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Abstract: Extracellular vesicles (EVs) are double-layered lipid membrane vesicles released by cells.
Currently, EVs are attracting a lot of attention in the biological and medical fields due to their role
as natural carriers of proteins, lipids, and nucleic acids. Thus, they can transport useful genomic
information from their parental cell through body fluids, promoting cell-to-cell communication even
between different organs. Due to their functionality as cargo carriers and their protein expression,
they can play an important role as possible diagnostic and prognostic biomarkers in various types of
diseases, e.g., cancers, neurodegenerative, and autoimmune diseases. Today, given the invaluable
importance of EVs, there are some pivotal challenges to overcome in terms of their isolation. Con-
ventional methods have some limitations: they are influenced by the starting sample, might present
low throughput and low purity, and sometimes a lack of reproducibility, being operator dependent.
During the past few years, several microfluidic approaches have been proposed to address these
issues. In this review, we summarize the most important microfluidic-based devices for EV isolation,
highlighting their advantages and disadvantages compared to existing technology, as well as the
current state of the art from the perspective of the use of these devices in clinical applications.
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1. Introduction

Discoveries in genomics are leading to important outcomes in medicine, improving
knowledge of many diseases and leading to the concept of “precision medicine”, which is
defined as the tailoring of medical treatment to individual characteristics [1]. For example,
after a cancer diagnosis, the first approach is often a surgical biopsy to identify the type
of tumor by specific marker expression or by genomic analysis [2]. Unfortunately, the
latter is an invasive and time-consuming procedure, may not be representative of the entire
tumor, and may cause cancer seeding [3]. To face these issues, much attention has been
paid to a less invasive procedure called liquid biopsy: body fluids (e.g., blood, urine, saliva)
are screened for tracers released by cancer tissues, which can provide more rapid and
complete information about the original tumor (e.g., type, stage, progression, etc.) and
could be used as prognostic and/or diagnostic tools [4]. The most well-known tracers
are circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). The first are cells
that are spontaneously released from the cancer tissue and travel in the patient’s blood [5].
Similarly, ctDNA are nucleic acid fragments presenting specific tumor mutations that are
released from cancer cells and travel in body fluids [6].

Another type of tracer that has been discovered in recent decades as potentially useful
for liquid biopsy are extracellular vesicles (EVs) [7]. These are double-layered phospholipid
membrane structures, released by most cell types, which travel in body fluids carrying
various biological molecules of the parental cell (i.e., proteins, lipids, and nucleic acids).
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The biogenesis of EVs is mainly related to two pathways: (i) the direct outward budding
of the cell membrane and ii) the inward budding of multivesicular bodies that fuse with
the cell surface to then be released. In the former case, EVs are known as ectosomes (or
microvesicles (MVs), or microparticles), with a size of 100 nm to 1000 nm, and in the
latter case, they are known as small extracellular vesicles (sEVs) or exosomes, with a size
ranging between 30 and 200 nm [8,9]. Although initially considered cell debris or cell waste,
it is now recognized that EVs play a role in cell-to-cell communication, acting as cargo
ships between cells by transporting genetic information [10], and therefore participating
in a variety of physiological and pathological processes [11]. Therefore, EVs are perfectly
suitable for liquid biopsy and are now considered promising diagnostic, predictive, and
prognostic biomarkers for many types of diseases. In fact, unlike CTC and cDNA, EVs can
provide a variety of information, e.g., either on cardiovascular [12], autoimmune [13], and
neurodegenerative [14] diseases, or on various types of cancer [15].

Today, given the invaluable importance of EVs for liquid biopsy, there are some key
challenges to overcome regarding their isolation [16]. The current most frequently used
approaches, described in Section 2, are based on differential ultracentrifugation (DU),
size-exclusion chromatography (SEC), density-gradient separation (DGS), filtration, and
immunoaffinity strategies. Additionally, EVs can be collected from various fluids (e.g., cell
culture, blood, urine, etc.); thus, the same isolation strategy may present different efficien-
cies depending on the starting sample [17]. Finally, most of the methods require at least
several hours for EV isolation, and thus more rapid isolation protocols are also demanding.

Microfluidic devices have recently been proposed for addressing these issues, as
demonstrated by the increasing number of published papers that have appeared over
the past ten years on this topic. Figure 1 compares the publications per year obtained
using the terms extracellular vesicles (or exosomes) (Figure 1a) and together with microfluidics
(Figure 1b) as keywords. Both trends are similarly increasing; however, the ratio between
the two numbers (Figure 1b, inset) reports how microfluidics has gained slightly more
visibility during the last five years. Notably, considering the low number of articles per year
in the microfluidic case, this trend must be monitored in the near future. Microfluidics is
commonly defined as the science and technology of systems that manipulate small amounts
of fluids (pL and nL ranges), using channels with dimensions that typically range from tens
to hundreds of microns [18]. This leads to several advantages, including the development
of a portable system for point-of-care analysis, the reduction in sample and reagent volume,
down to a million times more than conventional approaches, and the ability to perform
parallelized assays that can drastically increase analysis throughput [19]. Given these
benefits, it is clear that microfluidics can contribute to simplifying and speeding up the EV
isolation process from biofluids, representing a good alternative to conventional protocols.
Additionally, microfluidic devices can also be exploited for EV analysis and detection,
being embedded within the same microfluidic system or based on other instruments (e.g.,
a fluorescence microscope). In the latter case, microfluidic devices can be seen as passive
tools for EV storage.

In this review, we aim to address the most relevant microfluidic systems devoted to EV
isolation, underlining both advantages and disadvantages compared to the conventional
existing methods. After reviewing the most common isolation methods, microfluidic
approaches are discussed, with particular emphasis on those that seem more promising
for future clinical applications. In this context, EVs must be isolated by a microfluidic
device and ready for further analysis (see the workflow in Figure 2). Given the variety
of microfluidic devices in terms of microfabrication and functionality, they are divided
into two main categories: physical and chemical approaches. Whereas the former can be
distinguished in active and passive methods, the latter are mainly based on immunocapture
on fixed and non-fixed (beads) substrates. In addition, a quantitative analysis of the
diffusion of the various microfluidic methods, as well as their capabilities of being used in
real clinical studies, is presented. A short description of EV detection methods based on
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microfluidics is also introduced; however, for a deeper understanding, a dedicated review
can already be found in the literature [20].
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Figure 2. Possible workflow of tumor diagnosis using the microfluidic EV isolation strategy, from
sample collection by liquid biopsy to analysis. The elements of the figure are created by BioRender.com.

Importantly, in recent years, different terminology has been used in the literature to
classify EVs based on their size or function, since their biogenesis was not easily assessed;
however, in 2018, the International Society for Extracellular Vesicles (ISEV) indicated using
the word Extracellular Vesicle (or EV) as a broad generic term that includes all subtypes
of vesicles to avoid confusion in the literature. This recommendation is followed in this
review, using the term small extracellular vesicles (sEVs) when the cited articles refer to
exosomes or EVs smaller than <200 nm [9].

2. Conventional EV Isolation Strategies

Conventional methods for the isolation and purification of extracellular vesicles can be
classified into methods based on the morphological properties (i.e., size, density) and based
on their interaction with specific components (solubility, protein reaction). The preferential
strategy must be chosen as a function of the initial sample (e.g., cell culture, blood, urine)
and the scope of the analysis (e.g., quantity evaluation, diagnosis of specific diseases) [9].
In the following paragraphs, conventional methods will be briefly introduced, reporting
their working principle and focusing on their advantages and disadvantages in terms of
EV purification. More details on these methods can be found in a specific review [17].

BioRender.com
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2.1. Differential Ultracentrifugation and Density Gradient Ultracentrifugation

Differential ultracentrifugation (DU) was the first approach used for EV isolation. In
general, centrifugation is a label-free method that allows accelerating the natural sedimen-
tation rate of suspended objects that are denser than the surrounding medium [21]. In the
case of EV isolation, protocols are typically based on increasing the centrifugal force to pro-
gressively remove first cell debris (approximately 1500× g), then large EVs (between 10,000
and 20,000× g), and finally, to collect small EVs (100,000–200,000× g) appearing as a small
pellet at the bottom of the centrifugal tube [21]. The limitations of this method are related
to the need for expensive equipment (i.e., an ultracentrifuge) and the variable recovery rate
(between 5 and 80%), which can often be operator related, preventing comparisons between
different studies. In addition, isolated objects are pelleted according to their density, and
thus collected materials also contain protein complexes and non-EV nanoparticles (e.g.,
apoptotic bodies, viruses), leading to an incomplete separation [22]. Additionally, EVs may
also cauterize together due to strong centrifugal force. Many different DU protocols can be
found in the literature that may puzzle those who are in the research field for the first time.
Despite these issues, probably due to its simplicity and recovery rates that can be rather
high, DU remains the most widely used approach in research laboratories and is typically
combined with other filtration-based EV isolation methods.

Density gradient ultracentrifugation (DGU) is a variation of DU that consists of the
addition of specific components (e.g., sucrose) within the suspending medium in order to
match the EV density, while allowing the other components to precipitate [23]. Although
DGU allows for gaining higher EV purity than DU, some limitations are also reported:
the process is time consuming, and molecules with similar EV density (e.g., high-density
lipoproteins) can be co-isolated.

2.2. Filtration Methods (Ultrafiltration and Size-Exclusion Chromatography)

Filtration methods are based on the use of a porous membrane to filter objects larger
than the porous size [24]. Since EVs typically have sub-micrometric size, membranes with
pore sizes between 0.001 µm and 0.01 µm are used combined with ultracentrifugation, in
the so-called ultrafiltration (UF) technique; UF allows for faster protocols and better sample
quality than DU in terms of purity from protein co-isolation. However, the recovery yield
can be biased by the pore size [25].

A highly used filtration-based technique for EV isolation is size exclusion chromatog-
raphy (SEC), consisting of the elution of EVs in a column composed of packed porous
polymeric beads [26,27]. This simple strategy allows for isolating intact EVs from various
biological fluids, preserving their biophysical properties, sharp-peaked distribution in size,
and high functionality. Thus, among isolation strategies based on the physical properties of
EVs, in particular their size, SEC is considered the least invasive in terms of EV integrity [28].
On the other hand, an important disadvantage is the low recovery rate: SEC can be applied
to concentrate EV fluids (such as plasma), but in the case of low initial EV concentration
(e.g., cell culture media), a pre-concentration step by UF is required. Despite the similarity
to microfluidic technologies based on separation by size through pores, SEC relies on the
passive motion of particles in a stationary phase, and it is highly time-consuming. Impor-
tantly, SEC can also co-isolate other components, such as viruses, protein aggregates, large
proteins, and low-density lipoproteins; however, these contaminations are typically less
compared to other EV-isolation methods. Today, several commercially available SEC kits
can be found specifically designed for EV isolation, depending on the volume and quality
of the input sample [29]. It should also be noted that recent studies are trying to improve
the capabilities of a standard SEC column, for example, by using a bead size gradient as
in particle purification liquid chromatography (PPLC) [30,31]. In any case, despite the
good purity of the final sample, SEC requires high costs for disposable filtering columns, in
addition to long isolation times.
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2.3. Precipitation and Immunoaffinity Methods

Physical–chemical interactions between EVs and solid support are also exploited for
their isolation. These approaches are based on EV precipitation [32], adjusting their solu-
bility by chemical compounds, and immunochemistry reactions that exploit the protein
present on their surface [33]. EV precipitation can be achieved by properly adjusting the
concentration of specific polymers within the starting sample, leading to very simple proto-
cols (e.g., ExoQuick® [34]). However, the final samples are contaminated by the polymer
used, which may compromise the downstream analysis. In contrast, immunochemistry
reactions are based on the chemical binding between proteins on the EV membrane and
specific antibodies, typically grafted onto surfaces or beads. In more detail, some specific
tetraspanin molecules are present on most EV membranes (e.g., CD63, CD81, CD9, and
others) and are typically used for this purpose [35]. It is noteworthy that the same approach
can be applied to isolate a subpopulation of EVs that presents specific membrane proteins
associated with a specific EV subtype. The advantages of this approach are its simplicity, the
fact that it does not require specific training by the user, and its reproducibility. However, to
avoid nonspecific interaction, pre-purification steps are typically required (e.g., differential
ultracentrifugation). In addition, isolation kits for specific immunocapturing are usually
costly. Another drawback is intrinsic in the approach itself: by selecting the EVs from their
surface markers, a subpopulation is always collected, and this could eventually bias the
downstream analysis. For this reason, it is preferable to use multimarker antibody cocktails
to recover vesicles characterized by different antigens or secreted from heterogeneous
cells [36,37].

2.4. Comments

In summary, it is clear that all the conventional approaches listed above have both
advantages and disadvantages, as highlighted in Table 1, and the choice between them
must be made according to the scope of the study. However, it is important to note that
although the chosen approach is the same, the specific parameters for the isolation of EVs
are adapted differently from time to time in different laboratories, leading to a lack of
standardization and important inconveniencies in comparing the data. On the contrary,
microfluidic devices have the potential to overcome some issues, such as the need for
expensive facilities and consumables and large sample volumes, which are peculiar to
conventional isolation techniques.

Table 1. Summary of the comparison of conventional techniques for EV isolation, based on different
isolation strategies. Retention time, quality, and quantity of processed sample and protocol simplicity
are evaluated according to the following scale: (–) difficult/very bad, (-) non-trivial/mediocre,
(+) easy/good, (++) very easy/excellent.

Working Principle Retention Time Output Sample
(Quality and Quantity) Simplicity

Differential ultracentrifugation particle size - - ++

Density gradient
ultracentrifugation particle density – – ++

Ultrafiltration particle size – - +

Size-exclusion
chromatography particle size – - +

Field-flow fractionation particle size - + +

Precipitation-based particle–polymer
interaction - + +

Immunoaffinity-based antigen–antibody
binding - + +
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3. EV Isolation Methods Based on Microfluidic Devices

Microfluidics is typically applied to bioanalytical protocols by following two different
approaches: (i) the miniaturization of existing methods or (ii) the development of new
methods that cannot be performed without miniaturization. The first way allows for
automating processes while reducing starting volumes, sometimes leading to increased
throughput of the analysis and quality of the output sample. In contrast, the second
approach tackles the conventional limitations from a completely different angle, leading to
results that cannot be compared with existing large-scale methods.

Among the possible ways to classify microfluidic devices, they can be distinguished
between “physical” or “chemical” methods according to the nature of forces that regulate
the EV isolation process.

3.1. Physical Methods

Physical isolation methods are label-free and exploit physical properties to discrimi-
nate vesicles (i.e.,: size or density). They can respond to external physical forces or be based
on passive EV collection. In the following, physical approaches are divided into passive or
active methods, depending on the presence or absence of driving forces that trigger the
physical characteristics of the EVs or of the medium in which they are dispersed.

3.1.1. Passive Approaches

Passive separation methods are label-free isolation strategies that do not require exter-
nal forces or stimuli. They are intended to enrich EVs by filtering processes through mem-
branes integrated in microfluidic channels or by exploiting hydrodynamic flow properties.

Filtration. A simple method to separate EVs from the initial biological sample based
on size requires the use of filtration systems, such as a nanoporous membrane, that allow
the passage of vesicles having a dimension smaller than the pore size by exploiting pressure
provided by external syringe pumps or by pressure controllers. Inspired by UF and SEC,
microfluidic protocols have important advantages in terms of cost, required sample volume,
and automation. Filters such as polycarbonate track-etched membranes were integrated
within microfluidic devices during the fabrication process by the authors of [38–44]. In
this way, the final device is simple to use: it does not require labels or surface treatments,
allowing for the processing of very large sample volumes. Nevertheless, the production
of such devices can be very complicated because of the strong microfabrication skills
required, sometimes preventing mass production. As in the case of conventional filters,
these devices can be prone to clogging and are typically disposable; additionally, isolation
through filters lacks specificity, except for size. Liang et al. presented a prototyping
example, developing a polycarbonate-based double-filtration system to isolate vesicles
within a range of 30–200 nm starting from the urine of patients with bladder cancer [38].
An isolation chamber is devoted to collect EVs smaller than the pore size of 200 nm of the
first membrane, and particles smaller than 30 nm are trapped through a second filter in
a waste chamber (Figure 3a). This method allowed for the isolation of EVs from 8 mL of
the pre-centrifuged initial sample in approximately 3.5 h, using a flow rate of 40 µL/min.
Further multiple-step filters are arranged in the Exosome Total Isolation Chip (ExoTIC),
in which five membranes in a series (pores of 200, 100, 80, 50, and 30 nm) allow for a
strict differentiation in the size of vesicles from various types of samples, such as plasma,
urine, and lavage [39]. The starting samples have an upper volume limit that can range
from 20 mL for cell culture to 500 µL for plasma. Another device called Exodisc takes
advantage of centrifugal force with double-step filtering through membranes of different
pore sizes [44]. Woo et al. were able to isolate exosome from a 1 mL starting sample of
cell culture or urine in 30 min with high purity (95% yield). Sunkara et al. optimized the
same platform for processing whole blood, despite using smaller samples (30 µL) and
reaching lower recovery rates (exceeding 75%) [45]. Other types of filtering devices rely
on cross-flow (tangential-flow) processes, in which the feed flows across the surface of
the membrane that acts to concentrate EVs larger than the pore size (30–50 nm). These
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devices can pair the cross-flow strategy with conventional (dead-end) filtration [41,42] or
with other isolation techniques, such as immunoaffinity-based capture [43], to improve
purification efficiency (see also Section 3.2.1).
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collection of extracellular vesicles from initial sample mediated by elastic force from viscoelastic fluid.

Inertial force. EV separation can also be performed by exploiting the inertial lift force
Fi that particles experience while flowing in a microchannel due to the Poiseuille flow
profile [47–49]. In fact, Fi acts to drive the particles orthogonally to the flow direction inside
the microchannel in a manner that strongly depends on particle dimension D (Fi ∝ D4).
Therefore, by properly tuning the channel size and flow rates, it is necessary to focus
the particles according to their size [50–55]. A particular configuration consists of spiral
channels that strongly favor the lateral migration of particles with different velocities
depending on size [56], as used by Tay et al. for rapid isolation from a whole blood sample
at 80 µL/min, despite reaching a poor recovery efficiency (20–60%) [57].

Deterministic lateral displacement (DLD). A different approach exploits inertial mi-
crofluidics and hydrodynamic interactions of particles with structured channels: particles
flowing in microchannels, other than the main force that drives them along the channel
itself, also experience lateral forces depending on their size. This effect can be combined
with specific and ordered patterns of pillars inside microfluidic channels (see Figure 3b),
leading to the so-called deterministic lateral displacement (DLD), which allows for the
generation of streamlines that the particles follow depending on the distance of centers λ
and the gap of the pillars G, as well as on the offset angle θ. Their separation can occur
whenever the particle size exceeds a critical diameter, which for circular pillars equals
DC = 1.4 Gtanθ0.48, which acts as a cut-off [58]. Specific details about the physical prin-
ciples of DLD are discussed in devoted articles [59]. DLD has been widely applied for
hydrodynamic cell separation depending on the cells’ size, and it has also recently been
applied to nanometric objects, such as EVs. For example, the pioneering work of Wunsch
et al. provided a sharp resolution of particles between 20 and 110 nm separated with a
silicon-based pillar array [60]. The production of these pillars, having gaps from 25 to
235 nm, required a sequence of complex micro- and nano-fabrication steps including pho-
tolithography followed by reactive-ion etching, then an electron beam process, and finally,
deep-UV lithography. Later, Smith et al. integrated 1024 arrays in parallel in another nan-
oDLD device (Figure 3b) to isolate EVs from serum and plasma, using a similar fabrication
approach [46]. This improved design allows for faster isolation processing (up to 900 µL/h),
despite an EV recovery of approximately 50%. Other devices, reporting pillar dimensions
and gaps of the order of microns, are instead replicated from silicon wafers produced by
standard photolithographic and etching techniques, allowing one to reach a high purity of
the final sample, but working at low throughput (of the order of µL/h) [61,62].

Viscoelastic force. Most bodily fluids (such as blood, saliva, semen, etc.) exhibit a
non-Newtonian behavior when flowing through channels [63]. This viscoelastic property
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can be leveraged to separate particles by size by driving a lateral migration owing to
the elastic lift forces, without external fields. Specifically, the trajectory of the particles is
regulated by the first normal stress difference (N1), inducing the lateral motion towards the
points of minimum shear rate, with relaxation time dependent on medium properties and
channel width [64–66]. The resulting elastic lift force Fe depends on the cube of the particle
size (Fe ∼ D3), and therefore, taking into account a device presenting several outlets
(see Figure 3c), larger particles migrate faster to the center line of the channel, whereas
smaller EVs are collected at the two sides [67–69]. Unlike DLD-based devices, particles
immersed in viscoelastic media can be focused simply by adjusting the rate and width of
microchannels, without requiring additional micro- or nanofabricated structures [67,68].
However, to enhance the elastic effect and guarantee good hydrodynamic focusing, specific
polymers can be added to the starting samples. As examples, Liu et al. (2017) added a
low concentration (0.1 wt%) of a biocompatible polymer to the cell culture medium or
serum sample, namely, poly(oxyethylene) (or PEO), to enhance these effects and better
control the separation of EVs, achieving high purity and recovery rates greater than 80%
and 90%, respectively [70]. Then, in 2019, a similar approach was used to simultaneously
separate particles by size and based on membrane protein EVs from breast cancer cell lines
and from serum, by using double-stranded λ-DNA molecules in TBE buffer to increase
the non-Newtonian effect [71]. In this case, the extracellular vesicles are subjected to the
centerline-directed elastic lift force Fe; additionally, larger microvesicles and apoptotic
bodies are repelled by the elastic force, competing with the and drag forces Fd (Fd ∝ D).
Asghari et al. exploited oscillatory flows to separate micrometer and sub-micrometer
constituents from HEK293T cell lines and was able to focus both λ-DNA strands and
vesicles in a sheathless flow [72]. For this purpose, a more complex setup is needed to
perform the EV separation, including a pressure-driven chip coupled with an electronic
device to actuate valves and generate controlled flow oscillations.

Flow fractionation methods. Another possible way to separate microparticles by size
by exploiting hydrodynamic forces is provided by asymmetric flow field-flow fractionation
(AF4) [73]. This method requires the implementation of thin microchannels (dozens of µm)
having one side made of a membrane that allows the generation of a flow perpendicular to
the main stream [74]. Thus, the injected sample under laminar flow conditions is subjected
to both the cross-flow field and Brownian diffusion. The accumulation of particles is
regulated by the competition of these two counteracting forces, which induce large particles
to move in proximity to the membrane, and the smaller particles are easily conveyed along
the stream. Typically applied for polymer and protein fractionation, AF4 has been used to
isolate EVs, being capable of separating two different subpopulations of vesicles by size
(60–80 nm and 90–120 nm) from several tumor cell lines [75]. Shin et al. employed a similar
fractionation approach, known as EV separation pinched-flow fractionation (PFF) [76], to
isolate EVs from apoptotic bodies [77]. Here, a sheath fluid is applied to achieve EVs by
focusing within the microchannel.

3.1.2. Active Approaches

Whenever physical forces are applied to fluids that contain suspended particles, they
can respond to the stimulus by changing their motion. Active separation exploits applied
fields, such as acoustic or electrical ones, without resorting to channel functionalization or
patterning, being label-free and contact-free.

Acoustofluidics. Acoustofluidic devices combine the ability of microfluidics to handle
small volumes in confined channels with the ability to trigger particle motion with acoustic
waves [78–80]. This label-free and contact-free method employs ultrasound waves to
induce differential forces on particles according to their size [81]. Particles can be trapped,
separated, focused, or transported by regulating the properties of acoustic waves, which can
propagate within the bulk material (bulk acoustic waves, BAWs) [82,83] or along the surface
of the medium (surface acoustic waves, SAWs) [84]. Importantly, to emit acoustic waves,
electrodes or piezoelectric substrates must be included into the microfluidic devices and
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properly engineered during their production. In the case of BAWs, the entire piezoelectric
material driven by an alternating current (AC) vibrates at the same frequency of the AC
signal (100 kHz–10 MHz). In contrast, SAWs are generated by applying an AC signal to
interdigitated transducers (IDTs) patterned on a piezoelectric material, which are excited at
higher frequencies than BAWs (up to GHz) (Figure 4a). In order to confine small particles
such as EVs, high frequency, of the order of dozens of MHz, is generally required, and thus
SAW-based devices are employed [85]. As an example, Lee et al. used a LiNbO3 wafer
to imprint interdigitated electrodes that can discriminate sEVs and larger microvesicles
from red blood cells according to their size; their cutoff value can be set by tuning the
acoustic power and flow velocity [86]. Although fabrication is somewhat complex due
to the presence of acoustic actuators, acoustofluidic devices can guarantee high isolation
efficiency [87–89]. Wu et al. developed a device based on SAWs consisting of two modules
to remove larger blood cells and debris, showing separation of EVs with an 82.4% recovery
rate and 98.4% purity using flow rates in the order of few µL/min [90]. Other SAW-based
platforms have been coupled with commercial acoustic transducers that lead to automated
processes [91–93], and others have been implemented together with modules devoted to
the detection of sEVs [94–96].
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Figure 4. Examples of physical forces to separate vesicles within microfluidic chips. (a) Device
with interdigitated electrodes generating acoustic waves to separate EVs from the initial sample;
(b) differentiation of EVs through membranes mediated by electrophoretic (EP) forces.

Electrokinetic force. Electric fields applied to fluids allow for the manipulation of
polarizable particles, giving rise to a variety of electrokinetic phenomena: electrophore-
sis, dielectrophoresis, electroosmosis, etc. These effects provide forces whose magnitude
acting on the particles is strictly dependent on their dimension, the dielectric constant,
and the charge density of both particles and the surrounding medium. More precisely,
the electrophoretic effect (EP) works on monopoles, requiring high forces (FEP ∝ E) to
induce particle manipulation. Dielectrophoresis (DEP) instead allows for controlling the
trapping of particles by electric field gradients, to which the DEP force is proportional
(FDEP ∝ ∇|E|2) and thus depends on the electrode geometry, rather than the intensity
of electric pulses [97]. The latter method happens to be the most widely employed for
EV manipulation due to its simplicity with respect to the other electrokinetic phenom-
ena. Ibsen et al. used an alternate current electrokinetic microelectrode to concentrate
sEVs from plasma on the edge of the microelectrodes where high field gradients were
exerted to process relatively small aliquots (30–50 µL) in less than 30 min, including on-chip
fluorescent detection [98]. To improve isolation performance, a device based on dielec-
trophoretic interactions can be mediated by other types of substrates, such as polystyrene
microspheres [99], coupled with automated parts [100], or pneumatically driven compo-
nents [101]. The latter has been exploited by Davies et al. in a device that takes advantage
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of the electrophoretic interaction with a pressure-driven filtration stage of porous polymer
monolithic membranes (PPMs), which have variable size pores, to isolate vesicles from
240 µL of whole blood in two hours. In addition to DEP, other examples of electrokinetic
phenomena already exploited to trap and concentrate vesicles are electrophoresis [102,103]
or electro-osmosis [104,105]. For example, Cho et al. developed a device to enrich plasma
EVs by coupling a porous membrane with a dedicated electrode (Figure 4b), in order to
remove free proteins and debris subjected to electrophoretic migration through 30 nm
pores, with an efficiency of approximately 85% [106].

A recent work by Tayebi et al. combined both dielectrophoretic and acoustophoretic
forces to sort extracellular vesicles (<200 nm) and microvesicles (>300 nm) from cell cultures
that reached high levels of purity (95%) and recovery (81%) [107]. This kind of virtual DLD
(vDLD) permits tuning the balance of the two counteracting forces by adjusting properties
of the medium and channel sizes, given a fixed electrode geometry.

3.2. Chemical Methods

Unlike physical methods, approaches based on the chemical affinity between specific
antibodies and antigens allow for the recovery of vesicles in a more selective manner.
Immunoaffinity-based capture can occur on flat or patterned substrates, as well as on
micrometric solid beads or nanoparticles.

3.2.1. Immunocapture on Fix Support

The selective separation of EVs can be achieved by properly engineering the internal
microchannel surfaces by adding a specific antibody that can anchor a specific EV mem-
brane protein. The method provides an extremely good specificity and reproducibility and,
in the best cases, allows for processing of samples with very high throughput, even of tens
of µL/min.

The simplest strategy is to functionalize unstructured channels. However, by using a
straight channel with a typical lateral side of dozen to hundreds of µm and considering
the typical size of EVs, the binding area available for vesicle capture is relatively low,
causing a poor probability of contact. Moreover, the laminar flow prevents the correct
mixing of the solution containing EVs, limiting their accessibility to the molecules anchored
on the channel walls. This issue has been faced in two ways: i) improving mixing by
patterning channels with specific patterns and ii) including micro- and nanostructures
within the channel by creating a sort of filter through which the solution is forced to pass.
The first method is well known in the microfluidic community, having already been applied
to promote chemical reactions or for isolation purposes [108]. In contrast, the second
mimics standard filtration methods by integrating specificity, since these ‘filters’ are coated
to capture EVs showing the desired markers [109]. However, as for filtration methods,
this approach suffers from clogging and highly complex microfabrication protocols. To
increase the surface-to-volume ratio of channel walls, the inner surfaces of microfluidic
chips with micro- and nano- structures are also chemically functionalized with antibodies
to ensure the EV chemical affinity [110,111]. The most common microstructures are ordered
rows of pillars [112–114], herringbone patterns [108,111,115–118], and properly shaped
microposts [119,120]. Meanwhile, in the case of nanopatterning, nanorods, nanowires,
and more complex 3D structures [121] are typically used. In 2010, a pioneering work by
Chen et al. described a way in which to modify PDMS microfluidic channels presenting
herringbone grooves with specific surface treatment [122]. The authors flushed inside the
chip a solution of 3-mercaptopropyl trimethoxysilane and incubated it with Neutravidin
solution before functionalizing it with biotinylated anti-CD63 antibodies, allowing for the
isolation of vesicles from 400 µL of serum within one hour. In another work, Chen et al.
used an array of ZnO nanowires (Figure 5a) with interconnected macropores to expand
the trapping area [109]. The latter approach was validated with small EVs spiked in saline
solutions, showing a trapping rate of up to 30 µL/min, and then with both serum and
plasma, from which trapped vesicles were detected with horseradish peroxidase (HRP)-
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labeled antibody to allow for colorimetric sensing using 3,3′,5,5′-tetramethylbenzidine
(TMB). Zhang et al. developed a chip with graphene oxide/polydopamine (GO-PDA)
interfaces that provides specific EV absorption from human plasma [119]. The same group
then compared a herringbone pattern with solid structures with colloidal silica nanorods
(Figure 5b) that showed an improvement in the detection limit of plasma samples at
10 sEVs/µL [123]. Wang et al. fabricated a microfluidic chip structured with a 3D array
of ciliated silicon pillars for multiscale filtering of EV-like vesicles or liposomes, mixing
filtration properties and immunocapture [112]. Tests with prototyped 83 nm liposomes
revealed a retention rate of approximately 60% from a 30 µL of starting volume. This
arrangement has been optimized by Qi et al. to improve capture efficiency and preserve
EV integrity for drug delivery (Figure 5c) [113]. In this work, the retention rate of sEVs
from MDA-MB-231 (breast cancer) cell culture could be increased to 70%, mainly due to
the anti-CD63 functionalization of micropillars.
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Figure 5. Immunoaffinity capture inside microfluidic devices. (a) ZnO nanowires fabricated inside
channels for the specific capture of CD63-positive sEVs, modified from [109]; (b) colloidal struc-
tures arranged in a herringbone configuration inside the microfluidic channel, modified from [123];
(c) ciliated silicon nanorods capable of discriminating sEVs from cell debris [113].

3.2.2. Immunocapture on Beads and Nanoparticles

Another strategy to chemically trap EVs requires the use of beads of a size between
0.5 and 20 µm functionalized with the target antibody. In fact, floating beads of micrometer
size present a larger surface area. Beads can be directly injected and mixed within the
initial sample, enhancing the EV contact probability, without introducing complicated
micro- or nano-structures into the microfluidic chip, which typically require costly fabri-
cation approaches and a highly trained operator. Therefore, this technique is one of the
most efficient in terms of specificity, but especially for higher recovery rates and analysis
sensitivity. On the other hand, the flow rates applied in the microchannel to transport
liquids cannot be too low, in order to prevent bead sedimentation, nor too high, to en-
sure good mixing between vesicles and EVs, even though some works tried to process
the sample at a throughput of up to approximately 9 mL/h [124]. There are different
possible beads that can vary in terms of material or size. The most commonly used are
micrometer-sized commercial immunomagnetic beads that have a paramagnetic core that
can be easily handled using external magnets [125–135]. Here, unlike in functionalized
channels for immunocapture, an external magnetic force must be applied to manipulate
particles and favor isolation. A key aspect in the choice and use of the floating substrate
for EV capture is that the time must be sufficient for the substrate to settle in the channel.
The sedimentation speed v for a single object dispersed in a viscous fluid can be calculated
by the Stokes law: v =

(
d2(ρd−ρf

)
g
)

/
(
18µf

)
, where d and ρd are the diameter and the

density of the object, ρf and µf are the density and the viscosity of the fluid, and g is the
gravity acceleration [136]. Thus, considering a polystyrene bead of 1 µm (ρ~1.05 g/cm3)
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and an EV of 200 nm (ρ~1.1 g/cm3) dispersed in water (µf~1 cP), it is possible to notice that
the first sediments are more than ten times faster than the second. This occurrence becomes
even more critical when using magnetic beads (ρ~1.8 g/cm3), as their sedimentation speed
is two orders of magnitude higher than for EVs. Therefore, the flow rates applied to the
liquid within the channel must be fast enough to prevent particle sedimentation, but slow
enough to ensure a sufficiently long incubation time for EV capture. Thus, the working
range of this type of device is limited.

A highly cited example is given by He et al., who used immunomagnetic beads coated
with specific antibodies (e.g., anti-EpCAM) to capture and lyse sEVs inside a unique device
to analyze the protein content by chemifluorescent ELISA [125]. Plasma samples of 30 µL
volume are processed in about 100 min. Zhao et al. fabricated a device called ExoSearch to
enrich sEVs from plasma and measure multiple marker fluorescent signals (Figure 6a) [126].
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(a) Immunomagnetic beads coated for the enrichment of vesicles from blood plasma inside ExoSearch
chips [126]; (b) streptavidin-coated polystyrene beads used as substrate to trap vesicles in herringbone
filters and redisperse them [137]; (c) microfluidic systems used to flow blood samples and isolate
vesicles by means of superparamagnetic nanoparticles (SPIONs), modified from [138].

In addition to magnetic beads, polystyrene beads (PS) can be used for the isolation
of EVs [80,99,124,137,139–141] using centrifugation and redispersion instead of magnetic
forces. One of the main drawbacks of immunocapturing with beads is the difficulty of
breaking the bond with antibodies, preventing EV damage. However, Tayebi et al. used
specifically coated PS beads to capture EVs from MCF-7 (a breast cancer cell line) in
constrictions along the microfluidic circuit with an aperture of 30 µm to trap a single bead,
by exploiting hydrodynamic resistance in channels having different shapes [140]. The
trapped EVs were then removed from the beads by rising with a low pH IgG elution buffer
(0.1 M glycine-HCl) for 1 min and then waiting 10 min for antibody–antigen dissociation.
Finally, neutralization is provided by a solution of pH 7.4 (1 M Tris-HCl). Despite a good
purity, this approach limits the amount of EV–bead complexes to the number of trapping
sites and the maximum flow rate (50 µL/min). Gwak et al., instead, promoted chaotic
stirring of coated PS beads inside horseshoe-shaped mixers, and the work [124], was
able to enrich plasma EVs using fish trap-shaped filters (Figure 6b) [137]. Then, using
the same elution buffer, different flow rates were tested: under the best conditions, the
whole isolation process for the 100 µL sample was completed in 5 min, showing a capture
efficiency greater than 97%.

Unlike micrometric beads that are typically larger in size than EVs, an alternative solid
substrate is represented by nanoparticles (NPs), which are on the order of a few nanometers,
either with magnetic properties (superparamagnetic or ferromagnetic) [134,138,142–147]
or simply functionalized with selective markers [148]. In particular, they have a similar or
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even smaller size than small EVs, so EVs can be used to capture a single EV on their surface,
rather than being encapsulated inside, as used in drug delivery [149]. Notably, these NPs
can be an active tool for the capture and manipulation of vesicles, rather than a passive
substrate. A pivotal work by Shao et al. showed a strategy for labeling and isolating blood
glioblastoma microvesicles, implementing properly functionalized magnetic nanoparticles
(core of 7 nm) and using a two-step protein targeting to maximize binding. This approach
allowed for better detection of CD63 + vesicles with a micronuclear magnetic resonance
(µNMR) system [142]. In another work, Ko et al. exploited magnetic NiFe nanopores
(600 nm diameter) to trap EVs labeled with 50 nm coated NPs, allowing for the processing
of serum and plasma with flow rates of up to 10 mL/h [144]. Recently, increasing attention
has also been paid to superparamagnetic iron oxide nanoparticles (SPIONs) to isolate EVs
due to the nanoparticles’ reversible magnetic property and easy manipulation, as exploited
by Kwon et al. for the purification of blood samples [138]. Here, SPIONs and EVs create a
complex cluster that can be isolated by exploiting the magnetic force applied by an external
magnet (Figure 6c).

In the following, Table 2 reports a summary of the main EV isolation methods exploit-
ing microfluidic strategies, distinguished between physical and chemical, together with
their working principle.

Table 2. Summary of relevant published articles dealing with EV isolation from different microfluidic
approaches.

Methods Working Principle

Physical:
Passive

Filtration [38–45,150,151] Micro-/nano- filtration process by porous
membranes inside chip

Deterministic lateral
displacement [46,60–62]

Particle distribution in size by lateral forces
conveyed by ordered array of posts

Inertial force [50–55,77]
Viscoelastic force [67–72]

Imbalance of inertial forces or of shear
forces in non-Newtonian viscoelastic fluid

Physical:
Active

Acoustofluidics [86–96,107] Acoustic trapping by ultrasound waves

Electrokinetic force
[98–107,152–154] Charge separation by electric fields

Chemical:
Fixed support

Functionalized fixed support
[108–122,130,155–180]

EV capture by specific antibodies on fixed
substrate

Chemical:
Floating Beads

Magnetic beads
[125–135,181–186]

EV capture by specific antibodies on beads
for magnetic manipulation

Polystyrene beads
[80,99,124,137,139–141,187]

EV capture by specific antibodies on
non-magnetic beads

Magnetic nanoparticles
[93,134,138,142–147,149,188]

EV capture or handling by specific
antibodies on magnetic nanoparticles

4. Discussion
4.1. Physical and Chemical Microfluidic Approaches: Pros and Cons

When microfluidic devices are designed to improve the purification and/or isolation
of specific analytes from complex starting samples, four main aspects must be considered
to balance advantages and disadvantages: throughput of the process, quantity and quality
of the output sample, automation capability, and complexity of the microfabrication. In
the following section, we discuss the above-presented approaches for EV isolation in
microfluidic devices, focusing on these four aspects. A schematic summary of the following
discussion is also reported in Table 3.
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Table 3. Summary of the comparison of different microfluidic techniques for EV isolation. Each
of the four aspects is evaluated according to the following scale: (–) difficult/very bad, (-) non-
trivial/mediocre, (+) easy/good, (++) very easy/excellent.

Throughput
Output Sample

(Quality and
Quantity)

Possible
Automation

Micro-
Fabrication
Simplicity

Physical:
Passive ++ - + -

Physical:
Active - + + -

Chemical:
Fixed support + ++ ++ +

Chemical:
Floating Beads + ++ – +

Physical approaches based on filtration, although based on principles similar to those
of UF and SEC, allow for the processing of large volumes at high throughput. In fact, mi-
crofluidic protocols can be easily automated with the support of external pumps controlled
by devoted software [189] to infuse biological samples at high rates throughout filters
inside channels. However, the realization of these microfilters represents a critical aspect:
as for their correspondent conventional methods, these devices are typically disposable,
because they are prone to clogging, and the processing time for complete isolation is quite
long compared to that of the other microfluidic techniques.

In contrast, physical approaches based on external stimuli, such as acoustic waves
or electric fields, are not directly comparable to existing methods. These contact-free
strategies prevent EV damage and preserve the EVs’ functional properties [86,106]. In fact,
the presented results show good vesicle integrity and a homogeneous size distribution,
especially in terms of the acoustic approach [90]. On the other hand, captured EVs have
a low purity, because other contaminants that have a similar size and/or density can be
isolated together. Then, as in the previous case, the microfabrication requires both an
appropriate environment (i.e., a clean room) and trained operators, since the electrodes
must be integrated inside microfluidic devices, and high alternate electric fields must
be applied and precisely controlled. The latter practice must be executed by equipped
laboratories, which include costly facilities, such as photolithographic platforms, metal
evaporators, electronic equipment, and related characterization instruments. However,
compared with microfluidic filtering methods, cleaning protocols can be considered in
the case of SAW or DEP devices, partially reducing the impact of the microfabrication.
Most of the aforementioned strategies based on separation by size can be biased by the
fact that other membrane-based components also have dimensions similar to those of EVs
(e.g., lipoproteins).

Then, approaches rooted in chemical affinity have been integrated within microfluidic
devices, with the aim of improving the anchor point by increasing the surface-to-volume
ratio, isolation throughput, sample quality output, and process automation [190]. Com-
pared to physical approaches, immunoaffinity provides a highly specific isolation that
allows for the distinction between the EV subpopulation [191] and the high purity of
the isolated sample. In the fixed support-based approach, molecules are coated on mi-
crochannel surfaces that typically present specific micro- and/or nanopatterns to improve
the liquid mixing (microstructures) and/or acting as filters (nanostructures). In contrast,
the use of micrometric beads as solid floating supports for EV capture allows for using
more simple channel geometries, since the beads themselves act as traps that improve the
surface-to-volume ratio. However, compared to other microfluidic approaches, the use of
micrometric beads leads to difficulties in terms of the complete automation of microfluidic
devices, since they are prone to sedimentation and can induce microchannel clogging [144].
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Another disadvantage of this approach is the high costs of purchasing commercially avail-
able microbead kits devoted to EV capture; therefore, custom and home-made protocols are
generally preferable [139]. A completely different perspective is provided using nanopar-
ticles. They present a size comparable to or even smaller than a single EV, leading to an
improvement in capture control and preventing damage to the EVs. Additionally, since
several characterization methods are now based on optical and spectroscopic techniques
(e.g.,: fluorescence microscopy, Raman spectroscopy), nanoparticles can be directly used
to improve the signal-to-noise ratio [188]. A possible drawback of the use of NPs is that
they require trained operators for their synthesis and, importantly, their stability is strongly
influenced by the surrounding buffer, which may affect the EVs as well. Therefore, strong
physical-chemical expertise is required to develop a working microfluidic device based on
NPs’ isolation.

In general, as summarized in Table 3, among the microfluidic approaches analyzed,
we considered devices based on the chemical affinity of the fixed support to be the most
promising, as they show good throughput and high-quality sample output, supported
by simple microfabrication and automation. In this sense, the use of beads requires more
precautions due to the possible sedimentation and clogging issues. In contrast, physical ap-
proaches suffer from complicated complex microfabrication requiring electrode integration,
which, at the current state of the art, is not sufficiently balanced by appropriate throughput
or sample quality.

4.2. Microfluidic Isolation Techniques: Which Is the Most Popular

To better appreciate how widespread these methods are, Figure 7 reports a statistical rep-
resentation of all the published articles on EV isolation performed by microfluidic devices.
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The pie chart in Figure 7 highlights that the predominance of microfluidic methods
makes use of chemical immunocapture, which comprises two-thirds of the total output.
This is probably due to the fact that physical approaches leverage concepts similar to
conventional ones, such as DU, UF, or SEC, hence carrying similar drawbacks in their usage,
and automation has not yet been implemented in the presented proof-of-concept device.
Moreover, chemical affinity provides an easy implementation inside microfluidic devices,
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especially for flat channels that require a simple functionalization capable of binding to
membrane proteins, such as tetraspanins. Additionally, these methods generally perform
better than their physical counterparts, mainly in terms of throughput and recovery rate.
Among chemical isolation devices, those exploiting fixed substrates are the most commonly
used, probably due to the large amount of literature related to the functionalization of
microfluidic devices [192], the automatization capability, and the simple microfabrication,
despite the fact that the production of certain integrated nano-structures could lead to
some difficulties. In contrast, there is no preferred physical approach for EV purification:
passive devices are slightly more frequently used, despite the poor quality of final samples,
probably because the users do not need specific training to control SAW and DEP, and these
devices are more prone to miniaturization. However, these active approaches are relatively
newer with respect to their passive counterparts, and therefore, further development is
expected in the future to facilitate device production and handling.

4.3. Are Microfluidic Devices for EV Isolation Ready for Clinical Applications

Today, the clinicaltrials.gov database reports more than 350 trials (about 90 already
completed) indexed by the keywords exosomes and extracellular vesicles; among them, only
two, which have just started, involve microfluidic systems. The latter can be understood
considering the still young character of the EV research field. However, to better analyze
the current state of the art from a clinical perspective, we discuss the applicability of the
presented microfluidic devices in real diagnostic conditions. In detail, the microfluidic
devices devoted to purified and isolated EVs are validated using different starting samples
(i.e.,: culture media, blood-derived fluids, urine, etc.), and, in some experiments, EVs are
spiked in human fluids. Although we consider all these approaches to be fundamental
for the validation of novel technologies, they represent a first proof of concept compared
to real clinical assays, since EV isolation may depend on several factors, such as starting
samples and EV biogenesis. Therefore, we divided the presented papers based on their
validation methods, labeled as: (i) proof of concept, if they are limited to cell culture media or
spiked EVs in body fluids, and (ii) clinical sample, when they directly employ body fluids
for EV isolation (e.g., urine, plasma, serum, or whole blood). The result of this classification
is reported in Table 4 and Figure 8, together with the isolation approach used.
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Table 4. Summary of articles published during the years 2000–2022 dealing with EV isolation
from microfluidic devices processing samples for research purposes or clinical trials, according to
techniques classified in Table 2.

Proof of Concept Clinical Sample

Starting Sample % Starting Sample %

Physical:
Passive

Plasma [52,62]
Urine [44,60,95]

Cell culture
[41–43,50–52,54,55,61,68,71,72,

77,88,150,151,193,194]

12

Plasma [39,195]
Serum [43,46,71]

Blood [45,53,67,69]
Urine [38,39,44,46]

8

Physical:
Active

Plasma [98,102,103,106,152]
Serum [103]
Saliva [88]

Cell culture [86,89,91,98–
100,104,105,107,153,154]

12
Plasma [87,91,94]

Blood [90,101]
Urine [91,92,95]

5

Chemical:
Fixed support

Plasma [87,173]
Serum [122,168]

Cell culture [109,113,122,155–
158,160–162,164–167,172,174–

177,179,180,196–200]

24

Plasma [108,114,119,120,123,155,
163,171,173,201]

Serum [110,117,118,123,130,178,
202,203]

Blood [170]
Urine [115,159,169]

14

Chemical:
Floating beads

Plasma [130]
Serum [130,183]

Cell culture [99,137,139–
141,143,147,182,186,188,193,204]

11

Plasma [80,124–
127,129,132,135,138,144,185]

Serum [131,134,145,147,148,181]
Blood [133,142,146]

Urine [128]

14

TOTAL 59 41

In Figure 8, it can be observed that 40% of microfluidic devices have been validated us-
ing body fluids taken from healthy donors or real patients, representing a good percentage
of the total microfluidics-based studies. Among these works, most use immunoaffinity-
based devices to capture vesicles, increasing the difference already noted in Figure 7
compared to the use of physical methods. Notably, passive physical methods are dispos-
able and more prone to clogging than their non-microfluidic counterparts, whereas active
interactions in real fluids must consider several parameters, such as the fact that viscous
biofluids are not as easy to be manipulated as aqueous solution. It is worth noting that
most of the works processing proof-of-concept samples, such as cell lines or spiked EVs, also
include pre-purification steps (e.g., differential ultracentrifugation) before the injection
of the biological fluids to favor better isolation of small vesicles after the elimination of
heavier debris and cell fragments. In contrast, a device already tested with clinical samples
without requiring pre-treatment can be considered ready to use for medical diagnostics,
and this kind of validation must be the final goal of future studies.

4.4. Microfluidic Devices for EV Detection and Analysis

Extracellular vesicles collected and purified by the aforementioned approaches can
be investigated by several detection techniques. The more conventional ones for EV size
estimation require off-chip treatment and characterization by commercial instruments,
mostly based on tracking such as nanoparticle tracking analysis (NTA) [205], dynamic
light scattering (DLS) [206], or flow cytometry (FC) [207], which reveals information on EV
morphology. Indeed, NTA is actually performed in a microfluidic chip for the estimation of
size by scattered light based on Brownian particle fluctuations and similarly occurs for DLS;
cytometric analysis requires hydrodynamic vesicle focusing that is otherwise achievable by
the microfluidic channel.
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Microfluidic devices have also been developed for EV detection, mainly based on two
approaches: (i) self-standing, in which the device itself works as detector, and (ii) storage,
in which the microchannels act as a storing chamber for EVs that are screened by an
external microscope or probe. The first approach typically involves the integration of a
devoted electrode, as occurs for analysis by field-effect transistors [185], electrochemical
sensing [208], zeta potential estimation [102], or lateral flow immunoassay [172].

In contrast, in the second approach, the microfluidic device allows for several types of
detection: (i) colorimetric for EV quantification [109], (ii) spectroscopy based on surface-
enhanced Raman scattering (SERS) [94], (iii) optical properties by surface plasmon reso-
nance (SPR) [200], (iv) resistive pulse sensing due to EV through nanopores [209], (v) detec-
tion by micro-nuclear magnetic resonance (NMR) [142], etc. Furthermore, some microfluidic
platforms were engineered to also perform EV content analysis, such as on-chip quanti-
tative PCR [181] or ELISA [44]. More details on detection methods based on microfluidic
devices can be found in other specific reviews [20,210].

5. Conclusions and Perspective

This review looks at the most important techniques currently used to isolate EVs using
microfluidic devices, analyzing their ability to be applied in clinics. In this perspective,
despite the fact that microfluidic technologies have only recently been applied to the
isolation of EVs, almost half (40%) of the presented devices use potentially clinical samples
for their validation. Therefore, microfluidics seems to represent a promising strategy for
medical investigation.

The comparison between physical and chemical microfluidic approaches for EV isola-
tion emphasizes a slight preference for chemical methods over their physical counterparts,
which becomes much more evident if one considers only the technologies validated with
potential clinical samples. This might be the cause for two possible reasons: (i) the device
performance itself (higher throughput, better capture efficiency, and simple microfabrica-
tion for mass production) or (ii) the general trend of the biomedical community to look for
EVs that have specific phenotypes. Actually, we believe that the latter is dominant, even
though there is probably a combination of both factors. Although the characterization of
EVs was initially based on quantification and size classification, it is now clear that the
specific EV subpopulations can provide useful information related to specific diseases [8].
Therefore, we expect that the gap between physical and chemical approaches will increase
in the near future. A possible alternative to further improve the efficiency and purity in EV
capture might be the implementation of both physical and chemical approaches combined
together inside a single device, using passive EV separation from other massive particles,
and then a specific immunocapture for distinguishing different subpopulations, providing
also high throughput isolation.

In addition to EV isolation, microfluidic devices are also widely employed for EV detec-
tion and analysis. Whereas the first devices consisted of simple microchannels that aimed
to store EVs for further analysis (as for the NTA), new approaches, which combine microflu-
idic systems, devoted optical systems, and antibody immunocapturing, point towards the
analysis of single vesicles in order to achieve information about their heterogeneity within
the same population [211].

In conclusion, we are confident that microfluidics, which is already employed in some
gold-standard techniques for EVs analysis (i.e.,: NTA), can bring great support in terms of
EV isolation by providing tools capable of performing repeatable and automated protocols,
similar to other important biomarkers, such as CTCs and ctDNA. However, microfluidics
experts exposed to the field for the first time must also consider biological and medical
points of view. Therefore, to be really useful, new technologies must be developed in
accordance with the requirements and expectations that, importantly, have progressively
changed over the past five years, following the guidelines on the validation of the protocol
and the outcomes established by the ISEV community [9].
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