	3.2 Optimization Goal

	4 Federated Clustering Mutual Learning
	4.1 System Overview
	4.2 One-Shot Clustering
	4.3 Intra-cluster Learning
	4.4 Inter-cluster Learning

	5 Convergence Analysis
	6 Experimental Evaluation
	6.1 Accuracy Comparison
	6.2 Communication Efficiency

	7 Conclusion
	References

	A Look at Performance and Scalability of the GPU Accelerated Sparse Linear System Solver Spliss
	1 Introduction
	2 Background
	3 Porting Spliss to GPU
	3.1 Implementation Changes
	3.2 Adjustments at Runtime

	4 Evaluation
	4.1 The Test Systems
	4.2 The Test Case
	4.3 Measurement Setup
	4.4 Comparing CPU and GPU Performance and Scalability

	5 Conclusion
	References

	Parareal with a Physics-Informed Neural Network as Coarse Propagator*-4pt
	1 Introduction
	2 Related Work
	3 Algorithms and Benchmark Problem
	3.1 Parareal
	3.2 Numerical Solution of the Black-Scholes Equation
	3.3 Physics Informed Neural Network (PINN)

	4 Results
	5 Discussion
	References

	Faster Segmented Sort on GPUs*-6pt
	1 Introduction
	2 Related Work
	3 Improved Segmented Sort on GPUs
	3.1 Register Sort Kernels
	3.2 Shared Memory Sort Kernels
	3.3 Global Memory Sort Kernels
	3.4 Kernel Selection
	3.5 Key-Only Segmented Sort

	4 Performance Evaluation
	4.1 Key-Value Segmented Sort
	4.2 Key-Only Segmented Sort
	4.3 MetaCache

	5 Conclusion
	References

	Hercules: Scalable and Network Portable In-Memory Ad-Hoc File System for Data-Centric and High-Performance Applications
	1 Introduction
	2 Related Work
	3 Hercules Architecture Design
	3.1 Frontend Layer
	3.2 Storage Backend Layer

	4 File System Design
	4.1 Memory Pool
	4.2 Data Replication
	4.3 Metadata

	5 Communication Layer
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Strong Scalability
	6.3 Weak Scalability
	6.4 Metadata

	7 Conclusions
	References

	An Efficient Parallel Adaptive GMG Solver for Large-Scale Stokes Problems
	1 Introduction
	2 Related Work
	3 Model Problem
	4 Parallel Adaptive Geometric Multigrid
	4.1 Smoother Operators
	4.2 Cache Policies
	4.3 Parallelization and Computational Aspects

	5 Numerical Experiments
	5.1 Strong Scaling
	5.2 Weak Scaling

	6 Conclusions
	References

	Optimizing Distributed Tensor Contractions Using Node-Aware Processor Grids
	1 Introduction
	2 Node-Aware Multiplication and Contraction
	2.1 Node-Aware Matrix Multiplication
	2.2 Node-Aware Tensor Contractions

	3 Evaluation Methodology
	3.1 Hardware and Software Platform
	3.2 Matrix-Multiplication Benchmarks
	3.3 Experimental Methodology

	4 Performance Results/Evaluation
	4.1 Memory Footprint
	4.2 Matrix Multiplication

	5 Performance of Coupled-Cluster Calculations
	6 Related Work
	7 Conclusion
	8 Acknowledgments and Data Availability Statement
	References

	Parallel Cholesky Factorization for Banded Matrices Using OpenMP Tasks*-6pt
	1 Introduction
	2 Related Work
	3 Background
	3.1 Cholesky Factorization

	4 Method
	4.1 Implementation Using OpenMP Tasks
	4.2 Performance Model

	5 Experimental Setup
	5.1 Benchmarking Systems

	6 Results
	7 Conclusions and Future Work
	References

	Author Index

