
Vol.:(0123456789)1 3

Engineering with Computers
https://doi.org/10.1007/s00366-022-01725-3

ORIGINAL ARTICLE

Accurate computation of partial volumes in 3D peridynamics

Francesco Scabbia1 · Mirco Zaccariotto1,2 · Ugo Galvanetto1,2

Received: 7 October 2021 / Accepted: 23 July 2022
© The Author(s) 2022

Abstract
The peridynamic theory is a nonlocal formulation of continuum mechanics based on integro-differential equations, devised
to deal with fracture in solid bodies. In particular, the forces acting on each material point are evaluated as the integral of the
nonlocal interactions with all the neighboring points within a spherical region, called “neighborhood”. Peridynamic bodies
are commonly discretized by means of a meshfree method into a uniform grid of cubic cells. The numerical integration of
the nonlocal interactions over the neighborhood strongly affects the accuracy and the convergence behavior of the results.
However, near the boundary of the neighborhood, some cells are only partially within the sphere. Therefore, the quadrature
weights related to those cells are computed as the fraction of cell volume which actually lies inside the neighborhood. This
leads to the complex computation of the volume of several cube–sphere intersections for different positions of the cells. We
developed an innovative algorithm able to accurately compute the quadrature weights in 3D peridynamics for any value of
the grid spacing (when considering fixed the radius of the neighborhood). Several examples have been presented to show
the capabilities of the proposed algorithm. With respect to the most common algorithm to date, the new algorithm provides
an evident improvement in the accuracy of the results and a smoother convergence behavior as the grid spacing decreases.

Keywords Quadrature weights · 3D peridynamics · Cube–sphere intersection · Meshless method · Convergence studies ·
Improved numerical integration

1 Introduction

The peridynamic theory provides a nonlocal reformulation
of classical continuum mechanics: the internal forces are
evaluated with integral equations, which are valid regardless
of the presence of discontinuities in the displacement field.
Hence, peridynamics can naturally model crack initiation,
propagation and branching in solids. The first formulation
of the peridynamic theory was the bond-based version [1],
in which the Poisson’s ratio is restricted to a fixed value.
Subsequently, state-based peridynamics was developed [2],
introducing the possibility of varying the Poisson’s ratio. In
the literature, there are many examples of applications [3, 4],
ranging from complex crack patterns, such as spontaneous

branching [5], to multi-physics problems involving fracture
[6, 7].

Peridynamic points interact with each other up to a finite
distance � , called “horizon”. The “neighborhood” of a point
is the set of all the points interacting with that point. There-
fore, the neighborhood has a circular shape in 2D problems
and a spherical shape in 3D problems. The peridynamic
equation of motion is based on the spatial integration over
the neighborhood of the internal forces, which are generated
by the interactions between neighboring points. In practice,
the integration of the peridynamic equation of motion is car-
ried out by means of numerical tools. The body can be dis-
cretized by a uniform or non-uniform grid (see for instance
[8–10]). Various methods have been utilized to integrate
numerically peridynamic equations: meshfree method with
composite midpoint quadrature [11–14], Gauss-Hermite
quadrature [12], finite element method [12, 15, 16], collo-
cation method [17, 18] and an adaptive integration method
with error control [19]. Thanks to its simplicity of imple-
mentation and relatively low computational cost compared to
other approaches, the meshfree method with a uniform grid
is the most commonly used for peridynamic simulations. In

 * Francesco Scabbia
 francesco.scabbia@phd.unipd.it

1 Center of Studies and Activities for Space (CISAS)-“G.
Colombo”, University of Padova, via Venezia 15,
35131 Padova, Italy

2 Department of Industrial Engineering, University of Padova,
via Venezia 1, 35131 Padova, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-022-01725-3&domain=pdf

 Engineering with Computers

1 3

this method, the body is discretized in volume cells with a
square shape in 2D problems and cubic in 3D, and the nodes
lie at the center of the corresponding cells. The spatial inte-
gration over the neighborhood is transformed into a summa-
tion of integrals over cells and the midpoint quadrature rule
is then applied in each cell, in which the nodes are employed
as quadrature points.

However, near the boundary of the neighborhood, some
cells are only partially within the neighborhood itself.
Therefore, the quadrature weights related to those cells are
computed as the fraction of cell volume which actually lies
inside the neighborhood. The intersection area or volume of
those cells with the neighborhood is also referred to as “par-
tial area” in 2D and “partial volume” in 3D. The accuracy
and convergence of the peridynamic results depend on the
algorithm to compute the quadrature weights, i.e., the partial
areas or volumes [13, 14, 20].

The first algorithm proposed in [11] considers the nodes
within the neighborhood with their entire cell (even if a part
of the volume is partially outside the neighborhood) and
neglects the nodes outside the neighborhood (even if their
cell is partially inside the neighborhood). This approach,
under grid refinement, leads to an oscillatory convergence
behavior in which the fluctuations seem rather random [13].
Many other algorithms to approximate the partial volumes
have been proposed since then. An approximation based on
the distance between neighboring nodes is proposed in [21],
which improves the computation of the partial volumes of
nodes within the neighborhood. A similar approximation
is used in [22, 23] to include the previously neglected par-
tial volumes of nodes outside the neighborhood but with a
part of the cell inside it. These algorithms reduce, but never
eliminate, the seemingly random fluctuations of the con-
vergence behavior. Subsequently, the algorithm to compute
analytically the partial areas has been developed in [13]:
the types of intersection between the neighborhood and the
cells are rigorously categorized and then subdivided into
domains of basic geometry (triangles, rectangles and circular
segments), for which the analytical computation of the area
is straightforward. Using this algorithm, the convergence
behavior is smoothly oscillatory and the simulations yield
results affected by a smaller error, on average, compared
to the previously mentioned algorithms. In [13], it is also
suggested to use the centroids of the partial areas as quad-
rature points, but this significantly increases the complexity
of the computational model. The analytical computation of
the partial volumes in 3D problems is much more complex
and no algorithm is currently available for such purpose.
The partial volumes can be computed numerically by two
proposed algorithms, one based on the trapezoidal rule [19]
and one based on a process of recursive subdivisions and
sampling [14]. However, to reach the desired accuracy the

computational cost may be very high. Other algorithms,
specialized for non-uniform grids, are presented in [9, 22,
24, 25].

The aim of this paper is to simplify the implementation
of the algorithm to compute analytically the partial areas
presented in [13] by skipping the step of subdivision of the
intersection area in basic geometries, and to develop an algo-
rithm for the analytical computation of the partial volumes.
In order to achieve this, we solve directly the integrals which
describe all the possible intersection areas or volumes. Actu-
ally, some integrals involved in the computation of the par-
tial volumes are not explicitly solvable. Hence, we perform a
Taylor series expansion of those functions and integrate the
polynomials. The computation of the partial volumes con-
verges to the analytical solution if the sum of infinite terms
is not truncated. This, clearly, is not possible in a numerical
model, but we will show that the algorithm is able to reach
values of the error very close to machine precision with little
computational effort. The numerical results obtained with
the new algorithm show an evident improvement in the accu-
racy and in the convergence behavior when compared to the
results obtained by the algorithm based on the approxima-
tion proposed by [22], which is arguably the most commonly
used in engineering applications. We compared the numeri-
cal results by using the ordinary state-based version of the
peridynamic theory, but the algorithm can be used with the
bond-based version as well.

The paper is divided as follows. Section 2 reviews the
basics of the state-based peridynamic theory and its discre-
tized formulation. Section 3 presents the innovative algo-
rithms for the computation of the partial areas and partial
volumes. Section 4 contains several numerical examples that
show the improvements provided by the proposed algorithm
for the computation of the partial volumes with respect to
the most commonly used algorithm. Section 5 draws the
conclusions of the work.

2 Peridynamic theory

The peridynamic theory is a continuum theory based on
nonlocal interactions between material points [1]. The
derived numerical formulation is a very useful tool for
simulating crack propagation in solid bodies. In the follow-
ing, we present the fundamentals of the ordinary state-based
peridynamics and the discretized formulae which could be
implemented in a computational code.

2.1 Continuum model

The nonlocal interaction between two points, � and �′ , in
a peridynamic body B is described by a quantity named
“bond”:

Engineering with Computers

1 3

where the point �′ is contained in the neighborhood
H

�
∶=

�
�� ∈ B ∶ ‖�‖ ≤ �

�
 . The relative displacement

vector � is defined as

where � is the displacement field. Note that � + � is the
relative position of points � and �′ after the deformation
occurred.

The state-based peridynamic equation of motion of a
point � within the body B is given by [2]

where � is the material density, �̈ is the acceleration field,
� is the force state, dV

��
 is the differential volume of a point

�′ within the neighborhood H
�
 and � is the external force

density field. The notation �[�, t]⟨�⟩ means that the state
� depends on the position of the point � and on the time
t, and operates on the bond � . In an ordinary state-based
peridynamic model, the force state is aligned with the cor-
responding bond for any deformation, as depicted in Fig. 1.
For the purposes of the paper, it suffices to limit the study
to quasi-static problems [26–28]. Hence, the peridynamic
equilibrium equation is derived from Eq. (3) by dropping
the dependence on time:

The reference position scalar state x , representing the
bond length, the extension scalar state e , describing the

(1)� ∶= �
� − � ,

(2)� ∶= �(��, t) − �(�, t) ,

(3)

𝜌(�) �̈(�, t) = ∫
H�

�
�[�, t]⟨�⟩ − �[��, t]⟨−�⟩ �dV

��
+ �(�, t) ,

(4)−∫
H�

�
�[�]⟨�⟩ − �[��]⟨−�⟩ �dV

��
= �(�) .

elongation (or contraction) of the bond in the deformed
body, and the deformed direction vector state � , the unit
vector in the direction of � , are, respectively, defined as

The weighted volume m and the dilatation � of a point � are
defined as

where � is a prescribed spherical influence function [29].
We adopt the Gaussian influence function

Adopting the linear peridynamic solid model [2], the force
state is computed as

where K is the bulk modulus and � is the shear modulus.
Since �⟨�⟩ = −�⟨−�⟩ , the ordinary state-based peridy-
namic equilibrium equation becomes [2, 30, 31]

Equation (12) relates the external forces to the displacement
field, which might be a discontinuous function with respect
to the spatial coordinates.

2.2 Discretized model

We adopt a meshfree method with a uniform grid spacing
h to discretize the body domain (see, for instance, the dis-
cretization of a neighborhood in Fig. 2). Therefore, the cells
surrounding each node are squares in 2D and cubes in 3D,
respectively, with an area A = h2 and a volume V = h3.

(5)x⟨�⟩ ∶= ‖�‖ ,

(6)e⟨�⟩ ∶= ‖� + �‖ − ‖�‖ ,

(7)�⟨�⟩ ∶= � + �

‖� + �‖ .

(8)m
�
∶= ∫

H�

�⟨�⟩�x⟨�⟩�2dV
��
,

(9)�
�
∶=

3

m
�
∫
H�

�⟨�⟩ x⟨�⟩ e⟨�⟩dV
��
,

(10)�⟨�⟩ ∶= exp

�
−
‖�‖2
�2

�
.

(11)

�[�]⟨�⟩ =
�
(3K − 5�)

�⟨�⟩ x⟨�⟩
m

�

�
�
+ 15�

�⟨�⟩ e⟨�⟩
m

�

�
�⟨�⟩ ,

(12)
− ∫

H�

�
(3K − 5�)

�
�
�

m
�

+
�
��

m
��

�
�⟨�⟩ x⟨�⟩

+15�

�
1

m
�

+
1

m
��

�
�⟨�⟩ e⟨�⟩

�
�⟨�⟩dV

��
= �(�) .

x

y

B

x
δ

Hx

x′

δ

Hx′

ξ

u(x, t)

u(x′, t)

ξ + η

T[x]〈ξ〉

T[x′]〈-ξ〉

Fig. 1 Body B modelled with ordinary state-based peridynamics:
the force states �[�]⟨�⟩ and �[��]⟨−�⟩ arise in the bond � due to the
deformation of the body

 Engineering with Computers

1 3

Consider a node i as the node at which the peridynamic
equilibrium equation should be computed and a node j with a
portion of its cell inside the neighborhood Hi of node i. The
bond connecting node i to node j is described by

Analogously, the relative displacement vector after the
deformation of the body is defined as

where �i and �j are the displacement vectors of nodes i and
j, respectively.

Hence, the reference position scalar state and the influ-
ence function of bond ij can be computed as follows:

Under the assumption of small displacements, the extension
scalar state of bond ij is given as

The non-local properties of node i, i.e., the weighted volume
mi and the dilatation �i , are determined numerically by trans-
forming the integrals in Eqs. (8) and (9) into a summation
of integrals over cells and applying a midpoint quadrature
rule in each cell:

(13)�ij = �j − �i .

(14)�ij = �j − �i ,

(15)x
ij
=‖�ij‖ ,

(16)�
ij
= exp

�
−
‖�ij‖2
�2

�
.

(17)

e
ij
= ‖�ij + �ij‖ − ‖�ij‖
‖�ij‖≪‖�ij‖

≈ �ij ⋅
�ij

‖�ij‖ .

where �ijV represents the quadrature weight of the contri-
bution of node j in the integral over the neighborhood of
node i. The accurate computation of coefficients �ij is the
main result of the paper, which is presented in Sect. 3. In
2D problems under plane stress conditions, the volume of
the cell is given as V = A t , where t is the constant thickness
of the plate.

Under the assumption of small displacements
(�⟨�ij⟩ ≈ �ij∕‖�ij‖), the peridynamic equilibrium equation
in the discretized form is computed by using the quadrature
scheme previously described as

where mj and �j are, respectively, the weighted volume and
the dilatation of node j computed with Eqs. (18) and (19),
and �i is the external force density vector applied to node i.

3 Algorithms for the computation
of the quadrature weights

The quadrature coefficient �ij is the dimensionless factor
defined as

(18)mi =
∑
j∈Hi

�
ij
x2
ij
�ij V ,

(19)�i =
c�

mi

∑
j∈Hi

�
ij
x
ij
e
ij
�ij V ,

(20)

−
�
j∈Hi

�
(3K − 5�)

�
�i

mi

+
�j

mj

�
�
ij
x
ij

+15�

�
1

mi

+
1

mj

�
�
ij
e
ij

�
�ij

‖�ij‖ �ij V = �i ,

Fig. 2 In the continuum model
of the neighborhood H

�
 of a

given point � , some points (as
point �′) lie inside the neighbor-
hood and some other (as point
�′′) lie outside. Similarly, in
the discretized model of the
neighborhood Hi of a given
node i, there are some nodes
(solid circles) whose cell lies
completely or partially inside
the neighborhood and other
nodes (empty circles) whose
cell lies completely outside the
neighborhood

x

δ

Hx

x′

ξ

x′′

(a) Neighborhood of point x (continuum
model).

i

j

ξij

(b) Neighborhood of node i (discretized
model).

Engineering with Computers

1 3

where Ṽ and Ã are, respectively, the partial volume and
partial area of the cell, which should be computed from
the intersection between the neighborhood Hi and the cell
itself. In particular, �ij = 1 if the cell is completely inside Hi ,
�ij = 0 if the cell is completely outside Hi and 0 < 𝛽ij < 1 if
the cell is partially inside Hi . The set of nodes which con-
stitutes Hi ∶=

{
j ∈ B ∶ 𝛽ij > 0

}
 depends on the algorithm

used to compute �ij.
We present one of the algorithms based on the approxima-

tion of the partial volume [22], used as a reference to com-
pare our results. To compute analitycally �ij in a convenient
framework, we define a new reference system and exploit
the cell–neighborhood symmetries. Then, we improve the
algorithm for the analytical computation of partial areas by
employing a simpler scheme and we use the same scheme
to compute quasi-analytically the partial volumes. We uti-
lize the expression “quasi-analytical” because the algorithm
includes the truncation of the Taylor series expansions, but

(21)�ij ∶=

{
Ṽ

V
in 3D,

Ã

A
in 2D,

it is able to attain accurate results with a relatively small
truncation order.

3.1 Approximated computation of partial areas
or volumes

In the literature there are many algorithms that compute the
partial areas or volumes as an approximation based on the
distance between neighboring nodes [13]. The algorithm
presented in [22] (see Algorithm 1) is arguably the most
commonly used to date. This algorithm is based on the
analytical computation of partial lengths in 1D problems,
as shown in Fig. 3. If the distance between node i and the
farthest side of the cell of node j is smaller than the horizon
size, namely ‖�ij‖ + h

2
< 𝛿 where h is the grid spacing, then

�ij = 1 (see Fig. 3a). If the distance between node i and the
closest side of the cell of node j is greater than the horizon
size, namely ‖�ij‖ − h

2
> 𝛿 , then �ij = 0 (see Fig. 3c). Other-

wise, �ij is computed as the difference between the horizon
size and the distance of the closest side of the cell of node
j from node i, divided by the grid spacing h (see Fig. 3b).

Fig. 3 Possible cases of inter-
sections between neighborhood
and cell considered by Algo-
rithm 1: the gray area represents
the quadrature weight of the
corresponding cell

i jξij

h

‖ξij‖+ h/2

δ

(a) Case-1.

i jξij

h

‖ξij‖ − h/2

δ

(b) Case-2.

i jξij

h

‖ξij‖ − h/2

δ

(c) Case-3.

Algorithm 1. Approximation of quadrature coefficients ([22]).

Input: ξij , δ, h
Output: βij

1: if ‖ξij‖+ h
2 < δ then � case-1

2: βij = 1
3: else if ‖ξij‖ − h

2 < δ then � case-2
4: βij =

[
δ − ‖ξij‖ − h

2

)]
/h

5: else � case-3
6: βij = 0
7: end if

8: return βij

 Engineering with Computers

1 3

Algorithm 1 is applied without modifications to 2D and
3D problems. If the direction of �ij lies along one of the
axis, as for instance in Fig. 3b, the approximation is quite
accurate. However, Fig. 4 shows other examples in which
the computation of the quadrature weights with Algorithm 1
can be rather inaccurate. As a result, even if this algorithm is
very simple, it leads to convergence issues [13, 14]: for small
variations of the grid spacing (considering fixed the hori-
zon size) there are considerable variations of the computed

mechanical properties, as the numerical results of Sects. 4.2
and 4.3 show.

3.2 Change of reference system

For simplicity sake, the concepts are hereinafter explained in
the 2D case, but the generalization to a 3D case is straight-
forward. Since the focus is on the neighborhood of a node
i, we adopt a new system of reference (x, y) with the origin
at (xi, yi) and the distances scaled by a factor 1/h, as shown

Fig. 4 Some examples in
which the quadrature weights
computed with Algorithm 1
are rather different from their
analytical values: the gray area
represents the quadrature weight
of the corresponding cell com-
puted with Algorithm 1 i

j

ξij

(a) Algorithm 1: βij = 1.
Analytical: βij = 0.9579.

i

j

ξij

(b) Algorithm 1: βij = 0.3.
Analytical: βij = 0.2489.

i

j

ξij

(c) Algorithm 1: βij = 0.
Analytical: βij = 0.0403.

Fig. 5 a Hi is the neighborhood
of node i in a general reference
system and b Hi in the scaled
reference system: the origin
of the new reference system
is centered at node i and the
distances are scaled by a uni-
form factor 1/h in all directions,
where h is the grid spacing.
The coordinates of a node j in
the new reference system are
given as xj = (xj − xi)∕h and
yj = (yj − yi)∕h , and the horizon
size of the neighborhood
becomes m = �∕h

i
(xi, yi)

Hi

δ

x

y

j

(xj, yj)

h

(a)

i
(0, 0)

Hi

m

x

y

j

(xj, yj)

1

(1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

(b)

Engineering with Computers

1 3

in Fig. 5. Note that, since the quadrature coefficient �ij is
normalized with the area or volume of the cell (see Eq. 21),
its value is not affected by the scaling of the distances. The
coordinates of a node j in the new reference system are given
as

Since the grid is uniform, xj and yj are integer numbers.
As shown in Fig. 5b, the grid spacing in the new refer-

ence system is equal to 1, so that the area or the volume of
each cell are A = 1 and V = 1 , respectively. Therefore, �ij is
simply computed as the area or volume of the intersection
between the neighborhood of node i and the cell of node
j: �ij = Ã∕A = Ã or �ij = Ṽ∕V = Ṽ . Furthermore, the only
parameter which can change the values of the quadrature
coefficients is the m-ratio, given as

If m is unique for the whole peridynamic body (as it is often
the case), then the values of �ij can be computed only once
and used for the neighborhoods of all the nodes.

3.3 Cell–neighborhood symmetries

The symmetries of the neighborhood with respect to the
nodal grid, named “cell–neighborhood symmetries”, can be
exploited to reduce the number of cases to be considered.
In [13] the symmetries with respect to the axes were used

(22)
(
xj, yj

)
=

(
xj − xi

h
,
yj − yi

h

)
.

(23)m ∶=
�

h
.

to compute the quadrature weights only in the first quad-
rant. On the other hand, we use four lines of symmetry for
a 2D neighborhood (both the axes and the bisectors of the
quadrants), as shown in Fig. 6. Therefore, the computation
of the partial area can be carried out only for the nodes sat-
isfying the following conditions: M ≥ yj ≥ xj ≥ 0 , where
M ∶= ⌊m + 0.5⌋ (⌊⋅⌋ stands for the floor function and finds
the greatest integer smaller than or equal to the input), and
yj ≠ 0 . The latter condition is given by the fact that the cen-
tral node does not interact with itself. On the other hand, the
value M is used to provide an upper limit to the search for
possible nodes inside the neighborhood. These nodes are
enclosed by a red line in Fig. 6. Thanks to the cell–neigh-
borhood symmetries, �ij of the other nodes have the same
values. For instance, the computation of the partial area for
the node (xj = 2, yj = 3) is the same for nodes (3, 2), (3,−2) ,
(2,−3) , (−2,−3) , (−3,−2) , (−3, 2) and (−2, 3).

Analogously, we exploit six planes of symmetry for a
neighborhood in a 3D model (planes containing two axes
or one axis and one bisector of the octants). Therefore, in
this case, we consider only nodes that satisfy the follow-
ing conditions: M ≥ zj ≥ yj ≥ xj ≥ 0 and zj ≠ 0 . The nodes
considered in the proposed algorithm for the computation
of the partial volumes for m = 3.2 are represented in Fig. 7.

Cell–neighborhood symmetries come into play also dur-
ing the computation of some partial areas and volumes, as
shown in Fig. 8. In 2D problems, the intersections between
the neighborhood and cells of nodes with xj = 0 (see Fig. 8a)
are symmetric with respect to the y-axis. Similarly, in 3D
problems, the intersections between the neighborhood and
cells of nodes with xj = 0 and yj ≠ 0 or xj = yj = 0 (see
Fig. 8b, c) are symmetric with respect to the planes per-
pendicular, respectively, to the x-axis or both the x - and y
-axis. These symmetries will be exploited in Appendix A
and Sect. 3.5.

3.4 Computation of partial areas

The first algorithm proposing the analytical computation
of partial areas can be found in [13]: the area of intersec-
tion between the neighborhood and the cells is subdivided
into domains of basic geometry (triangles, rectangles and
circular segments), for which the analytical computation of
the area is straightforward. Reference [13] proposes 8 dif-
ferent cases of cell–neighborhood intersection. In Appen-
dix A, we propose a novel approach to compute analytically
the partial areas, which is based on the definition of the
quadrature coefficient in an integral form. The integrals
are then solved by distinguishing only 5 possible cases
of cell–neighborhood intersections, for each of which an
explicit analytical expression for the value of the quadra-
ture coefficient is obtained.

x

y
1

(2, 3)

(3, 2)

(-2, 3)

(-3, 2)

(2, -3)

(3, -2)

(-2, -3)

(-3, -2)

Fig. 6 Dashed lines represent the lines of the cell–neighborhood sym-
metries and the nodes enclosed by the red line are the only ones that
are considered by the proposed algorithm

 Engineering with Computers

1 3

Algorithm 2 shows how to compute analytically the quad-
rature coefficients in 2D with the proposed approach. Func-
tion 1 is used to solve the only non-trivial integral derived
from the computation of the quadrature coefficient. Please

refer to Appendix A for the details of the analytical deriva-
tion, which is also very useful to better understand the exten-
sion of the formulae from 2D to 3D for the computation of
the partial volumes shown in the next section.

Fig. 7 Thanks to the cell–
neighborhood symmetries, the
nodes enclosed by the surfaces
represented by red lines are the
only ones that are considered
by the proposed algorithm. The
six planes of symmetry are not
represented for image clarity

x

y

z

0

1

2

3

1 2 3

1

2

3

Fig. 8 Examples of nodes for
which the cell–neighborhood
symmetry can be exploited
within the cell in the compu-
tation of the partial areas or
volumes

x

y

(a) xj = 0.

x

yz

(b) xj = 0, yj �= 0.

x

y
z

(c) xj = yj = 0.

Engineering with Computers

1 3

Function 1. Integral of Equation A4 in the interval [a, b].

1: function Int2D(a,b,m)

2: I = 1
2 m

2
[
arcsin b

m

)
− arcsin a

m

)]
+ 1

2 b
√

m2 − b2 − 1
2 a

√
m2 − a2

3: return I

Algorithm 2. Analytical computation of quadrature coefficients in 2D.

Input: xj , yj , m
Output: βij

1: xj = abs(xj) � absolute value of xj for symmetry (xj ≥ 0)
2: yj = abs(yj) � absolute value of yj for symmetry (yj ≥ 0)

3: xj , yj = sort(xj , yj) � sort in ascending order for symmetry (xj ≤ yj)

4: M = �m+ 0.5�
5: if yj �= 0 and yj > M then
6: return βij = 0 � for exceeding the lower and upper limits of yj
7: end if

8: x1 = xj − 0.5,
9: x2 = xj + 0.5

10: y1 = yj − 0.5
11: y2 = yj + 0.5

12: if xj = 0 then
13: s = 1
14: else
15: s = 0
16: end if

17: ax = max (0, x1)
18: bx = min

(
x2,

√
m2 − y 2

1

)

19: if x 2
2 + y 2

2 ≤ m2 then � case-1
20: βij = 1
21: else if a 2

x + y 2
2 ≤ m2 then � case-2

22: xe =
√

m2 − y 2
2

23: βij = 2s[y2 (xe − ax)+Int2D(xe, bx,m)− y1 (bx − ax)]
24: else if a 2

x + y 2
1 ≤ m2 then � case-3 or case-4

25: βij = 2s[Int2D(ax, bx,m)− y1 (bx − ax)]
26: else � case-5

βij = 0
27: end if

28: return βij

 Engineering with Computers

1 3

3.5 Computation of partial volumes

We show hereinafter how to compute quasi-analytically the
quadrature weights in 3D problems. The partial volumes are
computed with the same approach explained in Appendix A
for the partial areas. Therefore, the quadrature coefficients
are computed as

(24)

�ij =2
s ∫

bx

ax
∫

min

�
y2,

√
m

2
−x

2
−z

2

1

�

ay

×∫
min

�
z2,

√
m

2
−x

2
−y

2

�

z1

dzdydx ,

w h e r e x1 = xj − 0.5 , x2 = xj + 0.5 , y1 = yj − 0.5 ,
y2 = yj + 0.5 , z1 = zj − 0.5 and z2 = zj + 0.5 are the coor-
dinates of the faces of the cubic cell and s is the number
of symmetries of the cell with respect to the neighborhood
(s = 2 if yj = xj = 0 , s = 1 if xj = 0 and yj ≠ 0 and s = 0 if
xj ≠ 0 and yj ≠ 0 , see Fig. 8b, c). The integration limits ax ,
bx and ay are scalar values that can be computed at the begin-
ning of the algorithm. Similarly to what described in Appen-
dix A, the lower limits are defined to exploit the cell–neigh-
borhood symmetry, or symmetries, shown in Fig. 8b or c:

Fig. 9 Possible cases of inter-
sections between neighborhood
and cell in 3D. Symmetric
cell–neighborhood intersections
are not shown here, but the
unsymmetric portions of those
intersections belong to one of
the shown cases. Since the true
origin of the reference system
lies outside the images, it has
been translated to one of the
vertices of the cube for visuali-
zation clarity

Engineering with Computers

1 3

Figure 9 shows all the possible cases of intersection between
the spherical neighborhood and a cubic cell. Note that in
Fig. 9 only cells with no symmetries are illustrated, but the
portions of the symmetric cell–neighborhood intersections
that are used in the computation of the quadrature weights,
i.e., the portions in the first octant of Fig. 8b, c, belong to
one of those cases. The upper limit of the integral in x direc-
tion of Eq. (24) is the greatest x coordinate of the cell–neigh-
borhood intersection, and it can be computed as

Therefore, bx is equal to x2 from case-2 to case-8, and to √
m

2
− a 2

y
− z

2

1
 in case-9. The computation of Eq. (26) at

the beginning of the algorithm allows to compute case-8 and
case-9 with the same formulae.

Similarly to Eq. (A1) in Appendix A, Eq. (24) can be
solved for each case by splitting the integrals in correspond-
ence of the intersections between the boundary of the neigh-
borhood and the edges parallel to the x-axis and the faces
parallel to the x-y plane (for details refer to Appendix B).
There are 3 types of non-trivial integrals that derive from
the previous step:

where k1 can be equal to ay , y2 , z1 or z2 , k2 to ay or y2 , and
k3 to z1 or z2 . The parameters k1 , k2 and k3 are defined in
these ways to group the same types of integrals derived from
Eq. (24). The explicit solution given in Eq. (27) is used in
Function 2 to compute the integral in a general interval
[a, b].

(25)ax = max
(
0, x1

)
, ay = max

(
0, y1

)
.

(26)bx = min

(
x2,

√
m

2
− a 2

y
− z

2

1

)
.

(27)

∫
�

m
2
− x

2
− k 2

1
dx

=
1

2

�
m

2
− k 2

1

�
arcsin

⎛⎜⎜⎜⎝
x�

m
2
− k 2

1

⎞⎟⎟⎟⎠
+

1

2
x

�
m

2
− x

2
− k 2

1
+ const. ,

(28)∫
�
m

2
− x

2
�
arcsin

�
k2√

m
2
− x

2

�
dx ,

(29)∫
�
m

2
− x

2
�
arcsin

⎛⎜⎜⎜⎝

�
m

2
− x

2
− k 2

3√
m

2
− x

2

⎞⎟⎟⎟⎠
dx ,

On the other hand, integrals in Eqs. (28) and (29) do not
have an explicit solution. Therefore, we perform a Taylor
series expansion centered at x0 of the following functions:

where c is a coefficient depending on the order n of the cor-
responding derivative and the indices p and q. For more
details about the computation of the derivatives of a gen-
eral order n (and the corresponding coefficients c(n, p, q)),
please refer to Appendix C. The matrix � containing all the
coefficients c is obtained with Algorithm 3. If the order N
of truncation of the Taylor series expansion tends to infinity
(N → ∞), then the solution of the integral is exact. Clearly,
in a numerical algorithm N must be a finite number, but we
will show that our approach is able to attain accurate results
with little computational effort (i.e., with N relatively low).
Hence, we substitute Eqs. (30) and (31), respectively, in
Eqs. (28) and (29) and solve the indefinite integrals:

(30)

arcsin

�
k2√

m
2
− x

2

�

= arcsin

⎛
⎜⎜⎜⎝

k2�
m

2
− x

2

0

⎞
⎟⎟⎟⎠

+

N�
n=1

∑⌊3n∕2⌋
p=1

�∑p

q=1
c(n, p, q)m

2(p−q)
k
2q−1

2

�
x
3n−2p

0

�
m

2
− x

2

0

�n�
m

2
− x

2

0
− k 2

2

�n−1∕2

⋅

�
x − x0

�n
n!

,

(31)

arcsin

⎛
⎜⎜⎜⎝

�
m

2
− x

2
− k 2

3√
m

2
− x

2

⎞
⎟⎟⎟⎠

= arcsin

⎛⎜⎜⎜⎝

�
m

2
− x

2

0
− k 2

3�
m

2
− x

2

0

⎞⎟⎟⎟⎠

−

N�
n=1

⌊3n∕2⌋∑
p=1

�
p∑

q=1

c(n, p, q)m
2(p−q)

k
2q−1

3

�
x
3n−2p

0

�
m

2
− x

2

0

�n�
m

2
− x

2

0
− k 2

3

�n−1∕2

⋅

�
x − x0

�n
n!

,

 Engineering with Computers

1 3

(32)

∫
(
m

2
− x

2
)
f (x)dx

= ∫
(
m

2
− x

2
)[

f (x0) +

N∑
n=1

f (n)(x0)

n!

(
x − x0

)n
]
dx

= f (x0)

(
m

2
x −

x
3

3

)

+

N∑
n=1

f (n)(x0)

n!

[
m

2
− x

2

0

n + 1

(
x − x0

)n+1

−
2x0

n + 2

(
x − x0

)n+2
−

1

n + 3

(
x − x0

)n+3]

+ const. ,

(33)

∫
(
m

2
− x

2
)
g(x)dx

= ∫
(
m

2
− x

2
)[

g(x0) +

N∑
n=1

g(n)(x0)

n!

(
x − x0

)n
]
dx

= g(x0)

(
m

2
x −

x
3

3

)

+

N∑
n=1

g(n)(x0)

n!

[
m

2
− x

2

0

n + 1

(
x − x0

)n+1

−
2x0

n + 2

(
x − x0

)n+2
−

1

n + 3

(
x − x0

)n+3]

+ const. ,

where f (x) and g(x) are the arcsin functions (see Eqs. C1
and C6) and f (n)(x) and g(n)(x) are the corresponding n-th
derivatives (see Eqs. C2 and C7). Functions 3 and 4 show
the computation of the integrals in Eqs. (32) and (33) in a
general interval [a, b]. In order to improve the accuracy of
the algorithm, we choose x0 to be the middle point of the
interval [a, b].

The integrals of Eq. (24) can be solved for each case by
following the procedure described above (for details refer
to Appendix B). Algorithm 4 illustrates how to compute the
quadrature coefficients with this procedure. At the begin-
ning of the algorithm, the coordinates of node j are consid-
ered only in their absolute value and sorted in ascending
order to comply with the conditions imposed for symmetry:
0 ≤ xj ≤ yj ≤ zj . The quadrature coefficients �ij computed for
m = 3, 4, 6 are reported in Appendix D.

2 3 4 5 6 7 8 9 10
−16

−12

−8

−4

0

m

lo
g 1

0(
ε V
)

N = 1
N = 2
N = 4
N = 10
N = 20

Fig. 10 Relative errors on the computation of the total volume of the
neighborhood obtained with Algorithm 4 with different order N of
truncation of the Taylor series expansions. The values of m vary by
Δm = 0.5

Function 2. Integral of Equation 27 in the interval [a, b].

1: function Int1(a,b,k1,m)

2: I = 1
2 m2 − k 2

1
)
[
arcsin

(
b√

m2−k 2
1

)
− arcsin

(
a√

m2−k 2
1

)]

+ 1
2 b

√
m2 − b2 − k 2

1 − 1
2 a

√
m2 − a2 − k 2

1

3: return I

Engineering with Computers

1 3

Algorithm 3. Computation of the matrix c containing the coefficients for the
Taylor series expansion.

Input: N
Output: c

1: P = �3(N − 1)/2�+ 2 � maximum value for indices p and q
2: c = zeros(N ,P ,P) � initialization of cwith all zero elements

3: c(1, 1, 1) = 1 � from the first derivative

4: for n = 2 : N do
5: for p = 1 : �3(n− 1)/2�+ 2 do
6: for q = 1 : p do
7: if 1 ≤ p ≤ �3(n− 1)/2� then
8: c(n, p, q) = c(n, p, q) + (−n− 2p+ 2) c(n− 1, p, q)
9: end if

10: if 2 ≤ p ≤ �3(n− 1)/2�+ 1 and q ≤ p− 1 then
11: c(n, p, q) = c(n, p, q) + (−2n+ 4p− 3) c(n− 1, p− 1, q)
12: end if
13: if 2 ≤ p ≤ �3(n− 1)/2�+ 1 and q ≥ 2 then
14: c(n, p, q) = c(n, p, q) + (n− 2p+ 1) c(n− 1, p− 1, q − 1)
15: end if
16: if 3 ≤ p ≤ �3(n− 1)/2�+ 2 and q ≤ p− 2 then
17: c(n, p, q) = c(n, p, q) + (3n− 2p+ 1) c(n− 1, p− 2, q)
18: end if
19: if 3 ≤ p ≤ �3(n− 1)/2�+ 2 and 2 ≤ q ≤ p− 1 then
20: c(n, p, q) = c(n, p, q) + (−3n+ 2p− 1) c(n− 1, p− 2, q − 1)
21: end if
22: end for
23: end for
24: end for

25: return c

Function 3. Integral of Equation 32 in the interval [a, b].

1: function Int2(a,b,k2,m,N ,c)

2: x0 = (a+ b)/2

3: I = arcsin
(

k2√
m2−x 2

0

)
[
m2 (b− a)− 1

3 b3 − a3
)]

4: for n = 1 : N do

5: f (n)(x0) =

�3n/2�∑
p=1

(
p∑

q=1
c(n,p,q)m2(p−q) k 2q−1

2

)
x 3n−2p
0

(m2−x 2
0)

n(m2−x 2
0 −k 2

2)
n−1/2

6: In1 = m2−x 2
0

n+1

(
(b− x0)

n+1 − (a− x0)
n+1

)

7: In2 = 2x0
n+2

(
(b− x0)

n+2 − (a− x0)
n+2

)

8: In3 = 1
n+3

(
(b− x0)

n+3 − (a− x0)
n+3

)

9: I = I + f(n)(x0)
n! (In1 − In2 − In3)

10: end for

11: return I

 Engineering with Computers

1 3

Function 4. Integral of Equation 33 in the interval [a, b].

1: function Int3(a,b,k3,m,N ,c)

2: x0 = (a+ b)/2

3: I = arcsin
(√

m2−x2
0−k 2

3√
m2−x 2

0

)
[
m2 (b− a)− 1

3 b3 − a3
)]

4: for n = 1 : N do

5: g(n)(x0) =
−

�3n/2�∑
p=1

(
p∑

q=1
c(n,p,q)m2(p−q) k 2q−1

3

)
x 3n−2p
0

(m2−x 2
0)

n(m2−x 2
0 −k 2

3)
n−1/2

6: In1 = m2−x 2
0

n+1

(
(b− x0)

n+1 − (a− x0)
n+1

)

7: In2 = 2x0
n+2

(
(b− x0)

n+2 − (a− x0)
n+2

)

8: In3 = 1
n+3

(
(b− x0)

n+3 − (a− x0)
n+3

)

9: I = I + g(n)(x0)
n! (In1 − In2 − In3)

10: end for

11: return I

Fig. 11 Geometrical quanti-
ties (neighborhood volume and
weighted volume) and their
relative errors computed with
Algorithm 1 and Algorithm 4.
The plot is realized with values
of m varying by Δm = 0.05

2 3 4 5 6 7 8 9 10
1

1.04

1.08

m

V
H
/V

a
n

exact
Alg. 1
Alg. 4

(a) Normalized neighborhood volume.

2 3 4 5 6 7 8 9 10
−10

−8

−6

−4

−2

m

lo
g 1

0(
ε V
)

Alg. 1
Alg. 4

(b) Relative error on neighborhood volume.

2 3 4 5 6 7 8 9 10
1

1.05

1.1

m

m
/m

a
n

exact
Alg. 1
Alg. 4

(c) Normalized weighted volume.

2 3 4 5 6 7 8 9 10

−6

−4

−2

m

lo
g 1

0(
ε m

)

Alg. 1
Alg. 4

(d) Relative error on weighted volume.

Engineering with Computers

1 3

Algorithm 4. Quasi-analytical computation of quadrature coefficients in 3D.

Input: xj , yj , zj , m, N , c
Output: βij

1: xj = abs(xj) � absolute value of xj for symmetry (xj ≥ 0)
2: yj = abs(yj) � absolute value of yj for symmetry (yj ≥ 0)
3: zj = abs(zj) � absolute value of zj for symmetry (zj ≥ 0)

4: xj , yj , zj = sort(xj , yj , zj) � sort in ascending order for symmetry

5: M = �m+ 0.5�
6: if zj �= 0 and zj > M then
7: return βij = 0 � for exceeding the lower and upper limits of zj
8: end if

9: x1 = xj − 0.5
10: x2 = xj + 0.5
11: y1 = yj − 0.5
12: y2 = yj + 0.5
13: z1 = yj − 0.5
14: z2 = yj + 0.5

15: if xj = 0 and yj = 0 then
16: s = 2
17: else if xj = 0 then
18: s = 1
19: else
20: s = 0
21: end if

22: ax = max (0, x1)
23: ay = max (0, y1)

24: bx = min
(
x2,

√
m2 − a 2

y − z 2
1

)

 Engineering with Computers

1 3

Algorithm 4. (continued)

24: if x 2
2 + y 2

2 + z 2
2 ≤ m2 then � case-1

25: βij = 1
26: else if a 2

x + y 2
2 + z 2

2 ≤ m2 then � case-2
27: xe1 =

√
m2 − y 2

2 − z 2
2

28: βij = 2s[1
2z2·Int1(xe1 , bx, z2,m) + 1

2y2·Int1(xe1 , bx, y2,m)
+ 1

2 ·Int2(xe1 , bx, y2,m,N, c)− 1
2 ·Int3(xe1 , bx, z2,m,N, c)

+z2y2 (xe1 − ax)− z2ay (bx − ax)− z1 (y2 − ay) (bx − ax)]
29: else if x 2

2 + a 2
y + z 2

2 ≤ m2 then � case-3
30: βij = 2s[1

2z2·Int1(ax, bx, z2,m) + 1
2y2·Int1(ax, bx, y2,m)

+ 1
2 ·Int2(ax, bx, y2,m,N, c)− 1

2 ·Int3(ax, bx, z2,m,N, c)
−z2ay (bx − ax)− z1 (y2 − ay) (bx − ax)]

31: else if a 2
x + a 2

y + z 2
2 ≤ m2 and x 2

2 + y 2
2 + z 2

1 ≤ m2 then � case-4

32: xe2 =
√

m2 − a 2
y − z 2

2

33: βij = 2s[1
2z2·Int1(ax, xe2 , z2,m) + 1

2y2·Int1(ax, bx, y2,m)
− 1

2ay·Int1(xe2 , bx, ay,m) + 1
2 ·Int2(ax, bx, y2,m,N, c)

− 1
2 ·Int2(xe2 , bx, ay,m,N, c)− 1

2 ·Int3(ax, xe2 , z2,m,N, c)
−z2ay (xe2 − ax)− z1 (y2 − ay) (bx − ax)]

34: else if a 2
x + a 2

y + z 2
2 ≤ m2 then � case-5

35: xe2 =
√

m2 − a 2
y − z 2

2

36: xe3 =
√

m2 − y 2
2 − z 2

1
37: βij = 2s[1

2z2·Int1(ax, xe2 , z2,m) + 1
2y2·Int1(ax, xe3 , y2,m)

− 1
2z1·Int1(xe3 , bx, z1,m)− 1

2ay·Int1(xe2 , bx, ay,m)
+ 1

2 ·Int2(ax, xe3 , y2,m,N, c)− 1
2 ·Int2(xe2 , bx, ay,m,N, c)

− 1
2 ·Int3(ax, xe2 , z2,m,N, c) + 1

2 ·Int3(xe3 , bx, z1,m,N, c)
−z2ay (xe2 − ax)− z1y2 (xe3 − ax) + z1ay (bx − ax)]

38: else if x 2
2 + y 2

2 + z 2
1 ≤ m2 then � case-6

39: βij = 2s[1
2y2·Int1(ax, bx, y2,m)− 1

2ay·Int1(ax, bx, ay,m)
+ 1

2 ·Int2(ax, bx, y2,m,N, c)− 1
2 ·Int2(ax, bx, ay,m,N, c)

−z1 (y2 − ay) (bx − ax)]
40: else if a 2

x + y 2
2 + z 2

1 ≤ m2 then � case-7
41: xe3 =

√
m2 − y 2

2 − z 2
1

42: βij = 2s[1
2y2·Int1(ax, xe3 , y2,m)− 1

2z1·Int1(xe3 , bx, z1,m)
− 1

2ay·Int1(ax, bx, ay,m) + 1
2 ·Int2(ax, xe3 , y2,m,N, c)

−1
2 ·Int2(ax, bx, ay,m,N, c) + 1

2 ·Int3(xe3 , bx, z1,m,N, c)
−z1y2 (xe3 − ax) + z1ay (bx − ax)]

43: else if a 2
x + a 2

y + z 2
1 ≤ m2 then � case-8 or case-9

44: βij = 2s[− 1
2z1·Int1(ax, bx, z1,m)− 1

2ay·Int1(ax, bx, ay,m)
− 1

2 ·Int2(ax, bx, ay,m,N, c) + 1
2 ·Int3(ax, bx, z1,m,N, c)

+z1ay (bx − ax)]
45: else � case-10

βij = 0
46: end if

47: return βij

Engineering with Computers

1 3

Fig. 12 Coefficients of the 4 th

-order elasticity tensor and their
relative errors computed with
Algorithms 1 and 4. The values
of m vary by Δm = 0.05

2 3 4 5 6 7 8 9 10

1

1.01

1.02

m

C
11

11
/C

a
n

11
11

exact
Alg. 1
Alg. 4

(a) Coefficient C1111.

2 3 4 5 6 7 8 9 10

−6

−4

−2

m

lo
g 1

0(
ε 1

11
1)

Alg. 1
Alg. 4

(b) Relative error on C1111.

2 3 4 5 6 7 8 9 10
0.96

0.98

1

m

C
11

22
/C

a
n

11
22

exact
Alg. 1
Alg. 4

(c) Coefficient C1122.

2 3 4 5 6 7 8 9 10

−6

−4

−2

m

lo
g 1

0(
ε 1

12
2)

Alg. 1
Alg. 4

(d) Relative error on C1122.

Fig. 13 Components of the
force density vector and their
relative errors computed with
Algorithms 1 and 4. The values
of m vary by Δm = 0.1

2 3 4 5 6 7 8 9 10
0.97

0.98

0.99

1

1.01

m

b 1
/b

a
n 1

exact
Alg. 1
Alg. 4

(a) Force density b1.

2 3 4 5 6 7 8 9 10
−6

−4

−2

m

lo
g 1

0(
ε b

1
)

Alg. 1
Alg. 4

(b) Relative error on b1.

2 3 4 5 6 7 8 9 10
0.97

0.98

0.99

1

1.01

m

b 2
/b

a
n 2

exact
Alg. 1
Alg. 4

(c) Force density b2.

2 3 4 5 6 7 8 9 10

−6

−4

−2

m

lo
g 1

0(
ε b

2
)

Alg. 1
Alg. 4

(d) Relative error on b2.

2 3 4 5 6 7 8 9 10
0.97

0.98

0.99

1

1.01

m

b 3
/b

a
n 3

exact
Alg. 1
Alg. 4

(e) Force density b3.

2 3 4 5 6 7 8 9 10
−6

−4

−2

m

lo
g 1

0(
ε b

3
)

Alg. 1
Alg. 4

(f) Relative error on b3.

 Engineering with Computers

1 3

4 Numerical results

To assess the accuracy of the computation of the partial vol-
umes with respect to the order N of truncation of the Taylor
series expansions, we compute the relative error on the total
volume of the spherical neighborhood:

The sum of all the quadrature coefficients �ij and the vol-
ume Vi = 1 of node i is the numerical value of the sphere
volume, whereas (4∕3)�m3 is its analytical value. As shown
in Fig. 10, the accuracy in the computation of the partial
volumes is improved by increasing the value of N. Further-
more, the proposed algorithm reaches values of the errors
very close to machine precision with m ≥ 3 and N = 20.

We show hereinafter several numerical results that con-
firm the improvements in the peridynamic integration in 3D
problems. In particular, we compare the numerical results
of Algorithm 1, arguably the most commonly used, with
those of the new algorithm (Algorithm 4). We use N = 4 as
the order of truncation for the Taylor series in Algorithm 4
since this value assures accurate results with low computa-
tional cost.

4.1 Geometrical quantities

To assess the performance of the proposed algorithm, we
compute two geometrical quantities that reflect the accuracy
in the computation of the partial volumes. The first one is
the neighborhood volume, computed as:

The analytical value of the neighborhood volume is equal to
the volume of a sphere: Van = (4∕3)�m

3 . The relative error
on the neighborhood volume can be computed as in Eq. (34).
The improvements obtained by the novel algorithm are evi-
dent in Fig. 11a, b.

The second geometrical quantity for the comparison of
the algorithms is the weighted volume m (Eq. (18)). The
analytical computation of the weighted volume is carried
out using spherical coordinated (� is the azimuthal angle
and � is the polar angle):

(34)�V =
�����

∑
j∈Hi

�ij + 1

4

3
� m

3
− 1

�����
.

(35)VH = 1 +
∑
j∈Hi

�ij .

where r = ‖�‖ and erf (⋅) is the Gaussian error function. The
relative error on the weighted volume can be computed as:

(36)

man = ∫
H�

exp

�
−
‖�‖2
�2

�
‖�‖2dV

��

= ∫
�

0 ∫
2�

0 ∫
�

0

exp

�
−
r2

�2

�
r2 ⋅ r2 sin�d�d�dr

=
�
3

2

√
� erf (1) − 5 exp(−1)

�
��5 ,

Table 1 Comparison of the cases in Fig. 4 of [13] with the cases in
Fig. 15 derived from the new approach for the computation of the
partial areas

The abbreviation “symm.” means that the cell–neighborhood symme-
try should be used for the cases of the approach in [13] to obtain the
cases in the new approach

Approach in [13] New approach

Case I Case 1
Case II Case 2
Case IIIa1 Case 3
Case IIIa2 Case 3 (symm.)
Case IIIb Case 2 (symm.)
Case IIIc Case 3
Case IV Case 4
Case V Case 4 (symm.)

Fig. 14 Cases of intersection for m = 3.25 in 2D depending on which
corners of the cell lie inside the neighborhood. Note that the cell–
neighborhood intersection of node (0, 3) is symmetric with respect
to the y-axis, so actually only the half of it is considered, namely the
half in the first quadrant

Engineering with Computers

1 3

Figure 11c, d show the comparison between Algorithms 1
and 4, with a significant improvement of the accuracy in the
latter one.

4.2 Coefficients of the elasticity tensor

The mechanical properties of isotropic linearly elastic mate-
rials are described by the 4 th-order elasticity tensor � . As in
[13], we investigate the convergence behavior of the coef-
ficients of the elasticity tensor. In state-based peridynamics,
the elasticity tensor of a point in the bulk is given as [32]

where � is the modulus state which operates on two bonds,
� = �� − � and � = ��� − � . The modulus state in a linear
peridynamic solid model [2, 32] is derived as

where � is the Dirac delta function defined as

A component of the tensor � is therefore computed as [32]

(37)�m =
‖‖‖‖‖

m

man

− 1
‖‖‖‖‖
.

(38)Cpqrs(�) = ∫
H�

∫
H�

�
pr
[�]⟨�, �⟩ �q �sdV���

dV
��
,

(39)
�

pr
[�]⟨�, �⟩ =�⟨�⟩

m
�

�
3(3K − 5�)

m
�

�⟨�⟩ x⟨�⟩ x⟨�⟩

+15��(� − �))
�p

‖�‖
�r

‖�‖ ,

(40)�(� − �) ∶=

{
1 if � = � ,

0 otherwise.

For isotropic linearly elastic materials, there are only two
coefficients of the tensor � which are independent from the
others. The analytical value of the coefficients, for instance,
C1111 and C1122 are

Any component of the tensor � in a node i can be computed
numerically from Eq. (41) as

(41)

Cpqrs = ∫
H�

∫
H�

�⟨�⟩
m

�

�
3(3K − 5�)

m
�

�⟨�⟩ x⟨�⟩ x⟨�⟩

+15��(� − �))
�p�q

‖�‖
�r�s

‖�‖dV���
dV

��

= ∫
H�

�⟨�⟩�p�q
�
3(3K − 5�)�

m
�

�2 ∫
H�

�⟨�⟩ �r�sdV���

+
15�

m
�
∫
H�

�(� − �)
�r�s

‖�‖‖�‖dV���

�
dV

��

=
3(3K − 5�)�

m
�

�2 ∫
H�

�⟨�⟩ �p�qdV�� ∫
H�

�⟨�⟩ �r�sdV���

+
15�

m
�
∫
H�

�⟨�⟩�p�q�r�s‖�‖2 dV
��
.

(42)Can
1111

= K +
4

3
� , Can

1122
= K −

2

3
� .

(43)

Cpqrs =
3(3K − 5�)�

mi

�2
��

j∈Hi

�
ij
�p �q �ijV

�

×

��
k∈Hi

�
ik
�r �s �ikV

�

+
15�

mi

�
j∈Hi

�
ij

�p�q�r�s

‖�‖2 �ijV ,

Fig. 15 Possible cases of inter-
sections between neighborhood
and cell in 2D. The gray line is
a portion of the boundary of the
neighborhood

 Engineering with Computers

1 3

where � = �j − �i and � = �k − �i . The values of the Young’s
modulus E = 1GPa and of the Poisson’s ratio � = 0.2 are
chosen, which yield the following bulk and shear moduli:
K = 555.56MPa and � = 416.67MPa . Figure 12a, c show
the results of these computation, respectively, for the com-
ponents C1111 and C1122 . The relative errors on these coef-
ficients are computed as

and are shown in Fig. 12b, d. It is evident that the proposed
algorithm provides, on average, smaller errors. Furthermore,
the oscillatory behavior as m increases is much smoother
than that of Algorithm 1.

4.3 Manufactured problem

A “manufactured” problem, which consists in determining
the force density distribution in a body under a prescribed
displacement field, is solved analytically and numerically.
Following what was shown in [14] for a 2D problem, a body
is subjected to the displacements

where there are 18 independent coefficients for the quadratic
terms. The force density derived from this displacement field
is given as [14]

where K = 555.56MPa and � = 416.67MPa . Note that the
force density vector �an is constant for all the points in the
bulk of the material, i.e., in all points that have a distance
from the boundary of the body greater than or equal to 2� .
Since cu5 , cv6 and cw4 do not contribute to �an , these coef-
ficients are considered to be equal to 0. The values of the
other coefficients are chosen randomly as follows: cu1 = 0.6 ,
cu2 = 1.3 , cu3 = 0.8 , cu4 = 0.5 , cu6 = 1.8 , cv1 = 1.1 , cv2 = 1.6 ,
cv3 = 0.7 , cv4 = 1 , cv5 = 1.2 , cw1 = 0.3 , cw2 = 1.2 , cw3 = 0.1 ,
cw5 = 1.7 and cw6 = 0.6.

We consider only one node in the bulk of a body at which
the force density vector � is computed with Eq. (20). The
relative errors on the components of � are given as

(44)�1111 =
‖‖‖‖‖
C1111

Can
1111

− 1
‖‖‖‖‖
, �1122 =

‖‖‖‖‖
C1122

Can
1122

− 1
‖‖‖‖‖
,

(45)

⎧⎪⎨⎪⎩

u = cu1 x
2 + cu2 y

2 + cu3 z
2 + cu4 xy + cu5 yz + cu6 xz ,

v = cv1 x
2 + cv2 y

2 + cv3 z
2 + cv4 xy + cv5 yz + cv6 xz ,

w = cw1 x
2 + cw2 y

2 + cw3 z
2 + cw4 xy + cw5 yz + cw6 xz ,

(46)
⎧⎪⎨⎪⎩

ban
1

= −
3K−5�

3

�
2cu1 + cv4 + cw6

�
− 2�

�
3cu1 + cu2 + cu3 + cv4 + cw6

�
,

ban
2

= −
3K−5�

3

�
cu4 + 2cv2 + cw5

�
− 2�

�
cu4 + cv1 + 3cv2 + cv3 + cw5

�
,

ban
3

= −
3K−5�

3

�
cu6 + cv5 + 2cw3

�
− 2�

�
cu6 + cv5 + cw1 + cw2 + 3cw3

�
,

Figure 13 shows the results of the numerical computation.
Algorithm 4 allows to obtain, on average, smaller relative
errors and a smoother convergence behavior also in this case.

5 Conclusions

The peridynamic theory is a nonlocal reformulation of
classical continuum mechanics based on integrals over the
neighborhoods of nodes. Therefore, the numerical integra-
tion of peridynamic equations determines to a great extent
the accuracy of the results. In particular, the quadrature
weights, i.e., the partial areas in 2D (intersections between
the circular neighborhood and the square cells) and the
partial volumes in 3D (intersections between the spheri-
cal neighborhood and the cubic cells), should be computed
accurately.

We developed an innovative algorithm able to compute
quasi-analytically the partial volumes. We use the expression
“quasi-analytical” because a truncated Taylor series expan-
sion of some functions, whose integrals are not explicitly
solvable, is performed to carry out the integration. How-
ever, the new algorithm computes accurately the quadrature
weights with very little computational effort, i.e., with a rela-
tively low order of truncation of the Taylor series. The com-
putational time required by the proposed algorithm is negligi-
ble compared to the time required to compute the bond forces
and the peridynamic equilibrium equation. In particular, if m

is constant in the whole domain, the same quadrature weights
can be computed only once and used for every neighborhood
in the body. A similar approach is also used to simplify the
algorithm for the analytical computation of the partial areas,
which was already developed in the literature.

Several examples have been presented to show the capa-
bilities of the newly proposed algorithm. The numerical
values of the geometrical quantities (volume of the neigh-
borhood and weighted volume), of the coefficients of the
elasticity tensor and of the manufactured problem obtained
with the new algorithm are compared with those obtained
with the most commonly used algorithm for the computa-
tion of the partial volumes. As the m-ratio increases, the
proposed algorithm provides, on average, smaller errors
and a smoother convergence behavior. For the sake of

(47)�bp =
‖‖‖‖‖
bp

ban
p

− 1
‖‖‖‖‖

with p = 1, 2, 3 .

Engineering with Computers

1 3

convenience, the quadrature coefficients for m = 3, 4, 6 are
reported in Appendix D.

Appendix A: Analytical computation
of partial areas

We propose a new algorithm for the computation of the
quadrature coefficients in 2D (Algorithm 2) that solves the
following integral:

where x1 = xj − 0.5 , x2 = xj + 0.5 , y1 = yj − 0.5 and
y2 = yj + 0.5 are the coordinates of the sides of the square
cell and s is the number of symmetries of the cell with
respect to the neighborhood (s = 1 if xj = 0 and s = 0 if
xj ≠ 0 , see Fig. 8a). The upper and lower limits of the outer
integral, respectively, bx and ax , are scalar values that can be
computed at the beginning of the algorithm. The value of
the lower limit ax depends on whether the cell–neighborhood
intersection is symmetric, as shown in Fig. 8a, or not. In the
former case, the lower limit of the integration domain in x
direction is set to ax = 0 and the value of the integral is mul-
tiplied by 2 (given that s = 1). In the latter case, the lower
limit is the smallest x coordinate of the cell, i.e., ax = x1 .
These conditions can be written as

Since only cells with yj ≥ xj ≥ 0 are considered for sym-
metry reasons (see Fig. 14), there are 5 possible cases of
square–circle intersections depending on which corners of
the cell lie inside the neighborhood:

• case-1 if the corner (x2, y2) , the farthest from node i, lies
inside the neighborhood, i.e., x 2

2
+ y

2

2
≤ m

2 , as shown in
Fig. 15a;

• case-2 if only the corner (x2, y2) lies outside the neighbor-
hood, i.e., a 2

x
+ y

2

2
≤ m

2
< x

2

2
+ y

2

2
 , as shown in Fig. 15b;

• case-3 if the corners (x2, y2) and (ax, y2) lie out-
side the neighborhood and the others lie inside, i.e.,
x
2

2
+ y

2

1
≤ m

2
< a 2

x
+ y

2

2
 , as shown in Fig. 15c;

• case-4 if only the corners (ax, y1) lies inside the neighbor-
hood, i.e., a 2

x
+ y

2

1
≤ m

2
< x

2

2
+ y

2

1
 , as shown in Fig. 15d;

• case-5 if the corner (ax, y1) , the closest to node i, lies
outside the neighborhood, i.e., a 2

x
+ y

2

1
> m

2 , as shown
in Fig. 15e.

The comparison of these cases with the cases of the approach
in [13] is summarized in Table 1.

(A1)�ij = 2s ∫
bx

ax
∫

min
�
y2,

√
m

2
−x

2
�

y1

dydx ,

(A2)ax = max
(
0, x1

)
.

Case-1 and case-5 are trivial since �ij = 1 and �ij = 0 ,
respectively. Furthermore, the quadrature coefficient in
case-3 and case-4 can be computed with the same formulae
if the upper limit of the integral in x direction is defined as

The value of bx is indeed equal to x2 in case-3, as shown in
Fig. 15c, and to the x coordinate of the intersection between
the boundary of the neighborhood and the lower side of the
cell, as shown in Fig. 15d.

For later use, the following indefinite integral is analyti-
cally solved as

This solution will be used to compute the definite integrals
in different intervals. Now, we show how to compute the
quadrature coefficient if the considered cell belongs to case-
2. Equation (A1) can be rewritten as

In case-2 (see Fig. 15b), there is an intersection between the
boundary of the neighborhood and the upper side of the cell,
which has an x coordinate equal to

The integral in Eq. (A5) must be splitted because the
integrand has different values in the intervals [ax, xe] and
[xe, bx] . Then, the integral can be solved analytically by using
Eq. (A4):

Similarly, the quadrature coefficient for a cell belonging to
case-3 or case-4 is analytically computed from Eq. (A5) as
follows:

(A3)bx = min

(
x2,

√
m

2
− y

2

1

)
.

(A4)
∫

√
m

2
− x

2
dx =

1

2
m

2
arcsin

�
x

m

�

+
1

2
x

√
m

2
− x

2
+ const. .

(A5)�ij = 2s ∫
bx

ax

�
min

�
y2,

√
m

2
− x

2

�
− y1

�
dx .

(A6)xe =

√
m

2
− y

2

2
.

(A7)

Case-2 ⇒ �ij

= 2s

�
∫

xe

ax

�
y2 − y1

�
dx + ∫

bx

xe

�√
m

2
− x

2
− y1

�
dx

�

= 2s
�
y2
�
xe − ax

�
+

1

2
m

2
arcsin

�
bx

m

�
+

1

2
bx

�
m

2
− b 2

x

−
1

2
m

2
arcsin

�
xe

m

�
−

1

2
xe

�
m

2
− x

2

e
− y1

�
bx − ax

��
.

 Engineering with Computers

1 3

The computation of the partial area of a cell is summarized
in Algorithm 2. Function 1 is used to compute the integral of
Eq. (A4) in a general interval between a and b. The proposed
algorithm yields exactly the same results of the algorithm for
the computation of the partial areas presented in [13], but its
implementation is simpler because it is based on a smaller
number of cases.

Appendix B: Quasi‑analytical computation
of partial volumes

We can rewrite Eq. (24) that describes the integral to com-
pute the quadrature coefficients as follows:

w h e r e x1 = xj − 0.5 , x2 = xj + 0.5 , y1 = yj − 0.5 ,
y2 = yj + 0.5 , z1 = zj − 0.5 and z2 = zj + 0.5 are the coor-
dinates of the faces of the cubic cell and s is the number of
symmetries of the cell with respect to the neighborhood (see
Fig. 8b, c). ax , ay and bx are scalar values computed as shown
in Eqs. (25) and (26).

Since the integrand and the upper limit of the inner inte-
gral in Eq. (B1) are discontinuous functions, the integral
domain should be split into subdomains in which only con-
tinuous functions are integrated. The integral is split differ-
ently for each of the 10 cases represented in Fig. 9. The cases
are differentiated depending on the intersections between
the boundary of the neighborhood and the edges of the cell
parallel to the x-axis and the faces parallel to the x-y plane.
These intersections are indeed used to split the integral of
Eq. (B1), as shown in next subsections. To begin with, we
consider a cell completely within the neighborhood (case-1
in Fig. 9a) and decrease gradually the m-ratio to find other
cases. We also need to check that, for the considered cells
with zj ≥ yj ≥ xj ≥ 0 , other cases of intersections are not
possible.

(A8)

Case-3 or case-4 ⇒ �ij

= 2s ∫
bx

ax

�√
m

2
− x

2
− y1

�
dx

= 2s
�
1

2
m

2
arcsin

�
bx

m

�
+

1

2
bx

�
m

2
− b 2

x

−
1

2
m

2
arcsin

�ax
m

�
−

1

2
ax

�
m

2
− a 2

x
− y1

�
bx − ax

��
.

(B1)�ij = 2s ∫
bx

ax
∫

min

�
y2,

√
m

2
−x

2
−z

2

1

�

ay

�
min

�
z2,

�
m

2
− x

2
− y

2

�
− z1

�
dydx ,

Case‑1

In case-1, the cell is completely within the neighborhood,
as shown in Fig. 9a. The condition for which this case is
verified is that the farthest node with coordinates (x2, y2, z2)
is inside the neighborhood:

In this case, the solution of Eq. (B1) is trivial:

Case‑2

In case-2, the boundary of the neighborhood intersects
the edge of the cell between the vertices (ax, y2, z2) and
(x2, y2, z2) , as shown in Fig. 9b. Therefore, the condition in
this case is

To be sure that there are no other possible intersections
with edges parallel to the x-axis and faces parallel to the x

-y plane, we need to check that the vertices (x2, ay, z2) and
(x2, y2, z1) lie within the neighborhood, so that the edge
between (ax, ay, z2) and (x2, ay, z2) and the face on the plane
z = z1 are, respectively, within the neighborhood. The condi-
tion for the vertex (x2, ay, z2) being within the neighborhood
is given as

We rewrite the condition in Eq. (B5) as

By comparing this inequality with the condition on the left-
hand side in Eq. (B4), we obtain:

If the cell has two symmetries as shown in Fig. 8c (s = 2 ,
ax = ay = 0), Eq. (B7) becomes y 2

2
≥ x

2

2
 which is always

verified. If the cell has one symmetry as shown in Fig. 8b
(s = 1 , ax = 0 , x2 = 0.5 , yj ≥ 1), Eq. (B7) becomes 2yj ≥ 0.52
which is always verified. If the cell has no symmetries
(s = 0), Eq. (B7) becomes 2yj ≥ 2xj which is always verified.

(B2)x
2

2
+ y

2

2
+ z

2

2
≤ m

2
.

(B3)�ij = 1 .

(B4)a 2
x
+ y

2

2
+ z

2

2
≤ m

2
< x

2

2
+ y

2

2
+ z

2

2
.

(B5)x
2

2
+ a 2

y
+ z

2

2
≤ m

2
.

(B6)a 2
x
− a 2

x
+ x

2

2
+ a 2

y
+ y

2

2
− y

2

2
+ z

2

2
≤ m

2
.

(B7)
− a 2

x
+ x

2

2
+ a 2

y
− y

2

2
≤ 0

⇒ y
2

2
− a 2

y
≥ x

2

2
− a 2

x
.

Engineering with Computers

1 3

Similarly, one can show that also the vertex (x2, y2, z1) lies
within the neighborhood.

In this case (see Fig. 9b), the outer integral of Eq. (B1)
should be split at the intersection of the boundary of the
neighborhood with the edge between the vertices (ax, y2, z2)
and (x2, y2, z2) , namely at

Furthermore, the inner integral should be split in corre-
spondence of the arc of circle with equation

which is given by the intesection of the boundary of the
neighborhood with the plane z = z2 (where the face of the
cell lies). Therefore, Eq. (B1) becomes:

Note that the upper limit of the inner integral is y2 because
the face of the cell on the plane z = z1 is completely within
the neighborhood. Since the solution of the inner integral of
the last term in Eq. (B10) is similar to the integral solved in
Eq. (27), the quadrature coefficients in case-2 can be com-
puted as

(B8)xe1 =

√
m

2
− y

2

2
− z

2

2
.

(B9)yf1 (x) =

√
m

2
− x

2
− z

2

2
,

(B10)

�ij = 2s

�
∫

xe1

ax
∫

y2

ay

z2dydx

+ ∫
bx

xe1
∫

y2

ay

min

�
z2,

�
m

2
− x

2
− y

2

�
dydx

−∫
bx

ax
∫

y2

ay

z1dydx

�

= 2s
⎡⎢⎢⎣∫

xe1

ax
∫

y2

ay

z2dydx + ∫
bx

xe1
∫

√
m

2
−x

2
−z

2

2

ay

z2dydx

+ ∫
bx

xe1
∫

y2

√
m

2
−x

2
−z

2

2

�
m

2
− x

2
− y

2
dydx

−∫
bx

ax
∫

y2

ay

z1dydx

�
.

The integrals in Eq. (B11) are of the types solved in
Eqs. (27), (32) and (33). To shorten the formulae, we define
the following functions (similar to Functions 2, 3 and 4 used
in Algorithm 4):

(B11)

�ij = 2s
�
z2
�
y2 − ay

��
xe1 − ax

�

+ z2 ∫
bx

xe1

��
m

2
− x

2
− z

2

2
− ay

�
dx

+∫
bx

xe1

1

2

��
m

2
− x

2
�
arcsin

�
y2√

m
2
− x

2

�

+ y2

�
m

2
− x

2
− y

2

2

−
�
m

2
− x

2
�
arcsin

⎛
⎜⎜⎜⎝

�
m

2
− x

2
− z

2

2√
m

2
− x

2

⎞
⎟⎟⎟⎠

−z2

�
m

2
− x

2
− z

2

2

�
dx

− z1
�
y2 − ay

��
bx − ax

��
.

(B12)

I1(a, b, k1) ∶= ∫
b

a

�
m

2
− x

2
− k 2

1
dx

=
1

2

�
m

2
− k 2

1

�⎡⎢⎢⎢⎣
arcsin

⎛⎜⎜⎜⎝
b�

m
2
− k 2

1

⎞⎟⎟⎟⎠

− arcsin

⎛⎜⎜⎜⎝
a�

m
2
− k 2

1

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
+

1

2
b

�
m

2
− b2 − k 2

1

−
1

2
a

�
m

2
− a2 − k 2

1
,

 Engineering with Computers

1 3

where f (x) and g(x) are functions defined in Appendix C
and their corresponding n-th derivatives f (n)(x) and g(n)(x)
are computed as in Eqs. (C2) and (C7). The parameter k1
can be equal to ay , y2 , z1 or z2 , k2 to ay or y2 , and k3 to z1 or z2
depending on the cases.

Using the previous definitions, Eq. (B11) is solved as
follows:

(B13)

I2(a, b, k2) ∶= ∫
b

a

�
m

2
− x

2
�
arcsin

�
k2√

m
2
− x

2

�
dx

= ∫
b

a

�
m

2
− x

2
�

×

�
f (x0) +

N�
n=1

f (n)(x0)

n!

�
x − x0

�n
�
dx

= f (x0)
�
m

2
(b − a) −

1

3

�
b3 − a3

��

+

N�
n=1

f (n)(x0)

n!

×

�
m

2
− x

2

0

n + 1

��
b − x0

�n+1
−
�
a − x0

�n+1�

−
2x0

n + 2

��
b − x0

�n+2
−
�
a − x0

�n+2�

−
1

n + 3

��
b − x0

�n+3
−
�
a − x0

�n+3��
,

(B14)

I3(a, b, k3) ∶= ∫
b

a

�
m

2
− x

2
�
arcsin

⎛
⎜⎜⎜⎝

�
m

2
− x

2
− k 2

3√
m

2
− x

2

⎞
⎟⎟⎟⎠
dx

= ∫
b

a

�
m

2
− x

2
�

×

�
g(x0) +

N�
n=1

g(n)(x0)

n!

�
x − x0

�n
�
dx

= g(x0)
�
m

2
(b − a) −

1

3

�
b3 − a3

��

+

N�
n=1

g(n)(x0)

n!

×

�
m

2
− x

2

0

n + 1

��
b − x0

�n+1
−
�
a − x0

�n+1�

−
2x0

n + 2

��
b − x0

�n+2
−
�
a − x0

�n+2�

−
1

n + 3

��
b − x0

�n+3
−
�
a − x0

�n+3��
,

Case‑3

In case-3, the boundary of the neighborhood intersects the
face of the cell on the plane z = z2 , but does not intersect any
edge parallel to the x-axis, as shown in Fig. 9c. Therefore,
the condition in this case is

The condition on the right-hand side implies that there
are no intersections of the boundary of the neighborhood
with the edge of the cell between the vertices (ax, y2, z2)
and (x2, y2, z2) . Similarly, the condition on the left-hand
side implies that there are no intersections with the edge
between the vertices (ax, ay, z2) and (x2, ay, z2) . With the same
approach illustrated at the beginning of Sect. B.2, one can
also show that the vertex (x2, y2, z1) lies within the neighbor-
hood for the considered cells (zj ≥ yj ≥ xj ≥ 0), so that the
face of the cell on the plane z = z1 is completely inside the
neighborhood.

The quadrature coefficient in case-3 is therefore computed
as

(B15)

�ij = 2s
[
z2
(
y2 − ay

)(
xe1 − ax

)
+ z2 I1(xe1 , bx, z2)

− z2ay
(
bx − xe1

)
+

1

2
I2(xe1 , bx, y2)

+
1

2
y2 I1(xe1 , bx, y2) −

1

2
I3(xe1 , bx, z2)

−
1

2
z2 I1(xe1 , bx, z2) − z1

(
y2 − ay

)(
bx − ax

)]

= 2s
[
1

2
z2 I1(xe1 , bx, z2) +

1

2
y2 I1(xe1 , bx, y2)

+
1

2
I2(xe1 , bx, y2) −

1

2
I3(xe1 , bx, z2) + z2y2

(
xe1 − ax

)

−z2ay
(
bx − ax

)
− z1

(
y2 − ay

)(
bx − ax

)]
.

(B16)x
2

2
+ a 2

y
+ z

2

2
≤ m

2
< a 2

x
+ y

2

2
+ z

2

2
.

Engineering with Computers

1 3

Using Eqs. (B12), (B13) and (B14), Eq. (B17) is solved as
follows:

Case‑4

In case-4, the boundary of the neighborhood intersects the
edge of the cell between the vertices (ax, ay, z2) and (x2, ay, z2)
and the face on the plane z = z1 lies completely within the
neighborhood, as shown in Fig. 9d. Therefore, the conditions
in this case are

(B17)

�ij = 2s
⎡
⎢⎢⎣∫

bx

ax
∫

√
m

2
−x

2
−z

2

2

ay

z2dydx

+ ∫
bx

ax
∫

y2

√
m

2
−x

2
−z

2

2

�
m

2
− x

2
− y

2
dydx

−∫
bx

ax
∫

y2

ay

z1dydx

�

= 2s
�
z2 ∫

bx

ax

��
m

2
− x

2
− z

2

2
− ay

�
dx

+∫
bx

ax

1

2

��
m

2
− x

2
�
arcsin

�
y2√

m
2
− x

2

�

+ y2

�
m

2
− x

2
− y

2

2

−
�
m

2
− x

2
�
arcsin

⎛⎜⎜⎜⎝

�
m

2
− x

2
− z

2

2√
m

2
− x

2

⎞⎟⎟⎟⎠
−z2

�
m

2
− x

2
− z

2

2

�
dx

− z1
�
y2 − ay

��
bx − ax

��
.

(B18)

�ij = 2s
[
z2 I1(ax, bx, z2) − z2ay

(
bx − ax

)

+
1

2
I2(ax, bx, y2) +

1

2
y2 I1(ax, bx, y2)

−
1

2
I3(ax, bx, z2) −

1

2
z2 I1(ax, bx, z2)

−z1
(
y2 − ay

)(
bx − ax

)]

= 2s
[
1

2
z2 I1(ax, bx, z2) +

1

2
y2 I1(ax, bx, y2)

+
1

2
I2(ax, bx, y2) −

1

2
I3(ax, bx, z2)

−z2ay
(
bx − ax

)
− z1

(
y2 − ay

)(
bx − ax

)]
.

(B19)
a 2
x
+ a 2

y
+ z

2

2
≤ m

2
< x

2

2
+ a 2

y
+ z

2

2
and x

2

2
+ y

2

2
+ z

2

1
≤ m

2
.

The intersection of the boundary of the neighborhood with
the edge between the vertices (ax, y2, z2) and (x2, y2, z2) is
given as

Given the conditions in previous case, there are no intersec-
tions of the boundary of the neighborhood with the edge of
the cell between the vertices (ax, y2, z2) and (x2, y2, z2).

The quadrature coefficient in case-4 is therefore computed
as

Using Eqs. (B12), (B13) and (B14), Eq. (B21) is solved as
follows:

(B20)xe2 =

√
m

2
− a 2

y
− z

2

2
.

(B21)

�ij = 2s
⎡
⎢⎢⎣∫

xe2

ax
∫

√
m

2
−x

2
−z

2

2

ay

z2dydx

+ ∫
xe2

ax
∫

y2

√
m

2
−x

2
−z

2

2

�
m

2
− x

2
− y

2
dydx

+∫
bx

xe2
∫

y2

ay

�
m

2
− x

2
− y

2
dydx − ∫

bx

ax
∫

y2

ay

z1dydx

�

= 2s

�
z2 ∫

xe2

ax

��
m

2
− x

2
− z

2

2
− ay

�
dx

+∫
xe2

ax

1

2

��
m

2
− x

2
�
arcsin

�
y2√

m
2
− x

2

�

+ y2

�
m

2
− x

2
− y

2

2

−
�
m

2
− x

2
�
arcsin

⎛⎜⎜⎜⎝

�
m

2
− x

2
− z

2

2√
m

2
− x

2

⎞⎟⎟⎟⎠
−z2

�
m

2
− x

2
− z

2

2

�
dx

+∫
bx

xe2

1

2

��
m

2
− x

2
�
arcsin

�
y2√

m
2
− x

2

�

+ y2

�
m

2
− x

2
− y

2

2

−
�
m

2
− x

2
�
arcsin

�
ay√

m
2
− x

2

�

−ay

�
m

2
− x

2
− a 2

y

�
dx

− z1
�
y2 − ay

��
bx − ax

��
.

 Engineering with Computers

1 3

Case‑5

In case-5, the boundary of the neighborhood intersects
both the edge of the cell between the vertices (ax, ay, z2)
and (x2, ay, z2) and the face on the plane z = z1 , as shown in
Fig. 9e. Therefore, the conditions in this case are

With the same approach illustrated at the beginning of
Sect. B.2, one can also show that the vertices (ax, y2, z1) and
(x2, ay, z1) lie within the neighborhood for the considered
cells (zj ≥ yj ≥ xj ≥ 0), so that there is an intersection with
the edge between (ax, y2, z1) and (x2, y2, z1) and the edge
between (ax, ay, z1) and (x2, ay, z1) lies completely within the
neighborhood.

The intersection of the boundary of the neighborhood
with the edge between the vertices (ax, y2, z2) and (x2, y2, z2)
is given in Eq. (B20), whereas the intersection with the edge
between (ax, y2, z1) and (x2, y2, z1) is given as

Note that xe2 ≤ xe3 since:

If the cell has two symmetries (s = 2 , ay = 0), Eq. (B25)
becomes 2zj ≥ 0.52 which is always verified (zj ≥ 1). If the
cell has one or no symmetries, Eq. (B25) becomes 2zj ≥ 2yj
which is always verified.

(B22)

�ij = 2s
[
z2 I1(ax, xe2 , z2) − z2ay

(
xe2 − ax

)

+
1

2
I2(ax, xe2 , y2) +

1

2
y2 I1(ax, xe2 , y2)

−
1

2
I3(ax, xe2 , z2) −

1

2
z2 I1(ax, xe2 , z2)

+
1

2
I2(xe2 , bx, y2) +

1

2
y2 I1(xe2 , bx, y2)

−
1

2
I2(xe2 , bx, ay) −

1

2
ay I1(xe2 , bx, ay)

−z1
(
y2 − ay

)(
bx − ax

)]

= 2s
[
1

2
z2 I1(ax, xe2 , z2) +

1

2
y2 I1(ax, bx, y2)

−
1

2
ay I1(xe2 , bx, ay) +

1

2
I2(ax, bx, y2)

−
1

2
I2(xe2 , bx, ay) −

1

2
I3(ax, xe2 , z2)

−z2ay
(
xe2 − ax

)
− z1

(
y2 − ay

)(
bx − ax

)]
.

(B23)
a 2
x
+ a 2

y
+ z

2

2
≤ m

2
< x

2

2
+ a 2

y
+ z

2

2
and m

2
< x

2

2
+ y

2

2
+ z

2

1
.

(B24)xe3 =

√
m

2
− y

2

2
− z

2

1
.

(B25)
m

2
− a 2

y
− z

2

2
≤ m

2
− y

2

2
− z

2

1

⇒ z
2

2
− z

2

1
≥ y

2

2
− a 2

y
.

In case-5, the boundary of the neighborhood intersects
both faces on the planes z = z2 and z = z1 . The equation of
the former intersection is written in Eq. (B9), while the lat-
ter is given as

The quadrature coefficient in case-5 is computed as

(B26)yf2 (x) =

√
m

2
− x

2
− z

2

1
.

(B27)

�ij = 2s
⎡⎢⎢⎣∫

xe2

ax
∫

√
m
2−x2−z 2

2

ay

z2dydx

+ ∫
xe2

ax
∫

y2

√
m
2−x2−z 2

2

�
m
2
− x

2
− y

2
dydx

+ ∫
xe3

xe2
∫

y2

ay

�
m
2
− x

2
− y

2
dydx

+ ∫
bx

xe3
∫

√
m
2−x2−z 2

1

ay

�
m
2
− x

2
− y

2
dydx

−∫
xe3

ax
∫

y2

ay

z1dydx − ∫
bx

xe3
∫

√
m
2−x2−z 2

1

ay

z1dydx

⎤
⎥⎥⎦

= 2s

�
z2 ∫

xe2

ax

��
m
2
− x

2
− z

2

2
− ay

�
dx

+ ∫
xe2

ax

1

2

��
m
2
− x

2
�
arcsin

�
y2√

m
2
− x

2

�

+ y2

�
m
2
− x

2
− y

2

2

−
�
m
2
− x

2
�
arcsin

⎛
⎜⎜⎜⎝

�
m
2
− x

2
− z

2

2√
m
2
− x

2

⎞
⎟⎟⎟⎠

−z2

�
m
2
− x

2
− z

2

2

�
dx

+ ∫
xe3

xe2

1

2

��
m
2
− x

2
�
arcsin

�
y2√

m
2
− x

2

�

+ y2

�
m
2
− x

2
− y

2

2

−
�
m
2
− x

2
�
arcsin

�
ay√

m
2
− x

2

�

−ay

�
m
2
− x

2
− a 2

y

�
dx

+ ∫
bx

xe3

1

2

⎛⎜⎜⎜⎝

�
m
2
− x

2
�
arcsin

⎛⎜⎜⎜⎝

�
m
2
− x

2
− z

2

1√
m
2
− x

2

⎞⎟⎟⎟⎠
+ z1

�
m
2
− x

2
− z

2

1

−
�
m
2
− x

2
�
arcsin

�
ay√

m
2
− x

2

�

−ay

�
m
2
− x

2
− a 2

y

�
dx

− z1
�
y2 − ay

��
xe3 − ax

�

−z1 ∫
bx

xe3

��
m
2
− x

2
− z

2

1
− ay

�
dx

�
.

Engineering with Computers

1 3

Using Eqs. (B12), (B13) and (B14), Eq. (B27) is solved as
follows:

Case‑6

In case-6, the face of the cell on the plane z = z2 is com-
pletely outside the neighborhood and the face on the plane
z = z1 is completely inside, as shown in Fig. 9f. Therefore,
the condition in this case is

The quadrature coefficient in case-6 is computed as

(B28)

�ij = 2s
[
z2 I1(ax, xe2 , z2) − z2ay

(
xe2 − ax

)

+
1

2
I2(ax, xe2 , y2) +

1

2
y2 I1(ax, xe2 , y2)

−
1

2
I3(ax, xe2 , z2) −

1

2
z2 I1(ax, xe2 , z2)

+
1

2
I2(xe2 , xe3 , y2) +

1

2
y2 I1(xe2 , xe3 , y2)

−
1

2
I2(xe2 , xe3 , ay) −

1

2
ay I1(xe2 , xe3 , ay)

+
1

2
I3(xe3 , bx, z1) +

1

2
z1 I1(xe3 , bx, z1)

−
1

2
I2(xe3 , bx, ay) −

1

2
ay I1(xe3 , bx, ay)

− z1
(
y2 − ay

)(
xe3 − ax

)

− z1 I1(xe3 , bx, z1) + z1ay
(
bx − xe3

)]

= 2s
[
1

2
z2 I1(ax, xe2 , z2) +

1

2
y2 I1(ax, xe3 , y2)

−
1

2
z1 I1(xe3 , bx, z1)

−
1

2
ay I1(xe2 , bx, ay) +

1

2
I2(ax, xe3 , y2)

−
1

2
I2(xe2 , bx, ay) −

1

2
I3(ax, xe2 , z2)

+
1

2
I3(xe3 , bx, z1) − z2ay

(
xe2 − ax

)

− z1y2
(
xe3 − ax

)
+ z1ay

(
bx − ax

)]
.

(B29)x
2

2
+ y

2

2
+ z

2

1
≤ m

2
< a 2

x
+ a 2

y
+ z

2

2
.

Using Eqs. (B12), (B13) and (B14), Eq. (B30) is solved as
follows:

Case‑7

In case-7, the boundary of the neighborhood intersects
the edge of the cell between the vertices (ax, y2, z1) and
(x2, y2, z1) , as shown in Fig. 9g. Therefore, the condition in
this case is

With the same approach illustrated at the beginning of
Sect. B.2, one can also show that the vertex (x2, ay, z1)
lies within the neighborhood for the considered cells
(zj ≥ yj ≥ xj ≥ 0), so that the edge between (ax, ay, z1) and
(x2, ay, z1) lies completely within the neighborhood. The
intersection of the boundary of the neighborhood with the
edge between the vertices (ax, y2, z1) and (x2, y2, z1) is given
by xe3 in Eq. (B24).

Therefore, the quadrature coefficient in case-7 is com-
puted as

(B30)

�ij = 2s

�
∫

bx

ax
∫

y2

ay

�
m

2
− x

2
− y

2
dydx − ∫

bx

ax
∫

y2

ay

z1dydx

�

= 2s

�
∫

bx

ax

1

2

��
m

2
− x

2
�
arcsin

�
y2√

m
2
− x

2

�

+ y2

�
m

2
− x

2
− y

2

2

−
�
m

2
− x

2
�
arcsin

�
ay√

m
2
− x

2

�

−ay

�
m

2
− x

2
− a 2

y

�
dx

− z1
�
y2 − ay

��
bx − ax

��
.

(B31)

�ij = 2s
[
1

2
I2(ax, bx, y2) +

1

2
y2 I1(ax, bx, y2)

−
1

2
I2(ax, bx, ay) −

1

2
ay I1(ax, bx, ay)

−z1
(
y2 − ay

)(
bx − ax

)]

= 2s
[
1

2
y2 I1(ax, bx, y2) −

1

2
ay I1(ax, bx, ay)

+
1

2
I2(ax, bx, y2)

−
1

2
I2(ax, bx, ay) − z1

(
y2 − ay

)(
bx − ax

)]
.

(B32)a 2
x
+ y

2

2
+ z

2

1
≤ m

2
< x

2

2
+ y

2

2
+ z

2

1
.

 Engineering with Computers

1 3

Using Eqs. (B12), (B13) and (B14), Eq. (B33) is solved as
follows:

(B33)

�ij = 2s

�
∫

xe3

ax
∫

y2

ay

�
m

2
− x

2
− y

2
dydx

+ ∫
bx

xe3
∫

√
m

2
−x

2
−z

2

1

ay

�
m

2
− x

2
− y

2
dydx

−∫
xe3

ax
∫

y2

ay

z1dydx − ∫
bx

xe3
∫

√
m

2
−x

2
−z

2

1

ay

z1dydx

⎤
⎥⎥⎦

= 2s

�
∫

xe3

ax

1

2

��
m

2
− x

2
�
arcsin

�
y2√

m
2
− x

2

�

+ y2

�
m

2
− x

2
− y

2

2

−
�
m

2
− x

2
�
arcsin

�
ay√

m
2
− x

2

�

−ay

�
m

2
− x

2
− a 2

y

�
dx

+ ∫
bx

xe3

1

2

⎛⎜⎜⎜⎝

�
m

2
− x

2
�
arcsin

⎛⎜⎜⎜⎝

�
m

2
− x

2
− z

2

1√
m

2
− x

2

⎞⎟⎟⎟⎠
+ z1

�
m

2
− x

2
− z

2

1

−
�
m

2
− x

2
�
arcsin

�
ay√

m
2
− x

2

�

−ay

�
m

2
− x

2
− a 2

y

�
dx

− z1
�
y2 − ay

��
xe3 − ax

�

−z1 ∫
bx

xe3

��
m

2
− x

2
− z

2

1
− ay

�
dx

�
.

Case‑8 or case‑9

In case-8 or case-9, the edge of the cell between the vertices
(ax, ay, z1) and (x2, ay, z1) may be intersected by the boundary
of the neighborhood or may be completely within the neigh-
borhood, but all the other edges parallel to the x-axis are
completely outside the neighborhood, as shown in Fig. 9h,
i. Therefore, the condition in this case is

The intersection of the boundary of the neighborhood with
the edge between the vertices (ax, ay, z1) and (x2, ay, z1) is
given as

Case-8 and case-9 can be treated as a single case because
of the definition of the upper limit of the outer integral as
bx = min

(
x2, xe4

)
 (see Eq. (26)).

Therefore, the quadrature coefficient in case-8 and case-9
is computed as

(B34)

�ij = 2s
[
1

2
I2(ax, xe3 , y2) +

1

2
y2 I1(ax, xe3 , y2)

−
1

2
I2(ax, xe3 , ay) −

1

2
ay I1(ax, xe3 , ay)

+
1

2
I3(xe3 , bx, z1) +

1

2
z1 I1(xe3 , bx, z1)

−
1

2
I2(xe3 , bx, ay) −

1

2
ay I1(xe3 , bx, ay)

− z1
(
y2 − ay

)(
xe3 − ax

)
− z1 I1(xe3 , bx, z1)

+ z1ay
(
bx − xe3

)]

= 2s
[
1

2
y2 I1(ax, xe3 , y2) −

1

2
z1 I1(xe3 , bx, z1)

−
1

2
ay I1(ax, bx, ay) +

1

2
I2(ax, xe3 , y2)

−
1

2
I2(ax, bx, ay) +

1

2
I3(xe3 , bx, z1)

−z1y2
(
xe3 − ax

)
+ z1ay

(
bx − ax

)]
.

(B35)a 2
x
+ a 2

y
+ z

2

1
≤ m

2
< a 2

x
+ y

2

2
+ z

2

1
.

(B36)xe4 =

√
m

2
− a 2

y
− z

2

1
.

Engineering with Computers

1 3

Using Eqs. (B12), (B13) and (B14), Eq. (B37) is solved as
follows:

Case‑10

In case-10, the cell is completely outside the neighborhood,
as shown in Fig. 9j. The condition for which this case is

(B37)

�ij = 2s
⎡
⎢⎢⎣∫

bx

ax
∫

√
m

2
−x

2
−z

2

1

ay

�
m

2
− x

2
− y

2
dydx

−∫
bx

ax
∫

√
m

2
−x

2
−z

2

1

ay

z1dydx

⎤⎥⎥⎦

= 2s

⎡⎢⎢⎢⎣
∫

bx

ax

1

2

⎛⎜⎜⎜⎝

�
m

2
− x

2
�
arcsin

⎛⎜⎜⎜⎝

�
m

2
− x

2
− z

2

1√
m

2
− x

2

⎞⎟⎟⎟⎠
+ z1

�
m

2
− x

2
− z

2

1

−
�
m

2
− x

2
�
arcsin

�
ay√

m
2
− x

2

�

−ay

�
m

2
− x

2
− a 2

y

�
dx

−z1 ∫
bx

ax

��
m

2
− x

2
− z

2

1
− ay

�
dx

�
.

(B38)

�ij = 2s
[
1

2
I3(ax, bx, z1) +

1

2
z1 I1(ax, bx, z1) −

1

2
I2(ax, bx, ay)

−
1

2
ay I1(ax, bx, ay) − z1 I1(ax, bx, z1) + z1ay

(
bx − ax

)]

= 2s
[
−
1

2
z1 I1(ax, bx, z1) −

1

2
ay I1(ax, bx, ay)

−
1

2
I2(ax, bx, ay) +

1

2
I3(ax, bx, z1) + z1ay

(
bx − ax

)]
.

verified is that the closest node with coordinates (ax, ay, z1)
lies outside the neighborhood:

In this case, the solution of Eq. (B1) is trivial:

(B39)m
2
< a 2

x
+ a 2

y
+ z

2

1
.

(B40)�ij = 0 .

Table 2 Quadrature coefficients for m = 3

Coordinates (x
j
, y

j
, z

j
) of node j �

ij

(0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2), (1, 1, 1) 1
(1, 1, 2) 0.973726549278437
(0, 2, 2) 0.676019006545153
(0, 0, 3) 0.472039364938528
(1, 2, 2) 0.452222876981391
(0, 1, 3) 0.296813994273711
(1, 1, 3) 0.135469082591897
(2, 2, 2) 0.051318527160244
(0, 2, 3) 0.005723631798072
(1, 2, 3) 0.000153662617015

Table 3 Quadrature coefficients for m = 4

Coordinates (x
j
, y

j
, z

j
) of node j �

ij

(0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 1), (0, 1, 2),

(0, 1, 3), (0, 2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2)

1

(1, 1, 3) 0.998768863060338
(2, 2, 2) 0.966687702325083
(0, 2, 3) 0.892821241940852
(1, 2, 3) 0.775199178007998
(0, 0, 4) 0.479090049888385
(0, 1, 4) 0.350647333158876
(2, 2, 3) 0.316083719616023
(1, 1, 4) 0.218887022520336
(0, 3, 3) 0.198987147856524
(1, 3, 3) 0.108751981636951
(0, 2, 4) 0.042953209732511
(1, 2, 4) 0.010206581019384
(2, 3, 3) 0.003887002534346

Fig. 16 The quadrature coefficient �ij (for m = 3) of the cell identi-
fied, for instance, by the coordinates (1, 1, 2) of node j, is reported in
the third row of Table 2

 Engineering with Computers

1 3

Appendix C: Derivatives for the Taylor series
expansion

We need to perform the Taylor series expansion of the
function:

Therefore, we have to compute the derivatives of f (x) , which
will be denoted as f (n)(x) where n > 1 is the order of the
derivative. After taking the first derivatives, one can recog-
nize the following recursive pattern:

where c(n, p, q) are some coefficients depending on the order
n of the corresponding derivative and on the indices p and q.
In order to compute these coefficients c, we take the deriva-
tive of f (n−1)(x) and the final solution should be equal to
f (n)(x):

We multiply the numerator and denominator by (
m

2
− x

2
)−n+2(

m
2
− x

2
− k 2

2

)−n+5∕2

 , so that the denomina-
tor is equal to the denominator of f (n)(x) . Therefore, the
numerator becomes:

(C1)f (x) ∶= arcsin

�
k2√

m
2
− x

2

�
.

(C2)f (n)(x) =

⌊3n∕2⌋∑
p=1

�
p∑

q=1

c(n, p, q)m
2(p−q)

k
2q−1

2

�
x
3n−2p

�
m

2
− x

2
�n�

m
2
− x

2
− k 2

2

�n−1∕2
,

(C3)

d

dx
f (n−1)(x)

=
d

dx

⎡⎢⎢⎢⎣

∑⌊3(n−1)∕2⌋
p=1

�∑p

q=1
c(n − 1, p, q)m

2(p−q)
k
2q−1

2

�
x
3(n−1)−2p

�
m

2
− x

2
�n−1�

m
2
− x

2
− k 2

2

�n−3∕2

⎤⎥⎥⎥⎦

=

��⌊3(n−1)∕2⌋�
p=1

�
p�

q=1

c(n − 1, p, q)m
2(p−q)

k
2q−1

2

�

× (3n − 2p − 3)x
3n−2p−4

�
⋅

�
m

2
− x

2
�n−1�

m
2
− x

2
− k 2

2

�n−3∕2

−

�⌊3(n−1)∕2⌋�
p=1

�
p�

q=1

c(n − 1, p, q)m
2(p−q)

k
2q−1

2

�
x
3n−2p−3

�

⋅

�
(n − 1)

�
m

2
− x

2
�n−2�

−2x
��

m
2
− x

2
− k 2

2

�n−3∕2

+
�
m

2
− x

2
�n−1�

n −
3

2

��
m

2
− x

2
− k 2

2

�n−5∕2�
−2x

���

⋅

1�
m

2
− x

2
�2(n−1)�

m
2
− x

2
− k 2

2

�2n−3
.

We can now change the lower and upper limits of the sum-
mations to equalize the exponents of the numerator of f (n)(x)
as follows:

(C4)

��⌊3(n−1)∕2⌋�
p=1

�
p�

q=1

c(n − 1, p, q)m
2(p−q)

k
2q−1

2

�

×(3n − 2p − 3)x
3n−2p−4

�
⋅

�
m

2
− x

2
��

m
2
− x

2
− k 2

2

�

−

�⌊3(n−1)∕2⌋�
p=1

�
p�

q=1

c(n − 1, p, q)m
2(p−q)

k
2q−1

2

�
x
3n−2p−3

�

⋅

�
−2x(n − 1)

�
m

2
− x

2
− k 2

2

�
− 2x

�
n −

3

2

��
m

2
− x

2
���

=

��⌊3(n−1)∕2⌋�
p=1

�
p�

q=1

c(n − 1, p, q)m
2(p−q)

k
2q−1

2

�

×(3n − 2p − 3)x
3n−2p−4

�
⋅

�
m

4
− 2m

2
x
2
− m

2
k 2
2
+ x

4
+ k 2

2
x
2
�

−

�⌊3(n−1)∕2⌋�
p=1

�
p�

q=1

c(n − 1, p, q)m
2(p−q)

k
2q−1

2

�
x
3n−2p−3

�

⋅

�
(−4n + 5)m

2
x + (4n − 5)x

3
+ 2(n − 1)k 2

2
x
��

=

�⌊3(n−1)∕2⌋�
p=1

(3n − 2p − 3)

×

�
p�

q=1

c(n − 1, p, q)m
2(p−q+2)

k
2q−1

2

�
x
3n−2p−4

+

⌊3(n−1)∕2⌋�
p=1

(−2n + 4p + 1)

×

�
p�

q=1

c(n − 1, p, q)m
2(p−q+1)

k
2q−1

2

�
x
3n−2p−2

+

⌊3(n−1)∕2⌋�
p=1

(−3n + 2p + 3)

×

�
p�

q=1

c(n − 1, p, q)m
2(p−q+1)

k
2q+1

2

�
x
3n−2p−4

+

⌊3(n−1)∕2⌋�
p=1

(−n − 2p + 2)

×

�
p�

q=1

c(n − 1, p, q)m
2(p−q)

k
2q−1

2

�
x
3n−2p

+

⌊3(n−1)∕2⌋�
p=1

(n − 2p − 1)

×

�
p�

q=1

c(n − 1, p, q)m
2(p−q)

k
2q+1

2

�
x
3n−2p−2

�
.

Engineering with Computers

1 3

Therefore, c(n, p, q) can be computed from Eq. (C5) (see
Algorithm 3).

Also, we need the Taylor series expansion of a similar
function:

By repeating the previous procedure for g(x) , we obtain the
same coefficients with a negative sign:

(C5)

�⌊3(n−1)∕2⌋+2�
p=3

(3n − 2p + 1)

�
p−2�
q=1

c(n − 1, p − 2, q)m
2(p−q)

k
2q−1

2

�
x
3n−2p

+

⌊3(n−1)∕2⌋+1�
p=2

(−2n + 4p − 3)

�
p−1�
q=1

c(n − 1, p − 1, q)m
2(p−q)

k
2q−1

2

�
x
3n−2p

+

⌊3(n−1)∕2⌋+2�
p=3

(−3n + 2p − 1)

�
p−1�
q=2

c(n − 1, p − 2, q − 1)m
2(p−q)

k
2q−1

2

�
x
3n−2p

+

⌊3(n−1)∕2⌋�
p=1

(−n − 2p + 2)

�
p�

q=1

c(n − 1, p, q)m
2(p−q)

k
2q−1

2

�
x
3n−2p

+

⌊3(n−1)∕2⌋+1�
p=2

(n − 2p + 1)

�
p�

q=2

c(n − 1, p − 1, q − 1)m
2(p−q)

k
2q−1

2

�
x
3n−2p

�
.

(C6)g(x) ∶= arcsin

⎛⎜⎜⎜⎝

�
m

2
− x

2
− k 2

3√
m

2
− x

2

⎞⎟⎟⎟⎠
.

(C7)

g(n)(x) =

−
⌊3n∕2⌋∑
p=1

�
p∑

q=1

c(n, p, q)m
2(p−q)

k
2q−1

3

�
x
3n−2p

�
m

2
− x

2
�n�

m
2
− x

2
− k 2

3

�n−1∕2
.

Table 4 Quadrature coefficients for m = 6

Coordinates (x
j
, y

j
, z

j
) of node j �

ij

(0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (0, 0, 5),

(0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 1, 5),

(0, 2, 2), (0, 2, 3), (0, 2, 4), (0, 3, 3), (0, 3, 4),

(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 1, 5),

(1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 3, 3), (1, 3, 4),

(2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 3, 3)

1

(3, 3, 3) 0.999790182328854
(0, 2, 5) 0.996792906342336
(2, 3, 4) 0.987734967536850
(1, 2, 5) 0.972240389996081
(0, 4, 4) 0.859401538943377
(1, 4, 4) 0.784526552214560
(2, 2, 5) 0.770548513294528
(3, 3, 4) 0.690805241353979
(0, 3, 5) 0.677365640339469
(1, 3, 5) 0.579443674979575
(0, 0, 6) 0.486088519387858
(2, 4, 4) 0.476199633943112
(0, 1, 6) 0.401767018323396
(1, 1, 6) 0.316210827911515
(2, 3, 5) 0.285658718830588
(0, 2, 6) 0.144371394514214
(0, 4, 5) 0.086400028994142
(3, 4, 4) 0.081510711534106
(1, 2, 6) 0.079306290046733
(1, 4, 5) 0.046394967777568
(3, 3, 5) 0.022174412588457
(2, 2, 6) 0.002888370932027
(2, 4, 5) 0.001586472847643

 Engineering with Computers

1 3

Appendix D: Quadrature coefficients
for m = 3, 4, 6

We report in Tables 2, 3 and 4 the values of the quadra-
ture coefficients derived from Algorithm 4 for m = 3, 4, 6 ,
respectively. The Taylor series expansion is truncated at an
order N = 20 to maintain the errors of the computations
close to machine precision (see Fig. 10). The bonds are iden-
tified by the coordinates (xj, yj, zj) of node j in the system of
reference specified in Sect. 3.2, as shown in Fig. 16. The
quadrature coefficients which are not listed in the tables are
equal to 0.

Acknowledgements The authors would like to acknowledge the
support they received from the Italian Ministery of University
and Research under the PRIN 2017 research project “DEVISU”
(2017ZX9X4K) and from University of Padova under the research
projects BIRD2018 NR.183703/18 and BIRD2020 NR.202824/20.

Funding Open access funding provided by Università degli Studi di
Padova within the CRUI-CARE Agreement.

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Silling SA (2000) Reformulation of elasticity theory for disconti-
nuities and long-range forces. J Mech Phys Solids 48(1):175–209.
https:// doi. org/ 10. 1016/ S0022- 5096(99) 00029-0

 2. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridy-
namic states and constitutive modeling. J Elast 88(2):151–184.
https:// doi. org/ 10. 1007/ s10659- 007- 9125-1

 3. Diehl P, Prudhomme S, Lévesque M (2019) A review of bench-
mark experiments for the validation of peridynamics models. J
Peridyn Nonlocal Model 1(1):14–35. https:// doi. org/ 10. 1007/
s42102- 018- 0004-x

 4. Javili A, Morasata R, Oterkus E, Oterkus S (2019) Peridynamics
review. Math Mech Solids 24(11):3714–3739. https:// doi. org/ 10.
1177/ 10812 86518 803411

 5. Bobaru F, Zhang G (2015) Why do cracks branch? a peridynamic
investigation of dynamic brittle fracture. Int J Fract 196(1–2):59–
98. https:// doi. org/ 10. 1007/ s10704- 015- 0056-8

 6. Ni T, Pesavento F, Zaccariotto M, Galvanetto U, Zhu QZ, Schre-
fler BA (2020) Hybrid fem and peridynamic simulation of hydrau-
lic fracture propagation in saturated porous media. Comput Meth-
ods Appl Mech Eng 366:113101. https:// doi. org/ 10. 1016/j. cma.
2020. 113101

 7. Ren H, Zhuang X, Oterkus E, Zhu H, Rabczuk T (2021) Nonlocal
strong forms of thin plate, gradient elasticity, magneto-electro-
elasticity and phase field fracture by nonlocal operator method.
arXiv preprint arXiv: 2103. 08696

 8. Henke SF, Shanbhag S (2014) Mesh sensitivity in peridynamic
simulations. Comput Phys Commun 185(1):181–193. https:// doi.
org/ 10. 1016/j. cpc. 2013. 09. 010

 9. Ni T, Zhu QZ, Zhao LY, Li PF (2018) Peridynamic simulation
of fracture in quasi brittle solids using irregular finite element
mesh. Eng Fract Mech 188:320–343. https:// doi. org/ 10. 1016/j.
engfr acmech. 2017. 08. 028

 10. Chen H (2019) A comparison study on peridynamic models using
irregular non-uniform spatial discretization. Comput Methods
Appl Mech Eng 345:539–554. https:// doi. org/ 10. 1016/j. cma. 2018.
11. 001

 11. Silling SA, Askari E (2005) A meshfree method based on the
peridynamic model of solid mechanics. Comput Struct 83(17–
18):1526–1535. https:// doi. org/ 10. 1016/j. comps truc. 2004. 11. 026

 12. Emmrich E, Weckner O (2007) The peridynamic equation and its
spatial discretisation. Math Model Anal 12(1):17–27. https:// doi.
org/ 10. 3846/ 1392- 6292. 2007. 12. 17- 27

 13. Seleson P (2014) Improved one-point quadrature algorithms for
two-dimensional peridynamic models based on analytical calcula-
tions. Comput Methods Appl Mech Eng 282:184–217. https:// doi.
org/ 10. 1016/j. cma. 2014. 06. 016

 14. Seleson P, Littlewood DJ (2016) Convergence studies in meshfree
peridynamic simulations. Comput Math Appl 71(11):2432–2448.
https:// doi. org/ 10. 1016/j. camwa. 2015. 12. 021

 15. Chen X, Gunzburger M (2011) Continuous and discontinuous
finite element methods for a peridynamics model of mechanics.
Comput Methods Appl Mech Eng 200(9–12):1237–1250. https://
doi. org/ 10. 1016/j. cma. 2010. 10. 014

 16. Du Q, Ju L, Tian L, Zhou K (2013) A posteriori error analysis of
finite element method for linear nonlocal diffusion and peridy-
namic models. Math Comput 82(284):1889–1922. https:// doi. org/
10. 1090/ S0025- 5718- 2013- 02708-1

 17. Kilic B, Madenci E (2009) Structural stability and failure analysis
using peridynamic theory. Int J Non-Linear Mech 44(8):845–854.
https:// doi. org/ 10. 1016/j. ijnon linmec. 2009. 05. 007

 18. Aksoylu B, Celiker F, Gazonas GA (2020) Higher order colloca-
tion methods for nonlocal problems and their asymptotic compat-
ibility. Commun Appl Math Comput 2(2):261–303. https:// doi.
org/ 10. 1007/ s42967- 019- 00051-8

 19. Yu K, Xin XJ, Lease KB (2011) A new adaptive integration
method for the peridynamic theory. Modell Simul Mater Sci Eng
19(4):045003. https:// doi. org/ 10. 1088/ 0965- 0393/ 19/4/ 045003

 20. Seleson P, Littlewood DJ (2018) Numerical tools for improved
convergence of meshfree peridynamic discretizations. Handb
Nonlocal Continuum Mech Mater Struct. https:// doi. org/ 10. 1007/
978-3- 319- 22977-5_ 39-1

 21. Parks ML, Lehoucq RB, Plimpton SJ, Silling SA (2008) Imple-
menting peridynamics within a molecular dynamics code. Comput
Phys Commun 179(11):777–783. https:// doi. org/ 10. 1016/j. cpc.
2008. 06. 011

 22. Bobaru F, Ha YD (2011) Adaptive refinement and multiscale mod-
eling in 2d peridynamics. J Multiscale Comput Eng 9(6):635–659

 23. Le QV, Chan WK, Schwartz J (2014) A two-dimensional ordinary,
state-based peridynamic model for linearly elastic solids. Int J
Numer Meth Eng 98(8):547–561. https:// doi. org/ 10. 1002/ nme.
4642

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0022-5096(99)00029-0
https://doi.org/10.1007/s10659-007-9125-1
https://doi.org/10.1007/s42102-018-0004-x
https://doi.org/10.1007/s42102-018-0004-x
https://doi.org/10.1177/1081286518803411
https://doi.org/10.1177/1081286518803411
https://doi.org/10.1007/s10704-015-0056-8
https://doi.org/10.1016/j.cma.2020.113101
https://doi.org/10.1016/j.cma.2020.113101
http://arxiv.org/abs/2103.08696
https://doi.org/10.1016/j.cpc.2013.09.010
https://doi.org/10.1016/j.cpc.2013.09.010
https://doi.org/10.1016/j.engfracmech.2017.08.028
https://doi.org/10.1016/j.engfracmech.2017.08.028
https://doi.org/10.1016/j.cma.2018.11.001
https://doi.org/10.1016/j.cma.2018.11.001
https://doi.org/10.1016/j.compstruc.2004.11.026
https://doi.org/10.3846/1392-6292.2007.12.17-27
https://doi.org/10.3846/1392-6292.2007.12.17-27
https://doi.org/10.1016/j.cma.2014.06.016
https://doi.org/10.1016/j.cma.2014.06.016
https://doi.org/10.1016/j.camwa.2015.12.021
https://doi.org/10.1016/j.cma.2010.10.014
https://doi.org/10.1016/j.cma.2010.10.014
https://doi.org/10.1090/S0025-5718-2013-02708-1
https://doi.org/10.1090/S0025-5718-2013-02708-1
https://doi.org/10.1016/j.ijnonlinmec.2009.05.007
https://doi.org/10.1007/s42967-019-00051-8
https://doi.org/10.1007/s42967-019-00051-8
https://doi.org/10.1088/0965-0393/19/4/045003
https://doi.org/10.1007/978-3-319-22977-5_39-1
https://doi.org/10.1007/978-3-319-22977-5_39-1
https://doi.org/10.1016/j.cpc.2008.06.011
https://doi.org/10.1016/j.cpc.2008.06.011
https://doi.org/10.1002/nme.4642
https://doi.org/10.1002/nme.4642

Engineering with Computers

1 3

 24. Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynam-
ics: A stable solution to varying horizons. Comput Methods Appl
Mech Eng 318:762–782. https:// doi. org/ 10. 1016/j. cma. 2016. 12.
031

 25. Zheng G, Wang J, Shen G, Xia Y, Li W (2021) A new quadrature
algorithm consisting of volume and integral domain corrections
for two-dimensional peridynamic models. Int J Fract 1–16. https://
doi. org/ 10. 1007/ s10704- 021- 00540-z

 26. Breitenfeld MS, Geubelle PH, Weckner O, Silling SA (2014)
Non-ordinary state-based peridynamic analysis of stationary crack
problems. Comput Methods Appl Mech Eng 272:233–250. https://
doi. org/ 10. 1016/j. cma. 2014. 01. 002

 27. Zaccariotto M, Luongo F, Galvanetto U, Sarego G (2015) Exam-
ples of applications of the peridynamic theory to the solution
of static equilibrium problems. Aeronaut J 119(1216):677–700.
https:// doi. org/ 10. 1017/ S0001 92400 00107 70

 28. Ni T, Zaccariotto M, Zhu QZ, Galvanetto U (2019) Static solution
of crack propagation problems in peridynamics. Comput Methods
Appl Mech Eng 346:126–151. https:// doi. org/ 10. 1016/j. cma. 2018.
11. 028

 29. Seleson P, Parks M (2011) On the role of the influence function in
the peridynamic theory. Int J Multiscale Comput Eng 9(6). https://
doi. org/ 10. 1615/ IntJM ultCo mpEng. 20110 02527

 30. Scabbia F, Zaccariotto M, Galvanetto U (2021) A novel and effec-
tive way to impose boundary conditions and to mitigate the sur-
face effect in state-based peridynamics. Int J Numer Meth Eng
122(20):5773–5811. https:// doi. org/ 10. 1002/ nme. 6773

 31. Scabbia F, Zaccariotto M, Galvanetto U (2022) A new method
based on taylor expansion and nearest-node strategy to impose
dirichlet and neumann boundary conditions in ordinary state-
based peridynamics. Comput Mech 1–27. https:// doi. org/ 10. 1007/
s00466- 022- 02153-2

 32. Silling SA (2010) Linearized theory of peridynamic states. J Elast
99(1):85–111. https:// doi. org/ 10. 1007/ s10659- 009- 9234-0

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.cma.2016.12.031
https://doi.org/10.1016/j.cma.2016.12.031
https://doi.org/10.1007/s10704-021-00540-z
https://doi.org/10.1007/s10704-021-00540-z
https://doi.org/10.1016/j.cma.2014.01.002
https://doi.org/10.1016/j.cma.2014.01.002
https://doi.org/10.1017/S0001924000010770
https://doi.org/10.1016/j.cma.2018.11.028
https://doi.org/10.1016/j.cma.2018.11.028
https://doi.org/10.1615/IntJMultCompEng.2011002527
https://doi.org/10.1615/IntJMultCompEng.2011002527
https://doi.org/10.1002/nme.6773
https://doi.org/10.1007/s00466-022-02153-2
https://doi.org/10.1007/s00466-022-02153-2
https://doi.org/10.1007/s10659-009-9234-0

	Accurate computation of partial volumes in 3D peridynamics
	Abstract
	1 Introduction
	2 Peridynamic theory
	2.1 Continuum model
	2.2 Discretized model

	3 Algorithms for the computation of the quadrature weights
	3.1 Approximated computation of partial areas or volumes
	3.2 Change of reference system
	3.3 Cell–neighborhood symmetries
	3.4 Computation of partial areas
	3.5 Computation of partial volumes

	4 Numerical results
	4.1 Geometrical quantities
	4.2 Coefficients of the elasticity tensor
	4.3 Manufactured problem

	5 Conclusions
	Acknowledgements
	References

