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Abstract
The peridynamic theory is a nonlocal formulation of continuum mechanics based on integro-differential equations, devised 
to deal with fracture in solid bodies. In particular, the forces acting on each material point are evaluated as the integral of the 
nonlocal interactions with all the neighboring points within a spherical region, called “neighborhood”. Peridynamic bodies 
are commonly discretized by means of a meshfree method into a uniform grid of cubic cells. The numerical integration of 
the nonlocal interactions over the neighborhood strongly affects the accuracy and the convergence behavior of the results. 
However, near the boundary of the neighborhood, some cells are only partially within the sphere. Therefore, the quadrature 
weights related to those cells are computed as the fraction of cell volume which actually lies inside the neighborhood. This 
leads to the complex computation of the volume of several cube–sphere intersections for different positions of the cells. We 
developed an innovative algorithm able to accurately compute the quadrature weights in 3D peridynamics for any value of 
the grid spacing (when considering fixed the radius of the neighborhood). Several examples have been presented to show 
the capabilities of the proposed algorithm. With respect to the most common algorithm to date, the new algorithm provides 
an evident improvement in the accuracy of the results and a smoother convergence behavior as the grid spacing decreases.

Keywords Quadrature weights · 3D peridynamics · Cube–sphere intersection · Meshless method · Convergence studies · 
Improved numerical integration

1 Introduction

The peridynamic theory provides a nonlocal reformulation 
of classical continuum mechanics: the internal forces are 
evaluated with integral equations, which are valid regardless 
of the presence of discontinuities in the displacement field. 
Hence, peridynamics can naturally model crack initiation, 
propagation and branching in solids. The first formulation 
of the peridynamic theory was the bond-based version [1], 
in which the Poisson’s ratio is restricted to a fixed value. 
Subsequently, state-based peridynamics was developed [2], 
introducing the possibility of varying the Poisson’s ratio. In 
the literature, there are many examples of applications [3, 4], 
ranging from complex crack patterns, such as spontaneous 

branching [5], to multi-physics problems involving fracture 
[6, 7].

Peridynamic points interact with each other up to a finite 
distance � , called “horizon”. The “neighborhood” of a point 
is the set of all the points interacting with that point. There-
fore, the neighborhood has a circular shape in 2D problems 
and a spherical shape in 3D problems. The peridynamic 
equation of motion is based on the spatial integration over 
the neighborhood of the internal forces, which are generated 
by the interactions between neighboring points. In practice, 
the integration of the peridynamic equation of motion is car-
ried out by means of numerical tools. The body can be dis-
cretized by a uniform or non-uniform grid (see for instance 
[8–10]). Various methods have been utilized to integrate 
numerically peridynamic equations: meshfree method with 
composite midpoint quadrature [11–14], Gauss-Hermite 
quadrature [12], finite element method [12, 15, 16], collo-
cation method [17, 18] and an adaptive integration method 
with error control [19]. Thanks to its simplicity of imple-
mentation and relatively low computational cost compared to 
other approaches, the meshfree method with a uniform grid 
is the most commonly used for peridynamic simulations. In 
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this method, the body is discretized in volume cells with a 
square shape in 2D problems and cubic in 3D, and the nodes 
lie at the center of the corresponding cells. The spatial inte-
gration over the neighborhood is transformed into a summa-
tion of integrals over cells and the midpoint quadrature rule 
is then applied in each cell, in which the nodes are employed 
as quadrature points.

However, near the boundary of the neighborhood, some 
cells are only partially within the neighborhood itself. 
Therefore, the quadrature weights related to those cells are 
computed as the fraction of cell volume which actually lies 
inside the neighborhood. The intersection area or volume of 
those cells with the neighborhood is also referred to as “par-
tial area” in 2D and “partial volume” in 3D. The accuracy 
and convergence of the peridynamic results depend on the 
algorithm to compute the quadrature weights, i.e., the partial 
areas or volumes [13, 14, 20].

The first algorithm proposed in [11] considers the nodes 
within the neighborhood with their entire cell (even if a part 
of the volume is partially outside the neighborhood) and 
neglects the nodes outside the neighborhood (even if their 
cell is partially inside the neighborhood). This approach, 
under grid refinement, leads to an oscillatory convergence 
behavior in which the fluctuations seem rather random [13]. 
Many other algorithms to approximate the partial volumes 
have been proposed since then. An approximation based on 
the distance between neighboring nodes is proposed in [21], 
which improves the computation of the partial volumes of 
nodes within the neighborhood. A similar approximation 
is used in [22, 23] to include the previously neglected par-
tial volumes of nodes outside the neighborhood but with a 
part of the cell inside it. These algorithms reduce, but never 
eliminate, the seemingly random fluctuations of the con-
vergence behavior. Subsequently, the algorithm to compute 
analytically the partial areas has been developed in [13]: 
the types of intersection between the neighborhood and the 
cells are rigorously categorized and then subdivided into 
domains of basic geometry (triangles, rectangles and circular 
segments), for which the analytical computation of the area 
is straightforward. Using this algorithm, the convergence 
behavior is smoothly oscillatory and the simulations yield 
results affected by a smaller error, on average, compared 
to the previously mentioned algorithms. In [13], it is also 
suggested to use the centroids of the partial areas as quad-
rature points, but this significantly increases the complexity 
of the computational model. The analytical computation of 
the partial volumes in 3D problems is much more complex 
and no algorithm is currently available for such purpose. 
The partial volumes can be computed numerically by two 
proposed algorithms, one based on the trapezoidal rule [19] 
and one based on a process of recursive subdivisions and 
sampling [14]. However, to reach the desired accuracy the 

computational cost may be very high. Other algorithms, 
specialized for non-uniform grids, are presented in [9, 22, 
24, 25].

The aim of this paper is to simplify the implementation 
of the algorithm to compute analytically the partial areas 
presented in [13] by skipping the step of subdivision of the 
intersection area in basic geometries, and to develop an algo-
rithm for the analytical computation of the partial volumes. 
In order to achieve this, we solve directly the integrals which 
describe all the possible intersection areas or volumes. Actu-
ally, some integrals involved in the computation of the par-
tial volumes are not explicitly solvable. Hence, we perform a 
Taylor series expansion of those functions and integrate the 
polynomials. The computation of the partial volumes con-
verges to the analytical solution if the sum of infinite terms 
is not truncated. This, clearly, is not possible in a numerical 
model, but we will show that the algorithm is able to reach 
values of the error very close to machine precision with little 
computational effort. The numerical results obtained with 
the new algorithm show an evident improvement in the accu-
racy and in the convergence behavior when compared to the 
results obtained by the algorithm based on the approxima-
tion proposed by [22], which is arguably the most commonly 
used in engineering applications. We compared the numeri-
cal results by using the ordinary state-based version of the 
peridynamic theory, but the algorithm can be used with the 
bond-based version as well.

The paper is divided as follows. Section 2 reviews the 
basics of the state-based peridynamic theory and its discre-
tized formulation. Section 3 presents the innovative algo-
rithms for the computation of the partial areas and partial 
volumes. Section 4 contains several numerical examples that 
show the improvements provided by the proposed algorithm 
for the computation of the partial volumes with respect to 
the most commonly used algorithm. Section 5 draws the 
conclusions of the work.

2  Peridynamic theory

The peridynamic theory is a continuum theory based on 
nonlocal interactions between material points [1]. The 
derived numerical formulation is a very useful tool for 
simulating crack propagation in solid bodies. In the follow-
ing, we present the fundamentals of the ordinary state-based 
peridynamics and the discretized formulae which could be 
implemented in a computational code.

2.1  Continuum model

The nonlocal interaction between two points, � and �′ , in 
a peridynamic body B is described by a quantity named 
“bond”:
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where the point �′ is contained in the neighborhood 
H

�
∶=

�
�� ∈ B ∶ ‖�‖ ≤ �

�
 . The relative displacement 

vector � is defined as

where � is the displacement field. Note that � + � is the 
relative position of points � and �′ after the deformation 
occurred.

The state-based peridynamic equation of motion of a 
point � within the body B is given by [2]

where � is the material density, �̈ is the acceleration field, 
� is the force state, dV

��
 is the differential volume of a point 

�′ within the neighborhood H
�
 and � is the external force 

density field. The notation �[�, t]⟨�⟩ means that the state 
� depends on the position of the point � and on the time 
t, and operates on the bond � . In an ordinary state-based 
peridynamic model, the force state is aligned with the cor-
responding bond for any deformation, as depicted in Fig. 1. 
For the purposes of the paper, it suffices to limit the study 
to quasi-static problems [26–28]. Hence, the peridynamic 
equilibrium equation is derived from Eq. (3) by dropping 
the dependence on time:

The reference position scalar state x , representing the 
bond length, the extension scalar state e , describing the 

(1)� ∶= �
� − � ,

(2)� ∶= �(��, t) − �(�, t) ,

(3)

𝜌(�) �̈(�, t) = ∫
H�

�
�[�, t]⟨�⟩ − �[��, t]⟨−�⟩ �dV

��
+ �(�, t) ,

(4)−∫
H�

�
�[�]⟨�⟩ − �[��]⟨−�⟩ �dV

��
= �(�) .

elongation (or contraction) of the bond in the deformed 
body, and the deformed direction vector state � , the unit 
vector in the direction of � , are, respectively, defined as

The weighted volume m and the dilatation � of a point � are 
defined as

where � is a prescribed spherical influence function [29]. 
We adopt the Gaussian influence function

Adopting the linear peridynamic solid model [2], the force 
state is computed as

where K is the bulk modulus and � is the shear modulus. 
Since �⟨�⟩ = −�⟨−�⟩ , the ordinary state-based peridy-
namic equilibrium equation becomes [2, 30, 31]

Equation (12) relates the external forces to the displacement 
field, which might be a discontinuous function with respect 
to the spatial coordinates.

2.2  Discretized model

We adopt a meshfree method with a uniform grid spacing 
h to discretize the body domain (see, for instance, the dis-
cretization of a neighborhood in Fig. 2). Therefore, the cells 
surrounding each node are squares in 2D and cubes in 3D, 
respectively, with an area A = h2 and a volume V = h3.

(5)x⟨�⟩ ∶= ‖�‖ ,

(6)e⟨�⟩ ∶= ‖� + �‖ − ‖�‖ ,

(7)�⟨�⟩ ∶= � + �

‖� + �‖ .

(8)m
�
∶= ∫

H�

�⟨�⟩�x⟨�⟩�2dV
��
,

(9)�
�
∶=

3

m
�
∫
H�

�⟨�⟩ x⟨�⟩ e⟨�⟩dV
��
,

(10)�⟨�⟩ ∶= exp

�
−
‖�‖2
�2

�
.

(11)

�[�]⟨�⟩ =
�
(3K − 5�)

�⟨�⟩ x⟨�⟩
m

�

�
�
+ 15�

�⟨�⟩ e⟨�⟩
m

�

�
�⟨�⟩ ,

(12)
− ∫

H�

�
(3K − 5�)

�
�
�

m
�

+
�
��

m
��

�
�⟨�⟩ x⟨�⟩

+15�

�
1

m
�

+
1

m
��

�
�⟨�⟩ e⟨�⟩

�
�⟨�⟩dV

��
= �(�) .

x

y

B

x
δ

Hx

x′

δ

Hx′

ξ

u(x, t)

u(x′, t)

ξ + η

T[x]〈ξ〉

T[x′]〈-ξ〉

Fig. 1  Body B modelled with ordinary state-based peridynamics: 
the force states �[�]⟨�⟩ and �[��]⟨−�⟩ arise in the bond � due to the 
deformation of the body
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Consider a node i as the node at which the peridynamic 
equilibrium equation should be computed and a node j with a 
portion of its cell inside the neighborhood Hi of node i. The 
bond connecting node i to node j is described by

Analogously, the relative displacement vector after the 
deformation of the body is defined as

where �i and �j are the displacement vectors of nodes i and 
j, respectively.

Hence, the reference position scalar state and the influ-
ence function of bond ij can be computed as follows:

Under the assumption of small displacements, the extension 
scalar state of bond ij is given as

The non-local properties of node i, i.e., the weighted volume 
mi and the dilatation �i , are determined numerically by trans-
forming the integrals in Eqs. (8) and (9) into a summation 
of integrals over cells and applying a midpoint quadrature 
rule in each cell:

(13)�ij = �j − �i .

(14)�ij = �j − �i ,

(15)x
ij
=‖�ij‖ ,

(16)�
ij
= exp

�
−
‖�ij‖2
�2

�
.

(17)

e
ij
= ‖�ij + �ij‖ − ‖�ij‖
‖�ij‖≪‖�ij‖

≈ �ij ⋅
�ij

‖�ij‖ .

where �ijV  represents the quadrature weight of the contri-
bution of node j in the integral over the neighborhood of 
node i. The accurate computation of coefficients �ij is the 
main result of the paper, which is presented in Sect. 3. In 
2D problems under plane stress conditions, the volume of 
the cell is given as V = A t , where t is the constant thickness 
of the plate.

Under the assumption of small displacements 
( �⟨�ij⟩ ≈ �ij∕‖�ij‖ ), the peridynamic equilibrium equation 
in the discretized form is computed by using the quadrature 
scheme previously described as

where mj and �j are, respectively, the weighted volume and 
the dilatation of node j computed with Eqs. (18) and (19), 
and �i is the external force density vector applied to node i.

3  Algorithms for the computation 
of the quadrature weights

The quadrature coefficient �ij is the dimensionless factor 
defined as

(18)mi =
∑
j∈Hi

�
ij
x2
ij
�ij V ,

(19)�i =
c�

mi

∑
j∈Hi

�
ij
x
ij
e
ij
�ij V ,

(20)

−
�
j∈Hi

�
(3K − 5�)

�
�i

mi

+
�j

mj

�
�
ij
x
ij

+15�

�
1

mi

+
1

mj

�
�
ij
e
ij

�
�ij

‖�ij‖ �ij V = �i ,

Fig. 2  In the continuum model 
of the neighborhood H

�
 of a 

given point � , some points (as 
point �′ ) lie inside the neighbor-
hood and some other (as point 
�′′ ) lie outside. Similarly, in 
the discretized model of the 
neighborhood Hi of a given 
node i, there are some nodes 
(solid circles) whose cell lies 
completely or partially inside 
the neighborhood and other 
nodes (empty circles) whose 
cell lies completely outside the 
neighborhood

x

δ

Hx

x′

ξ

x′′

(a) Neighborhood of point x (continuum
model).

i

j

ξij

(b) Neighborhood of node i (discretized
model).
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where Ṽ  and Ã are, respectively, the partial volume and 
partial area of the cell, which should be computed from 
the intersection between the neighborhood Hi and the cell 
itself. In particular, �ij = 1 if the cell is completely inside Hi , 
�ij = 0 if the cell is completely outside Hi and 0 < 𝛽ij < 1 if 
the cell is partially inside Hi . The set of nodes which con-
stitutes Hi ∶=

{
j ∈ B ∶ 𝛽ij > 0

}
 depends on the algorithm 

used to compute �ij.
We present one of the algorithms based on the approxima-

tion of the partial volume [22], used as a reference to com-
pare our results. To compute analitycally �ij in a convenient 
framework, we define a new reference system and exploit 
the cell–neighborhood symmetries. Then, we improve the 
algorithm for the analytical computation of partial areas by 
employing a simpler scheme and we use the same scheme 
to compute quasi-analytically the partial volumes. We uti-
lize the expression “quasi-analytical” because the algorithm 
includes the truncation of the Taylor series expansions, but 

(21)�ij ∶=

{
Ṽ

V
in 3D,

Ã

A
in 2D,

it is able to attain accurate results with a relatively small 
truncation order.

3.1  Approximated computation of partial areas 
or volumes

In the literature there are many algorithms that compute the 
partial areas or volumes as an approximation based on the 
distance between neighboring nodes [13]. The algorithm 
presented in [22] (see Algorithm 1) is arguably the most 
commonly used to date. This algorithm is based on the 
analytical computation of partial lengths in 1D problems, 
as shown in Fig. 3. If the distance between node i and the 
farthest side of the cell of node j is smaller than the horizon 
size, namely ‖�ij‖ + h

2
< 𝛿 where h is the grid spacing, then 

�ij = 1 (see Fig. 3a). If the distance between node i and the 
closest side of the cell of node j is greater than the horizon 
size, namely ‖�ij‖ − h

2
> 𝛿 , then �ij = 0 (see Fig. 3c). Other-

wise, �ij is computed as the difference between the horizon 
size and the distance of the closest side of the cell of node 
j from node i, divided by the grid spacing h (see Fig. 3b).

Fig. 3  Possible cases of inter-
sections between neighborhood 
and cell considered by Algo-
rithm 1: the gray area represents 
the quadrature weight of the 
corresponding cell

i jξij

h

‖ξij‖+ h/2

δ

(a) Case-1.

i jξij

h

‖ξij‖ − h/2

δ

(b) Case-2.

i jξij

h

‖ξij‖ − h/2

δ

(c) Case-3.

Algorithm 1. Approximation of quadrature coefficients ([22]).

Input: ξij , δ, h
Output: βij

1: if ‖ξij‖+ h
2 < δ then � case-1

2: βij = 1
3: else if ‖ξij‖ − h

2 < δ then � case-2
4: βij =

[
δ − ‖ξij‖ − h

2

)]
/h

5: else � case-3
6: βij = 0
7: end if

8: return βij
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Algorithm 1 is applied without modifications to 2D and 
3D problems. If the direction of �ij lies along one of the 
axis, as for instance in Fig. 3b, the approximation is quite 
accurate. However, Fig. 4 shows other examples in which 
the computation of the quadrature weights with Algorithm 1 
can be rather inaccurate. As a result, even if this algorithm is 
very simple, it leads to convergence issues [13, 14]: for small 
variations of the grid spacing (considering fixed the hori-
zon size) there are considerable variations of the computed 

mechanical properties, as the numerical results of Sects. 4.2 
and 4.3 show.

3.2  Change of reference system

For simplicity sake, the concepts are hereinafter explained in 
the 2D case, but the generalization to a 3D case is straight-
forward. Since the focus is on the neighborhood of a node 
i, we adopt a new system of reference (x, y) with the origin 
at (xi, yi) and the distances scaled by a factor 1/h, as shown 

Fig. 4  Some examples in 
which the quadrature weights 
computed with Algorithm 1 
are rather different from their 
analytical values: the gray area 
represents the quadrature weight 
of the corresponding cell com-
puted with Algorithm 1 i

j

ξij

(a) Algorithm 1: βij = 1.
Analytical: βij = 0.9579.

i

j

ξij

(b) Algorithm 1: βij = 0.3.
Analytical: βij = 0.2489.

i

j

ξij

(c) Algorithm 1: βij = 0.
Analytical: βij = 0.0403.

Fig. 5  a Hi is the neighborhood 
of node i in a general reference 
system and b Hi in the scaled 
reference system: the origin 
of the new reference system 
is centered at node i and the 
distances are scaled by a uni-
form factor 1/h in all directions, 
where h is the grid spacing. 
The coordinates of a node j in 
the new reference system are 
given as xj = (xj − xi)∕h and 
yj = (yj − yi)∕h , and the horizon 
size of the neighborhood 
becomes m = �∕h

i
(xi, yi)

Hi

δ

x

y

j

(xj, yj)

h

(a)

i
(0, 0)

Hi

m

x

y

j

(xj, yj)

1

(1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

(b)
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in Fig. 5. Note that, since the quadrature coefficient �ij is 
normalized with the area or volume of the cell (see Eq. 21), 
its value is not affected by the scaling of the distances. The 
coordinates of a node j in the new reference system are given 
as

Since the grid is uniform, xj and yj are integer numbers.
As shown in Fig. 5b, the grid spacing in the new refer-

ence system is equal to 1, so that the area or the volume of 
each cell are A = 1 and V = 1 , respectively. Therefore, �ij is 
simply computed as the area or volume of the intersection 
between the neighborhood of node i and the cell of node 
j: �ij = Ã∕A = Ã or �ij = Ṽ∕V = Ṽ  . Furthermore, the only 
parameter which can change the values of the quadrature 
coefficients is the m-ratio, given as

If m is unique for the whole peridynamic body (as it is often 
the case), then the values of �ij can be computed only once 
and used for the neighborhoods of all the nodes.

3.3  Cell–neighborhood symmetries

The symmetries of the neighborhood with respect to the 
nodal grid, named “cell–neighborhood symmetries”, can be 
exploited to reduce the number of cases to be considered. 
In [13] the symmetries with respect to the axes were used 

(22)
(
xj, yj

)
=

(
xj − xi

h
,
yj − yi

h

)
.

(23)m ∶=
�

h
.

to compute the quadrature weights only in the first quad-
rant. On the other hand, we use four lines of symmetry for 
a 2D neighborhood (both the axes and the bisectors of the 
quadrants), as shown in Fig. 6. Therefore, the computation 
of the partial area can be carried out only for the nodes sat-
isfying the following conditions: M ≥ yj ≥ xj ≥ 0 , where 
M ∶= ⌊m + 0.5⌋ ( ⌊⋅⌋ stands for the floor function and finds 
the greatest integer smaller than or equal to the input), and 
yj ≠ 0 . The latter condition is given by the fact that the cen-
tral node does not interact with itself. On the other hand, the 
value M is used to provide an upper limit to the search for 
possible nodes inside the neighborhood. These nodes are 
enclosed by a red line in Fig. 6. Thanks to the cell–neigh-
borhood symmetries, �ij of the other nodes have the same 
values. For instance, the computation of the partial area for 
the node (xj = 2, yj = 3) is the same for nodes (3, 2), (3,−2) , 
(2,−3) , (−2,−3) , (−3,−2) , (−3, 2) and (−2, 3).

Analogously, we exploit six planes of symmetry for a 
neighborhood in a 3D model (planes containing two axes 
or one axis and one bisector of the octants). Therefore, in 
this case, we consider only nodes that satisfy the follow-
ing conditions: M ≥ zj ≥ yj ≥ xj ≥ 0 and zj ≠ 0 . The nodes 
considered in the proposed algorithm for the computation 
of the partial volumes for m = 3.2 are represented in Fig. 7.

Cell–neighborhood symmetries come into play also dur-
ing the computation of some partial areas and volumes, as 
shown in Fig. 8. In 2D problems, the intersections between 
the neighborhood and cells of nodes with xj = 0 (see Fig. 8a) 
are symmetric with respect to the y-axis. Similarly, in 3D 
problems, the intersections between the neighborhood and 
cells of nodes with xj = 0 and yj ≠ 0 or xj = yj = 0 (see 
Fig. 8b, c) are symmetric with respect to the planes per-
pendicular, respectively, to the x-axis or both the x - and y
-axis. These symmetries will be exploited in Appendix A 
and Sect. 3.5.

3.4  Computation of partial areas

The first algorithm proposing the analytical computation 
of partial areas can be found in [13]: the area of intersec-
tion between the neighborhood and the cells is subdivided 
into domains of basic geometry (triangles, rectangles and 
circular segments), for which the analytical computation of 
the area is straightforward. Reference [13] proposes 8 dif-
ferent cases of cell–neighborhood intersection. In Appen-
dix A, we propose a novel approach to compute analytically 
the partial areas, which is based on the definition of the 
quadrature coefficient in an integral form. The integrals 
are then solved by distinguishing only 5 possible cases 
of cell–neighborhood intersections, for each of which an 
explicit analytical expression for the value of the quadra-
ture coefficient is obtained.

x

y
1

(2, 3)

(3, 2)

(-2, 3)

(-3, 2)

(2, -3)

(3, -2)

(-2, -3)

(-3, -2)

Fig. 6  Dashed lines represent the lines of the cell–neighborhood sym-
metries and the nodes enclosed by the red line are the only ones that 
are considered by the proposed algorithm
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Algorithm 2 shows how to compute analytically the quad-
rature coefficients in 2D with the proposed approach. Func-
tion 1 is used to solve the only non-trivial integral derived 
from the computation of the quadrature coefficient. Please 

refer to Appendix A for the details of the analytical deriva-
tion, which is also very useful to better understand the exten-
sion of the formulae from 2D to 3D for the computation of 
the partial volumes shown in the next section.

Fig. 7  Thanks to the cell–
neighborhood symmetries, the 
nodes enclosed by the surfaces 
represented by red lines are the 
only ones that are considered 
by the proposed algorithm. The 
six planes of symmetry are not 
represented for image clarity

x

y

z

0

1

2

3

1 2 3

1

2

3

Fig. 8  Examples of nodes for 
which the cell–neighborhood 
symmetry can be exploited 
within the cell in the compu-
tation of the partial areas or 
volumes
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Function 1. Integral of Equation A4 in the interval [a, b].

1: function Int2D(a,b,m)

2: I = 1
2 m

2
[
arcsin b

m

)
− arcsin a

m

)]
+ 1

2 b
√

m2 − b2 − 1
2 a

√
m2 − a2

3: return I

Algorithm 2. Analytical computation of quadrature coefficients in 2D.

Input: xj , yj , m
Output: βij

1: xj = abs(xj) � absolute value of xj for symmetry (xj ≥ 0)
2: yj = abs(yj) � absolute value of yj for symmetry (yj ≥ 0)

3: xj , yj = sort(xj , yj) � sort in ascending order for symmetry (xj ≤ yj)

4: M = �m+ 0.5�
5: if yj �= 0 and yj > M then
6: return βij = 0 � for exceeding the lower and upper limits of yj
7: end if

8: x1 = xj − 0.5,
9: x2 = xj + 0.5

10: y1 = yj − 0.5
11: y2 = yj + 0.5

12: if xj = 0 then
13: s = 1
14: else
15: s = 0
16: end if

17: ax = max (0, x1)
18: bx = min

(
x2,

√
m2 − y 2

1

)

19: if x 2
2 + y 2

2 ≤ m2 then � case-1
20: βij = 1
21: else if a 2

x + y 2
2 ≤ m2 then � case-2

22: xe =
√

m2 − y 2
2

23: βij = 2s[ y2 (xe − ax)+Int2D(xe, bx,m)− y1 (bx − ax) ]
24: else if a 2

x + y 2
1 ≤ m2 then � case-3 or case-4

25: βij = 2s[ Int2D(ax, bx,m)− y1 (bx − ax) ]
26: else � case-5

βij = 0
27: end if

28: return βij
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3.5  Computation of partial volumes

We show hereinafter how to compute quasi-analytically the 
quadrature weights in 3D problems. The partial volumes are 
computed with the same approach explained in Appendix A 
for the partial areas. Therefore, the quadrature coefficients 
are computed as

(24)

�ij =2
s ∫

bx

ax
∫

min

�
y2,

√
m

2
−x

2
−z

2

1

�

ay

×∫
min

�
z2,

√
m

2
−x

2
−y

2

�

z1

dzdydx ,

w h e r e  x1 = xj − 0.5  ,  x2 = xj + 0.5  ,  y1 = yj − 0.5  , 
y2 = yj + 0.5 , z1 = zj − 0.5 and z2 = zj + 0.5 are the coor-
dinates of the faces of the cubic cell and s is the number 
of symmetries of the cell with respect to the neighborhood 
( s = 2 if yj = xj = 0 , s = 1 if xj = 0 and yj ≠ 0 and s = 0 if 
xj ≠ 0 and yj ≠ 0 , see Fig. 8b, c). The integration limits ax , 
bx and ay are scalar values that can be computed at the begin-
ning of the algorithm. Similarly to what described in Appen-
dix A, the lower limits are defined to exploit the cell–neigh-
borhood symmetry, or symmetries, shown in Fig. 8b or c:

Fig. 9  Possible cases of inter-
sections between neighborhood 
and cell in 3D. Symmetric 
cell–neighborhood intersections 
are not shown here, but the 
unsymmetric portions of those 
intersections belong to one of 
the shown cases. Since the true 
origin of the reference system 
lies outside the images, it has 
been translated to one of the 
vertices of the cube for visuali-
zation clarity
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Figure 9 shows all the possible cases of intersection between 
the spherical neighborhood and a cubic cell. Note that in 
Fig. 9 only cells with no symmetries are illustrated, but the 
portions of the symmetric cell–neighborhood intersections 
that are used in the computation of the quadrature weights, 
i.e., the portions in the first octant of Fig. 8b, c, belong to 
one of those cases. The upper limit of the integral in x direc-
tion of Eq. (24) is the greatest x coordinate of the cell–neigh-
borhood intersection, and it can be computed as

Therefore, bx is equal to x2 from case-2 to case-8, and to √
m

2
− a 2

y
− z

2

1
 in case-9. The computation of Eq. (26) at 

the beginning of the algorithm allows to compute case-8 and 
case-9 with the same formulae.

Similarly to Eq. (A1) in Appendix A, Eq. (24) can be 
solved for each case by splitting the integrals in correspond-
ence of the intersections between the boundary of the neigh-
borhood and the edges parallel to the x-axis and the faces 
parallel to the x-y plane (for details refer to Appendix B). 
There are 3 types of non-trivial integrals that derive from 
the previous step:

where k1 can be equal to ay , y2 , z1 or z2 , k2 to ay or y2 , and 
k3 to z1 or z2 . The parameters k1 , k2 and k3 are defined in 
these ways to group the same types of integrals derived from 
Eq. (24). The explicit solution given in Eq. (27) is used in 
Function 2 to compute the integral in a general interval 
[a, b].

(25)ax = max
(
0, x1

)
, ay = max

(
0, y1

)
.

(26)bx = min

(
x2,

√
m

2
− a 2

y
− z

2

1

)
.

(27)

∫
�

m
2
− x

2
− k 2

1
dx

=
1

2

�
m

2
− k 2

1

�
arcsin

⎛⎜⎜⎜⎝
x�

m
2
− k 2

1

⎞⎟⎟⎟⎠
+

1

2
x

�
m

2
− x

2
− k 2

1
+ const. ,

(28)∫
�
m

2
− x

2
�
arcsin

�
k2√

m
2
− x

2

�
dx ,

(29)∫
�
m

2
− x

2
�
arcsin

⎛⎜⎜⎜⎝

�
m

2
− x

2
− k 2

3√
m

2
− x

2

⎞⎟⎟⎟⎠
dx ,

On the other hand, integrals in Eqs. (28) and (29) do not 
have an explicit solution. Therefore, we perform a Taylor 
series expansion centered at x0 of the following functions:

where c is a coefficient depending on the order n of the cor-
responding derivative and the indices p and q. For more 
details about the computation of the derivatives of a gen-
eral order n (and the corresponding coefficients c(n, p, q)), 
please refer to Appendix C. The matrix � containing all the 
coefficients c is obtained with Algorithm 3. If the order N 
of truncation of the Taylor series expansion tends to infinity 
( N → ∞ ), then the solution of the integral is exact. Clearly, 
in a numerical algorithm N must be a finite number, but we 
will show that our approach is able to attain accurate results 
with little computational effort (i.e., with N relatively low). 
Hence, we substitute Eqs. (30) and (31), respectively, in 
Eqs. (28) and (29) and solve the indefinite integrals:

(30)

arcsin

�
k2√

m
2
− x

2

�

= arcsin

⎛
⎜⎜⎜⎝

k2�
m

2
− x

2

0

⎞
⎟⎟⎟⎠

+

N�
n=1

∑⌊3n∕2⌋
p=1

�∑p

q=1
c(n, p, q)m

2(p−q)
k
2q−1

2

�
x
3n−2p

0

�
m

2
− x

2

0

�n�
m

2
− x

2

0
− k 2

2

�n−1∕2

⋅

�
x − x0

�n
n!

,

(31)

arcsin

⎛
⎜⎜⎜⎝

�
m

2
− x

2
− k 2

3√
m

2
− x

2

⎞
⎟⎟⎟⎠

= arcsin

⎛⎜⎜⎜⎝

�
m

2
− x

2

0
− k 2

3�
m

2
− x

2

0

⎞⎟⎟⎟⎠

−

N�
n=1

⌊3n∕2⌋∑
p=1

�
p∑

q=1

c(n, p, q)m
2(p−q)

k
2q−1

3

�
x
3n−2p

0

�
m

2
− x

2

0

�n�
m

2
− x

2

0
− k 2

3

�n−1∕2

⋅

�
x − x0

�n
n!

,
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(32)

∫
(
m

2
− x

2
)
f (x)dx

= ∫
(
m

2
− x

2
)[

f (x0) +

N∑
n=1

f (n)(x0)

n!

(
x − x0

)n
]
dx

= f (x0)

(
m

2
x −

x
3

3

)

+

N∑
n=1

f (n)(x0)

n!

[
m

2
− x

2

0

n + 1

(
x − x0

)n+1

−
2x0

n + 2

(
x − x0

)n+2
−

1

n + 3

(
x − x0

)n+3]

+ const. ,

(33)

∫
(
m

2
− x

2
)
g(x)dx

= ∫
(
m

2
− x

2
)[

g(x0) +

N∑
n=1

g(n)(x0)

n!

(
x − x0

)n
]
dx

= g(x0)

(
m

2
x −

x
3

3

)

+

N∑
n=1

g(n)(x0)

n!

[
m

2
− x

2

0

n + 1

(
x − x0

)n+1

−
2x0

n + 2

(
x − x0

)n+2
−

1

n + 3

(
x − x0

)n+3]

+ const. ,

where f (x) and g(x) are the arcsin functions (see Eqs. C1 
and C6) and f (n)(x) and g(n)(x) are the corresponding n-th 
derivatives (see Eqs. C2 and C7). Functions 3 and 4 show 
the computation of the integrals in Eqs. (32) and (33) in a 
general interval [a, b]. In order to improve the accuracy of 
the algorithm, we choose x0 to be the middle point of the 
interval [a, b].

The integrals of Eq. (24) can be solved for each case by 
following the procedure described above (for details refer 
to Appendix B). Algorithm 4 illustrates how to compute the 
quadrature coefficients with this procedure. At the begin-
ning of the algorithm, the coordinates of node j are consid-
ered only in their absolute value and sorted in ascending 
order to comply with the conditions imposed for symmetry: 
0 ≤ xj ≤ yj ≤ zj . The quadrature coefficients �ij computed for 
m = 3, 4, 6 are reported in Appendix D.

2 3 4 5 6 7 8 9 10
−16

−12

−8

−4

0

m

lo
g 1

0(
ε V
)

N = 1
N = 2
N = 4
N = 10
N = 20

Fig. 10  Relative errors on the computation of the total volume of the 
neighborhood obtained with Algorithm  4 with different order N of 
truncation of the Taylor series expansions. The values of m vary by 
Δm = 0.5

Function 2. Integral of Equation 27 in the interval [a, b].

1: function Int1(a,b,k1,m)

2: I = 1
2 m2 − k 2

1
)
[
arcsin

(
b√

m2−k 2
1

)
− arcsin

(
a√

m2−k 2
1

)]

+ 1
2 b

√
m2 − b2 − k 2

1 − 1
2 a

√
m2 − a2 − k 2

1

3: return I
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Algorithm 3. Computation of the matrix c containing the coefficients for the
Taylor series expansion.

Input: N
Output: c

1: P = �3(N − 1)/2�+ 2 � maximum value for indices p and q
2: c = zeros(N ,P ,P ) � initialization of cwith all zero elements

3: c(1, 1, 1) = 1 � from the first derivative

4: for n = 2 : N do
5: for p = 1 : �3(n− 1)/2�+ 2 do
6: for q = 1 : p do
7: if 1 ≤ p ≤ �3(n− 1)/2� then
8: c(n, p, q) = c(n, p, q) + (−n− 2p+ 2) c(n− 1, p, q)
9: end if

10: if 2 ≤ p ≤ �3(n− 1)/2�+ 1 and q ≤ p− 1 then
11: c(n, p, q) = c(n, p, q) + (−2n+ 4p− 3) c(n− 1, p− 1, q)
12: end if
13: if 2 ≤ p ≤ �3(n− 1)/2�+ 1 and q ≥ 2 then
14: c(n, p, q) = c(n, p, q) + (n− 2p+ 1) c(n− 1, p− 1, q − 1)
15: end if
16: if 3 ≤ p ≤ �3(n− 1)/2�+ 2 and q ≤ p− 2 then
17: c(n, p, q) = c(n, p, q) + (3n− 2p+ 1) c(n− 1, p− 2, q)
18: end if
19: if 3 ≤ p ≤ �3(n− 1)/2�+ 2 and 2 ≤ q ≤ p− 1 then
20: c(n, p, q) = c(n, p, q) + (−3n+ 2p− 1) c(n− 1, p− 2, q − 1)
21: end if
22: end for
23: end for
24: end for

25: return c

Function 3. Integral of Equation 32 in the interval [a, b].

1: function Int2(a,b,k2,m,N ,c)

2: x0 = (a+ b)/2

3: I = arcsin
(

k2√
m2−x 2

0

)
[
m2 (b− a)− 1

3 b3 − a3
)]

4: for n = 1 : N do

5: f (n)(x0) =

�3n/2�∑
p=1

(
p∑

q=1
c(n,p,q)m2(p−q) k 2q−1

2

)
x 3n−2p
0

(m2−x 2
0 )

n(m2−x 2
0 −k 2

2 )
n−1/2

6: In1 = m2−x 2
0

n+1

(
(b− x0)

n+1 − (a− x0)
n+1

)

7: In2 = 2x0
n+2

(
(b− x0)

n+2 − (a− x0)
n+2

)

8: In3 = 1
n+3

(
(b− x0)

n+3 − (a− x0)
n+3

)

9: I = I + f(n)(x0)
n! (In1 − In2 − In3)

10: end for

11: return I
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Function 4. Integral of Equation 33 in the interval [a, b].

1: function Int3(a,b,k3,m,N ,c)

2: x0 = (a+ b)/2

3: I = arcsin
(√

m2−x2
0−k 2

3√
m2−x 2

0

)
[
m2 (b− a)− 1

3 b3 − a3
)]

4: for n = 1 : N do

5: g(n)(x0) =
−

�3n/2�∑
p=1

(
p∑

q=1
c(n,p,q)m2(p−q) k 2q−1

3

)
x 3n−2p
0

(m2−x 2
0 )

n(m2−x 2
0 −k 2

3 )
n−1/2

6: In1 = m2−x 2
0

n+1

(
(b− x0)

n+1 − (a− x0)
n+1

)

7: In2 = 2x0
n+2

(
(b− x0)

n+2 − (a− x0)
n+2

)

8: In3 = 1
n+3

(
(b− x0)

n+3 − (a− x0)
n+3

)

9: I = I + g(n)(x0)
n! (In1 − In2 − In3)

10: end for

11: return I

Fig. 11  Geometrical quanti-
ties (neighborhood volume and 
weighted volume) and their 
relative errors computed with 
Algorithm 1 and Algorithm 4. 
The plot is realized with values 
of m varying by Δm = 0.05
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(a) Normalized neighborhood volume.
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(b) Relative error on neighborhood volume.
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Algorithm 4. Quasi-analytical computation of quadrature coefficients in 3D.

Input: xj , yj , zj , m, N , c
Output: βij

1: xj = abs(xj) � absolute value of xj for symmetry (xj ≥ 0)
2: yj = abs(yj) � absolute value of yj for symmetry (yj ≥ 0)
3: zj = abs(zj) � absolute value of zj for symmetry (zj ≥ 0)

4: xj , yj , zj = sort(xj , yj , zj) � sort in ascending order for symmetry

5: M = �m+ 0.5�
6: if zj �= 0 and zj > M then
7: return βij = 0 � for exceeding the lower and upper limits of zj
8: end if

9: x1 = xj − 0.5
10: x2 = xj + 0.5
11: y1 = yj − 0.5
12: y2 = yj + 0.5
13: z1 = yj − 0.5
14: z2 = yj + 0.5

15: if xj = 0 and yj = 0 then
16: s = 2
17: else if xj = 0 then
18: s = 1
19: else
20: s = 0
21: end if

22: ax = max (0, x1)
23: ay = max (0, y1)

24: bx = min
(
x2,

√
m2 − a 2

y − z 2
1

)
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Algorithm 4. (continued)

24: if x 2
2 + y 2

2 + z 2
2 ≤ m2 then � case-1

25: βij = 1
26: else if a 2

x + y 2
2 + z 2

2 ≤ m2 then � case-2
27: xe1 =

√
m2 − y 2

2 − z 2
2

28: βij = 2s[ 1
2z2·Int1(xe1 , bx, z2,m) + 1

2y2·Int1(xe1 , bx, y2,m)
+ 1

2 ·Int2(xe1 , bx, y2,m,N, c)− 1
2 ·Int3(xe1 , bx, z2,m,N, c)

+z2y2 (xe1 − ax)− z2ay (bx − ax)− z1 (y2 − ay) (bx − ax) ]
29: else if x 2

2 + a 2
y + z 2

2 ≤ m2 then � case-3
30: βij = 2s[ 1

2z2·Int1(ax, bx, z2,m) + 1
2y2·Int1(ax, bx, y2,m)

+ 1
2 ·Int2(ax, bx, y2,m,N, c)− 1

2 ·Int3(ax, bx, z2,m,N, c)
−z2ay (bx − ax)− z1 (y2 − ay) (bx − ax) ]

31: else if a 2
x + a 2

y + z 2
2 ≤ m2 and x 2

2 + y 2
2 + z 2

1 ≤ m2 then � case-4

32: xe2 =
√

m2 − a 2
y − z 2

2

33: βij = 2s[ 1
2z2·Int1(ax, xe2 , z2,m) + 1

2y2·Int1(ax, bx, y2,m)
− 1

2ay·Int1(xe2 , bx, ay,m) + 1
2 ·Int2(ax, bx, y2,m,N, c)

− 1
2 ·Int2(xe2 , bx, ay,m,N, c)− 1

2 ·Int3(ax, xe2 , z2,m,N, c)
−z2ay (xe2 − ax)− z1 (y2 − ay) (bx − ax) ]

34: else if a 2
x + a 2

y + z 2
2 ≤ m2 then � case-5

35: xe2 =
√

m2 − a 2
y − z 2

2

36: xe3 =
√

m2 − y 2
2 − z 2

1
37: βij = 2s[ 1

2z2·Int1(ax, xe2 , z2,m) + 1
2y2·Int1(ax, xe3 , y2,m)

− 1
2z1·Int1(xe3 , bx, z1,m)− 1

2ay·Int1(xe2 , bx, ay,m)
+ 1

2 ·Int2(ax, xe3 , y2,m,N, c)− 1
2 ·Int2(xe2 , bx, ay,m,N, c)

− 1
2 ·Int3(ax, xe2 , z2,m,N, c) + 1

2 ·Int3(xe3 , bx, z1,m,N, c)
−z2ay (xe2 − ax)− z1y2 (xe3 − ax) + z1ay (bx − ax) ]

38: else if x 2
2 + y 2

2 + z 2
1 ≤ m2 then � case-6

39: βij = 2s[ 1
2y2·Int1(ax, bx, y2,m)− 1

2ay·Int1(ax, bx, ay,m)
+ 1

2 ·Int2(ax, bx, y2,m,N, c)− 1
2 ·Int2(ax, bx, ay,m,N, c)

−z1 (y2 − ay) (bx − ax) ]
40: else if a 2

x + y 2
2 + z 2

1 ≤ m2 then � case-7
41: xe3 =

√
m2 − y 2

2 − z 2
1

42: βij = 2s[ 1
2y2·Int1(ax, xe3 , y2,m)− 1

2z1·Int1(xe3 , bx, z1,m)
− 1

2ay·Int1(ax, bx, ay,m) + 1
2 ·Int2(ax, xe3 , y2,m,N, c)

−1
2 ·Int2(ax, bx, ay,m,N, c) + 1

2 ·Int3(xe3 , bx, z1,m,N, c)
−z1y2 (xe3 − ax) + z1ay (bx − ax) ]

43: else if a 2
x + a 2

y + z 2
1 ≤ m2 then � case-8 or case-9

44: βij = 2s[− 1
2z1·Int1(ax, bx, z1,m)− 1

2ay·Int1(ax, bx, ay,m)
− 1

2 ·Int2(ax, bx, ay,m,N, c) + 1
2 ·Int3(ax, bx, z1,m,N, c)

+z1ay (bx − ax) ]
45: else � case-10

βij = 0
46: end if

47: return βij
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Fig. 12  Coefficients of the 4 th

-order elasticity tensor and their 
relative errors computed with 
Algorithms 1 and 4. The values 
of m vary by Δm = 0.05
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(b) Relative error on C1111.
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(c) Coefficient C1122.
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(d) Relative error on C1122.

Fig. 13  Components of the 
force density vector and their 
relative errors computed with 
Algorithms 1 and 4. The values 
of m vary by Δm = 0.1
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(a) Force density b1.
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(b) Relative error on b1.
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4  Numerical results

To assess the accuracy of the computation of the partial vol-
umes with respect to the order N of truncation of the Taylor 
series expansions, we compute the relative error on the total 
volume of the spherical neighborhood:

The sum of all the quadrature coefficients �ij and the vol-
ume Vi = 1 of node i is the numerical value of the sphere 
volume, whereas (4∕3)�m3 is its analytical value. As shown 
in Fig. 10, the accuracy in the computation of the partial 
volumes is improved by increasing the value of N. Further-
more, the proposed algorithm reaches values of the errors 
very close to machine precision with m ≥ 3 and N = 20.

We show hereinafter several numerical results that con-
firm the improvements in the peridynamic integration in 3D 
problems. In particular, we compare the numerical results 
of Algorithm 1, arguably the most commonly used, with 
those of the new algorithm (Algorithm 4). We use N = 4 as 
the order of truncation for the Taylor series in Algorithm 4 
since this value assures accurate results with low computa-
tional cost.

4.1  Geometrical quantities

To assess the performance of the proposed algorithm, we 
compute two geometrical quantities that reflect the accuracy 
in the computation of the partial volumes. The first one is 
the neighborhood volume, computed as:

The analytical value of the neighborhood volume is equal to 
the volume of a sphere: Van = (4∕3)�m

3 . The relative error 
on the neighborhood volume can be computed as in Eq. (34). 
The improvements obtained by the novel algorithm are evi-
dent in Fig. 11a, b.

The second geometrical quantity for the comparison of 
the algorithms is the weighted volume m (Eq. (18)). The 
analytical computation of the weighted volume is carried 
out using spherical coordinated ( � is the azimuthal angle 
and � is the polar angle):

(34)�V =
�����

∑
j∈Hi

�ij + 1

4

3
� m

3
− 1

�����
.

(35)VH = 1 +
∑
j∈Hi

�ij .

where r = ‖�‖ and erf (⋅) is the Gaussian error function. The 
relative error on the weighted volume can be computed as:

(36)

man = ∫
H�

exp

�
−
‖�‖2
�2

�
‖�‖2dV

��

= ∫
�

0 ∫
2�

0 ∫
�

0

exp

�
−
r2

�2

�
r2 ⋅ r2 sin�d�d�dr

=
�
3

2

√
� erf (1) − 5 exp(−1)

�
��5 ,

Table 1  Comparison of the cases in Fig. 4 of [13] with the cases in 
Fig.  15 derived from the new approach for the computation of the 
partial areas

The abbreviation “symm.” means that the cell–neighborhood symme-
try should be used for the cases of the approach in [13] to obtain the 
cases in the new approach

Approach in [13] New approach

Case I Case 1
Case II Case 2
Case IIIa1 Case 3
Case IIIa2 Case 3 (symm.)
Case IIIb Case 2 (symm.)
Case IIIc Case 3
Case IV Case 4
Case V Case 4 (symm.)

Fig. 14  Cases of intersection for m = 3.25 in 2D depending on which 
corners of the cell lie inside the neighborhood. Note that the cell–
neighborhood intersection of node (0,  3) is symmetric with respect 
to the y-axis, so actually only the half of it is considered, namely the 
half in the first quadrant
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Figure 11c, d show the comparison between Algorithms 1 
and 4, with a significant improvement of the accuracy in the 
latter one.

4.2  Coefficients of the elasticity tensor

The mechanical properties of isotropic linearly elastic mate-
rials are described by the 4 th-order elasticity tensor � . As in 
[13], we investigate the convergence behavior of the coef-
ficients of the elasticity tensor. In state-based peridynamics, 
the elasticity tensor of a point in the bulk is given as [32]

where � is the modulus state which operates on two bonds, 
� = �� − � and � = ��� − � . The modulus state in a linear 
peridynamic solid model [2, 32] is derived as

where � is the Dirac delta function defined as

A component of the tensor � is therefore computed as [32]

(37)�m =
‖‖‖‖‖

m

man

− 1
‖‖‖‖‖
.

(38)Cpqrs(�) = ∫
H�

∫
H�

�
pr
[�]⟨�, �⟩ �q �sdV���

dV
��
,

(39)
�

pr
[�]⟨�, �⟩ =�⟨�⟩

m
�

�
3(3K − 5�)

m
�

�⟨�⟩ x⟨�⟩ x⟨�⟩

+15��(� − �))
�p

‖�‖
�r

‖�‖ ,

(40)�(� − �) ∶=

{
1 if � = � ,

0 otherwise.

For isotropic linearly elastic materials, there are only two 
coefficients of the tensor � which are independent from the 
others. The analytical value of the coefficients, for instance, 
C1111 and C1122 are

Any component of the tensor � in a node i can be computed 
numerically from Eq. (41) as

(41)

Cpqrs = ∫
H�

∫
H�

�⟨�⟩
m

�

�
3(3K − 5�)

m
�

�⟨�⟩ x⟨�⟩ x⟨�⟩

+15��(� − �))
�p�q

‖�‖
�r�s

‖�‖dV���
dV

��

= ∫
H�

�⟨�⟩�p�q
�
3(3K − 5�)�

m
�

�2 ∫
H�

�⟨�⟩ �r�sdV���

+
15�

m
�
∫
H�

�(� − �)
�r�s

‖�‖‖�‖dV���

�
dV

��

=
3(3K − 5�)�

m
�

�2 ∫
H�

�⟨�⟩ �p�qdV�� ∫
H�

�⟨�⟩ �r�sdV���

+
15�

m
�
∫
H�

�⟨�⟩�p�q�r�s‖�‖2 dV
��
.

(42)Can
1111

= K +
4

3
� , Can

1122
= K −

2

3
� .

(43)

Cpqrs =
3(3K − 5�)�

mi

�2
��

j∈Hi

�
ij
�p �q �ijV

�

×

��
k∈Hi

�
ik
�r �s �ikV

�

+
15�

mi

�
j∈Hi

�
ij

�p�q�r�s

‖�‖2 �ijV ,

Fig. 15  Possible cases of inter-
sections between neighborhood 
and cell in 2D. The gray line is 
a portion of the boundary of the 
neighborhood
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where � = �j − �i and � = �k − �i . The values of the Young’s 
modulus E = 1GPa and of the Poisson’s ratio � = 0.2 are 
chosen, which yield the following bulk and shear moduli: 
K = 555.56MPa and � = 416.67MPa . Figure 12a, c show 
the results of these computation, respectively, for the com-
ponents C1111 and C1122 . The relative errors on these coef-
ficients are computed as

and are shown in Fig. 12b, d. It is evident that the proposed 
algorithm provides, on average, smaller errors. Furthermore, 
the oscillatory behavior as m increases is much smoother 
than that of Algorithm 1.

4.3  Manufactured problem

A “manufactured” problem, which consists in determining 
the force density distribution in a body under a prescribed 
displacement field, is solved analytically and numerically. 
Following what was shown in [14] for a 2D problem, a body 
is subjected to the displacements

where there are 18 independent coefficients for the quadratic 
terms. The force density derived from this displacement field 
is given as [14]

where K = 555.56MPa and � = 416.67MPa . Note that the 
force density vector �an is constant for all the points in the 
bulk of the material, i.e., in all points that have a distance 
from the boundary of the body greater than or equal to 2� . 
Since cu5 , cv6 and cw4 do not contribute to �an , these coef-
ficients are considered to be equal to 0. The values of the 
other coefficients are chosen randomly as follows: cu1 = 0.6 , 
cu2 = 1.3 , cu3 = 0.8 , cu4 = 0.5 , cu6 = 1.8 , cv1 = 1.1 , cv2 = 1.6 , 
cv3 = 0.7 , cv4 = 1 , cv5 = 1.2 , cw1 = 0.3 , cw2 = 1.2 , cw3 = 0.1 , 
cw5 = 1.7 and cw6 = 0.6.

We consider only one node in the bulk of a body at which 
the force density vector � is computed with Eq. (20). The 
relative errors on the components of � are given as

(44)�1111 =
‖‖‖‖‖
C1111

Can
1111

− 1
‖‖‖‖‖
, �1122 =

‖‖‖‖‖
C1122

Can
1122

− 1
‖‖‖‖‖
,

(45)

⎧⎪⎨⎪⎩

u = cu1 x
2 + cu2 y

2 + cu3 z
2 + cu4 xy + cu5 yz + cu6 xz ,

v = cv1 x
2 + cv2 y

2 + cv3 z
2 + cv4 xy + cv5 yz + cv6 xz ,

w = cw1 x
2 + cw2 y

2 + cw3 z
2 + cw4 xy + cw5 yz + cw6 xz ,

(46)
⎧⎪⎨⎪⎩

ban
1

= −
3K−5�

3

�
2cu1 + cv4 + cw6

�
− 2�

�
3cu1 + cu2 + cu3 + cv4 + cw6

�
,

ban
2

= −
3K−5�

3

�
cu4 + 2cv2 + cw5

�
− 2�

�
cu4 + cv1 + 3cv2 + cv3 + cw5

�
,

ban
3

= −
3K−5�

3

�
cu6 + cv5 + 2cw3

�
− 2�

�
cu6 + cv5 + cw1 + cw2 + 3cw3

�
,

Figure 13 shows the results of the numerical computation. 
Algorithm 4 allows to obtain, on average, smaller relative 
errors and a smoother convergence behavior also in this case.

5  Conclusions

The peridynamic theory is a nonlocal reformulation of 
classical continuum mechanics based on integrals over the 
neighborhoods of nodes. Therefore, the numerical integra-
tion of peridynamic equations determines to a great extent 
the accuracy of the results. In particular, the quadrature 
weights, i.e., the partial areas in 2D (intersections between 
the circular neighborhood and the square cells) and the 
partial volumes in 3D (intersections between the spheri-
cal neighborhood and the cubic cells), should be computed 
accurately.

We developed an innovative algorithm able to compute 
quasi-analytically the partial volumes. We use the expression 
“quasi-analytical” because a truncated Taylor series expan-
sion of some functions, whose integrals are not explicitly 
solvable, is performed to carry out the integration. How-
ever, the new algorithm computes accurately the quadrature 
weights with very little computational effort, i.e., with a rela-
tively low order of truncation of the Taylor series. The com-
putational time required by the proposed algorithm is negligi-
ble compared to the time required to compute the bond forces 
and the peridynamic equilibrium equation. In particular, if m 

is constant in the whole domain, the same quadrature weights 
can be computed only once and used for every neighborhood 
in the body. A similar approach is also used to simplify the 
algorithm for the analytical computation of the partial areas, 
which was already developed in the literature.

Several examples have been presented to show the capa-
bilities of the newly proposed algorithm. The numerical 
values of the geometrical quantities (volume of the neigh-
borhood and weighted volume), of the coefficients of the 
elasticity tensor and of the manufactured problem obtained 
with the new algorithm are compared with those obtained 
with the most commonly used algorithm for the computa-
tion of the partial volumes. As the m-ratio increases, the 
proposed algorithm provides, on average, smaller errors 
and a smoother convergence behavior. For the sake of 

(47)�bp =
‖‖‖‖‖
bp

ban
p

− 1
‖‖‖‖‖

with p = 1, 2, 3 .
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convenience, the quadrature coefficients for m = 3, 4, 6 are 
reported in Appendix D.

Appendix A: Analytical computation 
of partial areas

We propose a new algorithm for the computation of the 
quadrature coefficients in 2D (Algorithm 2) that solves the 
following integral:

where x1 = xj − 0.5 ,  x2 = xj + 0.5 ,  y1 = yj − 0.5 and 
y2 = yj + 0.5 are the coordinates of the sides of the square 
cell and s is the number of symmetries of the cell with 
respect to the neighborhood ( s = 1 if xj = 0 and s = 0 if 
xj ≠ 0 , see Fig. 8a). The upper and lower limits of the outer 
integral, respectively, bx and ax , are scalar values that can be 
computed at the beginning of the algorithm. The value of 
the lower limit ax depends on whether the cell–neighborhood 
intersection is symmetric, as shown in Fig. 8a, or not. In the 
former case, the lower limit of the integration domain in x 
direction is set to ax = 0 and the value of the integral is mul-
tiplied by 2 (given that s = 1 ). In the latter case, the lower 
limit is the smallest x coordinate of the cell, i.e., ax = x1 . 
These conditions can be written as

Since only cells with yj ≥ xj ≥ 0 are considered for sym-
metry reasons (see Fig. 14), there are 5 possible cases of 
square–circle intersections depending on which corners of 
the cell lie inside the neighborhood:

• case-1 if the corner (x2, y2) , the farthest from node i, lies 
inside the neighborhood, i.e., x 2

2
+ y

2

2
≤ m

2 , as shown in 
Fig. 15a;

• case-2 if only the corner (x2, y2) lies outside the neighbor-
hood, i.e., a 2

x
+ y

2

2
≤ m

2
< x

2

2
+ y

2

2
 , as shown in Fig. 15b;

• case-3 if the corners (x2, y2) and (ax, y2) lie out-
side the neighborhood and the others lie inside, i.e., 
x
2

2
+ y

2

1
≤ m

2
< a 2

x
+ y

2

2
 , as shown in Fig. 15c;

• case-4 if only the corners (ax, y1) lies inside the neighbor-
hood, i.e., a 2

x
+ y

2

1
≤ m

2
< x

2

2
+ y

2

1
 , as shown in Fig. 15d;

• case-5 if the corner (ax, y1) , the closest to node i, lies 
outside the neighborhood, i.e., a 2

x
+ y

2

1
> m

2 , as shown 
in Fig. 15e.

The comparison of these cases with the cases of the approach 
in [13] is summarized in Table 1.

(A1)�ij = 2s ∫
bx

ax
∫

min
�
y2,

√
m

2
−x

2
�

y1

dydx ,

(A2)ax = max
(
0, x1

)
.

Case-1 and case-5 are trivial since �ij = 1 and �ij = 0 , 
respectively. Furthermore, the quadrature coefficient in 
case-3 and case-4 can be computed with the same formulae 
if the upper limit of the integral in x direction is defined as

The value of bx is indeed equal to x2 in case-3, as shown in 
Fig. 15c, and to the x coordinate of the intersection between 
the boundary of the neighborhood and the lower side of the 
cell, as shown in Fig. 15d.

For later use, the following indefinite integral is analyti-
cally solved as

This solution will be used to compute the definite integrals 
in different intervals. Now, we show how to compute the 
quadrature coefficient if the considered cell belongs to case-
2. Equation (A1) can be rewritten as

In case-2 (see Fig. 15b), there is an intersection between the 
boundary of the neighborhood and the upper side of the cell, 
which has an x coordinate equal to

The integral in Eq.  (A5) must be splitted because the 
integrand has different values in the intervals [ax, xe] and 
[xe, bx] . Then, the integral can be solved analytically by using 
Eq. (A4):

Similarly, the quadrature coefficient for a cell belonging to 
case-3 or case-4 is analytically computed from Eq. (A5) as 
follows:

(A3)bx = min

(
x2,

√
m

2
− y

2

1

)
.

(A4)
∫

√
m

2
− x

2
dx =

1

2
m

2
arcsin

�
x

m

�

+
1

2
x

√
m

2
− x

2
+ const. .

(A5)�ij = 2s ∫
bx

ax

�
min

�
y2,

√
m

2
− x

2

�
− y1

�
dx .

(A6)xe =

√
m

2
− y

2

2
.

(A7)

Case-2 ⇒ �ij

= 2s

�
∫

xe

ax

�
y2 − y1

�
dx + ∫

bx

xe

�√
m

2
− x

2
− y1

�
dx

�

= 2s
�
y2
�
xe − ax

�
+

1

2
m

2
arcsin

�
bx

m

�
+

1

2
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�
m

2
− b 2

x

−
1

2
m

2
arcsin

�
xe

m

�
−

1

2
xe

�
m

2
− x

2

e
− y1

�
bx − ax

��
.
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The computation of the partial area of a cell is summarized 
in Algorithm 2. Function 1 is used to compute the integral of 
Eq. (A4) in a general interval between a and b. The proposed 
algorithm yields exactly the same results of the algorithm for 
the computation of the partial areas presented in [13], but its 
implementation is simpler because it is based on a smaller 
number of cases.

Appendix B: Quasi‑analytical computation 
of partial volumes

We can rewrite Eq. (24) that describes the integral to com-
pute the quadrature coefficients as follows:

w h e r e  x1 = xj − 0.5  ,  x2 = xj + 0.5  ,  y1 = yj − 0.5  , 
y2 = yj + 0.5 , z1 = zj − 0.5 and z2 = zj + 0.5 are the coor-
dinates of the faces of the cubic cell and s is the number of 
symmetries of the cell with respect to the neighborhood (see 
Fig. 8b, c). ax , ay and bx are scalar values computed as shown 
in Eqs. (25) and (26).

Since the integrand and the upper limit of the inner inte-
gral in Eq. (B1) are discontinuous functions, the integral 
domain should be split into subdomains in which only con-
tinuous functions are integrated. The integral is split differ-
ently for each of the 10 cases represented in Fig. 9. The cases 
are differentiated depending on the intersections between 
the boundary of the neighborhood and the edges of the cell 
parallel to the x-axis and the faces parallel to the x-y plane. 
These intersections are indeed used to split the integral of 
Eq. (B1), as shown in next subsections. To begin with, we 
consider a cell completely within the neighborhood (case-1 
in Fig. 9a) and decrease gradually the m-ratio to find other 
cases. We also need to check that, for the considered cells 
with zj ≥ yj ≥ xj ≥ 0 , other cases of intersections are not 
possible.

(A8)

Case-3 or case-4 ⇒ �ij

= 2s ∫
bx

ax

�√
m

2
− x

2
− y1

�
dx

= 2s
�
1

2
m

2
arcsin

�
bx

m

�
+

1

2
bx

�
m

2
− b 2

x

−
1

2
m

2
arcsin

�ax
m

�
−

1

2
ax

�
m

2
− a 2

x
− y1

�
bx − ax

��
.

(B1)�ij = 2s ∫
bx

ax
∫

min

�
y2,

√
m

2
−x

2
−z

2

1

�

ay

�
min

�
z2,

�
m

2
− x

2
− y

2

�
− z1

�
dydx ,

Case‑1

In case-1, the cell is completely within the neighborhood, 
as shown in Fig. 9a. The condition for which this case is 
verified is that the farthest node with coordinates (x2, y2, z2) 
is inside the neighborhood:

In this case, the solution of Eq. (B1) is trivial:

Case‑2

In case-2, the boundary of the neighborhood intersects 
the edge of the cell between the vertices (ax, y2, z2) and 
(x2, y2, z2) , as shown in Fig. 9b. Therefore, the condition in 
this case is

To be sure that there are no other possible intersections 
with edges parallel to the x-axis and faces parallel to the x

-y plane, we need to check that the vertices (x2, ay, z2) and 
(x2, y2, z1) lie within the neighborhood, so that the edge 
between (ax, ay, z2) and (x2, ay, z2) and the face on the plane 
z = z1 are, respectively, within the neighborhood. The condi-
tion for the vertex (x2, ay, z2) being within the neighborhood 
is given as

We rewrite the condition in Eq. (B5) as

By comparing this inequality with the condition on the left-
hand side in Eq. (B4), we obtain:

If the cell has two symmetries as shown in Fig. 8c ( s = 2 , 
ax = ay = 0 ), Eq. (B7) becomes y 2

2
≥ x

2

2
 which is always 

verified. If the cell has one symmetry as shown in Fig. 8b 
( s = 1 , ax = 0 , x2 = 0.5 , yj ≥ 1 ), Eq. (B7) becomes 2yj ≥ 0.52 
which is always verified. If the cell has no symmetries 
( s = 0 ), Eq. (B7) becomes 2yj ≥ 2xj which is always verified. 

(B2)x
2

2
+ y

2

2
+ z

2

2
≤ m

2
.

(B3)�ij = 1 .

(B4)a 2
x
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2

2
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2

2
≤ m

2
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2

2
+ y

2

2
+ z

2

2
.

(B5)x
2

2
+ a 2

y
+ z

2

2
≤ m

2
.

(B6)a 2
x
− a 2

x
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2

2
+ a 2

y
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− y

2

2
+ z

2

2
≤ m

2
.

(B7)
− a 2

x
+ x

2

2
+ a 2

y
− y

2

2
≤ 0

⇒ y
2

2
− a 2

y
≥ x

2

2
− a 2

x
.
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Similarly, one can show that also the vertex (x2, y2, z1) lies 
within the neighborhood.

In this case (see Fig. 9b), the outer integral of Eq. (B1) 
should be split at the intersection of the boundary of the 
neighborhood with the edge between the vertices (ax, y2, z2) 
and (x2, y2, z2) , namely at

Furthermore, the inner integral should be split in corre-
spondence of the arc of circle with equation

which is given by the intesection of the boundary of the 
neighborhood with the plane z = z2 (where the face of the 
cell lies). Therefore, Eq. (B1) becomes:

Note that the upper limit of the inner integral is y2 because 
the face of the cell on the plane z = z1 is completely within 
the neighborhood. Since the solution of the inner integral of 
the last term in Eq. (B10) is similar to the integral solved in 
Eq. (27), the quadrature coefficients in case-2 can be com-
puted as

(B8)xe1 =

√
m

2
− y

2

2
− z

2

2
.

(B9)yf1 (x) =

√
m

2
− x

2
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2

2
,

(B10)
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dydx

−∫
bx

ax
∫

y2

ay

z1dydx

�
.

The integrals in Eq.  (B11) are of the types solved in 
Eqs. (27), (32) and (33). To shorten the formulae, we define 
the following functions (similar to Functions 2, 3 and 4 used 
in Algorithm 4):

(B11)
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(B12)
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1
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�⎡⎢⎢⎢⎣
arcsin

⎛⎜⎜⎜⎝
b�

m
2
− k 2

1

⎞⎟⎟⎟⎠
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,
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where f (x) and g(x) are functions defined in Appendix C 
and their corresponding n-th derivatives f (n)(x) and g(n)(x) 
are computed as in Eqs. (C2) and (C7). The parameter k1 
can be equal to ay , y2 , z1 or z2 , k2 to ay or y2 , and k3 to z1 or z2 
depending on the cases.

Using the previous definitions, Eq. (B11) is solved as 
follows:

(B13)
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f (n)(x0)

n!

�
x − x0

�n
�
dx
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��

+
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×

�
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��
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�n+3��
,

(B14)
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b

a

�
m

2
− x

2
�
arcsin

⎛
⎜⎜⎜⎝

�
m

2
− x

2
− k 2

3√
m

2
− x

2

⎞
⎟⎟⎟⎠
dx

= ∫
b

a

�
m

2
− x

2
�

×

�
g(x0) +

N�
n=1

g(n)(x0)

n!

�
x − x0

�n
�
dx

= g(x0)
�
m

2
(b − a) −

1

3

�
b3 − a3

��

+

N�
n=1

g(n)(x0)

n!

×

�
m

2
− x

2

0

n + 1

��
b − x0

�n+1
−
�
a − x0

�n+1�

−
2x0

n + 2

��
b − x0

�n+2
−
�
a − x0

�n+2�

−
1

n + 3

��
b − x0

�n+3
−
�
a − x0

�n+3��
,

Case‑3

In case-3, the boundary of the neighborhood intersects the 
face of the cell on the plane z = z2 , but does not intersect any 
edge parallel to the x-axis, as shown in Fig. 9c. Therefore, 
the condition in this case is

The condition on the right-hand side implies that there 
are no intersections of the boundary of the neighborhood 
with the edge of the cell between the vertices (ax, y2, z2) 
and (x2, y2, z2) . Similarly, the condition on the left-hand 
side implies that there are no intersections with the edge 
between the vertices (ax, ay, z2) and (x2, ay, z2) . With the same 
approach illustrated at the beginning of Sect. B.2, one can 
also show that the vertex (x2, y2, z1) lies within the neighbor-
hood for the considered cells ( zj ≥ yj ≥ xj ≥ 0 ), so that the 
face of the cell on the plane z = z1 is completely inside the 
neighborhood.

The quadrature coefficient in case-3 is therefore computed 
as

(B15)

�ij = 2s
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)(
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+
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Using Eqs. (B12), (B13) and (B14), Eq. (B17) is solved as 
follows:

Case‑4

In case-4, the boundary of the neighborhood intersects the 
edge of the cell between the vertices (ax, ay, z2) and (x2, ay, z2) 
and the face on the plane z = z1 lies completely within the 
neighborhood, as shown in Fig. 9d. Therefore, the conditions 
in this case are

(B17)

�ij = 2s
⎡
⎢⎢⎣∫

bx

ax
∫

√
m

2
−x

2
−z

2

2

ay

z2dydx

+ ∫
bx

ax
∫

y2

√
m

2
−x

2
−z

2

2

�
m

2
− x

2
− y

2
dydx

−∫
bx

ax
∫

y2

ay

z1dydx

�

= 2s
�
z2 ∫

bx

ax

��
m

2
− x

2
− z

2

2
− ay

�
dx

+∫
bx

ax

1

2

��
m

2
− x

2
�
arcsin

�
y2√

m
2
− x

2

�

+ y2

�
m

2
− x

2
− y

2

2

−
�
m

2
− x

2
�
arcsin

⎛⎜⎜⎜⎝

�
m

2
− x

2
− z

2

2√
m

2
− x

2

⎞⎟⎟⎟⎠
−z2

�
m

2
− x

2
− z

2

2

�
dx

− z1
�
y2 − ay

��
bx − ax

��
.

(B18)
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The intersection of the boundary of the neighborhood with 
the edge between the vertices (ax, y2, z2) and (x2, y2, z2) is 
given as

Given the conditions in previous case, there are no intersec-
tions of the boundary of the neighborhood with the edge of 
the cell between the vertices (ax, y2, z2) and (x2, y2, z2).

The quadrature coefficient in case-4 is therefore computed 
as

Using Eqs. (B12), (B13) and (B14), Eq. (B21) is solved as 
follows:
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Case‑5

In case-5, the boundary of the neighborhood intersects 
both the edge of the cell between the vertices (ax, ay, z2) 
and (x2, ay, z2) and the face on the plane z = z1 , as shown in 
Fig. 9e. Therefore, the conditions in this case are

With the same approach illustrated at the beginning of 
Sect. B.2, one can also show that the vertices (ax, y2, z1) and 
(x2, ay, z1) lie within the neighborhood for the considered 
cells ( zj ≥ yj ≥ xj ≥ 0 ), so that there is an intersection with 
the edge between (ax, y2, z1) and (x2, y2, z1) and the edge 
between (ax, ay, z1) and (x2, ay, z1) lies completely within the 
neighborhood.

The intersection of the boundary of the neighborhood 
with the edge between the vertices (ax, y2, z2) and (x2, y2, z2) 
is given in Eq. (B20), whereas the intersection with the edge 
between (ax, y2, z1) and (x2, y2, z1) is given as

Note that xe2 ≤ xe3 since:

If the cell has two symmetries ( s = 2 , ay = 0 ), Eq. (B25) 
becomes 2zj ≥ 0.52 which is always verified ( zj ≥ 1 ). If the 
cell has one or no symmetries, Eq. (B25) becomes 2zj ≥ 2yj 
which is always verified.

(B22)
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In case-5, the boundary of the neighborhood intersects 
both faces on the planes z = z2 and z = z1 . The equation of 
the former intersection is written in Eq. (B9), while the lat-
ter is given as

The quadrature coefficient in case-5 is computed as
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Using Eqs. (B12), (B13) and (B14), Eq. (B27) is solved as 
follows:

Case‑6

In case-6, the face of the cell on the plane z = z2 is com-
pletely outside the neighborhood and the face on the plane 
z = z1 is completely inside, as shown in Fig. 9f. Therefore, 
the condition in this case is

The quadrature coefficient in case-6 is computed as
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Using Eqs. (B12), (B13) and (B14), Eq. (B30) is solved as 
follows:

Case‑7

In case-7, the boundary of the neighborhood intersects 
the edge of the cell between the vertices (ax, y2, z1) and 
(x2, y2, z1) , as shown in Fig. 9g. Therefore, the condition in 
this case is

With the same approach illustrated at the beginning of 
Sect.  B.2, one can also show that the vertex (x2, ay, z1) 
lies within the neighborhood for the considered cells 
( zj ≥ yj ≥ xj ≥ 0 ), so that the edge between (ax, ay, z1) and 
(x2, ay, z1) lies completely within the neighborhood. The 
intersection of the boundary of the neighborhood with the 
edge between the vertices (ax, y2, z1) and (x2, y2, z1) is given 
by xe3 in Eq. (B24).

Therefore, the quadrature coefficient in case-7 is com-
puted as
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Using Eqs. (B12), (B13) and (B14), Eq. (B33) is solved as 
follows:

(B33)

�ij = 2s

�
∫

xe3

ax
∫

y2

ay

�
m

2
− x

2
− y

2
dydx

+ ∫
bx

xe3
∫

√
m

2
−x

2
−z

2

1

ay

�
m

2
− x

2
− y

2
dydx

−∫
xe3

ax
∫

y2

ay

z1dydx − ∫
bx

xe3
∫

√
m

2
−x

2
−z

2

1

ay

z1dydx

⎤
⎥⎥⎦

= 2s

�
∫

xe3

ax

1

2

��
m

2
− x

2
�
arcsin

�
y2√

m
2
− x

2

�

+ y2

�
m

2
− x

2
− y

2

2

−
�
m

2
− x

2
�
arcsin

�
ay√

m
2
− x

2

�

−ay

�
m

2
− x

2
− a 2

y

�
dx

+ ∫
bx

xe3

1

2

⎛⎜⎜⎜⎝

�
m

2
− x

2
�
arcsin

⎛⎜⎜⎜⎝

�
m

2
− x

2
− z

2

1√
m

2
− x

2

⎞⎟⎟⎟⎠
+ z1

�
m

2
− x

2
− z

2

1

−
�
m

2
− x

2
�
arcsin

�
ay√

m
2
− x

2

�

−ay

�
m

2
− x

2
− a 2

y

�
dx

− z1
�
y2 − ay

��
xe3 − ax

�

−z1 ∫
bx

xe3

��
m

2
− x

2
− z

2

1
− ay

�
dx

�
.

Case‑8 or case‑9

In case-8 or case-9, the edge of the cell between the vertices 
(ax, ay, z1) and (x2, ay, z1) may be intersected by the boundary 
of the neighborhood or may be completely within the neigh-
borhood, but all the other edges parallel to the x-axis are 
completely outside the neighborhood, as shown in Fig. 9h, 
i. Therefore, the condition in this case is

The intersection of the boundary of the neighborhood with 
the edge between the vertices (ax, ay, z1) and (x2, ay, z1) is 
given as

Case-8 and case-9 can be treated as a single case because 
of the definition of the upper limit of the outer integral as 
bx = min

(
x2, xe4

)
 (see Eq. (26)).

Therefore, the quadrature coefficient in case-8 and case-9 
is computed as

(B34)
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Using Eqs. (B12), (B13) and (B14), Eq. (B37) is solved as 
follows:

Case‑10

In case-10, the cell is completely outside the neighborhood, 
as shown in Fig. 9j. The condition for which this case is 

(B37)
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(B38)

�ij = 2s
[
1

2
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1

2
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1

2
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−
1

2
ay I1(ax, bx, ay) − z1 I1(ax, bx, z1) + z1ay

(
bx − ax

)]

= 2s
[
−
1

2
z1 I1(ax, bx, z1) −

1

2
ay I1(ax, bx, ay)

−
1

2
I2(ax, bx, ay) +

1

2
I3(ax, bx, z1) + z1ay

(
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.

verified is that the closest node with coordinates (ax, ay, z1) 
lies outside the neighborhood:

In this case, the solution of Eq. (B1) is trivial:

(B39)m
2
< a 2

x
+ a 2

y
+ z

2

1
.

(B40)�ij = 0 .

Table 2  Quadrature coefficients for m = 3

Coordinates (x
j
, y

j
, z

j
) of node j �

ij

(0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2), (1, 1, 1) 1
(1, 1, 2) 0.973726549278437
(0, 2, 2) 0.676019006545153
(0, 0, 3) 0.472039364938528
(1, 2, 2) 0.452222876981391
(0, 1, 3) 0.296813994273711
(1, 1, 3) 0.135469082591897
(2, 2, 2) 0.051318527160244
(0, 2, 3) 0.005723631798072
(1, 2, 3) 0.000153662617015

Table 3  Quadrature coefficients for m = 4

Coordinates (x
j
, y

j
, z

j
) of node j �

ij

(0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 1), (0, 1, 2),

(0, 1, 3), (0, 2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2)

1

(1, 1, 3) 0.998768863060338
(2, 2, 2) 0.966687702325083
(0, 2, 3) 0.892821241940852
(1, 2, 3) 0.775199178007998
(0, 0, 4) 0.479090049888385
(0, 1, 4) 0.350647333158876
(2, 2, 3) 0.316083719616023
(1, 1, 4) 0.218887022520336
(0, 3, 3) 0.198987147856524
(1, 3, 3) 0.108751981636951
(0, 2, 4) 0.042953209732511
(1, 2, 4) 0.010206581019384
(2, 3, 3) 0.003887002534346

Fig. 16  The quadrature coefficient �ij (for m = 3 ) of the cell identi-
fied, for instance, by the coordinates (1, 1, 2) of node j, is reported in 
the third row of Table 2
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Appendix C: Derivatives for the Taylor series 
expansion

We need to perform the Taylor series expansion of the 
function:

Therefore, we have to compute the derivatives of f (x) , which 
will be denoted as f (n)(x) where n > 1 is the order of the 
derivative. After taking the first derivatives, one can recog-
nize the following recursive pattern:

where c(n, p, q) are some coefficients depending on the order 
n of the corresponding derivative and on the indices p and q. 
In order to compute these coefficients c, we take the deriva-
tive of f (n−1)(x) and the final solution should be equal to 
f (n)(x):

We multiply the numerator and denominator by (
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)−n+2(

m
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numerator becomes:
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We can now change the lower and upper limits of the sum-
mations to equalize the exponents of the numerator of f (n)(x) 
as follows:

(C4)
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Therefore, c(n, p, q) can be computed from Eq. (C5) (see 
Algorithm 3).

Also, we need the Taylor series expansion of a similar 
function:

By repeating the previous procedure for g(x) , we obtain the 
same coefficients with a negative sign:

(C5)
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Table 4  Quadrature coefficients for m = 6

Coordinates (x
j
, y

j
, z

j
) of node j �

ij

(0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (0, 0, 5),

(0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 1, 5),

(0, 2, 2), (0, 2, 3), (0, 2, 4), (0, 3, 3), (0, 3, 4),

(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 1, 5),

(1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 3, 3), (1, 3, 4),

(2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 3, 3)

1

(3, 3, 3) 0.999790182328854
(0, 2, 5) 0.996792906342336
(2, 3, 4) 0.987734967536850
(1, 2, 5) 0.972240389996081
(0, 4, 4) 0.859401538943377
(1, 4, 4) 0.784526552214560
(2, 2, 5) 0.770548513294528
(3, 3, 4) 0.690805241353979
(0, 3, 5) 0.677365640339469
(1, 3, 5) 0.579443674979575
(0, 0, 6) 0.486088519387858
(2, 4, 4) 0.476199633943112
(0, 1, 6) 0.401767018323396
(1, 1, 6) 0.316210827911515
(2, 3, 5) 0.285658718830588
(0, 2, 6) 0.144371394514214
(0, 4, 5) 0.086400028994142
(3, 4, 4) 0.081510711534106
(1, 2, 6) 0.079306290046733
(1, 4, 5) 0.046394967777568
(3, 3, 5) 0.022174412588457
(2, 2, 6) 0.002888370932027
(2, 4, 5) 0.001586472847643
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Appendix D: Quadrature coefficients 
for m = 3, 4, 6

We report in Tables 2, 3 and 4 the values of the quadra-
ture coefficients derived from Algorithm 4 for m = 3, 4, 6 , 
respectively. The Taylor series expansion is truncated at an 
order N = 20 to maintain the errors of the computations 
close to machine precision (see Fig. 10). The bonds are iden-
tified by the coordinates (xj, yj, zj) of node j in the system of 
reference specified in Sect. 3.2, as shown in Fig. 16. The 
quadrature coefficients which are not listed in the tables are 
equal to 0.
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